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Abstract
Creating autonomous robots that can safely interact with humans in daily life has
been a long-standing dream of robotics and artificial intelligence. This goal cannot be
achieved without compliant and fully adaptive robot control, which requires accurate
models of the robot and its environment. However, analytical models obtained from
physics-based modeling techniques have shown to be insufficient for many modern
robots systems. It appears that compliant and fully adaptive robot control can only
be achieved with model learning. In this thesis, we explore how statistical kernel-
based learning techniques can be employed in real-time approximate model based
robot control. The presented work includes contributions to robot control, as well as
machine learning. This thesis advances a kernel-based statistical approach to robot
control.

We show that kernel-based learning can be used to obtain both compliance and
accurate control performance. In this case, learning the inverse dynamics models is
necessary to predict the required torques for the robot to perform a desired task.
In order to adapt the models to changes in the robot dynamics and environment,
real-time online learning of such models is essential. We additionally present ma-
chine learning solutions to model learning problems in robotics, such as learning
models from multi-valued mappings. Learning from such mappings is necessary for
approximating torque prediction models for task-space robot tracking control. The
proposed kernel-based approach for learning models from multi-valued mappings is
based on the insight that although it is globally ill-posed, the learning problem is
locally well-defined. Additionally, in many real-world situations, we also face the
problems of sparse and potentially poor data. In such cases, nonparametric learn-
ing methods can fail to provide a good prediction model. We investigate how prior
model knowledge can help to improve the model learning process in the presence
of sparse and poor data. The developed semiparametric learning approaches are
effective for this data.

As a contribution to machine learning, we develop kernel-based learning methods
which enable online model learning in real-time. We present two novel real-time
kernel learning techniques for online model approximation. The first approach em-
ploys the local learning principle to speed up the nonparametric Gaussian process
regression. The core idea behind this approach is to partition the data space into
local regions, for which independent local Gaussian models are learned. Using these
local models, learning and prediction can be accelerated significantly. The second
approach relies on the concept of sparsification. Here, the idea is to select informa-
tive points from the stream of online arriving data and use them for learning the
models. We present a framework for online, incremental sparsification designed for
fast real-time model learning. The proposed framework can be used to speed up in-
cremental learning methods appropriate for online model learning in real-time. The
approaches are implemented and evaluated on a Barrett whole arm manipulator for
real-time learning control.
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Zusammenfassung
Die Erschaffung autonomer Roboter, die mit Menschen im täglichen Leben inter-
agieren, ist ein erklärtes Ziel der Robotik und der künstlichen Intelligenz. Dieses
Ziel kann jedoch nicht ohne adaptive und nachgiebige Roboterregelung realisiert
werden. Eine weiche und nachgiebige Regelung erfordert jedoch ein genaues Modell
des Roboters und seiner Umgebung. Es zeigt sich, dass traditionelle analytische
Modelle für viele moderne Roboter-Systeme unzureichend sind. In solchen Fällen
kann eine nachgiebige und adaptive Roboterregelung nur mit Hilfe von Modelllernen
erreicht werden. In dieser Arbeit soll gezeigt werden, wie statistische Lerntechniken
in der modellbasierten Roboterregelung eingesetzt werden können.

Es soll dargestellt werden, wie kernbasiertes Lernen angewendet werden kann,
um eine genaue Regelung zu erlangen und gleichzeitig den Roboter nachgiebig zu
halten. Um die erforderlichen Drehmomente für die Roboterbewegung zu berech-
nen, ist es notwendig, die inverse Dynamik des Roboters zu lernen. Darüber hinaus
ist Online-Lernen in Echtzeit für solche Modelle unerlässlich, um den Veränderun-
gen in der Dynamik und Roboter-Umgebung Rechnung zu tragen. Zusätzlich wird
dargestellt, wie maschinelles Lernen dazu beiträgt, das Lernen von nicht eindeuti-
gen Abbildungen zu ermöglichen. Das Lernen dieser Abbildungen ist notwendig für
eine Folgeregelung im Roboter-Handraum. Der hierzu vorgeschlagene kernbasierte
Ansatz beruht auf der Erkenntnis, dass - obwohl solche Abbildungen global nicht
wohl-definiert sind - das Lernproblem jedoch lokal wohl-definiert ist. Darüber hinaus
stellt sich zudem in vielen realen Situationen das Problem der nicht-informativen
Daten. In solchen Fällen können nicht-parametrische Lernmethoden keine guten
Modelle für die Regelung bieten. Die vorliegende Untersuchung zeigt, wie zusätzliche
analytische Modellierungsinformationen nicht-parametrischem Modelllernen helfen
kann. Es wird gezeigt, dass semi-parametrische Lernansätze den Lernprozess bei
spärlicher und nicht-informativer Datengrundlage entscheidend verbessern können.

Als Beitrag zum maschinellen Lernen werden kernbasierte Lernmethoden entwick-
elt, die Online-Modelllernen in Echtzeit ermöglichen. Hierzu werden zwei neue
kernbasierte Lerntechniken für das Online-Lernen in Echtzeit vorgestellt. Der er-
ste Ansatz nutzt das Prinzip des lokalen Lernens zur Beschleunigung der nicht-
parametrischen Gauß’schen Prozesse. Die zentrale Idee dieser Methode ist die Ein-
teilung des Datenraums in lokale Regionen, für die unabhängige lokale Gauß’sche
Modelle gelernt werden. Mit Hilfe dieser lokalen Modelle kann die Geschwindigkeit
des Lernens deutlich erhöht werden. Der zweite Ansatz beruht auf dem Konzept
der Sparsifikation. Das entscheidende Vorgehen bei dieser Methode besteht darin,
informative Punkte aus der Menge der ankommenden Daten online zu wählen und
diese für das Lernen der Modelle zu verwenden. Hierzu wird eine Methode für
die inkrementelle Online-Sparsifikation vorgestellt. Die vorgeschlagene Methode
kann dazu verwendet werden, inkrementelle Online-Lernverfahren echtzeitfähig zu
machen. Die vorgestellten Ansätze wurden auf einem Barrett-Manipulator für die
Echtzeit-Lernregelung implementiert und evaluiert.
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1 Introduction

To date, several million complex robots with many degrees of freedom populate
factories world-wide. These robots are engineered with powerful motors using heavy,
rigid gear boxes. This design approach is necessary in order to use traditional control
methods. However, this approach results in an unyielding stiffness, therefore, these
robots can only be operated efficiently in a fully modeled environment. Keeping
unmodeled disturbances out of the environments is essential for these setups. In
particular, human beings also need to stay out of the reach of these robots both for
their own safety, as well as to keep the environment in a fully modeled state.

In order to integrate high-dimensional robots (e.g., humanoids and service robots)
into daily life, we need compliant, fully adaptive robots that are guaranteed to be
safe when interacting with humans. A key component towards this goal is the precise
but compliant robot control, which requires accurate models. It seems that this aim
can only be achieved using model learning, as we will detail later. In this thesis,
we investigate how robot control can benefit from model learning using statistical
learning approaches. The principle objective of this thesis is to move closer to
fully autonomous robots, which can interact safely with humans in their uncertain
environments.

1.1 Motivation

Accurate models of the robot system allow the design of significantly more precise,
energy-efficient and compliant controls for robots. Model based control uses a sys-
tem model to predict the required torques for executing a kinematically specified
task (Craig, 2004; Slotine and Li, 1991). It offers a large variety of advantages
over model-free methods, e.g., potentially higher tracking accuracy, lower feedback
gains and higher suitability for compliant control. Despite the potential advantages,
model based control is currently used in only few robot setups. The reason for this
lack of application is the requirement of precise models of the robot system. Tra-
ditionally, such models can be obtained analytically using physics-based modeling
techniques. However, in many cases the accuracy of such analytical models does not
suffice for proper control performance due to unmodeled nonlinearities, such as hy-
draulic cables, complex friction, or actuator dynamics. In such cases, the automatic
acquisition of models from data using estimation techniques poses an interesting
alternative, and approximate model based control is a promising approach (Farrell
and Polycarpou, 2006). Using modern regression methods, we can achieve a better
model than with the physics-based formulation. It further allows us to take the
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Chapter 1 Introduction

time-dependency into account by adapting the model over time, i.e., online model
learning.

Approximate model based control using learning techniques has attracted much
attention since the late 1970s. Starting with pioneering work in adaptive self-tuning
control (Aström and Wittenmark, 1995), model based learning control has been
developed in many aspects ranging from neural network controllers (Patino et al.,
2002) to more recent control paradigms using nonparametric methods (Nakanishi
and Schaal, 2004). However, approximate model based control poses a tremendous
technical challenge for modern statistical kernel-based learning approaches, such as
Gaussian process regression (Rasmussen and Williams, 2006) and support vector
regression (Schölkopf and Smola, 2002). While these nonparametric regression ap-
proaches provide a powerful tool to accurately approximate models from data, the
high computational complexity of such approaches prevents a straightforward ap-
plication to real-time control. Especially in robot tracking control, real-time online
model learning is additionally required to cope with unknown state space regions,
and to adapt the model to changes in the robot dynamics. Real-time online model
learning poses three major challenges for kernel-based model learning: first, the
learning and prediction processes need to be sufficiently fast. Second, the learning
system needs to deal with large amounts of data. Third, since the data arrives as
a continuous stream, the model needs to be able to continuously adapt to new ex-
amples. Thus, it is essential to develop efficient kernel-based learning approaches
appropriate for online model learning in real-time. This step is absolutely necessary
to establish statistical kernel learning approaches in the field of robot control.

1.2 Contributions
Online model learning in real-time has not been thoroughly addressed by statistical
kernel-based learning approaches, such as kernel methods or Bayesian learning tech-
niques. The goal of this thesis is to investigate how kernel learning can be used to
learn models for robot control, and how kernel-based regression approaches can be
sped up to cope with the real-time requirements in robotics. Thus, the contribution
of this thesis is twofold:

1. We contribute to the field of statistical machine learning by developing fast
online kernel-based regression approaches that are appropriate for real-time
model learning.

2. We contribute to the field of robot control by showing that statistical kernel-
based learning can be used to achieve both compliant and accurate control
performance. We further investigate how kernel learning can help to solve real-
world model learning problems, such as learning from multi-valued mappings
and learning from sparse data.

In the next sections, we outline the major contributions of this thesis. The contri-
butions result in novel kernel-based algorithms for real-time online model learning,
and applications of kernel learning in model based robot control.
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1.2 Contributions

1.2.1 Novel Kernel-based Learning Algorithms

Model learning using kernel-based approaches can be expensive, as the computa-
tional complexity scales with the number of training data points. In the field of ma-
chine learning, several attempts have been made to reduce the computational cost
of kernel-based model learning (for an overview see Schölkopf and Smola (2002)).
These approaches are mainly based on two different, but effective approximation
strategies. The first approach relies on the localization and partitioning of data (Vi-
jayakumar and Schaal, 2000; Treps, 2001). The basic idea is to divide the original
data space into many local regions, where each of the local region contains a limited
number of data points. Learning and prediction can be sped up by using these local
models trained on the associated data points. The main problem of this approach
is determining how to partition the data space properly, and how to train the local
models for an accurate prediction afterwards. The second possibility to reduce the
computational complexity is to employ data sparsification (Candela and Rasmussen,
2005). Here, the original data is approximated by a smaller set of so-called inducing
data points. In this approach, the difficulty lies in the selection of informative data
points that approximately summarize the full data. However, current approxima-
tion methods are not applicable for online model learning in real-time. They are
too expensive for real-time learning which must take place at a speed of roughly
100 Hz. Furthermore, most of them do not consider the online learning scenario,
where the data arrives incrementally over time. Inspired by the concepts behind
these two strategies for complexity reduction, we propose novel learning algorithms
appropriate for real-time online model learning. In particular, we propose the local
Gaussian process regression and an online sparsification technique to speed up the
incremental model learning.

Local Gaussian Process Regression. Gaussian process regression (GPR)
is well-known to be both accurate and straightforward to use (Rasmussen and
Williams, 2006). However, the major drawback of GPR is the extensive compu-
tational complexity, which scales cubically in the number of training data points.
To reduce the computational cost, local Gaussian process regression (Nguyen-Tuong
and Peters, 2009) combines the local learning principle with nonparametric Gaus-
sian process regression. Local GPR employs an online partitioning step for splitting
the data space into local regions. In particular, each data point is assigned to the
nearest local models based on a kernel distance measure, as it arrives. A Gaussian
model is incrementally trained for each local region. Prediction can be made for a
query point by using models in the vicinity. The approach has competitive learn-
ing performance for high-dimensional data while being sufficiently fast for real-time
learning. This approach is among the fastest Bayesian regression techniques to date,
and has been used for learning robot’s inverse dynamics in real-time for model based
control (Nguyen-Tuong et al., 2008b).

Incremental Online Sparsification. In the machine learning literature, sev-
eral online incremental learning algorithms have been proposed over the last decade,
such as incremental support vector machines (Cauwenberghs and Poggio, 2000) and
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Chapter 1 Introduction

incremental Gaussian processes (Candela and Winther, 2003). However, these in-
cremental learning approaches are too slow for real-time online learning. To speed
up these incremental learning approaches, we incrementally train the model using
only informative inducing data points while ignoring the others. Selecting infor-
mative points from a data stream and occasionally removing old inducing data
points is related to the problem of sparsification. We present a framework for on-
line, incremental sparsification (Nguyen-Tuong and Peters, 2010b) while employing
a kernel independence measure for the sparsification process. This approach can
be used to speed up existing incremental learning algorithms for real-time applica-
tions. To demonstrate the applicability of the method, we combine the approach
with incremental Gaussian process regression and incremental support vector re-
gression, obtaining model approximation methods that are applicable to real-time
online learning (Nguyen-Tuong and Peters, 2010b; Nguyen-Tuong et al., 2009).

1.2.2 Robot Control Applications

Control applications require accurate models of robots, such as inverse dynamics
models for joint space tracking control and torque prediction models for task-space
control. Learning these models from data ameliorates the lack of accuracy due to
unknown nonlinearities. Additionally, prior knowledge can be used to improve the
quality of learned models, which is especially important when data is noisy or sparse.

Learning Inverse Dynamics Models. Inverse dynamics models are mappings
from joint space to torque space. In joint space tracking control, inverse dynam-
ics models are employed to predict the required torques for the robot to follow
a given joint space trajectory (Craig, 2004). If accurate inverse dynamics models
are available, low tracking gains can be used. Thus, the robot will achieve both
precise tracking performance, as well as compliant control (Nguyen-Tuong et al.,
2008a). When learning inverse dynamics models online, the robot can further adapt
to changes in the dynamics. It additionally ensures a good generalization of the
learned models, when the robot moves to unknown state space regions. We show
that learning inverse dynamics models is a key component for compliant and accu-
rate robot control. Furthermore, we show that kernel-based learning approaches are
promising for learning such models for real-time control (Nguyen-Tuong and Peters,
2010b, 2009).

Learning Models for Task-Space Tracking Control. Task-space tracking
control is a general framework for directing a robot to follow certain trajectories in
task-space. Formulation of task-space control laws requires model knowledge about
the robot’s kinematics and dynamics. However, task-space control approaches are
known to be susceptible to modeling errors (Nakanishi et al., 2008). Learning models
for task-space tracking control may help to overcome this problem. A task-space
control model predicts the joint torques that yield a correct task-space trajectory.
However, direct learning of such models is an ill-posed problem. Recent work (Peters
and Schaal, 2008; D’Souza et al., 2001) shows that though the global problem is ill-
posed, the learning is locally well-defined. Inspired by this insight, we employ a

4



1.3 Outline of the Thesis

kernel-based local learning method to learn a model for task-space tracking control.
Using Prior Knowledge for Model Learning. In many real-world situations,

it is not possible to have large and informative data sets for model learning. In
such cases, nonparametric models will not be able to generalize well to unknown
data. Therefore, it is essential to investigate how the learning performance can be
improved in such cases. In particular, we combine nonparametric model learning
with analytical models, obtaining a semiparametric regression framework (Nguyen-
Tuong and Peters, 2010c). We identify two approaches to incorporate the parametric
model from analytical robotics into the nonparametric Gaussian process model. In
the first approach, we insert the parametric model directly into the Gaussian process
model as the mean function. In the second approach, we embed the parametric
model in a kernel used for learning. We show that semiparametric models provide a
higher model accuracy and better generalization in the presence of poor and sparse
data (Nguyen-Tuong and Peters, 2010c).

1.3 Outline of the Thesis

This thesis is organized in six chapters. Each chapter is self-contained and, thus, the
chapters can be read independently of each other. Figure 1.1 illustrates the outline
and relation of the thesis chapters.

In Chapter 2, we survey the research on model learning within the field of robotics,
with a strong focus on recent developments. In particular, we consider three aspects
of model learning. First, we study the different possible model learning control
architectures for robotics. Second, we discuss what kind of problems these control
architectures imply for the applicable learning methods. Furthermore, we show in
several case studies where these scenarios have been successfully applied. In addition
to giving an overview of the field of model learning for robot control, this chapter
further motivates the need of model learning for modern robot systems, and discusses
how model learning can be obtained using statistical learning approaches.

Learning models from data in real-time poses a technical challenge for statistical
regression methods, such as Gaussian process regression (GPR). In Chapter 3, we
present a local approximation to the well-established GPR in order to accelerate the
method sufficient for real-time online learning. Here, we combine the high accuracy
of GPR with the fast speed of local learning methods, such as locally weighted
projection regression (LWPR). First, we briefly describe the nonparametric learning
approaches, i.e., standard GPR and LWPR. We then describe our local Gaussian
process models (LGP) approach. We show that LGP inherits both the precision of
GPR and the speed similar to LWPR. The learning accuracy and performance of the
presented LGP approach is compared with several relevant regression methods. The
applicability of the LGP for low-gain model based tracking control and real-time
learning is demonstrated on a Barrett whole arm manipulator.

In Chapter 4, we present a framework for online, incremental sparsification de-
signed for fast real-time model learning. In contrast to the LGP algorithm in Section
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Chapter 2
Model Learning: A Survey

Chapter 1
Introduction

Chapter 6
Conclusion

Chapter 5.2
Learning Task-Space Tracking 

Control with Kernels

Chapter 5.1
Using Prior Model Knowledge 
for Learning Inverse Dynamics

Chapter 4
Incremental Online 

Sparsification for Model Learning

Chapter 3
Model Learning with Local 

Gaussian Process Regression

Figure 1.1: The structure of this thesis. Chapter 2 provides a review of the progress
in model learning. Chapters 3, 4 and 5 show how kernel-based learning can be used to
learn models for real-time robot control. Chapter 1 gives an introduction, while Chapter
6 concludes the thesis and provides an outlook to future work.

3, this sparsification framework can be used to speed up incremental learning ap-
proaches for real-time online model learning. The proposed sparsification approach
selects and removes data points for a sparse set. In combination with an incremen-
tal learning approach, such as incremental GPR, we obtain a model approximation
method which is applicable in real-time online learning. The efficiency of the pro-
posed approach is demonstrated with an offline comparison of our method with
well-established regression methods. The approach is subsequently used for an on-
line approximation of inverse dynamics models for real-time tracking control on a
Barrett whole arm manipulator.

In Chapter 5, we explore solutions to two model learning problems: learning
models from small and potentially poor data set; and learning from multi-valued
mappings for task-space tracking control. When only sparse and poor data is avail-
able, the learning performance can be improved by incorporating additional prior
knowledge into the model learning process. In Section 5.1, we present two possible
semiparametric regression approaches, where the knowledge of the physical model
can either become part of the mean function or of the kernel in a nonparametric
Gaussian process regression. In Section 5.2, we investigate the problem of learning
models from multi-valued mappings for task-space tracking control. In particular, we
employ a local learning approach formulated in the kernel framework. This approach
is motivated by the insight that the model learning problem is locally well-defined
in such cases, while it is globally ill-posed. In Chapter 6, we give a conclusion and
discuss possible future work.
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2 Model Learning: A Survey
Models are among the most essential tools in robotics, and it is widely believed that
intelligent mammals also rely on internal models in order to generate their actions.
A model describes essential information about the behavior of the environment and
the influence of an agent on this environment. While classical robotics relies on
manually generated models, future autonomous, cognitive robots need to be able to
automatically learn these models from data.

In this chapter, we survey progress in model learning with a strong focus on
recent developments. First, we need to study different types of models and how
these models can be incorporated in various learning control architectures. Second,
we discuss what kind of problems these control architectures create for the applicable
learning methods. Finally, we show where these scenarios have been used successfully
in several case studies.

2.1 Model Learning for Robotics
Machine learning may allow avoiding that all possible scenarios need to be pro-
grammed, but rather learned by the system during operation. There have been
many attempts at creating learning frameworks, enabling robots to autonomously
learn complex skills ranging from task imitation to motor control (Schaal, 1999;
Wolpert and Kawato, 1998; Schaal and Atkeson, 2010). However, learning is not an
easy task. For example, reinforcement learning can require more trials and data than
one can generate in the life-time of a robot, and black box imitation learning can
at best reproduce the desired behavior. Thus, it is essential to study how the basic,
underlying mechanisms of the world can be learned. This approach is commonly
known as model learning.

In recent years, methods to learn models from data have become interesting tools
for robotics, as they allow straightforward and accurate model approximation. The
reason for this increasing interest is that accurate analytical models are often hard
to obtain due to the complexity of modern robot systems and their presence in un-
structured, uncertain and human-inhabited environments (Nguyen-Tuong and Pe-
ters, 2009; Nakanishi et al., 2008). Model learning can be a useful alternative to
manual pre-programming, as the model is estimated directly from measured data.
Unknown nonlinearites can be directly taken in account, while they are neglected by
the standard physics-based modeling techniques and by hand-crafted models. In or-
der to generalize the learned models to a larger state space and to adapt the models
for time dependent changes, online learning of such models is necessary. In general,
a model contains essential information about the system and describes the influence
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We also applied LWPR to an even more complex robot, a 30 DOFs humanoid robot
as shown in Figure 5a. Again, we learned the inverse dynamics model for the shoulder
motor, however, this time involving 90 input dimensions (i.e., 30 positions, 30 velocities,
and 30 accelerations of all DOFs). The learning results, shown in Figure 5b, are similar
to Figure 4. Very quickly, LWPR outperformed the inverse dynamics model estimated
from rigid body dynamics and settled at a result that was more than three times more
accurate. The huge learning space required more than 2000 local models, using about
2.5 local projections on average. In our real-time implementation of LWPR on this robot,
the learned models achieve by far better tracking performance than the parameter esti-
mation techniques.
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Figure 5: a) Humanoid robot in our laboratory; b) inverse dynamics learning for the right shoulder motor
of the humanoid.

4 Conclusions
This paper presented Locally Weighted Learning algorithms for real-time robot learn-
ing. The algorithms are easy to implement, use sound statistical learning techniques,
converge quickly to accurate learning results, and can be implemented in a purely in-
cremental fashion. We demonstrated that the latest version of our algorithms is capable
of dealing with high dimensional input spaces that even have redundant and irrelevant
input dimensions while the computational complexity of an incremental update re-
mained linear in the number of inputs. In several examples, we demonstrated how LWL
algorithms were applied successfully to complex learning problems with actual robots.
From the view point of function approximation, LWL algorithms are competitive meth-
ods of supervised learning of regression problem and achieve results that are compara-
ble with state-of-the-art learning techniques. However, what makes the presented algo-

(a) Humanoid Robot
DB
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Abstract—This paper considers prediction of slip from a
distance for wheeled ground robots using visual information as
input. Large amounts of slippage which can occur on certain
surfaces, such as sandy slopes, will negatively affect rover mobil-
ity. Therefore, obtaining information about slip before entering
a particular terrain can be very useful for better planning and
avoiding terrains with large slip.

The proposed method is based on learning from experience
and consists of terrain type recognition and nonlinear regression
modeling. After learning, slip prediction is done remotely using
only the visual information as input. The method has been
implemented and tested offline on several off-road terrains
including: soil, sand, gravel, and woodchips. The slip prediction
error is about 20% of the step size.

I. INTRODUCTION

Slip is a measure of the lack of progress of a wheeled ground
robot while driving. High levels of slip can be observed on
certain terrains, which can lead to significant slow down of
the vehicle, inability to reach its predefined goals, or, in the
worst case, getting stuck without the possibility of recovery.
Similar problems were experienced in the Mars Exploration
Rover (MER) mission in which one of its rovers got trapped
in a sand dune, experiencing a 100% slip (Figure 1). In future
missions it will be important to avoid such terrains, which
necessitates the capability of slip prediction from a distance,
so that adequate planning could be performed. This research is
relevant to both Mars rovers and to Earth-based ground robots.
While some effort has been done in mechanical modeling

of slip for wheeled ground robots [2], [8], [14], no work, to
our best knowledge, has considered predicting slip, or other
properties of the vehicle-terrain interaction, remotely. In this
paper we use vision information to enable that.
We propose to learn a mapping between visual informa-

tion (i.e. geometry and appearance coming from the stereo
imagery) and the measured slip, using the experience from
previous traversals. Thus, after learning, the expected slip can
be predicted from a distance using only stereo imagery as
input. The method consists of: 1) recognizing the terrain type
from visual appearance and then, after the terrain type is
known, 2) predicting slip from the terrain’s geometry. Both
components are based on learning. In our previous work we
have shown that the dependence of slip on terrain slopes
when the terrain type is known (termed ‘slip behavior’) can
be learned and predicted successfully [1]. In this paper we
describe the whole system for slip learning and prediction,

Fig. 1. The Mars Exploration Rover ‘Opportunity’ trapped in the ‘Purgatory’
dune on sol 447. A similar 100% slip condition can lead to mission failure.

Fig. 2. The Mars Exploration Rover ‘Spirit’ in the JPL Spacecraft Assembly
Facility (left). The LAGR vehicle on off-road terrain (right).

including the texture recognition and the full slip prediction
from stereo imagery.
The output of the slip prediction algorithm is intended to

be incorporated into a traversability cost to be handed down
to an improved path planner which, for example, can consider
regions of 100% slip as non-traversable or can give higher cost
to regions where more time is needed for traversal due to large
slip. Second to tip-over hazards, slip is the most important
factor in traversing slopes. Automatic learning and prediction
of slip behavior could replace manual measurement of slip, as
the one performed by Lindemann et al. [17], which has been
used successfully to teleoperate the ‘Opportunity’ rover out of
Eagle Crater. One additional problem which occurred in [17],
and which learning could easily solve, is that slip models were
available only for angles of attack of 0◦, 45◦, 90◦ away from
the gradient of the terrain slope [7], [17].

A. Testbed

This research is targeted for planetary rovers, such as MER
(Figure 2). For our experiments, however, we used an experi-
mental LAGR1 testbed (Figure 2), as it is a more convenient
1LAGR stands for Learning Applied to Ground Robots

(b) Mobile LAGR Robot
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Abstract— We address the problem of foothold selection
in robotic legged locomotion over very rough terrain. The
difficulty of the problem we address here is comparable to
that of human rock-climbing, where foot/hand-hold selection is
one of the most critical aspects. Previous work in this domain
typically involves defining a reward function over footholds as
a weighted linear combination of terrain features. However, a
significant amount of effort needs to be spent in designing these
features in order to model more complex decision functions, and
hand-tuning their weights is not a trivial task. We propose the
use of terrain templates, which are discretized height maps of
the terrain under a foothold on different length scales, as an
alternative to manually designed features. We describe an algo-
rithm that can simultaneously learn a small set of templates and
a foothold ranking function using these templates, from expert-
demonstrated footholds. Using the LittleDog quadruped robot,
we experimentally show that the use of terrain templates can
produce complex ranking functions with higher performance
than standard terrain features, and improved generalization to
unseen terrain.

I. INTRODUCTION

Traversing rough terrain with carefully controlled foot
placement and the ability to clear major obstacles is what
makes legged locomotion such an appealing, and, at least
in biology, a highly successful concept. Surprisingly, when
reviewing the legged locomotion literature, relatively few
projects can be found that actually address walking over
rough terrain. Most legged robots walk only over flat or at
best slightly uneven terrain, a domain where wheeled systems
are usually superior. Walking over rough terrain poses a
variety of challenges. First, the walking pattern needs to be
very flexible in order to allow close to arbitrary foothold
selection – indeed, even the choice of which leg is the
swing leg may have to be altered on the fly [1]. Second,
balance control becomes crucial due to slipping and other
mistakes, such that sole reliance on a stable walk pattern
is insufficient [2]. And third, foothold selection for maximal
robustness and speed is crucial. In previous work [1], [2], we
have addressed the first two issues. In this paper, we consider
the problem of foothold selection for locomotion over rough
terrain.

Related work in the literature has used classifiers that
classify footholds on the terrain as acceptable or unac-
ceptable using terrain features like slope and proximity to
cliffs [3]. Other work involves defining a reward function
over footholds as a weighted linear combination of terrain

Fig. 1. The LittleDog quadruped robot on rocky terrain

features like slope and curvature on different length scales,
and subsequently picking the foothold that maximizes the
reward [4]. The weights on the features in the reward
function in [4] are inferred using a learning procedure called
hierarchical apprenticeship learning on footholds and body
paths demonstrated by an expert. The performance of such a
system, however, is critically dependent on the careful design
of heuristic terrain features which are flexible enough to
model the expert’s training data.

The contribution of this paper is the introduction of terrain
templates (hereafter simply referred to as templates) as a
tool for learning locomotion over rough terrain. The concept
is partly inspired by template matching techniques widely
used in computer vision [5]. A template is a discretized
height map in a small area around a foothold that the robot
encounters. We introduce an algorithm that can learn a set
of templates from expert-demonstrated footholds, along with
an associated set of weights, and use them to successfully
navigate previously unseen terrain. We present results show-
ing that the learnt templates alone can outperform multi-
scale terrain features on complex terrain. We also show that
the combination of features and templates performs the best,
due to the broad generalization ability of features, and the
specialization capability of templates.

The rest of this paper is laid out as follows. In Section II,
we formulate the foothold selection problem and introduce an
algorithm that learns a ranking function for foothold selection

(c) Boston Dynamics Little Dog

Figure 2.1: Plattforms with well-known applications of model learning: (a) Schaal et al.
learned the complete inverse dynamics model for Humanoid DB (Schaal et al., 2002); (b)
Angelova et al. predicted the slip of the mobile LAGR robot based on learned models
that required visual features as input (Angelova et al., 2006); (c) Kalakrishnan et al.
estimated foothold quality models based on terrain features for the Boston Dynamics
little dog (Kalakrishnan et al., 2009).

of an agent on this system. Thus, modeling a system is inherently connected with
the question how the model can be used to manipulate, i.e., to control, the system.
Model learning has been shown to be an efficient tool in a variety of scenario, such
as inverse dynamics control (Nguyen-Tuong and Peters, 2009), inverse kinematics
(Reinhart and Steil, 2009; Ting et al., 2008), robot manipulation (Steffen et al.,
2009; Klanke et al., 2006), autonomous navigation (Angelova et al., 2006) or robot
locomotion (Kalakrishnan et al., 2009).

2.1.1 Problem Statement
Accurate models of the system and its environment are crucial for planning, control
and many other applications. In this chapter, we focus on generating learned models
of dynamical systems that are in a state sk taking an action ak and transfer to a
next state sk+1, where we can only observe an output yk that is a function of the
current state and action. Thus, we have

sk+1 = f(sk,ak) + εf ,
yk = h(sk,ak) + εy ,

(2.1)

where f and h represent the state transition and the output function, εf and εy de-
note the noise components. In practice, state estimation techniques are often needed
to reduce the noise of the state estimate and to obtain complete state information
(Ko and Fox, 2009). While the output function h can often be described straight-
forwardly by an algebraic equation, it is more difficult to model the state transition
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2.1 Model Learning for Robotics

function f , as it includes more complex relationship between states and actions.
The state transition model f predicts the next state sk+1 given the current state

sk and action ak. Application of such state transition models in robotics and control
has a long history. With the increasing speed of computation and its decreased cost,
models have become common in robot control, e.g., in feedforward control and state
feedback linearization. At the same time, due to the increasing complexity of robot
systems, analytical models are more difficult to obtain. This problem leads to a
variety of model estimation techniques which allow the roboticist to acquire models
from data. Combining model learning with control has drawn much attention in
the control community (Farrell and Polycarpou, 2006). Starting with the pioneering
work in adaptive self-tuning control (Aström and Wittenmark, 1995), model based
learning control has been developed in many aspects ranging from neural network
controllers (Patino et al., 2002) to more modern control paradigms using statistical
methods (Kocĳan et al., 2004; Nakanishi and Schaal, 2004).

In early days of adaptive control, models are learned by fitting open parameters of
pre-defined parametric models. Estimating such parametric models from data has
been popular for a long time (Atkeson et al., 1986; Khalil and Dombre, 2002) due to
the applicability of well-known system identification techniques and adaptive control
approaches (Ljung, 2004). However, estimating the open parameters is not always
straightforward, as several problems can occur, such as persistent excitation issues
(Narendra and Annaswamy, 1987). Furthermore, the estimated parameters are fre-
quently not physically consistent (e.g., violating the parallel axis theorem or having
physically impossible values) and, hence, physical consistency constraints have to
be imposed on the regression problem (Ting et al., 2009). Nonparametric model
learning methods can avoid many of these problems. Modern nonparametric model
learning approaches do not pre-define a fixed model structure but adapt the model
structure to the data complexity. There have been efforts to develop nonparametric
machine learning techniques for model learning in robotics and, especially, for robot
control (Nakanishi et al., 2005; Farrell and Polycarpou, 2006).

2.1.2 Overview

The aim of this chapter is to give a comprehensive overview of past and current
research activities in model learning with a particular focus on robot control. The
remainder of this chapter is organized as follows. First, we discuss different types of
models in Section 2.2.1 and investigate how they can be incorporated into different
learning control architectures in Section 2.2.2. In Section 2.2.3, we further discuss
the challenges that arise from the application of learning methods in the domain of
robotics. In Section 2.2.4, we provide an overview on how models can be learned
using machine learning techniques with a focus on statistical regression methods. In
Section 2.3, we highlight examples where model learning has proven to be helpful for
the action generation in complex robot systems. The chapter will be summarized in
Section 2.4.
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(a) Forward model (b) Inverse model (c) Mixed model

(d) Example of an operator model

Figure 2.2: Graphical models for different types of models. The white nodes denote the
observed quantities, while the grey nodes represent the quantities to be inferred. (a) The
forward model allows inferring the next state given current state and action. (b) The
inverse model determines the action required to move the system from the current state
to the next state. (c) The mixed model approach combines forward and inverse models
in problems where a unique inverse does not exist. Here, the forward and inverse models
are linked by a latent variable zt. (d) The operator model is needed when dealing with
finite sequences of future states.

2.2 Model Learning

Any rational agent will decide how to manipulate the environment based on its
observations and predictions on its influence on the system. Hence, the agent has
to consider two major issues. First, it needs to deduce the behavior of the system
from some observed quantities. Second, having inferred this information, it needs
to determine how to manipulate the system.

The first question is a pure modeling problem. Given some observed quantities,
we need to predict the missing information to complete our knowledge about the
action and system’s reaction. Depending on what kind of quantities are observed
(i.e., what kind of missing information we need to infer), we distinguish between
forward models, inverse models, mixed models and operator models. Section 2.2.1
describes these models in more detail. The second question is related to the learning
control architectures which can be employed in combination with these models. In
this case, we are interested in architectures that incorporate learning mechanisms
into control frameworks. Section 2.2.2 presents three different model learning ar-
chitectures for control, i.e., direct modeling, indirect modeling and distal teacher
learning. In practice, model learning techniques can not be used straightforwardly
for many real-world applications, especially, for robot control. Section 2.2.3 gives an
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2.2 Model Learning

overview of challenges that appear when model learning is used in robotics. Section
2.2.4 approaches the model learning problem from the algorithmic viewpoint, show-
ing how models can be learned using modern statistical regression methods. Here,
we will distinguish between local and global learning approaches.

2.2.1 Prediction Problems and Model Types

To understand the system’s behavior and how it reacts due to the agent’s actions,
we need information about the states and actions (of the past, the presence and
sometimes the expected future). However, we have only access to a limited number
of these quantities in practice. Thus, we need to predict the missing information
given the known information.

If we can observe the current state sk and the current action ak is given, we can
attempt to predict the next state sk+1. Here, the forward model can be used to
predict the next state given current state and action. The forward model describes
the mapping (sk,ak)→ sk+1. We can use the inverse model to infer the current
action, i.e., the relation (sk, sk+1)→ak, if we know the current state and the desired
or expected future state. There are also approaches combining forward and inverse
models for prediction, which we will refer to as mixed model approaches. However,
for many applications the system behavior has to be predicted for the next t-steps
rather than for the next single step. Here, we need models to predict a series of
states; we call such models operator models. Figure 2.2 illustrates these introduced
models. In this section, we will additionally describe how the different models can
be used in control.

2.2.1.1 Forward Models

Forward models predict the next state of a dynamic system given the current ac-
tion and current state. Note that the forward model directly corresponds to the
state transfer function f shown in Equation (2.1). As this function expresses the
physical properties of the system, the forward model represents a causal relation-
ship between states and actions. Thus, if such causal mappings have to be learned,
it will result in a well-defined problem and learning can be done straightforwardly
using standard regression techniques. While forward models of classical physics are
unique mappings, there are several cases where forward models alone do not provide
sufficient information to uniquely determine the next system’s state (Hawes et al.,
2010). For instance, when a pendulum is located at an unstable equilibrium point,
it is more likely to go to the left or right than to stay at the center. Nevertheless,
the center point would be the prediction of a forward model. Here, the modes of a
conditional density may be more interesting than the mean function f (Hawes et al.,
2010; Skočaj et al., 2010).

An early application of forward models in classical control is the Smith predictor,
where the forward model is employed to cancel out delays imposed by the feedback
loop (Smith, 1959). Later, forward models have been applied, for example, in the
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context of model reference adaptive control (MRAC) (Narendra and Annaswamy,
1989). MRAC is a control system in which the performance of an action is predicted
using a forward model (i.e., a reference model). The controller adjusts the action
based on the resulting error between the desired and current state. Hence, the policy
π for the MRAC can be written as

π(s) = argmin (fforward(sdes,ades)− s) , (2.2)

where (sdes,ades) denotes the desired trajectory and s represents the observed state.
MRAC was originally developed for continuous-time system and has been extended
later for discrete and stochastic systems (Narendra and Annaswamy, 1989). Ap-
plications of MRAC can be found numerously in robot control literature, such as
adaptive manipulator control (Nicosia and Tomei, 1984). Further application of
forward models can be found in the wide class of model predictive control (MPC)
(Maciejowski, 2002). MPC computes optimal actions by minimizing a given cost
function over a certain prediction horizon N in the future. The MPC control policy
can be described by

π(s) = argmin
t+N∑
k=t

Fcost (fforward(sk,ak)− sdes) , (2.3)

where Fcost denotes the cost function to be minimized. MPC is widely used in the
industry, as it can deal with constraints in a straightforward way. MPC was first
developed for linear system models and, subsequently, extended to more complex
nonlinear models (Maciejowski, 2002). Forward models have also been essential in
model based reinforcement learning approaches, which relate to the problem of opti-
mal control (Sutton, 1991; Atkeson and Morimoto, 2002; Ng et al., 2004). Here, the
forward models describe the so-called transition dynamics determining the probabil-
ity of reaching the next state given current state and action. In contrast to previous
applications, the forward models incorporate a probabilistic description of the sys-
tem dynamics in this case (Rasmussen and Kuss, 2003; Rottmann and Burgard,
2009). More details about the applications of forward models for optimal control
will be given in the case studies in Section 2.3.1.

2.2.1.2 Inverse Models

Inverse models predict the action required to move the systems from the current state
to a desired future state. In contrast to forward models, inverse models represent
an anti-causal relationship. Thus, inverse models do not always exist or at least are
not always well-defined. However, for several cases, such as for the robot’s inverse
dynamics, the inverse relationship is well-defined. General, potentially ill-posed
inverse modeling problems can be solved by introducing additional constraints, as
will be discussed in Section 2.2.1.3 in more detail.

For control, applications of inverse models can be traditionally found in computed
torque robot control (Craig, 2004), where the inverse dynamics model is used to
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predict the torques required to move the robot along a desired joint space trajectory.
The computed torque control policy can be described by

π(s) = finverse(s, sdes) + k(s− sdes) , (2.4)

where k(s− sdes) is an error correction term (for example, a PD-controller as both
positions, velocities and accelerations may be part of the state) needed for stabi-
lization of the robot. If an accurate inverse dynamics model is given, the predicted
torques are sufficient to obtain a precise tracking performance. The inverse dynam-
ics control approach is closely related to the computed torque control method. Here,
the error correction term acts through the inverse model of the system (Craig, 2004)
and, hence, we have a control policy given by

π(s) = finverse(s, sdes, k(s− sdes)) . (2.5)

If the inverse model perfectly describes the inverse dynamics, inverse dynamics con-
trol will perfectly compensate for all nonlinearities occurring in the system. Control
approaches based on inverse models are well-known in the robotics community. For
example, in motion control inverse dynamics models gain increasing popularity, as
the rising of computational power allows to compute more complex models for real-
time control. The concept of feedback linearization is another, more general way
to derive inverse dynamics control laws and offers possibly more applications for
learned models (Slotine and Li, 1991; Luca and Lucibello, 1998).

2.2.1.3 Mixed Models

In addition to forward and inverse models, there are also methods which combine
both types of models. As pointed out in preceding sections, modeling the forward
relationship is well-defined, while modeling the inverse relation can lead to an ill-
posed problem. The basic idea behind the combination of forward and inverse
models is that the information encoded in the forward model can help to resolve
the non-uniqueness, i.e., the ill-posedness, of the inverse model. A typical ill-posed
inverse modeling problem is the inverse kinematics of redundant robots. Given a
joint configuration q, the task space position x can be determined exactly (i.e.,
the forward kinematic model is well-defined), but there may be many possible joint
configurations q for a given task space position x (i.e., the inverse model could
have infinitely many solutions and their combination is not straightforward). Thus,
when naively learning such inverse mapping from data, the learning algorithm will
potentially average over non-convex sets of the solutions. The resulting mapping
will contain invalid solutions which can cause poor prediction performance. The ill-
posedness of the inverse model can be resolved when it is combined with the forward
model, such that the composite of these models yields an identity mapping (Jordan
and Rumelhart, 1992). In this case, the inverse model will provide those solutions
which are consistent with the unique forward model.

The mixed model approach, i.e., the composite of forward and inverse models, was
first poposed in conjunction with the distal teacher learning approach (Jordan and
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Rumelhart, 1992), which will be discussed in details in Section 2.2.2.3. The proposed
mixed models approach has subsequently evoked significant interests and has been
extensively studied in the field of neuroscience (Wolpert and Kawato, 1998; Kawato,
1999). Furthermore, the mixed model approach is supported by evidence that the
human cerebellum can be modeled using forward-inverse composite models, such as
MOSAIC (Wolpert et al., 1998; Bhushan and Shadmehr, 1999). While the mixed
models have become well-known in the neuroscience community, the application of
such models in robot control is not yet widespread. Pioneering work on mixed models
in the control community can be found in (Narendra et al., 1995; Narendra and
Balakrishnan, 1997), where the mixed models are used for model reference control
of an unknown Markov jump system. Even though mixed model approaches are not
widely used in control, with the appearance of humanoid robots in the last few years,
biologically inspired robot controllers are gaining more popularity. Controllers based
on mixed models may present a promising approach (Haruno et al., 2001; Peters and
Schaal, 2008; Ting et al., 2008).

2.2.1.4 Operator Models

The models introduced in preceding sections are mainly used to predict a single
future state or action. However, in problems such as open-loop control, one would
like to have information of the system for the next t-steps in the future. This
problem is the multi-step ahead prediction problem, where the task is to predict
a sequence of future values without the availability of output measurements in the
horizon of interest. We call the models which are employed to solve this problem
as operator models. It turns out that such operator models are difficult to develop
because of the lack of measurements in the prediction horizon. A straightforward
idea is to apply single-step prediction models t times in sequence, in order to obtain
a series of future predictions. However, this approach seems to be susceptible to the
error accumulation problem, i.e., errors made in the past are propagated into future
predictions. An alternative to overcome the error accumulation problem is to apply
autoregressive models which are extensively investigated in time-series prediction
(Akaike, 1970). Here, the basic idea is to use models which employ past predicted
values to predict future outcomes.

Combining operator models with control was originally motivated by the need of
extension of forward models for multi-step predictions (Keyser and Cauwenberghe,
1980). In more recent work, variations of traditional ARX and ARMAX models for
nonlinear cases have been proposed for operator models (Billings et al., 1989; Mosca
et al., 1989). However, operator models based on some parametric structures, such
as ARX or ARMAX have shown to have difficulties when the system becomes more
sophisticated. The situation is even worse in the presence of noise or complex non-
linear dynamics. These difficulties give reasons to employ nonparametric operator
models for multi-step predictions (Kocĳan et al., 2004; Girard et al., 2002).

14



2.2 Model Learning

Model Type Learning
Architecture Example Applications

Forward Model Direct Modeling
Prediction,
Filtering,

Learning simulations,
Optimization

Inverse Model
Direct Modeling
(if invertible),

Indirect Modeling

Inverse dynamics control,
Computed torque control,

Feedback linearization control

Mixed Model

Direct Modeling
(if invertible),

Indirect Modeling,
Distal-Teacher

Inverse kinematics,
Operational space control,

Multiple-model control

Operator Model Direct Modeling
Planning,

Optimization,
Model predictive control,

Delay compensation

Table 2.1: Overview on model types associated with applicable learning architectures and
example applications.

2.2.2 Learning Architectures

In previous section, we have presented different prediction problems that require
different types of models. Depending on what quantities are observed, we need
different models to predict the missing information. Here, we distinguished between
forward models, inverse models, mixed models and operator models. A central
question when incorporating these models into a learning control framework is how
to learn and adapt the models while they are being used. We will distinguish between
direct modeling, indirect modeling and the distal teacher approach. Table 2.1 shows
an overview of model types associated with applicable learning architectures.

In direct modeling approaches, we attempt to learn a direct mapping from input
data to output data. However, direct model learning is only possible, when the
relationship between inputs and outputs is well-defined. In case the input-output
relationship is ill-posed (for example, when learning an inverse model) indirect and
distal learning techniques can be used instead. When employing indirect modeling
techniques, the model learning is driven by an error measure. For example, the
feedback error of a controller can be used in this case. In distal teacher learning
approaches, the inverse model of the system is used for control, and the learning of
this inverse model is guided by a forward model. Figure 2.3 illustrates these three
learning architectures. Compared to the direct modeling approaches, the indirect
model learning and the distal teacher learning are goal-directed learning techniques.
Instead of learning a global mapping from inputs to outputs (as done by direct
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Model

RobotFeedback 
Controller

(a) Direct Modeling

Model

RobotFeedback 
Controller

(b) Indirect Modeling

Inverse 
Model

RobotFeedback 
Controller

Forward 
Model

(c) Distal Teacher Learning

Figure 2.3: Learning architectures in model learning applied to control. (a) In the direct
modeling approach, the model is learned directly from the observations. (b) Indirect
modeling approximates the model using the output of the feedback controller as error
signal. (c) In the distal teacher learning approach, the inverse model’s error is determined
using the forward model. The resulting composite model will converge to an identity
transformation.

modeling), goal-directed learning approximates a particular solution in the output
space. Due to this property, indirect and distal teacher learning approaches can be
used for learning when confronting with an ill-posed mapping problem.

2.2.2.1 Direct Modeling

Direct learning is probably the most straightforward way to obtain a model but
is not always applicable. In this learning paradigm, the model is directly learned
by observing the inputs and outputs. It is probably the most frequently employed
learning technique for model approximation in control. Direct model learning can
be implemented using most standard regression techniques, such as least square
methods (Ljung, 2004), neural networks (Haykin, 1999; Steil, 2004) or statistical
approximation techniques (Rasmussen and Williams, 2006; Schölkopf and Smola,
2002).

An early example of direct learning in control was the self-tuning regulator that
generates a forward model and adapts it online (Aström and Wittenmark, 1995).
Using the estimated forward model, the self-tuning regulator will estimate an appro-
priate control law online. However, the forward model in the traditional self-tuning
regulator has a fixed parametric structure and, hence, it cannot deal automatically
with unknown nonlinearities (Mosca et al., 1989; Coito and Lemos, 1991). The main
reason why parametric models need to be used in direct modeling techniques is that
such model parametrization is necessary for a convenient formulation of the control
law and, more importantly, for the rigorous stability analysis. As parametric mod-
els are often too restrictive for complex robot systems, learned models with more
degrees of freedom are needed, such as neural networks or other machine learning
techniques (Vempaty et al., 2009; Layne and Passino, 1996). However, sophisti-
cated learning algorithms for control are difficult to analyze if not impossible. Most
work on the analysis of learning control has been done in neural control (Patino
et al., 2002) and model predictive control (Gu and Hu, 2002; Negenborn et al., 2005;
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Nakayama et al., 2008). The operator model is an extension of forward models to
multi-step prediction used in model predictive control. Direct learning of operator
models has been done with neural networks (Chow et al., 1998). In more recent
work, probabilistic methods are employed to learn such operator models (Girard
et al., 2002; Kocĳan et al., 2004).

Inverse models can also be learned in a direct manner if the inverse mapping
is well-defined. A well-known example is the inverse dynamics model required by
computed torque and inverse dynamics control (Craig, 2004; Spong et al., 2006). If
direct modeling is applicable, learning becomes straightforward and can be achieved
using standard regression techniques (Schaal et al., 2002; Nguyen-Tuong and Peters,
2009; Cao et al., 2006). Early work in learning inverse models for control attempts
to adapt a parametric form of the rigid body dynamics model. This model is linear
in its parameters and, hence, it can be estimated from data straightforwardly using
linear regression (Atkeson et al., 1986; Burdet et al., 1997).

In practice, the estimation of dynamics parameters is not always straightforward.
It is hard to create sufficiently rich data sets so that physically plausible parameters
can be identified (Nakanishi et al., 2008), and when identified online, additional
persistent excitation issues occur (Narendra and Annaswamy, 1987). Due to the
fixed parametric structures, these models are not capable of capturing the structured
nonlinearities of the real inverse dynamics. Physically implausible values often rise
from such structural errors that result from a lack of representation for unmodeled
nonlinearities. Hence, more sophisticated models have been introduced for learning
inverse dynamics, such as neural networks (Cao et al., 2006; Patino et al., 2002)
or statistical nonparametric models (Schaal et al., 2002; Nguyen-Tuong and Peters,
2009, 2010b). There have also been attempts to combine parametric rigid body
dynamics model with nonparametric model learning for approximating the inverse
dynamics (Nguyen-Tuong and Peters, 2010c). Similar to inverse dynamics control,
feedback linearization control can also be used in conjunction with direct model
learning. Again, the nonlinear dynamics can now be approximated using neural
networks or other nonparametric learning methods (Ge et al., 1998; Nakanishi et al.,
2005). Stability analysis of feedback linearization control with learned models is
possible, extending the cases where the nonlinear dynamics could not be canceled
perfectly (Nakanishi et al., 2005).

While direct learning is mostly associated with learning a single type of model, it
can also be applied to mixed models. The mixed model approach (e.g., combining
inverse and forward models) find its application in learning control for multiple-
module systems. The basic idea is to decompose a (probably) complex system into
many simpler sub-systems which can be controlled individually (Narendra and Bal-
akrishnan, 1997). The problem is how to choose an appropriate architecture for
the multiple controllers, and how to switch between the multiple modules. Employ-
ing the idea of mixed models, each controller module consists of a pair of inverse
and forward models. The intuition is that the controller can be considered as an
inverse model, while the forward model is essentially used to switch between the
different modules (Wolpert and Kawato, 1998). Such multiple pairs of forward and
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inverse models can be learned directly from data using gradient-descent methods or
expectation-maximization (Haruno et al., 2001).

2.2.2.2 Indirect Modeling

Direct model learning works well when the input-output relationship is well-defined
as in inverse dynamics. However, there can be situations where this relationship
is not well-defined, such as in the differential inverse kinematics problem. In such
cases, these models can often still be learned indirectly. One indirect modeling
technique which can solve some of such ill-posed problems is known as feedback error
model learning (Kawato, 1990). Feedback error learning relies on the output of a
feedback controller that is used to generate the error signals employed to learn the
feedforward controller, see Figure 2.3 (b). In several problems, such as feedforward
inverse dynamics control (Craig, 2004), this feedback error learning approach can be
understood particularly well. If the inverse dynamics model in the feedforward loop
is a perfect model, the corresponding feedback controller is silent (and its output will
be zero). If the feedback error is non-zero, it corresponds to the error of the inverse
model in the feedforward loop (Craig, 2004). The intuition behind feedback error
learning is that by minimizing the feedback errors for learning the inverse model,
the feedback control term will decrease as the model converges. Thus, the inverse
model will describe the inverse dynamics of the system, while the feedback control
part becomes irrelevant.

Compared to the direct model learning, feedback error learning is a goal-directed
model learning approach resulting from the minimization of feedback errors. Here,
the model learns a particular output solution for which the feedback error is zero.
Another important difference between feedback error learning and direct learning is
that feedback error learning has to perform online, while direct model learning can
be done both online and offline.

Feedback error learning is biologically motivated due to its inspiration from cere-
bellar motor control (Kawato, 1999). It has been further developed for control with
robotics applications, originally employing neural networks (Shibata and Schaal,
2001; Miyamoto et al., 1988). Feedback error learning can also be used with vari-
ous nonparametric learning methods (Nakanishi and Schaal, 2004). Conditions for
the stability of feedback error learning control in combination with nonparametric
approaches have also been investigated (Nakanishi and Schaal, 2004).

Indirect model learning can also be used in the mixed model approach (Gomi and
Kawato, 1993). Here, the attempt has been made to combine the feedback error
learning with the mixture of experts architecture to learn multiple inverse models for
different manipulated objects, where the inverse models are learned indirectly using
the feedback error learning approach (Gomi and Kawato, 1993). In this approach,
the forward model is used for training a gating network, as it is well-defined. The
gating network subsequently generates a weighted prediction of the multiple inverse
models, where the predictors determine the locally responsible models.
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2.2.2.3 Distal Teacher Learning

The distal teacher learning approach was motivated by the necessity to learn gen-
eral inverse models, which suffer from the problem of ill-posedness (Jordan and
Rumelhart, 1992). Here, the non-uniqueness of the inverse model is resolved when
combined with an unique forward model. The forward model is understood as a
“distal teacher” which guides the learning of the inverse model. In this setting,
the unique forward model is employed to determine the errors made by the inverse
model during learning. The aim is to learn the inverse model such that this error is
minimized. The intuition behind this approach is that the inverse model will learn
a correct solution for a particular desired trajectory when minimizing the error be-
tween the output of the forward model and the input of the inverse model. Thus,
the inverse model will result in solutions that are consistent with the unique forward
model.

The distal teacher approach has successfully learned particular solutions for multi-
valued mappings, such as inverse kinematics of redundant robots (Jordan and Rumel-
hart, 1992). Similar to feedback error model learning (Kawato, 1990), distal teacher
learning is also a goal-directed learning method applicable for various robot con-
trol scenarios. However, unlike the feedback error learning approach, distal teacher
learning allows directly aiming at a globally consistent inverse model instead of local
on-policy optimization. In practice, the distal teacher employs two interacting learn-
ing process: one process where the forward model is learned, and another process
where the learned forward model is used for determining the error of the inverse
model. In the original distal learning approach, the inverse model’s output is val-
idated by the forward model, as the composite of these models yields an identity
mapping if perfectly learned (Jordan and Rumelhart, 1992).

The distal learning approach is particularly suitable for control when combining
with the mixed models, as it naturally incorporates the mixed model principle.
The distal teacher learning approach with mixed models has motivated a number
of follow-up projects with several robot control applications (D’Souza et al., 2001;
Peters and Schaal, 2008; Ting et al., 2008).

2.2.3 Challenges and Constraints

In previous sections, we give an overview of different types of models and how these
models can be incorporated into various learning architectures. However, employing
machine learning methods, such as statistical methods (Rasmussen and Williams,
2006; Schölkopf and Smola, 2002; Vĳayakumar and Schaal, 2000) for learning such
models, is not always straightforward. Several important problems need to be tack-
led in order to customize general learning algorithms for an application in robotics.
In this section, we give an overview of these problems and discuss how these problems
can be approached in order to bring machine learning algorithms into robotics. In
particular, we consider the problems that arise from data, from employed algorithms
and from real-world challenges. These are summarized in Table 2.2.
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Data
Challenges

Algorithmic
Constraints

Real-World
Challenges

High-dimensionality,
Smoothness,

Richness of data,
Noise,

Outliers,
Redundant data,

Missing data

Incremental updates,
Real-time,

Online learning,
Efficiency,

Large data sets,
Prior knowledge,

Sparse data

Safety,
Robustness,

Generalization,
Interaction,
Stability,

Uncertainty
in the environment

Table 2.2: Challenges of real-world problems for machine learning

2.2.3.1 Data Challenges

In order to learn a “good” model for applications in robotics, the sampled data
has to cover a large region of the model state space though, of course, it can never
cover the complete state space. For the purpose of generalization, the generated
data has to be sufficiently rich, i.e., it should contain as much information about the
system as possible. Thus, generating large and rich data sets for model learning is
an essential step (which is sometimes not easy in practice). This step often requires
additional excitation of the robot system during data generation, which is known as
persistent excitation in classical system identification (Narendra and Annaswamy,
1987). For several systems, the persistent excitation condition is naturally given,
such as aircraft systems. For other systems, the persistent excitation condition has
to be generated artificially, e.g., by adding small random movements into to the
output of the system. For learning inverse dynamics, for example, rich data can be
sampled from trajectories by approximately executing desired random point-to-point
and rhythmic movements (Swevers et al., 1997; Schaal and Sternad, 1998).

The data used for model learning has to be sufficiently smooth, which is a key
assumption for most of machine learning methods. However, there are many appli-
cations in robotics where the approximated functions are known to be non-smooth.
For example, stiction-friction models are often non-smooth. Such non-smooth func-
tions can sometimes be approximated using kernel methods. As a kernel implicitly
incorporates the smoothness of the approximated function, special kernels can be
defined in order to take the expected non-smoothness in account (Schölkopf and
Smola, 2002; Rasmussen and Williams, 2006). An example of such types of kernels
are Matern-kernels which are widely used in Bayesian inference methods (Rasmussen
and Williams, 2006). Discontinuities in a non-smooth function can also be approxi-
mated by local models and by learning how to switch discontinuously between these
local models (Toussaint and Vĳayakumar, 2005).

Robot systems that have a large number of DoFs pose a challenging problem due
to the high dimensionality of the generated data. For example, in inverse dynamics
the learning methods have to deal with data in a space with 4n dimensions, where
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n is the number of DoFs. This difficulty can be tackled by preprocessing the data
using dimensionality reduction, which is a well-studied technique in machine learning
(Tenenbaum et al., 2000; Roweis and Saul, 2000). The application of dimensionality
reduction is based on the insight that the useful information in the data often lies
on a low-dimensional manifold of the original input space. Dimensionality reduction
methods have proven to be a powerful method for model learning in high dimensional
robot systems (Schaal et al., 2002; Hoffman et al., 2009).

As the data is sampled over a possibly long period of time in many robotics ap-
plications (Thrun and Mitchell, 1995), problems of redundant and irrelevant data
can occur. In such cases, redundant and irrelevant data can bias the model which
severely hurts the generalization. Here, the data can be filtered in an appropriate
way by selecting only data points that are informative for the learning process. This
filtering step can be combined with the learning step, for example, by using infor-
mation criteria for inserting and deleting data points (Nguyen-Tuong and Peters,
2010b; Engel et al., 2002).

Noise and outliers have always been a challenging problem for machine learning
and for robot learning. Naively learning a model from noisy data can make the model
fit the noise (i.e., an over-fit) and, thus, adulterate the model learning performance.
In the past decade, considerable efforts have been made in the machine learning
community to deal with this problem. In particular, regularization frameworks are
developed based on statistical learning theory. The basic idea is to constrain the
model to be learned in an appropriate way, attenuating the contributions made
by the noisy components in the data. This lead to a variety of model learning
methods, such as support vector regression or Gaussian process regression (Smola
and Schölkopf, 2004; Rasmussen, 1996). One step in these methods is to estimate the
noise-level in the data represented by a regularization parameter, which can either be
done by cross-validation or by maximizing the marginal likelihood function (Seeger,
2004). By controlling the noise in the data, these methods can significantly improve
the generalization performance.

2.2.3.2 Algorithmic Constraints

There are two scenarios for model learning in robotics: large data and small data.
In the first case, learning algorithms have to deal with massive amounts of data,
such as in learning inverse dynamics. In this scenario, the algorithms need to be
efficient in terms of computation without sacrificing the learning accuracy (Bottou
et al., 2007). In the second scenario, there is only few data available for learning,
as the data generation may be too tedious and expensive. Here, we need algorithms
which allow us to incorporate additional prior knowledge in order to improve the
learning performance in the presence of sparse data (Schölkopf et al., 1997; Krupka
and Tishby, 2007).

For machine learning techniques, fast, real-time computation is challenging. Stan-
dard model learning approaches, such as Gaussian process regression, for example,
scale cubically in the number of training data, preventing a straightforward usage in
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robotics. Sparse and reduced set methods smartly reduce the size of training data
and, thus, decrease the computational effort for the learning and the prediction step
(Candela and Rasmussen, 2005). In recent years, there have been serious efforts
to speed up machine learning algorithms with efficient implementations using, for
example, parallel computation (Genov et al., 2003).

Online learning is also a strong requirement of the domain of robotics. Most of
machine learning methods are developed for learning in batch mode, i.e., offline
learning using pre-sampled data sets, while online learning requires incremental ap-
proximation of the model. However, online learning has found increasing interest
over the last few years giving rise to a number of real-time online machine learn-
ing approaches, such as in (Vĳayakumar et al., 2005; Nguyen-Tuong and Peters,
2009). A major motivation for online model learning is the insight that it is not
possible to cover the complete state space with data beforehand, but that only the
interesting state space regions are only known during the execution. Thus, online
model learning will require incremental acquisition of knowledge and, possibly, even
partial forgetting of the recorded information in order to cope with errors as well as
change. Furthermore, online learning presents an essential step towards continuous
adaptation to a changing world which is essential to make robots more autonomous
(Thrun and Mitchell, 1995).

Incorporating prior knowledge into the learning process can be obtained straight-
forwardly, when statistical learning approaches are used. In kernel methods, prior
knowledge can be specified by feature vectors which can be used to define appropri-
ate kernels (Schölkopf et al., 1997). In contrast, probabilistic frameworks allow one
to specify priors to capture a priori information (Rasmussen and Williams, 2006).
If prior knowledge is given as a parametric model, it can be inserted into nonpara-
metric models in a straightforward way, yielding semiparametric learning approaches
(Nguyen-Tuong and Peters, 2010c; Smola et al., 1998). Semiparametric models have
shown to be capable in learning competitive models, when only few data is available
(Nguyen-Tuong and Peters, 2010c).

2.2.3.3 Real-World Challenges

In order to ensure safe interaction of robots with human beings in everyday life,
machine learning algorithms developed for robotics applications have to be fail-safe
or at least have to minimize the risk of damage. For critical applications, such as
medical or service robotics, robustness and reliability are among the most important
criteria which have to be fulfilled by model learning. Model learning can become
more robust when feature selection is employed as a preceding step. Feature selection
methods remove irrelevant and redundant data and, thus, make the model learning
more robust. Feature selection has an inherent connection to sparse and reduced set
methods, where the purpose is to filter out information which is crucial for the model
approximation (Csato and Opper, 2002; Schölkopf et al., 1999). Feature selection
has been an active research field in machine learning for many years and has now
found its ways to several robot applications both in robot vision and control (Kröse
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et al., 2001; Nguyen-Tuong and Peters, 2010b).
Robustness also requires the learning algorithm to deal with missing data. This

problem is encountered in every robotics set-up where the sensor information is
imperfect, such as in terrain modeling or autonomous navigation. In particular,
measurement errors often result in missing data. In the recent years, the problem
of missing data has attracted much attention with the rise of probabilistic learning
methods. As the models are probabilistic, it is now possible to infer the missing
“pieces” in the training data (Titsias and Lawrence, 2010). A further advantage of
the probabilistic methods consists of a straightforward way to assign its uncertainty
to each predicted value and, hence, make it easier to deal with insufficient data.

2.2.4 Applicable Regression Methods

In preceding section, we summarize some problems which need to be overcome when
employing machine learning in robotics. In this section, we approach the model
learning from the algorithmic point of view and provide an overview of how mod-
els can be learned using machine learning techniques. We will focus on modern
statistical methods for learning models from data. However, connections to other
popular learning approaches such as neural networks will also be discussed (Steil,
2004; Haykin, 1999).

In general, model learning is a supervised learning approach. It is assumed that
the input x and output y are given, where the true output data is corrupted by
noise ε, i.e.,

y = f(x) + ε . (2.6)

Approximating the underlying function f is the goal of supervised learning methods.
Given unknown input data the learned model should be able to provide precise
predictions of the output values. Different supervised learning techniques make
different assumptions on how to model the function f .

Here, we distinguish between global and local techniques used to model the un-
derlying function f . Global regression techniques model the underlying function f
using all observed data to construct a single global prediction model (Hastie et al.,
2001). In contrast to global methods, the local regression estimates the underlying
function f within a local neighborhood around a query input point. Beyond the
local and global types of model learning, there are also approaches which combine
both ideas. An example of such hybrid approaches is the mixture of experts (Jacobs
et al., 1991; Nowlan and Hinton, 1991). Here, the data is partitioned into smaller
local models in a first step and, subsequently, a gating network is used to fuse these
local models for global prediction. Mixture of experts approaches have been further
embedded into the Bayesian framework giving rise to a number of Bayesian hybrid
approaches such as committee machines (Treps, 2000), mixtures of Gaussian models
(Treps, 2001) or infinite mixtures of experts (Rasmussen and Ghahramani, 2002).
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Method Type Mode Online
Com-
plex-
ity

Learning
Applications

Locally Weighted
Projection
Regression

(Vĳayakumar and
Schaal, 2000)

Local Incremental Yes O(n)

Inverse dynamics
(Schaal et al.,

2002), Foothold
quality model
(Kalakrishnan
et al., 2009)

Local Gaussian
Process Regression

(Nguyen-Tuong
and Peters, 2009)

Local Incremental Yes O(m2)
Inverse dynamics
(Nguyen-Tuong

and Peters, 2009)

Gaussian Mixture
Model (Jacobs
et al., 1991)

Semi-
Local Batch No O(Mn)

Human motion
model (Calinon

et al., 2010)
Bayesian Comittee
Machine (Treps,

2000)

Semi-
Local Batch No O(m2n)

Inverse dynamics
(Rasmussen and
Williams, 2006)

Sparse Gaussian
Process Regression
(Csato and Opper,

2002)

Global Incremental Yes O(n2)

Transition
dynamics

(Rottmann and
Burgard, 2009),

Task model
(Grollman and
Jenkins, 2008)

Gaussian Process
Regression (Seeger,

2004)
Global Batch No O(n3)

Terrain model
(Plagemann et al.,

2008), State
estimation model

(Ko and Fox, 2009)

Support Vector
Regression

(Schölkopf and
Smola, 2002)

Global Batch No O(n2)

ZMP control model
(Ferreira et al.,
2007), Grasp

stability model
(Pelossof et al.,

2004)
Incremental

Support Vector
Machine (Ma
et al., 2005)

Global Incremental Yes O(n2) Inverse dynamics
(Choi et al., 2007)

Table 2.3: A large variety of machine learning methods have been applied in model learning
for robotics. We distinguish between global and local methods, as well as semi-local
methods which combine both approaches. The methods differ in the training mode and
their online capabilities. For computational complexity, n denotes the total number of
training points, m is number of data points in a local model, and M is the number of local
models. We further provide several application examples for model learning in robotics.
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2.2.4.1 Global Regression

A straightfoward way to model the function f in Equation (2.6) is to assume a
parametric structure, such as linear or polynomial models or multilayer perceptron
neural networks, and, subsequently, fit the model parameters using training data
(Hastie et al., 2001; Haerdle et al., 2004; Haykin, 1999). However, fixing the model
with a parametric structure beforehand may not suffice to explain the sampled
data, which motivates nonparametric model learning frameworks (Haerdle et al.,
2004; Schölkopf and Smola, 2002; Rasmussen and Williams, 2006). In the modern
parametric and nonparametric regression, the function f is usually modeled as

f(x) = θTφ(x) , (2.7)

where θ is a weight vector and φ is a nonlinear function projecting the input x into
some high-dimensional spaces. The basic idea behind nonparametric regression is
that the optimal model structure should be obtained from the training data. Hence,
the size of the weight vector θ is not fixed but can increase with the number of
training data points in most statistical learning methods. It determines the struc-
ture of the model given in Equation (2.7). Compared to nonparametric statistical
approaches, other popular function approximation methods such as neural networks
fix the model structure beforehand (Haykin, 1999). For instance, in traditional
neural network learning, the number of nodes and their connections have to be de-
termined before starting the training procedure (Haykin, 1999). It is worth noting
that there have been attempts to put artificial neural networks into the Bayesian
framework (MacKay, 1992; Neal, 1996) and, thus, establishing the connection be-
tween the two learning approaches. It has also been observed that certain neural
networks with one hidden layer converge to a Gaussian process prior over functions
(Neal, 1996).

In kernel methods, the model structure is determined by the model complexity
(Schölkopf and Smola, 2002). Learning a model includes finding a tradeoff between
the model’s complexity and the best fit of the model to the observed data. It is
desirable to have a model which is simple but at the same time can explain the
data well. Using kernel methods, the weight vector θ in Equation (2.7) can be first
expanded in term of n training data points and, subsequently, regularized in an
optimization step. Intuitively, the weight vector θ represents the complexity of the
resulting model.

Having a close link to the kernel framework, probabilistic regression methods
additionally provide a Bayesian interpretation of nonparametric kernel regression
(Rasmussen and Williams, 2006). Instead of expanding the weight vector as done
in kernel methods, probabilistic methods place a prior distribution over θ. The
prior parameters can be subsequently obtained by optimizing the corresponding
marginal likelihood. Thus, the trade-off between data-fit and model complexity can
be obtained in a straightforward and plausible way (Rasmussen and Williams, 2006).

Kernel and probabilistic methods have proven to be successful tools for model
learning over the last decade, resulting in a number of widely applied regression

25



Chapter 2 Model Learning: A Survey

methods, such as support vector regression or Gaussian process regression (Schölkopf
et al., 2000; Smola and Schölkopf, 2004; Rasmussen, 1996). These methods are
known to be capable of being applicable to high-dimensional data. They can also
deal well with noisy data, as the noise is taken in account indirectly by regularizing
the model complexity. Furthermore, they are relatively easy to use, as several black-
box implementations are available. However, the major drawback of these methods
are the computational complexity. For instance, for Gaussian process regression
the complexity scales cubically in term of number of training data. Thus, one
active research line in machine learning is to reduce the computational cost of those
approaches. Due to several advances in customizing machine learning techniques
for robotics, kernel and probabilistic regression techniques have aroused increasing
interests and have found their ways to several robotics applications, such as robot
control (Nguyen-Tuong and Peters, 2010b), sensor modeling (Plagemann et al., 2007)
or state estimation (Ko and Fox, 2009).

2.2.4.2 Local Learning

The basic idea of local regression techniques is to estimate the underlying function
f within a local neighborhood around a query input point xq. The data points in
this neighborhood can then be used to predict the outcome for the query point.
Generally, local regression models can be obtained by minimizing the following cost
function J using n training data points

J =
n∑
k=1

w

(
xk − xq

h

)(
yk − f̂(xk)

)2
. (2.8)

As indicated by the Equation (2.8), the essential ingredients for a local regression
model are the neighborhood function w and the local model f̂ . The neighborhood
function w, which is controlled by a width parameter h, basically measures the dis-
tance between a query point xq to the points in the training data. The local model
f̂ described the function structure used to approximate f within the neighborhood
around xq (Cleveland and Loader, 1996; Fan and Gĳbels, 1996). Depending on the
complexity of the data, different function structures can be assumed for the local
model f̂ , such as a linear or a polynomial model. The open-parameters of f̂ can
be estimated straightforwardly by minimizing J with respect to these parameters.
However, the choice of the neighborhood function and its width parameter is more
involved. Several techniques have been suggested for estimating the width parame-
ters for a given w, including the minimization of the leave-one-out cross validation
error and adaptive bandwidth selection (J.Fan and I.Gĳbels, 1995; Moore and Lee,
1994).

Because of their simplicity and computational efficiency, local regression tech-
niques have become widespread in model learning for robotics (Moore, 1992; Atke-
son et al., 1997b; Tevatia and Schaal, 2008). In the last decade, novel local regres-
sion approaches have been further developed in order to cope with the demands in
many robotics real-time applications, such as locally weighted projection regression
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(Atkeson et al., 1997a; Vĳayakumar et al., 2005). Inspired by local regression tech-
niques, these methods first employ a partitioning of the input space into smaller
local regions, for which locally linear models are approximated. In addition to be-
ing computational efficient, local methods can deal with less smooth functions and
do not require the same smoothness and regularity conditions as global regression
methods. However, it has been shown in practice that local methods suffer from
problems induced by high-dimensional data, as notions of locality break down for
sparse, high-dimensional data. Furthermore, the learning performance of local meth-
ods may be sensitive to noise and heavily depends on the way how the input space is
partitioned, i.e., the configuration of the neighborhood function w. These problems
still present an active research topic (Edakunni et al., 2007; Ting et al., 2008).

Several attempts have been made to scale local regression models to higher di-
mensional problems as required for many modern robotics systems. For example,
locally weighted projection regression combines local regression with dimensionality
reduction by projecting the input data into a lower dimensional space, where local
regression is employed afterwards (Vĳayakumar et al., 2005). Other methods com-
bine nonparametric probabilistic regression, such as Gaussian process regression,
with the local approaches while exploiting the strength of probabilistic methods for
model learning in high-dimensions (Nguyen-Tuong and Peters, 2009; Ting et al.,
2008; Urtasun and Darrell, 2008).

2.3 Application of Model Learning
In this section, we discuss three case studies on model learning in different robot ap-
plications. The presented cases illustrate several different aspects of model learning
discussed in previous sections. This list of examples is obviously not exhaustive but
gives an overview on possible applications of model learning in robotics. In Section
2.3.1, an application of forward models is illustrated from several examples. In Sec-
tions 2.3.2 and 2.3.3, we highlight cases where inverse models and mixed models are
useful.

2.3.1 Simulation-based Optimization
As forward models directly describe the dynamic behavior of the system, learning
such models has evoked much attention in the field of robot control for a long time.
A key application of learned forward models is the optimization of control problems.
In this situation, a policy that has been optimized for a hand-crafted model is likely
to be biased by the large model errors, while optimization on the real system is too
costly. Hence, policy optimization based on learned forward models is an interesting
alternative.

Atkeson et al. (Atkeson and Morimoto, 2002; Jacobson and Mayne, 1973) were
among the first to explore this approach using differential dynamic programming
for optimizing open-loop control policies. The basic idea of Atkeson et al. is to use
receptive field-weighted regression (a type of locally weighted regression) to learn the
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Fig. 3. Helicopter in autonomous sustained inverted hover.

after which our controller took over and was able to keep the helicopter in
stable, sustained inverted flight. Once the helicopter hardware for inverted
flight was completed, building on our pre-existing software (implemented for
upright flight only), the total time to design and demonstrate a stable in-
verted flight controller was less than 72 hours, including the time needed to
write new learning software.

A picture of the helicopter in sustained autonomous hover is shown in
Figure 3. To our knowledge, this is the first helicopter capable of sustained
inverted flight under computer control. A video of the helicopter in inverted
autonomous flight is also at

http://www.cs.stanford.edu/~ang/rl-videos/

Other videos, such as of a learned controller flying the competition maneuvers
mentioned earlier, are also available at the url above.

5 Conclusions

In this paper, we described a successful application of reinforcement learning
to the problem of designing a controller for autonomous inverted flight on
a helicopter. Although not the focus of this paper, we also note that, using
controllers designed via reinforcement learning and shaping [5], our helicopter
is also capable of normal (upright) flight, including hovering and waypoint
following.

Figure 2.4: Learning the pendulum swing up task (with permission of Stefan Schaal)
and learning inverted flight with a helicopter (with permission of Andrew Y. Ng). In
both cases, the forward model is used to learn the dynamics of the system for policy
optimization.

models of both cost and state transition. Differential dynamic programming locally
linearizes the state transition model and generates a local quadratic approximation
of the cost. These approximations are used to improve an open-loop policy where the
linearizations are also updated after every policy update (Atkeson and Morimoto,
2002). Atkeson et al. used the method to learn the underactuated pendulum swing
up task, where a pole is attached to the endeffector of the robot and maximal
torque has been limited to a fixed value. The goal of the robot is to bring the
pole from an hanging to an upright position. Hence, the system needs to “pump”
energy into the pendulum in order to swing it up. Subsequently, it needs to limit
the energy so that it can stabilize the pole at the upright position (Atkeson and
Schaal, 1997). Starting from an unconstrained human demonstration, the robot was
able to successfully learn the swing up and balance task after three trials (Atkeson
and Schaal, 1997). The local trajectory optimization technique has been further
extended to biped robot walking (Morimoto et al., 2003). More recently, a related
approach with parametric function approximation has been applied by Abbeel et
al. to learn autonomous helicopter flight (Abbeel et al., 2007). The authors also
reported fast convergence of this approach when learning different moves for the
helicopter, such as flip and roll movements (Abbeel et al., 2007).

While Atkeson (Atkeson and Morimoto, 2002) and Abbeel (Abbeel et al., 2007)
used the forward model as an implicit simulator, Ng et al. (Ng et al., 2004) use it
as an explicit simulator (as originally suggested by Sutton (Sutton, 1991) in form
of the DYNA model). Here, the forward model acts as a simulator for generating
complete trajectories or roll-outs. The predictions of the forward model are further
perturbed by Gaussian noise with a repeating, fixed noise history (e.g., by resetting
the random seed, a trick well-known in simulation optimization (Glynn, 1987) and
known as PEGASUS (Ng and Jordan, 2000)). This perturbation step is required
to make the system more robust to noise and model errors, while the re-use of the
noise history limits the variance in the policy updates (which results in a major
speed-up). This simulator based on a learned forward model is used for generating
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complete roll-outs from a similar start-state set for a control policy. The resulting
performance of different control policy can be compared, which allows policy updates
both by pair-wise comparison or by gradient-based optimization. The approach has
been able to successfully stabilize an helicopter in an inverted flight. A few similar
examples in model predictive control (see Section 2.2.1 for an explanation) exist
which employ a variety of different learning approaches such as statistical learning
methods (Kocĳan et al., 2004), neural networks (Akesson and Toivonen, 2006) both
for robot navigation (Gu and Hu, 2002) and helicopter control (Wan and Bogdanov,
2001).

2.3.2 Approximation-based Inverse Dynamics Control
Inverse models, such as inverse dynamics models, are frequently used in robotics
(Spong et al., 2006). Inverse dynamics models characterize the required joint torques
τ =f(q, q̇, q̈) to achieve a desired configuration (q, q̇, q̈), where q is the joint position
and q̇, q̈ are the corresponding velocity and acceleration, respectively. In classical
robot control, inverse dynamics model can be analytically given by the rigid body
dynamics model

τ (q, q̇, q̈) = M (q) q̈ + F (q, q̇) , (2.9)

where M(q) is the generalized inertia matrix of the robot, F(q, q̇) is a vector defined
by the forces, such as Coriolis forces, centripetal forces and gravity. This model
relies on series of assumptions, such as that the robot’s links are rigid, there is
no friction or stiction, nonlinearities of actuators are negligible etc. (Spong et al.,
2006). However, modern robotics systems with highly nonlinear components, such
as hydraulic tubes or elastic cable drive, can no longer be accurately modeled with
the rigid body dynamics. An inaccurate dynamics model can lead to severe losses
in control performance and, in the worst case, instability. Instead of modeling the
inverse dynamics manually based on physics and human insight, an inverse dynamics
model can be learned from sampled data. Such a data-driven approach has the
advantage that all nonlinearities encoded in the data will be approximated by the
model (Nguyen-Tuong and Peters, 2009).

As the inverse model is a unique mapping from joint space into torque space,
learning inverse dynamics models is a standard regression problem. In order to
generalize the learned models for a larger state space and to adapt the models for
time dependent changes in the dynamics, real-time online learning becomes neces-
sary. However, online learning poses difficult challenges for any regression method.
These problems have been addressed by real-time learning methods such as locally
weighted projection regression (Vĳayakumar and Schaal, 2000). Nguyen-Tuong et
al. (Nguyen-Tuong and Peters, 2009, 2010b) combine the basic ideas behind the lo-
cally weighted projection regression method with the global probabilistic Gaussian
process regression method (Rasmussen and Williams, 2006), attempting to combine
the efficiency of local learning with the high accuracy of Gaussian process regression.
The resulting method has shown to be capable for real-time online learning of the
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Figure 2.5: The 7-DoF anthropomorphic SARCOS arm used in learning inverse dynamics,
inverse kinematics and operational space control (with permission of Stefan Schaal).

robot’s inverse dynamics. Instead of using local models, data sparsification meth-
ods can be employed to speed up kernel regression approaches for real-time learning
(Nguyen-Tuong and Peters, 2010b).

It is worth noting that such inverse dynamics model learning approaches can also
be motivated from a biological point of view. Kawato et al (Kawato, 1999) have
suggested that the cerebellum may act as an inverse dynamics model. Motivated
by this insight, Shibata et al. (Shibata and Schaal, 2001) proposed a biologically
inspired vestibulo-oculomotor control approach based on feedback-error learning of
the inverse dynamics model. The problem is to stabilize the gaze in the face of
perturbations due to body movement, where the cerebellum is known to predict the
forces required to keep image stabilized on the retina (based on efferent motor sig-
nals and inputs from the vestibular system). In this work, Shibata et al. employ the
locally weighted projection regression approach to learn the inverse model of the eye
dynamics online (Vĳayakumar and Schaal, 2000). The same locally weighted pro-
jection regression technique has also been used to learn a complete inverse dynamics
model for the humanoid DB (Schaal et al., 2002).

2.3.3 Learning Operational Space Control

Operational space control (OSC) allows the robot to follow given desired trajectories
in the task space (Khatib, 1987; Nakanishi et al., 2008). Before explaining how OSC
can be viewed as a learning problem, we will review the most basic form of OSC
laws from a classical robotics point of view.

The relationship between the task space and joint space of the robot is defined
by the classical forward kinematics models x=f(q), where q denotes a joint space
configuration and x represents the corresponding task space position. The task space
velocity and acceleration are given by ẋ=J(q)q̇ and ẍ= J̇(q)q̇+J(q)q̈, respectively,
where J(q) = ∂f/∂q is the Jacobian. To obtain the joint torques required for the
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task space control, the dynamics model (as given in Equation (2.9)) is needed. The
direct combination of dynamics and kinematics model yields one possible operational
space control law

u = MJ+
W (ẍ− J̇q̇) + F , (2.10)

where J+
W denotes the weighted pseudo-inverse of J (Sciavicco and Siciliano, 1996;

Peters et al., 2008) and u represents the joint control torques. Equation (2.10)
can be employed to generate the joint torques necessary for tracking a task space
trajectory determined by a reference task-space acceleration (Nakanishi et al., 2008).
Note that the practical application of such control laws often requires further terms,
such as the so-called null-space control law for joint-space stabilization (Nakanishi
et al., 2008).

As discussed in Section 2.3.2, dynamics models can be hard to obtain and, thus,
learning can be an attractive alternative. Learning an operational space control law
corresponds to learning an inverse model such as (q, q̇, ẍ)→u (Peters and Schaal,
2008). However, learning such OSC models is an ill-posed problem, as there are
infinitely many inverse models possible. For example, we could create infinitely
many solutions for a redundant robot analytically by simply varying the metric W
of the weighted pseudo-inverse in Equation (5.11). As the space of possible solutions
is not convex, such OSC models cannot be learned straightforwardly using regression
models (unless the system has no redundant degrees of freedom). Similar problems
appear in the limited case of differential inverse kinematics (D’Souza et al., 2001).

Both D’Souza et al. (D’Souza et al., 2001) and Peters et al. (Peters and Schaal,
2008) noticed that local linearizations of the mapping in Equation (5.11) will al-
ways form a convex space. Hence, data sets generated by such systems will also be
locally convex. They furthermore realized that the predictive abilities of forward
models allows determining local regions, where a locally consistent forward model
can be learned. However, extremely different and inconsistent local models may
form, depending on the local data distribution. As a result, the global consistency
can no longer be ensured. This insight lead to two significantly different approaches.
D’Souza (D’Souza et al., 2001) created a differential inverse kinematics learning sys-
tem (i.e., a limited special case of an operational space control law) and chose to
bias the learning system by selectively generating data. However, he also realized
that such an approach will generically be limited by the trade-off between this in-
tentional bias and the inverse model’s accuracy. Peters et al. (Peters and Schaal,
2008) treated learning of complete operational space control laws. They realized that
a re-weighting of the data using an additional reward function allows regularizing
these inverse models towards a globally consistent solution. Inspired by a result in
analytical OSC (Peters et al., 2008), they suggest appropriate reward functions both
for learning full OSC and differential inverse kinematics. The resulting mapping was
shown to work on several robot systems. Ting et al. (Ting et al., 2008) presented an
implementation of Peters et al.’s (Peters and Schaal, 2008) approach with modern
Bayesian machine learning which sped up the performance significantly.
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Instead of learning a direct OSC control law as done by Peters et al. (Peters and
Schaal, 2008), Salaün et al. (Salaun et al., 2009) attempt to learn the well-defined
differential forward kinematics as a first step (i.e., learning the Jacobian) using lo-
cally weighted projection regression. The corresponding weighted pseudo-inverse of
the Jacobian is subsequently computed using SVD decomposition techniques. The
obtained differential inverse kinematics model is combined with an inverse dynamics
model to generate the joint space control torques (Salaun et al., 2009). Approxi-
mating inverse kinematics models has also been investigated using neural network
learning (Reinhart and Steil, 2008; Jordan and Rumelhart, 1992). More recently,
Reinhart et al. employ a reservoir computing architecture which allows to jointly
learn the forward and inverse kinematics.

2.4 Conclusion
In this chapter, we gave a survey of past and current research activities of model
learning for robotics. First, we discussed different types of models and how these
models can be incorporated in various learning architectures. Subsequently, we
pointed out what kind of problems these architectures and the domain of robotics
imply for the learning methods. We further discussed the challenges that arise from
the application of learning methods in the domain of robotics. An overview on how
models can be learned using machine learning techniques with a focus on statistical
regression methods was given. In several case studies, we showed where the model
learning scenarios have been used successfully.

Model learning is gaining increasing interest in the robotics community, as phys-
ically modeling of complex, modern robot systems become more difficult. It can be
a useful alternative to manual pre-programming, as the model is estimated directly
from measure data. Unknown nonlinearities are taken in account, while they are
neglected by the standard physics-based modeling techniques. Model learning has
been shown to be an efficient tool in variety of applications. Especially, for robot
control model learning, it has proven to be useful, as it provides accurate models of
the system allowing the application of compliant, energy-efficient controls.
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3 Model Learning with Local Gaussian
Process Regression

Nonparametric regression methods, such as Gaussian process regression (GPR) or
locally weighted projection regression (LWPR) offer a flexible framework for approx-
imating models from data. While GPR has been known for its learning accuracy
and its ability to deal with high-dimensional data, it suffers from the extensive
computational complexity. In this chapter, inspired by the idea of local learning
methods we present a local approximation to the standard GPR, called local GPR
(LGP), appropriate for real-time online model learning. The approach combines the
strengths of both regression methods, i.e., the high accuracy of GPR and the fast
speed of LWPR. The approach is shown to have competitive learning performance
for high-dimensional data while being sufficiently fast for real-time learning.

3.1 Introduction
Precise models of technical systems can be crucial in technical applications. In
robot tracking control, only a well-estimated inverse dynamics model allow both high
accuracy and compliant, low-gain control. For complex robots such as humanoids or
light-weight arms, it is often hard to analytically model the system sufficiently well
and, thus, modern regression methods can offer a viable alternative (Schaal et al.,
2002; Vĳayakumar et al., 2005). However, highly accurate regression methods such
as Gaussian process regression (GPR) suffer from high computational cost, while fast
real-time learning algorithms such as locally weighted projection regression (LWPR)
are not straightforward to use, as they require manual adjustment of many data
dependent parameters.

In this chapter, we attempt to combine the strengths of both approaches, i.e., the
high accuracy and comfortable use of GPR with the fast learning speed of LWPR
(Nguyen-Tuong et al., 2008c). We will proceed as follows: firstly, we briefly review
both model based control as well as two nonparametric learning approaches, i.e.,
standard GPR and LWPR. We will discuss the necessity of estimating the inverse
dynamics model and further discuss the advantages of both regression methods in
learning this model. Subsequently, we describe our local Gaussian process models
(LGP) approach and related work. We show that LGP inherits both the precision
of GPR and a higher speed similar to LWPR.

In Section 3.4, the learning accuracy and performance of the presented LGP
approach will be compared with several relevant regression methods, e.g., stan-
dard GPR (Rasmussen and Williams, 2006), ν-support vector regression (ν-SVR)
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(Schölkopf and Smola, 2002), sparse online GP (OGP) (Csato and Opper, 2002) and
LWPR (Vĳayakumar et al., 2005; Schaal et al., 2002). The applicability of the LGP
for low-gain model based tracking control and real-time learning is demonstrated on
a Barrett whole arm manipulator (WAM) (Nguyen-Tuong et al., 2008b). We can
show that its tracking performance exceeds analytical models (Craig, 2004) while
remaining fully compliant.

3.1.1 Background
Model based control, e.g., computed torque control (Spong et al., 2006), enables
high speed and compliant robot control while achieving accurate control with small
tracking errors for sufficiently precise robot models. The controller is supposed to
move the robot that is governed by the system dynamics (Spong et al., 2006)

M (q) q̈ + C (q, q̇) + G (q) + ε (q, q̇, q̈) = u , (3.1)

where q, q̇, q̈ are joint angles, velocities and accelerations of the robot, respectively,
u denotes the applied torques, M (q) the inertia matrix of the robot and C (q, q̇)
Coriolis and centripetal forces, G (q) gravity forces and ε (q, q̇, q̈) represents nonlin-
earities of the robot which are not part of the rigid body dynamics due to hydraulic
tubes, friction, actuator dynamics, etc.

The model based tracking control law determines the joint torques u necessary for
following a desired trajectory qd, q̇d, q̈d using a dynamics model while employing
feedback in order to stabilize the system. For example, the dynamics model of
the robot can be used as a feed-forward model that predicts the joint torques uFF
required to perform the desired trajectory, while a feedback term uFB ensures the
stability of the tracking control with a resulting control law of u=uFF + uFB. The
feedback term can be a linear control law such as uFB =Kpe+Kvė, where e=qd−q
denotes the tracking error and Kp,Kv position-gain and velocity-gain, respectively.
If an accurate model in the form of Equation (3.1) can be obtained, e.g., for negligible
unknown nonlinearities ε, the resulting feedforward term uFF will largely cancel the
robots nonlinearities (Spong et al., 2006).

3.1.2 Problem Statement
For complex robots such as humanoids or light-weight arms, it is often hard to model
the system sufficiently well using the rigid body dynamics. Unknown nonlinearities
ε (q, q̇, q̈) such as flexible hydraulic tubes, complex friction, gear boxes, etc, couple
several degrees of freedom together and result in highly altered dynamics. In par-
ticular, for the Barrett WAM several degrees of freedom are jointly actuated in a
differential setup, and as a result, there is a complex friction function. Addition-
ally, several spinning drives are in different reference frames from the actuated joint
while only one can be measured resulting in effects such as reflective inertias. Thus,
the dynamics can no longer be fully captured by standard rigid body dynamics
(Townsend, 2007).
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Such unknown nonlinearities can dominate the system dynamics and deteriorate
the analytical model (Nakanishi et al., 2005). The resulting tracking error needs
to be compensated using large gains (Spong et al., 2006). High feedback gains
prohibit compliant control and, thus, make the robot less safe for the environment.
High-gain control also causes many practical problems such as actuator saturation,
excitation of unmodeled dynamics, increase energy consumption, and may result in
large tracking errors in presence of noise, etc. To avoid high-gain feedback, it is
essential to improve the accuracy of the dynamics model for predicting uFF. Since
uFF is a function of qd, q̇d, q̈d, it can be obtained with supervised learning using
measured data. The resulting problem is a regression problem that can be solved
by learning the mapping q, q̇, q̈→ u on sampled data (Burdet et al., 1997; Schaal
et al., 2000; Nguyen-Tuong et al., 2008a) and, subsequently, using the resulting
mapping for determining the feedforward motor commands. As trajectories and
corresponding joint torques are sampled directly from the real robot, learning the
mapping will include all nonlinearities and not only the ones described in the rigid
body model.

3.1.3 Challenges in Real-time Learning
Due to high computational complexity of nonlinear regression techniques, inverse dy-
namics models are frequently only learned offline for pre-sampled desired trajectories
(Burdet et al., 1997; Nguyen-Tuong et al., 2008a). In order to take full advantage of
a learning approach, online learning is absolute necessity as it allows the adaption
to changes in the robot dynamics, load or the actuators. Furthermore, a training
data set will never suffice for most robots with a large number of degrees of freedom
and, thus, fast online learning is necessary if the trajectory leads to new parts of the
state-space. However, for most real-time applications online model learning poses
a difficult regression problem due to three constraints, i.e., firstly, the learning and
prediction process should be very fast (e.g., learning needs to take place at a speed
of 20-200Hz and prediction may take place at 200Hz up to 5kHz). Secondly, the
learning system needs to be capable at dealing with large amounts of data (i.e., with
data arriving at 200Hz, less than ten minutes of runtime will result in more than a
million sampled data points). And, thirdly, the data arrives as a continuous stream,
thus, the model has to be continuously adapted to new training examples over time.

3.2 Nonparametric Regression Methods
As any realistic inverse dynamics is a well-defined functional mapping of continuous,
high-dimensional inputs to outputs of the same kind, we can view it as a regression
problem. Given the input x ∈ Rn and the target y ∈ Rn, the task of regression
algorithms is to learn the mapping describing the relationship from input to tar-
get using samples. In this section, we will review the locally weighted projection
regression (LWPR) and the Gaussian process regression (GPR). Locally-weighted
projection regression is currently the standard real-time learning method in robot
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control applications and has been shown to scale into very high-dimensional domains
(Vĳayakumar and Schaal, 2000; Schaal et al., 2002; Vĳayakumar et al., 2005). How-
ever, it also requires skillful tuning of the meta parameters for the learning process
in order to achieve competitive performance. Gaussian process regression on the
other hand achieves a higher performance (Rasmussen and Williams, 2006; Seeger,
2004) with very little tuning but also suffers of a significantly higher computational
complexity.

3.2.1 Regression with LWPR
LWPR predicts the target values by approximating them with a combination of M
individually weighted locally linear models. The weighted prediction ŷ is then given
by ŷ=E{ȳk|x}=

∑M
k=1 ȳkp(k|x). According to the Bayesian theorem, the probability

of the model k given query point x can be expressed as

p(k|x)= p(k,x)
p(x)

= p(k,x)∑M
k=1 p(k,x)

= wk∑M
k=1wk

. (3.2)

Hence, we have

ŷ(x) =
∑M
k=1wkȳk(x)∑M
k=1wk

, (3.3)

with ȳk = x̄Tk θ̂k and x̄k = [(x − ck)T , 1]T , where wk is the weight or attributed
responsibility of the model, θ̂k contains the estimated parameters of the model and
ck is the center of the k-th linear model. The weight wk determines whether a data
point x falls into the region of validity of model k, similar to a receptive field, and
is usually characterized with a Gaussian kernel

wk = exp
(
−1

2
(x− ck)T Dk (x− ck)

)
, (3.4)

where Dk is a positive definite matrix called the distance matrix. During the learning
process, both the shape of the receptive fields Dk and the parameters θ̂k of the
local models are adjusted such that the error between the predicted values and
the observed targets is minimal. The regression parameter θ̂k can be computed
incrementally and online using the partial least squares method (Vĳayakumar and
Schaal, 2000; Schaal et al., 2002). The distance matrix Dk determines the size and
shape of each local model; it can be updated incrementally using leave-one-out cross
validation (Vĳayakumar et al., 2005).

3.2.2 Regression with standard GPR
A powerful alternative for accurate function approximation in high-dimensional
space is Gaussian process regression (GPR) (Rasmussen and Williams, 2006). Given
a set of n training data points {xi, yi}ni=1, we would like to learn a function f(xi)
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transforming the input vector xi into the target value yi given a model yi=f(xi)+εi ,
where εi is Gaussian noise with zero mean and variance σ2

n (Rasmussen and Williams,
2006). As a result, the observed targets can also be described by a Gaussian dis-
tribution y∼N

(
0,K(X,X) + σ2

nI
)
, where X denotes the set containing all input

points xi and K(X,X) the covariance matrix computed using a given covariance
function. Gaussian kernels are probably the frequently used covariance functions
(Rasmussen and Williams, 2006) and are given by

k (xp,xq)=σ2
sexp

(
−1

2
(xp−xq)TW(xp−xq)

)
, (3.5)

where σ2
s denotes the signal variance and W represents the widths of the Gaussian

kernel. Other choices for possible kernels can be found in (Schölkopf and Smola,
2002; Rasmussen and Williams, 2006). The joint distribution of the observed target
values and predicted value f(x∗) for a query point x∗ is given by[

y
f(x∗)

]
∼ GP

(
0,

[
K(X,X) + σ2

nI k(X,x∗)
k(x∗,X) k(x∗,x∗)

] )
. (3.6)

Conditioning the joint distribution yields the predicted mean value f(x∗) with the
corresponding variance V (x∗)

f(x∗) = kT∗
(
K + σ2

nI
)−1 y = kT∗α ,

V (x∗) = k(x∗,x∗)− kT∗
(
K + σ2

nI
)−1

k∗ ,
(3.7)

with k∗ = k(X,x∗), K = K(X,X) and α denotes the so-called prediction vec-
tor. The hyperparameters of a Gaussian process with Gaussian kernel are given
by θ = [σ2

n, σ
2
f ,W] and remain the only open parameters. Their optimal value

for a particular data set can be automatically estimated by maximizing the log
marginal likelihood using standard optimization methods such as Quasi-Newton
methods (Rasmussen and Williams, 2006).

3.2.3 Comparison of these Approaches
The major drawback of LWPR is the currently necessary manual adjustment of the
metaparameters1 required for the update of the kernel width Dk and the regression
vector θ̂k. These values are highly data dependent making it difficult to find an
optimal set of parameters. Furthermore, as linear models are used in LWPR, a large
number of local models may be required to achieve competitive prediction accuracy,
since only relatively small regions can be fit using such linear models. Nevertheless,
LWPR is the fastest and most task-appropriate real-time learning algorithm for
inverse dynamics to date; currently, it can be considered the state of the art in real-
time learning. On the other hand, GPR is more comfortable to apply while often

1Current work by Ting et al. (Ting et al., 2008) indicates that automatic metaparameter estima-
tion may be possible on the long run.
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achieving a higher prediction accuracy. All open parameters of a Gaussian process
model, i.e., the hyperparameters θ, can be automatically adjusted by maximizing
the marginal likelihood. As a result, GPR is relatively easy and flexible to use.
However, the main limitation of standard GPR is that computational complexity
scales cubically with the number of training examples. This drawback prevents
standard GPR from applications which need large amounts of training data and
require fast computation, e.g., model online learning for robot control.

3.3 Local Gaussian Process Regression

Model learning with GPR suffers from the expensive computation of the inverse
matrix (K + σ2

nI)−1 which yields a cost of O(n3), see Equation (3.7). Inspired
by locally weighted regression (Schaal et al., 2002; Vĳayakumar et al., 2005), we
propose a method for speed-up the training and prediction process by partitioning
the training data in local regions and learning an independent Gaussian process
model (as given in Section 3.2.2) for each region. The number of data points in the
local models is limited, where insertion and removal of data points can be treated
in a principled manner. The prediction for a query point is performed by weighted
average similar to LWPR. For partitioning and weighted prediction we use a kernel as
similarity measure. Thus, our algorithm consists out of three stages: (i) clustering
of data, i.e., insertion of new data points into the local models, (ii) learning of
corresponding local models and (iii) prediction for a query point.

3.3.1 Partitioning of Training Data

Clustering input data can be performed efficiently using a similarity measure be-
tween the input point x and the centers of the respective local models. From a
machine learning point of view, the similarity or proximity of data points can be
defined in terms of a kernel. Kernel functions represent the dot product between two
vectors in the feature space and, hence, naturally incorporate the similarity measure
between data points. The clustering step described in this section results from the
basic assumption that nearby input points are likely to have similar target values.
Thus, training points that belong the same local region (represented by a center)
are informative about the prediction for query points next to this local region.

A specific characteristic in this framework is that we take the kernel for learning
the Gaussian process model as similarity measure wi for the clustering process. If a
Gaussian kernel is employed for learning the model, the corresponding measure will
be

wi (x, ci) = exp
(
−1

2
(x− ci)T W (x− ci)

)
, (3.8)

where ci denotes the center of the i-th local model and W a diagonal matrix repre-
sented the kernel width. Note that this measure will result in the same weighting as
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Algorithm 1 Partitioning the training data with incremental model learning.
Input: new data point {xnew, ynew}.
for i=1 to number of local models do

Compute proximity to the i-th local model:
wi = k (xnew, ci)

end for
Take the nearest local model:
v = maxiwi

if v > wgen then
Insert {xnew, ynew} into the nearest local model:

Xnew =[X,xnew], ynew =[y, ynew]
Update the corresponding center:

cnew = mean(Xnew)
Update the Cholesky matrix and the
prediction vector of local model:

Compute l and l∗
Compute Lnew
If the maximum number of data points is reached
delete another point by permutation.
Compute αnew by back-substitution

else
Create new model:

ci+1 =xnew, Xi+1 =[xnew], yi+1 =[ynew]
Initialize of new Cholesky matrix L and
new prediction vector α.

end if

in LWPR, see Equation (3.4). It should be emphasized that for learning the Gaus-
sian process model any admissible kernel can be used. Thus, the similarity measure
for the clustering process can be varied in many ways, and, for example, the com-
monly used Matern kernel (Seeger, 2004) could be used instead of the Gaussian one.
For the hyperparameters of the measure, such as W for Gaussian kernel, we use the
same training approach as introduced in Section 3.2.2. Since the hyperparameters of
a Gaussian process model can be achieved by likelihood optimization, it is straight-
forward to adjust the open parameters for the similarity measure. For example, we
can subsample the available training data and, subsequently, perform the standard
optimization procedure.

After computing the proximity between the new data point xnew and all available
centers, the data point will be included to the nearest local model, i.e., the one with
the maximal value of wi. As the data arrives incrementally over time, a new model
with center ci+1 is created if all similarity measures wi fall below a threshold wgen.
The new data point is then used as new center ci+1 and, thus, the number of local
models will increase if previously unknown parts of the state space are visited. When
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Algorithm 2 Prediction for a query point.
Input: query data point x, M .
Determine M local models closest to x.
for i = 1 to M do

Compute proximity to the i-th local model:
wi = k (x, ci)

Compute local prediction using the k-th local model:
ȳi(x) = ki(x)Tαi

end for
Compute weighted prediction using M local models:
ŷ(x)=

∑M
i=1wiȳi(x)/

∑M
k=1wi .

a new data point is assigned to a particular i-th model, i.e., maxiwi(x) > wgen the
center ci will be updated to the mean of corresponding local data points.

3.3.2 Incremental Update of Local Models

During online learning, we have to deal with an endless stream of data (e.g., at a 500
Hz sampling rate we get a new data point every 2 ms and have to treat 30 000 data
points per minute). In order to cope with the real-time requirements, the maximal
number of training examples needs to limited so that the local models do not end
up with the same complexity as a standard GPR regression. Since the number of
acquired data points increases continuously over time, we can enforce this limit by
incrementally deleting old data points when newer and better ones are included.
Insertion and deletion of data points can be achieved using first order principles, for
example, maximizing the information gain while staying within a budget (e.g., the
budget can be a limit on the number of data points). Nevertheless, while the update
of the target vector y and input matrix X can be done straightforwardly, the update
of the covariance matrix (and implicitly the update of the prediction vector α, see
Equation (3.7)) is more complicated to derive and requires thorough analysis given
here.

The prediction vector α can be updated incrementally by directly adjusting the
Cholesky decomposition of the Gram matrix (K + σ2

nI) as suggested in (Seeger,
2007b). For doing so, the prediction vector can be rewritten as y = LLTα, where
the lower triangular matrix L is a Cholesky decomposition of the Gram matrix.
Incremental insertion of a new point is achieved by adding an additional row to the
matrix L.

Proposition 3.3.1 If L is the Cholesky decomposition of the Gram matrix K while
Lnew and Knew are obtained by adding additional row and column, such that

Lnew =
[

L 0
lT l∗

]
, Knew =

[
K kTnew
knew knew

]
, (3.9)
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with knew=k(X,xnew) and knew=k(xnew,xnew), then l and l∗ can be computed by
solving

Ll = knew (3.10)

l∗ =
√
knew − ‖l‖2 (3.11)

Proof Multiply out the equation LnewLTnew = Knew and solve for l and l∗.

Since L is a triangular matrix, l can be determined from Equation (3.10) by substi-
tuting it back in after computing the kernel vector knew. Subsequently, l∗ and the
new prediction vector αnew can be determined from Equation (3.11), where αnew
can be achieved by twice back-substituting while solving ynew=LnewLTnewαnew. If
the maximal number of training examples is reached, an old data point has to be
deleted every time when a new point is being included. The deletion of the m-th
data point can be performed efficiently using a permutation matrix R and solving
ynew =R LnewLTnewR αnew, where R = I − (δm − δn)(δm − δn)T and δi is a zero
vector whose i-th element is one (Seeger, 2007b). In practice, the new data point is
inserted as a first step to the last row (n-th row) according to Equation (3.9) and,
subsequently, the m-th data point is removed by adjusting R. The partitioning and
learning process is summarized in Algorithm 1. The incremental Cholesky update
is very efficient and can be performed in a numerically stable manner as discussed
in detail in (Seeger, 2007b).

Due to the Cholesky update formulation, the amount of computation for training
can be limited due to the incremental insertion and deletion of data points. The main
computational cost for learning the local models is dominated by the incremental
update of the Cholesky matrix which yields O(N2

l ), where Nl presents the number
of data points in a local model. Importantly, Nl can be set in accordance with the
computational power of the available real-time computer system.

3.3.3 Prediction using Local Models

The prediction for a mean value ŷ is performed using weighted averaging over M
local GP predictions ȳi for a query point x similar to LWPR. The weighted prediction
ŷ is then given by

ŷ =
∑M
i=1wiȳi∑M
i=1wi

. (3.12)

Thus, each local GP prediction ȳi = k(Xi,x)Tαi is additionally weighted by the
similarity wi (x, ci) between the corresponding center ci and the query point x. The
search for M local models can be quickly done by evaluating the proximity between
the query point x and all model centers ci. The prediction procedure is summarized
in Algorithm 2.
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3.3.4 Relation to Previous Work

Many attempts have been made to reduce the computational cost of GPR, most of
them follow either the strategy of creating (i) sparse Gaussian processes (SGP) or
follow a (ii) mixture of experts (ME) approach. In a SGP, the whole input space
is approximated using a smaller set of “inducing inputs” (Candela and Rasmussen,
2005; Csato and Opper, 2002; Grollman and Jenkins, 2008). Here, the difficulty lies
in the choice of the appropriate set of inducing inputs that essentially summarizes
the original input space (Rasmussen and Williams, 2006). In contrast to SGP, the
ME approach divides the whole input space in smaller subspaces employing a gat-
ing network which activates responsible Gaussian process experts (Rasmussen and
Ghahramani, 2002; Snelson and Ghahramani, 2007). Thus, the computational cost
of the matrix inversion is significantly reduced due to a much smaller number of
data points within an expert. The ME performance depends largely on the number
of experts for a particular data set. To reduce the impact of this problem, (Ras-
mussen and Ghahramani, 2002) allows the learning process to infer the required
number of experts for a given data set using a Dirichlet process to determine the ap-
propriate gating network. The proposed algorithm has approximately a complexity
of O(n3/M) for training and O(n2d) for adapting the gating network parameters,
where M denotes the number of experts, n the total number of training data and d
the dimension of input vector.

The presented LGP approach is loosely related to the ME approximation. How-
ever, the gating network requires competition between the models for the data
points, while the locality approach allows cooperation (Schaal. and Atkeson, 1996).
Particularly important is the fact that we re-use the kernel measure as similar-
ity measure which results in two advantages, firstly, the metric parameters can be
derived directly by optimization procedure which makes it more comfortable and
flexible for using. Secondly, the evaluation of the metric can be performed very fast
enabling it for real-time application. However, it shows that clustering in higher di-
mensional space is not always straightforward to perform with the kernel similarity
metric. In our experience, partitioning of training data can be done quite well up
to 20 dimensions. Since we can localize the training data in much lower spaces than
learning the model, this obstacle can often be circumvented. We will discuss this
issue in more detail in Section 3.4.

Compared with LWPR, one major advantage is that we use Gaussian process
model for training the local models instead of linear models. Thus, we need signifi-
cantly fewer local models to be competitive in learning accuracy. Gaussian process
models have also shown to generalize the training data well and are easier to train
as the open parameter can be obtained straightforwardly from the log marginal
likelihood. However, a major drawback in comparison to LWPR is that the more
complex models result in an increased computational cost.
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3.4 Learning Inverse Dynamics

Figure 3.1: 7-DoFs Barrett WAM arm used for data generation and experiments.

3.4 Learning Inverse Dynamics
Learning models for control of high-dimensional systems in real-time is a difficult
endeavor and requires extensive evaluation. For this reason, we have evaluated
our algorithm using high-dimensional data taken from two real robots, e.g., the 7
degree-of-freedom (DoF) anthropomorphic SARCOS master arm and 7-DoF Barrett
WAM (as shown in Figures 2.5 and 3.1, respectively), as well as physically realistic
simulation using SL (Schaal, 2006). We compare the learning performance of LGP
with the state-of-the-art in nonparametric regression, e.g., LWPR, ν-SVR, standard
GPR and online Gaussian Process Regression (OGP) in the context of approximating
inverse robot dynamics. For evaluating ν-SVR and GPR, we have employed the
libraries (Chang and Lin, 2001) and (Seeger, 2007a), respectively. The code for
LGP contained also parts of the library (Seeger, 2007a).

3.4.1 Learning Accuracy Comparison

For comparing the prediction accuracy of our proposed method in the setting of
learning inverse dynamics, we use three data sets, (i) SL simulation data (SARCOS
model) as described in (Nguyen-Tuong et al., 2008a) (14094 training points and
5560 test points), (ii) data from the SARCOS master arm (13622 training points
and 5500 test points) (Vĳayakumar et al., 2005) as well as (iii) a data set generated
from our Barrett arm (13572 training points, 5000 test points).

Given samples x=[q, q̇, q̈] as input, where q, q̇, q̈ denote the joint angles, velocity
and acceleration, respectively, and using the corresponding joint torques y=[u] as
targets, we have a well-defined, proper regression problem. The considered seven
degrees of freedom (DoF) robot arms result in 21 input dimensions (i.e., for each
joint, we have an angle, a velocity and an acceleration) and seven target or output
dimensions (i.e., a single torque for each joint). The robot inverse dynamics model
can be estimated separately for each DoF employing LWPR, ν-SVR, GPR, OGP
and LGP, respectively.

The training examples for LGP can be partitioned either in the same input space
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(c) Approximation Error
on Barrett WAM data

Figure 3.2: The approximation error is represented by the normalized mean squared error
(nMSE) for each DoF (1–7) and shown for (a) simulated data from physically realistic
SL simulation, (b) real robot data from an anthropomorphic SARCOS master arm and
(c) measurements from a Barrett WAM. In all cases, LGP outperforms LWPR and OGP
in learning accuracy while being competitive to ν-SVR and standard GPR. The small
variances of the output targets in the Barrett data results in a nMSE that is a larger scale
compared to SARCOS; however, this increase has no practical meaning and only depends
on the training data.

where the local models are learned or in a subspace that has to be physically consis-
tent with the approximated function. In the following, we localize the data depend-
ing on the position of the robot. Thus, the partitioning of training data is performed
in a seven dimensional space (i.e., consisting of the seven joint angles). The local-
ization should be performed in a low dimensional space, since with increasing input
dimensions the partitioning of data may be difficult having negative effects on the
learning performances. After determining the similarity metric wk for all k local
models in the partitioning space, the input point will be assigned to the nearest
local model, i.e., the local model with the maximal value of distance measure wk.
For computing the localization, we will use the Gaussian kernel as given in Equation
(5.15) and the corresponding hyperparameters are optimized using a subset of the
training set.

Note that the choice of the limit value wgen during the partitioning step is crucial
for the performance of LGP and, unfortunately, is an open parameter requiring
manual tuning. If wgen is too small, a large number of local models will be generated
with small number of training points. As these small models receive too little data
for a stable GPR, they do not generalize well to unknown neighboring regions of
the state space. If wgen is large, the local models will include too many data points
which either results in over-generalization or, if the number of admitted data points
is enlarged as well, it will increase the computational complexity. Here, the training
data is clustered in about 30 local regions ensuring that each local model has a
sufficient amount of data points for high accuracy (in practice, roughly a hundred
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data points for each local model suffice) while having sufficiently few that the solution
remains feasible in real-time (e.g., on the test hardware, an Intel Core Duo at 2GHz,
that implies the usage of up to a 1000 data points per local model). On average,
each local model includes approximately 500 training examples, i.e., some models
will not fill up while others actively discard data. This small number of training data
points enables a fast training for each local model using the previously described
fast Cholesky matrix updates.

Figure 3.2 shows the normalized mean squared error (nMSE) of the evaluation
on the test set for each of the three evaluated scenarios, i.e., a physically realistic
simulation of the SARCOS arm in Figure 3.2 (a), the real anthropomorphic SARCOS
master arm in Figure 3.2 (b) and the Barrett WAM arm in Figure 3.2 (c). Here, the
normalized mean squared error is defined by nMSE = Mean squared error/Variance
of target. During the prediction on the test set using LGP, we take the most activated
local models, i.e., the ones which are next to the query point.

When observing the approximation error on the test set shown in Figure 3.2(a-c),
it can be seen that LGP generalizes well to the test data during prediction. In all
cases, LGP outperforms LWPR and OGP while being close in learning accuracy to
of the offline-methods GPR and ν-SVR. The mean prediction for GPR is determined
according to Equation (3.7) where we pre-computed the prediction vector α from
training data. When a query point appears, the kernel vector kT∗ is evaluated for
this particular point.

3.4.2 Comparison of Computation Speed for Prediction

The computation requirements of kernel-based regression can even be problematic
for prediction in real-time, thus, it is an essential component of the LGP that it
results in a substantial reduction of prediction latency rendering online prediction
feasible even for large data sets. The duration of a prediction of the LGP is sig-
nificantly lower than the one of GPR and ν-SVR, as only a small amount of local
models in the vicinity of the current input data is needed during prediction. Thus,
the complexity of the prediction operation is O(n) for a standard GPR (ν-SVR does
not differ in complexity), it will become O(NM) for LGP, where n denotes the total
number of training points, M number of local models used in the prediction and N
number of data points in a local model. Note that usually n >> NM . The compar-
ison of prediction speed is shown in Figure 5.1. Here, we train LWPR, ν-SVR, GPR
and LGP on 5 different data sets with increasing training examples (1065, 3726,
7452, 10646 and 14904 data points, respectively). Subsequently, using the trained
models we compute the average time needed to make a prediction for a query point
for all 7 DoF. For LGP, we take the same number of local models in the vicinity
for prediction as in last experiment. Since assuming a minimal prediction rate at
100 Hz (10 ms) in order to ensure system stability, data sets with more than 15000
points cannot be used with standard GPR or ν-SVR on an Intel Core Duo at 2GHz
due to high computation demands for the prediction. In recent time, there are also
approaches to speed up the prediction time for standard GPR (Shen et al., 2005;
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Figure 3.3: Average time in millisecond needed for prediction of 1 query point. The com-
putation time is plotted logarithmically with respect to the number of training examples.
The time as stated above is the required time for prediction of all 7 DoF performed se-
quentially. Here, LWPR presents the fastest method due to simple regression models.
Compared to global regression methods such as standard GPR and ν-SVR, local GP
makes significant improvement in term of prediction time. For this experiment, 3 local
models are taken each time for prediction with LGP.

Suttorp and Igel, 2008). In (Shen et al., 2005), for example, KD-trees are applied
to find training data points next to the query point for prediction.

The results given in Figure 5.1 show that the computation time requirements of
ν-SVR and GPR rises very fast with the size of training data set as expected. LWPR
remains the best method in terms of computational complexity only increasing at a
very low pace with the number of data points. However, as shown in Figure 5.1, the
cost for LGP is significantly lower than the one for ν-SVR and GPR and increases
at a much lower rate. The LGP prediction latency can be bounded by setting the
number of local models needed for prediction, i.e., the parameter M . In practice, we
need around 1000 data points in the neighborhood of the query point for prediction
resulting in the usage of 2 or 3 local models. As shown by the results, LGP represents
a compromise between learning accuracy and computational complexity. For large
data sets (e.g., more than 5000 training examples), LGP reduces the prediction cost
considerably in comparison to standard methods while still having a good learning
performance.

3.5 Application in Model-based Robot Control

In this section, we use the inverse dynamics models learned in Section 3.4.1 for a
model based tracking control task (Craig, 2004). Here, the model is used for pre-
dicting the feedforward torques uFF necessary to execute a given desired trajectory
[qd, q̇d, q̈d]. First, we compare standard rigid body dynamics (RBD) models with
several models learned offline on training data sets. For this offline learning com-
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parison, we use LWPR, ν-SVR, standard GPR as well as our LGP as compared
learning methods. We show that our LGP is competitive when compared with its
alternatives. Second, we demonstrate that online learning is highly beneficial. Dur-
ing online learning, the local GP models are updated in real-time, and the online
improvement during a tracking task outperforms the fixed offline model in compari-
son. Our goal is to achieve compliant tracking in robots without exception handling
or force sensing but purely based on using low control gains. Our control gains are
three orders of magnitude smaller than the manufacturers in the experiments and
we can show that using good, learned inverse dynamics models we can still achieve
compliant control. The accuracy of the model has a stronger effect on the tracking
performance in this setting and, hence, a more precisely learned model will also
results in a significantly lower tracking error.

3.5.1 Tracking using Offline Trained Models

For comparison with the learned models, we also compute the feedforward torque
using rigid body (RB) formulation which is a common approach in robot control
(Craig, 2004). The control task is performed in real-time on the Barrett WAM, as
shown in Figure 3.1. As desired trajectory, we generate a test trajectory which is
similar to the one used for learning the inverse dynamics models in Section 3.4.1.
Figure 3.4 (a) shows the tracking errors on test trajectory for 7 DoFs. The error is
computed as root mean square error (RMSE) which is a frequently used measure
in time series prediction and tracking control. Here, LGP provides a competitive
control performance compared to GPR while being superior to LWPR and the state-
of-the art rigid body model.

3.5.2 Online Learning of Inverse Dynamics Models

In this section, we show that the LGP is capable of online adaptation while being
used for predicting the required torques. Since the number of training examples
in each local model is limited, the update procedure is sufficiently fast for real-
time application. For doing so, we employ the joint torques u and the resulting
robot trajectories [q, q̇, q̈] as samples which are added to the LGP models online
as described in Section 3.3.2. New data points are added to the local models until
these fill up and, once full, new points replace previously existing data points. The
insertion of new data point is performed with information gain (Seeger, 2005), while
for the deletion we randomly take an old point from the corresponding local model.
A new data point is inserted to the local model, if its information gain is larger
than a given threshold value. In practice, this value is set such that the model
update procedure can be maintained in real-time (the larger the information gain
threshold, the more updates will be performed). Figure 3.4 (b) shows the tracking
error after online learning with LGP in comparison with offline learned models. It
can be seen that the errors are significantly reduced for LGP with online updates
when compared to both standard GPR and LGP with offline learned models.
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Figure 3.4: (a) and (b) show the tracking errors (RMSE) on the Barrett WAM. For
offline-learned models, LGP is competitive with full GPR and ν-SVR while being better
than LWPR and rigid body model. When employing online-updates, LGP can largely
improve the tracking results outperforming the offline-learned models using full GPR. The
reported results are computed for a test trajectory executed on the robot.

In the following, we create a more complex test case for tracking with inverse
dynamics models, i.e., we take the Barrett WAM by the end-effector and guide it
along several trajectories which are subsequently used both in learning and control
experiments. In order to make these trajectories straightforward to comprehend
for humans, we draw all 26 characters of the alphabet in an imaginary plane in
task space. An illustration for this data generation process is shown in Figure 3.6
(a). During the imagined writing, the joint trajectories are sampled from the robot.
Afterwards, it will attempt to reproduce that trajectory, and the reproductions can
be used to generate training data. Subsequently, we used several characters as
training examples (e.g., characters from D to O) and others, e.g., A and B, as test
examples. This setup results in a data set with 10845 samples for training and 1599
for testing.

Similar as in Section 3.4.1, we learn the inverse dynamics models using joint
trajectories as input and joint torques as targets. The robot arm is then controlled
to perform the joint-space trajectories corresponding to the test characters using
the learned models. For LGP, we additionally show that the test characters can be
learned online by updating the local models, as described in Section 3.5. The Figure
3.5 shows the tracking results using online learning with LGP in comparison to the
offline trained model with standard GPR and a traditional rigid body model. It can
be observed that the offline trained models (using standard GPR) can generalize well
to unknown characters often having a better tracking performance than the rigid
body model. However, the results can be improved even further if the dynamics
model is updated online – as done by LGP. The LGP results are shown in Figure
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Figure 3.5: Compliant tracking performance on Barrett WAM for two test characters A
and B where the controlled trajectory lies in joint-space while our visualization is in task
space for improved comprehensibility. We compare the corresponding rigid body model,
an offline trained GP model and an online learning LGP. The thick, blue line denotes the
desired trajectory, while the dashed, red line represents the robot trajectory during the
compliant tracking task. The results indicate that online learning with LGP outperforms
the offline-learned model using full GPR as well as the rigid body dynamics.
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Figure 3.6: This figure illustrates (a) Data generation for the learning task. (b) and (c)
show as example the feedback uFB and feedforward uFF term of the 1. DoF after each
iteration of the test character, e.g., A. The feedback term degreases gradually, as the
model learns to make the required feedforward torques. The feedforward toques uFF does
not change significantly after 2 iterations. For running through the complete trajectory,
e.g., A, about 8 seconds are necessary.
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3.5 and are achieved after three trials on the test character.
In practice, it is shown that a good tracking performance can already be achieved

after 2 iterations of the unknown characters. During the first iteration, the tracking
error is large (due to suboptimal prediction in presence of unknown trajectory)
resulting in a large correcting feedback term uFB, see Figure 3.6 (b). In the following
iterations, the feedback term gradually degreases, as the model ’learns’ to make a
correct prediction, i.e, the optimal feedforward torque uFF required for the given
characters, by using the online sampled input-torques u as learning target. The
feedforward torque uFF converges already after 2 or 3 iterations, as shown in Figure
3.6 (c), i.e., after that the feedforward torques do not change significantly.

3.6 Conclusion
The local Gaussian process regression LGP combines the strength of fast compu-
tation as in local regression with the potentially more accurate kernel regression
methods. As a result, we obtain a real-time capable regression method which works
well in robot application. When compared to locally linear methods such as LWPR,
the LGP achieves higher learning accuracy while having less computational cost
compared to state of the art kernel regression methods such as GPR and ν-SVR.
The reduced complexity allows the application of the LGP for online model learning
which is necessary for real-time adaptation of model errors or changes in the system.
Model based tracking control using online learned LGP models achieves a superior
control performance for low gain control in comparison to rigid body models, as well
as to offline learned models.

Future research will focus on several important extensions such as finding kernels
which are most appropriate for clustering and prediction, and how the choice of a
similarity can affect the LGP performance. Partitioning in higher dimension space is
still a challenging problem, a possible solution is to perform dimensionality reduction
during the partitioning step. It is also interesting to investigate how to infer an
optimal value for wgen from data. Furthermore, alternative criteria for insertion
and deletion of data points need to be examined more closely. This operation is
crucial for online learning as not every new data point is informative for the current
prediction task, and on the other hand deleting an old but informative data point
may degrade the performance. It also interesting to investigate further applications
of the LGP in humanoid robotics with 35 of more DoFs and learning other types of
the control such as operational space control.
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4 Incremental Online Sparsification for
Model Learning

In this chapter, we present a framework for online, incremental sparsification with
a fixed budget designed for fast real-time model learning. The proposed approach
employs a sparsification method based on an independence measure. In combination
with an incremental learning approach such as incremental Gaussian process regres-
sion, we obtain a model approximation method which is applicable in real-time online
learning. It exhibits competitive learning accuracy when compared with standard
regression techniques. Implementation on a real Barrett WAM robot demonstrates
the applicability of the approach in real-time online model learning for real world
systems.

4.1 Introduction
In recent years, model learning has become an important tool in a variety of robotics
applications such as terrain modeling (Lang et al., 2007), sensor evaluation (Plage-
mann et al., 2007), model-based control (Nakanishi and Schaal, 2004; Schaal et al.,
2002) and many others. The reason for this rising interest is that accurate analyt-
ical models are often hard to obtain due to the increasing complexity of modern
robot systems. Nevertheless, the excessive computational complexity of the more
advanced regression techniques still hinders their widespread application in robotics.
Models that have been learned offline can only approximate the model correctly in
the area of the state space that is covered by the sampled data, and often do not
generalize beyond that region. Thus, in order to cope with unknown state space re-
gions online model learning is essential. Furthermore, it also allows the adaptation
of the model to changes in the robot dynamics, for example, due to unforeseen loads
or time-variant nonlinearities such as backlash, complex friction and stiction.

A few approaches for real-time model learning for robotics have been introduced
in the machine learning literature, such as locally weighted projection regression (Vi-
jayakumar et al., 2005) or local Gaussian process regression (Nguyen-Tuong et al.,
2008b; Nguyen-Tuong and Peters, 2009). In these methods, the state space is par-
titioned in local regions for which local models are approximated. As the proper
allocation of relevant areas of the state space is essential, appropriate online clus-
tering becomes a central problem for these approaches. For high dimensional data,
partitioning of the state space is well-known to be a difficult issue (Vĳayakumar
et al., 2005; Nguyen-Tuong et al., 2008b). To circumvent this online clustering, an
alternative is to find a sparse representation of the known data (Rasmussen and
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Williams, 2006; Schölkopf and Smola, 2002; Liu et al., 2009). For robot applica-
tions, however, it requires finding an incremental sparsification method applicable
in real-time online learning – a major challenge tackled in this chapter.

Inspired by the work in (Schölkopf and Smola, 2002; Engel et al., 2004), we pro-
pose a method for incremental, online sparsification which can be integrated into
several existing online regression methods, making them applicable for model learn-
ing in real-time. The suggested sparsification is performed using a test of linear
independence to select a sparse subset of the training data points, often called the
dictionary. The resulting framework allows us to derive criteria for incremental in-
sertion and deletion of dictionary data points, which are two essential operations
in such an online learning scenario. For evaluation, we combine our sparsification
framework with an incremental approach for Gaussian process regression (GPR) as
described in Nguyen-Tuong and Peters (2009). The resulting algorithm is applied in
online learning of the inverse dynamics model for robot control (Spong et al., 2006;
Nguyen-Tuong et al., 2008a).

The rest of the chapter will be organized as follows: first, we present our sparsifi-
cation approach which enables real-time online model learning. In Section 4.3, the
efficiency of the proposed approach in combination with an incremental GPR up-
date is demonstrated by an offline comparison of learning inverse dynamics models
with well-established regression methods, i.e., ν-support vector regression (Schölkopf
et al., 2000), standard Gaussian process regression (Rasmussen and Williams, 2006),
locally weighted projection regression (Vĳayakumar et al., 2005) and local Gaussian
process regression (Nguyen-Tuong et al., 2008b). Finally, the capability of incremen-
tal GPR using online sparsification for real-time model learning will be illustrated
by online approximation of inverse dynamics models for real-time tracking control
on a Barrett WAM. A conclusion will be given in Section 4.4.

4.2 Online Sparsification for Real-time Model Learning
In this section, we introduce a sparsification method which – in combination with
an incremental kernel regression – enables fast, real-time model learning. The pro-
posed sparsification approach is formulated within the framework of kernel methods.
Therefore, we first present the basic intuition behind the kernel methods and mo-
tivate the need of online sparsification. Subsequently, we describe the proposed
sparsification method in details.

4.2.1 Model Learning with Kernel Methods
By learning a model, we want to approximate a mapping from the input set X to
the target set Y. Given n training data points {xi, yi}ni=1, we intend to discover the
latent function f(xi) which transforms the input vector xi into a target value yi given
by the model yi=f(xi)+εi, where εi represents a noise term. In general, it is assumed
that f(x) can be parametrized as f(x) = φ(x)Tw, where φ is a feature vector
mapping the input x into some high dimensional space and w is the corresponding
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Figure 4.1: Sparsification for online model learning.

weight vector (Schölkopf and Smola, 2002; Rasmussen and Williams, 2006). The
weight w can be represented as a linear combination of the input vectors in the
feature space, i.e., w=

∑n
i=1 αiφ(xi) with αi denoting the linear coefficients. Using

these results, the prediction ŷ of a query point x can be given as

ŷ = f̂(x) =
∑n
i=1 αi〈φ(xi),φ(x)〉 ,

=
∑n
i=1 αik(xi,x) .

(4.1)

As indicated by Equation (4.1), the inner product of features vectors 〈φ(xi),φ(x)〉
can be represented as a kernel value k(xi,x) (Schölkopf and Smola, 2002). Thus,
instead of finding a feature vector, only appropriate kernels need to be determined.
An often used kernel is, for example, the Gaussian kernel

k(xp,xq)=exp
(
−1

2
(xp−xq)TW(xp−xq)

)
, (4.2)

where W denotes the kernel widths (Schölkopf and Smola, 2002; Rasmussen and
Williams, 2006). For employing kernel methods in model learning, however, one
needs to estimate the linear coefficients αi using training examples. State-of-the-
art kernel methods such as kernel ridge regression, support vector regression (SVR)
or Gaussian process regression (GPR), differ in the approaches for estimating αi
(Schölkopf and Smola, 2002; Rasmussen and Williams, 2006; Hastie et al., 2001).
While support vector regression estimates the linear coefficients by optimization us-
ing training data (Schölkopf and Smola, 2002), kernel ridge regression and Gaussian
process regression basically solve the problem by matrix inversion (Hastie et al.,
2001; Rasmussen and Williams, 2006). The complexity of model learning with ker-
nel methods, i.e., the estimation of αi, depends largely on the number of training
examples. In GPR, for example, the computational complexity is O(n3), if the
model is obtained in batch learning.

However, online model learning requires incremental updates, e.g., incremental
estimation of αi, as the data arrives sequentially. There have been many attempts
to develop incremental, online algorithms for kernel methods, such as incremental
SVM (Cauwenberghs and Poggio, 2000), sequential SVR (Vĳayakumar and Wu,
1999), recursive kernel learning with NARX form (Liu et al., 2009) or the kernel
recursive least-squares algorithm (Engel et al., 2004) (for an overview see (Schölkopf
and Smola, 2002)). However, most incremental kernel methods do not scale to online
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learning in real-time, e.g., for online learning with model updates at 50 Hz or faster.
The main reason is that they are neither sparse (Cauwenberghs and Poggio, 2000;
Vĳayakumar and Wu, 1999), as they use the complete data set for model training,
nor do they restrict the size of the sparse set (Engel et al., 2004). To overcome these
shortcomings, we propose the setup illustrated in Figure 4.1.

To ensure real-time constraints, we train the model using a dictionary with a fixed
budget. The budget of the dictionary, i.e., the sparse set, needs to be determined
from the intended learning speed and available computational power. To efficiently
make use of the stream of continuously arriving data, we select only the most in-
formative data points for the dictionary. If the budget limit is reached, dictionary
points will need to be deleted. Finally, for the model training using dictionary data,
most incremental kernel regression methods can be employed, e.g., incremental GPR
as described in (Nguyen-Tuong and Peters, 2009), sequential SVR (Vĳayakumar and
Wu, 1999) or incremental SVM (Cauwenberghs and Poggio, 2000).

Inspired by the work in (Engel et al., 2004; Schölkopf et al., 1999), we use a
linear independence measure to select the most informative points given the current
dictionary. Based on this measure, we derive criteria to remove data points from the
dictionary, if a given limit is reached. The following sections describe the proposed
approach in detail.

4.2.2 Sparsification using Linear Independence Test

The main idea in our sparsification approach is that we intend to cover the relevant
state space at the best, given a limited number of dictionary points. At any point
in time, our algorithm maintains a dictionary D = {di}mi=1 where m denotes the
current number of dictionary points di. The choice of the dictionary element di
might be crucial for particular application and will be discussed in Section 4.2.5. To
test whether a new point dm+1 should be inserted into the dictionary, we need to
ensure that it can not be approximated in the feature space spanned by the current
dictionary set. This test can be performed using a measure δ defined as

δ =
wwwww
m∑
i=1

aiφ(di)− φ(dm+1)
wwwww

2

, (4.3)

(see, e.g., (Schölkopf et al., 1999; Schölkopf and Smola, 2002) for background in-
formation), where ai denote the coefficients of linear dependence. Equation (4.3)
can be understood as a distance of the new point dm+1 to the linear plane spanned
by the dictionary set D in the feature space as illustrated in Figure 4.2. Thus, the
value δ can be considered as an independence measure indicating how well a new
data point dm+1 can be approximated in the feature space of a given data set. Thus,
the larger the value of δ is, the more independent is dm+1 from the dictionary set
D, and the more informative is dm+1 for the learning procedure.

The coefficients ai from Equation (4.3) can be determined by minimizing δ. For-
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Figure 4.2: Geometrical interpretation of the independence measure δ. Here, the dictio-
nary consists of two data points {d1,d2} which span a linear plane in the feature space.
The independence measure δ for a new data point dnew can be interpreted as the distance
to this plane.

mulated in matrix form, the minimization of δ can be given as

a = min
a

[
aTKa − 2aTk + k

]
, (4.4)

where K = k(D,D) represents the kernel matrix, k= k(D,dm+1) is the kernel vec-
tor and k=k(dm+1,dm+1) denotes a kernel value. Note that in Equation (4.4) we
make use of the property that inner products of feature vectors can be represented
as kernel values. Minimizing Equation (4.4) yields the optimal coefficient vector
a=K−1k. The parameter a can be further regularized taking in account problems
such as outliers. The regularization can be controlled by a regularization-parameter
which can be chosen to alleviate the outlier’s contribution to the sparsification pro-
cess. Usually, this parameter can be obtained from training data by cross-validation.
However, in this work we omitted this regularization as we did not observe any seri-
ous problems due to outliers. After substituting the optimal value a into Equation
(4.3), δ becomes

δ = k(dm+1,dm+1)− kTa . (4.5)

Using δ we can decide whether to insert new data points into the dictionary. The
sparsification procedure is summarized in Algorithm 3.

The independence measure δ as given in Equation (4.5), can be used as a crite-
rion for selecting new data points by thresholding, see Algorithm 3. The threshold
parameter η implicitly controls the level of sparsity. However, for a given threshold
value η, the number of dictionary points selected from the online data stream is not
known beforehand and, thus, can be very large. Large dictionaries are prohibitively
expensive in terms of computational complexity and as a result not real-time capa-
ble. To cope with this problem, we need to define an upper bound on the dictionary
size and delete old dictionary points if this limit is reached.

For deleting old dictionary points, we consider the independence measures δi of
every dictionary point i as illustrated in Figure 4.3. The value δi indicates, how well
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Figure 4.3: Geometrical interpretation of individual independence measures δi, i= 1..3,
for the dictionary D={d1,d2,d3}. The dictionary point with a minimal δi is more likely
to be deleted. After every dictionary operation (e.g., insertion and deletion of dictionary
points), the individual independence measures δi have to be incrementally updated.

Algorithm 3 Independence test with online updates of the dictionary.
Input: new point dm+1, threshold η, Nmax.
Compute: a=K−1k with k=k(D,dm+1),
Compute: δ = k(dm+1,dm+1)− kTa,
if δ > η then

if number of dictionary points < Nmax then
Insert dm+1 into D and update the dictionary using Algorithm 4.

else
Insert dm+1 into D and update the dictionary using Algorithm 5, while re-
placing an old dictionary point from D.

end if
Incremental online model training using the new dictionary D=D ∪ dm+1.

end if

the dictionary point i can be approximated by the remainder of the dictionary. The
score δi has to be updated, when a new data point is inserted into the dictionary
or an old data point is removed from the dictionary. In Sections 4.2.3 and 4.2.4,
we will discuss an efficient, incremental way of updating the value δi applicable for
real-time online computation.

4.2.3 Dictionary Update for Inserting New Points

For inserting a new data point dm+1 into the dictionary, we have to incrementally
update the independence measure δi and corresponding coefficients for every dictio-
nary point i, as changing the dictionary implies a change for δi. This update for an
existing dictionary point di is achieved by adjusting the corresponding coefficient
vector ai. Updating ai implies an update of (Ki)−1 and ki. Here, inserting a new
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Algorithm 4 Update the dictionary after inserting a new data point.
Input: new dictionary point dm+1.
Update dictionary D = {di}m+1

i=1 .
for i=1 to m do

Compute
km+1 =k(Di,dm+1),
km+1 =k(dm+1,dm+1),
ki,m+1 =k(dm+1,di).

Compute
αi =

(
Kiold

)−1
km+1,

γi = km+1 −αTi km+1.
Update δi as given in Equation (4.8).
Update (Kinew)−1 as given in Equation (4.7).

end for

point will extend Ki by a row/column and ki by a value, respectively, such that

Kinew =
[
Kiold km+1

kTm+1 km+1

]
,

kinew =
[
kiold ki,m+1

]T
,

(4.6)

where km+1 = k(dm+1,dm+1), ki,m+1 = k(di,dm+1), km+1 = k(Di,dm+1) with Di=
D\{di}. Using the Equation (4.6), the incremental update of the inverse matrix
(Kinew)−1 is given by

(
Kinew

)−1
= 1
γi

[
γi(Kiold)−1 +αiαTi −αi

−αTi 1

]
. (4.7)

This result leads to the update rule for the linear independency value δi for the i-th
dictionary point given by

δi = k(di,di)− kiTnewa
i
new , with

ainew= 1
γi

[
γia
i
old +αiαTi kiold − ki,m+1αi

−αTi kiold + ki,m+1

]
.

(4.8)

The variables γi and αi are determined by αi = (Kiold)−1km+1 and γi = km+1 −
kTm+1αi. The procedure for the dictionary update after insertion of new data points
is summarized in Algorithm 4.

4.2.4 Dictionary Update for Replacing Points
As the data arrives continuously in an online setting, it is necessary to limit the
number of dictionary points so that the computational power of the system is not
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exceeded and the real-time constraints are not violated. The individual indepen-
dence value δi – as illustrated in Figure 4.3 – gives rise to a straightforward deletion
rule: the smaller the independence value δi is, the more likely the corresponding
dictionary point is to be deleted. The idea is to delete points that are more depen-
dent on other dictionary points, i.e., where the corresponding independence value
δi is small. For the deletion of dictionary points, we additionally consider a tempo-
ral allocation of each dictionary point by imposing a time-dependent forgetting rate
λi ∈ [0, 1]. Thus, we take the independency value δi weighted by the forgetting value
λi as a deleting score. The role of λi will be discussed in detail in Section 4.2.5.

Insertion and additional deletion of dictionary points also change the independence
values of other dictionary points which have to be updated subsequently. Insertion
of a new point with an additional deletion of the j-th dictionary point implies a
manipulation of the j-th row/column of Ki and the j-th value of ki given by

Kinew=


Kiold(1:j) km+1(1:j) Kiold(j:m)

kTm+1(1:j) km+1 kTm+1(j:m)

KiTold(j:m) km+1(j:m) Kiold(j:m)

,
kinew =

[
kiold(1:j) ki,m+1 k

i
old(j:m)

]T
.

(4.9)

The values km+1, km+1 and ki,m+1 are determined as shown in Section 4.2.3. The
incremental update of the independence measure δi for every i-th dictionary point
can be performed directly using an incremental matrix inverse update. Hence,

δi=k(di,di)−kiTnewa
i
new and ainew =Akinew, (4.10)

where A is computed by the update rule

A=A∗ − rowj [A∗]TrTA∗

1 + rT rowj [A∗]T
with

A∗=(Kiold)−1 − (Kiold)−1r rowj [(Kiold)−1]
1 + rT rowj [(Kiold)−1]T

.

Here, the vector r is determined by r=km+1−rowj [Kiold]T and rowj [M ] denotes the
j-th row of a given matrix M . The update of (Kinew)−1 can be given as (Kinew)−1 =
A. The complete procedure is summarized in Algorithm 5.

4.2.5 Characterization of the Dictionary Space and Temporal Allocation
In previous sections, we described the procedures for incremental insertion and dele-
tion of dictionary points appropriate for real-time computation. The basic idea is
that we attempt to approximate the dictionary space (characterized by the dictio-
nary vector d) at best using a limited sparse data set D. However, the choice of the
dictionary space is a crucial step which may depend on particular applications. As
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Algorithm 5 Replace the least important data point in the dictionary by a new one.
Input: new dictionary point dm+1.
Compute λi as given in Equation (4.12) and, subsequently, find the dictionary
point with minimal δi weighted by the forgetting rate λi:
j=mini(λiδi).

Update dictionary D by overwriting point j:
dj=dm+1.

for i=1 to m do
Compute
km+1 =k(Di,dm+1),
km+1 =k(dm+1,dm+1),
ki,m+1 =k(dm+1,di).

Compute
r = km+1−rowj [Kiold]T .

Update δi as given in Equation (4.10).
Update (Kinew)−1 =A in Equation (4.10).

end for

we are dealing with regression here, it is reasonable to choose the dictionary vector
as

d=
[
x y

]T
, (4.11)

where x is the input vector and y represents the target values. In so doing, our
dictionary space will include the input as well as target distributions. In practice,
it shows that input and target distributions both incorporate relevant information
for model approximation by regression. For other applications such as learning
classification models, considering the input space only might be sufficient.

In addition to the spatial allocation of the dictionary space as achieved by em-
ploying the independence measure δ, temporal allocation can be taken into account
by introducing a time-variant forgetting factor for every dictionary point i. Here,
we consider the forgetting rate

λi(t)=exp
(
−(t− ti)2

2h

)
, (4.12)

where ti is the time when the dictionary point i is included into the sparse set and
h represents the intensity of the forgetting rate. For deleting a point from the dic-
tionary, the deletion score is the independence value weighted by the corresponding
forgetting value λi ∈ [0, 1], as shown in Algorithm 5. By imposing a temporal weight
on the independence values, we make sure that temporal information encoded in the
data is sufficiently taken in account for the model learning. The forgetting score λ
(controlled by the parameter h) represents a trade-off between temporal and spatial
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Figure 4.4: An illustrative example of the prediction after a single sweep through a toy
data set. The dots show the positions of the corresponding dictionary points in the input
space. (a) The performance of SI-GPR is quite similar to KRLS while the selection of
the sparse data sets poses the main difference. SI-GPR selects 15 dictionary points and
KRLS 21 data points, respectively. (b) Using a fixed budget, e.g., 5, 10 or 15 dictionary
points, the most relevant regions in the input space are covered with data points.

covering. If the h value is very small, the temporal effects will gain more impor-
tance and the sparsification will behave similar to a time window in common online
algorithms.

4.2.6 Comparison to Previous Work

Our work was inspired by the work in (Engel et al., 2004) where the authors also
use a linear independence measure to select dictionary points. However, they do
not remove dictionary points again but instead show that the dictionary size is
bounded for a given threshold η if the data space is assumed to be compact. In
practice, for a given threshold value the actual dictionary size is data dependent and
unknown beforehand, thus, the dictionary can be very large. In order to cope with
the computational constraints in real-time applications, the dictionary size has to be
limited. In contrast to the algorithm in (Engel et al., 2004), our approach allows us to
formulate an efficient insertion and deletion procedure for a given budget. In (Engel
et al., 2004), the spatial allocation is performed in the input space only, resulting in
an uniform covering of the complete state space which might be suboptimal for model
approximation by regression. As we additionally employ a temporal allocation, the
resulting online learning algorithm is able to adapt the model to temporal effects
which is an important issue for online learning on real systems.

4.2.6.1 An Illustrative Toy-Example

In the following section, we compare the kernel recursive least square (KRLS) (Engel
et al., 2004) with our approach. For the model training, we combine the sparsifi-
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cation with an incremental GPR learning (Nguyen-Tuong and Peters, 2009), called
sparse incremental GPR (SI-GPR). It should be noted that other incremental model
learning methods can also be used in combination with our incremental sparsifica-
tion, such as sequential SVR or incremental SVM (Vĳayakumar and Wu, 1999;
Cauwenberghs and Poggio, 2000).

As a toy example, we generate a noisy data set where the relation between the
target y and the input x is given by yi = sin(x2

i )+εi. The data set consists of
315 points, where εi is white Gaussian noise with standard deviation 0.2 and xi
ranges from 0 to π. Here, the data is incrementally fed to the algorithms and the
prediction is computed after a single sweep through the data set. The results are
shown in Figure 4.4, where η = 0.3 and a Gaussian kernel with width 0.3 is being
used. In Figure 4.4 (a), it can be seen that the prediction performance of SI-GPR
using dictionary is quite similar to KRLS. Here, the selection of the sparse data
points presents the main difference. While KRLS uniformly fills up the complete
input space (resulting in 21 dictionary points), the sparsification used by SI-GPR
selects the most relevant data points as dictionary points, where the limit of the
dictionary is set to be 15. Figure 4.4 (b) shows the performance of SI-GPR for
different dictionary sizes, where the prediction improves as expected with increasing
dictionary size.

4.3 Evaluations
In this section, we evaluate our sparsification approach used in combination with the
incremental GPR (SI-SVR) in several different experimental settings with a focus
on inverse dynamics modeling for robot tracking control.

First, we give a short review of learning dynamics models for control. Subse-
quently, we evaluate the algorithm in the context of learning inverse dynamics. The
learning accuracy of SI-GPR will be compared with other regression methods, i.e.,
LWPR (Vĳayakumar et al., 2005), GPR (Rasmussen and Williams, 2006), ν-SVR
(Schölkopf et al., 2000) and LGP (Nguyen-Tuong et al., 2008b). For this evaluation
in inverse dynamics learning, we employ 2 data sets including synthetic data, as well
as real robot data generated from the 7 degrees-of-freedom (DoF) Barrett WAM,
shown in Figure 3.1. In Section 4.3.3, SI-GPR is applied for real-time online learn-
ing of inverse dynamics models for robot computed torque control (state-of-the-art
batch regression methods can not be applied for online model learning). Finally, in
Section 4.3.4, we demonstrate the capability of the approach in online learning of a
dynamics which changes in presence of different loads.

4.3.1 Learning Dynamics Models for Control
Model based tracking control laws (Spong et al., 2006) determine the joint torques
u that are required for the robot to follow a desired trajectory qd, q̇d, q̈d, where
qd, q̇d, q̈d denote the desired joint angles, velocity and acceleration. In feedforward
control, the motor command u consists of two parts: a feedforward term uFF to
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Figure 4.5: Feedforward control with online model learning.

achieve the movement and a feedback term uFB to ensure stability of the tracking,
as shown in Figure 4.5. The feedback term can be a linear control law such as
uFB = Kpe+Kvė, where e denotes the tracking error with position gain Kp and
velocity gain Kv. The feedforward term uFF is determined using an inverse dynamics
model and, traditionally, the analytical rigid-body model is employed (Spong et al.,
2006).

If a sufficiently precise inverse dynamics model can be approximated, the resulting
control law u=uFF (qd, q̇d, q̈d)+uFB will accurately drive the robot along the desired
trajectory. Due to the high complexity of modern robot systems such as humanoids
or service robots, traditional analytical rigid-body model often cannot provide a
sufficiently accurate inverse dynamics model. The lack of model precision has to
be compensated by increasing the tracking gains Kp and Kv making the robot stiff
and less safe for the environment (Nguyen-Tuong et al., 2008a). Thus, to fulfill both
requirements of compliant control, i.e., having low tracking gains and high tracking
accuracy, more precise models are necessary. One possibility to obtain an accurate
inverse dynamics model is to learn it directly from measured data.

If the dynamics model can be learned online (see Figure 4.5), the robot controller
can adapt itself to changes in the robot dynamics, e.g., due to unforeseen load or
time-variant disturbances. Online learning of dynamics models using sampled data
realized in a setup as in Figure 4.5 can be considered as a self-supervised learning
problem.

4.3.2 Offline Comparison in Learning Inverse Dynamics

For the generation of two data sets, i.e., one with simulation data and one with
real robot data, we sample joint space trajectories and corresponding torques from
an analytical model of the Barrett WAM, as well as from the real robot. This
results in two test scenarios, each having 12000 training points and 3000 test points.
Given samples x=[q, q̇, q̈] as input and using the corresponding joint torques y=u
as targets, we have a regression problem with 21 input dimensions and 7 output
dimensions (i.e., a single desired torque for each motor joint). The robot inverse
dynamics model is estimated separately for each DoF employing LWPR, ν-SVR,
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Figure 4.6: (a) Error (nMSE) on simulated data from a robot model for every DoF.
(b) Error (nMSE) on real robot data for every DoF. As shown by the results, SI-GPR is
competitive to standard batch regression methods such as ν-SVR and GPR, local learning
methods such as LWPR and LGP. For model learning with SI-GPR, the dictionary size
is limited to be 2000 data points.

GPR, LGP and SI-GPR.
Employing SI-GPR for learning the inverse dynamics model, we first sparsify the

full data sets (i.e., 12000 data points) as described in Section 4.2, and subsequently
apply incremental GPR for an offline approximation of the model. For all data
sets, the dictionary size is limited to be 2000 points, where the parameter η is set
to be 0.1. For the sparsification process and the incremental GPR, we employ the
Gaussian kernel, whose hyperparameters are obtained by optimizing the marginal
likelihood (Rasmussen and Williams, 2006).

Figures 4.6 (b) and (c) show the offline approximation errors on the test sets
evaluated using the normalized mean square error (nMSE) which is defined as the
fraction of mean squared error and the variance of target. It can be observed from the
results that SI-GPR using sparsification is competitive in learning accuracy despite
the smaller amount of training examples (i.e., dictionary points). In practice, it also
shows that the models are easier to train using SI-GPR compared to local learning
methods such as LWPR and LGP, as the latter require an appropriate clustering of
the state space which is not straightforward to perform for many data sets.

4.3.3 Model Online Learning in Computed Torque Control

In this section, we apply SI-GPR for the real-time online learning of the inverse
dynamics model for torque prediction in robot tracking control, as introduced in
Section 4.3.1. The control task with model online learning is performed with 500 Hz
sample rate (i.e., we get a new test point every 2 ms) on the real Barrett WAM. In so
doing, the trajectory q, q̇, q̈ and the corresponding joint torques u are sampled online
as shown in Figure 4.5. The inverse dynamics model, i.e., the mapping q, q̇, q̈→u,
is learned in a self-supervised manner during the tracking task using the trajectory
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(b) Tracking error on
Barrett WAM in joint
space for the 1st DoF

0 10 20 30 40 50 60

−10

−8

−6

−4

−2

0

2

4

6

Time [sec]

Jo
in

t T
or

qu
e 

[N
m

]

 

 

Joint torque:  u
Feedforward:  u

 FF

(c) Feedforward uFF and
joint torque u of the 1st
DoF during SI-GPR on-
line learning

Figure 4.7: (a) Compliant tracking performance in joint space after 60 sec computed
as RMSE. Computed torque control with online learned model (SI-GPR) outperforms
common analytical rigid-body model. (b) Tracking performance in joint space for the 1st
DoF, e.g., the shoulder flexion extension, (other DoFs are similar) during the first 60 sec.
(c) Predicted feedforward torque uFF and joint torque u of the 1st DoF. The predicted
torque uFF gradually converges to the joint torque u as the latter is sampled as target
for the model learning.

as input and the joint torque as target, starting with an empty dictionary. As the
learned inverse dynamics model is subsequently applied to compute the feedforward
torques uFF, it can be observed that uFF gradually converges against u. In this
experiment, we set the tracking gains (see Section 4.3.1) to very low values satisfying
the requirement of compliant control. In so doing, inaccurate inverse dynamics
models, however, will result in large tracking errors.

In this online learning experiment, the maximal dictionary size is set to be 300, η=
0.01 and a Gaussian kernel is used whose parameters are determined by optimizing
the marginal likelihood. For the forgetting score λ, a forgetting rate h = 0.4 is
chosen by cross-validation. The desired tracking trajectory is generated such that
the robot’s end-effector follows a 8-figure in the task space. For comparison, we also
apply an analytical rigid-body model for torque prediction (Spong et al., 2006). The
tracking results are shown in Figure 4.7, where tracking control task is performed
for 60 sec on Barrett WAM. During this time, the dictionary is first incrementally
filled up and subsequently updated about 700 times. The inverse dynamics model
is incrementally learned online using the dictionary.

Figure 4.7 (a) compares the tracking performance of the online learned model and
the analytical rigid-body model in joint space for all 7 DoFs, where the tracking
error is computed as root mean square error (RMSE). It can be observed that the
tracking accuracy can be significantly improved, if the inverse dynamics model is
approximated online. For several DoFs such as the 4th DoF (i.e, the elbow flexion),
the rigid-body model fails to described the true dynamics resulting in a large track-
ing error as shown in Figure 4.7 (a). This example demonstrates the difficulty in
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(a) Starting to Learn (b) After Learning (c) Dynamics Alterna-
tion

(d) Degraded Perfor-
mance

(e) After Learning (f) Dynamics Alterna-
tion

(g) Degraded Perfor-
mance

(h) After Learning

Figure 4.8: Tracking experiment with online model learning. The blue, thick lines illus-
trate the desired trajectory and the red, dotted lines show the robot trajectory in task
space. (a) As the model is started to be learned online (beginning with an empty dictio-
nary), the robot first shows a transient behavior. (b) With a successfully learned model,
the robot is able to follow the trajectory well. (c) The original dynamics is changed by
hanging a heavy water bottle to the arm. (d) Due to the modified dynamics, the robot
fails to track the desired initial trajectory. Therefore, the robot starts to learn the mod-
ified dynamics online. (e) As the online model learning converges, the robot gradually
moves back to the desired initial position. (f) The dynamics is modified again by removing
the water bottle. (f) The learned model is no more accurate, i.e., the predicted torques
are now too large. The modified dynamics is subsequently adapted online. (g) As the
dynamics model is successfully adapted, the robot returns to the initial desired position.
A video showing the experiment can be seen at “http://www.robot-learning.de/”.

analytically modeling complex systems which may be alleviated by directly learning
the model.

Figures 4.7 (b,c) show the tracking performance in joint space for the 1st DoF,
i.e., the shoulder flexion extension, during the first 60 sec, other DoFs are similar.
It can be seen that the predicted torque uFF (for 1st DoF) consistently converges
to the joint torque u as the latter is sampled as target for the model learning.

4.3.4 Online Learning for Changing Dynamics

In this section, we demonstrate the capability of the algorithm for online model learn-
ing and self-adaption to changes in the dynamics in a more complex task. Figures
4.8 (a)-(h) show the progress of the experiment. First, we learn the robot inverse
dynamics online starting with an empty dictionary. We apply SI-GPR with the
same parameter setting as given in Section 4.3.3. Here, we also first incrementally
fill up the dictionary and subsequently update for new data points. Subsequently,
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Figure 4.9: Elbow joint angle (4th DoF) and corresponding torques of the Barrett WAM
during the experiment. (a) The robot starts with an unmodified dynamics. (b) As the
water bottle is attached to the arm, it causes a jump in the feedback torque uFB and
joint torque u. Due to the compliant tracking mode, the change in the feedback torque
uFB is not sufficient to compensate the resulting tracking error. (c) As the dynamics
model is learned online, the new dynamics can be incorporated in the prediction of the
feedforward torque uFF. As the online model learning converges, the resulting tracking
error is also gradually reduced, i.e., the robot returns to the desired position. Note how
the feedback torque uFB is decreasing, as the model, i.e., the torque prediction, becomes
more accurate. (d) The online modification of the dynamics, i.e., removing the water
bottle, leads to changes in the feedback and joint torques. (e) As the adaptation is
successfully done and the feedforward torque uFF converges, the robot moves back to the
desired trajectory and the feedback torque decreases again.
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we modify the robot dynamics by attaching a heavy water bottle to the arm (be-
side the changing load, the swinging bottle additionally introduces a time-variant
nonlinearity). Due to the change in the dynamics, the robot cannot follow the given
trajectory in joint space. As in Section 4.3.3, the desired joint space trajectory is
defined such that the robot draw a figure-8 in the task space. The end-effector ve-
locity of the robot during the tracking in task space is about 0.6 m/sec, where the
displacement ranges from 0.2 to 0.5 m. The modified dynamics can now be learned
online, as shown in the Figures 4.8 (a)-(h).

As the online model learning converges, the modified dynamics is taken into ac-
count by the predicted feedforward torques uFF. As an example, Figure 4.9 shows
the joint angle and corresponding torques of the 4th DoF (i.e., the robot’s elbow
flexion) during the experiment. With the attached water bottle, the predicted feed-
forward torques uFF gradually becomes more precise as the model converges. The
decreasing model error results in accurate tracking performance. By continuously
updating the dictionary, i.e., by insertion and eventual deletion of dictionary points,
the model can adapt to dynamical changes in the environment. This effect can
further be demonstrated by removing the water bottle. As observed from Figure
4.9, the predicted torque uFF is subsequently reduced, since smaller torques are now
required for proper tracking of the desired trajectory.

In this experiment, we employ very low tracking gains. As a result, the model
errors will seriously degrade the tracking accuracy unless a more precise inverse dy-
namics model is learned. Figure 4.9 shows that the feedback torques uFB are not
able to compensate the model error due to the low tracking gains. As the inverse
dynamics model becomes more accurate during the online learning, the feedback
torques uFB decrease, and, thus, the joint torques u mainly depend on the feed-
forward term uFF. As the torque generation relies more on the inverse dynamics
model, we can achieve both compliant control (by using low tracking gains) and high
tracking accuracy at the same time.

4.4 Conclusion and Future Work
Motivated by the need of fast online model learning in robotics, we have developed
an incremental sparsification framework which can be used in combination with an
online learning algorithm enabling an application in real-time online model learn-
ing. The proposed approach provides a way to efficiently insert and delete dictionary
points taking in account the required fast computation during model online learn-
ing in real-time. The implementation and evaluation on a physical Barrett WAM
robot emphasizes the applicability in real-time online model learning for real world
systems. Our future research will be focused on further extensions such as including
a database enabling online learning for large data sets.
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5 Special Topics

In this chapter, we explore solutions to two model learning problems. In Section 5.1,
we investigate how available prior knowledge from advanced physics-based modeling
techniques can be used for model learning. In Section 5.2, we investigate the problem
of learning task-space tracking control.

5.1 Using Prior Model Knowledge for Learning Inverse
Dynamics

Inserting prior knowledge into the learning process is especially helpful when only
sparse and poor data sets are available. In that case, incorporating additional model
knowledge may result in faster learning speed, higher accuracy and better generaliza-
tion. In this section, we present two possible semiparametric regression approaches,
where the knowledge of the physical model can either become part of the mean func-
tion or of the kernel in a nonparametric Gaussian process regression. These methods
are tested on sampled data in the setting of learning inverse dynamics models and,
subsequently, used in tracking control on a Barrett WAM.

5.1.1 Introduction

Acquiring accurate models of dynamical systems is an essential step in many tech-
nical applications. In robotics, such models are for example required for state es-
timation (Ko and Fox, 2009) and tracking control (Burdet and Codourey, 1998;
Nguyen-Tuong et al., 2008a). It is well-known that the robot dynamics can be
modeled by (Spong et al., 2006)

τ (q, q̇, q̈) = M (q) q̈ + C (q, q̇) + G (q) + ε (q, q̇, q̈) , (5.1)

where q, q̇, q̈ are joint angles, velocities and accelerations of the robot, respectively,
τ denotes the joint torques, M(q) is the generalized inertia matrix of the robot,
C(q, q̇) are the Coriolis and centripetal forces and G(q) is gravity.

As shown in Equation (5.1), the robot dynamics equation consists of a rigid body
dynamics model (RBD), τRBD =M(q)q̈ + C(q, q̇) + G(q), and a structured error
term ε(q, q̇, q̈). The model errors are caused by unmodeled dynamics (e.g., hydraulic
tubes, actuator dynamics, flexibility and dynamics of the cable drives), ideal-joint
assumptions (e.g., no friction), inaccuracies in the RBD model parameters, etc. The
RBD model of a manipulator is well-known to be linear in the parameters β (Atkeson
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et al., 1986; Spong et al., 2006), i.e.,

τRBD = Φ(q, q̇, q̈)β , (5.2)

where Φ is a matrix containing nonlinear functions of joint angles, velocities and
accelerations which are often called basis functions. Modeling the robot dynamics
using the RBD model in Equation (5.2) requires the identification of the dynamics
parameters β. For our 7 degree-of-freedom (DoF) Barrett WAM, for example, we
have to identify 70 dynamics parameters (for each DoF, we have 10 parameters that,
in an ideal world, could directly be obtained from the CAD data).

The main advantage of the RBD model is that it provides a “global” and unique
relationship between the joint trajectory (q, q̇, q̈) and the torques τRBD. This in-
verse dynamics model can be computed efficiently and is applicable in real-time. In
the past, such parametric models have been employed within parametric learning
frameworks resulting both in system identification and adaptive control approaches
(Burdet and Codourey, 1998; Li, 1990). In adaptive control, for example, the dy-
namics parameters β are continuously adjusted while the model is used for predicting
the feedforward torques required for achieving the desired trajectory (Burdet and
Codourey, 1998). In practice, estimating the dynamics parameters is not always
straightforward. It is hard to create sufficiently rich data sets so that plausible
parameters can be identified, and when identified online, additional persistent exci-
tation issues occur. Furthermore, the parameters that optimally fit a data set, are
frequently not physically consistent (e.g., violating the parallel axis theorem or hav-
ing physically impossible values) and, hence, physical consistency constraints have
to be imposed on the regression problem (Ting et al., 2009; Nakanishi et al., 2008).
Due to the fixed basis functions, parametric models are not capable of capturing the
structured nonlinearities of ε(q, q̇, q̈). Instead, these unmodeled components will
bias the estimation of the parameters β.

Learning methods that are not limited by fixed basis functions will suffer less from
many of these problems. Especially, modern nonparametric learning techniques,
such as Gaussian process regression offer an appealing alternative for model learn-
ing as they infer the optimal model structure from data (Rasmussen and Williams,
2006). Therefore, nonparametric methods can be used more flexibly and are pow-
erful in capturing higher order nonlinearities resulting in faster model approxima-
tion and higher learning accuracy. When learning inverse dynamics, for example,
the nonparametric methods will approximate a function describing the relationship
q, q̇, q̈→ τ that includes all nonlinearities encoded by the sampled data (Nguyen-
Tuong et al., 2008a). Most nonparametric methods attempt to learn the model from
scratch and, thus, do not make use of any knowledge available to us from analytical
robotics. Nevertheless, many nonparametric learning methods also exhibit several
drawbacks. First, very large amounts of data are necessary for obtaining a suffi-
ciently accurate model (e.g., learning an inverse dynamics model requires handling
enormous amount of data (Nguyen-Tuong et al., 2008a)). Second, the sampled data
has to be sufficiently informative, i.e., the data should contain as much information
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about the system dynamics as possible (in the context of adaptive control, this prob-
lem is equivalent to the requirement of persistent excitation). Thus, if only small
and relatively “poor” data sets are available, nonparametric models will not be able
to generalize well for unknown data.

In this work, we want to combine the strengths of both learning approaches,
i.e., the parametric and nonparametric model learning, and obtain a semiparamet-
ric regression framework. We identify two possible approaches to incorporate the
parametric model from analytical robotics into the nonparametric Gaussian process
model for learning the inverse dynamics. The first approach combines both para-
metric and nonparametric models directly by approximating the unmodeled robot
dynamics using nonparametric models. For so doing, the robot dynamics in Equa-
tion (5.1) may be described by the semiparametric model

τ (q, q̇, q̈) = Φ(q, q̇, q̈)β + ε(q, q̇, q̈) .︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric nonparametric

Additionally, a prior can be placed on the dynamics parameters β of the RBD
model. This step further allows taking the uncertainty of the estimated parameters
into account. The alternative approach employs a “rigid body dynamics” kernel for
the nonparametric regression, where the kernel incorporates the information of the
parametric RBD model. As a result, τ (q, q̇, q̈) is a nonparametric function with a
RBD kernel. In order to absorb the unmodeled dynamics ε which is not described
by the RBD kernel, we can combine the RBD kernel with other appropriate kernels.

The remainder of the section will be organized as follows, first, we present in
detail how the RBD model can be incorporated into the nonparametric Gaussian
process regression. In Section 5.1.3, we give a brief review on inverse dynamics for
control and evaluate our semiparametric models in the setting of learning inverse
dynamics. Subsequently, we compare the methods in the setting of low-gain robot
tracking control, where the estimated feedforward models are applied for online
torque prediction (Spong et al., 2006; Nguyen-Tuong et al., 2008a). The compliant
tracking task is performed on a Barrett WAM. The section will be summarized in
Section 5.2.4.

5.1.2 Semiparametric Regression with Gaussian Process

Using the nonparametric Gaussian process regression (GPR) framework (Rasmussen
and Williams, 2006), the robot dynamics can be modelled by τ (x) ∼ GP(m(x), k(x,x′)),
where x = [q, q̇, q̈]T is the input, m(x) is the mean function and k(x,x′) the co-
variance function of the Gaussian process (GP) (see Section 3.2.2 for a quick review
or (Rasmussen and Williams, 2006) for many details). Commonly, the GP model is
assumed to have zero mean m(x) = 0, i.e., no prior knowledge, and the covariance
function k(x,x′) is usually a general kernel such as a Gaussian or Matern kernel,
which allows reproducing arbitrary functions (Rasmussen and Williams, 2006). A
straightforward way to include the RBD model shown in Equation (5.2) is to set
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m(x) = Φ(x)β. This approach is equivalent to a semiparametric model

τ (x) ∼ Φ (x)β + GP (0, k(x,x′)) . (5.3)

The resulting dynamics model in Equation (5.3) consists of a parametric part, i.e.,
the RBD model, and a nonparametric term given by a zero mean GP. When compar-
ing Equation (5.3) to the robot dynamics in Equation (5.1), it can be observed that
the main purpose of the nonparametric term is absorbing the unmodeled dynamics
ε. For approximating the unmodeled dynamics with a regular GP, any admissible
kernels can be used (e.g., a Gaussian kernel).

An alternative to including prior knowledge in the mean function is to define a
“rigid body dynamics” kernel krbd(x,x′) containing the function class that describes
the RBD. Thus, the resulting model is now a GP regression with a kernel embedding
the parametric RBD model

τ (x) ∼ GP (0, krbd(x,x′)) . (5.4)

The RBD kernel can be further extended by an additional kernel (e.g., a Gaussian
kernel) to absorb the unmodeled dynamics ε. In the following sections, we will
describe the two introduced semiparametric regression approaches in detail.

5.1.2.1 Gaussian Process Regression with RBD Mean

If the GP mean is not zero but given by a fixed mean function as in Equation (5.3),
the GP model is biased towards this prior information. In the following, we dis-
cuss two approaches to incorporate the RBD mean function into the GP regression.
The first approach directly incorporates the RBD as an independently estimated
parametric model. The second approach additionally infers the dynamics parame-
ters using a Gaussian prior taking the uncertainty of the estimated parameters into
account.

Using Estimated Dynamics Parameters

Inserting the RBD model into the GP as mean function, we have for each DoF k a
torque prediction τ̄k for a query point x∗

τ̄k(x∗) = φk(x∗)Tβ + kT∗
(
K + σ2

nI
)−1 (yk −Φk(X)β)

= φk(x∗)Tβ + kT∗αk ,
(5.5)

where φTk is the k-th row of Φ evaluated on the query point, and Φk is the cor-
responding matrix evaluated on the training input data X, and yk is the sampled
torques of joint k. When only pre-estimated parameters β are being used, they can
be obtained, for example, from data or CAD models of the robot (Ting et al., 2009).

From Equation (5.5), it can be seen that the GP is mainly used to absorb the errors
between the RBD model and the sampled data. If the RBD model perfectly describes
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the robot dynamics, the error (yk−Φk(X)β) will disappear and the prediction will
depend only on the RBD term. Equation (5.5) also shows that if the query point x∗
is far away from the training data X, the resulting kernel value kT∗ will tend to zero
(for example, this holds for the Gaussian kernel shown in Section 3.2.2). In that
case, the resulting torque prediction τ̄k(x∗) will mainly depend on the RBD term.
This property is important, as we can never cover the complete state space using
finite (and possibly small) training data sets. If the robot moves to the regions of the
state space that are not covered by the sampled data (i.e., the learned nonparametric
models may not generalize well to these state space regions), the torque prediction
will rely on the parametric RBD model.

Placing a Prior on Dynamics Parameters

As the dynamics parameters are estimated offline or even when they are adapted
online (Burdet and Codourey, 1998), they may be quite inaccurate due to the diffi-
culties discussed before. Taking the uncertainty of our parameters into account, we
can place a Gaussian prior b on the dynamics parameters given by

b ∼ GP (β,B) , (5.6)

where we take the pre-estimated dynamics parameters β as mean and define a
diagonal variance matrix B (Rasmussen and Williams, 2006). The variance expresses
our belief about the uncertainty of the estimated dynamics parameters. B can be
estimated using expert knowledge or from measured data. Using the prior given in
Equation (5.6), the resulting torque prediction for the DoF k is given by

τ̄k(x∗) = φk(x∗)T β̄k + kT∗
(
K + σ2

nI
)−1 (yk −Φk(X)β̄k

)
= φk(x∗)T β̄k + kT∗ ᾱk ,

(5.7)

where β̄k is defined as

β̄k =
(
B−1+ΦTk K̃−1Φk

)−1 (
ΦTk K̃−1yk+B−1β

)
,

with K̃=(K + σ2
nI) (see (Rasmussen and Williams, 2006) for more details). Note

that due to the probabilistic inference, we have for each DoF different values for the
dynamics parameters β̄k in this case. However, as it is physically more reasonable
to assume that all DoFs share the same dynamics parameters, we can also determine
for all DoFs a single β̄ by summarizing over the DoFs. Thus, we have

β̄ =
(
nB−1 +

∑n
k=1Φ

T
k K̃−1Φk

)−1 (∑n
k=1Φ

T
k K̃−1yk + nB−1β

)
,

where n denotes the number of DoFs.
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5.1.2.2 Gaussian Process Regression with RBD Kernel

An alternative to including prior knowledge in the mean function are appropriate
kernels which contain the information given by the basis functions. Incorporating
prior knowledge within the kernel framework has been discussed in the past for a
few problems (Schölkopf et al., 1997). We adopt these ideas and define a kernel krbd
that embeds the function space of our RBD model

kkrbd (xp,xq) = φk (xp)T Wkφk (xq) + σ2
kδpq . (5.8)

For DoF k, the corresponding kernel is a dot product between its basis function
φk scaled by the parameter Wk. A noise term σ2

k is additionally added to the
diagonal values. Using this RBD kernel, the hyperparameters will be given by
θkrbd = [σ2

k,Wk]. The most principled and general way to obtain the optimal values
for θkrbd is to minimize the corresponding marginal likelihood. Here, we optimize
the hyperparameters θkrbd from training data using the same marginal log likelihood
as employed to estimate the hyperparameters of a zero mean GP (Rasmussen and
Williams, 2006).

The RBD kernel, as given in Equation (5.8), covers only the function classes
described by the RBD basis functions. However, in order to properly model a real
robot, the function class describing the RBD is too limited and more functions might
be needed. The common RBD does not model, for example, friction or the hydraulics
tube dynamics, thus, the corresponding RBD basis functions do not described the
dynamics resulting from such elements. The unmodeled elements can be taken
in account by adding additional kernels to the RBD kernel to enrich the function
class. A Gaussian kernel for example allows grasping arbitrary nonlinearities. Such
an additional kernel will extend the spaces spanned by the RBD kernel to unknown
function classes (Schölkopf and Smola, 2002; Rasmussen and Williams, 2006). Thus,
the complete kernel that we used for learning is determined by

kk (xp,xq) = kkrbd (xp,xq) + λkk (xp,xq) , (5.9)

with the weighting parameter λk we can control the contribution of the additional
kernel k(·, ·) to the learning process. For learning the model, we combine a zero-
mean GP with the kernel defined in Equation (5.9), where the hyperparameters of
kkrbd and k are optimized independently. Thus, the torque prediction for the k-th
DoF can be given by

τ̄k(x∗) = kkT∗
(
Kk + σ2

kI
)−1 yk = kkT∗ αrb

k . (5.10)

Note that this way of incorporating prior knowledge via kernels is a general approach
to include additional information in model learning. It can not only be used in the
probabilistic framework introduced here, but in all kernel methods (e.g., support
vector machines (Schölkopf et al., 1997; Schölkopf and Smola, 2002)).

74



5.1 Using Prior Model Knowledge for Learning Inverse Dynamics

5.1.3 Evaluations

In this section, we evaluate the presented approaches in the context of learning in-
verse dynamics models for computed torque control. First, we give a short review of
computed torque control. Subsequently, we show a comparison of the computational
complexity and present the results in learning inverse dynamics. In Section 5.1.3.4,
we report the performance of the tracking controller on our Barrett WAM shown in
Figure 5.2 (a), where the learned models are employed for online torque prediction.

5.1.3.1 Feedforward Torque Control using Inverse Dynamics

The computed torque tracking control law determines the joint torques u that are
required for the robot to follow a desired trajectory qd, q̇d, q̈d (Spong et al., 2006).
In general, the motor command u consists of two parts, a feedforward term uFF to
achieve the movement and a feedback term uFB to ensure stability of the tracking.
The feedback term can be a linear control law such as uFB = Kpe+Kvė, where e
denotes the tracking error with position gain Kp and velocity gain Kv. The feedfor-
ward term uFF is determined using an inverse dynamics model and, traditionally,
using the analytical RBD model in Equation (5.2). If a sufficiently precise inverse
dynamics model can be estimated, the resulting control law u=uFF (qd, q̇d, q̈d)+uFB
will drive the robot along the desired trajectory accurately. However, if the model
is not sufficiently precise, the tracking accuracy degrades drastically and low-gain
control may become impossible (Nguyen-Tuong et al., 2008a).

5.1.3.2 Prediction Speed Comparison

First, we study the computational complexity of torque prediction for all 7 DoFs, i.e.,
we compare the time needed for predicting uFF for a query point (qd, q̇d, q̈d) after
having learned the mapping q, q̇, q̈→u. The results are shown in Figure 5.1. Here,
the prediction vectors α have been computed offline for each DoF (see Equations
(5.5), (5.7) and (5.10)). During online prediction, we only need to compute the
kernel vector k, and, for GPR with RBD mean, the basis functions φ have to be
additionally evaluated for the query point. We compare the prediction speed of our
semiparametric models with the “standard” GPR, i.e., a GP with zero mean and
Gaussian kernel, and the traditional RBD model on training data sets with different
sample size. As shown in Figure 5.1, the GPR models using RBD mean with fixed
and with Gaussian prior on the dynamics parameter are as fast as the standard GPR
during prediction. The reason is that the computations for the RBD mean term are
very fast (see the computation time for the RBD model in Figure 5.1). Therefore,
the prediction speed mostly depends on the evaluations of the dot product between
the kernel and the prediction vector, which scales linearly in the number of training
examples, i.e., O(n). Compared to the GPR with RBD mean, the computation for
the GPR with RBD kernel is more complex, since we have to evaluate the RBD
kernel in Equation (5.8) and, additionally, a common Gaussian kernel as shown in
Equation (5.9).
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Figure 5.1: Average time in millisecond needed for prediction of 1 query point. For a
better visualization, the computation time is plotted logarithmic in respect of the number
of training examples. The time as stated above is the required time for prediction of
all 7 DoF. For the learned models, the prediction time scales linearly with the training
sample size. Comparing the prediction time, standard GPR is as fast as the GPR models
with RBD mean. GPR with RBD kernel has the highest computational cost while the
traditional RBD model remains the fastest.

5.1.3.3 Comparison in Learning Inverse Dynamics

In the following, we compare the performances of the semipametric models on learn-
ing inverse dynamics with the standard GPR and the RBD model. For this compar-
ison, we use two small data sets, i.e, one with simulated and one with real Barrett
WAM data, where each data set has 3000 data points for training and 3000 different
ones for testing. The training and test trajectories are generated by superposition
of sinusoidal movements similar to the one in (Nguyen-Tuong et al., 2008a). Fur-
thermore, we ensure that the test data is sufficiently different from the training data
highlighting the generalization ability of the learned models. The results are shown
in Figure 5.2 (b) and (c) where the approximation errors for each robot DoF on the
test sets are given as normalized mean square error (nMSE), i.e., nMSE = MSE /
variance of the target.

For the RBD model, we estimate the dynamics parameters β using linear re-
gression from a large data set (130,000 data points) which covers the same part of
the state space as the real Barrett training data. During the generation of simu-
lated data, we apply this estimated RBD model for computation of the feedforward
torques uFF while sampling the resulting joint torques u and joint trajectory (q, q̇, q̈)
as training data. For so doing, we make sure that the RBD model describes the gen-
erated simulation data well. Subsequently, the same RBD model is also applied as
mean function for the semiparametric models with RBD mean. The hyperparam-
eters for the Gaussian kernel used by GPR with RBD mean are estimated from
training data by optimizing the marginal log likelihood (Rasmussen and Williams,
2006). The optimization is performed using common line search approaches such
as quasi-Newton methods (Zhu et al., 1997). We apply the same approach for es-
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(a) Error on simulation data
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(b) Error on real WAM data

Figure 5.2: (a) Error (nMSE) on simulated data from a robot model for every DoF.
Generating the simulation data, the RBD model is used to compute the feedforward
torques uFF, while the joint torques u and joint trajectory (q, q̇, q̈) are sampled for
model learning. (b) Error (nMSE) on real robot data for every DoF. For simulation data,
the error of the RBD model is very small, as the model describes the data well. Using this
RBD model, the semiparametric models (with RB mean and RBD kernel) show very good
learning results similar to the performance of the RBD model. If the RBD model does not
explain the data well, such as for the real Barrett WAM data in (b), the semiparametric
models can improve the performance by learning the error between sampled data and
RBD model. As shown by the results, the standard GPR model is sometimes not able to
generalize well for sufficiently different test data due to the small size of the training data
sets.

timating the hyperparameters of the RBD kernel as shown in Equations (5.8,5.9),
where the control parameter λ is determined by cross-validation to be 1. For the
cross-validation, the increment is chosen to be 0.5 in an interval ranging from 0.5 to
5.

As shown in the results in Figure 5.2 (a) and (b), the semiparametric models are
able to combine the strengths of both models, i.e., the parametric RBD model and
the nonparametric GP model. If the parametric RBD model explains the sampled
data well as in the case of simulated data, the semiparametric models rely mostly
on the parametric term resulting in learning performances close to the RBD model.
If the RBD model does not match the sampled data in case of real robot data, the
semiparametric models either attempt to learn the errors made by the parametric
model as done by GPR with RBD mean, or use the additional kernel to fit the
missing function classes. It can also be seen by the results that pure nonparametric
models such as standard GPR may have generalization difficulty, if the training
data is not sufficiently large and rich. In that case, the prediction performance
of pure nonparametric models degrades for the unknown parts of the state space.
Considering the experiments with real robot data in Figure 5.2 (c), semiparametric
models are competitive to pure nonparametric models even in the case when the
parametric models are not precise. The results in Figure 5.2 (c) can be improved for
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Figure 5.3: Tracking error on the real Barrett WAM computed as RMSE for all 7 DoF.
The semiparametric models outperform the RBD model and also the standard GPR model
in most cases. Especially, for the robot elbow and wrist (4., 5. and 6. DoF) there is a
significant improvement compared to the parametric RBD model, as these DoF suffer
from many nonlinearities which are not described by the analytical RBD model.

the semiparametric models, if the applied RBD model is estimated more accurately
using more sophisticated estimation approaches (Ting et al., 2009). However, Figure
5.2 (b) also shows that GPR with RBD mean function might tend to overfit the data,
if the deviations between the RBD model and training data are small (e.g., for 1st
DoF). Careful optimization of the hyperparameters for the semiparametric models
may alleviate this problem.

Comparing the GP models with fixed RBD mean and with additional prior on the
dynamics parameters, the differences in learning performance are relatively small.
One explanation for this result is that the uncertainty of the dynamics parameters,
as encoded by the variance B in Equation (5.6), is already taken in account by the
nonparametric term for learning the error between the RBD model and observed
data. Therefore, the variance B may not present sufficient new information for
improving the model. However, it provides additional robustness and may be very
valuable in that way.

5.1.3.4 Application in Robot Computed Torque Control

In this section, we apply the learned models from Section 5.1.3.3 for a robot track-
ing control task on the Barrett WAM, while the models are used to predict the
feedforward torques uFF as described in Section 5.1.3.1. The tracking results are
reported in Figure 5.3, where the tracking error is computed as root mean square er-
ror (RMSE). The error is evaluated after a tracking duration of 60 sec on the robot.
For the tracking task, we set the tracking gains Kp and Kv to very low values taking
in account the requirement of compliance. Furthermore, the generated desired test
trajectory is different than the training and test trajectories used in Section 5.1.3.3,
highlighting the generalization ability of the learned models.

As shown by the results in Figure 5.3, the semiparametric models largely outper-
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(a) Tracking on WAM for
the 4th DoF
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(b) Tracking on WAM for
the 5th DoF
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(c) Tracking on WAM for
the 6th DoF

Figure 5.4: Tracking performance in joint space on the Barrett WAM for the first 10
sec. (a) Performance for the 4th DoF (elbow). (b) Performance for the 5th DoF (wrist
rotation). (c) Performance for the 6th DoF (wrist flexion extension). The RBD model
does not provide a satisfying performance while the learned models exhibit good tracking
results. Standard nonparametric GPR have some problems in generalization for unknown
test trajectory as small training data sets are used, resulting in a deteriorated tracking
performance (green dashed line).

form the RBD model and the standard GPR in compliant tracking performance.
Especially, for the robot elbow (4th DoF) and the robot wrist (5th and 6th DoF) we
observe a significant improvement compared to the RBD model. The reason is that
these DoFs suffer from many unknown nonlinearities which can not be explained by
the analytical RBD model, such as complex friction, stiction and backlash due to
the gear drive etc. The tracking performance for these DoFs is additionally shown
in Figure 5.4. Here, one can see that the Barrett WAM using the RBD model fails
to follow the rhythmical movements of the desired trajectory in the compliant mode
(for example, due to suboptimal friction compensation). While the semiparametric
models enable the robot to follow the desired trajectory well, the standard non-
parametric GPR exhibits several problems in prediction of the feedforward torques
resulting in instantaneous jumps in joint trajectory as shown by Figure 5.4 (b) and
(c).

In this experiment, the sampling time of the Barrett WAM is 500 Hz (,2 ms). For
the real-time online torque prediction, we compute the prediction in parallel to the
robot controller in a separate process. Thus, we update the feedforward torques uFF
according to the computational speed of the prediction models, while maintaining
the feedback torques uFB for every sampling step ensuring the tracking stability of
the robot.

5.1.4 Conclusion of Section 5.1

In this work, we have introduced two semiparametric approaches to learning the
inverse dynamics models while combining the strengths of parametric RBD model
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and nonparametric GP models. The knowledge of the parametric RBD model is
incorporated into the nonparametric GP model either as a RBD mean function or
as a RBD kernel. We evaluate the semiparametric models in learning inverse dy-
namics for robot tracking control. The results on the Barrett WAM show that the
semiparametric models provide a higher model accuracy and better generalization
for unknown trajectories compared to RBD and standard GPR. The gist of semi-
parametric models is that they exhibit a competitive learning performance even on
small and poor data sets, overcoming the limitation of pure nonparametric learning
methods while exploiting the prior information encoded in parametric models.

5.2 Learning Task-Space Tracking Control with Kernels

Task-space tracking control is essential for robot manipulation. In practice, task-
space control of redundant robot systems is known to be susceptive to modeling
errors. Here, data driven learning methods may present an interesting alternative
approach. However, learning models for task-space tracking control from sampled
data is an ill-posed problem. In particular, the same input data point can yield
many different output values, which can form a non-convex solution space. Because
the problem is ill-posed, models cannot be learned from such data using common
regression methods. While learning of task-space control mappings is globally ill-
posed, it has been shown in recent work that it is locally a well-defined problem. In
this section, we use this insight to formulate a local, kernel-based learning approach
for online model learning for task-space tracking control. For evaluations, we show
the ability of the method for online model learning for task-space tracking control
of redundant robots.

5.2.1 Introduction

Control of redundant robots in operational space, especially task-space tracking
control, is an essential ability needed in robotics (Khatib, 1987; Sentis and Khatib,
2005). Here, the robot’s end-effector follows a desired trajectory in task-space,
while distributing the resulting forces onto the robot’s joints. Analytical formulation
of task-space control laws requires given kinematics and dynamics models of the
robot. However, modeling the kinematics and dynamics is susceptive to errors. One
promising possibility to overcome such inaccurate hand-crafted models is to learn
them from data. From a machine learning point of view, learning of such models
can be understood as a regression problem. Given input and output data, the task
is to learn a model describing the input to output mapping.

Using standard regression techniques, such as Gaussian process regression (Ras-
mussen and Williams, 2006), support vector regression (Smola and Schölkopf, 2004)
or locally weighted regression (Atkeson et al., 1997a), a model can be approximated
to describe a single-valued mapping (i.e., one-to-one) between the input and out-
put data. The single-valued property requires that the same input point should
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always yield the same single output value, resulting in a well-defined learning prob-
lem. However, this situation changes when learning a torque prediction model for
task-space tracking control of redundant robots. Here, we are confronted with the
problem of learning multi-valued or one-to-many mappings. In this case, standard
regression techniques can not be applied. Naively learning such multi-valued map-
pings from sampled data using standard regression will average over multiple output
values in a potentially non-convex solution space (Peters and Schaal, 2008). Thus,
the resulting model will output degenerate predictions, which lead to poor control
performance and may cause damage to the redundant robot system.

However, despite being a globally ill-posed problem, learning such task-space con-
trol mappings is locally well-defined (D’Souza et al., 2001; Peters and Schaal, 2008).
In this work, we employ this insight to formulate an online local learning approach,
appropriate for learning models that allow prediction with such multi-valued map-
pings. The key idea is to localize a model in configuration space, while continuously
updating this model online by including new data points and, eventually, removing
old points. Here, local data points are inserted or removed based on a kernel dis-
tance measure. Due to the local consistency, a prediction model can be learned. The
proposed model parametrization allows us to apply the kernel-trick and, therefore,
enables a formulation within the kernel learning framework (Schölkopf and Smola,
2002). Kernel methods have been shown to be a flexible and powerful tool for learn-
ing general nonlinear models. In task-space tracking control of redundant robots, the
model parametrization enables a projection of the joint-space stabilization torques
into the task’s null-space.

The remainder of the section will be organized as follows: first, we give a brief
overview of task-space control and provide a review of related work. In Section
5.2.2, we describe our approach to learn task-space tracking control. The proposed
method will be evaluated on redundant robot systems, e.g., a simulated 3-DoF robot
and 7-DoF Barrett WAM, for task-space tracking control in Section 5.2.3. The most
important lessons from this research project will be summarized in Section 5.2.4.

5.2.1.1 Problem Statement

To obtain an analytical task-space control law, we first need to model the robot’s
kinematics (Khatib, 1987). The relationship between the task-space and the joint-
space of the robot is usually given by the forward kinematics model x=f(q). Here,
q∈Rm denotes the robot’s configuration in the joint-space and x∈Rd represents the
task-space position and orientation. For redundant robot systems, it is necessary
that m > d. The task-space velocity and acceleration are ẋ = J(q)q̇ and ẍ =
J̇(q)q̇+J(q)q̈, where J(q)=∂f/∂q is the Jacobian. For computing the joint torques
necessary for the robot to follow the task-space trajectory, a model of the robot
dynamics is required. A typical dynamics model can be given in the form of u=
M(q)q̈ + F(q, q̇), see (Spong et al., 2006) for more details. Here, u denotes the
joint torque, M(q) is the generalized inertia matrix of the robot, and F(q, q̇) is a
vector containing forces, such as gravity, centripetal and Coriolis forces. Combining
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the dynamics model with the kinematics model yields one possible operational space
control law

u = MJ†w(ẍref − J̇q̇) + F , (5.11)

where J†w denotes the weighted pseudo-inverse of J, as described in (Peters et al.,
2008; Nakanishi et al., 2008). In Equation (5.11), a task-space attractor ẍref is
employed for tracking the actual task-space acceleration ẍ (Nakanishi et al., 2008).
Here, the task-space attractor is formulated as ẍref = ẍdes+Gvv(ẋdes−ẋ)+Gpp(xdes−x),
where xdes, ẋdes and ẍdes denote the desired task-space trajectory. Gvv and Gpp
are positive task-space gain matrices.

To ensure stable tracking in the robot’s joint-space, the controller command u in
Equation (5.11) is usually extended by a null-space controller term u0. Thus, the
total joint torque command ujoint is given as

ujoint = u+
(
I− J†wJ

)
u0 . (5.12)

The term u0 can be interpreted as joint-space stabilizing torques which are only
effective in the task’s null-space and, thus, do not interfere with the task achievement
(Nakanishi et al., 2008). The null-space controller command u0 can be chosen
such that the redundant robot is pulled towards a desired rest posture qrest, i.e.,
u0 =−Gvq̇−Gp(q−qrest), where Gp and Gv are positive joint-space gain matrices.

As indicated by Equations (5.11, 5.12), an analytical formulation for task-space
control requires given analytical kinematics and dynamics models. As modeling
these relationships can be inaccurate in practice, model learning presents a promising
alternative. In the task-space tracking problem shown in Equation (5.11), we want to
learn mappings from inputs (q, q̇, ẍ) to targets u. However, this mapping is one-to-
many (D’Souza et al., 2001; Peters and Schaal, 2008), as there can be many torques
u which correspond to the same task-space acceleration ẍ given q, q̇. Thus, naively
learning a task-space control model for redundant robots from sampled data may
result in a degenerate mapping. In practice, such degenerate models will provide
inconsistent torque predictions.

5.2.1.2 Related Work

Learning multi-valued mappings has previously been investigated in the field of
neural motor control (Jordan and Rumelhart, 1992; Wolpert and Kawato, 1998). In
(Jordan and Rumelhart, 1992), the multi-valued relationship is resolved for a par-
ticular output solution by jointly approximating the forward and inverse mapping.
Originally, the introduced forward-inverse learning principle has been formulated
in the framework of neural networks (Jordan and Rumelhart, 1992). In a neural
networks based implementation, the forward model is chained with the multi-valued
inverse model, where the prediction errors made by the forward model are used to
adapt the weight values of the inverse model for a given output solution. However,
training such neural networks is well-known to be problematic due to local min-
ima, instability and difficulties in selecting the network structures. Nevertheless,
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this framework of learning forward and inverse models initiated a number of follow-
up research projects, such as (Wolpert and Kawato, 1998; Bhushan and Shadmehr,
1999). For example, Bhushan and Shadmehr (1999) have presented considerable
evidence that the forward-inverse models approach may be useful for explaining
human motor control. Wolpert and Kawato (1998) approximate pairwise forward-
inverse models for different motor control tasks and, subsequently, combine them
for prediction.

In the broader sense, the pairwise forward-inverse model approach (Wolpert and
Kawato, 1998) can be understood as a local learning method, where the data is
first partitioned into local regions for which local forward-inverse model pairs are
subsequently approximated. A local learning approach is also employed by Tevatia
and Schaal (2008) and D’Souza et al. (2001) to learn models for robot inverse kine-
matics, where locally weighted regression techniques are used. Peters and Schaal
(2008) further extend the locally weighted regression approach for learning opera-
tional space robot control. While Peters and Schaal (2008) attempt to learn a direct
mapping for predicting the joint torques for control, Salaun et al. (2009) first learn
a forward kinematics model and invert the learned model afterwards. Subsequently,
they combine it with an inverse dynamics model to generate the required torque
command.

Compared to previous local learning approaches, we attempt to learn a single local-
ized model while continuously updating this local model depending on the robot’s
current configuration. Due to the local consistency, the model learning problem
is well-defined. We propose a model parameterization which enables kernel-based
learning of torque prediction models for task-space tracking control. The model
parametrization also allows a null-space projection, which is necessary to stabilize
the robot in the joint-space without interfering with the task-space performance.

5.2.2 Learning Task-Space Tracking with Kernels

In this problem, we want to learn the mapping from inputs (q, q̇, ẍ) to outputs u,
similar to the one described by Equation (5.11). This mapping is subsequently used
for predicting the outputs for given query points. As such one-to-many mappings
are locally well-defined (D’Souza et al., 2001; Peters and Schaal, 2008), they can
be approximated with a local kernel learning approach. Here, our model will be
localized in the robot’s joint position space. The local data is incrementally updated,
as the robot moves to new state space regions. Every local data point is weighted
by its distance to the most recent joint position. Thereby, we ensure that the local
data points form a well-defined set that is appropriate for model learning. Using the
weighted local data points, the model’s parameters can be obtained by minimizing
a cost function. To place the model into the kernel learning framework, we propose
a model parametrization appropriate for the application of the kernel-trick. The
parametrization is also suitable for robot tracking control in the task-space.

In the following sections, we will describe how the model is localized and updated
in an online setting. We present the parametrization of the local model and show
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how the corresponding parameters can be obtained from data. Subsequently, we
show how the learned local model can be used in online learning for task-space
robot control.

5.2.2.1 Model Localization

For learning task-space tracking, we use a single local model for torque prediction,
where the model is localized in the robot’s joint position space. This local data
set needs to be continuously updated in the online setting, as the robot frequently
moves to new state space regions. In this section, we describe the measures needed
to localize and update the model during online learning. The procedure includes
insertion of new data points into the local data set and removal of old ones.

Insertion of New Data Points. For deciding whether to insert a new data point
into the local data set, we consider the distance measure δ, as proposed by Schölkopf
et al. (1999) and Nguyen-Tuong and Peters (2010a). This measure is defined by

δ(q∗) =
wwwww
N∑
i=1

aiψ(qi)−ψ(q∗)
wwwww

2

, (5.13)

where ψ is a feature vector and ai denote the coefficients of linear expansion. The
value δ(q∗) is a measure that indicates the distance of a point q∗ to the surface
spanned by the current set L = {qi}Ni=1. The coefficients ai in Equation (5.13) is
given by a=K−1

a k (Nguyen-Tuong and Peters, 2010a). Here, Ka= k(L,L) is the
kernel matrix evaluated for the local joint positions L, and k=k(L, q∗) is the kernel
vector. Using this result, δ can be written as

δ(q∗) = k(q∗, q∗)− kTa . (5.14)

The value δ increases with the distance of q∗ from the surface defined by L. Using
Equation (5.14), we can make decisions for inserting new data points. If the δ values
of new data points exceed a given threshold η, we will insert these points into the
local model. The employed measure δ ensures that new data points will be included
into the local set, when the robot moves to new joint-space regions.

Removal of Old Data Points. For removing data points from the local set, we
select the point which is the farthest from the most recent joint position q. Here,
we employ a Gaussian kernel as a distance measure between q and other local data
points qi

k (q, qi)=exp
(
−1

2
(q−qi)TW(q−qi)

)
, (5.15)

where W denotes the kernel width. Removing the farthest local data point implies
that its kernel measure k(·, ·) is the smallest. By continuously inserting and removing
local data points, we make sure that the local data set is suitable for the current
region of the state space.
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5.2.2.2 Model Parametrization

The described insertion and removal operations result in a data set localized in the
joint position space. Given this local data set D = {qi, q̇i, ẍi,ui}Ni=1, we can now
learn a model for torque prediction for task-space control. From Equation (5.11),
we can see that the joint torque u is linear in the task-space acceleration ẍ, while
it is nonlinear in the joint position q and velocity q̇. Using this insight, we propose
the following parametrization for the local model

u = θTφ(q, q̇) + θT0 ẍ , (5.16)

where φ is a vector containing nonlinear functions projecting [q, q̇] into some high-
dimensional spaces. Generally, ẍ can have d dimensions and u is a m dimensional
vector. Following the representer theorem (Schölkopf and Smola, 2002), the coef-
ficients θ,θ0 in Equation (5.16) can be expanded in term of N local data points.
Hence, we have

θ =
∑N
i=1 αiφ(qi, q̇i) , θ0 =

∑N
i=1 α

i
0ẍi ,

where αi, αi0 are the corresponding linear expansion coefficients. Inserting the linear
expansions into Equation (5.16) and re-writing it in term of N sample data points
yields

U = Kα+ Pα0 , (5.17)

where U = {ui}Ni=1. The elements [K]ij = 〈φ(qi, q̇i),φ(qj , q̇j)〉 are the pairwise
inner-products of the feature vectors. Thus, [K]ij can be represented with kernels
(Schölkopf and Smola, 2002), i.e., [K]ij= k̃([qi, q̇i], [qj , q̇j ]). The matrix K is thus a
kernel matrix evaluated at the joint position and velocity employing the kernel k̃(·, ·).
Using this so-called kernel-trick, only the kernel function k̃ needs to be determined
instead of an explicit feature mapping φ (Schölkopf and Smola, 2002). Similarly,
the elements [P ]ij=〈ẍi, ẍj〉 represent the pairwise inner-products of the task-space
acceleration ẍ. Thus, P can be understood as a kernel matrix where linear kernels
are applied.

5.2.2.3 Online Learning of the Local Model

Learning requires the estimation of the expansion parameters α and α0 in Equation
(5.17) from the local data set. Employing the learned model, we can predict the
output for a query point. In particular, for online learning the expansion parameters
have to be estimated incrementally, as the data arrives as a stream over time.

Estimation of Model Parameters. Using the model parametrization in Section
5.2.2.2, the expansion parameters can be estimated from data by minimizing an
appropriate cost function L given by

L = γ

2

(
αTKα+αT0 Pα0

)
+ 1

2
(Kα+ Pα0 −U)T N (Kα+ Pα0 −U) . (5.18)
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Algorithm 6 Online learning of the local model.
Given: local data set D={qi, q̇i, ẍi,ui}Ni=1, Nmax, threshold value η.
Input: new input {q, q̇, ẍ} and output u.

Evaluate the distance of q to the surface defined by L={qi}Ni=1
based on the measure δ(q) from Equation (5.14).
if δ(q) > η then

for i=1 to N do
Compute: N(i, i) = k(q, qi) using Equation (5.15).

end for
if N < Nmax then

Include the new point: DN+1 ={q, q̇, ẍ,u}.
else

Find the farthest point: j=miniN(i, i).
Replace the j-th data point by the query point: Dj={q, q̇, ẍ,u}.

end if
Update the expansion parameters α and α0 incrementally using Equation (5.19),
while re-weighting every local data point with the new distance metric N.

end if

The first term in Equation (5.18) acts as regularization, while the second term
represents a squared loss based data-fit. In Equation (5.18), the parameter γ controls
the regularization and the diagonal matrix N denotes the weight for each data point
in the local set. The minimization of L w.r.t. α and α0 yields the analytical solution[

α
α0

]
=
[
K + γN−1 P

K P + γN−1

]−1 [
U
U

]
. (5.19)

The weighting metric N incorporates a distance measure of each local data point to
the most recent point in the local set. Here, we employ a kernel distance measure
in the joint position space, as given in Equation (5.15). The weighting metric N
ensures that the local data will form a well-defined set appropriate for the model
learning step.

Online Model Learning. As the data arrives continuously in the online setting,
Equation (5.19) has to be updated incrementally. Such incremental updates require
adjusting the corresponding row and column of the inverse matrix, i.e., a rank-
one update of the inverse matrix (Seeger, 2007b; Nguyen-Tuong and Peters, 2009).
Additionally, every data point in the local set has to be re-weighted by its distance
to the most current point after every insertion and removal step. In practice, we
initialize the inverse matrix in Equation (5.19) as a diagonal matrix, where the
number Nmax of local data points is fixed. During online learning, the inverse
matrix is first updated Nmax times while filling up the local data set. Subsequently,
old data points have to be removed when new points are inserted. The complete
procedure for learning the local model is summarized in the Algorithm 6.
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Algorithm 7 Online prediction for task-space control.
Given: a rest posture qrest, local data Ẍ = {ẍi}Ni=1 and Q = {qi, q̇i}Ni=1, expansion
parameters α and α0.
Input: query point {q, q̇,xdes, ẋdes, ẍdes}.

Compute null-space control torque u0.
Compute null-space projection matrix H=αT0 Ẍ.
Compute task-space attractor ẍref .
Compute joint torque control ujoint as given in Equation (5.21).

Prediction. With the optimization results from Equation (5.19), the prediction û
for a query point [q, q̇, ẍref ] can be computed as

û(q, q̇, ẍref) = αT k̃(Q, [q, q̇]) +αT0 〈Ẍ, ẍref〉 , (5.20)

where Ẍ={ẍi}Ni=1 and Q={qi, q̇i}Ni=1.

5.2.2.4 Using Local Model for Task-Space Control

Up to now, we have learned a well-defined local model to predict the joint torques
required to drive the robot along a desired task-space trajectory. However, even after
obtaining a perfect prediction of the necessary torques, it is not clear whether the
robot will be stable in the joint-space. Thus, we need to explore ways to stabilize the
robot in the joint-space without interfering the task-space performance, as done in
analytical task-space control (see Equation (5.12)). Here, the key idea is to project
the stabilizing torques u0 into the null-space of the “task relevant” part.

From Equation (5.20), it can be seen that the second term is the task relevant
part, as this term explicitly depends on ẍref . Therefore, for the robot joint-space
stabilization, we can project the stabilization torques u0 into the null-space of this
term. Hence, the total joint torque controller command ujoint can be computed as

ujoint = αT k̃(Q, [q, q̇]) +αT0 〈Ẍ, ẍref〉+ (I−H(HTH)−1HT )u0 . (5.21)

The null-space projection is then given by the matrix H=αT0 Ẍ. The resulting null-
space projection allows joint-space stabilization based on u0 without interfering the
task performance. The procedure for online torque prediction in task-space tracking
control is summarized in the Algorithm 7.

5.2.3 Robot Evaluations

In this section, we evaluate the proposed approach for learning task-space control,
as described in Section 5.2.2. First, we show for a toy example how a non-unique
function can be learned in the online setting using this local learning approach.
This example further illustrates the basic idea behind the local learning principle
when used for approximating a multi-valued mapping. Subsequently, we show the
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Figure 5.5: An example of learning a non-unique function. For the pendulum shown in
(a), we have for each input position x two possible output values. Naively learning a
global mapping x→y using GPR (Rasmussen and Williams, 2006) results in an average
over multiple output solutions, as shown in (b). However, when the mapping is learned
locally within the vicinity of the query point in an online setting, the model learning
problem is well-defined resulting in a proper prediction.

ability of our method in learning torque prediction models for task-space tracking
control of redundant robot systems. The control experiments are performed with
both simulated 3-DoF robot and 7-DoF anthropomorphic Barrett arm as shown in
Figure 3.1.

5.2.3.1 Online Learning of a Non-unique Function

As benchmark example, we create a one-dimensional non-unique function shown
in Figure 5.5. In this example, there is a pendulum that can rotate in the x−y
plane. For a circular rotation, the trajectory of x and y is given by xi=sin(ti) and
yi = cos(ti) for ti ranging from 0 to 2π. For the experiment, we sample 500 data
points from the generated trajectory. If we employ x as input and y as the target
output, we will have a non-unique prediction problem.

In this example, the parametrization of the local model is given by y=θTφ(x).
While the model is localized in the x space, we update the local data set and learn
the model in the online setting, as described in Section 5.2.2. For online model
learning, we incrementally feed the data to the algorithm. Figure 5.5 shows the
results after one sweep through the data set. To highlight the difficulty in learning
such multi-valued mappings from data, the well-known Gaussian process regression
(Rasmussen and Williams, 2006) is employed to globally approximate the mapping
x→y. The comparison between the two methods is given in Figure 5.5.

In the experiment, the size of the local data set is chosen to be 10. Here, we first
fill the local set up incrementally and, subsequently, update the local model online
by insertion and removal. We employ the Gaussian kernel for the localization step,
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Figure 5.6: Task-space tracking by a 3-DoF robot. Here, we compared task-space tracking
using perfect analytical model with one that was learned online. As a perfect model is
used, the analytical task-space tracking control yields a perfect tracking, as shown in
(a). During online learning, the learned task-space controller continuously improves the
task-space tracking performance. As shown in (b), the learned task-space control torques
ujoint converge to the perfect analytical torques after a short transient phase.

as well as for model learning. The kernel width W is optimized by cross-validation,
and the threshold η is set to be 0.001. As the farthest point in the input space
is removed when a new point is inserted, one can observe that the local data set
always covers a region in the vicinity of the recent query point. Since the local data
set forms a convex solution space, the local model can be learned and results in a
proper prediction of the targets y, shown in Figure 5.5 (b).

5.2.3.2 Online Model Learning for Task-Space Tracking Control

In this section, we apply the proposed method to learning torque prediction models
for task-space control of a simulated 3-DoF robot and the simulated 7-DoF Barrett
WAM. In the experiments, the models are learned online, while the robots are con-
trolled to track a task-space trajectory. Here, the task-space trajectory is given by
the positions of the end-effector in Cartesian space. The tracking results in task-
space for the 3-DoF robot and the Barrett WAM are shown in Figures 5.6 and 5.7,
respectively. The figures show the tracking performance during the first 10 seconds.

In the experiment using the 3-DoF robot model shown in Figure 5.6, we compare
the task-space tracking control performance, when employing the online learned
model and the perfect analytical model. Using the perfect analytical model knowl-
edge, the joint torques are computed as given in Equation (5.12). Thus, the robot
performs perfect task-space tracking, as shown in Figure 5.6 (a). In this example,
the rest posture is set to be qrest =[−π/3, π/3, π/3]T . For the online learning of the
task-space control model, the torque prediction is computed as given in Equation
(5.21). The size of the local set is determined to be 30 and η = 0.01. Here, we
employ a Gaussian kernel, where the kernel width W is optimized beforehand. As
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Figure 5.7: Task-space tracking control of a simulated 7-DoF Barrett WAM with on-
line learned model. (a) During online model learning, the task-space controller is
able to compute the required torques to follow the task-space trajectory. (b) joint-
space trajectory during the online learning. Here, the rest posture is given by qrest =
[0.0, 0.5, 0.0, 1.9, 0.0, 0.0, 0.0]T .

shown in Figure 5.6 (b), the predicted joint torques converge to the perfect ana-
lytical torques after a short transient phase. As a result, the robot achieves good
task-space tracking performance after a few seconds of online model learning.

In the next experiment, we employ the proposed approach to control the more
complex 7-DoF Barrett WAM in simulation. Similar to the previous experiment,
the robot is controlled to follow a figure-8 in task-space while learning the torque
prediction model online. Here, the local set consists of 150 data points, η = 0.05
and a Gaussian kernel is used. During online learning, the model is incrementally
updated 300 times. The results for the first 10 seconds are shown in Figure 5.7. It
can be observed that the robot is able to follow the task-space trajectory well, while
keeping the joint-space trajectory in the vicinity of the rest posture qrest.

5.2.4 Conclusion of Section 5.2

In this work, we employed local, kernel-based learning for the online approximation
of a multi-valued mapping. This approach is based on the key insight that an
approximation of such mappings from data is globally an ill-posed problem, while it
is locally well-defined. Our proposed method uses an online procedure for updating
the local model by inserting and removing data points. We further proposed a
parametrization for the local model that allows learning task-space tracking control.
As evaluation, we showed that the approach was able to learn torque prediction
models for task-space tracking of redundant robots in several setups. The results
show that the presented kernel-based approach can be used to approximate multi-
valued mappings for task-space tracking control. Implementation on real robots is
in progress. Here, practical issues need to be considered in more details, such as
gain tuning and efficient implementation.
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6 Conclusion
For model based robot control, model learning has proven to be helpful for controlling
the systems compliantly and accurately. However, employing kernel-based regression
techniques for real-time online model learning in control presents a challenge, due
to the high computational complexity of such approaches. This thesis has made
several contributions to the fields of robot control and kernel-based model learning
by introducing novel approaches that enable fast, real-time online model learning
for control. In this chapter, we summarize the results of the thesis. Subsequently,
we discuss several open problems in model learning and provide an outlook on how
these problems can be approached in the future.

6.1 Summary of the Thesis
To introduce the thesis, we motivate the need of model learning for control in Chap-
ter 2. Here, we presented an extensive survey of model learning in robotics, with a
focus on robot control. We first discussed different types of models and how these
models can be incorporated in various learning architectures. Subsequently, we ex-
plained the problems that these architectures and the domain of robotics pose to
learning methods. An overview of how models can be learned using machine learn-
ing techniques was given, with a focus on statistical regression methods. In several
case studies, we further showed where the model learning scenarios have been used
successfully.

While model learning is an appealing alternative to analytical modeling tech-
niques, employing model learning using statistical learning methods for real-time
applications is not straightforward. In Chapter 3, we presented a local approxima-
tion to the nonparametric Gaussian process regression, called local Gaussian process
regression (LGP). The basic idea behind this approach is to partition the data space
into local regions, for which independent local Gaussian models are learned. Learn-
ing and prediction can be sped up by using these local models, as the number of local
data points is kept small. Thus, LGP combines the strength of fast computation, as
in local regression, with potentially more accurate Bayesian regression methods. As
a result, we obtained a real-time regression method that is applicable to model based
robot control. The reduced complexity allowed the application of the LGP to online
model learning. For model based tracking control, we used LGP to learn the inverse
dynamics model online, while adapting the controller to unknown nonlinearities.
Model based tracking control using online learned LGP models achieved a superior
control performance for low gain control in comparison to rigid body models, as well
as to offline learned models.
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For the LGP algorithm, we employ the idea of localization and data partitioning
to reduce the computational complexity. Another approach to reduce the computa-
tional complexity is to employ data sparsification. Here, the basic concept is to select
only those points from the data stream that are informative for the model learn-
ing. In Chapter 4, we presented a framework for online, incremental sparsification
designed for fast real-time model learning. The proposed sparsification employed a
kernel independence measure to incrementally insert new data points into a sparse
set and, eventually, remove old points from this set. This sparsification framework
can be employed to speed up incremental learning methods for real-time model
learning. For evaluation, we combined the incremental GPR with the proposed
sparsification framework. In this way, we obtained a model approximation method
which is applicable in real-time online learning. It exhibited competitive learning
accuracy when compared with standard regression techniques. The approach was
shown to be capable of online learning of inverse dynamics models. We further
demonstrate the capability of the approach in online learning of robot’s dynamics,
which changes when different loads are applied.

In Chapter 5, we explored solutions to two model learning problems, i.e., learning
models from small and potentially sparse data sets, and learning task-space tracking
control. When only sparse and poor data is available, the learning performance can
be improved by incorporating additional prior knowledge into the model learning
process and, thus, semiparametric model learning can be used. In Section 5.1, we
presented two possible semiparametric regression approaches, where the knowledge
of the physical model can either become part of the mean function or of the kernel in
a nonparametric Gaussian process regression. These methods are tested on sampled
data in the setting of learning inverse dynamics models and, subsequently, used
in tracking control on a Barrett WAM. In Section 5.2, we investigate the problem
of learning task-space tracking control. Learning models for task-space tracking
control from sampled data is an ill-posed problem. We formulate a local, kernel-
based learning approach for online model learning for task-space tracking control.
This approach was motivated by the insight that the model learning problem for
task-space control is locally well-defined, while it is globally ill-posed as multiple
solutions may form a non-convex data space.

6.2 Open Problems and Outlook

While this thesis presents encouraging results in bringing statistical learning methods
to model based robot control, we envision several future improvements.

Analysis of Model Learning Control. While stability analysis of approxi-
mated model based control has been examined in the context of neural controllers
(Patino et al., 2002) and traditional adaptive controllers (Aström and Wittenmark,
1995; Narendra and Annaswamy, 1989), such investigations have been shown to be
difficult when employing general nonparametric model approximation. Despite the
pioneering work of Nakanishi et al. and Farrell et al. (Nakanishi et al., 2005; Far-
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rell and Polycarpou, 2006), approximated model based control using nonparametric
models still suffers from a lack of proper analysis of stability and convergence prop-
erties. One major obstacle in analyzing such controllers is that the error bounds are
often difficult to obtain. In (Nakanishi et al., 2005), Nakanishi et al. employ lo-
cally weighted learning to approximate a class of nonlinear systems. Employing the
linear local models, approximation error bounds can be estimated under the assump-
tion that terms higher than quadratic order in a local approximation are negligible.
Based on the estimated error bounds, conditions for stability of the controller can
be given (Nakanishi et al., 2005). As the structures of nonparametric kernel-based
models are not fixed and may change with the data, deriving a consistent error
bound is often difficult. Modern statistical learning theory might offer appropriate
tools to estimate such error bounds. For example, generalization bounds (Schölkopf
and Smola, 2002) can be used to estimate the learning and prediction performance
of the controller and, thus, further statements about stability can be made. Re-
cently, statistical bounds, such as PAC-Bayesian bounds, have been proposed to
estimate the learning performance of general nonparametric models (McAllester,
1999; Seeger, 2005). PAC-Bayesian bounds give a worst case prediction bound for
the learned models given the observation. This bound has proven to be very tight
and has been used to analyze several nonparametric learning approaches, including
support vector machines and Gaussian processes. Employing such statistical bounds
can help to estimate an error bound for approximated model based controllers when
using nonparametric kernel-based model learning.

Online Learning of Model’s Hyperparameters. Hyperparameters are open
parameters of a model that need to be optimized during the training process. For
kernel-based learning approaches, these hyperparameters include the kernel widths
which properly scale the input dimensions of a data point. Typically, these hyper-
parameters have to be optimized beforehand, such as by optimizing the marginal
likelihood of a Gaussian process model (Rasmussen and Williams, 2006) or by cross-
validation when using support vector machines (Schölkopf and Smola, 2002). The
hyperparameters are usually estimated offline using pre-sampled data, as shown in
preceding chapters. As the optimal hyperparameters may vary depending on the
state-space regions, it is necessary to estimate the locations where the data might
be sampled during operation. Based on this prior knowledge, optimal hyperparam-
eters can be inferred for that state-space region. However, the robot may move
out of these pre-estimated state-space regions during online learning. In that case,
the offline inferred hyperparameters might be suboptimal. Thus, online adaptation
of these parameters might be useful. Estimating hyperparameters is computation-
ally expensive in many cases. Hence, approaches for efficient online hyperparameter
estimation and adaptation will be needed to cope with the real-time requirements.
One promising approach would be to employ online optimization techniques, such as
gradient descent methods, to incrementally adapt the hyperparameters depending
on the observed data. Another direction would be to learn a model for predict-
ing the optimal hyperparameters given the current state space locations. Here, one
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could generate samples of locally optimal hyperparameters for different state-space
regions and, subsequently, use them for learning the model with supervised learning
methods. As a result, optimal hyperparameters values could be obtained for larger
state-space regions.

Learning Models for Control under Task Constraints. Controlling a robot
under multiple task constraints is a general problem. For example, this control
paradigm can be used for designing humanoid robot controllers (Sentis and Khatib,
2005). These systems are difficult to control, as they need to coordinate many low-
level behaviors to accomplish complex tasks while being responsive to the changes in
the environment. Control under multiple task constraints is an extension of the oper-
ational space control problem (discussed in Chapter 5.2) to a hierarchical structure
(Peters et al., 2008). In order to obtain an approximated model based controller
under multiple task constraints, the multiple task-relevant controllers have to be
prioritized in a hierarchical control structure. Here, less prioritized task controllers
will act in the null-space of the controllers for higher prioritized tasks (Peters et al.,
2008). Similar to the case of learning operational space control, learning models
for control under multiple task constraints is an ill-posed problem. A method for
learning ill-posed models using kernels was introduced in Chapter 5.2. Another idea
that can be used to solve this problem is to employ conditional random fields (Laf-
ferty et al., 2001). In general, the problem of learning multi-valued mappings can be
considered as a non-unique labeling problem, i.e., many input points may have the
same target output. The conditional random fields framework builds probabilistic
models to segment and label sequences of data. A conditional model specifies the
probabilities of possible target outputs given an observation sequence of past input
and targets. As the target outputs are conditioned on the current observations,
non-uniqueness in the mappings can be resolved. Therefore, conditional random
fields could be employed to learn such ill-posed mappings necessary for learning
operational space control models and its hierarchical extension.

Model Transfer Learning. In Chapter 4, we learn inverse dynamics models for
robot tracking control, while the end-effector load is changing over time. When the
load changes, the inverse dynamics model has to be adapted and, thus, the robot po-
tentially discards previously obtained knowledge. Learning inverse dynamics models
for different loads can thus be understood as learning different dynamics models. It
would be beneficial to investigate how previously obtained model knowledge can be
used to accelerate the current model learning process. Recent research on learn-
ing robot control has predominantly focussed on learning single models that were
studied in isolation. However, there is an opportunity to transfer knowledge be-
tween models, which is known as transfer learning (Ben-David and Schuller, 2003).
To achieve this goal, robots need to learn the invariants of the individual model
and, subsequently, exploit them when learning new tasks. One way to achieve such
transfer of knowledge is to combine model learning with dimensionality reduction
(Pan et al., 2008). Here, the idea would be to learn a latent space which is com-
mon for different models. The insight is that, if the models are related to each
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other, there exist several common latent variables that dominate the observed data.
Subsequently, the data can be projected onto this latent space, where models can
be learned. Such model-independent knowledge, e.g., the latent variables, can be
employed to make the system more efficient when learning a new model. In this
context, similarities between models also need to be investigated and how they can
be employed to generalize to new models. It may be useful to continue studying the
underlying structures between models which can help to accelerate model learning
(Tsochantaridis et al., 2005).

Semi-supervised Model Learning. In this thesis, we focused on supervised
learning methods, as sufficiently many labeled data can be generated in our learning
setting. However, target outputs, i.e., labeled data points, are not always available
for many robot applications. One example is learning models for terrain classifica-
tion using vision features. In that case, exact labeling of the vision features is not
always possible and, furthermore, manually labeling such features is expensive and
susceptive to errors. Here, semi-supervised learning techniques can be useful to learn
such models (Chapelle et al., 2006). Semi-supervised learning employs labeled as
well as unlabeled data for model learning and can help to overcome the sparse label-
ing problem. While semi-supervised learning is well-studied in the field of machine
learning, applications of semi-supervised model learning in robotics is still limited.
It would also be beneficial to develop online versions of semi-supervised approaches
for real-time adaptation and learning.

6.3 Publications

Excerpts of the research presented in this thesis have led to the following articles.
The results have received attention both in the field of machine learning and in
robotics.

Journal Publications

D. Nguyen-Tuong, M. Seeger and J. Peters. Model Learning with Local Gaussian Process
Regression. Advanced Robotics 23(15), pages 2015–2034, 2009.

D. Nguyen-Tuong and J. Peters. Incremental Sparsification for Real-time Online Model
Learning. Neurocomputing, 2010. In press.

D. Nguyen-Tuong and J. Peters. Model Learning for Robotics: A Survey. Cognitive Systems,
2011. Submitted.

Conference Publications

D. Nguyen-Tuong, J. Peters, M. Seeger and B. Schölkopf. Learning Inverse Dynamics:
A Comparison. Proceedings of the European Symposium on Artificial Neural Networks
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