
Concepts and Solutions for Efficient
Handling of the Digital Ink

Khaireel A. Mohamed

Dissertation zur Erlangung des Doktorgrades (Dr.-Ing.)
Technische Fakultät, Albert-Ludwigs-Universität Freiburg

Dekan: Prof. Dr. Hans Zappe

Referenten: Prof. Dr. Thomas Ottmann (1. Gutachter)
Prof. Dr. Heinrich Müller (2. Gutachter)

Datum der Disputation: 25. März 2009

ii

To the loving memory of my late father.

Ahmad Bambong
(1945 – 2007)

iv

To my most special friend and confidant,
who stuck steadfastly by me through thick and thin,

whose strong words of encouragement ring honest and true.

An inspiration to all things positive.

A most respectable and reliable man.
A brother who I love and fully trust.

Tobias Langner

“The proper office of a friend is to side with you when you are in the wrong.
Nearly anybody will side with you when you are in the right.”

Mark Twain, 1898.

vi

Zusammenfassung

Wir präsentieren in dieser Arbeit einen neuartigen Ansatz zum Glätten digi-
taler Handschrift und zum Rendern der daraus resultierenden mathematischen
Kurven. Dieser Prozess kann bereits durchgeführt werden, bevor der komplette
Digitalisierungsvorgang auf dem Transducer (signalgebendes Eingabegerät) ab-
geschlossen ist. Die Vorteile dieses Verfahrens ergeben sich in zweierlei Hinsicht:
Einerseits wird die visuelle Rückmeldung während des Schreibens aufrechter-
halten, ohne dass charakteristische Merkmale der Schrift wie der Stil und das
Flair aufgrund der Natur der Digitalisierung in Mitleidenschaft gezogen werden.
Andererseits – und dies ist viel entscheidender – ermöglicht die Verwendung
der von uns konzipierten sehr effizienten Lösungen, die verfügbaren Rechnerres-
sourcen für andere rechenaufwändige Aspekte einer multimodalen Anwendung
zu verwenden.

Im ersten Teil dieser Arbeit illustrieren wir verschiedene Konzepte, welche
verwendet werden können, um eine gegebene Menge von Punkten in der Ebene
mittels sorgfältig platzierter Kurven zu verbinden. Bei der Nutzung klassischer
Interpolationsmethoden nimmt man an, dass die Punkte einer wohldefinierten,
zweifach differenzierbaren Funktion mit bestimmtem Grad entstammen. Im
Verlaufe dieser Arbeit werden wir schließlich diese Annahme fallen lassen und
unsere eigenen Ansätze miteinbeziehen, die es ermöglichen, durch eine Kombi-
nation von Interpolation und Regression eine Menge von unregelmäßig verteil-
ten Punkten mit einer wünschenswerten Näherung der ursprünglichen Kurve zu
verbinden (die hier genannte wünschenswerte Näherung genügt dabei dem Ap-
proximierungssatz von Weierstrass). Eine solche unregelmäßige Verteilung der
Punkte ist schließlich eine der inhärenten Eigenschaften einer handgeschriebenen
Spur, wie sie von einem Transducer geliefert wird. Um die Gültigkeit unseres
Ansatzes und die Korrektheit der Behauptungen nachzuweisen, zeigen wir, dass
die geglätteten Versionen der Spuren ausschließlich durch Abschnitte konischer
Funktionen, genauer gesagt Ellipsen, nachgebildet werden können, die an den
Endpunkten jeweils harmonisch ineinander übergehen. Diese charakteristischen
Eigenschaften, die eine sehr aufwändige Berechnung mit sich bringen, veran-
lassten uns dazu, verschiedene signifikante Aspekte quadratischer Splines zu un-
tersuchen. Dabei entdeckten wir, dass anstatt einer linearen Anzahl von Berech-
nungen pro Punkt (mit mindestens vier Quadratwurzeloperationen pro Berech-
nung) eine konstante Anzahl genügt. Diese Ergebnisse begründen schließlich das
Herzstück unseres Active-Smoothing-Algorithmus’.

Im zweiten Teil erläutern wir die Struktur von handgeschriebenen Spuren
im Hinblick auf deren wesentliche Eigenschaften, die wiederum die Grundla-

vii

viii

gen der Erkennung von Gesten-Befehlen darstellen. Ein Gesten-Befehl ist das
Ergebnis einer gestenartigen Eingabe mit dem Stift, die dem Zeichnen einer
speziellen Form ähnelt, und dem Ausführen der mit dieser Geste verbundenen
vordefinierten Befehle.

Bezieht man die zeitlichen Komponente einer Spur mit ein, sind wir mit un-
seren Techniken in der Lage, aus den räumlichen und zeitlichen Eigenschaften der
Eingabe auf einer einzigen Schreibfläche zwischen Handschrift (und Zeichnungen)
und Gesten zu unterscheiden. Die räumlichen Eigenschaften von Gesten weisen
im Bezug auf den Schwerpunkt auffällige Eigenschaften auf, die eine – von uns
als Disorientierung bezeichnete – räumliche Zuordnung der Gesten ermöglichen.
Das bedeutet nun, dass man bei der Verwendung eines Tabletops mittels eines
linearen Diskriminators feststellen kann, von welcher Seite des Gerätes eine bes-
timmte Geste ausgeführt wurde – ohne die Verwendung zusätzlicher externer
Tracking-Mechanismen.

Die Anwendung der Ergebnisse beider Teile ermöglicht es uns somit nicht nur
mit digitaler Tinte effizient umzugehen, sondern auch darüberhinaus in intuitiver
Weise mit der Arbeitsumgebung zu interagieren.

Abstract

We present a novel approach that smooths digital handwritings and renders
the resultant high quality, symbolically represented curves, while the primitive-
resolution sampling process from the transducer device is still ongoing. The
repercussion from this is two-fold; firstly, the visual impact while writing, is sus-
tained, without compromising on the integrity of the ‘style’ and ‘flair’, and any
of the other features within, that may be lost to the rigid and perfunctory sam-
pling routine between the hardware and the software. And, more importantly,
the second repercussion, through the conceived efficiencies of our combined and
simplified underlying methods together, alleviates on what limited resources that
are available and enables other routines handling other computationally demand-
ing aspects of a multi-modal application access to more processor time.

The first part of the thesis canvases the various concepts of passing a set of
well-placed curves through a set of given points on the 2D plane. The classical
interpolation methods assume that the curves are twice differentiable at every
single point, and that the points are part of an unknown but well-defined math-
ematical function of a certain degree. As we progress through the thesis, we
eventually lift this assumption and incorporate our techniques, which includes a
combination of interpolation and regression methodologies, to desirably estimate
a set of indeterministically scattered points – which is an apparent and inherent
characteristic of a typical handwritten trace that comes out of the transducer
device. A desirable estimate is one that adheres to the Weierstrass approxima-
tion theorem. To prove the validity of our approach and the correctness of our
propositions, we show that the smoothed versions of these traces can entirely
be made up of conic sections, particularly the ellipses, joined together at their
endpoints in confluent harmony. These formative and computationally expensive
grounds, when viewed collectively, led us to discover certain imperative aspects of
the quadratic spline curves that reduce linear time calculations per input point,
involving at least four square-root operations per calculation, down to a con-
stant. Essentially, these propositions are what constitute our active-smoothing
algorithm. The symbolically represented curves and the delayed rendering pro-
cedure ensure that we maintain linear space storage complexity with respect to
the number of original points in the trace. Our results show that this form of
representation has no adverse effects on random access navigation, which is a
process of “active visible scrolling”.

In the second part, we expound the composition of handwritten traces in
observance of their intrinsic features that are the fundamentals of gesture com-
mand recognition. A gesture command is the result of invoking gesture-like

ix

x

movements with the pen, that resemble special shapes drawn in a certain dis-
tinctive way, recognised as certain predefined instructions that are to be carried
out. We show that our temporal techniques applied on the traces and involving
their spatial features can distinguish writings (and drawings) apart from gestur-
ings, on a common, non-segregated ink environment. The spatial features, we
found, when concentrated about their centre of gravities, exhibited conspicuous
properties that allow, what we term as, the ‘dis-orientation’ of the gestures; that
is, when exploiting the tabletop environment, the linear discriminator is able to
determine whether a gesture came from a person who is seated at the northern,
southern, eastern, or western edge of the table, without the help of external
tracking devices.

With all the ramifications of the results from both these parts combined, we
not only get the solutions necessary to efficiently handle the digital ink, but also
to consistently interact with it in its appropriate environment.

Keywords: Digital ink, active-smoothing, spline curves, pen gestures
CR Categories: A.2, I.7.2

Acknowledgements

When I began putting my thoughts to words, and my words into programs,
graphs, figures, and tables for this thesis, I was pleasantly surprised to find so
many people who were willing to help me out in whatever way they can – to
ensure that I finish this piece of work properly and completely. To all those
people, I thank you for your effort, your concern, and your kind help. However,
there are several among you who I must exclusively mention by name.

First off, my two best mates, Tobias Langner and Marius (Militarius Victo-
rius Tobascus) Heinzmann, without whom, my German experience will never be
complete. Tobes, for your dedicated support and tonnes of suggestions on how
to make this document – its ideas, phrases, and figures – better, from start to
finish. Marius, for plowing through every single word in this thesis and for offer-
ing numerous hints for improvements – know that your witty sense of humour
and wise words kept me going strong (and laughing)!

To my colleagues at the Chair of Algorithms and Data Structures – Christoph
Hermann, Christine Maindorfer, Martina Welte, Tobias Lauer, and Frank Dal-Ri
– thanks for all your inputs. Also not forgetting Marco Schulze for taking time to
patiently read through this strenuously long piece of dissertation – thank you for
all your “encrypted” comments. To the fair lady Karen Tso-Sutter, never once
had I had an uninteresting conversation with you about everything and anything.

Most important of all, I want to express my most sincere and deepest gratitude
to my Doktorvater Prof. Dr. Thomas Ottmann for giving me this opportunity
to improve my mental capabilities, to exploit my talents in research, and to have
the privilege of working alongside with you. So much I have learnt, from so wise
a person.

And last but not least, to Prof. Amitava Datta, for having faith in my
abilities since my Honours year at The University of Western Australia.

xi

xii

Contents

Zusammenfassung viii

Abstract x

Acknowledgements xi

Part I Preface 1

1 Introduction 1

1.1 The Digital Ink Metaphor . 2

1.2 Object-Oriented Derivations . 3

1.3 Spatial Indexing . 3

1.4 Temporal Indexing and InkML 4

1.5 Digital Ink Domains . 6

1.5.1 Touch Screens and Tablets 6

1.5.2 Wall-Mounted Digital Boards 8

2 Order and Overview of Chapters 9

2.1 Objectives and Problem Specification 9

2.2 Structure . 10

3 Geometric Entities of the Digital Ink 13

3.1 Discrete Ink Entities . 13

3.2 Continuous Ink Entities . 16

3.2.1 The Notion of ‘Curves’ vs. Curves 16

3.2.2 Crucial Points . 17

3.2.3 Algebraic and Geometric Viewpoints 18

3.3 Handling Digital Ink Entities . 19

3.3.1 Road Map: From Discrete Traces to Smoothed Curves . . 20

xiii

xiv CONTENTS

3.3.2 Continuity and Joints . 22

3.3.3 Deriving First and Second Derivatives 23

3.3.4 Deriving Curvature, Inflection Points, and Sharp-Edge Ver-
tices . 25

3.4 Support Data Structures . 27

3.4.1 Active Point . 27

3.4.2 Temporal Traces . 28

3.4.3 Spatial Traces . 28

3.5 Active Sampling . 29

Part II Active-Smoothing & Symbolic Representation 33

4 Confluent Lines Over Ordered Point Sets 35

4.1 Undulating Spline Curves . 36

4.2 Lagrange Interpolation . 37

4.3 Cubic Splines . 40

4.3.1 Natural Cubic Spline . 43

4.3.2 Parabolic Runout Spline 44

4.3.3 Cubic Runout Spline . 44

4.3.4 Other Types of Cubic Splines 45

4.3.5 Related Works Involving Cubic Splines 45

4.4 Bézier Curves . 46

4.4.1 Parametric Continuity . 47

4.4.2 Controlling Cubic Bézier Curves 48

4.4.3 Related Works Involving Cubic Bézier Curves 49

4.5 Are Quadratic Curves Sufficient? 52

4.6 Symbolic Representation . 53

5 Polyline Simplification 55

5.1 Categorization of Algorithms . 56

5.2 Measuring the Quality of Simplified Polylines 57

5.3 The Douglas-Peucker (DP) Algorithm 60

5.4 The Reumann-Witkam (RW) Algorithm 62

CONTENTS xv

5.5 Improving the Solutions of Reumann-Witkam’s 63

5.5.1 The Opheim Algorithm 63

5.5.2 The RW-DP Algorithm 63

5.6 The Optimal Polyline Simplification 64

5.7 Simplified Polylines for Smoothing Routines 66

6 Rendering Curves with Elliptic Arcs 69

6.1 The Ellipse – an Abstract Conic 69

6.2 Problems with Rendering Composite Functions 72

6.3 Extracting Essential Ellipse Information 74

6.4 Reconstructing a Perfect Elliptic Arc 83

7 Estimating with Elliptic Arcs 87

7.1 Deriving Six Conditions from TS 88

7.2 Inconics and Inellipses . 91

7.2.1 Steiner Inellipse . 92

7.2.2 Orthic Inconic . 94

7.2.3 Brocard Inellipse . 97

7.2.4 Mandart Inellipse . 102

7.3 Adaptive Midpoint Inellipse . 107

7.4 Measuring the Quality of Approximated Curves 111

7.5 Elliptic Segmentation . 113

7.5.1 The Näıve Approach . 115

7.5.2 An Improved Approach 117

7.5.3 Speeding Up with a Guided Trajectory Approach 119

7.6 Results and Discussions . 126

8 The Bézier Curve Approach 131

8.1 De Casteljau’s Recursive Midpoint Rule 132

8.2 Quadratic Bézier Curves . 134

8.3 Rational Quadratic Bézier Curves 137

8.4 Constraint-Triangle ∆ABC and Area Relations 138

8.5 The Significance of the Weight w1 142

xvi CONTENTS

8.6 Selective Error Measurement . 144

8.7 Bézier Segmentation . 146

8.8 Climate Mapping with Smooth Contours 151

9 The Active-Smoothing Solution 153

9.1 Maintaining Appropriate Segments 154

9.2 Maintaining Farthest Point Reference 156

9.3 Maintaining Areas and Lengths 157

9.4 The Active-Smoothing Algorithm 158

9.5 Performance Analyses . 159

10 Random Access Navigation 165

10.1 Replaying Ink in Real Time . 165

10.2 Random Access Navigation . 166

10.2.1 Streaming Freehands . 166

10.2.2 Accessing Objects . 166

10.2.3 Timing Significance . 167

10.3 Ink Markup Language (InkML) 168

10.3.1 Structuring InkML . 168

10.3.2 Object Modules . 170

10.4 Replay Scenarios . 170

10.4.1 Scenario I – Raw InkML 171

10.4.2 Scenario II – Applied Object Modules 171

10.4.3 Scenario III – Cumulative Modules 171

10.5 Measurables and Data Contents 173

10.6 Results and Observations . 173

10.6.1 Analysis . 176

10.6.2 Performance . 177

10.6.3 Correlations . 177

10.6.4 Recommendations . 178

CONTENTS xvii

Part III Gesturing & Feature Interactions 181

11 Gesticulations and the Gesture Continuum 183

11.1 The Gesture Entity . 185

11.2 Features . 185

11.3 Classifying a Gesture . 188

11.4 Training the Weights . 189

12 Gesturing versus Normal Writing 191

12.1 Temporal Relationships in Digital Freehands 191

12.1.1 Freehand Writing . 192

12.1.2 Freehand Drawing . 193

12.1.3 Standalone Components and Gestures 193

12.2 Ink States . 194

12.3 Sampling Freehand Styles . 195

12.4 Ink Component Categories . 196

12.5 Correlating the Lead- and Lag-Times 197

12.5.1 Regional Areas . 197

12.5.2 Categorical Distributions 199

12.5.3 The Bivariate Data . 199

12.6 Statistical Acceptance . 202

12.6.1 Test Statistic . 202

12.6.2 Inferring the Bivariate Data 202

12.6.3 Chances of Getting a Gesture 203

13 UI-on-Demand and Within-Reach 207

13.1 Perceptual User Interface (PUI) 207

13.1.1 Writing Space versus Interactions 208

13.1.2 Adaptability versus Adaptivity 209

13.1.3 Lack of Interfacing Mechanisms 210

13.2 Active Background Tracking . 211

13.2.1 The Background Model 211

13.2.2 Strategy . 213

xviii CONTENTS

13.2.3 Deriving Interfaces from Inputs 214

13.3 Findings and Evaluations . 215

13.3.1 Inks, Commands, and the UIs 215

13.3.2 Users’ Choices . 216

14 Disoriented Gestures for TableTop Environments 219

14.1 The TableTop Environment . 219

14.2 The Disoriented Pen-Gestures Approach 220

14.3 Pen-Gestures as Interaction Protocols 221

14.4 Significance of Trace-Features 222

14.4.1 The Linear Discriminator 222

14.4.2 Centre of Gravity and Angular Velocity 223

14.4.3 The Disoriented Features 223

14.5 TableTop Gesture Groups . 225

14.5.1 Family Group . 225

14.5.2 Corner Group . 226

14.6 Variance Comparison in Trained-Weights wci 226

14.7 Training by Table Corners for Family 227

14.8 Observation of the Trained-Weights wci 227

14.9 TableTop Monopoly . 229

14.9.1 Handling ‘Out-of-Turn’ Actions 229

14.9.2 Correctness of Identification 231

14.9.3 Generality of Methods . 231

Part IV Conclusion 233

15 Conclusion 235

16 Non-Related Works 239

Bibliography 241

Part I

Preface

1

CHAPTER 1

Introduction

The term digital ink refers to the technology that digitally represents handwrit-
ing in its natural form. Simply put, the traces of handwritten marks left on the
screen are emulated by the system with a series of connected geometric dots and
line-segments to represent the imprints; none of which are parsed as characters or
other recognisable symbols. In a typical digital ink system, a transducer device
such as digital tablets and whiteboard screens are equipped with electromag-
netic fields that can capture the movement of a special-purpose pen, or stylus,
and record the movement on the LCD screen. The recorded handwriting can
then be saved as a handwritten document or converted to text (or to whatever
appropriate shape the ink may represent) using several popular state-of-the-art
recognition technologies [53, 42, 21].

What follows immediately are the techniques to manipulate the digital ink
data, and seamlessly integrate or relate them to other digital documents and
applications. This is collectively referred to as an annotation process, a com-
bination of routines that include the automatic and manual grouping of digital
ink strokes within a document, classifying the annotations according to their
types, and anchoring the annotations to appropriate regions or positions in a
document [47, 28]. The process may further include ‘reflowing’ the annotations
in a new document layout so that the annotations conform and adapt to the
new layout while preserving the original intentions and meanings of the annota-
tions [49].

Specifically, this thesis examines the manipulation of ink data – the rudi-
mentary raw sampled points from the transducer device – and proposes several
methods to improve and maintain the quality of the rendered traces on annotated
documents. The methods constitute our smoothing technique, one that is simi-
lar to many curve fitting and approximating procedures, but differ in the main
approach and in the resultant efficiency. The latter matters most when we turn
the offline algorithm into an online active-smoothing solution, that continuously

1

2

smooths a digital ink annotation while the document is still being annotated.

1.1 The Digital Ink Metaphor

The visible trails left behind by handmade expressions of markings, strokes, and
lines are the basic composites of what we describe as traces. And when these
expressions are applied directly on a receptive surface of a digital transducer
device by using a digital pen (and sometimes by merely touching the device with
fingers), or indirectly by dragging the mouse to simulate controlled movements
of a pen on a screen-canvas, we have a ‘pen-base interface’ that captures digital
ink traces.

Fundamentally, digital ink traces are a finite set of sampled points that the
hardware device can afford to provide its device-driver. The number of points
supplemented is directly proportional to the resolution of the sampling frequency
of the hardware, and are obtained from a pair of successive pen-down and pen-
up events. These xy-coordinate points are then relayed immediately to domain-
specific application softwares as a fully formed ‘Trace’ – we denote the term
Trace with a capital ‘T’ to refer to the actual geometric data structure that
contains a set of (x, y) points. A sequence of these Traces when accumulated and
presented properly can form meaningful graphics of what we (humans) perceive
as characters, words, drawings, or commands. The softwares may then decide
to process and archive them as ink documents, notes, and messages for later
retrieval and exchanges through telecommunications means, or interpret them
as appropriate computer actions.

The obvious property of a Trace, when observed on a 2D plane, is its spatial
relationship between the Trace and the other components on the plane (including
the plane itself), as well as between the Trace and other Traces. The less obvious
property is the Trace’s temporal relationship to these same components. From
our experiences with various hardware devices, we found that it is advantageous
to include timestamp information in addition to each sampled xy-coordinate
point. The importance of which are further explained in later chapters when we
discuss the temporal issues concerning the digital ink Traces, which are used to
solve grouping problems, feature identification, automatic domain segregation,
and random-access search and replay.

The Consortium of the World Wide Web (W3C) has been (and is still)
working on a standard to universally mark-up the digital ink traces for both
‘archival’ and ‘streaming’ modes that are compatible for all applications relying
on web-based (XML schema) data sets. Based on the consortium’s latest work-
ing draft [108] with a Request for Comments (RFC) option that is still active
to date, the proposed W3C standard, known as InkML, keeps the notion of a
‘time-interval’ in the overhead metadata with the assumption that the trans-

1.2. OBJECT-ORIENTED DERIVATIONS 3

ducer device used to capture each xy-coordinate point is sampling at a constant
and fixed rate. This assumption makes it redundant to store the timestamp for
each xy-coordinate point and saves about a third of the overall file size. This is
acceptable if the resulting marked up InkML is final, where no further changes
to the data set needs to be done.

However, in the case of our study, we are using the raw InkML representa-
tion to satisfy various objectives that may involve further post-processing ac-
tions. These include computing geometrical solutions to reduce and compress
the digital ink Traces, or to add superfluous points to smooth the Traces at finer
granularities for representation at higher resolutions. Either of which, when
applied to the original ink Traces and then passed through a digital-ink-player
facility, will make the reanimated ink expressions appear awkward and unnatural
when replayed in real time. Furthermore, if we are to allow cross-platform and
cross-device functionalities where we can create Traces using the digital pen (on
the digital screen at a fixed sampling rate), or by using the mouse (where the
sampling rate varies), then we must incorporate the additional timestamps to
ensure that the integrity of the post-processed trace data is maintained.

1.2 Object-Oriented Derivations

In its simplest form, a Trace T is a set of {(xi, yi, ti)} tuples, deduced directly
from each complete pair of pen-down and pen-up events made up of the xy-
coordinate points with attached timestamps t, for 1 ≤ i ≤ n, where n is the
total number of points sampled. All Traces are considered unique and are dis-
tinctively identifiable by their identities. A Trace’s ancestor is the (Java) Path2D
object, which implements the Shape interface. Together, they represent a form
of geometric shape, mainly incorporating two elements; the bounding box of the
geometry, and a PathIterator object that allows the traversal of the tuples
within the Trace, which describes the trajectory path of the Shape’s outline. It
follows that a Trace has n− 1 line-segments.

1.3 Spatial Indexing

Traces coming in from the InkEnvironment are usually stored in the temporal
sequence that they arrive in, in the most basic of circumstances. However, due to
the inherently spatial nature of the appearance of all Traces on a 2D canvas, we
found more advantages when they are rearranged with respect to the horizontal
and vertical axes of the canvas on the screen-dimension. For example, an array
of Traces on the 2D plane is first stored in a common R-Tree structure [40] and
is later indexed into further sub-groups based on the Trace-group constraints
if and when the number of Traces becomes too large. The R-Tree structure

4

ensures efficient spatial representation (e.g. see Figure 1.1). It also provides
better search times of O(logm n + k) for a given rectangular range, where n is
the total number of Traces on the plane, k is the number of Traces to report
that are inside the range, and m is the maximum branching factor of the tree,
compared to the temporal-list order, especially when interacting with users on
the spatial domain.

Figure 1.1: Spatial representation of Traces using the R-Tree structure.

We obtain the bounding rectangle of a single Trace entity from its Trace
class representation Ti, which returns the top-left and bottom-right coordinates,
(minx{Ti},miny{Ti}) and (maxx{Ti},maxy{Ti}), respectively. These informa-
tion are then used as parameters to guide with the building of the R-Tree rep-
resentation for all Traces T1, T2, . . . , Tn on the InkEnvironment. Each node in
the R-Tree corresponds to the smallest bounding rectangle that encloses its child
nodes. If a Trace is spatially contained in several nodes, it is only stored in one
node. The tree parameters ensure that the following properties are met at all
times:

• The depth of the overall R-Tree is balanced (similar to a B-Tree struc-
ture [18]) and is as shallow as possible;

• Indexing of Traces is completely dynamic, that is, insertions and deletions
can be intermixed with searches; and

• No periodic reorganisation is required.

1.4 Temporal Indexing and InkML

Temporal indexing is carried out when we no longer need to interact with the
Traces on the InkEnvironment, that is, when we are satisfied with what is

1.4. TEMPORAL INDEXING AND INKML 5

in the (final) percept of the InkEnvironment; or whenever we require further
sub-groupings of the current Traces to distinguish between freehand ‘drawings’
(TraceGroup type-I) and freehand ‘writings’ (TraceGroup type-II). Deploying
the temporal indexing allows us to proceed with the archival of the digital ink
data (to file) and/or stream it over a network as dictated and specified by the
InkML standard.

This part strengthens the non-(user)interactive digital ink manipulation as
compared to the R-Tree structure, which includes saving, retrieving, replaying,
and streaming. Figure 1.2 gives a graphical overview of the same Trace compo-
nents in Figure 1.1 when aligned to the time axis. We mention here that the
Trace components on the time domain do not overlap each other. This is because
we have only catered for ‘single-user-input’ facility that distinctly allows for only
one pen (or mouse) input at one time instant on the InkEnvironment. However,
suppose that we accord a ‘multi-users-input’ facility, and that the transducer
device is able to support this facility, then we can expect that the Trace com-
ponents to overlap at certain time instances for arbitrary periods. In this case,
we will need additional augmentation on the primary data structure to support
simultaneous and concurrent Trace entries. In this study however, we will not
pursue the idea for ‘multi-users-input’ facility.

S = {TA, TB , TC , TD, TE , TF , TG}

A B C D E F G

time
(msec)

Trace component, Tk:

Query time range tq
S′
tq = {TD, TE , TF }

Freehand ‘drawing’
(TraceGroup I)

Freehand ‘writing’
(TraceGroup II)

period(Tk) := tn + t0

tq start tq end

traceID(tk) := t0
(xi, yi, ti) tuple

Figure 1.2: Temporal representation of the same Trace components in Figure 1.1
on the timeline.

Given a query time-range tq = [tq start, tq end], we retrieve all Traces from
the R-Tree whose traceIDs fall within the given range, and whose period after
its traceID does not exceed tqend. This resulting S′tq contains Trace components
Tk such that tq start ≤ traceID(Tk) ≤ tq end and traceID(Tk)+ period(Tk) ≤
tq end. The Tk in S are arranged in ascending order of their traceIDs, and are
immediately ready to be used for the activities described above.

Granted that when the number of Trace components becomes too large, the
search time may take too long on the main R-Tree and degenerates into linear

6

time complexity of O(n). One possibility to reduce this search time is to keep
another separate array to store copies of the original Trace components in sorted
time-order, and apply binary search (of O(log n) complexity) on it for the given
query time-range. This doubles the memory space needed to maintain an ink
application to support the InkEnvironment.

1.5 Digital Ink Domains

Generally, the way in which people interact with any kind of Information and
Communication Technology (ICT) is influenced by two aspects; input devices and
software design. Firstly, the hardware of input devices specify what information
is exchanged between man and machine and how this exchange takes place. For
example, by moving a mouse, a user sends ‘events’ to a computer which encodes
information such as relative coordinates representing mouse movements. The
second aspect is the software design of the user interface and the way in which the
electrical signals from the hardware are interpreted. Incoming signals from mouse
movements (representing discrete relative coordinates) are generally mapped to
absolute pointer movements on the screen and as such, visualized to the user.

Over the years we have come to accept the fact that graphical user interfaces
are not only visually helpful, but optimal in almost every way we can imagine
for users of the desktop computers. The designs of which are tailored specifically
for user-oriented goals such as completing that word document with style, en-
hancing the artwork for that poster, searching and getting information from the
web, or even controlling that regional train tracks to follow schedule. Such diver-
sity in the range of applications used for the desktops triggered sharp interests
in both the Intelligent User Interface (IUI) and Human-Computer Interaction
(HCI) communities to continue enhancing and providing guidelines for future
interfacing trends. Where it seems that the former community favours adaptiv-
ity concepts and the latter adaptability, we have also seen in the recent years
the synthesis of the two [11]. We shall further dwell into these two concepts, as
well as one other, known simply as perceptual, in chapter 12 when we discuss the
distinction between writing, drawing, and gesturing.

1.5.1 Touch Screens and Tablets

People first began using touch screens and graphics tablets in the mid 1970s, after
the successful filing of two successive US patents by Hurst and Parks [45, 46]
on their electrographic inventions. Essentially, they include the discoveries of
the ‘graphic data transcription system’, the ‘graphical input system’, and the
‘graphical input table’ [67, 66, 9]. The improved and combined technologies as
we know of today allow for the seamless communication between humans and

1.5. DIGITAL INK DOMAINS 7

computers by the direct touching of the screen, or alternatively, through the use
of digital pens (sometimes also known as styluses).

While these natural input modalities provide some ‘improvements’ in several
situations where they are deployed, particularly in classrooms and collaborative
workplace scenarios, they still lacked in terms of usability if coordination with
other modalities such as the keyboard and mouse are not taken into considera-
tion. There are surveys compiled by McKay that show that touch screens are
hard to write on when the monitor is standing upright [76]. Ideally, the screen
should be mounted horizontally. However, touch screens do not only react to
pen input but to any kind of physical contacts, thus making it impossible for
users to rest their hands on the surface while writing.

Figure 1.3: Examples of pen-input devices. From top-left, anti-clockwise: Tablet
PC, A WACOM interactive LCD panel, and a PenabledTMpad and pen devices.

Originally targeted toward special interest groups and professions the first
LCD displays with integrated tablet, and was later on known as interactive
LCD panels, became available for the average consumer by the end of the 90s.
These devices operate like regular graphics tablets described before with the
main difference being that the tablet is transparent and mounted on top of an
LCD panel. Hence, compared to common touch screens, the surface does not
react to any kind of contact but only to the input of a special pen, thus enabling
presenters to naturally write on a horizontally mounted screen. Using the pen,
people can directly interact with the applications by making annotations on the
presented slides, navigating through subsequent slides, etc. These early versions
often proved to be too small, had low resolutions, and limited processing powers
which resulted in a noticeable time delay during freehand writing. Nowadays,
we observe significant advancements in display size, screen resolution, as well as

8

processing power, paired with lower prices. Hence, when mounted horizontally
such devices provide the same ease of use as traditional overhead projectors while
at the same time enabling users to access and use the full functionality offered
by the underlying ICT installation.

1.5.2 Wall-Mounted Digital Boards

The abundant writing surface allowed by huge wall-mounted digital boards (see
Figure 1.4) is harder to perceive for user-machine interactions as compared to the
comfortably sized tablets and office whiteboards. Freehand writings are an entity
on their own, containing the flair and style of expressions of the writer, which
do not necessarily follow an ordered sequence or format when ample space is
provided. To date we see a number of digital ink-based studies that concentrate
on managing contents and editing ‘informally’, which came about as a result of
this entity. Whether it is grouping a set of freehand words into a continuous flow
of sentence, or combining a set of drawings to form the physics of represented
objects, the programs rely on a lot of command buttons in toolboxes and pull-
down menus to affect their causes. And since all of these applications are tailored
for the desktop setup (including the tablets), the authors need not mention any
proximity problems. Try putting these same applications on the huge wall-
mounted digital boards and we can expect users to complain about its lack of
suitable interface.

Figure 1.4: Examples of digital boards.

CHAPTER 2

Order and Overview of Chapters

2.1 Objectives and Problem Specification

This work originated from an extension of the pilot project ‘Authoring on the
Fly’ (AOF) [48, 50], where an open document type was introduced, covering
a range of media classes that were made to synchronize through a time-based
replay mechanism. The capture of freehand writings during a recording of a ‘live’
event, simultaneously with several other input modals, including audio and video
signals, plays an important role in conveying a complete package of multimedia
information. The same freehand writings are later replayed and animated in
their formation in exactly the same way as they were recorded, and made to run
in-sync with the other modals. The replay of this open document is also made
controllable by a random-access timeline browser.

However, there were two shortcomings related to the freehand model that
were not addressed until the feedbacks from the commercial spin-off “Lectur-
nity” [52] were returned for evaluation. The first was the quality of the recorded
freehand writings, or rather, the lack of it. The second was that the replay mech-
anism did not convincingly reproduce the handwritings in the same manner that
they were recorded.

Both these problems are somewhat related: What Lecturnity was programmed
to do was to represent the freehand writings simply as a set of time-ordered
points, stored directly from the generated output of the transducer device. This
inadvertently left the quality of the written Traces at the mercy of the efficiency
of the system’s processor on which Lecturnity was running. That is, a slower
system would produce undesirable and pixelated freehand writings when com-
pared to a much faster system. It made the Traces artificially unintelligible,
even after post-processing. This is mainly due to the program dropping several
sampled coordinates in favour of serving the other higher priority and computa-

9

10

tionally expensive modals; which in turn, resulted in inaccurate time-stamps in
the sampled coordinates, that led to the second problem during replay.

Thus, our main objective is to overcome the two consanguineous problems.

We seek a viable solution whereupon the quality of the handwritten Traces
are desirably improved, in accordance to the Weierstrass approximation theorem
(explained later on in Theorem 4.1), during the recording phase as well as in
the midst of replay. This shall be achieved using proper curves instead of the
rudimentary raw sampled points, through symbolic representation of the curves’
data structures. All these are to be done taking as little of the processor’s time
as possible. To state it simply, we want to apply our concept of active-smoothing
on the freehand writings, and symbolically represent them for use in random
access navigation.

Also, as a follow up to the main approach, we want to exploit the digital ink
environment deeper so that it can accommodate both passive writing and inter-
active gestures, all in one non-segregated platform. We are keen to explore the
possibilities of ink-based interactions that extend the properties imbued within
the freehand Traces, particularly, the types of practical applications that they
can be made to support.

2.2 Structure

The thesis is spanned over two main parts to tackle our objective statements
above and to present our solutions to the problem specifications. We end off
Part I here through the next chapter where we introduce the geometric com-
ponents and their properties that make up a Trace and the other structures
required to explain our concepts.

Part II is where we take the algebraic discussions of continuous curves and
discrete Trace-segments from chapter 3, and examine the effects of simplifying a
Trace before bombarding it with superfluous points to resemble high resolution
smooth curves. The Trace is simplified by removing ‘unnecessary’ points and
made to retain only the crucial ones that still define the overall shape of the
Trace. From this discussion of the simplification of polylines, we move on to
show how a set of indeterministic points can be made to fall in place so that,
when properly ordered, they can be composed of only second-order curves. We
deliberate this fact through our discussions by approximating these indetermin-
istic points entirely with elliptic arcs, and later on with only rational quadratic
Bézier curves. At the end of Part II is where we assemble the pieces together and
present our active-smoothing solution. The preliminary ideas of which we have
communicated in an ACM article published in the proceedings on Educational
Multimedia and Multimedia Education [89].

Then in Part III, we review several techniques that enable gesticulations

2.2. STRUCTURE 11

for the Traces, based on the intrinsic features that relate directly to a linear
discriminator. These very stable techniques take us further in-depth into the
kinds of collaborative applications that can be conceived; we give two examples
of this with our work on the huge wall-mounted interactive whiteboards, and
a game of Monopoly that we conceived for the primitive multi-user tabletop
environment.

Finally, we sum up and conclude all of our findings in Part IV, and highlight
several of the more prominent points uncovered while in the course of preparing
this thesis.

12

CHAPTER 3

Geometric Entities of the Digital Ink

We lay the preliminary grounds in this Chapter and introduce the primary com-
ponents in their geometric forms in 2D space that make up the various compo-
sitions of digital freehand writings. In particular, we put forward the concepts
on how these components are stored and in what order, and how they can be
manipulated efficiently to effect the solutions we present in the next two Parts
of this dissertation.

The digital ink data structures are inherently discrete and are meant to sup-
port the geometrical elements in operations such as archiving, indexing, retriev-
ing, and rendering. In later chapters, we will scrutinize the effects rendering has
on digital ink applications. It is in this final operation that the balance of the
technology being embraced and appreciated, or discarded and neglected, hangs
upon. Its efficient handling (or lack thereof) is expected to mandate the close-
ness of the digital system in resembling the feel of writing on paper with liquid
ink. Not only that, we should also expect an emphasis on a desirably high visual
quality of the output renditions of the digitised handwritings on LCD screens,
and further reflect this on print. This final operation draws its sustainability and
efficiency from the former three operations mentioned above. Thus it becomes
important that we study the primary components that make up the digital ink
to comprehend the environment we are working with, which will help to realise
the significance of our proposed methods and solutions in the rest of the thesis.

3.1 Discrete Ink Entities

Every component of the digital ink is made up of primary 2D points (or vertices).
Component:
Point p
♠

Each point pa ≡ (xa, ya, ta) represents a location on the 2D plane and is identified
by a unique (system) time-stamp ta. That is, we make no assumptions that a
set of points in the plane are in general position, and for those points that are

13

14

equal in both their x and y coordinates, they have different values of t without
loss of generality.

Definition 3.1 An Edge Ea = papb is a directed line-segment from a start point
Component:

Edge E
♠
pa ≡ (xa, ya, ta) to an end point pb ≡ (xb, yb, tb), where ta < tb, and is identified
by the time-stamp ta.

Notice that we have begun adopting the convention of starting a well-defined
term with a capital letter. This distinguishes the technical meaning of the term
in its intended capacious definition, from the general meaning it may otherwise
suggest.

The Edge is analogous to the LineSegment – both are referred to often in the
field of computational geometry, and they carry a similar meaning to the Chord
in mathematical geometry. These three terms are all part of the straight line,
and are not to be confused with the full line concept, particularly when we later
discuss the intersection of tangent lines. Furthermore, an Edge is unique in the
digital ink environment, in that there can only be one incoming Edge and one
other outgoing Edge per corresponding point.

Definition 3.2 [Trace]. A Trace Ta = 〈pa1 , pa2 , . . . , pan〉 is a collection of n
time-ordered points, where two adjacent points pai, pai+1 ∈ Ta are joined by a
single Edge Eai = paipai+1, for 1 ≤ i ≤ n − 1. The unique time-stamp of the
starting point at pa1 identifies Ta.

We may also consider a Trace Ta as
〈
Ea1 , Ea2 . . . , Ean−1

〉
; a collection of

time-ordered Edges. This, however, is not as tight a definition as compared to
Definition 3.2, since every intermediate point in Ta is repeated twice, as the end-
point of Eai is also the start-point of Eai+1 , for i ∈ [a1, an−1). If such is the case,
then we note that a Trace must then be composed of at least one edge or two
time-ordered points; as opposed to the above definition where it is possible to
have only a single point inside a Trace.

In Figure 3.1(b) and (c), we indicated arrowheads on each directed Edge to
suggest that the discrete components presented here are not scalars. That is,
they are direction-dependent and are to be interpreted based on the order of
which the individual points appear inside each component.

Definition 3.3 [TraceSegment]. A TraceSegment TSα refers to a single
contiguous portion of the collection of points from a well-defined Trace Ta; i.e.
TSα ⊆ Ta, for α ∈ [a1, an), and that the trace-lengths are ‖TSα‖ ≤ ‖Ta‖.

Essentially, by Definition 3.3, a TraceSegment is also a Trace. The dif-
ference between these two entities becomes stark when we use them inside ap-
plications. A Trace will usually refer to a single raw entity, sampled from

3.1. DISCRETE INK ENTITIES 15

Pa

(a) Point pa ≡ (xa, ya, ta)

Pa

Pb

(b) Edge Ea = pa, pb

Pa1

Pa2

Pa3

Pa4

Pa5

Pan−2

Pan−1

Pan

(c) Trace Ta = 〈pa1 , pa2 , . . . , pan〉

Figure 3.1: Time-ordered primary components: (a) Point pa, (b) Edge papb, and
(c) Trace Ta.

a transducer device, starting at a pen-down event and ending with a pen-up
event. These two pen-events coincide with pa1 and pan respectively. A Trace-
Segment, on the other hand, is merely a reference to a sub-component of the
original Trace, which we use to manipulate the entity in our deliberations and
solutions, with additional special properties at its endpoints.

These definitions are almost similar to de Berg et al.’s [24] description of the
doubly-connected edge list (DCEL) data structure, which stores detailed records
for each face, edge, and vertex of a subdivision in the plane. While “directions”
in the DCEL components are implicit, such that an edge is made up of two half-
edges going in opposite directions in order to explicate the inner from the outer
faces, it does not indicate the explicit “direction” of a single Edge as we stated
in Definition 3.1. For example, walking around on the path of a set of connected
half-edges in counter-clockwise direction is meant to discover a bounded face
to the left of each half-edge. At this point, we are more interested in the full
edges (rather than the half-edges) that join to make up a path to describe our
Traces. We are not yet concerned with the faces these edges bound. However,
we will revisit this notion in Chapter 9 when we discuss contour-wraps related
to font-processing in further details.

16

Traces in digital freehand writings do not require the ‘multi-edge per vertex’
property which is prevalent in the DCEL. That is, as we have shown previously,
there can only be at most one incoming Edge and at most one outgoing Edge
per vertex in a Trace.

3.2 Continuous Ink Entities

In Part II of the thesis, we shall dwell deeper in the discussions on the continuous
and symbolic representation of the discrete entities introduced in section 3.1.
The continuous entities are the “smoothed” manifestations of the manipulated
discrete components, particularly the Trace. While we may argue that the
continuous elements are still (somewhat) discrete when represented on a digital
canvas, we shall set it up here to define that these components remain in their
highest quality (while maintaining their styles and flair) in whatever resolution
they are placed in. That is, we want to guarantee that they neither degenerate
nor pixelate when viewed in deep levels of zoom.

3.2.1 The Notion of ‘Curves’ vs. Curves

A curve in our deliberations refers to a system of points in <2 whose ordered
set of coordinates (x, y) satisfy a given function. For each value of x there is
a corresponding value of y evaluated by a function f , so that the graph of the
function f is the set of all ordered pairs (x, f(x)), for all x in the domain X.
Here, we take the two prominent terms to mean as follows; (i) that a well-defined
“function” f : X → Y on <2 is simply an expression which maps a value of x ∈ X
on to a unique value of y ∈ Y , where X,Y ⊂ <, and (ii) that a true “curve”
spanning the <2 plane is the viewable graph of an underlying function f whose
ordered pair p ≡ (x, y) ≡ (x, f(x)) ∈ f refers to the Cartesian coordinates of the
curve.

Let us assume, for the sake of making our discussions easier, that all the
functions we are dealing with are x-monotone. Of course, one can simply lift
this assumption by breaking up the curve into x-monotone pieces and handle
each one progressively, or by applying a certain 2D translation (matrix) on the
curve, on the necessary interval(s), to handle the general case.

The definition of our Curve (denoted by small-capital cases), on the other hand,
refers to a subset of points of an algebraic function mapped from a closed interval,
and whose graph depicts a segment of the corresponding curve related to the
function. We state this formally as follows.

3.2. CONTINUOUS INK ENTITIES 17

Definition 3.4 [Curve]. A Curve K on the interval [xa, xb] ⊂ X is a segment
of a well-defined function f : X → Y on the same interval [xa, xb], so that the
endpoints pA and pB of K are (xa, f(xa)) and (xb, f(xb)), respectively.

In other words, in terms of the set of points in K and f(x), Definition 3.4
establishes that K ⊂ f(x) on the interval [xa, xb]. Also, we shall assume that
f(x) is twice differentiable on the interval [xa, xb], and consequently, we can
determine the first and second derivatives for all the points pi ∈ K.

Suppose we have two functions f(x) and g(x), from which we derive two
Curves Kf ⊂ f(x) and Kg ⊂ g(x) on the intervals [xa, xb] and [xb, xc], respec-
tively. Furthermore, let us also suppose that f(x) intersects g(x) at xb, so that
f(xb) = g(xb). Then clearly, the end-point of Kf is exactly the start-point of
Kg. Thus on the combined interval [xa, xc], we have a CompositeCurve KC
(denoted also by small-capital cases) made up of Kf and Kg connected at the
common point (xb, f(xb)).

Definition 3.5 [CompositeCurve]. A CompositeCurve KC = {K1,K2, . . .,
Km} on the interval [x0, xm] ⊂ X is a continuous piecewise function on the same
interval [x0, xm], composed of m contiguously connected Curves on the subin-
tervals [x0, x1], [x1, x2], . . . , and[xm−1, xm], corresponding respectively to K1 ⊂
f1(x),K2 ⊂ f2(x), . . . , and Km ⊂ fm(x), and where f1(x1) = f2(x1), f2(x2) =
f3(x2), . . . , and fm−1(xm−1) = fm(xm−1).

It follows from Definition 3.5 that the endpoints p0 and pm of KC are
(x0, f1(x0)) and (xm, fm(xm)), respectively.

3.2.2 Crucial Points

The point connecting any two adjacent Curves in a CompositeCurve KC has
a special property in our set up; it is one of the crucial points of KC.

Definition 3.6 [Crucial points - Part I]. The crucial points in a Composite-
Curve KC are (i) the two endpoints of KC, and (ii) the set of all points from
which the adjacent Curves Ki and Ki+1 intersect, for all Ki,Ki+1 ∈ KC.

From the setup given in Definition 3.5, the crucial points of the Compos-
iteCurve KC = {K1,K2, . . . ,Km} containing m Curves is the set of m + 1
points {(x0, f1(x0)), (xm, fm(xm))} ∪ {(x1, f2(x1)), . . . , (xi, fi+1(xi)), . . . , (xm−1,
fm(xm−1))} ⊂ KC. These crucial points essentially hold the CompositeCurve
together, and in a way, they symbolically describe the shape or outline of KC.
We shall revisit this notion again later when we discuss Part II of the cru-
cial points definition when dealing with discrete curves reconstruction in Sec-
tion 3.3.1. Thereafter we shall point out that retaining the intermediate points

18

between two consecutive crucial points in KC is not necessary since we can then
“symbolically”represent KC with just its crucial points.

3.2.3 Algebraic and Geometric Viewpoints

The Curve in Definition 3.4 is partly based on the notion proposed by Yap [137],
who discussed two main viewpoints for observing and manipulating continuous
curves on discrete planes; namely, the algebraic viewpoint and the geometric
viewpoint. Algebraically, we treat a Curve as a system of algebraic solutions to
be solved, where if we apply symbolic or algebraic techniques on the system of
equations, we will arrive at a set of solutions that are exact and complete. The
geometric viewpoint, on the other hand, contrasts this. The same Curve is de-
scribed via geometrical means, which solutions are obtained through numerical
techniques. While the geometric solution may pose a problem of being incom-
plete due to carry-on errors per computation step, its approach is highly appro-
priate when it comes to dealing with curves in unknown and non-deterministic
environments.

Yap’s further comments coincide with our chain of thoughts; that while the
algebraic viewpoint is more general than the geometric viewpoint, it alone cannot
completely address our domain of specifications. In this study, we deal directly
with the raw data of digital “curves” sampled from transducer devices. The
values returned by the interface components are always discrete - that is, they are
strict integer values that are either ‘floor’-ed or ‘ceiling’-ed. In other words, the
trace-signals we receive from a transducer device are complete whole numbers,
and that each coordinate pair (x, y) comes from the discrete positive integer
domain, corresponding to the pixel location on the device. Clearly, as a result
of this, we have already lost precision of the (intended) actual floating-point
values x and y, since real numbers are not sustainable in the electronics. Thus,
it becomes apparent that we are restricted only to making estimations based on
the raw integer values in our computations to approximate the smooth Curves
we are after. In consequence, we can only expect a likable reconstructed image
of the trace-signals which ultimately depends on our treatment and management
of the given discrete points.

The fact remains that when the original traces are observed even more closely,
say at a deeper zoom level, we are more likely than not to see pixelated lines
joining up the individual points scattered on arc-like trajectories. Up close, these
points appear somewhat random, irregular, and non-deterministic. So here, the
algebraic viewpoint completely breaks down on the Trace T , if we apply it
directly. It becomes tedious to generate a proper curve to go through all these
uneven points in T . Suppose there are n such points in T , then the technique
to interpolate all n points in T returns an (n − 1)-degree polynomial function
f(x), and assuming that we have chosen the classical polynomial interpolation

3.3. HANDLING DIGITAL INK ENTITIES 19

method, runs in O(n3) time. (There is a more complex method which extends
the polynomial interpolation technique that improves the runtime to O(n2) [68].)
This, though, is the main problem. The overall resultant curve we get that
passes through all these unevenly positioned points, is not necessarily the curve
we are looking for, and may in fact be the wrong solution. Runge’s interpolation
phenomenon has shown that for large values of n, the interpolation polynomial
f(x) may oscillate wildly between data points [35]. Thus, due mainly to these
reasons, this approach by itself is not at all suitable to cleanly and efficiently
solve our problem.

Fortunately, the geometric viewpoint offers us several ways around the above
problems, and at an achievable level of improved efficiency. The method allows
us the ability to control our approach so that we return only a connected set of
well-defined, low-order algebraic curves that – when properly pieced together –
acceptably estimates the original Trace.

3.3 Handling Digital Ink Entities

Building on the arguments highlighted in the previous section, we shall, for the
rest of the thesis, deliberate all entities related to the digital ink to be based on
the geometric viewpoint, and afterwards combine it with the algebraic viewpoint.
On top of this, we will also take into considerable account of the classical concepts
where methods exist to pass spline curves through a set of given points in the
plane.

The main difference of our approach here, compared to the classical methods,
is that we do not “fit” a single algebraic curve f(x) faithfully through every point
pi in the Trace T , but rather, we “estimate” (or “regress”) the n points in T
with a series of m contiguously connected Curves. Each Curve Kj represents
a subset of points in T , so that the entire Trace T is collectively represented
by the CompositeCurve KC = {K1,K2, . . . ,Km}.

We noted earlier in Section 3.2.2 and by our Definition 3.6, that the point
connecting any two adjacent Curves Kj and Kj+1 has to be a “crucial” point
of KC. So if we want to make a clean transition, to transform a discrete T into
a continuous KC, then it follows that KC must contain the crucial points in T .
In other words, when two adjacent Curves in KC connect, they connect at a
crucial point of T . This will ensure that we preserve the characteristics of the
appearance of T accurately with KC. We shall later observe that once these
crucial points have been identified, the rest of the non-crucial points in T can be
expected to fall into place, and they serve as the necessary trajectory guide in
determining a proper function fj(x) – spline or otherwise – from which we can
extract the relevant Curve Kj ∈ KC. Furthermore, once Kj has been truly
determined, it becomes unnecessary to keep the non-crucial points anymore.

20

3.3.1 Road Map: From Discrete Traces to Smoothed Curves

What concerns us the most in Part II of the thesis is to discover how we can
properly represent T with KC. The solution must (i) be efficient in runtime,
(ii) be within an acceptable error bound, (iii) ‘smooth’ out the uneven pixelated
lines, (iv) maintain precise resolution in deep zoom levels, and above all, (v)
preserve the extraordinary features of the raw Trace that are the defining style
and flair contained in the original handwriting.

Let us state the problem plainly. Suppose we are given a set T of n or-
dered points {p1, p2, . . . , pn}, where pi = (xi, yi) for all pi ∈ T , and from which
same set there exists a subset of crucial points that breaks T up into m seg-
ments TS1, TS2, . . . , TSm. Suppose also that the smooth representation of the
Trace T is the CompositeCurve KC. Then the task is to find the finite
set of proper functions fj(x) from which to describe each elemental Curve Kj

in KC, based on the corresponding points in the segment TSj in T , and then
symbolically render the whole of KC smoothly at any desired resolution.

Clearly, the resultant KC = {K1,K2, . . . ,Km} has to be made up of a finite
set of m elemental Curves, joined contiguously to represent m related segments
of T . By Definition 3.6 and from our discussions above, we know that any
two adjacent Curves in KC must join at one of the crucial points of T . This
then implies that there should be m + 1 crucial points in T . Subsequently, it
follows that the approach to the problem is first to identify the m + 1 crucial
points of T , and then use them to break down T into m appropriate segments
TS1, TS2, . . . , TSm.

In our case, we only consider a segment TSj of T when it contains the subset
of ordered points between, and including, two consecutive crucial points of T .
The Curve Kj shall then be derived directly from TSj .

Definition 3.7 [Crucial points - Part II]. The crucial points of the Trace T are
the subset of points in T that are the inflection points and the sharp-edge vertices
of T with respect to all other points in T , and that they define the distinctive
shape of T .

This means that the Trace T is made up of two mutually exclusive subsets
of points: (i) the set of crucial points S ⊂ T , and (ii) the set of non-crucial
points S′ ⊂ T , where S ∪ S′ = T and S ∩ S′ = ∅. Furthermore, if we are to
remove all the non-crucial points of T , then by Definition 3.7, the remaining
crucial points will demarcate the basic skeleton shape of T .

Thus far, we have established that KC is a piecewise amalgamation of m func-
tions (by Definition 3.5) - which means that KC is continuous and is not disjoint.
Viewed from this perspective, it becomes obvious that the first few crucial points
to immediately stand out, apart from the two endpoints p1, pn ∈ T , are those

3.3. HANDLING DIGITAL INK ENTITIES 21

“sharp-edged” vertices where Curves of two distinctly opposing functions have
been joined. The other not-so-obvious crucial points are those points on KC
where “inflections” occur. We shall discuss these special types of crucial points
in more details in Section 3.3.4 through Definitions 3.14 and 3.15.

Now consider the following lemmas.

Lemma 3.8 Let f(x) be an n-degree polynomial curve on <2. Then there are
at most n− 2 inflection points on f(x).

Lemma 3.9 Let pj and pj+1 be two consecutive inflection points on f(x). Then
the jth segment of the curve f(x) between pj and pj+1 is convex.

What these observations lead us to, is the conclusion that the non-crucial,
ordered points in a segment TSj ⊆ T , are arranged in a rather clean and almost
arc-like, convex trajectory. Since non-crucial points are neither sharp-edges nor
inflections, they consequently become the basis for guiding the construction of
a “convex” Curve. Furthermore, this convex property allows for a low-order
polynomial function fj(x) ⊇ Kj to be suitably used to estimate this “convex”
segment TSj . In fact, we shall show conclusively later on in Part II that a
second-order polynomial function fj(x) is sufficient to achieve this. Our proofs
include the sole use of elliptic arcs (which are inherently second-order curves) as
the elemental components in KC, and this met all the five criteria we highlighted
above in representing T suitably with KC.

The following propositions sum up our discussions thus far, in converting a
digital Trace T into a smooth CompositeCurve KC. They shall provide the
conceptual outlines from which we will use to expand (and exploit) in the next
few chapters.

Proposition 3.10 Let the Trace T be a set of n ordered points, and let T be
made up of m contiguously connected segments TS1, TS2, . . . , and TSm. If each
segment TSj of T is the subset of ordered points of T between, and including
two, consecutive crucial points of T , then TSj is a convex segment.

Proposition 3.11 Let TSj ⊆ T be a convex segment, and let the Curve Kj ∈
KC be the smooth representation of TSj. If fj(x) is the function where Kj

is derived from, then fj(x) need not be higher than a second-order polynomial
function, and that subsequently, Kj ⊂ fj(x) is a convex Curve.

Proposition 3.12 Let the CompositeCurve KC, made up of m contiguously
connected Curves, be the smooth representation of the Trace T . Then by
Propositions 3.10 and 3.11, KC contains only second-order polynomial convex
Curves, contiguously joined at the crucial points of T .

22

3.3.2 Continuity and Joints

So far we have assumed that the elemental Curves in KC are contiguously
joined in such a way that the harmony of the overall shape of KC is maintained.
In this section, we point out that any two adjacent Curves in KC join with
either G0, G1, or G2 continuity at a crucial point of T . The underlying raw
points of T , neighbouring the crucial point, contain the information we need
to determine which of the three continuity-joints we have to apply, so that we
sustain the local characteristics of T in KC at that particular joint.

We shall make explicit use of this section to verify a theorem by Barsky and
de Rose [8], which states:

Theorem 3.13 (Barsky and de Rose, 1989) Two parameterizations meet with
G1 continuity if and only if they have a common unit tangent vector; they meet
with G2 continuity if and only if they have common unit tangent and curvature
vectors.

The parameterizations in Theorem 3.13 refer to, in our case, the set of
Curves in KC = {K1, . . . ,Kn} that we use to estimate a single Trace T .
Establishing continuity on (the representation of) an unbroken Trace T means
that we also allow for “piecewise” joints within T whenever necessary. The sim-
plest piecewise joint is the lowest level G0 (and C0) continuity at a point pj ∈ T ,
in which two Curves Ki and Ki+1 are connected at their respective endpoints.
G stands for geometric continuity, while C stands for parametric continuity and
C is the more rigorous of the two. For reasons of simplicity, however, we shall
use both terms interchangeably.

If we further take into consideration the tangency and possibly the curvature
about the point pj , we would then be observing for G1 and G2 continuities
respectively. We summarize their descriptions as follows:

• G1 continuity (Tangency): Two Curvesjoined at a point where a com-
mon tangent exists. The tangency continuity means that the tangent at
the end of the Curve Ki is parallel to the tangent at the beginning of the
Curve Ki+1, at the common point pj . This is on top of the fact that both
Curves must already possess G0 continuity at pj .

• G2 continuity (Curvature): Two Curvesjoined at a point where a com-
mon curvature exists. The curvature continuity means that, with all pre-
vious G0 and G1 continuity conditions fulfilled, the point pj connecting Ki

and Ki+1 is the point with second-order geometric continuity in the two
combined segments.

The approach, then, to get a good and smooth estimate for T in the form
of a set of connected Curves KC, with all the original handwritten style and

3.3. HANDLING DIGITAL INK ENTITIES 23

flair intact, lies in identifying all the necessary crucial points pj ∈ T , and then
determining which of the three continuity levels each of those points should be.
We do this in three stages:

First, we measure the derivatives and curvature at every point in T . This will
tell us the relations a point has with respect to its neighbours, and with respect
to the estimated trajectory it is currently running on. Second, from the curvature
measurements, we deduce whether a point is an inflection point or a sharp-edge
vertex. If so, we mark it as a crucial G2 or G0 continuity point, respectively.
This effectively partitions the Trace into more manageable segments, where each
segment is part of a common arc. Finally, we complete the “estimate” by taking
the points in each partitioned segment and regress proper curves through them,
while in the process, further identifying points in T that are the crucial G1

continuity tangent joints, whenever necessary.

3.3.3 Deriving First and Second Derivatives

At this juncture, let us assume that the set points in the Trace T on a closed
interval [xa, xb] is the subset of points of an abstract function f : [xa, xb] → <2

that is twice differentiable on the same interval (unless proven otherwise based
on some specific (error) measurements). Since we cannot yet algebraically define
what f : [xa, xb] is, based only on the raw points in T , we are construed to using
geometrical methods to compute the numerical estimates of the derivatives at all
n points in T . On top of this constraint, we also note that the classical techniques
such as Newton’s, Horne’s, Atkin’s, or Müller’s methods [12], all assume that the
function is monotonous on one axis. This allows us to describe (portions of) T as
a continuous function y = f(x), from which we can interpret every point pi ∈ T
as pi ≡ (xi, yi) ≡ (xi, f(xi)) ∈ f .

Discretely determining the first derivative f ′(x) at a sampled point pi in
the midst of the Trace T , then becomes a matter of adhering to the following
differential approximation:

f ′(x) ≈ ∆f(x)

∆x
=
f(x+ h)− f(x− h)

2h
.

For reasons of symmetry, the approximation above is based on the two immediate
neighbours of the point p ≡ (x, f(x)). However in our case, we cannot guarantee
that the distance h between the neighbouring points are always the same. Hence,
we give a more appropriate approximation of the first derivative of the point pi
with respect to the actual distance on the horizontal axis, and denote it simply

24

as dpi.

dpi = f ′(xi) ≈
f(xi+1)− f(xi−1)

hi+1 + hi
, where hi = xi − xi−1,

=
yi+1 − yi−1

xi+1 − xi−1
, for 1 < i < n. (3.1)

In the case of computing the derivatives at the endpoints p1 and pn of T ,
where there is only one other neighbouring point, we apply the more direct
Lagrange’s forward and backward differences accordingly for dp1 and dpn.

dp1 = f ′(x1) ≈ f(x2)− f(x1)

h2
=
y2 − y1

x2 − x1
, and

dpn = f ′(xn) ≈ f(xn)− f(xn−1)

hn
=
yn − yn−1

xn − xn−1
.

We note here that this measure of first derivative at pi should not be used
directly to identify crucial points, or for any other identification process, no
matter how accurate the value may be, since we should always assume that
all the points in T are not necessarily positioned. Rather, all computations
involving the first derivative must additionally incorporate other characteristic
aspects of the point, in order to provide the safe bounds we need in evening out
approximations to be used in further computations.

A coincidental example here is where we take the resultant values of the first
derivative to compute the second derivative. By measuring the rate of change of
the first derivative through applying the same approximation method, we even
out the estimates in the resultant measures of the second derivative. Recall the
second-order (symmetrical) differential approximation of a point p ≡ (x, f(x)),

f ′′(x) ≈ f ′(x+ h)− f ′(x− h)

2h
.

Since we have made the assumption, that the f(x) representation of T is twice
differentiable, then using five consecutive neighbouring points, we can similarly
approximate the second derivative of the point pi and denote it simply as d2pi.

d2pi = f ′′(xi) ≈
f ′(xi+1)− f ′(xi−1)

hi+1 + hi

=
1

xi+1 − xi−1

(
yi+2 − yi
xi+2 − xi

− yi − yi−2

xi − xi−2

)
, for 2 < i < n− 1.

(3.2)

3.3. HANDLING DIGITAL INK ENTITIES 25

3.3.4 Deriving Curvature, Inflection Points, and Sharp-Edge
Vertices

In the general sense, curvature refers to the amount by which a geometric object
deviates from being flat. In our case, the object above refers to a point in
Euclidean space relating to the radius of the curvature of the circle that touches
it. The curvature k that we measure at pi ∈ T is the extrinsic curvature, which
describes a space “curve” entirely of its “curvature”, torsion, and the initial
starting point and direction [69, 4].

For a parametric point pi(t) ≡ (xi(t), yi(t)) ∈ T , the curvature ki is defined
as

ki =
dφi
dsi

=
dφi/dt

dsi/dt
, (3.3)

where φi is the tangential angle and si the arc length given by

dsi
dt

=

√
dxi
dt

2

+
dyi
dt

2

=
√
x′2i + y′2i . (I)

We need the tangent identity to compute the dφ/dt derivative;

tanφi =
dyi/dt

dxi/dt
=
y′i
x′i
,

so that we have the following expressions:

d

dt
(tanφi) = sec2 φi

dφi
dt

=
x′iy
′′
i − y′ix′′i
x′2i

(1 + tan2 φi)
dφi
dt

=
x′iy
′′
i − y′ix′′i
x′2i

dφi
dt

=
x′iy
′′
i − y′ix′′i

(1 +
y′2i
x′2i

)x′2i

dφi
dt

=
x′iy
′′
i − y′ix′′i

x′2i + y′2i
(II)

Putting (I) and (II) back into Equation 3.3, we get

ki =
x′iy
′′
i − y′ix′′i

(x′2i + y′2i)3/2
, for 2 < i < n− 1. (3.4)

The expression above is a direct implication that is applicable to proper
continuous curves. In our approach with the indeterministic points in T , we

26

add an additional step to further even out the curvature reading at pi with its
neighbour pi−1, with

k̂i =
1

2
(ki + ki−1). (3.5)

By monitoring the curvature values computed at every point pi, we can de-
termine the characteristics of those points with respect to the underlying curve
of the Trace T . For example, if the curvature values measured at five subse-
quent points in T are of the same sign and are somewhat constant, or constantly
increasing (or decreasing), then this means that the underlying curve passing
through these five points is convex. Furthermore, the curve for this range of
points has a gentle gradient, if the curvatures are constant, or it has an increas-
ingly steep gradient if the curvatures are constantly increasing (or decreasing).
On the other hand, if the measured curvatures at these five points are all zero
(or hovering around zero), then the underlying curve is simply a straight line.

Definition 3.14 [Inflection point]. An inflection point on a well-defined curve
f(x) is a point pi ≡ (xi, f(xi)) ∈ f(x) at which the curvature k(pi) changes sign
from k(pi−1).

There are other ways to define an inflection point, and the literature in differential
calculus describes three others. The inflection point on f(x) is a point pi at which

• the tangent at pi crosses itself; or

• the first derivative dpi is at an extremum with respect to f(x); or

• the second derivative d2pi changes sign from d2pi−1.

For the purpose of our discussions, we shall restrict ourselves to Defini-
tion 3.14 whenever we mention inflection points, as it gives us the strongest
basis to deal with non-deterministic points. Thus, as we traverse from one point
to the next in T , we can deduce the following about the underlying projectile of
the “curve” from the measure of the curvatures that we picked up:

• Circular arc – when the measure is at a somewhat constant value.

• Straight line – when the measure is close around zero.

However, if we encounter a huge jump in values (known as a “spike”) when
tracking from k(pi−1) to k(pi), then the curve we are travelling on has just made
an abrupt sharp turn. That is, we have just come across a sharp-edge vertex at
the point pi.

3.4. SUPPORT DATA STRUCTURES 27

Definition 3.15 [Sharp-edge vertex]. A sharp-edged vertex is detected at pi ∈ T
when the absolute difference between two consecutive curvature measurements
k(pi−1) and k(pi) is unusually high, with respect to the readings of the average
curvature differences of all other neighbouring points in T .

The measure of curvatures after k(pi) will undoubtedly come back down to its
pre-spiked constant values. And if these values changed sign after the spike, then
not only is the point pi a sharp-edge vertex, but it is also a cusp – a special case
of the sharp-edge vertex which is the dual of the inflection point [99]. Also, for
completeness, we shall consider the two endpoints p1, pn ∈ T to be the special
cases of the sharp-edge vertex stated in Definition 3.15, because they sharply
signify the start and the end of the CompositeCurve itself on the Re2 plane.

3.4 Support Data Structures

Specifically, there are two things we need to consider when we represent Traces
on the 2D plane for search and retrieval; its temporal order, and its spatial
arrangement. The former is a natural and straight-forward order – every single
point, and thus every single Edge and Trace is time-ordered. The latter, on the
other hand, would require additional processing to distinguish the boundaries of
the “shapes” of the Traces’ paths with respect to one another.

Furthermore, once we have the Traces converted to and represented as
proper Curves, we want to make sure that the underlying data structures are
subtle enough to handle both types of entities. The common object that the
Trace and the Curve share when it comes to rendering them on the plane, is
the “path” of (ordered) points. The path provides instructions in the form of a
sequence of orders for the on-screen drawing mechanism to know which two dots
to connect, and at what resolution.

When we construe our observations and deliberations to the 2D environment,
then it is clear that there are already several well-defined and efficient data
structures that we can use to store and order the main elements of the Trace.
So instead of picking one particular structure, we provide an object-oriented
description of the design of the data structures that is generic yet explicit enough
for the reader to choose (and extend) a known structure and implement them in
whichever language is appropriate.

3.4.1 Active Point

From the discussions in section 3.3, we find it to be more efficient, and perhaps,
convenient, to pack into a primitive point which holds only the (x, y) coordi-
nate information, with additional active measurement variables. These variables

28

include, among others, the first and second derivatives, the curvature, and the
cumulative arc-length.

PrimitivePoint

• Coordinates: (x,y)
ActivePoint

• Timestamp: t
• Point type: type
• First derivative: dx, dy
• Second derivative: ddx, ddy
• Curvatures: k, k avg
• Cummulative arc-length: s

extends

Figure 3.2: ActivePoint extends PrimitivePoint, where the individual deriva-
tives are dx = x′, dy = y′, ddx = x′′, ddy = y′′, and where k avg = k̂. A ‘point
type’ refers to the category in which the ActivePoint falls in – either Normal,
Inflection, or SharpEdge.

Let us call this ‘packed’ primitive point ActivePoint. Then it follows that an
ActivePoint extends the definitions of a PrimitivePoint with the active con-
tents listed in Figure 3.2. In section 3.5, we will discuss the “Active Sampling”
algorithm that computes all necessary measurements that can immediately de-
duce the point type as either Normal, Inflection, or SharpEdge.

3.4.2 Temporal Traces

A structure similar to the doubly-connected LinkedList serves well as a con-
tainer to store the ActivePoints in their temporal order. This structure is
essentially, our Trace. Now, the same LinkedList container also serves well to
store a set of Traces in their temporal order. We depict this straight-forward
relations in Figure 3.3.

3.4.3 Spatial Traces

More often than not, we need to answer queries requested directly from the 2D
plane, when interfacing with the graphics becomes inevitable. For example, given
a query point q, return all the Traces stabbed by q. Or, given a query rectangle
r, return all the Traces overlapping the range of r. These kinds of queries are
efficiently handled if we have an underlying spatial structure that indexes the
2D boundaries of each Trace in accordance to their positions on the plane.

3.5. ACTIVE SAMPLING 29

LinkedList <ActivePoint>

Trace

• Path: getPath()
• Rectangular bounds: getBounds()

extends

LinkedList <Trace>

TemporalTraces

• Trace: getTrace(Time t)

extends

Figure 3.3: Temporally ordering ActivePoints and Traces.

There are many geometric structures that can store 2D data and offer efficient
space and runtime to build and answer both stabbing and range queries. They
are mostly cascaded 1D structures like the Range-tree, Interval-tree, Segment-
tree, and the Priority-search-tree [25] constructed to handle two dimensional
data. These though, can be costly when we need to perform online updates.
We want to consider the non-static insertions and deletions of Traces on the
canvas environment, and seek for a structure that actively and reliably balances
its contents in good acceptable runtime.

For the purpose of our discussions, let us concentrate on placing the spatial
Traces in an R-tree structure [40], or any of its extended variants [114, 33, 3].
This, we shall discuss further in-depth when we deliberate on the effects of spatial
interfaces. For now though, we shall state generically how the structure for
SpatialTraces is conceived through Figure 3.4.

RTree <Trace>

SpatialTraces

• Traces: getTraces(Point q)
• Traces: getTraces(Rectangle r)

extends

Figure 3.4: Structure to order Traces according to their spatial locations.

3.5 Active Sampling

The technique we present here goes beyond the notion of simply storing (x, y)
coordinates into a PrimitivePoint. That is, whenever the recently sampled
points become available for the computation of the measure-values highlighted

30

in section 3.3, we carry them out immediately. And from the way the values
are primed, we shall see that the only latency introduced in this process is a
time(-stamp) difference of three consecutive points. For example, suppose pn is
the newest sampled point from the Trace environment at time tn. Then it is
only at this instant that we can compute the second derivative at pn−2, since
d2pn−2 requires two future and past values as stated in Equation 3.2.

The purpose of sampling “actively” is to be able to perform all the necessary
computations needed to classify the point types within a Trace, even before
the very final point of the Trace is sampled. We can go on further to add
that the domain-specific application may execute any additional routines to the
identified crucial points, even before the pen-up event is detected. We state
the active sampling routine in the ActiveSampling.addPoint pseudo-codes in
Algorithm 1, showing that we can perform the entire identification process in
just one sweep of the points in the Trace.

An ActivePoint is instantiated as a Normal point type, and we we mark it as
crucial by changing the point type to either type Inflection or type SharpEdge,
depending on the reading of the curvature.

Finally, let us now formally denote a Trace T which has undergone the
active sampling process shown above, as an ActiveTrace TM.

Definition 3.16 [ActiveTrace]. An ActiveTrace TM has all its points pi ∈
TM marked as either SharpEdge, Inflection, or Normal.

Both T and TM contain the same set of points; the latter is the product of
Algorithm 1 based on the former, and that, one can be plainly expressed as a
function over the other as

TM ←− ActiveSampling(T = {p1, . . . , pn}). (3.6)

3.5. ACTIVE SAMPLING 31

Algorithm 1: ActiveSampling.addPoint (ActivePoint pn)

Output: Computes the ‘active’ attributes in pn and adds it into the
current Trace T .

Set Type(pn) ← SharpEdge;1

if T is empty then Add T ← pn;2

else3

Set dy/dx(pn)← (pn.y − pn−1.y)/(pn.x− pn−1.x);4

if pn−2 DO NOT exist then Set dy/dx(pn−1)← dy/dx(pn);5

else6

Set Type(pn−1) ← Normal;7

Set dy/dx(pn−1)← (pn.y − pn−2.y)/(pn.x− pn−2.x);8

if pn−3 exists then9

Set pk ← pn−2;10

Set ddy/ddx(pk)← (pk+1.y − pk−1.y)/(pk+1.x− pk−1.x);11

Set pk.k̂ ← Compute average curvature; /* Equation 3.5 */12

if |pk.k̂| > SHARP TOL then Set Type(pk) ← SharpEdge;13

else if sign(pk.k̂) 6= sign(pk−1.k̂) then14

Set Type(pk) ← Inflection;15

32

Part II

Active-Smoothing & Symbolic
Representation

33

CHAPTER 4

Confluent Lines Over Ordered Point
Sets

Smoothing out handwritten Traces by blending in a steady stream of undulating
Curves through a set of indeterministically positioned points on the 2D plane,
by finding the path through which provides the most desirable approximation.
This is a problem that overlaps two classical and well-known mathematical co-
nundrums; interpolation and regression. In interpolation, an exact fit is required
of the resultant set of Curves over all the points in the Trace, while regression
allows for some degree of freedom for an estimated fit by minimizing the error
measures between the original Trace and its corresponding generated Curves.
An approximation of a Trace T by a CompositeCurve KC is deemed desirable,
if for every original point p ∈ T , its distance to the corresponding ‘smoothed’
point pθ ∈ KC is confined to an allowable error bound value ε.

While there are authors who go on to extrapolate their final solutions [118,
10], by constructing a set of new points for their curves that are outside the
jurisdiction of the given discrete set in the original Traces, many consider their
results less meaningful and are subject to greater uncertainty [80, 125, 83]. We
concur with this view and further find that extrapolated curves over handwritten
Traces tend to exaggerate several non-existential features of the original Traces,
and, more disturbingly, contribute to the suppression of the personal ‘style’ and
‘flair’ that are embedded inside the rudimentary handwritings. We show a few
examples of what we mean by this in the figures throughout the chapter.

This danger of artificially instantiating curves that over-estimate the original
Traces is also eminent in the regression process – if we allow too much freedom to
be dictated in the constraints. Interpolation, then it seems, is the logical answer
if everything intrinsic about a Trace is to be preserved. But this is true only if we
assume that the points lie exactly where they were supposed to be and were not

35

36

interfered by noisy interruptions, however minimal, through the sampling and
digitizing processes. These indeterministically scattered points, though, leave
important clues on their trails that we can pick up from observing their overtures
and trajectory displacements. Thus, it makes sense to retain several of the more
dominant original points that are crucial in maintaining the overall shape of
the Trace and ensure that our generated Curves pass through them. The less
dominant ones, on the other hand, should not be dismissed completely but acted
upon as guides in controlling the paths of the Curves as they traverse from one
crucial point to the next, to within their spheres of trajectory.

Our methodologies that we shall present in chapter 9 go further than to just
desirably approximate handwritten Traces with a set of well-placed second-order
Curves. Over the next few chapters, in the run-up to the final approach, we
shall be assembling the pieces necessary to realise our active-smoothing solution.
Simply put, active-smoothing turns the ‘passive’ routine of smoothing Traces
‘active’. That is, in the classical cases, the smoothing problem is tackled as an
‘offline’ problem, where complete data of the Traces are at our disposal. Contrary
to this, the ‘online’ problem warrants that we work with incomplete data actively.
Which means we perform all the necessary computations on the current set of
available points, while rendering the smoothed arcs on to the screen, and while
data is still being received from the transducer device.

We will show how to carry this out efficiently through the insurmountable
reduction of the expensive and inherently linear computations per input point,
down to a constant. But first, let us prepare ourselves with the obligatory liter-
ature and state-of-the-art related to this unique problem domain. Spline curves,
described by algebraic polynomials, interest us. This chapter discusses them
thoroughly and we arranged it to objectively lay our grounds in support of our
goal to achieve active-smoothing.

4.1 Undulating Spline Curves

The Curve we described in Definition 3.4 takes two forms of representations;
either by the direct algebraic expression f(x, y), or by parametrically combining
the individual axis functions P (t)|r = (x(t), y(t)), for a predefined resolution r.
In the digital world, this translates the Curve to be composed of a finite number
of short line-segments.

Thereafter, the curves that we see on screen are in fact ‘approximations’. And
on close inspection, they have a tendency to visually breakdown into pixelated
reditions at very deep zoom levels. Naturally, to get a better approximation, we
increase the resolution r to generate more line-segments per unit length. Thus,
if the Curve is to be treated simply as a container to store line-segments (or
points), then increasing r would inevitably increase the amount of data required

4.2. LAGRANGE INTERPOLATION 37

to represent the Curve. In consequence, this large data size is liable for the
slowdown factor added to the process of drawing out the Curve, as well as
performing any future computations on the Curve.

When too few points are not satisfactorily pleasing on the output renditions,
and when too many points make it overwhelmingly tedious to maintain precise
operational efficiency, then clearly, we need a better way to represent the Curves
than just with a set of elementary points. The Curves should only describe the
formation of its mathematical entity and not be burdened with generating the
line-segments to be drawn.

A curve that is made to pass through a set of predetermined points is often
referred to as spline curves. The term originated in manual design, where a
‘spline’ is a word used to describe a long, narrow, and relatively thin strip of
wood (or metal) used by shipbuilders and draftsmen. This strip was held in
place by weights to create a curve which could then be traced.

An unconstrained natural spline curve of degree n comes under a class of
functions that maps a set of real numbers into itself, known as the ‘algebraic
polynomials’. It takes the form

Pn(x) = anx
n + an−1x

n−1 + . . .+ a2x+ a1, (4.1)

where n is a non-negative integer and a1, . . . , an are real constants. These poly-
nomials uniformly approximate continuous functions on a closed and bounded
interval [a, b], and which resultant curves adhere to the Weierstrass approxima-
tion in Theorem 4.1.

Theorem 4.1 (Weierstrass Approximation [12]) Suppose that f is defined and
continuous on [a, b]. For each ε > 0, there exists a polynomial P (x), with the
property that

|f(x)− P (x)| < ε, for all x in [a, b].

The extensive proof of this theorem is given by Burden and Faires [12].

4.2 Lagrange Interpolation

An important reason for considering the algebraic polynomials class is that the
derivative and the indefinite integral of a polynomial are easy to determine, and
they are also in the form of polynomials. The Lagrange polynomials are favoured
over the Taylor polynomials when approximating continuous functions because
they do not have the limiting property of agreeing with a given function at only
a specific point like Taylor’s do [12].

38

The Lagrange polynomial is determined by specifying the points on the plane
through which it must pass. Each point contributes to a coefficient in Equa-
tion 4.1, and that the total number of points on the plane that the curve goes
through is the degree of the polynomial.

Let T = {(x1, y1), . . . , (xn, yn)} be the set of points to be interpolated using
the Lagrange polynomial. Suppose that the points in T are sampled from a
continuous x-monotone function, then x1 < x2 < . . . < xn and that (xi, yi) =
(xi, f(xi)). We can rewrite Equation 4.1, so that the coefficients are expressed
as a function of the n input points as follows:

P (x) = L1(x)f(x1) + L2(x)f(x2) + . . .+ Ln(x)f(xn)

P (x) = L1(x)y1 + L2(x)y2 + . . .+ Ln(x)yn =

n∑

k=1

Lk(x) yk.

The coefficients Lk(x) of the Lagrange polynomial is computed by the equation

Lk(x) =
(x− x1)(x− x2) . . . (x− xk−1)(x− xk+1) . . . (x− xn)

(xk − x1)(xk − x2) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)

Lk(x) =
n∏

i=0,i 6=k

x− xi
xk − xi

.

Example 4.2 Given three points in T , so that T = {(235, 27), (300, 50), (365, 37)},
evaluate the Lagrange polynomial at x = 288.

Solution. We first compute the three coefficients for the Lagrange polynomial
P (x). In nested form, they are

L1(x) =
(x− 300)(x− 365)

(235− 300)(235− 365)
=

(x− 665)x+ 109500

8450
;

L2(x) =
(x− 235)(x− 365)

(300− 235)(300− 365)
=

(x− 600)x+ 85775

−4225
; and

L3(x) =
(x− 235)(x− 300)

(365− 235)(365− 300)
=

(x− 535)x+ 70500

8450
.

This gives the Lagrange polynomial

P (x) = 27
(x− 665)x+ 109500

8450
+ 50

(x− 600)x+ 85775

−4225
+ 37

(x− 535)x+ 70500

8450
.

Then, an approximation at x = 288, we get P (x = 288) = 48.4634.

Coincidentally, the three points in T are sampled from Figure 4.1, forming
part of the top profile of a stretching cheetah. We rendered the approximated

4.2. LAGRANGE INTERPOLATION 39

Figure 4.1: Interpolating three points with the Lagrange polynomial.

Figure 4.2: Interpolating ten points with the Lagrange polynomial.

curve generated by the Lagrange polynomial P (x) from Example 4.2 on the
closed range x ∈ [235, 365] in red.

Suppose we now add seven more points to T , choosing specific points from
the top profile of the cheetah until we reach its tail. The generated 10th-order
Lagrange polynomial returns the curve on the closed interval x ∈ [235, 754], as
depicted in Figure 4.2. The generated curve steadily approximates the profile
between the second point and the point before the last. We observe two small
fluctuations at both endpoints, which resulted from the curved being forced to
pass through all ten points in T .

The fluctuations become even more uncontrollable when we further add four
more points at the head of the cheetah. This is evident in Figure 4.3. The
14th-order curve passes through all 14 points in T , but clearly, the resultant
interpolation is undesirable.

In general, we learn two important lessons from this example. Firstly, forcing

40

Figure 4.3: Interpolating 14 points with the Lagrange polynomial.

a single algebraic polynomial curve to pass through n points, if n is large, may
lead to unpredictable fluctuations. The oscillatory nature of high-degree polyno-
mials and the property that a fluctuation over a small portion of the interval can
induce large fluctuations over the entire range restricts their use – this problem
is known widely as the Runge phenomenon [2, 35]. This is in addition to the ex-
pensive precomputations to determine all n coefficients of P (x). And secondly, a
smaller n tend to produce acceptable and stable arcs, so that we can join several
successive arcs to approximate a longer curve. These arcs can be made flexible
and easy to control as we shall discuss in the next two sections.

It is because of these reasons that the state-of-the-art of approximating a set of
points applies the techniques of procuring only second- and third-order spline
curves. The points in the given set are grouped according to segments, and on
each segment, a spline curve is described for it. The variety of spline curves
dictates the behaviour of the overall approximation, in terms of the efficiency
in instantiating them as well as the efficiency of controlling them to fit a set of
criteria.

Interchangeably, we shall use the word ‘polynomial’ to also mean ‘curve’,
from what we have already gathered in this section. We shall now take a look
at two very popular controllable curves in the upcoming sections; the cubic
splines and Bézier curves. Together they provide us with the fundamentals of
the ‘piecewise-polynomial approximation’ method.

4.3 Cubic Splines

A set of piecewise-third-order polynomials constitutes the cubic spline, and it
passes through a set of n rudimentary points. A general cubic polynomial in-
volves four constants, and hence, this provides sufficient flexibility in the cubic

4.3. CUBIC SPLINES 41

spline procedure. It also ensures that the interpolant is continuously differen-
tiable. The second derivative of each polynomial is commonly set to zero at the
endpoints, since this provides a boundary condition that completes the system of
n−2 equations. This forces the spline to be straight lines outside the endpoints,
while not disrupting its smoothness, and leads to a simple tridiagonal system
which can be solved easily to give the coefficients of the polynomials.

Definition 4.3 Let T = {(x1, y1), . . . , (xn, yn))} be an x-monotone Trace con-
taining n points on the 2D plane, so that x1 < x2 < . . . < xn. Then S(x) is
the cubic spline interpolant if there exists n cubic polynomials Sk(x) with the
coefficients ak, bk, ck, and dk, so that

Sk(x) = S(x) = ak(x− xk)3 + bk(x− xk)2 + ck(x− xk) + dk, (4.2)

for x ∈ [xk, xk+1], where k = 1, . . . , n−1, and further satisfying the four following
properties:

(i) That the spline passes though all n points; i.e. S(xk) = yk for k = 1, . . . , n;

(ii) That the spline forms a continuous curve over the entire interval [x1, xn];
i.e. Sk(xk+1) = Sk+1(xk+1) for k = 1, . . . , n− 2;

(iii) That the spline forms a smooth function; i.e. S′k(xk+1) = S′k+1(xk+1) for
k = 1, . . . , n− 2; and

(iv) That the second derivative is continous; i.e. S′′k (xk+1) = S′′k+1(xk+1) for
k = 1, . . . , n− 2;

The first and second derivatives are fundamental to this cubic spline proce-
dure, and with reference to Equation 4.2, they are

S′k(x) = 3ak(x− xk)2 + 2bk(x− xk) + ck; and (4.3)

S′′k (x) = 6ak(x− xk) + 2bk. (4.4)

Now let x = xk, then from Equation 4.2, we get

Sk(xk) = dk; and

Sk−1(xk) = ak−1(xk − xk−1)3 + bk−1(xk − xk−1)2 + ck−1(xk − xk−1) + dk−1.

From property (ii) in Definition 4.3, we know that Sk−1(xk) = Sk(xk). Then,
h = xk − xk−1, the following is true:

dk = ak−1h
3 + bk−1h

2 + ck−1h+ dk−1

⇔ dk+1 = akh
3 + bkh

2 + ckh+ dk. (4.5)

42

Similarly, from the first derivative of Sk(x) in Equation 4.3,

S′k(xk) = ck; and

S′k−1(xk) = 3ak−1(xk − xk−1)2 + 2bk−1(xk − xk−1) + ck−1.

By property (iii) in Definition 4.3, S′k−1(xk) = S′k(xk), so that

ck = 3ak−1h
2 + 2bk−1h+ ck−1

⇔ ck+1 = 3akh
2 + 2bkh+ ck. (4.6)

Finally, from the second derivative of Sk(x) in Equation 4.4,

S′′k (xk) = 2bk; and

S′′k−1(xk) = 6ak−1(xk − xk−1) + 2bk−1;

and by property (iv) in Definition 4.3, S′′k−1(xk) = S′′k (xk), we get

2bk = 6ak−1h+ 2bk−1

⇔ 2bk+1 = 6akh+ 2bk. (4.7)

Putting this all together, and let Mk = S′′k (xk) = 2bk, we solve for the
coefficients ak, bk, ck, and dk of Sk(x). By property (i) of Definition 4.3, dk = yk
when x is set to xk. From Equation 4.7,

6akh = 2bk+1 − 2bk

ak =
Mk+1 −Mk

6h
.

Rewriting Equation 4.5, we get

ckh = dk+1 − akh3 − bkh2 − dk
ckh = yk+1 − yk − h2(akh+ bk)

ck =
yk+1 − yk

h
− h(Mk+1 + 2Mk)

6
.

We now have the information to determine all the weights for our n−1 equa-
tions that describe all the cubic polynomials for the interpolated cubic spline on
T . We relate the system of equations in matrix form as follows. From Equa-
tion 4.6, and substituting the derived expressions for ak and bk, in terms of Mk,
we get

ck+1 = 3akh
2 + 2bkh+ ck

yk+2 − yk+1

h
− h(Mk+2 + 2Mk+1)

6
= 3

Mk+1 −Mk

6h
h2 +Mkh+

yk+1 − yk
h

− h(Mk+1 + 2Mk)

6
h

6
(Mk + 4Mk+1 +Mk+2) =

1

h
(yk − 2yk+1 + yk+2)

Mk + 4Mk+1 +Mk+2 =
6

h2
(yk − 2yk+1 + yk+2),

4.3. CUBIC SPLINES 43

for k = 1, . . . , n− 2. This gives the matrix equation

1 4 1 0 . . . 0 0 0
0 1 4 1 . . . 0 0 0
0 0 1 4 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 4 1

M1

M2

M3
...

Mn−1

Mn

=
6

h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−2 − 2yn−1 + yn

. (4.8)

The system in Equation 4.8 is under-determined, as the main matrix is made
up of n − 2 rows and n columns. For us to generate a unique cubic spline, we
need to institute two other conditions upon the system, and in doing so, we get
several different types of cubic splines. We highlight three of them – the natural
cubic spline, the parabolic runout spline, and the cubic runout spline – in the
following sub-sections.

Figure 4.4: Interpolating 14 points with the Natural Cubic Spline.

4.3.1 Natural Cubic Spline

The natural cubic spline, as what we have been discussing thus far, stipulates
that the spline extends itself as a simple line outside the endpoints. This means
that the second derivatives at the endpoints are equal to zero, so that

M1 = Mn = 0.

As such, we can remove the first and last columns of the matrix in Equation 4.8
since they correspond to M1 and Mn, which are both zero. The resultant (n−2)
by (n − 2) matrix is unique and will determine the remaining solutions for M2

44

to Mn−1.

4 1 0 . . . 0 0
1 4 1 . . . 0 0
0 1 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 4

M2

M3
...

Mn−2

Mn−1

=
6

h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−2 − 2yn−1 + yn

. (4.9)

4.3.2 Parabolic Runout Spline

McKinley and Levine [77] prescribed the parabolic runout spline to obey the
conditions that the second derivatives at the endpoints M1 and Mn are equal to
M2 and Mn−1, respectively, so that

M1 = M2, and Mn = Mn−1.

This forces the spline to extend itself as a parabolic curve at its endpoints.
McKinley and Levine claim that this type of cubic spline is useful for approx-
imating periodic and exponential data. We state the matrix expression for for
the parabolic runout spline in Equation 4.10.

5 1 0 . . . 0 0
1 4 1 . . . 0 0
0 1 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 5

M2

M3
...

Mn−2

Mn−1

=
6

h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−2 − 2yn−1 + yn

. (4.10)

4.3.3 Cubic Runout Spline

Finally, we can force the spline to degrade to a single cubic curve over the last two
intervals at both its endpoints [77]. This results in a more pronounced curvature
at the endpoints when compared to the natural and parabolic runout splines.
By assigning

M1 = 2M2 −M3, and Mn = 2Mn−1 −Mn−2,

we get the matrix expression in Equation 4.11.

6 1 0 . . . 0 0
1 4 1 . . . 0 0
0 1 4 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 6

M2

M3
...

Mn−2

Mn−1

=
6

h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−2 − 2yn−1 + yn

. (4.11)

4.3. CUBIC SPLINES 45

4.3.4 Other Types of Cubic Splines

The vast literature contains many other types of cubic splines, both popular
and unpopular, but we shall not go into details discussing every one of them
here. The setting up of all cubic splines, in general, are similar to the ideas
that we summed up and presented in this chapter. However, to end our current
deliberations before moving on to the Bézier curves, let us briefly mention four
other cubic splines that came across us as interesting; the Clamped Spline, the
Cardinal Spline, the Catmull-Rom Spline, and the B-Spline.

A Clamped Spline satisfies the boundary conditions that S′(x1) is equal to
the derivative at p1 ≡ (x1, y1) ∈ T , and similarly S′(xn) equals the derivative at
pn ≡ (xn, yn) ∈ T [12]. The matrix in Equation 4.8 can be easily reformulated
to reflect these constraints.

The Cardinal Spline takes the positions of the current point and its two imme-
diate neighbours, and averages out the positions using a tension value between
0 and 1 [117]. This smooths the line and makes a path that is gently curved
through the points rather than zig-zagging through them.

Catmull-Rom Splines are formulated such that the tangent at each point
pi ∈ S(x) is calculated using the previous and next points on the spline. They are
continuous and differentiable throughout the closed interval, have local control
and interpolations, but they do not lie within the convex hull of their control
points [14, 27].

Finally, the B-Splines (short for basis-Splines) of Schoenberg share many
important properties with Bézier curves, because the former is a generalization
of the latter [97, 16]. They refer to spline curves parameterised by spline functions
that are expressed as linear combinations of the B-Splines. They are simply a
generalization of the Bézier curves, which we shall discuss in the next section,
and they can avoid the Runge phenomenon without increasing the degree of the
B-Splines.

However, B-Splines are still polynomial curves and polynomial curves cannot
represent many useful simple curves such as circles and ellipses. Thus, a gener-
alization of B-spline, NURBS (Non-Uniform Rational B-Spline), is required, and
we shall discuss its development through the Bézier curves.

4.3.5 Related Works Involving Cubic Splines

In the field of geology, the main complication in geological shape analysis is that
many shapes are difficult to orient and cannot be represented as single-valued
functions in either Cartesian or polar coordinates. Evans et al. [31] showed that
the parametric cubic spline is a versatile solution to describe such shapes, es-
pecially when studying the outlines of microfossils. Their spline interpolation

46

technique is applied to the Archimedean Spiral and to the Rock Fold classifi-
cation. The former is a smooth curve containing great variations in curvature,
and the latter is a classification process for shapes of rock folds based on the
orthogonal thickness curve or by the amount of convergence in “dip isogons”.
Their results show that the spline curves were able to retain the convergence
properties of the curves they want to approximate, but at a cost of including
more data points.

Plass and Stone [98] presented their work on tackling the problems that arise
when trying to use 2D curved shapes in an interactive design environment, where
their design methodology was to represent all shapes analytically using piecewise-
cubic polynomials. Their developed algorithm takes a set of sampled points and
iteratively derives a single parametric cubic polynomial that lies close to the data
points as defined by an error metric based on least-squares. The combination
of this algorithm with dynamic programming to determine the crucial points
from the sampled data set returned good results over a range of shapes and
applications. Many other works on such a similar interactive design exist that
involve cubic splines and, among the more interesting ones, are explained by
Banks and Cohen [5] on real-time spline curves, by Toraichi et al. [122] on coding
system for evaluating meat quality, and by Flory and Hofer [34] on fitting cubic
curves on manifolds.

Metafonts and true-type fonts (TTFs) are wholely described by a set of in-
structional curves, and parts of the contours of these fonts involve cubic splines.
Knuth’s [58] Metafont manual highlights a system for the design of alphabets
suited to raster-based devices that print or display text. More often than not, we
also see several works involving the reverse engineering of this; that is, given a
font’s contour, the authors seek to capture the outline of the font [63, 136]. Sar-
fraz and Raza [63] combined spline techniques with genetic algorithms to search
for candidate crucial points based on the Akaike’s Information Criterion (AIC),
which on the average, takes 50 epochs for the mutation algorithm to arrive at a
solution.

4.4 Bézier Curves

Spline curves, we saw, were conceived with the intention that they interpolate the
entire given set of n points in the plane. And as such, those points must be rigid
in their own positions and rigid with respect to the positions of their immediate
neighbours. In other words, if a single point is misplaced, then the impact and
accuracy of the resultant spline curve may be affected. This is where regression
comes in. A mixture of regression and interpolation techniques may prove useful
when approximating a set of points whose positions we cannot completely trust,
and the Bézier curves offer such a methodology.

4.4. BÉZIER CURVES 47

Given a set of m + 1 control-points P0,P1, . . . ,Pm, the parametric Bézier
Curve K(t) of degree m is described using the Bernstein polynomial Bi,m(t) as

K(t) =
m∑

i=0

Bi,m(t)Pi =
m∑

i=0

(
m
i

)
(1− t)m−itiPi, for t ∈ [0, 1]. (4.12)

For the same set of control-points, a rational Bézier Curve K(t) adds adjustable
weights to provide closer approximations to arbitrary shapes. Its numerator is a
weighted Bernstein-form Bézier Curve and the denominator is a weighted sum
of Bernstein polynomials.

K(t) =

∑m
i=0Bi,m(t)Pi wi∑m
i=0Bi,m(t)wi

=

∑m
i=0

(
m
i

)
(1− t)m−itiPi wi∑m

i=0

(
m
i

)
(1− t)m−itiwi

, for t ∈ [0, 1]. (4.13)

The Bézier CurveK(t) is derived from the recursive midpoint rule of de Castel-
jau [43]. Since this formation from the recursive midpoint rule links directly to
our methodologies later, we shall then present de Casteljau’s method in a more
appropriate manner in section 8.1. The Bézier Curve K(t) has the following
properties:

• It is closed under perspective transformation, and can represent conic sec-
tions exactly;

• It always passes through the first and last control-points, and lies within
the convex hull of all the control-points;

• It is tangent to P0P1 and Pm−1Pm at its endpoints; and

• It can be translated and rotated by performing these operations directly
on the control-points.

4.4.1 Parametric Continuity

Normally a single Bézier Curve is not enough to sufficiently and desirably define
or approximate a complex shape. A piecewise construction technique is often
unavoidable [27, 12]. In doing so, there are two types of continuity that we
need to consider when joining two consecutive Bézier Curves; the parametric
continuity, and the geometric continuity. We have already explained the latter
in section 3.3, in terms of G0, G1, and G2 (geometric) continuity.

Parametric continuity of the ith degree is denoted by Ci. This means that
two adjacent Curves have identical ith degree parametric derivatives, as well
as all lower derivatives. For example, let us reflect the first three degrees of
parametric continuity as we did with the geometric continuity as follows:

48

• C0 continuity: Two adjacent Curves share a common endpoint.

• C1 continuity: Two adjacent Curves have the same tangent vector, both
in magnitude and direction, at their common shared point.

• C2 continuity: Two adjacent Curves have the same second-order para-
metric derivatives, both in magnitude and direction, at the common shared
point, on top of having C1 continuity.

In general, two Curves which are parametric-continuous to a certain degree is
also geometric-continuous to that same degree. But the reverse is not so.

4.4.2 Controlling Cubic Bézier Curves

A cubic Bézier Curve K(t), from Equation 4.12, is defined by four control-points
P0, P1, P2, and P3 in the expression

K(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3. (4.14)

Let TS = {p1, . . . , pn} be a TraceSegment such that the points in TS are aligned
in a trajectory where the connected Edges form a path between p1 and pn with at
most two extremums. Then the task is to find a suitable cubic Bézier CurveK(t)
whose endpoints are anchored at p1 and pn, and where the path between the
Curve K(t) and the TraceSegment TS satisfies the Weierstrass approximation
stated in Theorem 4.1, for a predefined value of ε.

p1 = P0

P1

P2

P′
1

P′
2

P3 = pn

K(t)

K ′(t)
TS

Figure 4.5: Estimating with a cubic Bézier Curve and the effects of repositioning
the control-points P1 and P2 to P′1 and P′2, respectively, to get the corresponding
Curves K(t) and K ′(t).

4.4. BÉZIER CURVES 49

At a glance, one can see that the intermediate points in TS play the important
role of serving as guides in determining the shape and accuracy of K(t). They
may or may not lie on K(t), and hence, are synonymous to the correlation
coefficients in a regression process (in this case, the regression of points for a
cubic Curve). In contrast to the spline techniques, the information drawn out
from these points in TS are not explicitly used to directly generate K(t). Instead,
they are referred to implicitly, and it suffices to ensure that the parametric and
geometric continuities at the anchor-points are maintained.

This implies that we fix the tangent lines through the anchor-points p1 and pn
(which corresponds to the control-points P0 and P3 of K(t)) to ensure that
smoothness is maintained between the neighbouring Curves. As a consequence,
the positions of the coinciding control-points P1 and P2 are limited, and can
be moved only up and down the two fixed tangent lines to arrive at a desirable
approximation for TS.

4.4.3 Related Works Involving Cubic Bézier Curves

Several authors have showcased their works in obtaining the optimal positions
for the control-points P1 and P2. Yang et al. [136] used a curve-fitness evaluation
cost to guide the recursive adjustment routine of the positions for the control-
points. We found their methods to be rather heuristic, and perhaps, suspicious
to a point that desirable approximations can be achieved. Let us explain.

For any point pi ∈ TS, there exists a corresponding parametric point K(ti) on
the Bézier Curve that is the intersection of the line perpendicular to the baseline
P0P3. The curve-fitness cost function is the sum of the distance-squared between
pi and K(ti) expressed as follows:

D(K,TS) =
n−1∑

i=2

‖K(ti)− pi‖2. (4.15)

The task defined by Yang et al. was then to find a Bézier Curve K(t) that will
minimize D(K,TS).

Let LT0 and LT3 be the tangent lines through the anchor-points P0 and P3,
measured from the data set in TS. Let v1 and v2 respectively mark the 1

3 and 2
3

relative positions of the baseline distance from P0. Let L1 and L2 be the lines
through v1 and v2 that are perpendicular to the baseline P0P3. Then, initially,
Yang et al. set the control-point P1 as the intersection point of LT0 and L1.
Similarly, the control-point P2 is the intersection of LT3 and L2. We give an
example of the notations in Figure 4.6.

Next, we summarize their iteration step as follows:

50

p1 = P0

P1

P2

P3 = pn

v1

t1

d1
v2

t2

d2

L1

L2

LT0

LT3

Figure 4.6: Determining P1 and P2 by Yang et al.

• Let t1 and d1 be the points where L1 cuts the instantiated Curve K(t)
and the TraceSegment TS, respectively. Similarly, let t2 and d2 be the
points cut by L2. Let us denote them simply as ti and di, for i = 1, 2.

• If ‖ti − di‖ > 0 then Pi is moved downwards along Li for a distance of
1
10‖Pivi‖, otherwise, it is moved upwards for the same distance ratio.

• If ‖ti−di‖ = 0 but D(K,TS) is large, then P1 is moved to the left, parallel
to the baseline, at half the distance between ‖P0v1‖. The other control-
point P2 is moved to the right, parallel to the baseline, at half the distance
between ‖v2P3‖.

At every new positions of P1 and P2 at the end of one iteration step, a new
Curve K(t) is computed, and so are the points ti, di, and vi corresponding to
the new line Li. The recursion continues until D(K,TS) reaches a suitably small
value.

In their results, Yang et al. showed that it takes on average only 10 iterations
before 100% fit is achieved. We find their results rather debatable mainly be-
cause repositioning the control-points P1 and P2 as they did break the C1 (and
C2) continuities at the endpoints of K(t). And so, while the approximations
were deemed desirable from the curve-fitness cost function, we suspect that the
Curves generated may not be visually correct.

Sarfraz et al. [112] offered a more mathematical initial approach in their

4.4. BÉZIER CURVES 51

recursive technique to determine the starting positions for P1 and P2. They
made a claim that from the cubic expression in Equation 4.14, the blending
coefficients 3t(1− t)2 and 3t2(1− t) corresponding to the control-points P1 and
P2, “maximizes” at t = 1

3 and t = 2
3 , respectively. These occur at the original

points p(n−1)/3 ∈ TS and p2(n−1)/3 ∈ TS, where n is the total number of points

in the original TraceSegment. The two unique conditions, K(t = 1
3) = p(n−1)/3

and K(t = 2
3) = p2(n−1)/3, are then used to solve the simultaneous equations for

P1 and P2;

p(n−1)/3 = (1− 1

3
)2P0 + 3

1

3
(1− 1

3
)2P1 + 3(

1

3
)2(1− 1

3
)P2 + (

1

3
)3P3, and

p2(n−1)/3 = (1− 2

3
)2P0 + 3

2

3
(1− 2

3
)2P1 + 3(

2

3
)2(1− 2

3
)P2 + (

2

3
)3P3;

where P0 = p1 and P3 = pn are the known endpoint coordinates of TS.

p1 = P0

P1

P2

P3 = pnpn−1
3

K(t = 1
3
)

p 2(n−1)
3

K(t = 2
3
)

Figure 4.7: Determining initial P1 and P2 by Sarfraz. This ensures that the
Curve K(t) passes through the unique conditions at K(t = 1

3) = p(n−1)/3 and

K(t = 2
3) = p2(n−1)/3. However, as evident from this figure, the geometric and

parametric continuities at the anchor-points P0 and P3 are broken.

The same curve-fitness cost function from Equation 4.15 is used to measure
the error of the generated K(t) against the original points in TS. However,
unlike the recursive steps in Yang et al.’s method, Sarfaz et al. repositioned the
control-points P1 and P2 strictly to lie along the tangent lines LT0 and LT3,
respectively.

In another study, Pal et al. [94] proposed a similar method to Sarfaz et al.’s,
except that they used t = 1

4 and t = 3
4 instead. Their speciality field on face-

recognition is the grounds behind their observation for the two values of t.

The remainder formula composed by Sederberg and Farouki [113] is a tech-
nique for estimating known and well-defined mathematical functions with the

52

cubic Bézier Curves. It evolves around the Lagrange polynomials we discussed
earlier in section 4.2. However, we note that their method is not suitable for
approximating unknown and arbitrary shapes.

p1 = P0

P1

P2

P3 = pn
pn−1

4

K(t = 0.25)

p 3(n−1)
4

K(t = 0.75)

Figure 4.8: Determining initial P1 and P2 by Pal et al.. This ensures that the
Curve K(t) passes through the unique conditions at K(t = 0.25) = p(n−1)/4

and K(t = 0.75) = p3(n−1)/4. Also in this particular example, the geometric and
parametric continuities at the anchor-points P0 and P3 are broken.

We mentioned earlier that non-rational Curves cannot desirably estimate
and cannot always satisfy the Weierstrass approximation theorem. There are
very few authors who opted to use the rational version of the cubic Bézier
Curves, as these techniques are often very complex as we need to determine
the weights w0, w1, w2, and w3, in addition to finding the optimal positions for
the control-points P1 and P2. Sarfraz demonstrated this with the rational cubic
interpolant based on the cubic Hermite function [111].

4.5 Are Quadratic Curves Sufficient?

After reviewing the methodologies behind the cubic curves, we ask ourselves if
this approximation with third-order curves is really necessary. The main reason,
we think, that cubic Bézier curves were used was because it originated from
the manual method of hinting – a user actually has to be present in front of
the application program and manually set the control-points P1 and P2 until
he/she deems the arc approximating that particular portion of the whole curve
is visually satisfactory. Thus, the next logical question is to ask if it is worth to
spend processor resources for the hinting subroutines?

This thesis recommends that second-order curves are sufficient. This is rather
evident from the works of various authors that we highlighted in this chapter.

4.6. SYMBOLIC REPRESENTATION 53

That is, a ‘cubic’ curve is used to estimate an underlying set of points that are
inherently ‘quadratic’.

Already, if we apply Proposition 3.12, then it is sufficient that TS is made up
of only a set of second-order Curves. Granted that the correct placements and
accuracies of the combined Curves depend heavily on selecting the most ap-
propriate crucial points among all the pi in TS, but we shall see in the next
chapter that this can be done in a rather efficient manner. This sub-problem of
determining the optimal crucial points in TS is analogous to the polyline sim-
plification problem, and the results of which we use to build our own smoothing
algorithm in the later chapters.

The rest of the thesis reviews and proposes two other approximation tech-
niques for T , both of which involve only second-order Curves. Earlier on, we
stated our observations that polynomial curves cannot represent circles and el-
lipses, but in chapter 7 we prove that the opposite is true – that the scattered
and indeterministic points in handwritten Traces can be desirably approxi-
mated based solely on elliptic arcs. The second technique in chapter 8 returns
our deliberations back to the Bézier Curves, where we put together a technique
involving rational quadratic Bézier Curves.

4.6 Symbolic Representation

At the start of section 4.1, we pointed and reasoned out why a Curve should
not be treated simply as a container to hold a set of ‘smoothed’ points. What is
essential is that it holds just enough information, as a set of agreed instructions
for the curve-rendering application to act upon. In the abstract sense, this set of
limited instructions in a Curve is a symbolic representation of the actual curve
that is to be drawn on screen, or prepared for print. Ideally, a symbolic Curve
must be:

• Reproducible - the representation should give the same Curve every time;

• Computationally quick and accurate;

• Easy to manipulate (under Euclidean transformations);

• Flexible; and

• Easy to combine with other segments of the Curve.

These are rather similar to the definitions stated in Guru and Nagendraswamy [39]
of their representation of 2D shapes by symbolic features. The symbolic features
preserve both contour and region information, and are translation, rotation, re-
flection, and scale invariant.

54

Often it makes sense to have the represented information accorded firmly to
a point (or points) on the 2D plane at zoom level 1 (original 1-on-1 display reso-
lution), and then augment additional facts to the point (or points). For example,
in the case of the cubic spline curves, such symbolic information would be the
actual point pk of which the Curve will pass through, as well as appending all
four dully-computed cubic coefficients ak, bk, ck, and dk that guides the formation
of the Curve through pk. In the case of the Bézier curves, simply storing the
control-points (and the rational weights, if a rational curve is used) are sufficient,
since each curve can be independently distinguished from its neighbours.

Thus, a set of symbolic Curves representing a single Trace containing n
points will maintain an O(n) storage space. They also aid in detailing instruc-
tions to the rendering program, which can then decide at how fine a resolution
is needed to draw the curves in order to provide the best visual impact under
any zoom level.

CHAPTER 5

Polyline Simplification

We laid the grounds in chapter 3 to identify the crucial points in a Trace T .
Suppose now we decide to keep only those crucial points in T and remove all
other non-crucial points. Then this is congruous to the solutions of the polyline
simplification problem.

The main goal of the polyline simplification problem is to reduce the line data
substantially, while still preserving its appearance with respect to the original.
In other words, we keep only the critical points in the input polygonal path
that are vital to the overall shape of the polyline. The rest of the points are
removed (or not) depending on the desired level of simplification. The process
of simplifying lines is widely studied in the field of cartography [55, 79, 80],
where cartographers use different levels of details on different levels of scales for
displaying the same geographic data. From among the numerous techniques, we
shall focus our attention to three of the most prominent ones in this chapter, that
can be closely related to our problem of approximating curves over the digital
handwritings. They are namely, the Douglas-Peucker, the Reumann-Witkam,
and the Opheim [30, 102, 93] algorithms.

While the methods differ in many ways from the active-sampling routine
we proposed earlier, we are interested to know if the simplified polylines contain
exactly those points that we would deem crucial, particularly the inflection points
and the sharp-edge vertices. If such is the case, then we can draw a conclusion in
this chapter and continue to build on our earlier grounds and support McMaster’s
conjectures [80] to integrate the simplification and smoothing algorithms in line
generalization.

55

56

5.1 Categorization of Algorithms

Classical polyline simplification is the selective removal of ‘unwanted’ points,
based on a predefined tolerance value, that is made to serve two main objectives;
to reduce data volume, and to maintain the quality of polylines when scale is
reduced. Many algorithms have been put forward for this task of finding a subset
of the original set of points from a given polyline that is small enough, and yet,
in its simplified form, desirably approximates the original.

These algorithms were classified by McMaster [80] into five categories, in
terms of their handling of which of the n points in the original polyline to keep:

• Independent Point Routine

• Localized Processing Method

• Constrained Extended Local Processing Routine

• Unconstrained Extended Local Processing Routine

• Global Routine

Methods in the first four categories are sequential and process points in order
of their appearance from start to end. The global routines in the last category
process the polyline in its entirety.

The simplest of the five categories is the Independent Point Routine, where
all mathematical relationships between points are ignored, and the choice of
which points to retain is based on an independent criterion (or criteria). Two
notable examples where the algorithms under this category are computationally
efficient but give poor results are: the ‘n-th point routine’, where every n-th
coordinate point along the traversal is kept; and the ‘random point selection
routine’, where 1/n of the original points are randomly retained. Although the
resultant simplified polylines are unacceptable if high quality results are desired,
McMaster still regarded them as useful preprocessing steps especially for thinning
out very dense coordinate strings.

The Localized Processing Method takes into account the immediate neigh-
bours of a point. For example, the brute-force Vertex Reduction algorithm [121]
weeds out successive points that are clustered too closely to a single point pi that
comes to within a predefined radial distance ε centred at pi. There are many
more methods falling into this category, using more or less similar approaches
to the Vertex Reduction algorithm, including an algorithm that thresholds the
distance between a point and the line connecting its immediate neighbours, and
another that works with the angles between line-segments.

5.2. MEASURING THE QUALITY OF SIMPLIFIED POLYLINES 57

Both the Constrained and Unconstrained Extended Local Processing Rou-
tines consider points that are beyond the immediate neighbourhood and pro-
cess entire segments of the polyline. The Reumann-Witkam [102] algorithm
in section 5.4 is one such routine. It determines the trend of the original line
at a particular point and eliminates all subsequent points that do not follow
this trend. Other examples include the Opheim algorithm [93] as well as the
Reumann-Witkam-Douglas-Peucker algorithm [104], which we shall explain in
further details in section 5.5.

The one popular and widely used member of the fifth category is Douglas-
Peucker algorithm [30]. This Global Routine explained in section 5.3 uses a
divide-and-conquer approach, based on a predefined tolerance value ε. It has the
uncanny ability to accurately select critical points, but which comes at a cost of
quadratic worst-case runtime.

We rate the quality of a simplified polyline higher, the closer it resembles the
original polyline, taking into account the natural trade-off between the reduction
rate of the simplification and its accuracy. Because of this, all simplification
algorithms induce positional errors in the data set. Like a filter, though, the
simplification process may turn out to be a precursor advantage to our cause
when viewed from the applicative domain with the handwritten Traces. We
will see later on that a simplified polyline is analogous to the result of cleansing
a Trace from noisy data.

5.2 Measuring the Quality of Simplified Polylines

Quantifying the goodness of simplified polylines is not a straight-forward pre-
conception, if the polylines have characteristics of handwritten Traces. Still,
we have to put together a set of measurable criteria so that we can compare the
different line simplification algorithms.

To begin with, one can say that a good approximation of a polyline is the
simplified polyline that never deviates much from the original. However, we do
not want to end up with an approximation that is the exact copy of the original
– in which case, there is no deviation at all between the approximation and the
original. Thus, putting this in another way, one can better say that a good
approximation of a polyline is the simplified polyline where only the important
points in the original are kept, and the rest of the points forming unimportant
details of the polyline are eliminated. We consider a point important or critical
if it has a visible influence on the overall shape of the polyline.

From an abstract viewpoint, a critical point is one where the direction of
the polyline changes notably. If we relate this notion to the previous chapter,
then a ‘critical’ point in a polyline is equivalent to a ‘crucial’ point in a Trace.
However, there is a subtle difference between the two terms in the perspective

58

of the polyline versus the perspective of the Trace. In the latter, the crucial
points are the proponents we need to convert the Trace into a smooth Curve
entity, and it may or may not necessarily be the case that a set of crucial points
in a Trace contains all the critical points if the Trace is treated as a polyline.

There were several psychological studies related to the science of cartogra-
phy where participants were asked to determine the critical points of a given
set of polylines extracted from maps, based solely on their visual impressions.
A critical point in this application domain is a point fitting our abstract view-
point above, as well as having incorporated in it information about the geometric
structure of geographic phenomena [71]. In one analysis, Marino [70] collated
the results from the participants and used them to establish new line simplifica-
tion algorithms. The highly heuristical algorithms produced various degrees of
outcomes and, unfortunately, did not become popular among cartographers. In
another analysis, White [134] used the results as benchmarks to examine how
good different algorithms were at selecting those marked critical points. Though
the main setback was that different groups of people gave different sets of critical
points.

In lieu of this, we shall then stick to the standard mathematical measures
instead, to determine the quality of simplified lines. Particularly, we shall pay
close attention to McMaster’s six numerical measures, reduced from his original
30, used to evaluate the differences between an original polyline and its simplified
version [78].

McMaster categorised his measures into two groups; (I) the Linear Attribute
Measurements, and (II) the Linear Displacement Measurements. In the first
group, the original and simplified polylines are first treated independently, by
computing their line attributes, such as angularity and change in the number of
coordinates, in their entirety, before comparing the numbers. Measures in the
second group, on the other hand, compare the differences such as vector and
areal displacements directly, point to point. We give a summary overview of the
two measures in Tables 5.1 and 5.2.

So, we can safely postulate that the smaller the measured values between the
original and simplified polylines are, the better the quality of the simplification,
and thus more importantly, the more accurate the positions of the identified
critical points from the original polyline are. This suggests that we are measuring
some sort of an error signal. But McMaster’s various measurements do not really
tell much if we use them independently. When combined, though, we can expect
to get a measure that is more reliable.

In our combined and slightly modified version of the error measurements,
we look to the eliminated points of the original polyline and calculate their
euclidean distances with respect to the line-segments in the simplified polyline
that replaced those points. We add up the squared distances, divide the sum by
the number of points in the original polyline, and then take its square root.

5.2. MEASURING THE QUALITY OF SIMPLIFIED POLYLINES 59

No. Measure Description

1. Percentage change in
the number of coordi-
nates

Divides the number of points in the sim-
plified polyline by the number of points in
the original. Simple measure for the effec-
tiveness of a simplification.

2. Percentage change in
the standard deviation
of the number of coor-
dinates, per inch

Indicates whether a simplified polyline has
uniform density compared to the original.
Useful if the baseline was accidentally dig-
itized with varying density.

3. Percentage change in
angularity

Evaluates how much variation in the orig-
inal polyline was removed.

Table 5.1: McMaster’s Linear Attribute Measurements.

No. Measure Description

1. Total vector displace-
ment, per inch

Calculates the geometric shift of the sim-
plified polyline against the original. An
approximation is deemed better, the less
displacement it produces.

2. Total areal displace-
ment, per inch

As above.

3. Percentage change in
the number of curvilin-
ear segments

Curvilinear segments are portions of a line
where all changes of direction have the
same positive or negative sign, capturing
the general trend of the line. In many
cases, this measure is similar to the an-
gularity measure.

Table 5.2: McMaster’s Linear Displacement Measurements.

Let T = {p1, . . . , pn} be a polyline containing n points. Also, for any eliminated
point pi ≡ (xi, yi) ∈ T , let p′i ≡ (x′i, y

′
i) be a corresponding point on the line-

segment prps connecting two kept points pr, ps ∈ T , where r < i < s. Then, the
square of the error measure errT of the simplified polyline, with respect to the
original T , is computed as

err2
T =

1

n

n∑

i=0

(xi − x′i)2 + (yi − y′i)2. (5.1)

This way, we obtain an error measurement that is independent of the length
of the polyline T , and is analogous to the standard deviation in probability the-
ory. Furthermore, this has two advantages over McMaster’s areal displacement
measure, in that firstly, it prevents a simplification from deviating too much from

60

pi

p′i

pr

ps

Figure 5.1: Measuring error of a simplified polyline.

the original line in any point (thus strengthening the choice of critical points),
and secondly, it punishes strong deviations in few points more severely than small
deviations in many points. Both of these advantages are intuitively desired prop-
erties in deciding a simplified polyline’s quality; that is, the smaller this error
measurement is, the better the approximation would seem to the human eye.

The example figures in the next few sections, as we discuss the various line
simplification algorithms, all contain values of the error measurements of the
various simplified polylines against one original example. We shall use these to
illustrate visually our last statement as we progress towards the optimal algo-
rithm in section 5.6.

5.3 The Douglas-Peucker (DP) Algorithm

The Douglas-Peucker (DP) algorithm is the most popular among the many clas-
sical simplification routines in the literature [30]. In a related study, McMaster
showed that the DP algorithm produces the best simplification results when
compared against seven other methods [80]. Jenks even claimed that the re-
sultant polyline yielded by the DP algorithm is “perceptually superior” to that
produced by the Distance algorithm and the Angular-Change algorithm [55].
The conception of several new variants of the DP algorithm is further proof of
this [44, 126, 101], mainly with techniques to speed up the DP simplification
procedure.

McMaster’s dubbing of the DP algorithm being a Global Routine algorithm [79]
draws its similarity to it being an offline algorithm in the geometric sense. That
is, the DP algorithm requires the full knowledge of all the points in a given poly-
line in order for it to deduce the near-optimal critical points’ positions. This is
as opposed to the local routine algorithms that we shall discuss in Reumann-
Witkam’s [102] and Opheim’s [93] algorithms.

Using a ‘divide-refine-and-conquer’ approach, the DP algorithm begins by
building a very rough approximation of the original line, connecting the end-
points. Let us, in general, term these two endpoints as pA and pB. Subsequently,
all the intermediate points lying in the trajectory between pA and pB are tested
until a single point pi is found and marked as critical, if and only if it satisfies

5.3. THE DOUGLAS-PEUCKER (DP) ALGORITHM 61

ε: 5
DP step: 1

ε: 5
DP step: 2

ε: 5
DP step: 3

ε: 5
DP step: 4

DP Simplification

ε: 5
Error: 4.4635
Points kept: 6 of 21

Figure 5.2: The Douglas-Peucker (DP) algorithm.

the following two conditions:

(i) That pi is the farthest point away from the line pApB; and

(ii) That the orthogonal distance between pi and pApB > ε, where ε is a pre-
determined corridor distance.

If such a pi exists, then the DP algorithm repeats the above step with two
divided segments with the new endpoints pA and pi, and pi and pB. Otherwise,
it terminates. We give an example of the DP algorithm in Figure 5.2.

The worst-case runtime of the näıve DP algorithm is O(n2), while on aver-
age it takes O(n log n) time. Hershberger and Snoeyink [44] developed a more
sophisticated version of the DP algorithm that reduces the worst-case runtime.
The speed up factor is achieved by noting that the farthest intermediate point
pi must be on the convex hull of the polyline segment from pA to pB. The hull is
constructed in O(n) time using Melkman’s algorithm [81], and it takes O(log n)
time to perform a binary search on the hull’s vertices for pi. Hershberger and
Snoeyink showed a delicate way of how to reuse the hull information in the
recursive steps, so that the final analyses of their algorithm gives a worst-case
complexity of O(n log n) time. Unfortunately, the overhead of their algorithm

62

slows it down for small average sized problems, and as a further setback, it
returns the wrong result if the original line is self-intersecting.

5.4 The Reumann-Witkam (RW) Algorithm

A Local Processing Routine technique, the intuitive Reumann-Witkam (RW)
algorithm [102] needs only a single pass to identify all points in a given polyline
that it deems critical. Starting at the critical endpoint p1, the RW algorithm
runs by recursively building a ‘tolerance’ corridor using the input width ε.

RW Simplification

ε: 5

RW Simplification

ε: 5
Error: 7.4858
Points kept: 6 of 21

Figure 5.3: The Reumann-Witkam (RW) algorithm.

Let pi be the latest critical point identified by the RW algorithm. Then the
tolerance corridor is built on top of pi, based on the trend of the line at pi.

Typically, the trend at pi refers to the gradient (or the approximation of the
gradient) of the line at pi. The corridor itself is parallel to this trend and it
is pointed in the direction of pi+1. All points after pi lying inside the corridor
are eliminated, until the traversal reaches the first point pj where it no longer
follows the trend and subsequently lies outside the corridor. The point pj is then
identified as the next critical point, and the RW algorithm repeats again from
there. This process continues until all n points in the polyline are processed.

As evidenced from the example in Figure 5.3, there is a special case when
the RW algorithm returns an incorrect simplification. Here, we see that an
obvious critical point at the top of the figure has been left out – compare this
to the resultant simplification of the DP algorithm in Figure 5.2. This error
only happens whenever there exists a sharp turning point (or points) within the
boundaries of the tolerance corridor. And because those sharp-edge points did
not violate the corridor condition stated above, they are eliminated by the RW
algorithm and deemed as non-critical.

5.5. IMPROVING THE SOLUTIONS OF REUMANN-WITKAM’S 63

5.5 Improving the Solutions of Reumann-Witkam’s

The limitation of the RW simplification can be easily overcome, since we know
that the main cause of the error is due to the algorithm missing all sharp-edge
points in the polyline. This problem was not previously identified because the
RW algorithm was deployed chiefly in the field of cartography to simplify contour
lines. Hence, we assume here that (perhaps) contour lines had never taken the
form of the example we gave in Figure 5.3.

However, after scouring the literature, we found an approach by Opheim [93]
that extended the RW algorithm by imposing an additional constraint. In a way,
this tries to reduce the stark error made by the RW simplification, but still, it
may not produce a satisfactory result. On the other hand, we will show how,
by combining the RW and the DP algorithms, we can achieve a better result in
rectifying the RW simplification error.

5.5.1 The Opheim Algorithm

Opheim used exactly the same routine as the RW algorithm, except that his
algorithm is constrained by an extra maximum distance check smax [93]. After
constructing the tolerance corridor at the latest critical point pi, all points pk
after pi are eliminated if and only if the following two conditions hold:

(i) The point pk lies inside the tolerance corridor; and

(ii) The length of the chord pipk ≤ smax.

A critical point pj is found if it violates the two conditions, and the Opheim
algorithm repeats again from there. This process continues until all n points in
the polyline are processed.

5.5.2 The RW-DP Algorithm

The combined RW-DP, like the Opheim algorithm, also uses the original RW
routine to first locally identify the critical points. However, unlike Opheim’s
approach with the additional smax constraint, we apply the global DP subroutine
during the traversal on to every segment of the polyline identified between the
previous critical point pi and the newly identified critical point pj .

In essence, we only need to run once more through all m points in the segment
between pi and pj , before locating the elusive sharp-edge point, if one does exist.
Thus, we maintain the overall runtime of the RW-DP algorithm to stay within
O(n) bounds, while improving the quality of simplification if such erroneous

64

ε: 5

smax: 18

Opheim Simplification

ε: 5
smax: 18

Error: 4.1454
Points kept: 9 of 21

RW-DP Simplification

ε: 5
Error: 4.8446
Points kept: 7 of 21

Figure 5.4: The Opheim and RW-DP algorithms. From top-left, clockwise:
Tolerance corridors (blue rectangles) and additional smax constraints (yellow
cones); resultant Opheim simplification; resultant RW-DP simplification.

situations arise, as seen in the resultant Figure 5.4 compared to the original RW
simplification in Figure 5.3.

5.6 The Optimal Polyline Simplification

Let T = {p1, . . . , pn} be a polyline containing n points. Then, from the quality
measure we proposed in section 5.2, it is possible to compute an optimal simpli-
fication of T for a given reduction rate. Suppose we want to have a simplified T
keeping only m points, where m < n. Then the näıve approach to get the optimal
simplification of T is to try out all possible point subsets of size m, determine

5.6. THE OPTIMAL POLYLINE SIMPLIFICATION 65

the error for each such approximation, and then select one that minimizes this
error. However, we have shown in our work with Richter [104] that we can do
this in a more elegant manner.

The problem of finding an approximation with minimal error exhibits the
characteristic of the “optimal substructure”, one where an optimal solution com-
prises the optimal solutions to subproblems.

Lemma 5.1 Let E[i, j, k] be the minimal error of a simplification that approxi-
mates T between pi and pj, using exactly k intermediate points. Then for k ≥ 1
and 1 < i < j < n,

E[i, j, k] = min
i<l<j−k

{ E[i, l, 0] + E[l, j, k − 1] }.

Proof. Let pl be the first point after pi that we decide to keep. Then the total
error made by this approximation is the error made between pi and pl, plus the
error made between pl and pj . An optimal approximation must minimize this
sum, given that the two subsegments are also optimal. Thus, for all possible
choices of pl, we know the minimal errors E[i, l, 0] and E[l, j, k − 1], and we can
determine the point pl contributing to the minimal error and compute E[i, j, k]
using the equation above.

Let T ′ be the optimal simplified version of the original polyline T . If T ′

is to retain only m points from T , then the optimal approximation of T will
have an error of E[1, n,m − 2] with T ′. A simplification routine always retains
the two original endpoints p1 and pn, and so we are only left to find m − 2
intermediate points in T to keep. By Lemma 5.1, we need to compute E[1, l, 0]
and E[l, n,m−3] for all pl between p1 and pn−m−2. The first of the two terms is
a straight-forward computation, since there is only one way to approximate the
line between p1 and pl using zero intermediate points. The second term, on the
other hand, requires recursive computations, where in each recursion, the third
parameter of the second term is reduced by one – until it reaches zero, in which
case the final term can then be directly computed as above.

Clearly, from the recursion steps, one can see that the general singular terms
E[i, j, 0] need to be calculated O(n) times each. We can speed up this computa-
tion by avoiding to calculate the subproblems more than once using the scheme
of Dynamic Programming [19], where we only need to store calculated values
once in a table and look them up if we need them again. That is, we start by
calculating E[i, j, 0] for all possible values of i and j directly, and store them
in the top row of the table. From these, we compute the next row using the
equation in Lemma 5.1; i.e. computing E[i, j, 1] for all possible values of i and
j. We continue until all k rows of the table are filled. We can then extract from
the completed table an approximation that yields the optimal error by tracing
back which terms that were summed to construct it.

66

Optimal Simplification

Error: 3.9528
Reduction rate: 71.4286%
Points kept: 6 of 21

DP Simplification

ε: 5
Error: 4.4635
Points kept: 6 of 21

RW Simplification

ε: 5
Error: 7.4858
Points kept: 6 of 21

Figure 5.5: Optimal simplification for m = 6, compared to DP and RW simpli-
fications for ε = 5.

The space requirement for this dynamic calculation is cubic in the number of
points n, because of the size of the table. The runtime is O(n4), since to compute
one table entry, we first have to minimize all entries in the row above. While this
is far better than the näıve runtime of n!

m!(n−m)! = O(n!), this algorithm is still
unacceptable for regular use. It does, however, become a very useful benchmark
for evaluating the quality of non-optimal algorithms.

5.7 Simplified Polylines for Smoothing Routines

At the beginning of the chapter, we asked ourselves if we can use the simplified
version of a polyline as a precursor to our smoothing routine. And up until this
juncture, we have maintained a strict distinction between the critical and crucial
terminologies, for a good reason. Putting this now in a clearer perspective, we
want to know if the critical points identified by the simplification algorithm are
those of the crucial points we described in chapter 3.

To better realise the significance of this, let us now fast forward a little bit
into what we can expect from the future chapters, in terms of fulfilling our
goals of smoothing a handwritten Trace. Such an example is of the ‘smoothed
simplification’ of the same Trace that we have been observing throughout this
chapter, as depicted in Figure 5.6, alongside the results of two other polyline
simplications that we have discussed. We have purposely chosen the examples
where there are exactly six points kept from the original 21 for the purpose of
our comparative arguments.

The crucial points marked red in the smoothed simplification are the sharp-
edge vertices characterized by Definition 3.15, and they coincide with the criti-
cal sharp-edge vertices identified by the Optimal and DP algorithms. The other
three crucial blue points are either G1 (tangent joints) or G2 (inflections) continu-
ity points, two of which match the critical points from the optimal simplification.

5.7. SIMPLIFIED POLYLINES FOR SMOOTHING ROUTINES 67

Smoothed Simplification

Points kept: 6 of 21

Optimal Simplification

Error: 3.9528
Reduction rate: 71.4286%
Points kept: 6 of 21

DP Simplification

ε: 5
Error: 4.4635
Points kept: 6 of 21

Figure 5.6: Smoothed simplification versus polyline simplifications.

These crucial points are the necessary proponents that approximate and define
the (orange) curve segments accurately. As a direct consequence of this, the
smoothed simplification correctly reveals a tiny loop at the top of the original
Trace, which was an intended preconception of our example – an important
feature which is not evident in the two resultant simplified polylines.

After reviewing the five polyline simplification algorithms, our conclusion is
not to consider the simplification routines by RW or Opheim for our forthcom-
ing deliberations, since they are both erroneous in their solutions, especially in
identifying the critical sharp-edge vertices. We shall also dismiss the Optimal
algorithm due to its impractical runtime. This leaves us in favour of the origi-
nal DP and the extended RW-DP algorithms, whose simplified solutions are the
closest to that of the Optimal algorithm’s.

The DP algorithm was shown by White to exhibit a useful characteristic [134];
one which we can translate into Proposition 5.2 below to work within our domain
specification.

Proposition 5.2 Let T be a Trace as stated in Definition 3.2. Then, given a
suitable predetermined corridor distance ε, the Douglas-Peucker algorithm retains
all sharp-edge vertices in the simplified version of T .

Proof. Consider the main principle of the DP algorithm: It finds the one
intermediate point pi between a set of ordered points pA and pB in T , that is
farthest away from the baseline pApB. This principle, when applied recursively,
returns all the critical points outside the tolerance corridor ε in T .

Now, a sharp-edge vertex is a sharp turning point on a curve’s running trajectory,
and by Definition 3.15, is also an extremum point. This makes the sharp-edge
vertex pj the farthest point away from an enclosing baseline pApB, and as long

68

as pj is outside the range of ε, pj is retained as a critical point by the principle
of the DP algorithm.

Lemma 5.3 The Douglas-Peucker simplification omits inflection points.

Proof. This follows directly from the proof in Proposition 5.2. An inflection
point is a saddle point on the curve, and thus, is not an extremum point that
fulfils the main principle of the DP algorithm.

CHAPTER 6

Rendering Curves with Elliptic Arcs

Representing Traces by second and third order parametric splines, as we have
discussed in the previous chapter, comes under one class of curves; which we
saw is naturally iterable by varying the parameter t from 0.0 to 1.0, to describe
any portion of the curve’s entity between two selected points. We shall now
mention one other distinct class of curves, whose behaviour requires more effort
to control, so that we can compare and contrast their streamlined performances.
This class comprises the conic splines, formed by arcs of conics.

A conic is a classical mathematical curve derived by manipulating conical
structures [12], and is the abstract terminology used to generally describe parabo-
las, hyperbolas, ellipses, and circles. Our deliberations shall concentrate plainly
on ellipses and circles, the latter being a special case of the former. We will spend
time in this chapter and the next to prove that a set of guided elliptic arcs can
be ordered to conform to our earlier CompositeCurve definitions to symbolize a
set of discretionary handwritten Traces. However, in the course of our unrav-
elling this, we will also show that this technique of involving elliptic arcs is not
without complications and intensive computations – even after simplifications.
The result of which is the reason why we would favour the methods in the later
chapters when compared to this one, whenever we desire active-smoothing.

6.1 The Ellipse – an Abstract Conic

Ellipses are essentially conics with very special properties, and we shall use the
two terms interchangeably whenever we draw common generalities between them.
We begin by confirming that the ellipse is indeed a form of a conic represented
by the well-known implicit equation of degree two, containing six coefficients.

Implicit conic
equation.
♠f(x, y) = ax2 + 2hxy + by2 + 2ex+ 2gy + c = 0 (6.1)

69

70

Many authors have made it a common practice to arbitrarily choose one of
the six coefficients, a, h, b, e, g, or c, and then using it as a divisor for f(x, y)
to eliminate one term, leaving only five degrees of freedom to deal with. Fur-
thermore, we shall closely follow the naming conventions for these coefficients in
Equation 6.1 as was introduced by Pavlidis [95], specifically for their meaningful
cognition when we further manipulate them in our deeper ruminations.

Definition 6.1 Let F ≡ (xF , yF) be a focus point of an ellipse, and let D =
Ellipse by focus
and directrix.

♠
Ax + By + C = 0 be its directrix line. Then for any point P on the ellipse,
the eccentricity is given by η =

∥∥PF
∥∥ /
∥∥PD

∥∥ < 1; and that the equation of the
ellipse is

η(Ax+By + C) = ±
√

(x− xF)2 + (y − yF)2. (6.2)

We interpret this formation of the ellipse as the locus of all points P whose
distance from the focus point F is proportional to the parallel distance of the line
PD with respect to the major-axis, from the directrix lineD. We see in Figure 6.1
that D is always orthogonal to the major-axis of the resulting ellipse and cuts it
at Pd. The same figure describes an ellipse whose eccentricity η is 0.75993, where
given as examples, η =

∥∥FP0

∥∥ /
∥∥P0D0

∥∥ = . . . =
∥∥FP3

∥∥ /
∥∥P3D3

∥∥. Collectively,
we call both these major and minor orthogonal axes, the semi-major axes. They
meet at the centre of the ellipse at E, and on which the ellipse is mounted.

Major-axis

Minor-axis

D

P0

D0

P1
D1

P2
D2

P3
D3

F Pα

Pβ

E Pd

Figure 6.1: An elliptic arc with η = 0.75993 cutting the major- and minor-axes
at points Pα and Pβ, respectively. The directrix line D cuts the major-axis at
Pd, and the semi-major axes meet at the centre of the ellipse at E.

Expanding and rearranging Equation 6.2, we get the same expression and

6.1. THE ELLIPSE – AN ABSTRACT CONIC 71

thus affirming the ellipse with the general conic Equation 6.1.

η2(Ax+By + C)2 − (x− xF)2 + (y − yF)2 = 0

(η2A2 − 1)x2 + 2(η2AB)xy + (η2B2 − 1)y2 + 2(xF + η2AC)x

+2(yF + η2BC)y + (η2C − x2
F − y2

F) = 0

f(x, y) = 0

Here, the six coefficients in f(x, y) are expressed in terms of the ellipse’s ec-
centricity, focus point, and the directrix line; where a = η2A2 − 1, h = η2AB,
b = η2B2 − 1, e = xF + η2AC, g = yF + η2BC, and c = η2C − x2

F − y2
F . These

coefficients categorise the type of conic that f(x, y) represents. That is, the conic
is

• an ellipse if ab− h2 > 0;

• a circle if a = b and h2 = 0;

• a parabola if ab = h2; or

• a hyperbola if ab− h2 < 0.

The conic degenerates into a pair of straight lines if these coefficients we end up
with reduce f(x, y) into a product of two first-degree polynomials. In circum-
spect, for all the cases that ab−h2 > 0, the ellipse is a non-degenerate conic and
it is a planar compact non-singular algebraic curve of the second degree.

The general implicit conic Equation 6.1 well describes any given ellipse float-
ing in the 2D plane. That is, the composite function f(x, y) is the ‘collective’

Composite
properties
of f(x, y).
♠

description of three major properties – which we shall explain in more details in
the upcoming sections. They are; (i) the angle at which an ellipse is tilted at
with respect to the horizontal axis; (ii) the distance of the centre of the ellipse
from the origin (0, 0); and (iii) the scaling factor induced on a “primitive” ellipse
whose centre sits on the origin and whose semi-major axes are iso-oriented1.
Such a primitive ellipse is well-known by the simplified Cartesian equation

Primitive ellipse
equation.
♠x2

α2
+
y2

β2
= 1 (6.3)

where α and β are distances between the centre of the ellipse E and Pα, and
between E and Pβ, respectively, as shown in Figure 6.1.

1Iso-oriented lines are lines that are either parallel or perpendicular to the horizontal line
on the 2D plane.

72

6.2 Problems with Rendering Composite Functions

Let us reiterate the problem here once more to understand why it is not expedient
to sketch elliptic arcs directly from the composite function f(x, y) when estimat-
ing arbitrary handwritten curves: Presented with a set of time-ordered points T ,
we first need to find the set of free-floating ellipses on the 2D plane, then extract
only the necessary portions of their curvatures that best approximate the points
in T , and finally reconstruct them into a seamless flow of well-aligned elliptic arcs
resembling T . We have previously discussed that by Proposition 3.12, this prob-
lem is indeed decomposable; that is, the single CompositeCurvecomprising the
original points in T , is made up of a set of finite second-order Curves. So the
problem boils down to finding the one true ellipse whose appropriate portion of
the arc well fits one of the second-order Curves. The broken-down problem of
fitting ellipses to Curves is similar to several conic-fitting problems discussed
by many authors [95, 97]. However, the main difference here is that we are more
interested in looking for the quickest and most efficient way, and one without
the need for error computations, if possible, to string together the second order
elliptic arcs to form a symbolic representation of T .

Although generally descriptive, the implicit expression f(x, y) in Equation 6.1
is not convenient for many applications to render the ellipse it describes. This
becomes even more challenging if we want to reconstruct only a portion (or an
arc) of the ellipse, while provided with very limited scattered points T as input
criteria. Issues that come to mind include questions such as: What position does
a point p in T lie on the ellipse with respect to the others? Do all the points in
T relate to each other to give the same six coefficients in f(x, y)? What range
of values for x and y are ‘legal’ for rendering the portion of the arc that we want
from f(x, y)?

Rendering such objects is most efficient when there exists a way to re-express
f(x, y) into a singular function, where there is a direct one-to-one and non-
composite relationship between the x and y variables. One way to do this is to
keep one of the variables, say, x, constant and rearrange the expression explicitly
to be in terms of y.

ax2 + 2hxy + by2 + 2ex+ 2gy + c = 0

by2 + 2(hx+ g)y + (ax2 + 2ex+ c) = 0

Solving this for y gives us an expression that we can relate to the constant x, so
that y becomes a function of x.

y =
−2(hx+ g)±

√
4(hx+ g)2 − 4b(ax2 + 2ex+ c)

2b

⇔ f(x) =
1

b
[−hx− g ±

√
(hx+ g)2 − b(ax2 + 2ex+ c)] (6.4)

6.2. PROBLEMS WITH RENDERING COMPOSITE FUNCTIONS 73

Clearly, the function f(x) has real solutions if and only if its square-root term
is also real. In other words, the square-root term dictates the ‘legal’ range of
values of x for y to have solutions that we can render on the 2D plane. Thus,

(hx+ g)2 − b(ax2 + 2ex+ c) ≥ 0

(h2 − ab)x2 + 2(gh− be)x+ (g2 − bc) ≥ 0

(x+ x1)(x+ x2) ≥ 0

where

x1,2 =
1

h2 − ab [be− gh±
√

(gh− be)2 − (h2 − ab)(g2 − bc)]. (6.5)

Therefore, assuming that x1 is strictly less than x2, the same ellipse f(x, y)
– now redefined as f(x) – lies on the x-range of x1 ≤ x ≤ x2. We note here that
for every value of x that does not reduce the square-root term in f(x) to zero,
there exist two real y values; such that both pairs of (x, y) refer to points on
the upper and lower arcs of the ellipse. This also holds if we instead reverse the
analogy to keep y constant and re-express f(x, y) in terms of f(y).

The technique of breaking up the ellipse equation and solving parts of it via
each axis while keeping the other constant is analogous to Bresenham’s ellipse
drawing algorithm [12]. Although not as complex, compared to the Bresenham’s
algorithm, the simple mathematical technique explained above serves it purpose
without having to split f(x, y) into octants and without having to go through a
series of if-then-else conditions to render the ellipse. These methods of rendering
an ellipse does not, however, provide a useful insight to our main problem, given
the limited input options.

Alternatively, rendering such complex representation of the objects can also
be made efficient if we are able to reformulate the composite function in terms of
a single parametric variable. For example, we can split the composite Cartesian
Equation 6.3 of the ‘primitive’ ellipse into functions uniquely defined for each
axis dimension, and unite them with a common parametric variable θ.

x(θ) = α cos θ

y(θ) = β sin θ

}
for 0 ≤ θ < 2π (6.6)

In contrast, we cannot achieve such a one-to-one parametric relationship
between the axis dimensions with the general conic Equation 6.1. However,
by no straight-forward means, Pavlidis showed that it is possible to turn this
general implicit form into a set of iterative parametric equations for each axis
that, together, approximates the curve at predetermined points [95]. However,
there are limitations in Pavlidis’s elaborate and almost heuristical method, which
requires the normalizations of the coefficients in f(x, y), and which do not give

74

reliable results if several special cases are not attended to; for example, when the
value of ab−h2 is near zero. Thus, we agree with Pavlidis that this implicit form
is not convenient for proving properties about conics – let alone, about ellipses.

Unless of course, we can tone it down to a more manageable form.

So in the course of the next few sections, we will show how we can ‘water-
down’ the general conic Equation 6.1 that describes any free-floating ellipse in
2D. We shall explain how to extract only the essential information for which we
can use to effectively render the correct portion and the most suitable arc of the
ellipse that best conform to a given segment of a CompositeCurve we want to
symbolically represent.

6.3 Extracting Essential Ellipse Information

Our vantage approach is to effectively render any portion of a free-floating el-
lipse anywhere on the 2D plane given a known function f(x, y), with of its all
coefficients defined. In retrospect, we shall then consider information such as the
centre, the distances with respect to the centre, the angles related to the centre,
and the positioning of the semi-major axes of the ellipse as essential. We first
show how we extract these essential information from the implicit Equation 6.1,
while in the process, reduce f(x, y) into a more accessible form involving matri-
ces, and then later on discuss how to coordinate these pieces of information to
achieve our goal.

Definition 6.2 Let Q =
(
a h
h b

)
, where a, b, and h are the x2, y2, and xy coeffi-

cients of the implicit Equation 6.1, respectively. Then the matrix Q is called the
control matrix.

Let x =
(x
y

)
and g =

(
2e
2g

)
be two column vectors. Then, we can express the

implicit Equation 6.1 in terms of the control matrix Q.

f(x, y) = ax2 + hxy + hxy + by2 + 2ex+ 2gy + c = 0

f(x, y) =
(
ax+ hy hx+ by

) (x
y

)
+
(

2e
2g

)(x
y

)
+ c = 0

f(x, y) =
(
x y

) (
a h
h b

)(x
y

)
+
(

2e
2g

)(x
y

)
+ c = 0

f(x) = xTQx + gTx + c = 0 (6.7)

where xT and gT refer to the transpose of the vectors x and g, respectively.

The general conic equation f(x, y) gives us the partial derivatives

∇f(x, y) = (
δf(x, y)

δx
,
δf(x, y)

δy
)

= (2ax+ 2hy + 2e, 2hx+ 2by + 2g),

(6.8)

6.3. EXTRACTING ESSENTIAL ELLIPSE INFORMATION 75

from which the slope of the tangent at any point on the conic is dictated by

dy

dx
=
− δf(x,y)

δx
δf(x,y)
δy

=
−(ax+ hy + e)

hx+ by + g
. (6.9)

Any ellipse described by f(x, y) has dy
dx = 0 at its top-most and bottom-most

points Pi and Pj , since the geometrical tangents at these two specific points are
parallel to the horizontal axis of the plane. Hence, we observe from Equation 6.9
that

ax+ hy + e = 0

is the equation of the diameter of the ellipse joining Pi and Pj where it bisects the
chords parallel to the axis of x. Subsequently, the geometrical tangents at the
left-most and right-most points Pk and Pl on the curve are parallel to the vertical
axis of the plane, such that dx

dy = 0. The same observation with Equation 6.9
gives us the other diameter of the ellipse

hx+ by + g = 0

connecting Pk and Pl, so that it bisects the chord parallel to the axis of y. Thus,
where these two diameter lines meet, we get the centre E ≡ (xE , yE) of the
free-floating ellipse f(x, y), where

xE =
gh− eb
ab− h2

and yE =
eh− ag
ab− h2

. (6.10)

Now, the inverse of the control matrix Q is not defined for parabolas, since
det(Q) = ab− h2 = 0. But for ellipses and hyperbolas, we can write the vector
for the centre coordinate xE =

(xE
yE

)
in terms of Q.

xE =

(
xE
yE

)
=

−1

ab− h2

(
eb− gh
−eh+ ag

)

xE =
−1

2

1

det(Q)

(
b −h
−h a

)(
2e
2g

)

xE =
−1

2
Q−1g (6.11)

Lemma 6.3 The two semi-major axes of a free-floating ellipse f(x) defined in
Equation 6.7 are the two orthogonal eigenvectors vα and vβ of the control matrix
Q passing through the centre of the ellipse at E ≡ (xE , yE).

76

Proof. As long as f(x) does not describe a circle, we get two unique eigenvalues
λα and λβ of Q from its characteristic polynomial.

det(λI−Q) = 0

det

(
λ− a −h
−h λ− b

)
= 0

λ2 − (a+ b)λ+ ab− h2 = 0

λα,β =
1

2
(a+ b±

√
(a− b)2 + 4h2) (6.12)

Let D =
(λα 0

0 λβ

)
be a diagonal matrix whose diagonal entries are the eigen-

values of Q. Since the 2 × 2 control matrix Q is symmetric, that is Q = QT,
then Schur’s theorem [12] states that there exists an orthogonal matrix V such
that V−1QV = VTQV = D, where VT =

(
vα vβ

)
contains the two eigen-

vectors of Q that form an orthonormal set. Furthermore, from the corollary
of Schur’s theorem, we know that the corresponding eigenvalues λα and λβ of
Q are real numbers, satisfying both the unique conditions of Qvα = λαvα and
Qvβ = λβvβ.

Later on in Lemma 6.7, we show that the angle φ at which the ellipse f(x)
is tilted at is governed by the elements in the same control matrix Q. In effect,
Q directly influence the orientations of the eigenvectors vα and vβ with respect
to the orientation of the ellipse’s semi-major axes. Thus, if we pass both eigen-
vectors vα and vβ through the centre of the ellipse at E, they will consequently
lie exactly on the semi-major axes of the ellipse.

Extracting the eigenvectors of any matrix is a computationally expensive
task. That is, working out the eigenvectors by hand (although more tedious) is
simpler than computing them – since figuring out eigenvectors require some cog-
nitive formulation of variables that are not directly translatable to manipulating
variables in codes. Still, there exists many numerical techniques in the literature
to deal with this task, that are inherently iterative, such as the Power Method
(Vector Iteration), the Deflation Method, and the Householder’s Method [12]. All
of these return the approximation of only one eigenvector v of Q corresponding
to one particular eigenvalue λ.

The iterative procedures begin with an initial seed value for the vector v and
its corresponding λ, stopping only when certain tolerance criteria are met. Sub-
sequent computations for other eigenvectors require the use of another method
to achieve the desired approximates. For example, one may start with the Power
Method to obtain the largest eigenvalue and its corresponding eigenvector. We
note here that this method fails if there is no dominant eigenvalue for Q and
its rate of convergence for closely spaced eigenvalues can be slow. Afterwhich,
to find the next eigenvector corresponding to the second largest eigenvalue of Q,

6.3. EXTRACTING ESSENTIAL ELLIPSE INFORMATION 77

one needs to apply the result from the Power Method to the Deflation method,
and repeat the iterative procedure.

In our case, though, we can avoid estimating the eigenvectors though this
arduous task of iterative computations and still obtain the exact values of vα
and vβ. We do this by directly making use of the ratio-relationship that λα and
λβ have with the control matrix Q in the solution space of (Q− λI)v = 0.

Proposition 6.4 Let λα and λβ be the two unique eigenvalues of Q, where Q is
the control matrix describing an ellipse f(x) defined in Equation 6.7. Then the
two corresponding orthogonal eigenvectors vα and vβ of Q are directly related to
the elements in Q with respect to λα and λβ in a ratio-relationship as follows:

vα =

(
a− λβ
h

)
, vβ =

(
h

b− λα

)
(6.13)

We know from Lemma 6.3 that non-trivial solutions exists for (Q−λI)v = 0,
for any control matrix Q in f(x) describing ellipses. Let v =

(
v0
v1

)
be the general

eigenvector of Q corresponding to an eigenvalue λ. Then from the eigenspace of
Q,

(Q− λI)v =

(
a− λ h
h b− λ

)(
v0

v1

)
=

(
0
0

)
,

we get the expressions (a−λ)v0+hv1 = 0 and hv0+(b−λ)v1 = 0. The coefficients
of v0 and v1 are equivalent when we substitute either of the eigenvalues λα or
λβ in place of λ. In other words, both expressions plainly turn into the form of
k0v0 + k1v1 = 0, so that the ratio of the constants k0 : k1 is exactly the same
as (a − λ) : h in the first expression, and h : (b − λ) in the second. And since
a vector is simply the ratio-relationship between each axis dimension, we can
appropriately express the eigenvectors vα and vβ as a relation of the elements in
Q with respect to λα or λβ as stated in Equation 6.13. This relation also holds
true if we reverse the associations and take the other ratio-relationship, like so.

vα =

(
h

b− λβ

)
, vβ =

(
a− λα
h

)

Example 6.5 Find the eigenvalues and the corresponding eigenvectors of an
ellipse floating in 2D space defined by f(x) = 25x2 + 10xy + 4y2 − 250x− 16y +
541 = 0.

Solution. The control matrix in f(x) is Q =
(

25 5
5 4

)
. We compute the eigenval-

ues of Q from Equation 6.12 to get λα = 26.129703 and λβ = 2.870296. Then
using the Power Method and, subsequently, the Deflation method, we get the

78

corresponding eigenvectors (denoting them as v′α and v′β, respectively), after 28
iterations, to be

v′α =

(
0.975412
0.220385

)
and v′β =

(
0.220385
−0.975412

)
.

Now we compare the results above to the eigenvectors we obtain by applying
Equation 6.13 in Proposition 6.4 in the next two steps:

vα =

(
a− λβ
h

)
=

(
22.129704

5

)
and vβ =

(
h

b− λα

)
=

(
5

−22.129703

)
.

Normalizing the eigenvectors vα and vβ, we get

v̂α =
vα
‖vα‖

=

(
0.975413
0.220385

)
and v̂β =

vβ
‖vβ‖

=

(
0.220385
−0.975413

)
.

Thus, we get similar results as the approximations of v′α and v′β from the iterative
procedures.

The outcomes in Example 6.5 indicate that the vectors vα and v′α are scalar
multiples of each other, and so are the vectors vβ and v′β. One ramification here
is that the method in Proposition 6.4 offers a more efficient way of computing
the eigenvectors of the control matrix Q in the ellipse f(x).

Let us suppose that λα is strictly greater than λβ. Then, from Lemma 6.3,
it follows that the eigenvector vα through (xc, yc) is the major-axis of the ellipse
f(x). Also, from vα, we know that the angle φ at which the ellipse is tilted at,
with respect to the major axis, is

φ = arctan(
h

a− λβ
) (6.14)

While on the one hand, this requires the pre-computation of λβ to obtain the
angle φ, there exists, on the other hand, a more straight-forward solution, in-
volving only the control matrix Q through Lemma 6.7, which we shall explain
shortly.

At the moment, let us turn our attentions to reducing the implicit expression
f(x) in Equation 6.7, into a more manageable and familar form.

Lemma 6.6 Let E ≡ (xE , yE) be the centre of a free-floating ellipse f(x) defined
by Equation 6.7. Then translating the ellipse to the origin at (0, 0) with respect
to E gives the expression

f(x) = xTQx− 1

4
gTQ−1g + c = 0 (6.15)

6.3. EXTRACTING ESSENTIAL ELLIPSE INFORMATION 79

Proof. Let (x, y) = (x + xE , y + yE) be the translated coordinates placing the
centre of the ellipse at the origin. Then plugging (x, y) = x into the implicit
Equation 6.7,

f(x) = xTQx + gTx + c = 0

= a(x+ xE)2 + 2h(x+ xE)(y + yE) + b(y + yE)2

+ 2e(x+ xE) + 2g(y + yE) + c = 0.

Expanding and rearranging the terms,

f(x) =ax2 + 2hxy + by2

+ (2axE + 2hyE + 2e)x+ (2hxE + 2byE + 2g)y

+ ax2
E + 2hxEyE + by2

E + 2exE + 2gyE + c = 0.

(6.16)

The coefficient of the x-term cancels out to zero.

2x [axE + hyE + e] = 2x [
1

ab− h2
(a(gh− eb) + h(eh− ag)) + e]

= 2x [
1

ab− h2
(−eab+ eh2) + e]

= 2x [
−e(ab− h2)

ab− h2
+ e] = 0 (I)

Similarly, the coefficient of the y-term also cancels out to zero.

2y [hxE + byE + g] = 2y [
1

ab− h2
(h(gh− eb) + b(eh− ag)) + g]

= 2y [
−g(ab− h2)

ab− h2
+ g] = 0 (II)

Simplifying the constant term, we get

ax2
E + 2hxEyE + by2

E + 2exE + 2gyE + c

=
1

(ab− h2)2
[a(gh− eb)2 + 2h(gh− eb)(eh− ag) + b(eh− ag)2

+ 2e(gh− eb)(ab− h2) + 2g(eh− ag)(ab− h2)] + c

=
1

(ab− h2)2
[ag2h2 + be2h2 − 2egh3 + ae2b2 + 2abegh− ba2g2] + c

=
1

(ab− h2)2
[e(gh− eb)(ab− h2) + g(eh− ag)(ab− h2)] + c

=
1

ab− h2
[e(gh− eb) + g(eh− ag)] + c (III)

= exE + gyE + c

80

Putting (I), (II), and (III) back together into (6.16), we obtain an independent
expression without the terms xE and yE .

f(x) = ax2 + 2hxy + by2 +
e(gh− eb) + g(eh− ag)

ab− h2
+ c = 0

f(x) = xTQx− 1

4(ab− h2)

(
2eb− 2gh −2eh+ 2ag

)(2e
2g

)
+ c = 0

f(x) = xTQx− 1

4

(
2e 2g

) 1

ab− h2

(
b −h
−h a

)(
2e
2g

)
+ c = 0

f(x) = xTQx− 1

4
gTQ−1g + c = 0

We see here that once we have the ellipse sitting exactly with its centre at the
origin, both the single x and y terms in f(x) disappear, and that the constant
term simply involves Q−1. We can further reduce this expression exclusively
contain the x2 and y2 terms – if we know how much to tilt the ellipse so that its
major axis sits exactly on the horizontal axis on the 2D plane.

Lemma 6.7 The ellipse f(x) is tilted at an angle φ = 1
2 arctan(2h

a−b).

Proof. We determine the angle at which the semi-major axis of the ellipse is
tilted, with respect to the horizontal axis, by solving the coefficient of the xy-term
of f(x) either in Equation 6.7, or in the simpler expression in Equation 6.15.

Let Rφ =

(
cosφ − sinφ
sinφ cosφ

)
be the rotation matrix that transforms f(x) by

the angle φ so that the major axis of the ellipse becomes parallel to the horizontal
axis of the plane. Also, let x =

(x
y

)
= Rφx, so that x = x cosφ − y sinφ and

y = x sinφ+ y cosφ. Then placing x into Equation 6.15, we obtain

f(x) = a(x cosφ− y sinφ)2 + 2h(x cosφ− y sinφ)(x sinφ+ y cosφ)

+ b(x sinφ+ y cosφ)2 − c1 = 0

where c1 = 1/4 gTQ−1g − c. Rearranging the terms, we get the expression

f(x) = (a cos2 φ+ 2h cosφ sinφ+ b sin2 φ) x2

+ (−2a cosφ sinφ+ 2h(cos2 φ− sin2 φ) + 2b cosφ sinφ) xy

+ (a sin2 φ− 2h cosφ sinφ+ b cos2 φ) y2 + c1 = 0

(6.17)

6.3. EXTRACTING ESSENTIAL ELLIPSE INFORMATION 81

Solving for the xy coefficient, we get

(b− a)2 cosφ sinφ+ 2h(cos2 φ− sin2 φ) = 0

−(a− b) sin 2φ+ 2h cos 2φ = 0

sin 2φ

cos 2φ
=

2h

a− b
2φ = arctan(

2h

a− b).

Hence, the ellipse is tilted at φ = 1
2 arctan(2h

a−b).

The angle φ here is equivalent to the one given in Equation 6.14, computed
from the eigenvector vα of Q.

Thus, after extracting φ and xE from f(x), we get, when we transform f(x)
to rotate by an angle of −φ and then displacing it by −xc, a primitive ellipse that
cuts the horizontal axis at (−α, 0) and (α, 0), and the vertical axis at (0,−β)
and (0, β). Consequently, the xy term in Equation 6.16 disappears at φ =
1
2 arctan(2h

a−b), and that the equation simply becomes f(x) = x2

α2 + y2

β2 − 1 = 0.

At this stage, we now get a chance to extract the semi-major lengths ‖α‖
and ‖β‖ – both of which are directly related to the original free-floating ellipse.

Theorem 6.8 Let ‖α‖ and ‖β‖ be the lengths, from the centre of a free-floating
ellipse in a 2D plane defined by f(x) in Equation 6.7, to the points where the
ellipse cuts its major and minor axes, respectively. Let φ be the angle at which the
major-axis of the ellipse is tilted with respect to the horizontal-axis of the plane,
and let k = 1

4gTQ−1g − c be the constant factor from Equation 6.15.Then, for

Q =

(
a h
h b

)
, xφ =

(
cosφ
sinφ

)
, and yφ =

(
cosφ
− sinφ

)
,

‖α‖ =

√
k

xT
φQxφ

, ‖β‖ =

√
k

yT
φQyφ

. (6.18)

Proof. Following Lemma 6.6 and Lemma 6.7, the free-floating ellipse described
by f(x) would now have its centre at the origin and tilted so that its semi-major
axes lie exactly on the horizontal and vertical axes of the 2D plane. As such, we
can write the simplified equation of the ellipse as

f(x) = aφx
2 + bφy

2 − k = 0 by (6.17), from proof in Lemma 6.7

where

aφ = a cos2 φ+ 2h cosφ sinφ+ b sin2 φ = xT
φQxφ, and

bφ = a sin2 φ− 2h cosφ sinφ+ b cos2 φ = yT
φQyφ.

82

Simplifying the expression of f(x), we get

f(x) =
aφ
k
x2 +

bφ
k
y2 − 1 = 0

x2

k/aφ
+

y2

k/bφ
= 1. (IV)

Comparing (IV) with the primitive ellipse equation, we obtain the lengths

α2 = k/aφ β2 = k/bφ

‖α‖ =

√
k

xTφQxφ
‖β‖ =

√
k

yTφQyφ
.

Corollary 6.9 Let λα and λβ be the eigenvalues of Q, such that λα > λβ. Then

λα = yT
φQyφ and λβ = xT

φQxφ. (6.19)

Proof. Based on the argument we gave in the proof of Lemma 6.3, an ellipse
centred at the origin is simply a unit circle under a linear map associated with
the symmetric control matrix Q, such that Q = VDVT, where D =

(λα 0
0 λβ

)
is a

diagonal matrix whose diagonal entries are the eigenvalues of Q and V is a real
unitary matrix having as columns the corresponding eigenvectors of Q. Then we
known that the semi-major axes of the ellipse lie along the eigenvectors of Q,
and for λα > λβ, the norms of the major and minor axes are, respectively,

‖α‖ =

√
k

λβ
and ‖β‖ =

√
k

λα
.

Comparing the above expressions with Equation 6.18, we get λα = yT
φQyφ and

λβ = xT
φQxφ.

If the general conic equation f(x) represents an ellipse, then we can perform
an extraction procedure by applying the methods explained in this section to
retrieve the four essential information about the ellipse: the angle of tilt φ, the
centre coordinate E, and the two semi-major lengths ‖α‖ and ‖β‖. These are
enough to reliably render the perfect ellipse given just the implicit form of f(x),
and with a few more manipulations, the perfect arc between designated points
on the curve.

6.4. RECONSTRUCTING A PERFECT ELLIPTIC ARC 83

6.4 Reconstructing a Perfect Elliptic Arc

In section 6.1, we gave the example of splitting the composite Cartesian equation

f(x) = x2

α2 + y2

β2 = 1 into its two equivalent parametric forms on each axis
dimension. They are both expressed as a function of a single variable θ; that
is, we describe a point Pθ lying on the ellipse, based on its relative angular
parametric position with respect to the centre of the ellipse, as

Pθ ≡ (x(θ), y(θ)) = (‖α‖ cos θ, ‖β‖ sin θ),

for 0 ≤ θ < 2π. Note that the centre of this ellipse is at the origin (0, 0).
From here on, we shall refer to the point the Pθ in its vector notation Pθ, for
convenience to mean the same thing, and interpret Pθ as a point lying on f(x).

We shall apply the same principles as above to describe any point lying on
an ellipse floating freely on the 2D plane given by f(x) = xTQx + gTx + c = 0;
such that for θ = 0 and θ = π, we get two points on the ellipse lying exactly on
its major axis that are ‖α‖ distances away from the centre at E ≡ (xE , yE) on
opposite sides. Also, for θ = π

2 and θ = 3π
2 , where two other points lie exactly on

the ellipse’s minor axis that are ‖β‖ distances away from the centre on opposite
sides. All other points lying on the curve f(x) are similarly related to θ, where
θ gives the relative angular parametric position with respect to the centre E.

Definition 6.10 The vector vmajor is the eigenvector vα of Q whose origin is
the centre E of a free-floating ellipse f(x) = xTQx + gTx + c = 0, intersecting
f(x) at ‖α‖ distance away from E at Pθα, forming the major-axis.

Definition 6.11 The vector vminor is the eigenvector vβ of Q whose origin is
the centre E of a free-floating ellipse f(x) = xTQx + gTx + c = 0, intersecting
f(x) at ‖β‖ distance away from E at Pθβ , forming the minor-axis.

As a consequence of being derived from the eigenvectors of Q, both vmajor

and vminor are orthogonal to each other and they intersect at the centre E of
the ellipse f(x) while forming its semi-major axes. We say that the free-floating
ellipse f(x) is ‘mounted’ on vmajor and vminor.

Definition 6.12 A point Pθ on a free-floating ellipse f(x) = xTQx+gTx+c =
0, centred at E and mounted on vmajor and vminor, is a parametric point related
to the parametric variable θ, where θ is the angle made between the line PθE
and vmajor.

The above definitions suggest that the points where the ellipse intersects
vmajor and vminor are at Pθ=0 and Pθ=π

2
, respectively. This is graphically shown

in Figure 6.2.

84

vmajor

vminor

φ

Pθα |θ=0

Pθβ |θ=π
2

2 4 6 8 10
x

−14

−12

−10

−8

−6

−4

−2

0

2
y

θB θA

f(x)

ωAB

PθA

PθB

E ≡ (xE, yE)

−7 −5 −3 −1 1 3 5 7
x

−4

−2

2

4

y

θB

θA

Ppr
θA

Ppr
θB

Pθα |θ=0

Pθβ |θ=π
2

fpr(x)

E ≡ (0, 0)

(a) Original plane (b) Primal plane

Figure 6.2: A free-floating ellipse f(x), tilted at an angle φ with respect to the
horizontal line and mounted on vmajor and vminor on the original plane (a), and
its primitive dual fpr(x) on the primal plane (b).

Proposition 6.13 A free-floating ellipse f(x) = xTQx + gTx + c = 0 has a

primitive dual fpr(x) = x2

α2 + y2

β2 − 1 = 0. For any point Pθ ∈ f(x), there exists

its primitive dual point Ppr
θ ∈ fpr(x) related by the transformation

T1(Pθ) = RT
φPθ − xc = Ppr

θ (6.20)

for φ = 1
2 arctan(2h

a−b), and where xE =
(xE
yE

)
is the vector representing the centre

of the original ellipse f(x), and where RT
φ is the transpose of the rotation matrix

introduced in the proof of Lemma 6.7.

Proposition 6.14 Following Proposition 6.13, let Ppr
θ =

(
xpr
ypr
)

=
(‖α‖ cos θ
‖β‖ sin θ

)
.

Then, the angle θ related to Ppr
θ is

θ = arctan(
‖α‖ypr

‖β‖xpr
). (6.21)

Thus, any point Pθ on the original ellipse f(x) lying on the original plane has
a one-to-one mapping to a unique point Ppr

θ on a well-defined primitive ellipse
fpr(x) lying on the primal plane. We write the reverse transformation from the
primal plane back to the original plane as follows:

T2(Ppr
θ) = RφP

pr
θ + xc = Pθ (6.22)

6.4. RECONSTRUCTING A PERFECT ELLIPTIC ARC 85

Figure 6.2 illustrates this relationship between points PθA and PθB on the orig-
inal plane and the points Ppr

θA
and Ppr

θB
on the primal plane, respectively. Con-

sequentially, we can further define an arc of the same ellipse in a similar way.

Definition 6.15 An arc ωAB on f(x) = xTQx+gTx+c = 0 is the set of points
between PθA and PθB , for all Pθ ∈ ωAB ⊆ f(x) constrained by θA ≤ θ ≤ θB.

Through Proposition 6.13 and Proposition 6.14, we avoid Pavlidis’s compli-
cated and expensive method of incremental reconstruction of the elliptic arc [95]
– without the need for any normalizations of the coefficients, especially when
values of ab−h2 is near zero; and without the need of having to treat the ellipse
as its loose equivalent of the parabola. Since θ is the exact parametric position
of the point Pθ on f(x), so does its primitive dual Ppr

θ on fpr(x). Computing
the arc ωAB is the same as computing all the points on fpr(x) between θA and
θB, and then transforming them back onto the original plane using the reverse
transformation in Equation 6.22. We state these straight-forward steps in the
pseudo-codes in Algorithm 2.

Algorithm 2: GetEllipticArc (f(x), PθA , PθB , res)

Output: The arc ωA,B of the ellipse f(x) from PθA to PθB in steps res.

Set ‖α‖, ‖β‖ ← from f(x) ; /* Theorem 6.8 */1

Set Ppr
θA
← T1(PθA) ; /* Equation 6.20 */2

Set Ppr
θB
← T1(PθB) ; /* Equation 6.20 */3

Set θA, θB ← from Ppr
θA

, Ppr
θB

; /* Equation 6.21 */4

Set φ = 1
2 arctan(2h

a−b) ; /* Lemma 6.7 */5

Set xc = -1/2 Q−1g ; /* from Equation 6.11 */6

Initialize ωA,B ← empty;7

for θ ← θA to θB step res do8

Ppr
θ ←

(
‖α‖ cos θ
‖β‖ sin θ

)
;

9

Pθ ← T2(Ppr
θ) ; /* Equation 6.22 */10

Add ωA,B ← Pθ;11

return ωA,B;12

86

CHAPTER 7

Estimating with Elliptic Arcs

Let us now return to our problem at hand described in section 6.2, and continue
with our given set of ordered points TS ⊆ T , decomposed and identified by
Algorithm 1 through Proposition 3.12. This implies that the trajectory of the
placement of the points in TS already resemble a second-order curve based on
the constraints imposed in the identification process. So our task here is to find
a set of well-placed ellipses, where each f(x) has an arc ωAB that best estimates
the CompositeCurve KC representing TS.

We already know how to construct and render an elliptic arc efficiently be-
tween any two arbitrary points PθA and PθB – both of which are related to the
parametric variable θ. If we know the ellipse f(x) = xTQx + gTx + c = 0 on
which PθA and PθB lie, we will also know the derivatives of f(x) at PθA and
PθB . Furthermore, if we fully know f(x) by all its six coefficients, we can easily
extract the four essential information about it – namely, the centre E ≡ (xE , yE),

Four essential
information
of f(x).
♠

the angle φ at which the major axis of f(x) is tilted, and the two semi-major
distances ‖α‖ and ‖β‖ – to guide us with the drawing of ωAB . Thus the missing
pieces of the puzzle here are the six coefficients to f(x), and we must derive them
from our only source of input in TS.

Contrary to the norm where authors divide f(x) by its constant term c
to eliminate one coefficient and concentrate on the five that are left, on the
assumption that c 6= 0, we begin this chapter by arguing that we can always
find six unique conditions for f(x) based only on three different points lying

Six conditions
to build f(x).
♠

on the ellipse. The first four conditions are fixed while the last two form the
grounds we need to ensure a certain degree of freedom for the curve we are after.
Once it becomes clear that the linear system of equations are solvable for all six
conditions, we shall carry on to highlight the types of ellipses we can expect to get
with our choices made from the last two conditions, based on triangle geometry.
Following which, we give a thorough analysis from the results of these choices
and then show that we can minimize on error checking between the computed

87

88

arc ωAB and the set of original points in TS.

7.1 Deriving Six Conditions from TS

Let us construe ourselves to the TraceSegment TS, whose trajectory of inter-
nal points contains only a single extremum, so that it is possible to approximate
TS evenly with a single second-order Curve K, as stated in Proposition 3.11.
Appropriately in this chapter and the next, we shall refer to K as the elliptic
arc ωAB . Also, let us continue to denote a point P with the subscript θ as Pθ

to indicate that it lies on the ellipse f(x). The elliptic arc ωAB must lie within
the bounds of the constraint-triangle ∆ABC whose vertices A, B, and C are,
respectively, the anchor-points PθA and PθB , and PC , where the tangent lines
at PθA and PθB meet. The first and the last of the ordered series of points in
TS correspond to PθA and PθB – and appropriately, they must lie on the ellipse.
The rest of the points in TS may or may not lie on ωAB , as their main purpose
is to serve as a trajectory guide for producing the arc we want.

I

J

PθK

PθB

PθA

C

f(x)

ωAB

TS

Figure 7.1: An inellipse f(x) with respect to ∆ABC and the extended ∆CIJ .

Based on just these points in TS, we derive six unique conditions needed
to describe an ellipse, and then use them to solve a linear system of six un-
knowns to get all the coefficients for f(x). The first four conditions determine
the constraint-triangle ∆ABC, based on the locations and first derivatives of the
anchor-points PθA and PθB .

Let PθA =
(xA
yA

)
and PθB =

(xB
yB

)
, and let the directional derivatives at PθA

and PθB be dyA
dxA

and dyB
dxB

, respectively1. Then from the implicit Equation 6.1,
we get the first two conditions.

1When discretization is concerned, we derive the derivatives of a point pi ∈ S′ by means of

7.1. DERIVING SIX CONDITIONS FROM TS 89

Condition 7.1 The ellipse f(x) passes through PθA.

f(PθA) = x2
A.a+ 2xAyA.h+ y2

A.b+ 2xA.e+ 2yA.g + c = 0

Condition 7.2 The ellipse f(x) passes through PθB .

f(PθB) = x2
B.a+ 2xByB.h+ y2

B.b+ 2xB.e+ 2yB.g + c = 0

The third and fourth conditions are from the tangent Equation 6.9. With respect
to PC , the tangents at PθA and PθB correspond to the slopes of the directed
lines PθAPC and PCPθB .

Condition 7.3 The ellipse f(x) is tangent to PθAPC at PθA.

dyA
dxA

=
−xA.a− yA.h− e
xA.h+ yA.b+ g

⇔ xAdxA.a+ (xAdyA + yAdxA).h+ yAdyA.b+ dxA.e+ dyA.g = 0

Condition 7.4 The ellipse f(x) is tangent to PCPθB at PθB .

dyB
dxB

=
−xB.a− yB.h− e
xB.h+ yB.b+ g

⇔ xBdxB.a+ (xBdyB + yBdxB).h+ yBdyB.b+ dxB.e+ dyB.g = 0

Two final conditions seal the uniqueness of the ellipse that we seek, and they
are the crucial variants to the combined six conditions. Together, they give us
an ellipse f(x) whose arc ωAB will either match or miss completely the set of
criteria embodied in TS. We highlight in section 7.2 several of these varieties
that we deem most suitably befitting our solutions to the main problem. There
are several possibilities on how to do this from the vast literature, but mainly
involving geometry where an ellipse is inscribed in a ‘contact’ triangle.

Definition 7.5 The contact-triangle ∆CIJ contains an inscribed ellipse f(x)
that is tangent at three points on each of the three edges CI, CJ , and IJ , derived
from the contraint-triangle ∆ABC in the following rationale:

• the common vertex C of ∆ABC and ∆CIJ is the point PC =
(xC
yC

)
;

• the vertex A of ∆ABC is the point PθA lying on the edge CI of ∆CIJ ,
and is a tangent point of the ellipse;

• the vertex B of ∆ABC is the point PθB lying on the edge CJ of ∆CIJ ,
and is a tangent point of the ellipse;

numerical estimation, as was previously discussed in chapter 3

90

• the points PI =
(xI
yI

)
and PJ =

(xJ
yJ

)
are the vertices I and J of ∆CIJ ;

• there exists a point PθK =
(xK
yK

)
lying on the edge IJ of ∆CIJ , and is a

tangent point of the ellipse;

• the chords AJ , BI, and CPθK are concurrent at a point G, where G is
known as the Brianchon point [128]; and

• the nested triangles ∆ABC and ∆CIJ are not necessarily similar.

Lemma 7.6 Let ∆CIJ be a contact-triangle adhering to Definition 7.5. Then
there exists an inellipse f(x) unique only to ∆CIJ that is tangent at the three
contact points PθA, PθB , and PθK .

Proof. Let us assume that there is always a unique inellipse f(x) even if ∆CIJ
is not a proper contact-triangle. In other words, the points PθA , PθB , and PθK

are not properly positioned on the edges CI, CJ , and IJ , so that the chords
AJ , BI, and CPθK are not concurrent at any single point. While it may still be
possible for us to define an f(x) that will pass through all three of the contact
points, we can also sum up the following two deductions:

• that there is more than one f(x) we can define that all three contact points
will lie on; and

• that none of the f(x)’s above is an inellipse of ∆CIJ , since the Brianchon
point G of ∆CIJ does not exist.

The first deduction suggests non-uniqueness, while the second suggests an im-
possibility. These contradict our earlier assumption, and thus it follows that, if
and only if ∆CIJ is a proper contact-triangle, then there exists a unique inellipse
to it.

So it follows from Lemma 7.6 that we only need to determine the proper
contact-triangle ∆CIJ to be assured of a ‘legal’ ellipse. By legal, we mean
that it is possible to construct an ellipse under the given conditions. Also, once
we determined the proper ∆CIJ , we would have correctly identified the three
contact points PθA , PθB , and PθK . Since we already know the first two, building
∆CIJ from ∆ABC will give us the third. And it is through this essential point
PθK and the derivative at it that we draw the last two of the six conditions to
complete our system of equations, and solve it for the six coefficients of f(x).

Let dyK
dxK

be the tangent at PθK . Since this tangent is the edge IJ of ∆CIJ ,

we can express it as dyK
dxK

= yI−yJ
xI−xJ .

Condition 7.7 The ellipse f(x) passes through PθK .

f(PθK) = x2
K .a+ 2xKyK .h+ y2

K .b+ 2xK .e+ 2yK .g + c = 0

7.2. INCONICS AND INELLIPSES 91

Condition 7.8 The ellipse f(x) is tangent to PIPJ at PθK .

dyK
dxK

=
−xK .a− yK .h− e
xK .h+ yK .b+ g

⇔ xKdxK .a+ (xKdyK + yKdxK).h+ yKdyK .b+ dxK .e+ dyK .g = 0

The next section explains the various methods we can apply to get the points
PI and PJ , based only on ∆ABC, from which two points we use to compute
PθK and its corresponding derivative.

7.2 Inconics and Inellipses

An inconic is a conic inscribed in a triangle, and it is tangent to all three edges
of the triangle. Its dual is known as the circumconic, where there exists another
conic that passes through all three vertices of the same triangle. Our approach
to the current problem favours the inconics (as opposed to the circumconics), in
which we want to run a curve inside the constraint-triangle ∆ABC.

Any trilinear equation of the form

x2α2 − 2xyαβ + y2β2 − 2xzγα− 2yzγβ + z2γ2 = 0, (7.1)

where x, y, and z are functions of the side lengths i, j, and c, is an inconic, and
that Weisstein claims that every inconic has such an equation [131]. That is,
elaborating this specifically to fit our context, for any ∆CIJ , the side lengths
are i = ‖CJ‖, j = ‖CI‖, and c = ‖IJ‖, and it is common in the literature to
describe the inconic in terms of its trilinear coordinates α : β : γ.

Furthermore, the lines connecting the vertices of ∆CIJ to the corresponding
‘contact’ points of the inconic are concurrent in the Brianchon point of the trian-
gle [128]. Revisiting our example from the previous section, the Brianchon point
G of ∆CIJ is the intersection of the chords AJ , BI, and CPθK . In practice, the
inconic parameters are stated simply in terms of the trilinear coordinates of the
Brianchon point as

x : y : z =
1

α
:

1

β
:

1

γ
. (7.2)

Also, the centre of an inconic with parameters x : y : z is the Kimberling point

cy + bz : az + cx : bx+ ay. (7.3)

Naturally, we shall only concern ourselves with a specific type of inconics –
the inellipses. And since we do not have the ‘given’ ∆CIJ , we will need to seek
enough properties to build it from the constraint-triangle ∆ABC, with the help
of known inellipses to guide us.

92

G

I = PI
J = PJ

PθK

C = PC

A = PθA

B = PθB

Figure 7.2: Extending the constraint-triangle ∆ABC to get the contact-triangle
∆CIJ , so that the inellipse f(x) is tangent at PθA , PθB , and PθK .

There are several well-known classical inellipses (or inconics, depending on
the values of α : β : γ) in which many authors study their behavioural patterns
and the consequences of their constructions. Out of which we picked four to
study in this thesis. All these inellipses are conceived from the unique attributes
of the contact-triangle ∆CIJ , in one way or another. This in turn leads to our
observation that there are two main categories in which we can construct ∆CIJ
based primarily on ∆ABC: (i) strictly by the measurement of lengths, and (ii)
strictly by the measurement of angles.

The first category includes the Steiner and the Mandart inellipses, while the
second comprises the Orthic inconic and the Brocard inellipse; all of which are
thoroughly described in Weisstein’s report [130]. These two categories result in a
fixed ∆CIJ that is oblivious to any other external conditions that may shape the
arc ωAB that we want from the inellipse f(x), except for the fact that f(x) will
contain the points PθA , PθB , and PθK , and is tangent at all three of them. Later
on in section 7.3, as an alternative to countermand the fixed-ness of ∆CIJ , we
shall introduce a third category. It measures neither the lengths nor the angles
related to ∆ABC, but rather takes into account an external factor based on the
information we can gather about TS. This allows us one degree of freedom when
constructing ∆CIJ from ∆ABC.

For now though, we shall take a closer look at the classical inellipses to sustain
our quest of finding the proper ∆CIJ given only ∆ABC.

7.2.1 Steiner Inellipse

The Steiner inellipse of ∆CIJ is an inellipse whose trilinear equation is

i2α2 − 2ijαβ + j2β2 − 2icγα− 2jcγβ + c2γ2 = 0, (7.4)

7.2. INCONICS AND INELLIPSES 93

with inconic parameters

x : y : z = i : j : c. (7.5)

Chakerian [15] calls this, appropriately, as the midpoint ellipse, since the inellipse
f(x) is tangent to the contact-triangle ∆CIJ at the midpoints of all three edges
‖CI‖, ‖CJ‖, and ‖IJ‖.

G

I

J

PθK

C

B

A

Figure 7.3: The Steiner triangle ∆CIJ from ∆ABC.

Definition 7.9 Following Definition 7.5, the vertices I and J of the Steiner
∆CIJ with respect to ∆ABC are, respectively,

• the point PI that is equidistant to ‖PθAPC‖ from PθA on the opposite side
of PC , such that

PI =

(
xI
yI

)
=

(
xA − dxA
yA − dyA

)
; and

• the point PJ that is equidistant to ‖PCPθB‖ from PθB on the opposite side
of PC , such that

PJ =

(
xJ
yJ

)
=

(
xB + dxB
yB + dyB

)
.

The point PθK is the midpoint of IJ , such that

PθK =

(
xK
yK

)
=

(
(xI + xJ)/2
(yI + yJ)/2

)
.

94

Reference ellipse

Steiner inellipse

Reference S ′

Estimated ωAB

I

J

PθK

C

PθB

PθA

I

J

PθK

C

PθB

PθA

PθK

C

PθB

PθA

Figure 7.4: Estimating ωAB with the Steiner inellipse.

The centre of the Steiner inellipse is the Brianchon point G, and it has been
argued2 that the inellipse f(x) has a maximum area of any inellipse, such that
it is exactly π

3
√

3
times the area of the Steiner triangle ∆CIJ .

We illustrate three resultant arcs ωAB from the computed Steiner inellipse
in Figure 7.4, based on selected points PθA and PθB from a known reference
ellipse that we used in our earlier examples. We refer to the original arc of the
reference ellipse in between PθA and PθB as TS

The Steiner inellipse is one of the most stable inellipses that can be con-
structed given only the constraint-triangle ∆ABC as starting parameters. This
is because we can always find, and rather easily too (in comparison to the next
three methods), the Steiner triangle. The arc ωAB it produces is firm, and this
is the main reason why we shall use the Steiner inellipse as a basis of our adaptive
method, where we will later show how we can tweak the methodologies within
to adapt it to the external conditions in TS.

7.2.2 Orthic Inconic

The Orthic inconic of ∆CIJ is an inconic whose trilinear equation is

i2S2
Iα

2 − 2ijSISJαβ + j2S2
Jβ

2 − 2icSISCγα− 2jcSJSCγβ + c2S2
Cγ

2 = 0, (7.6)

2There has been a recent claim that a Simmons inellipse has a bigger area than the Steiner
inellipse [130].

7.2. INCONICS AND INELLIPSES 95

where SI , SJ , and SC are the Conway triangle notations [129], such that

SI =
1

2
(−i2 + j2 + c2) = ij cos I,

SJ =
1

2
(i2 − j2 + c2) = ic cos J , and

SC =
1

2
(i2 + j2 − c2) = jc cosC.

The inconic is an inellipse for acute triangles, and a hyperbola for obtuse
triangles. Here, we shall only consider the cases where ∠ICJ < π

2 radians.
When the Orthic inconic is an inellipse, its Brianchon point G is the orthocentre
of ∆CIJ

x : y : z = sec I : sec J : secC, (7.7)

and the inellipse has an area of

A =
2π
√

2ijc
√

cos I cos J cosC

(i2 + j2 + c2)
3
2

∆, (7.8)

where ∆ is the area of the Orthic ∆CIJ . A line connecting a vertex of the
Orthic ∆CIJ to its corresponding contact point is always perpendicular to the
edge that it intersects.

Definition 7.10 Following Definition 7.5, the vertices I and J of the Orthic
∆CIJ with respect to ∆ABC are, respectively,

• the point PI that is the intersection of the tangent line through PθA and the
co-tangent line through PθB , in such a way that the point PθA is between
PC and PI on the edge CI; and

• the point PJ that is the intersection of the tangent line through PθB and the
co-tangent line through PθA, in such a way that the point PθB is between
PC and PJ on the edge CJ .

The point PθK is the intersection of the edge IJ of ∆CIJ and the line through
the point PC and the Brianchon point G.

We compute the Cartesian coordinates for PI =
(xI
yI

)
based on Defini-

tion 7.10, where the tangent and co-tangent lines through PθA and PθB , re-
spectively, are

yI − yA =
dyA
dxA

(xI − xA) and yI − yB =
−dxB
dyB

(xI − xB).

96

G

I

J

PθK

C

B

A

I

J

G

C

B

A

(a) Orthic triangle ∆CIJ (b) Improper Orthic triangle

Figure 7.5: Proper vs. improper Orthic triangles

Solving simultaneously for xI and yI , we get

xI =
dxA[dyB(yB − yA) + dxBxB] + dyAdyBxA

dxAdxB + dyAdyB
and (7.9)

yI =

{
yA + dyA

dxA
(xI − xA) if dxA 6= 0,

yB − dxB
dyB

(xI − xB) otherwise.
(7.10)

Similarly, we do the same for PJ =
(xJ
yJ

)
, where the tangent and co-tangent lines

through PθB and PθA , respectively, are

yJ − yB =
dyB
dxB

(xJ − xB) and yJ − yA =
−dxA
dyA

(xJ − xA).

Since we know that ∠ICJ is acute, then there are always solutions for PI

and PJ . However, the Brianchon point G will not lie inside ∆CIJ if either PI

or PJ lies between PC and PθA , or PC and PθB , respectively. If such is the
case, then the point PθK will lie outside ∆CIJ , as illustrated by the improper
Orthic triangle in Figure 7.5(b). Subsequently, there will be no solution for the
inellipse f(x) that satisfies the six conditions listed in section 7.1. On the other
hand, if the points PI and PJ suggest a proper Orthic triangle, then we need
only two more steps to obtain PθK . The first is to determine the Brianchon point
G ≡ (xG, yG), which is the intersection of the chords AJ and BI. Then PθK is
the intersection of the edge IJ with its co-tangent line through G, which we get
by simultaneous solving the equations

yK − yI =
dyK
dxK

(xK − xI) and yK − yG =
−dxK
dyK

(xK − xG).

7.2. INCONICS AND INELLIPSES 97

Reference ellipse

Orthic inellipse

Estimated ωAB

Reference S ′

I

J

PθK

C

PθB

PθA

IJ PθK

C

PθB

PθA

PθK

C

PθB

PθA

Figure 7.6: Estimating ωAB with the Orthic inellipse.

Figure 7.6 depicts three examples of the resultant arcs ωAB from the com-
puted Orthic inellipses. Again, we based the selected points PθA and PθB from
the same reference ellipse from the previous examples. Here, we purposely chose
the points PθA and PθB that led to the construction of proper Orthic triangles
∆CIJ . We also note that as restrictive as the formation of the Orthic inellipse
is, the estimated arc it offers is not as accurate as we may want it to be. This
later becomes more obvious when we apply the Orthic inellipse to the disorderly
set of points in TS that are sampled from a raw handwritten trace.

7.2.3 Brocard Inellipse

The Brocard inellipse of ∆CIJ is an inellipse with the trilinear equation

1

i2
α2 − 2

ij
αβ +

1

j2
β2 − 2γ

ic
α− 2γ

jc
β +

γ2

c2
= 0, (7.11)

and whose inconic parameters are

x : y : z =
1

i
:

1

j
:

1

c
. (7.12)

The Brocard triangle ∆CIJ is dictated by a unique angle ϕ, and is one that is
determined by an inherently geometrical means; see Figure 7.7 for an example.
Where the chords JA, IB, and CPθK concurrently meet at G, they meet at
ϕ angle away from the edges JC, IJ , and CI respectively. There exists only

98

G

I

J PθK

C

B

A

ϕ

ϕ

ϕ

Figure 7.7: The Brocard triangle ∆CIJ .

one such angle ϕ for any ∆CIJ , and when this happens the Brianchon point
G is called the Brocard point. In other words, the Brocard point satisfies the
condition that

∠GCI = ∠GIJ = ∠GJC = ϕ. (7.13)

The angle ϕ is the Brocard angle of ∆CIJ and is known by the relationship

cotϕ = cotC + cot I + cot J, (7.14)

proven through the analysis of the geometric construction of the Brocard point
G, when given a fixed ∆CIJ . We sum up its construction in the following
statements using Figure 7.7 as reference:

• Construct a circle through points C and I, and tangent to the edge IJ .

• Construct a second circle through the points I and J , and tangent to the
edge CJ .

• Construct a third circle through the points J and C, and tangent to the
edge CI.

• The Brocard point G is the unique intersection of the above three circles.

The centre of the first circle is the point where the perpendicular bisector of
CI intersects the line through the point I that is perpendicular to IJ . This is
symmetrically reflected in the second and third circles. This resultant point G

7.2. INCONICS AND INELLIPSES 99

is the first Brocard point of ∆CIJ . There exists a second Brocard point for the
same Brocard angle ϕ satisfying the other condition

∠GCJ = ∠GJI = ∠GIC = ϕ.

Just as intricate is the building of the Brocard ∆CIJ from the constraint-
triangle ∆ABC, since, to begin with, we know neither the positions of the ver-
tices I and J nor the Brocard angle ϕ. In fact, we cannot find a straight-forward
mathematical formula or a set of solvable equations to build ∆CIJ from ∆ABC.
We need to rely on a primarily geometrical means, as well as using a recursive
technique to get to G, through ϕ. However, let us first lay the definition necessary
for the Brocard triangle.

Definition 7.11 Following Definition 7.5, the vertices J and I of the Brocard
∆CIJ with respect to ∆ABC and the (first) Brocard point G are, respectively,

• the point PJ that is the intersection of the edges CB and AG, so that
∠CJA = ϕ; and

• the point PI that is the intersection of the edges CA and BG, so that
∠BIJ = ∠CJA = ϕ.

The point PθK is then the intersection of the edge IJ and the extended chord
CG, so that ∠ICPθK = ∠BIJ = ∠CJA = ϕ.

Definition 7.11 suggests a sequential means of building ∆CIJ , by first finding
the point PJ , then PI , and finally PθK , while simultaneously ensuring that the
Brocard angle ϕ is met through the correct positioning of G. So to get PJ , we
begin with the point PθA . We must then place G in such a way so that the
extended chord AG will cross the extended edge CB at PJ . More specifically,
we can place G so that it partially fulfils the Brocard conditions at ∠GJC and
∠GCI. Geometrically, referring to our example in Figure 7.8,

∠GJC = ∠CGI, if and only if ∠CGA = ∠BCA = µ.

Since we already know the angle µ = (∠BCA), then by Thales’ theorem [26] we
can construct a circle Θ where the edge CA sits snugly inside it, and where any
third point, say Gi, on the circumference of Θ makes the angle µ with the points
PC and PθA ; that is, we get ∠CGiA = µ.

We are only interested in the point Gi where it sits on the arc of Θ bounded
by the extended edges CB and CA. In actual fact, this range of possible positions
for Gi is even smaller, since we can further eliminate part of this arc bounded by
the extended edge CB and a line lB through PθB that is parallel to CA. That
is, we know that PI will not lie on the extended edge CA if we select Gi to lie

100

ITA

TB

J1

G1

µ

ϕ1

ϕ1

J2

G2

µ

ϕ2

ϕ2

C

B

Aµ

Figure 7.8: Determing the Brocard point G based on angle µ.

within this out-of-range region, and thus we should not consider those positions
in our computations. Similarly, we eliminate the other part of the arc bounded
by the extended edge CA and a line lA through PθA that is parallel to CB.

Lemma 7.12 Let TA and TB be the points on the circle Θ intersected by the
lines lA and lB, respectively, within the bounds of the extended edges CA and
CB. Then, for the Brocard ∆CIJ built from ∆ABC, the Brocard point G lies
on the arc of Θ between TA and TB.

Proof. From our discussions above, it is clear that the Brocard point G must
lie within the arc of Θ between TA and TB, in order for the points PI and PJ

to lie on the extended edges CA and CB.

Corollary 7.13 The search for the Brocard point G of ∆CIJ on the arc of Θ
between TA and TB takes logarithmic steps.

Proof. Let us first select G to lie on the halfway point between TA and TB on Θ.
Following which we obtain the points PJ and PI as per stated in Definition 7.11.
By determining the point PJ in this way, we fulfil part of the Brocard angle
condition at ∠GJC and ∠GCI. Then with the point PI , we obtain the angle
∠GIJ , and as long as the three angles ∠GJC, ∠GCI, and ∠GIJ are not equal,
we have not found the Brocard angle ϕ. This also means we have not found the

7.2. INCONICS AND INELLIPSES 101

G

I

J

PθK

C

B

A

Iteration 1

G

I JPθK

C

B

A

Iteration 2

G

I

J

PθK

C

B

A

Iteration 5

G

I

J

PθK

C

B

A

Iteration 10

Figure 7.9: Building the Brocard triangle ∆CIJ from ∆ABC.

correct Brocard point G for ∆CIJ . We rectify this by adjusting G to another
position within TA and TB.

• If ∠GIJ < ∠GCA then pick a new G that is on the halfway point between
TA and the current G.

• If ∠GIJ > ∠GCA then pick a new G that is on the halfway point between
TB and the current G.

We repeat the steps above to compute the related PJ and PI , with respect
to the new G, each time only examining exponentially decreasing portions of
Θ between TA and TB until the Brocard angle condition in Equation 7.13 is
satisfied.

The pseudo-codes in Algorithm 3 contains the iterative method described
above to obtain the Brocard ∆CIJ . It takes the constraint-triangle ∆ABC as
input, as well as the value ε that will stop the iteration process once all three
Brocard angles ∠GJC, ∠GCI, and ∠GIJ are within ∠ε of each other.

We illustrate the building of ∆CIJ in Figure 7.9, where it took 10 iterations
before the algorithm terminates, with a setting of ε = 0.05 degrees.

Lemma 7.14 The iteration method in Algorithm 3 to obtain the Brocard ∆CIJ

102

Algorithm 3: ComputeBrocardTriangle (∆ABC, ε)

Output: The Brocard ∆CIJ where the Brocard angles ϕ differ by ε.

Set µ← ∠BCA;1

Set Θ← ConstructCircle(PC , PθA, µ);2

Set lA ← Line through PθA , parallel to CB;3

Set lB ← Line through PθB , parallel to CA;4

Set TA ← Intersection(Θ, lA) within the bounds of ∆ABC;5

Set TB ← Intersection(Θ, lB) within the bounds of ∆ABC;6

Initialize δ ← µ;7

while |δ| > ε do8

G← MidPointArc(Θ, TA, TB);9

PI ← Intersection(ExtendedEdge(AG), ExtendedEdge(CB));10

PI ← Intersection(ExtendedEdge(BG), ExtendedEdge(CA));11

δ ← ∠GIJ − ∠GCA;12

if δ > 0 then TA ← G;13

else TB ← G;14

return ∆CIJ ;15

from the constraint-triangle ∆ABC terminates and converges to a single solu-
tion.

Proof. The directed iterative steps in Lines 13 and 14 ensures that the iteration
picks up the correct finer portion of the arc on Θ where the Brocard point G lies,
and in doing so, converges towards the correct value of ϕ within the tolerance of
ε.

Thus, there is only one location on the circumference of the circle Θ for G
to be the (first) Brocard point of ∆CIJ , based solely on the three fixed points
A, B, and C. Once we have determined G, we can then determine PθK , and
subsequently obtain the Brocard inellipse f(x).

Figure 7.10 depicts the three resultant arcs ωAB from the computed Brocard
inellipse – again based on the same underlying example ellipse that we used in
the earlier sections.

7.2.4 Mandart Inellipse

The Mandart inellipse of ∆CIJ is tangent at the vertices of the extouch triangle
∆ABPθK (of ∆CIJ). That is, from the example in Figure 7.11, the points A,
B, and PθK are the points of tangency of ∆CIJ with its three excircles centred

7.2. INCONICS AND INELLIPSES 103

Reference ellipse

Brocard inellipse

Estimated ωAB

Reference S ′

I

J

PθK

C

PθB

PθA
I

J

PθK

C

PθB

PθA

PθK

C

PθB

PθA

Figure 7.10: Estimating ωAB with the Brocard inellipse.

at R, S, and T . The Mandart inellipse has the inconic parameters

x : y : z =
i

j + c− i :
j

i+ c− j :
c

i+ j − c (7.15)

where i, j, and c are the sidelenghts of ∆CIJ . Each of the three excircles are
tangent at two other contact points on the extended edges of ∆CIJ , which
incidentally bind the circles. For instance, the circle centred at R is tangent at
R1 on the extended edge JI and at R2 on the extended edge JC. Similarly, the
circle centred at S is tangent at S1 and S2 on the extended edges IC and IJ ,
and the circle centred at T is tangent at T1 and T2 on the extended edges CJ
and CI. Because of the positioning of these excircles, the Brianchon point G is
known as the Nagel point of ∆CIJ .

Furthermore, the nine contact points of the three excircles are related to the
semi-perimeter of ∆CIJ . Let σ be the semi-perimeter of ∆CIJ , where

σ =
1

2
(i+ j + c).

Then

• ‖CT1‖ = ‖CT2‖ = σ;

• ‖JR1‖ = ‖JR2‖ = σ; and

104

T1

T2

T

R1

R2

R

S1

S2

S

G

I

J

PθK

C

B

A

Figure 7.11: The Mandart triangle ∆CIJ with excircles R, S, and T .

• ‖IS1‖ = ‖IS2‖ = σ.

Also, the following three expressions hold:

‖CA‖ = ‖CR2‖ = ‖JPθK‖ = ‖JT1‖ = σ − i = d1 (7.16)

‖CB‖ = ‖CS1‖ = ‖IPθK‖ = ‖IT2‖ = σ − j = d2 (7.17)

‖IA‖ = ‖IR1‖ = ‖JB‖ = ‖JS2‖ = σ − c = d3 (7.18)

We can multiply the above lengths in such a way that the following equality
holds true:

‖CB‖ · ‖JPθK‖ · ‖IA‖ = ‖PθKI‖ · ‖AC‖ · ‖BJ‖.

This is equivalent to

‖CB‖
‖BJ‖ .

‖JPθK‖
‖PθKI‖

.
‖IA‖
‖AC‖ = 1.

7.2. INCONICS AND INELLIPSES 105

Then, by Ceva’s theorem [119], the lines CPθK , JA, and IB are concurrent
at the Nagel point G. This realization of the Cevian length’s relation to the
semi-perimeter enables us to generalize the Mandart ∆CIJ from the constraint-
triangle ∆ABC.

Definition 7.15 Following Definition 7.5 and Equations 7.16 to 7.18, the ver-
tices I and J of the Mandart ∆CIJ with respect to ∆ABC are, respectively,

• the point PI lying on the extended edge CA that is d3 distance away from
PθA; and

• the point PJ lying on the extended edge CB that is d3 distance away from
PθB .

The length of the edge IJ is exactly d1 + d2, and that the point PθK lies on the
edge IJ , and is d1 distance away from PJ as well as d2 distance away from PI .

The key to building the proper Mandart ∆CIJ from ∆ABC is to find the
unknown length of d3 that will fit IJ exactly onto the bounds of the extended
edges CA and CB. As was with the case of finding the Brocard triangle, we now
face a similar situation where there are more unknown variables than there are
unique conditions for us to solve the vertices of the Mandart ∆CIJ via direct
mathematical means. Thus, we propose another iterative approach, making use
of the properties of the Mandart triangle that we have met so far.

In particular, we shall use the excircle centred at T together with its two
tangent points T1 and T2, as well as the pivotal vertex PC to explain our con-
cept. We begin by stating the following three observations, using Figure 7.12 as
reference:

Observation I. The points T1 and T2 are on a circle Θ of radius σ centred
at PC , where σ is the semi-perimeter of ∆CIJ .

Observation II. The point PI lies between PθA and T2, and is d2 distance
away from T2.

Observation III. The point PJ lies between PθB and T1, and is d1 dis-
tance away from T1.

Lemma 7.16 The point T1 lies on the extended edge CB between T1min and
T1max, if d1 > d2. The points T1min and T1max are related in their lengths in the
following manner:

‖CT1min‖ = ‖AT1max‖ = d1 + d2.

106

T

T1

T2

T1min

T2min

T1max

T2max

d1

d2

d1

d2

d3

d3

I

J

PθK

C

B

A

Figure 7.12: Building the Mandart ∆CIJ based on the semi-perimeter informa-
tion.

If, on the other hand, d2 > d1, then the point T2 lies on the extended edge CA
between T2min and T2max. The points T2min and T2max are related in their lengths
in the following manner:

‖CT2min‖ = ‖BT2max‖ = d1 + d2.

Proof. Suppose that d3 = 0. Then it follows that T1min and T2min are the points
that are d1 + d2 distance away from the centre of the circle Θ centred at PC .
On the other hand, if d3 > 0, then the maximum distance that T1max and T2max

can have is bounded by the length of IJ , where ‖IJ‖ = d1 + d2, from the tip of
either PθA or PθB , whichever is farther away from PC , to the extended edge on
the opposite side. Take for example in Figure 7.12, where d2 > d1. Then T2max

is the point on the extended edge CA that is d1 + d2 distance away from PθB .
As a consequence of Observation I, T1max is exactly the same distance away
from PC as T2max is, since they both lie on the circumference of the same circle
Θ centred at PC .

The two minimum and maximum values set up our search range for T1 and
T2 that will lead us to obtain the positions of the vertices I and J of ∆CIJ .

Corollary 7.17 The recursive search method for the Nagel point G of the Man-
dart ∆CIJ given the constraint-triangle ∆ABC terminates after a finite number
of logarithmic steps.

Proof. Clearly, if we correctly determine the length d3, then we can easily obtain
the Nagel point G in constant time, since it is also the Brianchon point of ∆CIJ .

7.3. ADAPTIVE MIDPOINT INELLIPSE 107

Now, to get the correct length of d3, we first set up the search range for T1 and
T2 based on Lemma 7.16.

Beginning with the first estimate, we select T1 to be the midway point be-
tween T1min and T1max . Again, as a consequence of Observation I, T2 is auto-
matically selected as the midpoint between T2min and T2max . We then determine
the points PI and PJ based on T1 and T2, as per explained in Observations II
and III. This immediately ensures that the first two properties in Definition 7.15
are met. The third property, and thus the Mandart ∆CIJ , is fulfilled if and only
if the length we measure from the resultant edge IJ is equal to d1 + d2. That is,
if ‖IJ‖ 6= d1 + d2, then we need to adjust T1 and T2 for the next iteration.

• If ‖IJ‖ < d1 + d2 then pick a new T1 that is on the halfway point between
T1max and the current T1.

• If ‖IJ‖ > d1 + d2 then pick a new T1 that is on the halfway point between
T1min and the current T1.

The new T2 will automatically follow the new T1 based on Observation I.
We repeat the steps above to compute the related PI and PJ . And by using
‖IJ‖ as reference at each iteration, we fine-tune the search, each time examining
only smaller portions of the search range, until we find the Mandart ∆CIJ .

The pseudo-codes in Algorithm 4 contains the iterative method described
above to obtain the Mandart ∆CIJ , and we can state it simply without any
reference to either the circle Θ or the reference circle centred at T . It takes
the constraint-triangle ∆ABC as input, as well as the value ε that will stop the
iteration process once the length of the edge IJ is satisfactorily determined.

We give an illustration of the building of ∆CIJ in Figure 7.13 from the
given ∆ABC, where it took 12 iterations before the algorithm terminates, with
a setting of ε = 0.01.

We complete this section with Figure 7.14 where we show the three resultant
arcs ωAB from the computed Mandart inellipse.

7.3 Adaptive Midpoint Inellipse

Let us now consider a slight variation to the classical inellipses that we have met
so far, where we shall not impose a fixed contact-triangle ∆CIJ based on ∆ABC
to determine its inellipse f(x). That is, we want to allow the generation of ωAB
in accordance to the trajectory of the ordered points in TS, without compromis-
ing the integrity of the curve within against the amount of computation required
to obtain it. Out of the four inellipses we discussed, the Steiner inellipse and
the Orthic inconic offer “direct” computations to get to the contact-triangle.
However, only the Steiner inellipse is stable enough to allow us to further tweak

108

T1min

T2min T1max

T2max

T1

T2

I

J

C B

A

Iteration 1

T1min

T2min T1max

T2max

T1

T2

I

J

C B

A

Iteration 4

T1min

T2min T1max

T2max

T1

T2

I

J

C B

A

Iteration 8

s1

s2

T1min

T2min T1max

T2max

s1

s2 T1

T2

s3

s3

G

PθK

I

J

C B

A

Iteration 12

Figure 7.13: Building the Mandart triangle ∆CIJ from ∆ABC.

its internal methods to make it more susceptible to the varying conditions in
TS. Thus, in addition to its stability and speedy computations, the Midpoint
Lemma 7.18 below completes our adaptive approach to generate an arc ωAB
that will fit desirably onto TS.

Lemma 7.18 Let M be the midpoint of the vertices A and B of the constraint-
triangle ∆ABC, and let the point PθL be the intersection of the median line CM
and the inellipse f(x) of ∆CIJ . Then, the derivative at PθL is the slope of the
baseline AB.

Proof. We shall stick to the earlier assumption we made that the curve between
the vertices PθA and PθB of ∆ABC is quadratic. That is, the point on the
second-order curve where the curvature changes its sign, when traversing from
A to B (or vice-versa), is the point PθL that is farthest away from the baseline
AB, and whose tangent is parallel to the slope of the line AB. This tangent line

7.3. ADAPTIVE MIDPOINT INELLIPSE 109

Algorithm 4: ComputeMandartTriangle (∆ABC, ε)

Output: The Mandart ∆CIJ where ‖IJ‖ < ε.

Set d1 ← ‖CA‖, d2 ← ‖CB‖;1

if d1 > d2 then2

P ← Intersection(CB, Circle(rad = d1 + d2, ctr = PθB))3

else4

P ← Intersection(CA, Circle(rad = d1 + d2, ctr = PθA))5

Initialize dmin ← d1 + d2;6

Initialize dmax ← ‖CP‖;7

Initialize δ ← dmax;8

while |δ| > ε do9

dmid ← (dmin + dmax)/2;10

PI ← Intersection(CA, Circle(rad = dmid − d2, ctr = PC));11

PJ ← Intersection(CB, Circle(rad = dmid − d1, ctr = PC));12

δ ← ‖IJ‖ − d1 − d2;13

if δ < 0 then dmin ← dmid;14

else dmax ← dmid;15

return ∆CIJ ;16

Reference ellipse

Mandart inellipse

Reference S ′
Estimated ωAB

IJ PθK

C

PθB PθA

I

J

PθK

C

PθB

PθA

PθK

C

PθB

PθA

Figure 7.14: Estimating ωAB with the Mandart inellipse.

cuts the edges CA and CB at the points q and r, respectively, and this conforms
to de Casteljau’s midpoint theorem, which we shall explain in further details
in section 8.1, so that PθL is the midpoint of q and r – see Figure 7.15 for an
example. The resultant ∆qrC is similar to ∆ABC.

In this case, we do not need to find the contact-triangle ∆CIJ , since the
above lemma ensures that we fulfil Condition 7.7 and Condition 7.8 with the

110

point PθL and its derivative. However, it is not difficult to see that the point
PθK lies on the exact opposite of PθL on the ellipse f(x), on the same median
line CM . Similarly, the tangent at PθK is also the slope of the line AB, and
that the tangent line cuts the extended edges CA and CB at the points I and
J , respectively. Consequently, the point PθK is the midpoint of I and J , and it
also lies on the extended median line CM . The resultant contact-triangle ∆CIJ
is similar to ∆ABC, but it is not necessarily the Steiner triangle.

Corollary 7.19 The centre E of the inellipse f(x) of ∆CIJ lies on the extended
median line CM .

Proof. The line through the points C and M is one of the three median lines
of the contact-triangle ∆CIJ , where it connects the vertex C to the midpoint of
the edge IJ . The incentre of any triangle is where the three median lines meet.
Subsequently, the centre of the inellipse (or incircle) is also the incentre of the
triangle, which in our case is called the contact-triangle ∆CIJ . Hence, E lies on
the line through C and M .

So, in comparison to the method deriving the Steiner inellipse, the adaptive
midpoint we have been referring to in our case is the point PθL , lying on the
inellipse f(x) in the trajectory of PθA and PθB . The “adaptation” process of PθL

then refers to locating the most appropriate point inside the constraint-triangle
∆ABC from the set of discrete points pi ∈ TS. We present three approaches to
do this.

Adaptation I. Pick the point pi = PθL that lies on CM . If no such
point exists, then pick the point PθL that is the intersection of the
line-segment pipi+1 and the line CM .

Adaptation II. Pick the first point pi = PθL that has the farthest per-
pendicular distance from the baseline AB.

Adaptation III. Pick the point pi = PθL whose derivative is the closest
to the slope of AB. If several of such points exists, then break the tie
by selecting the first point with the shortest perpendicular distance
to CM .

Adapting to option I implies that we force the derivative at PθL to be the
slope of the line AB, while by options II and III, we simply adapt the measured
derivative at the selected point.

In keeping to the earlier standards, we shall again use the same underlying
ellipse to guide our examples in this section. However, in addition to the arbi-
trarily selected anchor-points PθA and PθB , we also chose a random number of
discrete points lying in the trajectory of the anchor-points to form the elements
in TS. We illustrate the outcomes of the three adaptations in the Figure ?.

7.4. MEASURING THE QUALITY OF APPROXIMATED CURVES 111

pM

PθL

PθB

PθA

C

Estimated ωAB

Adaptation I on S ′

Estimated ωAB

PθL

PθB

PθAAdaptation II on S ′

Estimated ωAB

PθL

PθB

PθAAdaptation III on S ′

Figure 7.15: Adaptation methods I, II, and III to estimate ωAB onto TS.

7.4 Measuring the Quality of Approximated Curves

Having now understood the various ways in which we can instantiate and control
an inellipse f(x) with incomplete information, we should also have a way to mea-
sure how the resultant arcs of these inellipses fair when we use them to estimate
any given Trace T . Earlier on, we showed how well an approximated simplified
polyline measures up to its original, in terms of the line-segments connecting the
points kept with respect to the points eliminated (see Equation 5.1). The smaller
the measured error value errT is, the better the quality of the approximation.

Similarly, we shall use this same but slightly modified approach to measure
the quality of the approximated Curves– elliptic, or otherwise – with respect to
the original T , for the same reasons we gave in section 5.2. We will be discussing
one more family of curves in chapter 8, and we will see that our discussions
here on the quality of approximations should generally be applicable for both
types. For now though, let us concentrate on measuring the quality of curves
with regards to the elliptic arcs.

Let ωAB be the elliptic arc estimating a section of T between PθA and
PθB . The arc ωAB is part of the ellipse described by f(x), whose centre is
at E ≡ (xE , yE). Let TS = {p1, p2, . . . , pm} ⊆ T be the section of T that is

112

approximated by ωAB , where the endpoints p1 and pm correspond to PθA and
PθB , respectively. Also, for all pi ∈ TS, let Li be a straight line through E and
pi. Then, for any pi ≡ (xi, yi), there exists a corresponding point on the arc
pθi ≡ (xθi, yθi) ∈ ωAB ⊂ f(x), which is the intersection of the ellipse f(x) and
the line Li, closest to pi. Now, if we use the same analogy we did with measuring
the quality of simplified lines from chapter 5, then it is the same case here when
we consider the endpoints of TS kept and all others in between them eliminated.
In further contrast, the arc ωAB is used in place of the line-segment PθAPθB to
find pθi using the centre E of f(x) as reference, instead of p′i. It follows then, the
square of the error measure errTAB of ωAB , with respect to the original TAB, is
computed as

err2
TAB

=
1

m

m−1∑

i=1

‖pipθi‖2, (7.19)

where

‖pipθi‖2 = (xi − xθi)2 + (yi − yθi)2.

pi
pθi

E

PθB

PθA

ωAB

T

Figure 7.16: Measuring error of an elliptic arc.

Thereupon, the full error measure for the entire Trace T is the sum of all error
measures errTAB in all k segments of T .

errT =

k∑

j=1

errTAB j
(7.20)

7.5. ELLIPTIC SEGMENTATION 113

7.5 Elliptic Segmentation

Up until this point, we have established the various ways in which we can obtain
an elliptic arc to approximate a portion of a full ellipse without access to complete
information. We built this up until the last section where saw that the same can
be achieved when instituting the arc ωAB over one segment of a Trace TS ⊆ T ,
with or without complete information of the underlying Curve’s characteristics
derived from TS. The choices for TS in our examples so far have been arbitrary;
mainly to illustrate that the smoothed version of the original Trace T can be
composed of a set of well-placed elliptic arcs ωAB , and that the keys for the con-
fluent joints of these arcs lie in making the correct choices for the corresponding
TraceSegments TS. In other words, only when the decomposition of T into
its segments are properly primed to receive elliptic arc estimates, can there be a
desirable solution to the problem of smoothing T by its elliptic segmentation.

Inflection

SharpEdge

SharpEdge

SharpEdge

Figure 7.17: An ActiveTrace TM obtained by putting the original Trace T
through the active-sampling algorithm from section 3.5, showing the marked
SharpEdge and Inflection crucial points. The rest of the grey points are
Normal.

114

Our observations in the earlier chapters pertaining to the handwritten Traces
showed that any Trace T can have within it piecewise connections and sharp
edges. And considering that all the elliptic arcs we used for our approximations
are inherently second-order Curves, then care must be taken when handling the
inflection points in T . Recall that we termed these two types of points ‘crucial’,
and stated in Definition 3.14 and Definition 3.15 on how we can actively detect
all inflection points and sharp-edge vertices in T , through the active-sampling
algorithm. This then becomes the first of two steps of the elliptic segmentation
of T , and that the product of the active-sampling algorithm (Algorithm 1) on
T is its equivalent ActiveTrace TM; where all the internal points pi ∈ TM

are marked as either SharpEdge (G0 continuity), Inflection (G2 continuity),
or Normal. We give an example of this in Figure 7.17.

Suppose that there are k+ 1 such SharpEdge and Inflection points in TM.
Then, using these crucial points as segment markers of TM, we get k contiguously
ordered segments of TM, so that TM =

〈
TSM

1 , . . . , TS
M
k

〉
, where the endpoints

of each segment are the identified crucial points of TM.

TSM
1 ⊆ TM

TSM
2 ⊆ TM

TSM
3 ⊆ TM

Figure 7.18: Step 1 of the elliptic segmentation of the Trace T .

Let TSM
j = {pj1, . . . , pjm} be jth segment of TM. Then the endpoints of the

intermediate segment TSM
j are also the endpoints of its neighbouring segments

TSM
j−1 and TSM

j+1; that is, p(j−1)m = pj1 and pjm = p(j+1)1, for 1 < j < k.

Consequently, by our Proposition 3.12, every segment TSM
j ⊆ TM is composed

of a set of second-order curves, and particularly in this Chapter, we shall interpret
the second-order curves to be the elliptic arcs ωAB . This leads us to the second
step of the elliptic segmentation – the breakdown step of the main problem – to
identify the rest of the crucial G1 points in each segment TSM of TM.

7.5. ELLIPTIC SEGMENTATION 115

7.5.1 The Näıve Approach

Without loss of generality, let us refer to the ActiveTrace segment TSM ⊆ TM

whose endpoints are marked as either SharpEdge or Inflection, simply as
TS, where TS = {p1, . . . , pm}. Also, we consider every point pi ∈ TS as an
ActivePoint; that is, as we established in section 3.4, an ActivePoint pi is em-
bedded within it, additional information with regards to its positional standing
with respect to other neighbouring points in the Trace. Such active informa-
tion include the first and second derivatives, as well as the measure of curvature
at pi.

The näıve approach makes direct use of these active information as it iterates
from p1 to pm. The objective is to first find a valid elliptic arc for an initial set
of points, and then stretch that arc as far as possible, stopping only at a point,
say pg+1, down the segment TS when the arc can no longer be instantiated. The
last point pj where the arc was valid becomes the crucial G1 continuity point,
contributing to the elliptic segmentation of T . The process is repeated from pj
until all m points in TS are considered. We give the pseudo-codes of the näıve
approach in Algorithm 5.

Näıve Approximation

Total error errT : 39.2386

errTS1: 17.9925

errTS2: 7.691

errTS3: 13.5551

Total G1 continuity points kept:

4 + 4 + 4 = 12

Figure 7.19: The näıve approximation of the Trace T . The green circular dots
indicate the G1 continuity points pj identified by the approach. The dotted green
lines are the tangent lines through pj , demonstrating the unbroken and confluent
joints between segments.

One can use any of the elliptic arcs which are the products of the inellipses or
inconics discussed in section 7.2 and section 7.3. However, in this case of approx-
imating TS, we should favour any one of the three adaptive-midpoint inellipses
over the others, since we have access to the expected underlying curve’s charac-

116

teristics in TS. This access to the characteristics comes when there are at least
three points in TS made available for our approximation methods. The resul-
tant adaptive-midpoint elliptic arcs produced are judgementally better estimates
than the arcs from the other methods.

The other notion from this and future approaches that we need to address
is the concept of the invalid elliptic arcs – how and why they happen. That
is, by our discussions of Proposition 3.12, second-order Curves can make up
the segment TS, and yet we find situations where we cannot get valid arcs to
approximate over a set of points arranged in the second-order trajectory of TS.

There are two explanations for this: One is that the set of points are aligned,
or almost aligned, to form a straight line; and this is evident if we look at
the measures of curvature in each of the ActivePoint – they are hovering at
about zero. A straight line, by definition, is a degenerate second-order curve.
The second reason is that the tangents at the endpoints of TS are parallel,
or almost parallel, to each other. And when they are completely parallel, the
tangent lines through PθA and PθB will not intersect at PC , and hence, we
cannot instantiate the constraint-triangle ∆ABC. This second reason is also
a consequence of the first, since the gradients at both endpoints of a straight
line-segment are equal. Thus, when either of these two situations arises, the six
conditions necessary to instantiate the ellipse f(x) extracted from the current
set of points returns no solutions from the linear system of six equations that we
highlighted in section 7.1. In other words, the six conditions derived from the
set of points we want to approximate cannot yield the six coefficients required
to describe f(x).

We saw from the steps above that whenever we encounter invalid arcs while
the algorithm is still running in the midst of segments, we simply dismiss the
point pj that contributed to the problem, and either select another point for
consideration, or stop and revert back to the previous point whose corresponding
arc is valid. This, however, becomes a substantial problem if we cannot find a
valid arc for the set of points in the final segment of TS. Thus, confronted with
such a case, we offer the following solutions.

Solving the first situation is straight-forward. The points are already poised
to receive a straight line, so we simply pass a straight line-segment connecting
the endpoints PθA and PθB . As a matter of observation, this situation almost
always happens in the beginning and/or ending parts of the original segment
TSj , whose endpoints are either marked as SharpEdge or Inflection. Because
if we extend the segment TSj , say into TSj+1, and find the continuation of the
straight line at the end of TSj , then it is most likely that the point pjm is an
inflection point.

Dealing with the second situation, however, requires some work. Let TS′ =
{p1, . . . , pm} be the final segment of TS, that yielded an invalid arc because
of parallel (or near parallel) gradients at its endpoints. We need to backtrack

7.5. ELLIPTIC SEGMENTATION 117

to a previous point before pm, preferably to one that lies in the middle of this
last segment, say pk, where k = m/2, so that we get valid vertices PC for the
corresponding constraint-triangles ∆ABC. Then, we can attempt to instantiate
a valid arc for each of the sub-segment {p1, . . . , pk} and {pk, . . . , pm}. If any
of the two sub-segments still results in an invalid arc, or if there were only two
points in the last segment of TS′ to begin with, then the solution is to ‘relax’
the last two of the six conditions (Condition 7.7 and Condition 7.8) that are to
be fed into the system of linear equations, and this involves guessing the choice
for PθK . Coincidentally, any of the other inellipses discussed in section 7.2 will
provide the alternative choice in place of the adaptive-midpoint inellipse, since
they deal with incomplete information. In retrospect, the resultant elliptic arcs
by these methods will maintain the G1 continuity at the endpoints of TS′.

P′
θA

P′
θB

PθA

PθB

Figure 7.20: Two types of (almost) parallel tangents. The blue segment marked
by the tangent lines through P′θA and P′θB is an example of the first situation,
where the segment is almost already a straight line. The red segmented marked
by the tangent lines through PθA and PθB describes the second situation.

The approximation of the Trace T in Figure 7.19 contains an example of
both situations in the third segment TS3. The top end of the segment con-
necting the sharp-edge vertex and the first G1 continuity point pj is a straight
line-segment. The bottom end deals exclusively with the second situation as
we described above, where we utilized the Steiner inellipse to complete the arc
approximation. We list the recursive method to handle both the situations in
Algorithm 6.

7.5.2 An Improved Approach

Notice that we did not pay attention to the quality of approximated arcs over TS
in the previous section. While the connected arcs adhered to the G1 continuity
constraint at their endpoints, the overall smoothed TS may not necessarily be
desirable. Thus here, we propose an improvement to the näıve approach, that
takes into consideration the error measure errTS .

Let us recap that TS = {p1, . . . , pm} is a segment of the original Trace T ,
whose endpoints p1 and pm are marked as either SharpEdge or Inflection.

118

Algorithm 5: Naı̈veSegmentation (ActiveTrace TSM
j ⊆ TM)

Output: A set of elliptic arcs K that approximates TSM
j = {p1, . . . , pm},

and marks the G1 continuity points identified in TSM
j .

Initialize K ← {};1

Set PθA ← p1, Set flg ← 0;2

// Iterate through all m points in TSM
j .

for i = 3 to m do3

Set PθB ← pi;4

Set TS′ ← {PθA , . . . ,PθB};5

Set isArcValid ← False;6

f(x)← Instantiate inellipse Adaptive-Midpoint(TS′);7

Let lnAB be the baseline connecting PθA and PθB ;8

if f(x) exists AND both PC and PθL are on the same side of lnAB9

then Set isArcValid ← True;

// Attempt to stretch the arc.

if flg = 0 AND isArcValid = True then Set flg ← 1;10

else if flg = 1 AND isArcValid = False then11

Reset PθB ← pi−1;12

Reset TS′ ← {PθA , . . . ,PθB};13

f(x)← Instantiate inellipse Adaptive-Midpoint(TS′);14

Add K ← GetEllipticArc(f(x), PθA , PθB); /* Algorithm 2 */15

Mark pi−1 As crucial G1 continuity point;16

Reset PθA ← pi−1, Reset flg ← 0;17

// Tidy up the last segment. See Algorithm 6.

if PθA 6= pm then Add K ← HandleLooseSegment(TS′);18

return K;19

The improved approach extends the main objective of the näıve approach after
having found the point pj+1. Where instead of immediately keeping pj as the
crucial G1 continuity point, we review all the valid elliptic arcs found so far, and
pick the one arc ωAB whose error measure over the points it approximates is
the smallest. Let pk be the corresponding anchor-point PθB of ωAB with the
smallest error measure, where k ≤ j. Then pk is the crucial G1 continuity point
contributing to the elliptic segmentation of T . The process repeats again from
pk until all m points in TS are considered.

Terminating this iterative process at the last segment of TS is also slightly
different from the näıve approach. If after having considered the elliptic arc at the
final point pm and found that the error measure is not the smallest among all the

7.5. ELLIPTIC SEGMENTATION 119

Algorithm 6: HandleLooseSegment (ActiveTrace TM)

Output: A set of elliptic arcs that approximates TM = {p1, . . . , pm}, and
marks the G1 continuity points identified internally in TM.

// Case 1: Approximating entire TM with a single arc.

f(x)← Instantiate inellipse Adaptive-Midpoint(TM);1

if f(x) exists then return GetEllipticArc (f(x), p1, pm);2

// Case 2: Attempt the Steiner inellipse.

f(x)← Instantiate inellipse Steiner(TM);3

if f(x) exists then return GetEllipticArc (f(x), p1, pm);4

// Case 3: Points aligned on a straight line.

if All pi ∈ TM has curvature hovering about zero then return5

LineSegment (p1, pm);

// Case 4: General.

Initialize K ← {};6

Set pk ← pm/2;7

Mark pk As crucial G1 continuity point;8

Add K ← HandleLooseSegment({p1, . . . , pk});9

Add K ← HandleLooseSegment({pk, . . . , pm});10

return K;11

valid arcs so far, then we still need to select the arc whose corresponding point
pk gave the smallest error measure, where k < m. Following which, we need
to observe the points from pk to pm again, until we terminate the procedure
precisely at pm, or when the situation arises when no more valid arcs can be
instantiated. In the latter case, we revert to the solutions we pointed out in the
previous section.

We list the pseudo-codes of this improved approach in Algorithm 7.

From the resultant approximation in Figure 7.21, we get an overall improve-
ment of 37.17% in the error measurement compared to the earlier approximation
of the same example in Figure 7.19.

7.5.3 Speeding Up with a Guided Trajectory Approach

The two approaches that we have just seen are indeed computationally expensive
methods, in terms of their execution times. Notice that while the runtimes are
both proportionally linear in the number of points in TS, visiting each point
actually instantiates an inellipse f(x) (see Line 7 in Algorithm 5, and Line 8 in
Algorithm 7). Solving the system of linear equations via the LU factorization
method on a k × k matrix takes O(2k2) computations [12]. One can argue that

120

Improved Approximation

Total error errT : 24.3604

errTS1: 8.5696

errTS2: 7.6522

errTS3: 8.1386

Total G1 continuity points kept:

7 + 2 + 4 = 13

Figure 7.21: The improved approximation of the Trace T .

this time factor is negligible, since in our case, k = 6 is a small constant number.

However, we can still avoid performing many ‘unnecessary’ computations
by exploiting the exigent information made available from the consequence of
Proposition 3.12, and also from what we already know from the methods in
the polyline simplification algorithms we discussed in chapter 5, particularly,
the Douglas-Peucker (DP) algorithm [30]. In fact, we have already prepared
the grounds for this guided trajectory approach in the HandleLooseSegment()

routine in Algorithm 6, when attempting to approximate a set of elliptic arcs for
the final segment of TS. We now show how we can cultivate this method and
harvest it as a general elliptic segmentation algorithm.

Let TS = {p1, . . . , pm} ⊆ T be the ActiveTrace segment whose endpoints
are marked as either SharpEdge or Inflection.

The objective here is to approximate the entire segment TS with a single
elliptic arc, and then recursively refine it by breaking down the arc into several
segments, if a certain error measure criteria is not met. We can split this arc
because by Proposition 3.12, TS is solely composed of second-order Curves.
And that in turn, can be decomposed into several, but shorter, well-connected
second-order Curves. Furthermore, the solution after the refinement process is
correct because the endpoints of each broken down Curve maintains its G1 con-
tinuity with its neighbours, thus ensuring a confluent connection of arcs within
the harmony of the whole Curve.

One can see that this approach is very similar to the DP algorithm, and
it is mainly the HandleLooseSegment() routine from Algorithm 6. However,
there are two additional cases that we need to consider: (i) the measure of error

7.5. ELLIPTIC SEGMENTATION 121

Algorithm 7: ImprovedSegmentation (ActiveTrace TSM
j ⊆ TM)

Output: A set of elliptic arcs K that approximates TSM
j = {p1, . . . , pm},

and marks the G1 continuity points identified in TSM
j .

Initialize K ← {};1

Initialize ps, errs;2

Set PθA ← p1, Set flg ← 0;3

// Iterate through all m points in TSM
j .

for i = 3 to m do4

Set PθB ← pi;5

Set TS′ ← {PθA , . . . ,PθB};6

Set isArcVAlid ← False;7

f(x)← Instantiate inellipse Adaptive-Midpoint(TS′);8

Let lnAB be the baseline connecting PθA and PθB ;9

if f(x) exists AND both PC and PθL are on the same side of lnAB10

then
Set isArcVAlid ← True;11

err← measure error between TS′ and f(x);12

if err < errs then13

errs ← err;14

ps ← pi;15

// Attempt to stretch the arc.

if flg = 0 AND isArcVAlid = True then Set flg ← 1;16

else if flg = 1 AND isArcVAlid = False then17

Reset PθB ← ps;18

Reset TS′ ← {PθA , . . . ,PθB};19

f(x)← Instantiate inellipse Adaptive-Midpoint(TS′);20

Add K ← GetEllipticArc(f(x), PθA , PθB); /* Algorithm 2 */21

Mark ps As crucial G1 continuity point;22

Reset PθA ← ps;23

Reset flg ← 0;24

Reset i← s+ 225

// Tidy up the last segment. See Algorithm 6.

if PθA 6= pm then Add K ← HandleLooseSegment(TS′);26

return K;27

for refinement and the refinement process itself, and (ii) the handling of cyclic
segments.

In the former case, it is imperative that we find the most opportunistic point to

122

properly split TS that will work in our favour. That is, where previously we chose
the middle point in TS to recursively call the refinement routine, we should now
instead select any point pk ∈ TS that lies exactly on the current approximated
elliptic arc ωAB . In general, pk is the point with the smallest error distance with
respect to its corresponding point pθk ∈ ωAB , that we explained in section 7.4.
If several pks exist, then we pick one that lies relatively in the middle of ωAB .
This ensures that we keep all our approximated arcs as close to the original
points in TS as possible.

The current HandleLooseSegment() routine assumes that TS is a non-cyclic
segment; that is, the trajectory of points in TS does not complete a full 360◦-turn
from the start to the end of the segment. Thus, in order to drop this assumption
and address the latter case above, we need to make one more amendment to the
method in Algorithm 6, to ensure that the trajectory of points in the segments
we deal with are appropriate for this kind of elliptic arc segmentation.

Definition 7.20 An ActiveTrace segment TS is appropriate for an elliptic
arc approximation if all the points in TS fall into its own constraint triangle
∆ABC.

For example, the segment TS1 of the Trace T in Figure 7.22 is a cyclic Trace-
Segment. If we join the tangent lines at the endpoints PθA and PθB of TS1 to
meet at PC , then the resulting constraint triangle ∆ABC contains none of the
intermediate points in TS1. Hence, by Definition 7.20, TS1 is not an appropriate
segment for an elliptic arc segmentation.

This evidently becomes the pre-condition on the original TS before invoking
the main procedure described above. As it already is, the breakdown step in
the DP algorithm presents a smart solution for our situation here in making a
TraceSegment appropriate. That is, we take the point pj ∈ TS that has the
furthest perpendicular distance from the baseline p1pm, and use it to split TS into
two sub-segments {p1, . . . , pj} and {pj , . . . , pm}. We repeat this DP-step over the
new sub-segments for as long as they are still not appropriate for an elliptic arc
segmentation. As a consequence of this, all of the identified points pj becomes
the crucial G1 continuity points contributing to the elliptic segmentation of T .
The pseudo-codes in Algorithm 8 describes this step of making an ActiveTrace
segment appropriate.

As an added advantage, we now have a chance to correct the stray gradients
at those ‘indeterministic’ points in an appropriate ActiveTrace segment TS.
The endpoints of TS are now sturdy enough for this correctional computation.
However, we shall not abuse it for all the points in TS; suffice only to apply
the correction to the identified crucial point pk each time before invoking the
recursive refinement step.

That is, for any intermediate point pk ∈ TS, where TS is an appropriate Ac-

7.5. ELLIPTIC SEGMENTATION 123

PθB = pm

PθA = p1

PC

TS1 ⊆ T

pj1 = PθB

PθA = p1

PC

pm

Figure 7.22: Making TS1 appropriate for elliptic segmentation. Step 1. After
constructing ∆ABC, we find that none of the intermediate points in TS1 lie
inside ∆ABC. After which, tj1 ∈ TS1 is identified as the farthest point away
from p1pm. The point pj1 splits TS1 into two sub-segments {p1, . . . , pj1} and
{pj1, . . . , pm}. Step 2. The sub-segment {pj1, . . . , pm} is now appropriate, but
the sub-segment {p1, . . . , pj1} is not, and the refinement process is repeated until
the whole TS1 is made up of appropriate sub-segments.

Algorithm 8: MakeSegmentAppropriate (ActiveTrace TM)

Output: A set of appropriate TraceSegments in TSS from TM,
following the outline stated in Definition 7.20.

Set ∆ABC ← compute ConstraintTriangle(TM);1

if All pi ∈ TM are contained in ∆ABC then return {TM};2

Initialize TSS ← {};3

Set pj ← point with the furthest perpendicular distance from p1pm;4

Mark pj As crucial G1 continuity point;5

Add TSS ← MakeSegmentAppropriate({p1, . . . , pj});6

Add TSS ← MakeSegmentAppropriate({pj , . . . , pm});7

return TSS;8

tiveTrace segment, we can determine a better estimate of the gradient of the
elliptic arc at pk, based on its position with respect to the two endpoints p1 and
pm in TS.

Proposition 7.21 Let tan(θA) be the gradient of the line lnA through the points
p1 and pk, and let tan(θB) be the gradient of the line lnB through the points pk
and pm. Then the angle of the gradient line of the curve passing through the
three points p1, pk, and pm, at pk, is the halfway sum of the angles θA and θB.

124

In other words, let tan(θk) be the gradient of the elliptic arc approximating the
appropriate ActiveTrace segment TS at pk, then

θk =
1

2
(θA + θB). (7.21)

lnA

lnB

θA

θA
θk

θB

θm
θm

PθB = pm

PθA = p1

pk

Figure 7.23: Getting a better estimate of the gradient of the curve at pk.

Let us refer to Figure 7.23, which is based on the second segment TS2 ⊆ TS
from our current examples, to explain this. Where the lines lnA and lnB cross at
pk, the opposite external angles affected by the lines are essentially the angular
guides for the tangent of the curve at pk. That is, the tangent line splits each
of the external angles into two equal portions, as indicated by θm in the figure.
From the reference point pk, we get 2θm = θB − θA. It then follows that

θk = θA + θm =
1

2
(θA + θB).

We see this as another way of viewing de Casteljau’s geometric observations
of the parametric curves [43], restricted to within the domain of second-order
curves. We will see more proof of this when we discuss the Bézier curves in the
next chapter.

Lemma 7.22 Let the derivatives of the line lnA and lnB from Proposition 7.21
be expressed in terms of the points p1 ≡ (x1, y1), pk ≡ (xk, yk), and pm ≡
(xm, ym), so that

tan(θA) =
dyA
dxA

=
yk − y1

xk − x1
and tan(θB) =

dyB
dxB

=
ym − yk
xm − xk

.

Also, let α = dxBdyA + dxAdyB and β = dxAdxB − dyAdyB. Then the tangent
of the curve at pk is

tan(θk) =
dyk
dxk

=
−β ±

√
β2 + α2

α
. (7.22)

7.5. ELLIPTIC SEGMENTATION 125

Proof. From Equation 7.21, we take the tangent on both sides of the equation
to get the following equivalent expressions.

tan(2θk) = tan(θA + θB)

2 tan(θk)

1− tan2(θk)
=

tan(θA) + tan(θB)

1− tan(θA) tan(θB)

2 tan(θk)

1− tan2(θk)
=

dyA/dxA + dyB/dxB
1− (dyA/dxA)(dyB/dxB)

2 tan(θk)

1− tan2(θk)
=
dxBdyA + dxAdyB
dxAdxB − dyAdyB

=
α

β

Rearranging this gives us the quadratic equation

α tan2(θk) + 2β tan(θk)− α = 0.

And solving it gives us the estimated derivative of the expected curve pass-
ing through the three points p1, pk, and pm, at pk, where dyk

dxk
= tan(θk) =

−β±
√
β2+α2

α .

The two solutions returned from Equation 7.22 refer to (i) the tangent line de-
scribed in Proposition 7.21, which does not intersect the line-segment p1pm, and
(ii) another line that is perpendicular to the tangent line in (i). Naturally, we
take the former as our solution for tan(θk).

We state the full routine for this guided trajectory approach in Algorithm 9.

Algorithm 9: GuidedTrajSegmentation (ActiveTrace TSM
j ⊆ TM, ε)

Output: A set of elliptic arcs K that approximates TSM
j = {p1, . . . , pm},

and marks the G1 continuity points identified in TSM
j .

Initialize K ← {};1

Set TSS ← MakeSegmentAppropriate(TSM
j); /* Algorithm 8 */2

foreach TSi in TSS do3

Add K ← RefineFitSegmentation(TSi, ε); /* Algorithm 10 */4

return K;5

Clearly, after putting these all together, we can see that we do not need to
compute all the ellipses for all the points in TS. In fact, we only need to compute
at most two times the number of crucial points retained in TS. This makes the
approach more favourable to us, in terms of its runtime, over the previous two
methods we introduced earlier, since we do not need to compute the ellipses at

126

p6

p15

p25

p28

p31
p33

p37

p48

p53

p1

p65

Guided Trajectory Approximation (ε = 0.5)

Total error errT : 23.1025
errTS1: 9.814
errTS2: 11.0384
errTS3: 2.2501

Total G1 continuity points kept:

5 + 1 + 1 = 7

Figure 7.24: Approximating the Trace T with the guided trajectory approach.

every single point. On the average, as was discussed in section 5.3, this divide-
conquer-and-refine approach takes O(n log n) time to complete, where n is the
number of points in TS.

Furthermore, the resultant quality of the approximation is fairly similar to
the improved approach. The example we have been using to illustrate our ap-
proach, judging from the results in Figure 7.24, demonstrates this with a quality
improvement of 41.12% over the näıve approach; from the previous quality im-
provement of 37.17% by the improved approach.

7.6 Results and Discussions

We present two more examples of our elliptic segmentation method to smooth
the Traces in Figure 7.25 and Figure 7.26, based on the guided trajectory
approach. The former employs the Adaptive-Midpoint II in constructing the
underlying elliptic arcs, while the latter is made up of Steiner inellipses. Both
approximations were set at ε = 2.5 pixels, per point.

We also ran another experiment to observe the percentage of the points kept
for a given set of 2500 freehand written Traces, each with a varying number of
internal points. The data set were made to go through the elliptic segmentation
process based on the Adaptive-Midpoint II, the Steiner, the Mandart, and the
Brocard inellipses. We omitted the Orthic inconic as we pointed out earlier that
there are cases where the method fails to return valid approximations. We also
set the values of ε to range from 1.1 to 2.1 pixels per point, and we noted the
number of points kept as each Trace was put through the elliptic segmentation

7.6. RESULTS AND DISCUSSIONS 127

Algorithm 10: RefineFitSegmentation (ActiveTrace TM, ε)

Output: A set of elliptic arcs K that approximates TM = {p1, . . . , pm},
and marks the G1 continuity points identified in TM.

// Straight line check.

if All pi ∈ TM has curvature hovering about zero then return1

LineSegment (p1, pm);

// Default approximation with the Adaptive-Midpoint

inellipse.

f(x)← Instantiate inellipse Adaptive-Midpoint(TM);2

// If default fails, revert to the Steiner inellipse.

if f(x) DOES NOT exist then f(x)← Instantiate inellipse Steiner(TM);3

// Now refine, if necessary.

Initialize K ← {};4

Initialize pk, err;5

Set {pk, err} ← ComputeErr SplitPt(TM, f(x));6

if err ≤ ε then Add K ← GetEllipticArc(f(x), p1, pm);7

else8

Mark pk As crucial G1 continuity point;9

Reset dyk
dxk
← compute tan(θk); /* Proposition 7.21 */10

Add K ← RefineFitSegmentation({p1, . . . , pk}, ε);11

Add K ← RefineFitSegmentation({pk, . . . , pm}, ε);12

return K;13

Algorithm 11: ComputeErr SplitPt (Trace T , Ellipse f(x))

Output: (i) The split point pk ∈ T , and (ii) the total error measure err2
T .

Initialize pk, err2
T ← 0.0;1

foreach pi in T do2

Set erri ← compute error measure at pi using f(x) as reference;3

Note pk ← largest per point error so far;4

err2
T+ = erri;5

return {pk, err2
T };6

process, based on the guided trajectory approach. We present our findings in
Table 7.1.

From the results in Table 7.1, the Adaptive-Midpoint II has a clear edge in
keeping the number of points low, compared to the other three methods. We
know it uses the advantage of the local segment information to guide the arcs,

128

Method ε = 1.1 ε = 1.6 ε = 2.1

Adaptive-Midpoint II 17.16% 11.92% 8.11%

Steiner Inellipse 25.92% 18.78% 17.02%

Mandart Inellipse 43.48% 35.87% 32.48%

Brocard Inellipse 45.02% 37.89% 37.02%

Table 7.1: Average percentage of points kept per Trace.

as opposed to having to guess the final two conditions in order to instantiate the
Steiner, Mandart, and Brocard inellipses.

So while the three classical inellipses still produced desirable approximations
with respect to the predefined values of ε, it required them to have more cru-
cial points to successfully carry out the elliptic segmentation procedure. This
inevitably leads to the methods requiring more time to produce the similar ap-
proximations as the Adaptive-Midpoint II.

Figure 7.25: An example of an elliptic segmentation, highlighting the ellipses in
the background that make up the elliptic arcs arranged in confluent positions.

7.6. RESULTS AND DISCUSSIONS 129

Figure 7.26: Another example of the elliptic segmentation.

130

CHAPTER 8

The Bézier Curve Approach

The last two chapters proved that we can indeed approximate a collection of
handwritten Traces solely with a set of well-defined and well-positioned el-
liptic arcs, to produce desirably high quality curves in place of the pixelated
Traces. We saw that the transitional connection made between the simplifi-
cation of polylines and the passing through of proper smooth curves over the
subjugated trajectory of indeterministic points, lies in correctly identifying only
the crucial points in a Trace. What was lacking, though, was the ‘speed’ factor.
Computing ellipses are expensive. And while we made it a point to compute them
only when it becomes necessary, we want to expedite this process of generating
and finding desirable curves for approximating Traces even further.

In lieu of this, let us now dwell in another family of curves – the Bézier
curves. Particularly, the second-order types, both rational and non-rational. In
due course of the next two chapters, we will see that the behaviour of these curves
can be made to assimilate the properties of the elliptic arcs that we uncovered,
perform very minimal error checking, and still produce desirably high quality
approximations for a collection of handwritten Traces.

Named after the automobile engineer Pierre Bézier, the curves were designed
so that people in Pierre’s profession would find it most understandable when
using them in their everyday routines at the Renault car company in the early
1960s. To the engineers, a Bézier curve was considered in terms of its centre of
mass with respect to a given set of point masses. This intuitively provided the
means that make these descriptive curves applicable for chronicling free-form
shapes, and the vast literature supports this notion with numerous examples,
notably illustrating this property with cubic Bézier curves.

Here is where we draw the line to segregate the differences from the classical
methodologies above, against our proposed techniques that deal exclusively with
quadratic Bézier curves. The development of which paves the way towards the

131

132

denouement of our accelerated active-smoothing concept in our discussions in the
upcoming sections. Recall that we began our arguments in the earlier chapters
by building our grounds based on second-order curves to efficiently solve the
problem of smoothing handwritten Traces. We shall continue that trend here,
and show that rational quadratic Bézier curves are as good as, if not better
than, the cubic curves when applied in the domain of active smoothing. These
appraisals are in terms of the overall speed of establishing the desirable curves,
the quality of approximations that second-order Bézier curves produce, and, most
importantly, the simplicity of the combined techniques.

8.1 De Casteljau’s Recursive Midpoint Rule

A Bézier Curve K(t) is a parametric curve described over a closed interval
t ∈ [0, 1]. That is, from a start-point PθA at t = 0, the Curve takes its shape
as it traverses over the permitted range of values of t, and then terminates
completely at an end-point PθB at t = 1. The endpoints of the Curve, PθA

and PθB , are also known as the anchor -points. The number of points in K(t) is
determined by the resolution of the traversal-step over the values of t, and that
the Curve K(t) is the Curve given by our Definition 3.4.

Before we embark on our discussions on the Bézier Curves, it is imperative
to note that this family of curves was first introduced by Paul de Casteljau [43].
It was through his fundamental observation of the ‘subdivision’ property that
Pierre Bézier was able to parametrically describe the curve as above, which
henceforth became famously known as the Bézier curve. This property refers to
the ‘recursive midpoint rule’ that subdivides a single curve into two new ones
at the half-way parametric mark. That is, we can divide K(t) into two equal
parametric domains of [0, 0.5] and [0.5, 1]. Subsequently, each new curve can be
further put through the recursive midpoint rule, thus subdividing it (and the
original curve) into very fine granulations. In retrospect, the two new Bézier
curves in the first subdivision, when considered together, are the equivalent of
the whole K(t) from which they were originally derived.

What should strike us here as important is that at every subdivision step,
the point on the Curve coinciding with the half-way parametric mark, is also
the point that is uniquely related to the local geometric entity that defines the
shape of the Curve.

Let us explain this using an example of a proper second-order Curve K. Let
the point PC be the intersection of the tangent lines through the anchor-points
PθA and PθB of K. Then the three points PθA , PθB , and PC form the vertices of
the local geometric entity that defines the shape of K. This is the same entity as
the constraint-triangle ∆ABC from our past discussions. For the convenience of
our deliberations here, let us refer to the three points PθA , PθB , and PC simply

8.1. DE CASTELJAU’S RECURSIVE MIDPOINT RULE 133

as A, B, and C.

Proposition 8.1 Let ∆ABC be any proper triangle on the plane. Then a
second-order Bézier Curve K can be inscribed in ∆ABC using the principles of
de Casteljau’s recursive midpoint rule, based on a two-fold geometry beginning
on the edges AC and CB, so that the resultant collection of midpoints mi at each
recursive step converges to the Curve K.

A single step in de Casteljau’s method applies a two-fold geometry to arrive at
the one true point of the underlying quadratic Curve K. That is, the recursive
rule begins with the three primary (guiding) points A, B, and C, and determines
the first-order midpoints p and q, on the line-segments AC and CB respectively.
Then, from the resultant line-segment pq, we obtain the second-order midpoint
m0 as illustrated in Figure 8.1(a). The point m0 lies on K and coincides with
the half-way parametric mark at t = 0.5, and that pq is the tangent line to
the underlying Curve K at m0. Consequently, the midpoint rule splits the
constraint-triangle ∆ABC into two-halves at m0, the left-half ∆Apm0 and the
right-half ∆m0qB, in which de Casteljau’s method is again applied in both sub-
components to obtain m1 and m2 as shown in Figure 8.1(b). Correspondingly,
the points m1 and m2 lie on the parametric marks of t = 0.25 and t = 0.75, and
that ij and kl are tangents to the Curve K at m1 and m2, respectively.

A

B

C

p
q

m0

(a) Step 1

A

B

C

p
q

i

j
k

l

m0

m1

m2

(b) Steps 2, 3

A

B

C

(c) Step i

Figure 8.1: The recursive midpoint rule applied on points A, B, and C.

By recursively carrying out this binary-partitioning rule for infinitely many times
over the sub-components derived at each recursive step, and then retaining all
midpoints mi at every subdivision, we get the smooth and true Bézier Curve K.

De Casteljau’s recursive midpoint rule, while elegant in its approach, is com-
putationally expensive and is not suitable for application domains requiring fast
responses. In particular, pin-pointing mi on the true curve and deriving its re-
lationship with respect to the primary points A, B, and C, is a tedious process,
especially if mi sits deep down in the binary-partitioned step. This hassle of the
recursive step, however, is overcome if we extend the tangent line at mi until it
cuts the edges AC and CB of ∆ABC at pi and qi, respectively. Based strictly

134

on the line-segment piqi over mi, we get its parametric mark t from the distance-
ratio on three separate occasions as stated in Equation 8.1, for a second-order
Bézier Curve.

Parametric
distance-ratio t

♠
t = ‖Api‖/‖AC‖ = ‖Cqi‖/‖CB‖ = ‖pmi‖/‖piqi‖ (8.1)

Take Figure 8.1(b) for example, m1 is the midpoint between i and j (which,
respectively, are the midpoints between A and p, and p and m0). Extending the
line-segment ij until it cuts the original guides at AC and CB gives us t = 0.25 by
Equation 8.1 as depicted in Figure 8.2(a). Figure 8.2(b) shows another example
with t = 0.83.

A

B

C

p|t=0.25

q|t=0.25

m|t=0.25

(a) t=0.25

A

B

C

p|t=0.83

q|t=0.83

m|t=0.83

(b) t=0.83

Figure 8.2: De Casteljau’s recursive midpoint rule in direct relations to the
parametric distance-ratio t.

In general, de Casteljau’s recursive midpoint rule is applicable across all or-
ders of the Bézier curve family where more than one extremum exists in K(t).
That is, for a Bézier Curve of order n, a single step in de Casteljau’s method
would apply an n-fold geometry on its local geometric entity to get to a corre-
sponding point mi on K(t). The reverse is also true when determining the exact
parametric position t of a point p ∈ K(t). Setting geometry aside, for the time
being, we will see in the next section that the mathematical expression for any
rational (and non-rational) Bézier Curve comes as a direct consequence of de
Casteljau’s midpoint rule. Determining any point p is as trivial as evaluating
the mathematical expression with t, and that determining the exact parametric
position t of p ∈ K(t) is the same as solving the expression for t.

8.2 Quadratic Bézier Curves

A Bézier Curve K(t) of degree n is built up from the backbone elevation ex-
pression

1n = [(1− t) + t]n, (8.2)

which controls the trajectory overture of the Curve from one anchor-point
PθA |t=0 to the other anchor-point PθB |t=1. The number of terms on the right-

8.2. QUADRATIC BÉZIER CURVES 135

hand side of the expanded Equation 8.2 determines the number of control -points
(minus the two anchor-points) required to describe K(t).

For example, a third-order Bézier Curve requires two control-points P1 and
P2, in addition to the two anchor-points PθA and PθB . These four points act as
coefficient markers, so that the expanded elevation expression gives way to the
cubic equation

K(t) = (1− t)3PθA + 3t(1− t)2P1 + 3t2(1− t)P2 + t3PθB . (8.3)

One can see that this expression is analogous to the Bernstein polynomial of
degree three. The anchor-points are treated as unique constants and are located
at the extreme ends of the expanded equation, so that when t = 0, K(t) returns
only the PθA part of the expression; and likewise, when t = 1, K(t) returns only
the PθB part. As a consequence, the anchor-points sit on the Curve K(t) and
the control-points do not. The latter serves only to guide the formation of K(t)
to within the convex hull of the closed polygon PθA , P1, P2, and PθB .

Definition 8.2 A second-order Bézier Curve K(t) comprises one control-point
PC ≡ (xC , yC) and two anchor-points PθA ≡ (xA, yA) and PθB ≡ (xB, yB),
which together makes up the constraint-triangle ∆ABC. The Curve is com-
pletely inscribed in ∆ABC and is defined by its quadratic equation

K(t) = (1− t)2PθA + 2t(1− t)PC + t2PθB . (8.4)

Here, KS(t) is equivalent to the point (x(t), y(t)), and we can decompose Equa-
tion 8.4 into its individual axis components

x(t) = (1− t)2xA + 2t(1− t)xC + t2xB, and

y(t) = (1− t)2yA + 2t(1− t)yC + t2yB.

We can relate the validity of Equation 8.4 back to de Casteljau, using the
notion of the parametric distance ratio t with respect to the edges AC and CB.

Lemma 8.3 Let m ≡ (xm, ym) be a point on KS(t). Then m is the product of
de Casteljau’s recursive midpoint rule by its relation to ∆ABC, so that for the
parametric position t that m is located on, m|t is exactly (x(t), y(t)).

Proof. Let p = (xp, yp) and q = (xq, yq) be the two respective intersection
points on the edges AC and CB of ∆ABC, obtained by extending the tangent
line at m. Then by Equation 8.1, the parametric position t ∈ [0.0, 1.0] of m is
the distance-ratio that ensures that p lies t‖AC‖ distance away from A, and q
lies t‖CB‖ distance away from C, such that

xp = t.(xC − xA) + xA, yp = t.(yC − yA) + yA; and (8.5)

xq = t.(xB − xC) + xC , yq = t.(yB − yC) + yC . (8.6)

136

The point m is the second-order midpoint of de Casteljau’s rule, and it lies t‖pq‖
distance away from p. Then

xm = t.(xq − xp) + xp

= t.((t.(xB − xC) + xC)− (t.(xC − xA) + xA)) + xp

= xA.(1− 2t− t2) + xC .(2t− 2t2) + xB.t
2

= xA.(1− t)2 + xC .2t(1− t) + xB.t
2

= x(t)

Similarly, we obtain

ym = t.(yq − yp) + yp

= t.((t.(yB − yC) + yC)− (t.(yC − yA) + yA)) + yp

= yA.(1− 2t− t2) + yC .(2t− 2t2) + yB.t
2

= yA.(1− t)2 + yC .2t(1− t) + yB.t
2

= y(t)

Thus, m|t ≡ (xm, ym) = (x(t), y(t)).

Lemma 8.4 The line pq with respect to the constraint-triangle ∆ABC of a
second-order Bézier Curve K(t) is the tangent line to K(t) at m|t.

Proof. From the individual axis components of KS(t), we differentiate x(t) and
y(t) with respect to t, so that

dx(t)

dt
= 2((t− 1)xA + (1− 2t)xC + txB), and

dy(t)

dt
= 2((t− 1)yA + (1− 2t)yC + tyB).

This evaluates the tangent expression for the Curve K(t) at the parametric
position t ∈ [0, 1] to

dy(t)

dx(t)
=

(t− 1)yA + (1− 2t)yC + tyB
(t− 1)xA + (1− 2t)xC + txB

.

The first midpoint m0 identified by de Casteljau’s rule occurs at t = 0.5 (see the
example from Proposition 8.1). Substituting t = 0.5 into the tangent expression
above gives

dy

dx
|t=0.5 =

yB − yA
xB − xA

,

8.3. RATIONAL QUADRATIC BÉZIER CURVES 137

which is exactly the gradient of the baseline PθAPθB . And since pq is parallel to
PθAPθB , then the gradient of the line pq is the same as the gradient of PθAPθB .

By Lemma 8.3, any point m|t ∈ K(t) is the product of de Casteljau’s recursive
midpoint rule by its relation to ∆ABC. In other words, for any m lying on the
Curve K(t), there exist a sub-triangle ∆ABC ′ where m is the first midpoint,
so that the line p′q′ related to ∆ABC ′ is the tangent line of K(t) at m. The
line p′q′ is related to line pq at m|t by the notion of the distance ratio stated in
Equation 8.1, so that p′q′ ⊂ pq at m|t. Hence, it follows that the line pq is the
tangent line to K(t) at m|t.

The Bézier Curves we have dealt with so far are the non-rational Bézier
Curves. They are also sometimes known as integral Bézier Curves, and they
have very rigid shape structures due to their formation that is based simply on
the derivatives at the anchor-points. As was with our previous techniques, we
also want to be able to tweak an arc and control it to our advantage here, based
on some information about its environment. We can do this cleanly by adding
weights to K(t) and then rationalize the Curve while keeping the tangents at
the endpoints intact. This we explain in the next section.

8.3 Rational Quadratic Bézier Curves

A non-rational Bézier Curve is made rational by scaling the elevation expression
(Equation 8.2) of the control-points in K(t) with values which we denote as
weights wi. For example, based on our earlier expression in Equation 8.3, a
third-order rational Bézier Curve K(t) is given as

K(t) =
(1− t)3w0PθA + 3t(1− t)2w1P1 + 3t2(1− t)w2P2 + t3w3PθB

(1− t)3w0 + 3t(1− t)2w1 + 3t2(1− t)w2 + t3w3
. (8.7)

As a rule of thumb, the elevation expression must always sum to one; otherwise
the Curve will change with the coordinate system. And so if any of the weights
are altered, we need to normalize the blending of the elevation expression by
dividing through their total value. Clearly, when all the weights are set to 1, we
get the original non-rational cubic Bézier Equation 8.3.

One other way to view this, is that a rational Bézier Curve is essentially
the superclass of its non-rational version, in terms of an object-oriented concept.
There are many other aspects of the rational Bézier Curve discussed in the
literature pertaining to its tangency and curvature, its reparameterization, as
well as its relation to the Bernstein polynomial [43, 113, 120].

However, what concerns us most in our deliberations here is the manipulation
of the weights wi, particularly the weight w1 related to control-point PC of a
rational quadratic Bézier Curve. This directly contributes to our solutions in
the active-smoothing of handwritten Traces, which we shall discuss in further

138

details in the later part of this chapter. It is by getting the correct ratio in w1 that
we can perform an efficient segmentation and identify the crucial G1 continuity
points in a TraceSegment TS. And it is through the by-product of this notion
that error measure of an approximation can be reduced to a minimum.

Definition 8.5 A second-order rational Bézier Curve K(t) comprises the three
vertices of its constraint-triangle ∆ABC and three weights w0, w1, and w2 that
correspond to the vertices PθA, PC , and PθB , respectively. The curve is com-
pletely inscribed in ∆ABC and is defined by its quadratic equation

K(t) =
(1− t)2w0PθA + 2t(1− t)w1PC + t2w2PθB

(1− t)2w0 + 2t(1− t)w1 + t2w2
. (8.8)

A second-order rational Bézier Curve is sufficient to represent a conic. Let
us refer to Equation 8.8 and set the weights w0 = 1 and w2 = 1. Then, the curve
K(t) is

• a hyperbola if w1 > 1;

• a parabola if w1 = 1; and

• an ellipse if w1 < 1.

This behaviour of the rational curve provides us with a good reason to dwell
solely in its quadratic domain. Furthermore, converting a second-order ratio-
nal Bézier Curve to its cubic non-rational equivalent, is easier than the other
way around [120]. This ensures the portability of our techniques if it becomes
necessary to export the final smoothed arcs as cubic Bézier Curves to support,
for example, the generation of true-type fonts. The alternative of directly us-
ing cubic Bézier Curves in our application domain may not necessarily produce
desirable approximation results during active-smoothing, and may at times fail
altogether.

8.4 Constraint-Triangle ∆ABC and Area Relations

There is a subtle, yet powerful relationship between the quadratic rational Bézier
Curve K(t) and its constraint-triangle ∆ABC. We point this out in terms of
the area construed above the baseline of ∆ABC and underneath the Curve.
For convenience, let us once again refer to the three points PθA , PθB , and PC

that make up the vertices of ∆ABC simply as A, B, and C.

Theorem 8.6 Let AB be the baseline of the constraint-triangle ∆ABC. Let
M be the midpoint of AB, and let L be the intersection point of the rational

8.4. CONSTRAINT-TRIANGLE ∆ABC AND AREA RELATIONS 139

KS(T)

A B

C

M

Lp q

D E

h hα

Figure 8.3: Area under the Curve K(t) inside the constraint-triangle ∆ABC.

quadratic Bézier Curve K(t) and the line-segment CM , so that

α = ‖ML‖, and β = ‖MC‖.

Also, let λ be the area of the constraint-triangle ∆ABC, and let f(λ) be the area
underneath KS(t) inscribed in ∆ABC, expressed as a function of the area of
∆ABC. Then,

f(λ) =
αβ

β2 − αβ + α2
λ. (8.9)

Proof. The area underneath the Curve K(t) completely covers the area of
∆ABL and portions of the area in ∆ALp and ∆BLq, where p and q are points
on the edges AC and CB, respectively, such that the line pq is parallel to AB
and passes through the point L. These three areas can all be expressed in terms
of λ, which is the area of the constraint-triangle ∆ABC, where.

λ =
1

2
‖AB‖h.

Let CD be a line perpendicular to AB, intersecting at the point D, so that
h = ‖CD‖. Similarly, let LE be another line perpendicular to AB, intersecting
at the point E, so that hα = ‖LE‖. Then by similar triangles ∆MLE and
∆MCD,

hα
h

=
α

β
, so that hα =

α

β
h.

This leads to the expression of the area of ∆ABL in terms λ.

Area(∆ABL) =
1

2
‖AB‖hα =

α

β

1

2
‖AB‖h =

α

β
λ.

140

Also, since CM bisects AB at M , it bisects pq at L, so that ‖AM‖ = ‖MB‖ =
1
2‖AB‖, and ‖pL‖ = ‖Lq‖ = 1

2‖pq‖. By similar triangles ∆CpL and ∆CAM ,
we can express ‖pL‖ in terms of ‖AB‖ as follows:

‖pL‖
‖AM‖ =

‖CL‖
‖CM‖

‖pL‖
1
2‖AB‖

=
β − α
β

‖pL‖ =
β − α

2β
‖AB‖.

Then the area of ∆ALp, which is equal to the area of ∆BLq, can be expressed
in terms of λ, as follows.

Area(∆ALp) =
1

2
‖pL‖hα

=
1

2

β − α
2β
‖AB‖ α

β
h

=
α(β − α)

2β2

1

2
‖AB‖h

=
1

2
t λ, where t =

α(β − α)

β2
< 1.

From de Casteljau’s recursive midpoint rule, αβ is the ratio of the trajectory of the
Curve inside its constraint-triangle ∆ABC where the extremum point L lies.
The midpoint rule splits the Curve at L into two portions, constrained by the
sub-triangles ∆ALp and ∆BLq, so that the extremum points in both triangles
are also within the bounds of the split ratio α

β , giving us the same situation of
finding the area underneath KS(t) with the original ∆ABC. This allows for
a recurrence relation in terms of the area of ∆ABC with the area underneath
KS(t).

Then, letting f(λ) be the area underneath KS(t), expressed as a function of the
area of ∆ABC, we get:

f(Area(∆ABC)) = Area(∆ABL) + f(Area(∆ALp)) + f(Area(∆BLq))

f(λ) =
α

β
λ+ f(

t

2
λ) + f(

t

2
λ)

f(λ) =
α

β
λ+ 2f(

t

2
λ).

8.4. CONSTRAINT-TRIANGLE ∆ABC AND AREA RELATIONS 141

Expanding the terms,

f(λ) =
α

β
λ+ 2[

α

β
(
t

2
λ) + 2f(

t

2
(
t

2
λ))]

f(λ) =
α

β
λ+ 2[

α

β

t

2
λ+ 2[

α

β
(
t

2
)2λ+ 2f((

t

2
)3λ)]]

. . .

f(λ) =
α

β
λ+ 2(

t

2
)
α

β
λ+ 22(

t

2
)2α

β
λ+ 23(

t

2
)3α

β
λ+ . . .

f(λ) =
α

β
λ [1 + t2 + t3 + . . .].

Since t < 1, this series converges to

f(λ) =
α

β

1

1− t λ

f(λ) =
αβ

β2 − αβ + α2
λ.

Corollary 8.7 A non-rational quadratic Bézier Curve K(t) has the ratio of
lengths α : β = 1 : 2. Then, by Theorem 8.6, the area underneath the Curve K(t)
bounded by its constraint-triangle ∆ABC is 2

3λ.

The implication of Theorem 8.6 allows us to directly compute the area in constant
time; that is, without even having to instantiate the Curve. Normally, one
would first need to assemble the Curve and then digitally integrate it with,
say, the Trapezoidal rule [12] over a number of resolution steps m. The finer
the resolution, the more accurate the area becomes, but at a price of a larger
number of steps.

In retrospect, we can determine λ, before computing the area under KS(t),
without having to figure out the height h of ∆ABC. That is, given three non-
collinear points (xA, yA), (xB, yB), and (xC , yC), the area of ∆ABC is simply

Area(∆ABC) = λ =
1

2
|(xB − xA)(yC − yA)− (xC − xA)(yB − yA)|. (8.10)

Corollary 8.8 Let w0 = w2 = 1.0. Then the weight w1 of the rational quadratic
Bézier Curve K(t) stated in Definition 8.2 is the ratio of the lengths ML and
LC, so that in terms of α and β,

w1 =
‖ML‖
‖LC‖ =

α

β − α. (8.11)

142

Proof. Without affecting our discussions, since rational Bézier Curves are
projective invariant, let us reposition the control-points PθA and PθB so that
they lie on opposite sides of the x-axis with the midpoint M being the coordinate
origin, so that (xA, yA) ≡ (−1, 0), (xB, yB) ≡ (1, 0), and (xM , yM) ≡ (0, 0). This
can be done by performing a simple Euclidean transformation on ∆ABC (and
subsequently, onKS(t), but not necessarily); a translation followed by a rotation.

Evaluating KS(t) at t = 0.5 returns KS(0.5) = w1
1+w1

PC . Clearly, KS(0.5) and
L are the same points (from the proof of Lemma 8.4), and furthermore, the
points L and PC are on the same line through the coordinate origin M . Thus it
follows that the length of ML is exactly w1

1+w1
times the length of MC. That is,

‖ML‖ =
w1

1 + w1
‖MC‖

α =
w1

1 + w1
β.

Rearranging this expression, we get

w1 =
α

β − α.

8.5 The Significance of the Weight w1

The weight w1, related to the control-point PC , plays a very significant role in
controlling the behaviour of the desired rational Bézier Curve that we are after.
By setting the other two weights w0 and w2 to 1.0, we give ourselves freedom
through w1 to pursue the single extremum point in an appropriate TraceSeg-
ment TS, which is directly affiliated to the Curve K(t). That is, we use the fact
from Corollary 8.8 to deduce the point L ∈ TS in which to obtain the smooth
approximate of TS through K(t). This rightly assumes that the point L is the
extremum point in the underlying second-order curve as we pointed out earlier
in Lemma 7.18.

An appropriate TraceSegment TS has all its internal points pi ∈ TS inside
the constraint-triangle ∆ABC. Finding the point L, which equivalent notation is
PθL in our standards to signify that the point also lies on the Curve K(t), given
TS is exactly the same routine that we previously explained in Adaptation I in
section 7.3, while discussing the adaptive midpoint inellipses:

Pick the point pi = PθL that lies on CM . If no such point exists, then pick the
point PθL that is the intersection of the line-segment pipi+1 and the line CM .

We then compute the weight w1, and simply generate the approximated
Curve K(t) for TS. We give three examples in Figure 8.4;

8.5. THE SIGNIFICANCE OF THE WEIGHT W1 143

KS(T)

TS

A

B

C

M

L

w1 = 0.4492

A

B

C

M

L

w1 = 1.7592

A

B

C

M
L

w1 = 1.4195

Figure 8.4: Determining w1 from based on ∆ABC and TS.

Of course, this estimate may not necessarily be desirable, as the only thing
that we can guarantee from this exercise is that K(t) will pass through the three
points PθA , PθL , and PθB . We also know from our previous deliberations that
if the gradient at L ∈ TS is parallel (or almost parallel) to the gradient of the
baseline AB, then chances are that the measure of error between K(t) and all
the points in TS would be minimal. Otherwise, the need to refine K(t) arises if
the measure of error is far from satisfactory.

Instead of performing the error measurement in the ways that we proclaimed
earlier, which involves all the points in TS, we devised an alternative strategy
that is even more efficient, by making use of the conotation implied above with
the weight w1. We will show in the next section that it is sufficient to determine
the quality of the estimated Bézier Curve K(t) by measuring only two other
significant points, related to the constraint-triangle ∆ABC, and adhering to de
Casteljau’s midpoint properties.

144

8.6 Selective Error Measurement

Unlike the ellipses, the Bézier Curves do not have an obvious centre reference
from which to serve as a strong basis for error computation as we saw in sec-
tion 7.4. But, it is guided and construed by the constraint-triangle ∆ABC.

More importantly, the Curve itself is a direct product of de Casteljau’s
recursive midpoint rule. As a consequence of this, we should also be able to use
de Casteljau’s recursive idea to guide a series of well-placed rational second-order
Bézier Curves to desirably estimate an appropriate TraceSegment TS. We
do this by ‘looking ahead’ at two partition error-corridors εR and εS as indicated
in Proposition 8.9.

A
B

C

M

L
p

q

mp
mq

PθR

R

PθS

S

Figure 8.5: Measuring error at the partition corridors.

Proposition 8.9 Let us refer to the constraint-triangle ∆ABC of an appropri-
ate TraceSegment TS and all the marked points M , L, p, and q, from which
are stated by Theorem 8.6 and its Corollary 8.8, and where K(t) is the approx-
imated Curve for TS obtained from computing the weight w1. Let mp and mq

be the midpoints of AL and LB, respectively. Also, let R be the intersection be-

8.6. SELECTIVE ERROR MEASUREMENT 145

tween pmp and TS, and let S be the intersection between qmq and TS. Then, for
PθR = K(0.25) and PθS = K(0.75), the partition error-corridor at PθR and PθS

are εR = ‖RPθR‖ and εS = ‖SPθS‖, respectively, and that, for a predetermined
tolerance corridor value ε, the Curve K(t) is a desirable approximation of TS
if and only if both the following conditions are met:

εR ≤ ε, and εS ≤ ε.

The proposition implies that the TraceSegment TS inside ∆ABC is con-
vex, and as such, TS can be sufficiently approximated by a set of well-positioned
second-order Curves (from Proposition 3.12). Conventionally, after obtaining
the first estimated Curve K(t), we must inevitably test the fitness quality of
K(t) to TS by measuring the error-distance for every point pi ∈ TS with respect
to the co-related point pθi ∈ K(t). Then, based on this measured error, we de-
cide whether or not to split K(t) at the halfway mark, at t = 0.5, and repeat the
procedure in the newly bisected left and right sub-segments until the computed
error is satisfactorily below a certain tolerance value.

Thus it follows that in the worst-case scenario, determining the set of second-
order curves to desirably estimate a TraceSegment TS of n points requires
O(n log n) steps. Proposition 8.9, however, suggests a more expedient way to
achieve the same results. This is by using the inherent properties that de Castel-
jau’s recursive midpoint rule has over the second-order curve, as indicated by
Lemma 8.3.

The points PθR and PθS are, in essence, the extremum points of the broken-
down Curve inside the respective constraint-triangles ∆ALp and ∆BLq. The
recursive midpoint rule by de Casteljau dictates that R and S are equivalent to
PθR and PθS , respectively, so that both εR and εS are zero (or close to zero).
If and only if both these conditions are true, then the rest of the points in TS,
which are representative of the points in a second-order Curve K(t), will follow
suit in the trajectory alignment as we stated previously in Definition 3.4. In other
words, if both εR and εS are within the bounds of the predetermined tolerance
corridor value ε, then all other points in TS are also within the bounds of ε with
respect to their corresponding points in K(t).

In circumspect, the point L ∈ TS (or the point pL ∈ TS closest to L)
then becomes the most likely candidate for the crucial G1 continuity point, in
which to split TS into two sub-segments for further consideration when neither
of the conditions are met. If we look at Proposition 8.9 from the viewpoint of the
Douglas-Peucker (DP) algorithm, then we notice the similarities between the two
methods. However, there is a considerable difference in the issues of efficiency
between Proposition 8.9 and the DP algorithm.

Once again, as we pointed out in the previous section, we do not need to
physically instantiate the Curve K(t) in order to perform the error measure-
ments. That is, once we have found the point L, we can immediately deduce

146

w1 based on the constraint-triangle ∆ABC, and obtain our expression for K(t).
Identifying the points R and S is a straight-forward geometrical computation on
∆ABC and TS, and that the points PθR and PθS are the results of evaluating
the Curve’s expression by substituting t = 0.25 and t = 0.75, respectively, into
K(t).

As part of the solution to the active-smoothing routine, we can show that
identifying the point L does not require traversing O(n) points in a TraceSeg-
ment TS – in fact, we only need O(1) time to accomplish this. Furthermore,
the significance of the areal analysis in Theorem 8.6 is more pronounced in the
preconditions to the active-smoothing routine. Both of which details we will
elaborate in the next chapter. For now, we want to show that the solution pre-
sented in this chapter, where KC = {K1(t), . . . ,Km(t)} is the smooth estimate
for TS, is also a desirable approximation of TS within the bounds of ε.

8.7 Bézier Segmentation

The Bézier segmentation of an appropriate TraceSegment TS splits TS into
sub-segments of appropriate TraceSegments TSi, where each TSi ⊆ TS has a
corresponding desirable approximation of a rational quadratic Bézier CurveKi(t) ⊆
KC over it, so that the CompositeCurve KC fully estimates TS in its entirety.
Given a tolerance error-bound value ε, the CompositeCurve KC is a desirable
estimate of TS, if and only if every point in pi ∈ TS is within ε distance of its
corresponding point Pθi ∈ K.

Consequently, this process of Bézier segmentation is the natural follow-up to
section 8.6. That is, we simply put the appropriate TraceSegment TS =
{p1, . . . , pn} and its constraint-triangle ∆ABC as inputs to Proposition 8.9.
Then for a predetermined value of ε, we compare the computed error measure-
ments for εR and εS . If either εR or εS is larger than ε, we then split TS at
the point L (or the point pL ∈ TS closest to L) and recursively apply Proposi-
tion 8.9 on the sub-segments TS1 = {p1, . . . , pL} and TS2 = {pL, . . . , pn}. The
point pL ∈ TS is marked as a crucial G1 continuity point.

This recursive midpoint splitting of the Bézier segmentation terminates when
TSi is relatively flat, or when a desirable rational quadratic Bézier curve fulfils
the two conditions in Proposition 8.9. We give the pseudo-codes of the Bézier
segmentation in Algorithm 12.

To graphically illustrate the Bézier segmentation of a proper TraceSeg-
ment TS, we highlight the recursive steps through Figure 8.6 to Figure 8.11. In
Round 0, the measures of ‖RPθR‖ and ‖SPθS‖ are both greater than ε, which
means the segment fails the two conditions in Proposition 8.9. So TS must then
be split at the identified point L, leading to Round 1. There, the underlying
curve between A and B is a desirable approximation, and so no further actions

8.7. BÉZIER SEGMENTATION 147

Algorithm 12: BézierSegmentation (ActiveTrace TSM
j ⊆ TM, ε)

Output: A set of well-placed, desirable rational quadratic Bézier Curves
in KC that approximates TSM

j = {p1, . . . , pn}, and marks the

G1 continuity points identified in TSM
j .

Initialize K ← {};1

Set TSS ← MakeSegmentAppropriate(TSM
j); /* Algorithm 8 */2

foreach TSi in TSS do3

Add K ← RefineBezSegment(TSi, ε); /* Algorithm 13 */4

return K;5

Algorithm 13: RefineBezSegment(<Appropriate>ActiveTrace TM, ε)

Output: A set of desirable rational quadratic Bézier Curves in KC that
approximates TM = {p1, . . . , pn}, and marks the G1 continuity
points identified in TM.

Initialize K ← {};1

Initialize ∆ABC from TM;2

Determine pL, p, q,mp,mq from ∆ABC and TM; /* Theorem 8.6 */3

Set α, β ← Length ML, Length MC;4

Set R,S ← Intersection(pmp, T
M), Intersection(qmq, T

M);5

Set (w0, w1, w2)← (1.0, α
β−α , 1.0);6

Set PθR ,PθS ← KS(0.25),KS(0.75);7

Set εR, εS ← Length RPθR , Length SPθS ;8

if εR > ε or εS > ε then9

Mark pL As crucial G1 continuity point;10

Reset dyL
dxL
← compute tan(θL); /* Proposition 7.21 */11

Add K ← RefineBezSegment({p1, . . . , pL}, ε);12

Add K ← RefineBezSegment({pL, . . . , pm}, ε);13

else Add K ← GetQuadCurve(KS(t));14

return K;15

need to be taken. In Round 3, the sub-segment between A and B fails the ε
condition, and the sub-segment would need to be split at L. The recursive steps
are carried out in Rounds 4 and 5, until we obtain the CompositeCurve that
desirably approximates TS, with an average error measure of 0.66601 pixels per
point.

148

A
B

PθL

R S

PθR
PθS

L

Round 0:

w1 = 0.4492, ε = 1.24

‖RPθR‖ = 7.4275, ‖SPθS‖ = 15.0867

Figure 8.6: Smoothing an appropriate TraceSegment TS via Bézier segmen-
tation.

A

B
PθL

R

S

PθR

PθS

L

Round 1:

w1 = 1.0557, ε = 1.24

‖RPθR‖ = 0.9088, ‖SPθS‖ = 0.7448

Figure 8.7: Smoothing an appropriate TraceSegment TS via Bézier segmen-
tation.

8.7. BÉZIER SEGMENTATION 149

A

B

PθLR

S

PθR

PθS

L

Round 2:

w1 = 1.4628, ε = 1.24

‖RPθR‖ = 2.9141, ‖SPθS‖ = 3.4844

Figure 8.8: Smoothing an appropriate TraceSegment TS via Bézier segmen-
tation.

A

B

PθL

R

S

PθR

PθSL

Round 3:

w1 = 0.7821, ε = 1.24

‖RPθR‖ = 0.4283, ‖SPθS‖ = 0.2919

Figure 8.9: Smoothing an appropriate TraceSegment TS via Bézier segmen-
tation.

150

A

B

PθL

R

S

PθR

PθS

L

Round 4:

w1 = 2.1071, ε = 1.24

‖RPθR‖ = 0.6589, ‖SPθS‖ = 0.9635

Figure 8.10: Smoothing an appropriate TraceSegment TS via Bézier segmen-
tation.

Bézier Segmentation Completed.

Average error per point: 0.66601 (pixels) < ε = 1.24

Total points kept: 4 (of 23)

Figure 8.11: Smoothing an appropriate TraceSegment TS via Bézier segmen-
tation.

8.8. CLIMATE MAPPING WITH SMOOTH CONTOURS 151

8.8 Climate Mapping with Smooth Contours

To review the reliability, quality, and accuracy of our Bézier segmentation method,
we applied our technique to the temperature maps, as part of our ongoing col-
laboration with the Meteorologisches Institut der Universität Freiburg.

The challenge was to desirably approximate a set of indeterministic input
points of similar temperature readings scattered over a certain geographical area
with smooth contours. This would, among other things, establish the climatic
trend of the represented region. For example, we want to connect all areas on the
map that have a reading of 18◦C. But because of the irregular locations of the
sensors mounted all over the prescribed areas, we cannot get a proper smooth
contour that is legible enough for further evaluations. Clearly, this problem
setting is similar to ours, accept that the input points are not time-ordered.

Our solution was to first order these points so that they can be used in
our Bézier segmentation method, and we presented this through the work of
Matuschek [73]. It involves several filter techniques that ensure data integrity
before the points can be made to follow a certain orderly manner. Once this has
been established, the points are fed into the Bézier segmentation method. There
we saw that it proved to be an efficient method that generated temperature con-
tours that are fit for climatic maps. We present the results in Figure 8.12 (before
smoothing) and Figure 8.13 (after smoothing).

Figure 8.12: Unsmoothed temperature contours.

152

Figure 8.13: Smoothed temperature contours.

CHAPTER 9

The Active-Smoothing Solution

On route to this chapter, we have met and thoroughly discussed several clas-
sical routines for handling discrete curves over a set of indeterministic points,
and, upon deeper ruminations, found that they can be made even more effi-
cient. These increased efficiencies then become the very reasons we adduce for
coming up with the concept of active-smoothing – turning the ‘passive’ process
of approximating desirable Curves on input handwritten Traces ‘active’. When
the routines are properly assimilated and established in a supporting application
program, one can inevitably expect to immediately see his/her digital handwrit-
tings as confluent curves even before the pen is lifted off the tablet screen. One’s
style and flair in the written portrayals are also maintained, but not exaggerated.

Active-smoothing here is the culmination of combining a shrewd strategy
with the performance of efficacious computations to produce output renditions
of high-quality smooth Curves that do not deplete at any resolutions, while
data is still being received. As we progress through the chapter, we will see
that the process of active-smoothing relies significantly on making coordinated
judgements on local information that leads to the economical savings over many
expensive (and extensive) calculations.

Looking back to section 3.5, we have, in fact, already introduced the main
routine of the active-smoothing solution; through the ‘active-sampling’ routine
in Algorithm 1. What ‘active-sampling’ essentially does is to categorise the type
of a new incoming point, as it is being sampled, as either Normal, Inflection,
or SharpEdge. The sections in this chapter are the fundamental expansions to
this ‘active-sampling’ procedure, each with a clear and contumacious objective,
drawing its concepts from the past chapters in their enhanced efficiency contri-
butions.

153

154

9.1 Maintaining Appropriate Segments

We saw that it was only through an appropriate TraceSegment that a proper
approximation can be made for it with a set of CurveSegments without losing
desirable points. Recall from Definition 7.20 that a TraceSegment TS is consid-
ered appropriate if and only if all the points pi ∈ TS lie inside the constraint-
triangle ∆ABC. We showed the ‘passive’ routine to make TS appropriate in
Algorithm 8, which takes an average of O(n log n) time to run, given a Trace-
Segment containing n points.

Clearly, this runtime is not feasible for the ‘active’ routine.

We propose a faster solution, which takes into account the main properties
of the constraint-triangle ∆ABC and reacts immediately at every instance of a
new incoming point.

Lemma 9.1 Let pk ∈ TS be the latest ActivePoint to be classified by the
‘active-sampling’ routine as either Normal, Inflection, or SharpEdge. Let
pj ∈ TS be the last crucial point identified by the active-smoothing routine, where
j < k, and that pj is a point with either a G0, G1, or G2 continuity joint and is
not Normal. Then the TraceSegment TS′ = {pj , . . . , pk−1} ⊆ TS is appropriate.

Proof. This implies that the points pj+1, . . . , pk−1 are all Normal. Suppose that
TS′ is not appropriate. Then there exists a point pi ∈ TS′ that lies outside the
constraint-triangle ∆ABC, formed by the intersection of the gradient lines at pj
and pk−1. There are two cases to consider:

Firstly, without loss of generality, let us assume that pk−1 lies to the right of the
tangent line through pj . We can reflect this to argue the converse. Then here, we
can safely assume that all the intermediate points between pj and pk−1 also lie
to the right of the tangent line through pj . Furthermore, all these intermediate
points lie to the left of the tangent line through pk−1, except pi, which lies
outside ∆ABC. If this is the case, then the only time that this can happen is
when there was a trajectory change at pi+1, which would have caused the ‘active-
sampling’ routine to report pi+1 as an Inflection, or a SharpEdge point, where
j < i < i + 1 < k − 1. In consequence, pi+1 would have been the last crucial
point identified instead of pj .

Secondly, the point pi lies on the opposite side of AB with respect to the vertex
PC . In such a case, all the intermediate points between pj and pk−1 are outside
∆ABC – particularly on the opposite side of AB with respect to PC . This
happens when the trajectory of TS′ has made a complete 180◦ turn at pk−1

from the trajectory at pj , and that the point pk−1 would have been marked as
a crucial G1 continuity point by the active-smoothing routine. In consequence,
pk−1 would have been the last crucial point identified instead of pj .

9.1. MAINTAINING APPROPRIATE SEGMENTS 155

Either of these cases contradicts the assumption, and hence the TraceSegment
TS′ is appropriate.

Thus, by Lemma 9.1, it is sufficient that we check only the previous point
pk−1 and the reference PC to ensure that the current TraceSegment TS′ that we
are actively monitoring is appropriate. This requires that we maintain updated
references for the tangent line through pk and the baseline AB = pjpk of ∆ABC,
for every newly sampled point pk that was added and classified as Normal by the
‘active-sampling’ routine.

pj

pk

pL
pj

pk

pL

pj

pk

pL

pj

pk

pL

pj

pk
pk−1

Figure 9.1: Active Bézier segmentation, while maintaining farthest point refer-
ence. Top three figures: A new fully instantiated ActivePoint pk, makes up the
TraceSegment {pj , . . . , pk}, which is an appropriate segment. Bottom left: The
new point pk makes the segment {pj , . . . , pk} not appropriate. Bottom right: By
Lemma 9.1, the segment {pj , . . . , pk−1} is an appropriate segment, so that it is
now ready for the Bézier segmentation routine.

The repercussions of this active routine is that, if TS′ becomes inappropriate

156

at pk, then the active-smoothing solution can consider and mark pk−1 as a
crucial G1 continuity point. Subsequently, we can begin the next step to ap-
proximate a CompositeCurve K for the independent appropriate TraceSegment
TS′ = {pj , . . . , pk−1}.

Corollary 9.2 The appropriate TraceSegment TS′ = {pj , . . . , pk−1} ⊆ TS is
composed of second-order curves.

Proof. This is an immediate consequence of Proposition 3.12.

9.2 Maintaining Farthest Point Reference

For reasons of efficiency, we accord the active-smoothing solution with the Bézier
segmentation technique that we described earlier in section 8.7. Of which, the
technique’s selective error measurement places a deep emphasis on the point PθL

on the TraceSegment TS in order to compute the weight w1 to use in the rational
quadratic Bézier expression KS(t). The point PθL is an extremum point of TS,
and it is the farthest point away from the baseline of the constraint-triangle
∆ABC. It is, as indicated in Proposition 8.9, the intersection of the bisector
line CM with TS, where M is the midpoint of the baseline AB.

The runtime of finding PθL , given an appropriate TraceSegment TS of n
points, is inherently linear. However, this can be easily improved to O(1) time if
we take advantage of the preconceived structure of the ‘active-sampling’ routine.
We do this by simply maintaining a reference to a point in TS that is the closest
to CM .

Again, without loss of generality, we shall assume that the TraceSegment
TS = {p1, . . . , pn} is flowing from left to right, where the anchor-point PθB = pn
lies to the right of the tangent line through the anchor-point PθA = p1.

Proposition 9.3 Let pL ∈ TS be the ‘farthest reference’ point on, or immedi-
ately to the right of the bisector line CM , so that pL+1 is strictly to the right of
CM . Then given a new incoming point pk with a corresponding new constraint-
triangle ∆ABC ′, where pk is not marked as a crucial point, pL+1 is the new
‘farthest reference’ point if and only if the current pL lies to the left of the new
bisector line C ′M ′.

For example, we start with the base case TS = {p1, p2}. Then p2 is the reference
point pL lying to the right of CM . When a new point p3 is added into TS, we
only need to check that p2 remains to the right of the new bisector line C ′M ′.
Otherwise, p3 is the new farthest reference point pL. This goes on until the newly
inserted point pk into TS is marked as crucial by the active-smoothing routine.
We give another example of graphically in Figure 9.1.

9.3. MAINTAINING AREAS AND LENGTHS 157

Thus, we determine the point PθL that is farthest away from the baseline
AB, only when it becomes necessary, by simply computing the intersection of
the two line-segments CM and pLpL+1.

9.3 Maintaining Areas and Lengths

Often, one may find it useful to keep track of the area underneath the Trace-
Segment TS and above the baseline of the constraint-triangle ∆ABC. The
trapezoidal rule satisfactorily provides a good measure of this, involving all the
points pi ∈ TS. However, this may turn out to be an expensive exercise, as the
baseline AB changes for every new point pk added into TS; that is, one would
have to recompute the area again from the initial point pj for every new pk.

The same argument goes in keeping track of the length TS and reporting the
measure between any two points, say, pj to pk in TS, where j < k. One would
have to sum the lengths of the Edges pjpj+1, . . . , pk−1pk, which takes O(n) time.

Despite these inherently linear time operations, we can perform a piggy-
back strategy to hook onto the ‘active-sampling’ routine to give us the area and
length measure in O(1) time. We do this by adding two additional variables to
the ActivePoint structure to store the cumulative area κArea and the cumulative
length κLen at each point pi.

pj

pk
pi

pi+1

Figure 9.2: Cumulative triangle areas between pj and pk.

Lemma 9.4 Let pj be the last crucial point identified by the active-smoothing
routine, and let pk be the latest point added into TS. Then the area underneath
the TraceSegment TS inside the constraint-triangle at the point pk from the start
point pj is

κArea(pk) = Area(∆pj pk−1 pk) + κArea(pk − 1).

158

Proof. The area underneath the TraceSegment TS is the sum of a series of
triangles given as

Area(∆pjp(j+1)p(j+2)) + . . .+ Area(∆pjp(k−1)pk) =
k−1∑

i=j+1

Area(∆pjpip(i+1)).

Lemma 9.5 Let pk be the latest point added into TS. Then the length of the
TraceSegment TS at the point pk is

κLen(pk) = ‖pk pk−1‖+ κLen(pk − 1).

Proof. The length the TraceSegment TS is the sum of the lengths of the Edges
p0p1, . . . , pk−1pk.

Thus, by Lemma 9.4 and Lemma 9.5, we need to perform two additional com-
putations to set the values of κArea(pk) and κLen(pk) at pk, as an extra step to
the ‘active-sampling’ routine.

So to obtain the area underneath TS at any point pi, where j < i ≤ k, we
simply query the value of κArea(pi). Similarly, to determine the length of the
TraceSegment between any two arbitrary points pr and ps, where r < s, we
compute the straight-forward difference κLen(ps)− κLen(pr).

We note here that both these measures are estimates for the actual underlying
Curve KS, which may or may not be corresponded to TS. However, κArea(pi)
provides a quick comparative measure when juxtaposed with the actual area
underneath KS, which can also be computed in O(1) time we stated earlier in
Theorem 8.6.

9.4 The Active-Smoothing Algorithm

Ever since the beginning of the thesis, we advocated and insinuated that the
active-smoothing solution should be one that is most efficient, reliably accurate,
least time consuming, and most important of all, simple. And since the introduc-
tion of the geometrical elements of the digital ink in chapter 3, we have guided,
discussed, and presented our thoughts to culminate here, where we shall now as-
semble all that we learnt to approximate a set of indeterministic points desirably
with smooth curves, actively.

In fact, the essence of simplicity in our active-smoothing solution is over-
whelming. We sum up the ideas necessary to conceive the algorithm in the
following three steps.

9.5. PERFORMANCE ANALYSES 159

• Perform only directed O(1) time computations at each newly instantiated
ActivePoint pk (computations include the first and second derivatives,
and the curvature at pk). Do this while also maintaining two purposeful
reference points pj and pL; where pj is the last identified crucial point
in the current active Trace T (section 7.5), and pL is the farthest point
reference in the current active TraceSegment TS (section 9.2).

• Since pk contains cumulative measures with respect to areas and length
(section 9.3), and that the intermediate points between pj and pk−1 always
make up an appropriate TS, we only need to react when we encounter
either one of these two situations:

– The point pk is identified by the ActiveSampling() routine as either
SharpEdge or Inflection – in which case we run the Bézier segmen-
tation routine on the segment {pj , . . . , pk}; or

– The active segment {pj , . . . , pk} is no longer appropriate – in which
case we run the Bézier segmentation routine on the segment {pj , . . . ,
pk−1}.

Note that it takes O(1) time to determine whether or not {pj , . . . , pk} is
appropriate (section 9.1).

• Finally, we tidy up the segment between pk and the final point pn, once the
pen is lifted off the transducer device. We complete the active-smoothing
routine by performing the final Bézier segmentation on the segment {pj , . . . ,
pk, pk+1, pn}.

The first two steps make up the bulk of the active-smoothing process, and
as we mentioned at the beginning of the chapter, they form the extension to
the ActiveSampling() routine we discussed in section 3.5. Thus, putting them
all together, we present the pseudo-codes to the active-smoothing algorithm in
Algorithm 14. The algorithm focuses on the point pk, as described by the three
steps above. The extended steps added to the original ActiveSampling() rou-
tine are highlighted in blue. We illustrate this visually in Figure 9.3 continuing
from the Bézier segmentation process in Figure 9.1.

9.5 Performance Analyses

To fully appreciate the significance of the active-smoothing routine, we compared
our technique to the Adobe Acrobat’s annotation tool. What we found was very
encouraging.

It takes the entire 100% processor resources for Adobe Acrobat to sample and
render the annotations on the PDF documents while the user is still writing, and

160

pj

pk

pL

pj

pk

pL

pj

pk

pL

Figure 9.3: Active-smoothing. A continuation of the process started in Fig-
ure 9.1. Here we show that once a segment is appropriate, it is immediately
smoothed by the active-smoothing process.

then smooth the Traces after the user finishes. In contrast, it takes our active-
smoothing routine no more than 18% of the processor resources to smooth and
render the smoothed handwritings while the user is still writing on the document.
This is a reduction of over 80% of the processor time to service our algorithm
compared to servicing Adobe’s; the amount of which can definitely be put to
other useful purposes, if the need arises.

Relating this back to our problem statement in chapter 2, this release of
processor resources can be utilised to service the other input modals (i.e. video,
audio, etc.) in the open document type in Lecturnity, without compromising on
the quality of the recorded freehand writings.

To end of this chapter, we present four other examples to show the out-

9.5. PERFORMANCE ANALYSES 161

put quality renditions of the active-smoothing routine. We illustrate them in
Figures 9.4 to 9.7.

Figure 9.4: Active-smoothing example output quality. A point with a circle
around it denotes a crucial point; a red circle marks a sharp-edge vertex, a blue
circle marks a G1 continuity point, and a purple circle marks an inflection point.

Figure 9.5: Active-smoothing example output quality.

162

Figure 9.6: Active-smoothing example output quality.

Figure 9.7: Active-smoothing example output quality.

9.5. PERFORMANCE ANALYSES 163

Algorithm 14: ActiveSmoothing.addPoint (ActivePoint pn)

Output: (Actively to screen) The smoothed approximate of a Trace T .
Data: Global variables: (i) ActivePoint pj : The last crucial point

identified; (ii) ActivePoint pL: Farthest point reference; (iii)
Trace T : The current Trace that is being actively smoothed.

Set Type(pn) ← SharpEdge;1

if T is empty then2

Add T ← pn;3

Set pj , pL ← pn;4

else5

Set dy/dx(pn)← (pn.y − pn−1.y)/(pn.x− pn−1.x);6

Set κLen(pn)← ‖pn pn−1‖+ κLen(pn−1);7

if pn−2 DO NOT exist then Set dy/dx(pn−1)← dy/dx(pn);8

else9

Set Type(pn−1) ← Normal;10

Set dy/dx(pn−1)← (pn.y − pn−2.y)/(pn.x− pn−2.x);11

Set κArea(pn)← Area(∆pj pn−1 pn) +κArea(pn−1);12

if pn−3 exists then13

Set pk ← pn−2;14

Set ddy/ddx(pk)← (pk+1.y − pk−1.y)/(pk+1.x− pk−1.x);15

Set pk.k̂ ← Compute average curvature; /* Equation 3.5 */16

if |pk.k̂| > SHARP TOL then Set Type(pk) ← SharpEdge;17

else if sign(pk.k̂) 6= sign(pk−1.k̂) then18

Set Type(pk) ← Inflection;19

Initialize ∆ABC ← Constraint-triangle(pj ..pk);20

Set M ← Midpoint(AB);21

if pL+1 is to the left of CM then Reset pL ← pL+1;22

if Type(pk) = Normal then23

Set AB ← pj pk+1;24

Set pC ← Intersection tgt. lines at pj and pk+1;25

if pC and pk on opposite sides of AB then26

Set Type(pk) ← MarkG1;27

if Type(pk) 6= Normal then28

Set PθL ← Intersection CM and pL pL+1;29

Set K ← FastBezierSegmentation(pj ..pk, PθL , ε);30

Render CompositeCurve K;31

Reset pj , pL ← pk;32

Update κArea(pk), κArea(pk+1), κArea(pn);33

164

CHAPTER 10

Random Access Navigation

Let us now look into one of the fundamental application of the digital ink tech-
nology. The focus of this chapter is on the ease of navigation, particularly the
real-time “active visible scrolling” of recorded freehand writings in ink docu-
ments. Metaphorically, this ideology resembles the thumb-flipping of a book.
The contents we present in this chapter have been communicated and published
at the ACM’s World Wide Web International Conference [84]. In the six upcom-
ing sections, we shall describe the importance of random access navigation with
respect to the freehand writings.

10.1 Replaying Ink in Real Time

The electronic pen’s digital ink offers a convenient way for visually communicat-
ing ideas in the vicinity of digital screens, which growing trends indicate it to be
a favourite amongst technocrats, and the likes, ever since its conception. This is
particularly true (and important) in many modern and networked learning envi-
ronments, where using this method of communication is seen as a natural way of
exchanging viewpoints between teachers and students. Its a digital upgrade, if
you like, from the messy blackboards and chalks, to the cleaner whiteboards and
markers, to the cooler, state-of-the-art digital-boards and styluses. This trend of
moving towards natural environments in the digital world encourages freehand
writings to be the bridging tool that encompasses portable and synchronizable
standards of manipulating ink data. Apart from allowing writers to showcase
the flair and style of their austerity, there are a few other benefits that comes
with this package that must be highlighted.

Take for example this lecture hall scenario. Lecturers typically deliver their
lessons through slides prepared from customary softwares like MS PowerPoint
and Adobe Acrobat. Essentially, as their classes progress, they will write, high-

165

166

light, underline, draw and formulate on those slides to put forth their points
to the students. And by opening “empty” slides, just so that they can sponta-
neously write on them, actually facilitates discussions amongst students, helps
to illustrate complex mathematical proofs, and demonstrates diagrammatic facts
more clearly. Studies show that the combination of handwritten annotations,
the development of thoughts through freehand writings, and the verbal expla-
nations of the lecturers, are indeed crucial in assisting students’ understanding
of subjects [47, 91, 138]. The evidence confirm that simply capturing the static
end-result of the lecturer’s annotations for recalling the subjects at a later time,
is indeed inferior than to unambiguously maintain the whole sequence and dy-
namics of those freehand annotations when recorded for interactive replay.

User interfaces that allow replaying of real-time multimedia documents usu-
ally include command buttons to quickly fast-forward and rewind their data sets
for systematic browsing. We see this very often in many learning softwares that
try to cater to both students and teachers in assisting them to effectively retrieve
desired segments of those documents [138, 91]. Random access navigation pro-
vides an additional advantage on top of this simple fast-forward and rewinding
of real-time information. It gives users the ability to straight away focus on the
intended portions of their documents without having to wait a second longer
for these processes to arrive at the stipulated point of time, albeit the processes
being a little faster than the normal replay mechanism.

10.2 Random Access Navigation

Random access navigation on real-time multimedia documents provides an ad-
ditional advantage on top of the simple fast-forward and rewinding of real-time
information.

10.2.1 Streaming Freehands

We term the process of replaying ink data streams in exactly the same recorded
sequence, or a sequence that is as close as possible to the users’ original writing-
motions as streaming freehands. Throughout our discussions, we shall assume
that all recorded ink data are properly sampled in the highest granularity, that is
they are captured by reliable mediums so that the full dynamics of users’ writing
styles are preserved as accurately as they appeared on screen when recorded.

10.2.2 Accessing Objects

Müller and Ottmann [92] defined random accessibility as the retrieval of all nec-
essary objects, which must be made completely available in an uncompressed or

10.2. RANDOM ACCESS NAVIGATION 167

dereferenced way, at any time instance, such that the entire access time of these
objects is less than the media-specific threshold period τ . Here, this threshold
period refers to the hardware-specific duration of accessing raw data (on disk,
for example) and rendering them onto the screen. Putting it simply, given any
instance of time on the ‘active’ slider-bar, we must have a complete list of all
associated visible objects for that time instance to be made available for display
on screen – so fast, that users get the impression of immediacy. This is usually
tolerated for up to a few hundred milliseconds, as is expected from the threshold
period τ .

Furthermore, as characterised for general multi-stream domains, random ac-
cessibility also insists on the master-slave synchronisation between the audio
stream (master) and the digital-board action streams (slave). In our case, this is
seen as the seamless blending of users’ voices to their freehand writings during
recording, for a more solid synchronisation model when replayed.

We discuss the InkML data representation model in section 10.3, but for now,
we will express each ‘ink trace’ as an ink-object to parallel the arguments above.
Accessing a particular ink-object at a stipulated time event tq for use in random-
access navigation, demands the instantaneous rendering of that ink-object, plus
all other ink-objects since the time event t0 that are deemed visible prior to tq.

10.2.3 Timing Significance

The operation of streaming freehands involves a set of time-evolving ink-objects
with inherent time dependencies. This is a direct consequence of the recording
process, in which provisions were made in the first place to allow users to ma-
nipulate their handwritings in any way they like. For example, it is natural for
users, while writing, to erase, duplicate, enlarge, change colours, or move their
traces around the electronic board to take advantage of the facilities offered by
the control software. Each of those manipulations coincide at certain time in-
stances on the slider-bar, and the recording process responds to these by either
creating new ink-objects, deleting present ones, or modifying the context details
of current selected ink-objects to reflect the users’ handling of their writings and
sketches.

From here on, we discuss only the discrete changes of the context details of
the ink-objects as pointed out by Salzberg and Tsotras [110]. However, we also
note that the continuous modifications of these contexts would further require a
separate set of scalable data structures that can be used in both temporal and
bitemporal development environments [23].

Streaming freehands, in addition to the above manipulations, is what makes
these dynamic ink documents unique, in contrast to just statically render the final
end-product. Although we will not see much difference in timing comparisons of

168

random accessibility between the two entities for small data volumes, enlarging
the scope to deal with situations where huge data volumes is inevitable, results in
a substantial amount of time that makes it necessary to re-evaluate the applied
concepts of “immediacy” to ensure user-practicality is addressed.

10.3 Ink Markup Language (InkML)

W3C’s InkML standard [108] allows the description of precise digital ink infor-
mation that is not only interchangeable between systems, but also allows the
convenient ‘archival’ and ‘streaming’ of ink data between applications. Amongst
many of its properties, it is important to note that;

• InkML supports the representation of handdrawn ink, on top of capturing
the pen positions over time;

• InkML allows the specification of extra information for additional accuracy
such as pen tilt and pen tip force (pressure) for the enhanced support
of applications such as character and handwriting-style recognition, and
authentication; and

• InkML provides the means for extension – by allowing application-specific
information to be added to the ink files to support issues of compatibility.

10.3.1 Structuring InkML

In addition to the xy coordinate channels, we include a time-stamp “T” in the
regularChannels to register time instances for each sampled coordinate. We
utilised the following traceFormat for all recorded data in our experiments and
findings:

<traceFormat>

<regularChannels>

<channel name="X" mapping="*">

<channel name="Y" mapping="*">

<channel name="T" mapping="*">

</regularChannels>

<intermittentChannels>

<channel name="Eraser" type="boolean"

default="False">

</intermittentChannels>

10.3. INK MARKUP LANGUAGE (INKML) 169

</traceFormat>

Our application-specific navigation technique for random accessibility of ink
documents, concentrates mainly in the archival mode of InkML. We post-process
the recorded elementary ink data to extract the basic instructions marked up in
the file to reconstruct the exact sequence of the original handwritten traces. We
then port these instructions into segmented object modules to coincide with the
actual slider-bar time reference.

Figure 10.1: Modulated alignment of the resultant object modules αf to the
segmented time scale of the slider-bar.

170

10.3.2 Object Modules

Extricating the fundamental information from the InkML file returns a set S =
{(x, y, t) < E >} = {s0, s1, ..., sk}, where tuples si = (xi, yi, ti) refer to the
regularChannels’ data corresponding to the xy coordinates and time stamps t of
the ith sequence. The intermittentChannels’ information < E > are instructions
for erasing ink traces whenever this boolean variable is set to E = “True”. Lines
are drawn between two successive tuples si and si+1 if the variable E = “False”.

This set S is translated onto the slider-bar’s actual time reference-scale and
segments Sf = {tf0, tf1, ..., tfn} are built upon it to collectively assemble the
aligned si tuples. Each segment tfi is constrained to a period of not more than a
pre-defined tolerance of tσ msec, and may result in an empty segmented content.

A segment tfi in Sf is considered “active” if there exists ink data within
itself, and is considered “inactive” otherwise.

Our object modules are derived from all active segments in Sf to result in αf =
{a0, a1, ..., am}, such that αf ⊆ Sf and m ≤ n. We illustrate our “modulator”
method and an example of object modules juxtaposed to a slider-bar’s actual
time reference scale in Figure 10.1.

Here, we further define that an object module aj , is a primitive Java graphics
object that contains the underlying symbolic rendering instructions represented
by the segment. Rendering an object module aj to screen on the Java platform
is carried out by executing g.draw(aj).

10.4 Replay Scenarios

We tailored our experiments to specifically test documents with huge amounts of
ink data – a minimum data size of 60 minutes worth of continuous writing. We
prepared three data management scenarios based on our object modules targeted
at the following objectives for navigating with random accessibility:

• to observe and record the reaction (rendering) times against data volumes;

• to scrutinise the change in data volumes with respect to the change in
reaction times;

• to pick out the general relationship (if any) between the data volumes and
the reaction times; and

• to recommend a suitable technique for handling massive data volumes for
practical applications involving freehand writings that exploits the InkML
standard.

10.4. REPLAY SCENARIOS 171

Our three scenarios differ in their aspects of representation and access to data
for the same set of ink information. Their performances are expected to have
significant impacts on the reaction times during random-access navigation.

10.4.1 Scenario I – Raw InkML

All data are lifted and constructed directly from the InkML file, and no object
modules are created in this scenario. We kept the primitive S = {(x, y, t) < E >}
tuples throughout the process of random accessibility, as depicted in Figure 10.2.
This scenario quickly renders ink traces by reading the instructions contiguously
from the file but ignoring the time stamps t. New lines are drawn by joining
a pair of coordinate points, or erased according to the pre-recorded sequence in
the file.

At query point tq, the program identifies the time reference ti on the slider-
bar to its nearest corresponding tuple sj = (xj , yj , tj), and executes all ink
instructions starting from s0 to sj .

Figure 10.2: Scenario I – Rendering from raw InkML.

10.4.2 Scenario II – Applied Object Modules

Object modules described in Section 10.3.2 are utilised for this scenario. The
fragmented data Sf is converted into αf by picking out all active segments.

At query point tq, the program identifies the last complete object module
aj−1 and starts rendering from module a0 to aj−1. Afterwhich, it drops back
to the ‘raw InkML’ method specified in Scenario I to finish the remaining set of
data contained in εq, as illustrated in Figure 10.3.

10.4.3 Scenario III – Cumulative Modules

Similar to Scenario II, object modules are also implemented here. However, in-
stead of simply keeping active segments of Sf within each module, we defined a

172

Figure 10.3: Scenario II – Applied data modules.

cumulative property for each module a′j , such that it collectively stores all previ-
ous modules running up to its position. Equation 10.1 describes this cumulative
property of α′f , and is reflected pictorially in Figure 10.4.

a′j = a0 + a1 + ...+ aj =

j∑

c=0

ac (10.1)

Figure 10.4: Scenario III – Cumulative data modules.

Since our definitions insist that each data module aj results in the creation
of primitive Java graphics objects, we added this ‘redundancy’ information in
a′j , accumulated over each preceding module, to experiment with the trade-offs
between memory space and the processor’s execution time.

At query point tq, the program identifies the last complete module a′j−1 and
renders it straight away (as all associated visible objects prior to tq have already
been pre-calculated and contained inside a′j−1). Then, it again drops back to the
‘raw InkML’ method to construct the remaining set of information within εq.

10.5. MEASURABLES AND DATA CONTENTS 173

10.5 Measurables and Data Contents

Data volumes are measured from the total number of coordinates constructed on
screen at any stipulated time instance referenced by the slider-bar. This primary
representation is always the same for all the three scenarios above if the same set
of InkML files are used. We base our evaluations on this basic standard, so as
to provide a realistic benchmark for comparing data management styles in our
three scenarios.

However, we must also note that the modulated representations in αf may
contain different voluminal capacity in each aj , as they are the symbolic rep-
resentations of the affected coordinates, and therefore need to be measured in
different units. But to keep things on a more tolerable level, we will use the
measurement described above for data volumes to be categorised as ‘number of
coordinates’.

When discussing reaction times, we refer to the duration the program takes
to relay complete rendering instructions to the screen. This is again referenced
to the time instance indicated on the slider-bar, and more importantly, to the
associated data volume.

All contents in our InkML setup files observe the following guidelines as part
of the experimental procedure;

• non-stop writing from the beginning to the end of recording (to test for
the worst case scenario);

• at some point in time during recording, writing pauses for some period
before continuing; and

• at some point in time during recording, some writings are erased off the
screen before continuing.

10.6 Results and Observations

The experiments were conducted on a Wacom PL-400 connected to a Pentium
X86 processor running at 800MHz. We engaged 10 sets of InkML files for our
experimental setup, each with a data volume of over 60 minutes worth of con-
tinuous writings. We tested the integrity of the InkML files on their reactions to
the three data management scenarios built for the random-access navigation’s
“active visible scrolling” ideology.

We collected and averaged the data observations for all volumes rendered,
and the reaction times for those volumes, at fixed intervals of 50,000 milliseconds
– referenced by the active slider-bar actual time-scale. At each of these intervals,

174

the program notes the query point time-reference tq, and executes the random-
access navigation routine. That is, it renders all stored information, depending
on the data management model, beginning from t0 up to tq. The mean data
volumes V and reaction times T are then plotted against the stipulated intervals
for each of the three data management scenarios, and is depicted in Figure 10.5.
Plotting the same reaction times against the volumes is illustrated in Figure 10.6.
Since we fixed the random-access intervals at a constant rate for our observations,
we can also monitor this rate of change of the volumes δV , and the rate of change
of the reaction times δT . This is shown later in Figure 10.7.

Figure 10.5: Average reaction times (bar graphs) between scenarios I, II, and III
aligned to the slider-bar’s time-reference scale. The corresponding handwritten
volume at each time-reference is represented by the line graph.

10.6. RESULTS AND OBSERVATIONS 175

Figure 10.6: Performance: Average reaction time taken by scenarios I, II, and
III to render the volume of data coordinates.

176

10.6.1 Analysis

When we structured the formulation of Scenario III, we anticipated a data man-
agement model that is to superceed the random accessibility performances of
the other two scenarios in terms of the speed of access. This cumulative method
of storing multimedia objects was proved to be speed-efficient and sound for re-
trievals of multi-stream entities used in domains that engage the “random-access
replay” facility [92]. However, the results in Figure 10.5 tells otherwise.

For randomly navigating through huge data volumes containing digital ink,
the method of applied object modules described in Scenario II maintained a re-
action time of less than 1,000 msec on average. This is a comfortable fraction
compared to the other two scenarios for our InkML setup files. This is discussed
in further details in the “Performance” section.

Writing continuously for over one hour, and observing the data content-
guidelines in section 10.5, gave an average of 45,000 coordinate volume capacity
in all our InkML files. The growth in volume of each InkML file over time is
depicted in the line graph in Figure 10.5, and its growth rate is strictly dependent
on the speed of the person writing.

Figure 10.7: Rate of change of reaction times δT versus rate of change of volumes
δV .

The factors that are thought to affect the reaction times over the data vol-
umes, that highlights the distinctive graphs in Figure 10.6 for each of the three
scenarios, is given in the “Correlations” section. That section also explains
the graph in Figure 10.7, which is used to derive our “Recommendations” of
handling massive volumes of ink data for practical “active visible scrolling” nav-
igation, and its synchronisation to the master/slave configuration for general

10.6. RESULTS AND OBSERVATIONS 177

multi-stream applications.

10.6.2 Performance

The chart in Figure 10.5 is a repercussion of the practical aspect of this ex-
perimental setup. The data volumes (line graph) and their reaction times (bar
graph) are aligned to every sampled interval on the slider-bar’s time-reference
scale. Navigating by dragging the slider-bar’s indicator forwards and backwards
took that much of average reaction times as shown on the chart.

Figure 10.6 is a graph that highlights the reaction times compared directly
to the data volumes. This theoretical aspect is aimed to measure the generalised
reaction time-performance, based on the three data management scenarios.

For data volumes that are above the 3,500 coordinate-capacity level, it took
at least 1,000 msec to render the ink information fully on screen using the data
model described in Scenario I. This volume is raised to a 10,000 coordinate-
capacity level before it took Scenario III the same amount of reaction time to
render its data contents. Scenario II, on the other hand, did not overshoot the
1,000 msec mark at all for rendering the entirety of its data volumes.

All three scenarios exhibit the essence of a logarithmic complexity in their
reaction time-performance. However, we can confirm from Figure 10.5 and Fig-
ure 10.6, that, primarily, the data management model used in Scenario II is the
most efficient method for handling random-access navigation. Its rate of con-
vergence is 3.792 times faster then Scenario I’s and is 2.029 times faster than
Scenario III’s. Its ability to keep the reaction times below the 1,000 msec mark is
a tremendous advantage for the “active visible scrolling” technique in relation to
the governing media-specific threshold period τ for issues of immediacy. More-
over, this scenario is also more economical than Scenario III in terms of memory
manipulations – unlike Scenario III, Scenario II’s data modules do not have the
cumulative property.

10.6.3 Correlations

Apart from observing the surface performance of managing huge ink informa-
tion, we also scrutinised the underlying strengths (or shortcomings) of the three
data management scenarios. This is done through the analysis of the two most
prominent rates of change; δT and δV .

The graph in Figure 10.7 estimates δT
δV for all three scenarios. Their overall

correlated average is given in Table 10.1. We explain the relevance of this δT
δV in

the “Recommendations” section.

As expected (from the analyses in the previous sections), Scenario II has

178

Scenario Avg. Correlation δT
δV

Scenario I 0.10696
Scenario II 0.00734
Scenario III 0.13929

Table 10.1: Overall average correlations of the three scenarios.

the smallest average correlation value of 0.00734, and that the performance of
its data management model is construed to be the most stable (with the least
fluctuations near the zero level) depicted by the results in Figure 10.7. The
average δT

δV is calculated from the mean values of the each raw data obtained
from δT divided by δV .

Referring back to the descriptions of object modules αf , we can conclude that
the rate of change of reaction times in αf for Scenario II is small enough for the
comfortable and practical random-access navigation of huge data volumes. Its
performance at this rate is sustainable for a projected volume of up to 80,000
coordinate capacity.

10.6.4 Recommendations

Based on the findings in the “Correlations” section above, we know that the
factor which governs the relationship between the data volumes and the reaction
times is δT

δV . We also know that the rendering program is able to immediately
determine the amount of volume of coordinate data V at any stipulated time
instance referenced by the active slider-bar.

Then, by defining an evaluation function f(V, δTδV), we should be able to
resolve an accurate estimate as to how much reaction time tR it will take to
render a volume V given the relationship δT

δV , as shown in Equation 10.2.

tR = f(V,
δT

δV
) (10.2)

We recommend the value of tR be used as a threshold gauge for addressing
the concepts of “immediacy” to ensure practicality for end-users. A further
post-processing of an InkML file is needed if it is found that at some point in
time, after going through the modulation process described in Section 10.3.2,
the corresponding data volume will result in a reaction time of tR > aτ + b;
where τ is the media-specific threshold period, and a and b are some pre-defined
constants.

What remains to be done in the next post-processing step, if the above con-
dition is met, is up to the developers to decide. Although, here are some check-
marks when tackling this problem:

10.6. RESULTS AND OBSERVATIONS 179

• Converting the resultant screen-shot of the ink canvas constructed from a
set of ink instructions to that of a static image for future references, will
loose all vectored information (i.e. scaling the application window size up
and down may distort this reference image badly, and may no longer be
compatible with the current set of ink data).

• Breaking up one massive InkML file into manageable sequential chunk -files
require some sort of a reference mechanism, so that opening a chunk -file
down the sequence of chunks will not disturb the flow of freehand writings
between any two chunks.

• Any breakups of the original InkML file that has been configured for the
general multi-stream master/slave configuration, must ensure the time-
stamps in the InkML file be systematically re-aligned to the other associ-
ated event-files before channelling the outputs of each entity to the various
mediums.

180

Part III

Gesturing & Feature
Interactions

181

CHAPTER 11

Gesticulations and the Gesture
Continuum

Motivated by the treatment of digital handwriting as ‘first-class’ data type, we
shall now reintroduce the notion of the digital ink here, which is used not only
to enter and represent contents but also to operate gesture commands. A gesture
command is the resultant process of invoking gesture-like movements with the
pen, a gesticulation, that resemble special shapes drawn in a certain distinctive
way, recognised by an application program as certain predefined instructions for
it to carry out.

The power of these gestures lies in their ability to convey expressive and
meaningful strokes as commands to the system without having to switch be-
tween other input devices when using the pen explicitly. Cutler and Turk [21],
Barrientos and Canny [7], and Wexelbrat [133] noted in their reports the fol-
lowing functional roles of human gestures; communicate meaningful information
(semiotic), manipulate the environment (ergotic), and discover the environment
through substantial experience (epistemic). Cutler and Turk further expanded
their definitions to include communication tasks when interpreting the gestural
inputs from the stylus. These tasks specify the commands and parameters for:

• Navigating through 2D space;

• Specifying items of interest;

• Manipulating objects in the sketching environment;

• Changing object values; and

• Issuing task specific commands.

183

184

In his sociological field of study, Kendon [57] remarked an important part
of kinetics research showing just how gesture phrases are organized in relation
to speech phrases. We can parallel his arguments and reasonings to relatively
coincide with pen gestures (as natural human gestures) and the instantiated
sketch objects (as dictionized speech contents). Kendon stated that there is
a consistent patterning in how gesture phrases are formed in relation to the
phrases of speech - just as, in a continuous discourse, speakers group tone units
into higher order groupings resembling a hierarchy, so gesture phrases may be
similarly organized.

Gestures that are put together to form phrases of bodily actions have the
characteristics that permit them to be recognized as components of willing com-
municative action. There are five kinds of gestures that make up the gesture
continuum:

• Gesticulation - spontaneous movements of the hands and arms that ac-
company speech.

• Language-like gestures - gesticulation that is integrated into a spoken ut-
terance, replacing a particular spoken word or phrase.

• Pantomimes - gestures that depicts objects or actions, with or without an
accompanying speech.

• Emblems - familiar gestures accepted as a standard.

• Sign languages - referring to the complete linguistic system, such as the
American Sign Language.

As the list progresses, association with speech declines, language properties
increases, spontaneity decreases, and social regulation increases. This gesture
continuum clearly states a useful background support for deriving systems that
are able to receive continuous pen gestures as inputs, along with a string of
referenced objects.

So far, we are aware that the digital ink derives its name from the data class
that represents any kind of information created when using a digital pen to draw
strokes on a screen of a pen-based input device. While the strokes received on
the pen-computer’s surface get recorded as digital ink, its consequential mark-
ings are reflected noticeably onto the screen simultaneously. Any digital ink that
was written is either kept in its raw form or goes through a process that trans-
lates it into recognizable texts or graphic objects. Often, in many pen-based
applications, the ink goes further to be tried as a possible pen-gesture. If and
when the ink is confirmed as a gesture command, its visual trace on the screen
is immediately removed upon the execution of the respective gesture command.

11.1. THE GESTURE ENTITY 185

Digital ink in its raw representation as processed by the respective hardware
and software holds far greater amounts of information than are immediately ap-
parent. These include, among others; the type of pen tip, the amount of pressure
used to create a stroke, the height of the pen above the screen surface, opacity
value, colour, and timing data. As a result, the digital ink is acknowledged in
serious enterprises such as one for secure handwritten signatures [53, 42, 22],
as well as in everyday norms of handwriting email messages [32], sketching de-
sign posters [17], and annotating digital documents [37, 92]. As more electronic
devices with pen interfaces continue to become available for entering and ma-
nipulating information, efforts have been made to ensure that supporting pen-
applications are effective at leveraging this method of input. Handwriting is an
input modality that is very familiar for most people since everyone learns to
write in school. So, there is a high tendency for people to use this mode of input
and control not only in the classroom scenario described above but for a great
variety of different applications as well.

11.1 The Gesture Entity

Let us restate the gesture recognition problem, which was identified by Ru-
Gesture recognition
problem.
♠

bine [107] in 1991, to fit the structure of our own work with the Traces. Given
an input Trace T , determine the Gesture class gκ to which T belongs. In other
words, we want to identify the Gesture gκ whose members are most like T .

Definition 11.1 A Gesture gκ is made up of a collection of constant, trained
weights wκi for 0 ≤ i ≤ |F |, where |F | is the number of features, and is identified
by its unique identity κ.

We denote the term Gesture by a capital ‘G’ in the above definition to differ-
entiate it from the generic meaning of a ‘gesture’, that was previously explained
in chapter 11. A Gesture is never related to a Trace, and we shall maintain that
these two are separate and unique entities. However, they are comparable, albeit
not directly, but through the measured set of pre-agreed and predefined features
F extracted from the Trace, put together by way of a linear discriminator. We
shall explain the role of the linear discriminator in identifying certain Traces
as Gestures in section 11.3. For now though, let us first proceed in describing
the various features that can be found in any given Trace.

11.2 Features

Metaphorically, in generative linguistics, features are defined as any of various
abstract entities that combine to specify the underlying phonological, morpho-
logical, semantic, and syntactic properties of linguistic forms. Together, they

186

Trace, T

T = {(xi, yi, ti)}

Gesture Collection, G

G = {g0, . . . , g|G|}
where gκ = {wκ0, wκ1, . . . , wκ|F |}

Linear Discriminator

Feature Extractor

Max. {vκ = wκ0 +
∑|F |

i=1 wκifi}

F = {f1, . . . , f|F |}

Figure 11.1: Linking a Trace T to a known Gesture gκ by means of the Linear
Discriminator.

act as targets of linguistic rules and operations. Similarly, the features extracted
from a Trace T relay geometrical as well as algebraic information that can be
used as parameters which uniquely identify a particular Gesture gκ.

α β

θi

(x0, y0)

(x2, y2)

(xn−1, yn−1)

(xi−1, yi−1)

(xi, yi)

(xmin, ymin)

(xmax, ymax)

Figure 11.2: Identifying with features by Rubine.

Definition 11.2 A feature fi ∈ F is a measured value, representative of a
prominent characteristic of any given Trace T , that serves to distinguish it
from other features in F .

In order that there be enough distinctive features to provide the apparent
differentiation across all Gestures in a particular collection, the choice of features
should unique in its own right, with respect to the Trace. Furthermore, each

11.2. FEATURES 187

feature should be incrementally computable in constant time per input point,
which should then allow for arbitrarily large Traces to be handled as efficiently
as small ones. Also, a small change detected in the input Trace should result
in a correspondingly small change in the feature.

Rubine introduced a set of 13 standard features, which mathematical func-
tions measure the angular information and lengths related to a Trace T [107].
We list them down as follows from f1 to f13, using Figure 11.2 as guide. Let
∂xi 0 = xi − x0 and ∂yi 0 = yi − y0.

f1 = cosα = ∂x2 0/
√
∂x2

2 0 + ∂y2
2 0 (11.1)

f2 = sinα = ∂y2 0/
√
∂x2

2 0 + ∂y2
2 0 (11.2)

f3 =
√

(xmax − xmin)2 + (ymax − ymin)2 (11.3)

f4 = arctan
ymax − ymin

xmax − xmin
(11.4)

f5 =
√
∂x2

(n−1) 0 + ∂y2
(n−1) 0 (11.5)

f6 = cosβ =
1

f5
∂x(n−1) 0 (11.6)

f7 = sinβ =
1

f5
∂y(n−1) 0 (11.7)

Let ∆xi = xi+1 − xi and ∆yi = yi+1 − yi. Also, let θi = ∆xi∆yi−1−∆xi−1∆yi
∆xi∆xi−1+∆yi∆yi−1

.

f8 =

n−2∑

i=0

√
∆x2

i + ∆y2
i (11.8)

f9 =
n−2∑

i=1

θi (11.9)

f10 =
n−2∑

i=1

||θi|| (11.10)

f11 =
n−2∑

i=1

θ2
i (11.11)

188

Let ∆ti = ti+1 − ti.

f12 =
n−1
max
i=0

∆x2
i + ∆y2

i

∆t2i
(11.12)

f13 = tn−1 − t0 (11.13)

Features f1 and f2 are the cosine and sine of the initial angle α, and high-
lights how rightwards and upwards the Trace is at the beginning, respectively.
Rather than applying the actual angle, the sine and cosine of α is used instead
to avoid the discontinuity as the angle phases through 360◦ and wraps back to
0◦. Features f3 and f4 deal with the information about the bounding box. The
former describes the length and the latter describes the angle of its diagonal line.
This diagonal length is also referred to as the ‘size’ of the bounding box.

The distance between the starting and ending points of the Trace is given by
f5, followed by f6 and f7 which convey the cosine and sine of the angle between
the same starting and the ending points. The cosine of which tells us about the
horizontal distance between the two points, whereby if the ending point lies on
the left of the starting point, f6 will be negative. On the other hand, the sine of
the angle tells us about the vertical distance, which will make f7 negative if the
ending point lies below the starting point. The total length of the Trace from its
starting to ending points is given by f8, and the collective total angle traversed is
summed up in f9. While the absolute value of the total angle traversed is defined
in f10, the sum of the squared value of those angles is described by f11. Here,
f11 also tells us about the shallow ‘sharpness’ of the Trace, which is needed to
distinguish between smooth and sharp gestures.

The last two features f12 and f13, calculates the sum of the maximum speeds
squared, and the duration it takes to draw the Trace, respectively. Involving the
time factor in the process for identifying gestures help to increase the likeliness of
correctly interpreting intended gestures, and indicates that Traces are dynamic
objects and are not simply static pictures.

11.3 Classifying a Gesture

Once provided with a set of features F = {f1, . . . , f|F |} extracted from a given
Trace T , we can proceed to classify T as one of the known Gestures gκ from the
collection G. Earlier, we depicted this process of classifying T as a Gesture in
the flow diagram in Figure 11.1. The linear discriminator (LD) is the component
that decides which of the Gesture class gκ that T is closest to. Associated with
each gκ is a linear evaluation function vκ over the features F , given by

vκ = wκ0 +

|F |∑

i=1

wκi fi, for 0 ≤ κ ≤ |G|. (11.14)

11.4. TRAINING THE WEIGHTS 189

The classification of T is straight-forward; T is the Gesture gκ ∈ G whose linear
evaluation value vκ is the maximum over all others in G.

Since the LD will always classify T as one of the Gestures in G, then there
has to be a way of possibly rejecting gκ, in cases where the classified Gesture is
either ambiguous or an outlier. That is, a classified Gesture gκ is ambiguous if
there is a near tie for the maximum per class evaluation in vκ, and it is an outlier
if the computed value of vκ is numerically distant from the rest of the data.

Rubine’s solution to reject an ambiguous classification was to rely on the
strength of a probability function. We reformulate it as follows:

P (gκ|T) =
1

∑|G|
j=0 e(vj−vκ)

, ∀j 6= κ. (11.15)

In other words, given a Trace T , we get an estimated probability that T was
classified correctly by the LD as gκ with Equation 11.15, which works well in
practice if the rejection rate is set to P (gκ|T) < 0.95.

Statistically, an outlier classification can be determined using the Maha-
lanobis distance [68], which takes into account the covariance of the variables
in calculating distances. Specifically, we are interested in deducing the number
of standard deviations a Gesture gκ is away from the mean of its chosen class κ.

δ2 =

|F |∑

i=1

|F |∑

j=1

M−1
ij (fi − fκi)(fj − fκj) (11.16)

Obvious outliers can then be eliminated if we reject any classification whose
computed distance is δ2 > 0.5|F |2. We describe the inverted common covariance
matrix M−1

ij in further details in the next section.

11.4 Training the Weights

In his approach, Rubine adopted a well-known closed formula to produce optimal
classifiers under certain strict normality assumptions on a per-class distribution
of feature values [107]. So that with the assumptions, the training problem here
simply becomes one that is to determine the weights wκi, given a set of example
Traces related to a Gesture class gκ, without applying iterative techniques.

Let fκei be the ith feature of the eth example of the Gesture class κ, for
0 ≤ e < |Eκ|, where |Eκ| is the number of training examples of class κ. The
sample estimate of the mean feature vector per class fκ is the average of the
features in the class:

fκi =
1

|Eκ|

|Eκ|−1∑

e=0

fκei. (11.17)

190

The sample estimate of the covariance matrix Mκij of class κ is computed as in
Equation 11.18. This is then averaged to yield the common covariance matrix
Mij over all classes in G.

Mκij =

|Eκ|−1∑

e=0

(fκei − fκi)(fκej − fκj) (11.18)

Mij =

∑|G|−1
κ=0 Mκij

−|G|+∑|G|−1
κ=0 |Eκ|

(11.19)

Following which, the sample estimate of the common covariance matrix is then
inverted to yield M−1

ij , and from which the weights for the Gesture class gκ are
computed.

wκj =

|F |∑

i=1

M−1
ij fκi, for 1 ≤ j ≤ |F | (11.20)

wκ0 = −1

2

|F |∑

i=1

wκifκi (11.21)

CHAPTER 12

Gesturing versus Normal Writing

The digital ink domain is unlike any others that can have all its related informa-
tion easily organised and cross-referenced, and presented in front of users to allow
them direct manipulation of the data. We recap that a Trace simply refers to
a trail of digital ink data made between a successive pair of pen-down and pen-
up events representing a sequence of contiguous ink points – the xy coordinates
of the pen’s position. Sometimes, we may find it advantageous to also include
timestamps for each pair of the sampled coordinates, if the sampling property
of the transducer device is not constant. A sequence of Traces accumulates to
become meaningful graphics, forming what we (humans) perceive as characters,
words, drawings, or commands. Each Trace can be categorised in terms of the
timings noted for its duration, lead and lag times. Furthermore, the Traces on
the 2D plane group together to form what we perceive as freehand writings or
freehand drawings.

12.1 Temporal Relationships in Digital Freehands

Each Trace, resulting from a pair of successive pen-down and pen-up events,
written on an interactive digital screen can be categorised in terms of the timings
noted for

• the duration of the Trace,

• its lead-time, and

• its lag-time.

Lead-time refers to the time taken before a Trace is scribed, and lag-time refers
to the time taken after the Trace is scribed.

191

192

Figure 12.1: Splitting up freehand writing into its ink components on the time
line.

12.1.1 Freehand Writing

For a set of contiguous ink components Sj = {c0, c1, . . . , cn} in a freehand
sentence made up of n Traces, we note that the lag-time for the ith com-
ponent is exactly the same as the lead-time of the (i + 1)th component; i.e.
lag(ci) = lead(ci+1). Consequently, the timings that separate one set of ink
components apart from another are the first lead-time lead(c0) and the last lag-
time lag(cn) in Sj . These times are significantly longer than their in-between
neighbours c1 to cn−1.

Most people write rather fast such that the time intervals between intermedi-
ate ink components in one freehand word is very short. If we observe a complete
freehand sentence made up of a group of freehand words, we can categorise each
ink component within those words into one of the following four groups:

• Beginnings – Ink components found at the start of a freehand word;

• Endings – Ink components found at the end of a freehand word;

• In-betweens – Ink components found in the middle of a freehand word;
and

• Stand-alones – Disjointed ink components

The groups differ in the demarcations of their lead and lag times, and as
such, provide for a way a pervasive system can identify them. Other forms of
freehand writings include mathematical equations, alphabets or characters of
various languages, and signatures.

12.1. TEMPORAL RELATIONSHIPS IN DIGITAL FREEHANDS 193

12.1.2 Freehand Drawing

Similar to freehand writings, freehand drawings are also made up of compos-
ite sets of ink Traces. Here, the diagrams formed on screen are symbolically
represented ideas of the writers’ that we term as freehand shapes. Often, when
using the digital whiteboard as a medium of conveying concepts to audiences,
we include hand-drawings (illustrations) made up freehand shapes alongside any
writings we may already have.

Figure 12.2: Splitting up freehand drawing into its ink components on the time
line.

Collectively, a set of freehand shapes is the equivalent of freehand words. As
such, the ink components formed by the freehand shapes, when observed by their
lead and lag times, can also be classified as beginnings, endings, in-betweens,
or stand-alones. Figure 12.2 highlights this preconception. Completing this
ontology, we further categorise other symbolic forms such as flow charts, state
transition diagrams, and artistic and graphical illustrations as freehand drawings

12.1.3 Standalone Components and Gestures

The temporal relation that singles out stand-alone components (and freehand
gestures) from their continuous writing and drawing counterparts is the “longer-
than-average” lead and lag times of a single-stroke ink Trace, as shown in
Figure 12.3. In this case, there is a pause period between samplings of ink
components that results in significantly longer lead and lag times.

As we will demonstrate in a later section, these stand-alone components do
not occur as often as we would have predicted. And even when it does occur, the
probability of the stand-alone component being a symbolic Trace is higher than
it being a command Gesture. It is not very often that we see people gesturing to
a control system in the middle of writing a sentence or drawing a diagram. So
we can anticipate, rather convincingly based on the lead and lag times obtained,

194

Figure 12.3: Stand-alone ink components that can be interpreted as a possible
gesture.

that the latest ink component might be more of an instance of a Trace, rather
than a Gesture.

In pursuit of standardising a suitable time-out period, we decided to set the
upper limit of both the lead and lag times to 1,500 msec, in retrospect after
some initial testing. That is to say, if an observed (lead or lag) time exceeds this
period, we immediately consider it as “significantly long” and record it as 1,500
msec.

12.2 Ink States

Advanced recognition techniques have been introduced to the digital ink domain,
and while a number of works have gone into handwriting and sketch recogni-
tion [107], there are among these works that use the same techniques to attempt
to recognise hand-drawn pen gestures [51]. Hence we now have the ‘writing’
mode as well as the ‘gesture’ mode to help out with the current interface issues.
We point out here that by ‘gesturing to the system’ we mean the actual ges-
ticulated actions resulting from the pen movements that represent a command,
and not merely the ‘tap and drag the icon’ movements. The prospects of ges-
turing commands in ink-domain applications are encouraging. So much so that
many authors think that this is the epitome of the final interface for pen-based
applications. Although we agree to a certain extent, that this mode of ubiqui-
tous interfacing may form the fundamentals of future (more enhanced) hardware
devices, we do not anticipate this to be the trend in our present context. The
Perceptual User Interface (PUI) guidelines should be adopted and used to cre-
ate the first steps of the bridging between fully packed screens of user interface
widgets to that of a ubiquitous one.

Based on the four categories of the temporal observations guarding each ink
entity, our state transition diagram in Figure 12.4 illustrates the relations (in
states) that an ink component can take. Our previous works show that there
exist anticipatory action-events between a trace and a gesture, and that those

12.3. SAMPLING FREEHAND STYLES 195

events are primarily associated with the ending and stand-alone transitions [83].
A trace has a high probability of becoming a gesture when it is categorised as
an ending, and is almost always a gesture when it is a stand-alone. It remains a
trace when it is either a beginning or an in-between. Similarly, a gesture can be
degraded back to a trace should the user decide it to be so even if the system
has anticipated a gesture judging from the ink component being categorised as
an ending or a stand-alone.

Figure 12.4: State transitions between an ink trace and a gesture.

The two main states, trace and gesture, and the current context of the writ-
ings on the digital boards can be immediately scrutinised. We are able to know

• when and where the user is engaged in continuous writings;

• when and where the user is sending commands to the system; and

• when the user is not interacting with the boards at all.

12.3 Sampling Freehand Styles

We tasked 25 people at our institute to write sample scripts on a Wacom PL-550
tablet. These scripts were purposely designed to underline the various forms of
symbolic Traces discussed in the previous section as a mixture of both free-
hand writings and freehand drawings. They constitute paragraphs from a book,
mathematical equations, flow charts, state transition diagrams, technical draw-
ings, artistic illustrations, and personal signatures.

Our participants all have their own distinctive styles of writing, differing in
the way their strokes and curves are written. Eight of them were left-handed,
while the rest were right-handed. They each have different speeds of writing that
seem to dictate the legibility and clarity of their written compositions. These
writings of several thousand traces are saved as InkML files (based on W3C’s
InkML standards [108]) that are then further scrutinised into one of the four ink
component categories as beginnings, endings, in-betweens, or stand-alones.

196

12.4 Ink Component Categories

Every single ink component retrieved from the InkML files is observed by their
lead and lag times to be classified into one of the four predefined categories. We
did this manually for the first 1,000 Traces in order to obtain the estimated
timing distributions – the mean µ and standard deviations σ of the lead-lag times
for all four categories – which are necessary to automate the entire process of
scrutiny. The final values of which are shown in Table 12.1.

msec µ Lead-time µ Lag-time σ Lead-time σ Lag-time

Beginnings 1297.95 205.86 635.32 358.66

Endings 218.63 1303.45 370.90 602.34

In-betweens 194.31 200.11 356.78 372.56

Stand-alones 1227.87 1236.92 733.94 764.50

Table 12.1: Tabulated mean and standard deviations of the four categories with
respect to the lead- and lag-times.

The values above are then entered into our analyser program that uses the
following heuristics to automatically categorise all other ink components. Where
the categories Cat(b) refers to beginnings, Cat(e) refers to endings, Cat(i) refers
to in-betweens, Cat(s) refers to stand-alones, and κ as the scaling factor:

Classify component [cg(tlead, tlag)] :

⇒ Cat(b), if tlead ≥ µb lead − κσb lead AND tlag ≤ µb lag − κσb lag;
⇒ Cat(e), if tlead ≤ µe lead + κσe lead AND tlag ≥ µe lag − κσe lag;
⇒ Cat(i), if tlead ≤ µi lead + κσi lead AND tlag ≤ µi lag + κσi lag;

⇒ Cat(s), if tlead ≥ µs lead − κσs lead AND tlag ≥ µs lag − κσs lag;

Here, we use the standard statistical scaling factor κ = 2σ√
n

, where n is the total

number of samples.

There are also times when the above heuristics are not able to categorise
the ink components due to the overlapping of ranges. The range-diagram in
Figure 12.5 we produce in-lieu of this, illustrates this problem. So, whenever the
Classify routine hits this overlapped areas, we got the analyser program to stop
and prompt for user-guidance.

Over time and after giving numerous suggested guidance, we noticed certain
patterns emerging at every occurrence of our manually adjusting the misclassifi-
cations, based on the knowledge of what we saw when data were being collected.

• That, if the previous ink component was categorised as in-betweens, then
the current ink component should also be in-betweens.

12.5. CORRELATING THE LEAD- AND LAG-TIMES 197

Figure 12.5: Range-diagram depicting the four overlapping categories.

• That, if the previous ink component was categorised as beginnings, then
the current ink component should be in-betweens.

• That, if the previous ink component was categorised as stand-alones, then
the current ink component should be beginnings.

Naturally, we incorporated the three additional rules above into our analyser
program, kicking off if and only if the main classifier heuristics fail. This dra-
matically drops the number of failures and misclassifications.

12.5 Correlating the Lead- and Lag-Times

The classification process in section 12.4 tags each ink component to one of
the four designated categories. We noted a strong correlation between the lead
and lag times amongst the ink components with respect to them being either
beginnings, endings, in-betweens, or stand-alones.

12.5.1 Regional Areas

A follow-up to Figure 12.5, the scatter-plot diagram in Figure 12.6 illustrates the
actual spread of all the tagged ink components in coordinate relation to their

198

individual lead- and lag-times.

Figure 12.6: Scatter plot of 14,570 pairs of categorised ink components.

We observe three main regions of clustering from the above scatter-plot –
the ‘near-neighbours’ in Region I (made up mainly of the in-betweens), the ‘ex-
tremes’ in Region II (made up mainly of the beginnings and endings), and the
‘solitaries’ in Region III (made up mainly of the stand-alones). The tightness of
the clustering decreases as we traverse the plot from Region I towards Region
III; that is, where Region I is very tightly clustered, the obvious sparseness in
Region III suggests a huge variety of styles written for the stand-alone Traces.

The outline of each regional curve is the estimated resulting decision surface
separating the samples between the stand-alones (Region III) and the non-stand-
alones (Regions I and II). The attached correlation coefficients r to Regions I,
II and III are 0.7699, 0.4819, and 0.1230 respectively. Here, r is the measure
of strength of the linear relation between the lead and lag time variables where
the magnitude of r indicates the strength of a linear relation, and is calculated
with Equation 12.1, where X refers to the lead-time and Y refers to the lag-time
variables. For example, a value r close to zero means that the linear association
is weak.

r =
SXY√

SXX
√
SY Y

, (12.1)

12.5. CORRELATING THE LEAD- AND LAG-TIMES 199

where SXY =
∑

(x− x)(y − y), SXX =
∑

(x− x)2, and SY Y =
∑

(y − y)2.

12.5.2 Categorical Distributions

From all 14,750 pairs of samples (of ink components), we tabulated their rel-
ative numbers and found the percentage distributions for all four categories.
Figure 12.7 depicts each of those categories, while separating the individual dis-
tributions of the lead and lag times. The graph confirm the scatter-plot diagram
in Figure 12.6 and prepares the essential grounds for our further investigation in
finding out the chances that an ink component is a symbolic Trace, given its
lead- and lag-times.

The stand-alone distribution graph is expected to be of a significant interest
to us, as it tells the slim probability whenever an ink component is not a symbolic
Trace. We know that this graph alone is not sufficient enough to strongly
predict any user intentions each time we receive a stand-alone ink component.
However, combined with the other three graphs, we help reduce the number of
processes needed to continuously track all freehand writings on the perceptual
user interface environment.

12.5.3 The Bivariate Data

When two traits are observed for the individual sampling units and each trait is
recorded in some qualitative categories, then the joint behaviour of two random
variables, X and Y from each of the traits, is determined by the cumulative
distributive function,

F (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
f(u, v) dv du,

derived directly from the fundamental theorem of multivariate calculus [56, 103].
It follows that

f(x, y) =
∂2

∂x∂y
F (x, y).

The graphs obtained in Figure 12.7 hint that our distributions of the lead- and
lag-times across all four categories are varying “Normally”, with µx = 462.0059,
µy = 462.2614, σx = 682.0767, and σy = 682.6080, where x and y refer to the
lead- and lag-time variables respectively.

We find it advantageous to know the joint relation between the lead- and lag-
times of each ink component for making obvious generalisations in the future.
A lookup probability table constructed from the current samples of categorised

200

Figure 12.7: Lead-lag time distributions for beginnings, endings, in-betweens, and
stand-alones.

12.5. CORRELATING THE LEAD- AND LAG-TIMES 201

ink components, following a bivariate normal density, is expected to expedite
our mission of finding the quick probability for a symbolic Trace to remain in
its own entity. Equation 12.2 describes this density function, and Figure 12.8
illustrates the lookup table graphically.

f(x, y) =
1

2πσxσy
√

1− ρ2
exp[− z

2(1− ρ2)
] (12.2)

where z =
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρ(x− µx)(y − µy)
σxσy

and ρ = cor(x, y) =
σxy
σxσy

.

Figure 12.8: Joint distribution via the normal bivariate density.

For every section on the surface in Equation 12.2 that gives a high probability
that an ink component should be a symbolic Trace, there are other sections
on the surface that depicts otherwise. These sections confirm our scatter-plot
diagram in Figure 12.6, and are the composite distributions of all the graphs in
Figure 12.7.

The next section details the use of the graph in Figure 12.8 through the
formal formulation of our statistical hypotheses in making proper inferences of
the population samples.

202

12.6 Statistical Acceptance

Broadly speaking, the goal of testing statistical hypotheses is to determine or
conjecture about some features of the population, which is strongly supported by
the information obtained from the sample data. Based on key statistical concepts
in the context of determining the best solution for our problem definition, we
establish the alternative hypothesis H1 and its nullifying opposite H0 as stated
below.

H0 : “That an ink component is not a symbolic Trace.”

H1 : “That an ink component is a symbolic Trace.”

Where testing each hypothesis is carried out as follows, where X and Y refer to
the lead- and lag-time variables respectively.

H0 : X ≥ µx, Y ≥ µy
H1 : X < µx, Y < µy

12.6.1 Test Statistic

Our test statistic refers directly to the joint-distribution described in Equa-
tion 12.2 (and its Figure 12.8 equivalent), the Z-test forms the rejection criteria
needed for a test level of significance α = 0.05 (and that α/2 = 0.025). Fig-
ure 12.9 demonstrates this notion from two cross-sectional views of the normal
bivariate density curve.

We accept H1, if and only if R : |Z| > Zα/2, where R refers to the rejec-
tion regions highlighted in Figure 12.9, and Zα/2 = Z0.025 is the boundary of
acceptance on the joint distribution of the normal bivariate density graph shown
in Figure 12.10. Otherwise, we reject H1 and claim H0 that an ink component
cg(X = tlead, Y = tlag) shall not be considered as a symbolic Trace.

12.6.2 Inferring the Bivariate Data

Plugging in the values of µx = 462.0059, µy = 462.2614, σx = 682.0767, and
σy = 682.6080 for every time-step of X and Y from 0 to 1500, we obtain the
entire region of acceptance (and rejection) on our bivariate surface. The darkened
regions in Figure 12.10 are the areas for ’rejection’ while the lighter region is the
area for ‘acceptance’. It is made to correspond directly to our lookup table,
with the input parameter cg(tlead, tlag) and retrieving from the table an output
probability of whether any ink components should be considered as symbolic

12.6. STATISTICAL ACCEPTANCE 203

Figure 12.9: Cross-sectional view of the joint distribution of the normal bivariate
density at lead-time = 180 msec and lag-time = 700 msec respectively.

Traces given its lead and lag times (i.e. P (Trace|cg(tlead, tlag))), with an
attached H1 (strong acceptance) or H0 (strong rejection).

We give two examples in Figure 12.10. The first, with an input parameter of
c1(1377, 1281) gets a probability value of P = 7.38×10−08 and recommended for
‘rejection’. This means that the likelihood of the ink component c1 being a sym-
bolic Trace is very slim, and further tests should be made to check if we could
indeed upgrade it to a command Gesture. The second, with an input parameter
of c2(309, 1011) receives P = 0.1164 and recommended for ‘acceptance’. This is
a clear-cut case that the ink component c2 should definitely be considered as a
symbolic Trace.

12.6.3 Chances of Getting a Gesture

We mentioned in section 12.1 that the probability of occurrence of stand-alone
ink components is very small. We also made the assumption that all command
Gestures be categorised collectively as stand-alones to fit our timing definitions.
Our preliminary analysis of the sample data indicates the findings shown in
Table 12.2.

We iterate again that it is not very often that people choose to Gesture in the

204

Figure 12.10: Incorporating the normal bivariate density to assist with the null
and alternative hypotheses.

midst of writing sentences (or drawing pictures) on the board. They only Gesture
to invoke commands to correct mistakes, access files, edit current writings, and
browse between canvas screens. Table 12.2 proves this claim, as we see that
command Gestures make up only 1.21% of all stand-alone components (which
makes up 22.49% of all sampled ink components).

The hypotheses graph depicted in Figure 12.10 highlights areas for rejection
that seem a little too large. However, based on the facts in Table 12.2 and of our
dissection of the scatter-plot diagram in Figure 12.6, we believe that the lookup
table obtained from the hypotheses graph is true and concise enough to make
reliable decisions for all future ink components.

12.6. STATISTICAL ACCEPTANCE 205

Total ink components sampled 14,750 (100.00%)

Stand-alone components (incl. of command Gestures) 794 (5.38%)

Command Gestures ONLY 179 (1.21%)

Table 12.2: Breakdown of ink components with focus on stand-alones.

206

CHAPTER 13

UI-on-Demand and Within-Reach

By now, we have fully investigated the lead- and lag-times of digital freehand
writings and drawings, and found that there exist a direct correlation of the lead-
lag times (categorised as beginnings, endings, in-betweens, and stand-alones) and
the probability of the ink component being a symbolic Trace. Our final lookup
probability table, which is the resultant joint distribution of the lead and lag
times through the normal bivariate density function, gives very reliable outcomes
of accepting or rejecting the chances of ink components as symbolic Traces.

The digital ink environment is unlike the desktop metaphor that we know and
have grown used to. A digital board is more personal than a monitor, in a way
that it allows us to directly touch it and see the immediate reaction through the
digital pen. In classrooms where huge wall-mounted digital boards are utilised, it
is impossible to have a bird’s eye view of the whole environment when we are so
near their proximity to impose the conventional desktop interfaces. Let us now
look at an alternative solution that seeks to combine three classical UI-design
concepts involving adaptable, adaptive and perceptual ideas for an on-demand-
and-within-reach interface that monopolizes the single-stroke digital ink inputs.
By maintaining an active background tracking system on the temporal and spa-
tial information of every input ink data, we can anticipate convincingly what
users are trying to do to achieve their goals when working on the boards, and
provide them with assistance within predictable contexts. We want to maintain
within the methodologies that users must always feel in control no matter how
adaptive the assistance from the system may be.

13.1 Perceptual User Interface (PUI)

Our strongest constraint when working towards an appropriate interface for these
huge boards is to maximise on a single input modal, namely the digital pen.

207

208

Recently, the digital ink has received more attention as progress is made in opti-
mising its data structure and storage methodologies [123, 96, 20]. A shift in the
writing paradigm has led many to believe that we can leave the raw input ink
as ink representing itself [1, 6]. As, in the first place, content readability would
depend greatly on the user’s ability to write clearly (and that very good hand-
writing recognition technology is vital to not misinterpret any freehand writings
on the boards). What’s more, because of this perceptual thinking, many have
looked at the physical properties of the ink features and derive from them nat-
ural gesticulated commands [107]. Few works show the successful merging of
the ‘writing’ mode and the ‘gesture-command’ mode on a single, non-segregated
platform, without having escape sequences or using the button on the digital pen
to switch between the two modes [51]. However, those works are not meant for
the interface-interaction techniques with huge wall-mounted digital boards, and
that the user interfacing issues of such have yet to be fully exploited. Here, it fol-
lows that Turk and Robertson’s [123] Perceptual User Interface (PUI) approach
seems to be the bridge we are looking for.

PUIs seek to combine an understanding of natural human capabilities with
the actual device medium and the related machine perception and reasoning.
The goal is to make the user interface more natural and compelling by taking
the advantage of the ways people naturally interact with each other and with
the world. In our case, we want the user to feel most comfortable using the
electronic board as if it was a chalkboard. And then, without having to always
search for a command from the pull-down menus (at some fixed screen location),
indicate as naturally as possible by gesticulating anywhere on the board, of ‘what
we think the command might look like’. This is as opposed to forcing users to
memorise ‘what gestures are associated to which commands’. This manner of
communicating with the hardware, according to the PUI standards, is expected
to be transparent and passive, and the machine in turn should perceive this
relevant human way of communicating, and react by generating graphical or
visualization outputs that would be naturally understood by the user.

13.1.1 Writing Space versus Interactions

The abundant writing surface allowed by huge wall-mounted digital boards (see
Figure 1.4) is harder to perceive for user-machine interactions as compared to the
comfortably sized tablets and office whiteboards. Freehand writings are an entity
on their own, containing the flair and style of expressions of the writer, which
do not necessarily follow an ordered sequence or format when ample space is
provided. To date we see a number of digital ink-based studies that concentrate
on managing contents and editing ‘informally’ [1, 51], which came about as a
result of this entity. Whether it is grouping a set of freehand words into a
continuous flow of sentence, or combining a set of drawings to form the physics of

13.1. PERCEPTUAL USER INTERFACE (PUI) 209

represented objects, the programs rely on a lot of command buttons in toolboxes
and pull-down menus to affect their causes. And since all of these applications
are tailored for the desktop setup (including the tablets), the authors need not
mention any proximity problems.

Try putting these same applications on the huge wall-mounted digital boards
and we can expect users to complain about its lack of suitable interface.

The point is, if we can get the system to anticipate correctly what its users
are trying to do to achieve their goals, by providing assistance-on-demand and
within-reach just by analysing the input ink elements, then we would be one step
closer to realizing the most appropriate user interface that properly combines is-
sues of adaptability, adaptivity, and those mentioned in the PUI standards, for
our huge wall-mounted digital boards. As George Santayana (1863 – 1952), a
Spanish-born philosopher once said, “Science is nothing but developed percep-
tion, interpreted intent, common sense rounded out and minutely articulated.”

13.1.2 Adaptability versus Adaptivity

Interfaces that are adaptable allow users to customise the application to suit
their comfort needs and this is seen strongly in Shneiderman’s stand for “direct
manipulation” [108, 115]. By putting everything on screen in a certain orderly
fashion and relying on the human hand-and-eye coordination, the interface design
stresses on the convenience of users to achieve their goals through their own
actions. The interface provides a top-down global approach environment for the
users, and a lot of efforts are placed in this “art” of direct-manipulation on the
designers to support complex information management tasks [75]. In addition,
users can customise the default interface widgets for an overall screen outlook
that they can be most comfortable with.

Adaptive interfaces on the other hand, model the individual user’s interest,
preferences and usage characteristics of the application to allow the interface to
tailor itself to each other. The interface takes a proactive stance in assisting
users and often involves background agents. It operates best when there is inde-
terminism about user actions and events within the environment and when there
is no viable prospect to organise all data at hand. We agree with Maes [116] that
agents are not an alternative for direct manipulation, but are the complimentary
metaphors; very good application interfaces are needed for agents to be effective
as they are not substitutes for the interfaces.

But by combining adaptivity and adaptability, we do find added advantages
for intermediate and advanced users as reported by Bunt et al. [11] in their user-
analysis studies that involved the application of Fitt’s and Hick’s laws and the
GOMS model. Particularly, they mention that “ reduced interface is bound to be
more efficient” is what triggered our own research in developing an appropriate

210

interface for the huge wall-mounted digital boards in classroom situations

13.1.3 Lack of Interfacing Mechanisms

The Wacom tablets and the Tablet PCs place the desktop computer screens liter-
ally on the desktops and allow for one extra mode of input; the digital pen. This
hardware innovation solves the problem of referencing between separated slides
and physical writing areas by placing both (windows) adjacent to each other. An-
notating on the slides or documents is made more accessible as described clearly
by Bargeron and Moscovich [6]. Further more, by using appropriate software,
all presentation data can be saved and retrieved for viewing at a later time.

Wall-mounted digital boards, utilised in the education and corporate sec-
tors, are also almost always connected to an operating system that impose the
‘desktop’ interface to their users across all board-application programs. There
are, however, a few others with no clear-cut user interfacing mechanisms and rely
strictly on the actual hardware devices to simulate a typical whiteboard. We can
parallel arguments of adaptability and adaptivity of the interfaces to the current
literature because all these wall-mounted boards are being handled from another
console; usually a desktop setup. When this happens, we feel that the wall-
mounted boards are just the more expensive versions of the beamer-projectors,
and it seems wasteful that we do not fully utilise the functions available on the
digital screens. As a matter of fact, the screens themselves are able to receive
direct inputs from users albeit their awkwardness in size. We attributed this to
the lack of proper interfaces for those screens, or if a good one exists, then it
is not completely dependable on just the digital pen input, which may be most
convenient for users of this device.

Unlike desktop computers, wall-mounted digital boards are meant to be an
active presentation medium for a congregation of audience in a large room. While
there is always a desktop console that can control the wall-mounted boards,
through the mouse and keyboard, we want to free up this mode of interfacing and
let the user (who is usually the presenter) communicate directly with the screen
using just a digital pen. Judging by the dominant metaphor that what we have
today is a mismatch for the computer environment we are dealing with tomorrow,
it is difficult to place this huge screen scenario (alone) into any pronounced
categories of user interface debates on concepts of adaptivity and adaptability.
For instance, the sphere of influence of the hand-and-eye coordination needs
to be enlarged, and perhaps include the body, to follow the claims of direct
manipulation of adaptable interfaces. Furthermore, while the audience have it
easy watching from a distance, the presenter does not: standing so close to one
part of the huge screen (or screens) often leads to the interface widgets he or she
may require to be out of reach, or worse still, because the presenter cannot see
those widgets, he or she may assume that such actions or commands represented

13.2. ACTIVE BACKGROUND TRACKING 211

by those widgets do not exist within the board application. We point out here
that this may affect the flow of the lecture presentation. In this case, we may
be left to rely on the adaptivity of the interface for the wall-mounted boards to
proactively assist the user while at the same time ensuring that the user still
feels in control of the whole process.

13.2 Active Background Tracking

Fewer widgets on screen may turn out to be more effective as hypothesized
by Bunt et al. [11] especially for these types of situations. For if we want to
reproduce the physical chalkboard on the digital boards, and still be able to take
full advantage of all the capabilities that the digital system can offer, we may need
to compromise on the number of interfacing widgets so that the instructor can
focus on his or her own lesson delivery and pay less attention to the background
technology. In fact, one of the goals of creating a practical interface for the boards
is to give as much writing space as possible to the users, and to adopt ‘natural’
hand-gestures whenever appropriate to invoke only the necessary commands and
tools given the context, while engaging in a lecture presentation.

Part of our solution of minimizing the numerous interface combinations of
toolboxes and command buttons is to spruce up the background environment
with active and reactive mechanisms – placing interface agents as collateral to
borrowing processing time from the system. Since Jameson [54] claimed that
there are no conclusive proofs that adaptable interfaces are always superior, our
system’s active background components are also designed to tolerate adaptive
user characteristics and tasks, as well as perceptual events received from the ink
environment of the huge wall-mounted digital boards, solely from the pen-based
input modal [88].

13.2.1 The Background Model

There are five components that make up the active background model to track ink
inputs perceived from the board environment as shown in Figure 13.1. The Trace
Agent, Gesture Agent and the UI Controller all receive the same information
from the digitiser. The Trace Agent classifies each ink component into one of
the four temporal categories and determines statistically the state of the ink.
The Gesture Agent uses the Trace Agent’s verdict and its own percept of the ink
environment to determine the kind of gesture (command) to tell the foreground
application, should the ink component not be a trace. The UI Controller provides
the appropriate graphical visualization of the user input, drawing its instructions
from the foreground application by leaving trace marks on the screen or showing
on-demand menu options near the user’s current position with respect to the

212

boards.

Figure 13.1: Model of the active background involving the ink environment, an
agency, and a foreground application.

A Context Agent monitors feedback interactions between the user and the
system. This agent communicates internally with both the Trace and Gesture
agents to determine all spatial and temporal ink activities on the ink environ-
ment. It also requests further information from the UI Controller and the Fore-
ground Application to confirm the ink states and to double check its own data
collection of previous events to better anticipate current and future ink activi-
ties [87]. Among the agent’s more notable properties are:

• Determining the consistency of the freehand writings;

• Determining the frequency of gestures with respect to the writings;

• (Assisted) Acting and reacting to the foreground applications; and

• Deciding the most appropriate context given any (writing) situation.

In terms of coming up with the appropriate context for a particular digital
board application, the agent works on the initial information of the current ink
state. Here, traces are straight-forwardly associated with writings (or drawings)
and then depending on the user’s editing choices, the agent sets the ‘context’
to allow specifically for changing pen attributes, canvas attributes, or any other
annotating activities. Single-stroke gestures are tagged to the more specific menu
items for browsing the boards (and/or slides) contents, accessing files, invoking
help, as well as performing editing commands such as copy, cut, paste, insert,
delete, etc. On the forefront, this resembles very much like the popup menu
ideology, but with the exception of dynamic menu contents reacting on the same

13.2. ACTIVE BACKGROUND TRACKING 213

set of gestures and traces. In our case, the contents are dependent on the current
user situation.

13.2.2 Strategy

Turk and Robertson [123] proposed a strategy for designing an effective interface
that we find satisfies issues of adaptability, adaptivity, and perceptuality. He
concentrated on three key components:

• Leveraging human capabilities;

• Exploiting the available technologies; and then

• Accessing and manipulating all information as we see fit.

This is in relation to the Seeheim model pointed out by Morse [90], which high-
lights the “functional core” that directs the “presentation component” and the
“dialogue controller”.

Figure 13.2: Tracking ink events and reactionary stratagem.

The state transition diagram in Figure 13.2 encompasses the above concepts,
as well as incorporating our active background-tracking model that optimally

214

manages a way of communicating with the user in a purely digital ink environ-
ment. Five transition states are based upon the input ink states received (either
as traces or gestures), or the lack of it (either as tapping on the board, or no-
action, or prolonged no-action) with the help of a pervasive timer mechanism for
this reactionary stratagem.

As a rule of thumb, we leaned towards the play-safe strategy; for when-
ever there is a “doubt” (a level of unassuredness beyond a certain threshold
value [83]), the user must be given a choice to see and select from the full-range
of commands offered by the foreground application. This is prominently re-
flected in State 1. States 2 and 3 are on-demand menus and inter-face options
proffered by the system based on the current written ink context. Only the
selected (anticipatory) widgets are displayed on screen while all other options
that are deemed “not-in-context” are packed under a command button marked
“More >>”. Referring to the fact that we want to provide the instructors with
an uncluttered writing canvas, the interface widgets will disappear once the sys-
tem detects continuous writings. This strategy works on all our board scenarios
including those that we use for purely “writing” applications, as well as those
that integrate lecture slides in them (see Figure 13.3). The emphasis of which
is directed towards a single digital pen input by the user to put him or her in
control of the class and the technology within.

Figure 13.3: Huge wall-mounted digital boards as teaching medium. Insets:
(a) dynamic-content pie menu for pen attributes, (b) dynamic-content pie menu
for browsing slides/board-canvas, (c) bottom toolbar widgets within reach and
in-sight of user, (d) normal freehand writings left as trace marks on the ink
environment.

13.2.3 Deriving Interfaces from Inputs

To complete the visualization of the on-demand assistance, we bank-in on the
last known coordinate position of the user’s latest written Trace (or Gesture).

13.3. FINDINGS AND EVALUATIONS 215

Popping up dynamic-content pie menus and/or other static command buttons
in that vicinity seems most appropriate and convenient for the user. Earlier
research on pie menus proved an advantage for users of digital screens [13], as
people tend to better remember the cyclic position, and as such expedites the
selection process. Our command button (toolbar) interface is logged to the
bottom of the screens, appearing on-demand with only an array of anticipated
widgets (see Figure 13.3 for examples). The combined lengths of the number
of widgets will not exceed the arm’s length of the instructor to ensure that all
widgets are within reach and within the instructor’s line of sight.

13.3 Findings and Evaluations

To measure the response of users who utilize the huge wall-mounted digital
boards, based solely on the digital pen inputs, we collected and analysed all
ink information received in classroom lessons for a period of one semester week.
The digital boards were set up to record the amount of writings by instructors,
and to see how much of those writings are ‘meant’ and ‘interpreted’ as command
gestures or for invoking on-demand menu options. The data are then used to
infer how well our support system reacts in providing valid and useful assistance
to instructors. While the system records all the above performance data, we also
stationed a human observer for each lesson that utilized the digital boards. The
sole purpose is to track “human errors”, where we define this to be the changing
of the instructor’s mind on a ‘set action’. For example, after purposely calling up
an on-demand menu, the instructor decides that the menu is not needed after all
(subsequently, the Cancel option was selected), or the instructor decides that he
or she really wanted to access a different option that is completely out of context
(subsequently, the “More >>” button was selected).

13.3.1 Inks, Commands, and the UIs

There was a total of 125,866 ink inputs received and processed by the digital
boards during our observation period. All lessons had PowerPoint presentation
slides embedded on the screen. Instructors were able to browse the contents of the
slides and the boards, and write anywhere on the screen they please. We noted
that over 94% of the digital inks collected were freehand writings (and drawings),
and only 5.15% were anticipated by the system as gestures for commands and
for invoking the hidden (on-demand) interface. Figure 13.4 depicts the further
breakdown of the command gestures and the extent the correct anticipation led
to the invoking of the appropriate UIs. “Human errors” amounted to 12.43% of
the system’s anticipation process. This is as opposed to the system’s own error
in judgment where it either reacted with a wrong command or interpreted the
wrong context, which were all due to the misinterpretation of ambiguous single-

216

stroke gestures. This is a prevalent problem that we highlighted in our previous
works [87, 83] and is also explained by various authors [51, 90], especially in
cases where the legibility of the instructor’s freehand writings are by themselves
questionable.

Figure 13.4: Deriving interfaces from single-stroke digital ink inputs.

Our data shows that of all the correct (assisted) interpretation made by
the system in provid-ing the interface-on-demand, more that 55% of the time
involved popup pie menus. The rest of the time required the appearances of
toolbar widgets near the instructors. Our observers noted that the instructors
took the advantage of the absence of tool-widgets and naturally utilized the
boards as if they were chalkboards – writing everywhere and anywhere they
please. The instructors did not seem to mind the lack of visible technology, as
to them the system seems to conjure up the interface whenever it is that they
need to use it. Making choices from the anticipated menu options gave users the
impression that the boards have always been in their control.

13.3.2 Users’ Choices

To obtain a better picture of how users take to having their menu options antici-
pated by the system in whatever context they are currently working on, and then
presented to them on-demand, we also made provisions to monitor the kinds of
widget options users click. The graph in Figure 13.5 depicts this finding.

The first two bars highlight the frequency of users’ choices whenever any
options were selected from the bottom toolbar. Our system was able to correctly
anticipate the context in which the users are working more than 86% of the
time. That is, within the limited number of command buttons allowed for the
arm span of the users, the system is able to place at least one button that the
user can tap for immediate action. Only 13.45% of the time do users have to
locate their commands buried inside the “More >>” button. The last three
bars show the number of times users click on either the static pull-down menus,

13.3. FINDINGS AND EVALUATIONS 217

the on-demand widgets (bottom toolbars) and the dynamic-content popup-pie
menus respectively. Over half the time we see users utilizing the convenience of
the popups and 42.02% of the time on the on-demand widgets.

Figure 13.5: Users’ choices on widget options.

218

CHAPTER 14

Disoriented Gestures for TableTop
Environments

We have yet to find a multi-user interaction model developed for the tabletop
displays that handles the notion of “who-is-doing-what-and-when-and-where”,
without having to rely on external sensing devices or imposing hardware to be
worn by the users. The support mechanisms in place for current tabletop systems
stress considerably more, among others, on ubiquitous table rules for appropri-
ately displaying and orienting screen-items (widgets), effective usage guidelines
for practical UI supports, and convenient tools for multiple document manage-
ment [28, 100, 124]. These supports are for general manipulation purposes;
explicitly tailored for tabletop users such as the picking, moving, shoving, and
rotating of active widgets on the tabletop, and the defining of users’ public and
private work areas.

14.1 The TableTop Environment

In 1993, Wellner [132] presented and discussed the technique of merging physical
papers with digital documents and other onscreen widgets onto a common desk-
top surface and make them all manoeuvrable directly by hand. This technology
of “computerised reality”, or some-times known as “mixed-reality”, has since
then caught on, progressing from a simple, single-user-setup that is attached to
a single projector, a camera, and a computer, to that of a more complex multi-
user-arrangement that is capable of facilitating both collaborative and cooper-
ative activities while aiding users in their quest to solve more important tasks.
Most of these interactive tabletops are designed to conform with the Computer
Supported Cooperative Work (CSCW) standards, which have the main goal of
using technologies of computer networking and associated hardware, software,

219

220

services, and techniques to support (and to a certain extent, understand) the
way people work in groups [38, 61, 74, 106, 72].

Research for the tabletop displays and the related designs of CSCW environ-
ments to encompass multiuser interactions made way for further developments
in both hardware innovations and software interfacing models. We see new and
hi-tech tabletop equipments presented to the scientific community almost every
year since 1994. Many are coupled with properly positioned sensing devices such
as cameras and motion detectors, while few others come with human-contact-
type sensors [59, 28, 100, 124]. The tabletop displays themselves have recently
evolved with built-in sensor architectures smart enough to recognise multiple
hand positions and allow synchronous inputs [100, 135]. These are held together
by control and cognition algorithms that provide the backbone support for all
activities on the tabletop systems. Such assistance form the software programs
bridges the interfacing problems between the tabletops’ four-corners and the
simultaneous interface for multiple users [60, 61].

However, we often note that no significant efforts can be found in the liter-
ature to determine which of the user around the table is currently and actively
interfacing the tabletop; suffice to know that “someone” is touching and manip-
ulating the onscreen widgets. For even with the help of cameras, techniques to
differentiate the users are complex, and subsequently, the cost of such complexi-
ties may affect the overall multi-user tabletop-interaction profoundly in terms of
reaction times (latency) [127, 29].

Our solution in attempting to correctly recognise which of the users seated
around the table-top display (and as a consequence get the interface program
to work or react in favour of the identified user) lie in monitoring closely the
input command gestures received by the table-top operating environment. This
is as opposed to placing biometric sensors on the users, or investing on special
tabletop sensors that send signals through users upon their touch.

14.2 The Disoriented Pen-Gestures Approach

In the example from Figure 14.1(a), the “arrow” drawn on the tabletop is an “up-
arrow” to a user seated in the South corner, but a “right-arrow” to a user in the
East corner. Depending on who drew it, our method will tell apart, whether the
gesture is a STH UP ARR or an EST RT ARR accordingly. Because of this attached
corner-identity in the recognised gesture-command, the foreground application
can simply make use of this information to (perhaps) continue processing and
managing the tabletop UI for better communication controls in favour of the
user at the identified corner.

Our approach to identify users seated around the tabletop display without
relying on external sensing devices is to bank-in purposefully on the characteris-

14.3. PEN-GESTURES AS INTERACTION PROTOCOLS 221

Figure 14.1: Similar in appearance but differ in by-corner-interpretation of single
and multi-strokes.

tics of the gestures received. That is, we emphasise our observation on the way
users gesture commands to the system with their digital pens (or their fingers).
We discuss our method in this thesis to show that we can relate these gesturing-
techniques to any of the four corners of the table by virtue of the “orientation
properties” contained in every gesture made on the tabletop environment. All
pen-gestures are made up of various identifiable “trace-features” in spatial and
temporal domains [83]. This set of trace-features is used, in conjunction with
a primed set of related trained-weights in classical linear gesture-classification
algorithms, to recognise input traces as possible gestures.

By carefully selecting a set of key features from the spatial domain and com-
bining them with another set of key features from the temporal domain, our
method draws strong conclusions of how dis-oriented a particular trace is. These
are mainly the variance in angular and velocity-type features that we use - within
the “dis-orientations” - to relate a trace to one of the corners of the table. This is
the corollary of the original linear gesture-classifier theorem [107]; that a gesture
is recognisable through features that describe the nature of its trace out-line
by means of multimodal distribution, meaningful/reusable semantics, relative
dependency, and real value variables. Consequently, the classification of the cor-
rect gesture type, as well as the identification of the particular table corner it
came from, is derived simultaneously using the same algorithm.

14.3 Pen-Gestures as Interaction Protocols

A standard way of communicating to the control system hosting an Ink Envi-
ronment [87] is to involve the pen-gesture technology as interaction protocols.
Where in the absence of a keyboard and a mouse, the digital pen is used directly
on the digital screen surface to mark the start of the communication, select
onscreen items as parameters, and conclude with a final mark of completion.
Most of the time, we tend combine all of the three steps above into a single- or
multi-stroke gesture-command to achieve the same effect.

The terminology of “gesture-command” insists that the pen-gestures applied

222

on the environment are to be interpreted as system commands, which are to be
acted upon immediately. A few or all of the trace-features contained in the ges-
ture can be reused to affect this action visually through appropriate animations
on the selected screen item for the users’ benefit. The gestures therefore, should
be identifiable from anywhere within the predefined environment enclosure.

Similarly, we describe our tabletop environment as an extension of the Ink
Environment. And as such, when a gesture-command is drawn on an active on-
screen widget, its reaction to the gesture is always somewhat related. An active
onscreen widget here is one that we can animate expressively on the tabletop
environment, as opposed to passive widgets which remain anchored to and un-
movable at stipulated screen positions.

For instance, we can gesture a unidirectional arrow directly on an active
document on the tabletop. The entire protocol is realised upon recognition of
the gesture-command as, say, WST LT ARR, and the active document as the object
parameter to the protocol. In addition, the tabletop environment also knows that
the gesture comes from the user seated on its West corner. To complete the visual
effect, the document is animated on the tabletop following the properties of the
“arrow” gesture - drawing its speed, acceleration, trajectory, and direction from
the trace-features contained in the gesture-command. Note that this is not the
same as tapping the document, then meticulously dragging it across the table,
and letting it go only when we are satisfied with its new position. In effect, there
are other means to do this and are explained by several authors [100, 109, 124].

14.4 Significance of Trace-Features

Rubine [107] identified 13 unique features used in determining the gesture-type
of an input trace for his gesture trainer and classifier algorithms. We have thor-
oughly discussed this earlier on in chapter 11. These trace-features purportedly
describe the measurements of the traces’ various lengths, bounding box proper-
ties, angles, durations, and speeds. They were selected to accommodate both
small and large changes to the feature values that in turn will influence the
stability of the trained-weights in the linear discriminator.

14.4.1 The Linear Discriminator

The identification of a gesture-type depends heavily on the goodness of variance
on the values of the trained-weights wci in association to a related trace-feature
fi. In a linear gesture-classifier, the set of trace-features f1, . . . , fF extracted
from an input trace g is applied to the linear evaluation function over the values
of the trained-weights. The classification of the gesture G is the maximum vc of

14.4. SIGNIFICANCE OF TRACE-FEATURES 223

all the known gesture values.

vc = wc0 +

F∑

i=1

wci fi , for 0 ≤ c ≤ C (14.1)

Here, C is the total number of known gesture-types and F is the total number
of features extracted from g. The training problem then boils down to determin-
ing the weights wci from a sample set of traces that are meant to be interpreted
as gestures.

14.4.2 Centre of Gravity and Angular Velocity

We implemented Rubine’s training algorithm and retained all 13 features in our
method. We also added seven more features that measure a trace based upon
its angles and speeds, with respect to the trace’s centre of gravity (COG). By
definition and by our implementation, the COG is considered as both spatial
and temporal. It tells us a point within the trace’s bounding box of where it
is most heavy and most balanced when viewed on the 2D plane. Temporally,
the concentration of points (which led to the COG itself) is in fact the result of
the input sampling rate of the digital screen device (when used as a tabletop),
coupled to the users’ way of manoeuvring the pen while gesturing; slowing down
at some locations (which will pick up more sampled-points per square inch) and
hurrying up at others.

Angular and velocity-type features, when observed from the trace’s COG, are
our dis-oriented features. We found them to have the most significant variance
for their associated trained-weights cci, when it comes to deciding which corner
of the table a gesture was conceived. Our study of analysing how independent
an individual feature is with respect to other features (involving the original 13
features) in returning the correct classification of a gesture-type confirms this.
Our observations point out that angular (spatial) and velocity-type (temporal)
features can supersede all others, and are thus key features in their role of iden-
tifying gestures from tabletop corners

14.4.3 The Disoriented Features

Our seven additional features are derived from an input trace as illustrated in
Figure 14.2. The center of gravity (COG) CG = (xG, yG) is a point on the 2D
plane that is the median of all {x0, . . . , xn−1} and {y0, . . . , yn−1}. We list our
feature equations as follows, enumerating them after the first 13 originals from
Rubine’s.

224

CT

λα

λβ

λT

θi(i+1)

(x0, y0)

(xn−1, yn−1)

(xi, yi)
(xi+1, yi+1)

CG

Figure 14.2: Deriving features with respect to the COG CG ≡ (xG, yG), in
addition to Rubine’s original 13 features discussed earlier in Figure 11.2. The
centre of the Trace’s bounding-box is marked by CT ≡ (xT , yT).

Let ∂xiG = xi − xG and ∂yiG = yi − yG.

f14 = cosλα = ∂x0G/
√
∂x2

0G + ∂y2
0G (14.2)

f15 = sinλα = ∂y0G/
√
∂x2

0G + ∂y2
0G (14.3)

f16 = cosλβ = ∂x(n−1)G/
√
∂x2

(n−1)G + ∂y2
(n−1)G (14.4)

f17 = sinλβ = ∂y(n−1)G/
√
∂x2

(n−1)G + ∂y2
(n−1)G (14.5)

f18 = cosλT = ∂xTG/
√
∂x2

TG + ∂y2
TG (14.6)

f19 = sinλT = ∂yTG/
√
∂x2

TG + ∂y2
TG (14.7)

Let ∆ti = ti+1 − ti and cos θij =
∂xiG∂xjG−∂yiG∂yjG√

(∂xiG∂yiG)2(∂xjG∂yjG)2
.

f20 =
n−1
max
i=0

cos θi(i+1)

∆t2i
(14.8)

Features f14 to f19 are a series of related pairs, taking into consideration the
cosine and sine of angles between CG and (x0, y0), CG and (xn−1, yn−1), and

14.5. TABLETOP GESTURE GROUPS 225

CG and CT respectively. As was pointed out by Rubine, we favoured using the
cosine and sine of the angles rather than using the angles themselves to avoid
discontinuity as it passes through 2π and 0. These preliminary features detect
the levels of dis-orientation a trace has that are centred on its heaviest point,
where many of the sampled points within the trace are normally concentrated.
These concentrations usually happen at bends and corners around the trace, and
whenever users slow down in their gesturing.

Our primary observations indicate that these features have a tendency to
show a significant variance depending on the corner from which the gesture was
drawn, even when the outline of the gesture looks very much alike from all four
corners of the table. We need to detect enough of these variances to ensure our
derivation of the table-corner, from just an arbitrary input trace, has a high
probability of being correct.

14.5 TableTop Gesture Groups

We can find two distinct groups when manipulating gestures for the tabletop;
the family group, and the corner group.

14.5.1 Family Group

We define a family of a gesture-type as a set of gestures whose trace-outlines
look very much alike when viewed from more than one corner of the table, but
may have different interpretations (of their names and system commands) with
respect to the corner they are associated with. Figures 14.1(a) and (b) illus-
trate this idea. For the same gesture outline in Figure 14.1(a), we interpret
it as STH UP ARR, EST RT ARR, NTH DN ARR, and WST LT ARR respectively, going
anti-clockwise around the table starting from the South corner. Similarly in Fig-
ure 14.1(b), we interpret the gesture as NTH ALPHA and EST TWRL DN from the
North and East corners respectively.

Note that from the way an ‘alpha’-gesture is drawn, we do not include in-
terpretations for the West and South corners as they would prove cognitively
unpopular [88, 135]. This is the same reason why Figure 14.1(c) should only
be interpreted from the West corner. Figure 14.3 gives a few more examples of
the family of gestures that we studied for this paper. A 90-degree rotation of
one family gesture results in another family gesture of the same set. A complete
set of family gesture contains all family gestures of the same type for all four
corner-orientations.

226

Figure 14.3: Three sets of complete single- and multi-stroke families of gestures:
Set 1 – (a), (b), (c), (d); Set 2 – (e), (f), (g), (h); Set 3 – (i), (j), (k), (l).

Figure 14.4: The UP ARROW corner group.

14.5.2 Corner Group

A corner group refers to a set of gesture-types that has the same command
interpretation from more than one table corner. Usually, the outlines of these
gestures are not the same when viewed from a single corner of the table. A corner
group is a consequence of picking one gesture from each family belonging to a
complete family-set, and ensuring that the orientation information in the gesture
name is exclusive. Figure 14.4 shows an example of an UP ARROW corner group,
which was derived from the complete set of family gestures in Figure 14.1(a).

14.6 Variance Comparison in Trained-Weights wci

We mentioned earlier that we used Rubine’s classical training and recognition
algorithms in this study. The only differences here are that we are working with
a tabletop environment, and with seven additional feature definitions.

14.7. TRAINING BY TABLE CORNERS FOR FAMILY 227

The trained-weights wci of all the known gesture-types are amassed together
and then observed categorically by their family and corner groups. Particularly,
we are interested in how much each trained-weight of a single gesture-type varies
with respect to the same weight in all other gesture-types. The higher this vari-
ance, the more significant the trained-weight is, as it will have a bigger influence
in the decision making equation of the linear discriminator.

14.7 Training by Table Corners for Family

In order that we have a complete set of family gestures, as illustrated in Fig-
ure 14.3, we need to ensure that we create training examples from the correct
corners. As a matter of fact, we need to train at least 15 examples from one
corner of the table for one particular orientation of a single gesture-type, and
then repeat this operation on all four corners of the table to complete the family
set. The gestures trained for each corner must coincidentally have the corner
information imbued at the start in its name (i.e. NTH , STH , EST , WST).

We note here that the total number of gesture-types C for the tabletop is at
least four times as many as the number of gesture-types for conventional digital
screens (four being the number of corners that our tabletop equipment has).

14.8 Observation of the Trained-Weights wci

The results we obtained when observing the variances of the trained weights wci
in association to their trace-features fi are presented as follows.

Based on a given library of gesture-types C, we extract the values of each
trained-weight wci for all c ∈ C and 1 ≤ i ≤ 20, and categorically study the vari-
ance of their standard deviations. Single-stroke gestures are viewed separately
from the multi-stroke gestures, as the latter is made up of a few more identical
trace-features fi for each stroke-component that make up the full multi-stroke
gesture.

We do not, however, discuss in this chapter our methodologies of multi-stroke
gesture recognition that utilises and combines the fundamental trace-features on
each gesture-component used in the current single-stroke recognition technique.
We have developed a technique of compounding single-stroke ‘seeds’ that pave
the way to identifying similar geometrical objects through a more abstract level
of interpretation. However, this is still an ongoing work and has yet to be
concluded. For now though, we believe that it is sufficient to state that multi-
stroke gestures require several more trace-features than single-stroke gestures for
efficient recognition of the gesture-types as well as identifying the corners they
come from.

228

Figure 14.5: Variations of trained-weights wi for single-stroke gestures arranged
by corner-group gesture-types.

Figure 14.6: Variations of trained-weights wi for single-stroke gestures arranged
by family gesture-types.

We find that the trained-weights wci that vary the most have associated trace-
features fi that are composed of angular and velocity-type components. This is
obvious for the single-stroke gestures as depicted in the peaks of the graphs in
Figures 14.5 and 14.6; the former arranged by family-group gesture-types, and
the latter by the corner-groups.

14.9. TABLETOP MONOPOLY 229

14.9 TableTop Monopoly

We programmed our own prototype of the Monopoly board game to test out the
stability of our hypothesis in section 14.2. Our manual and partially-automatic
Monopoly game was made to run on the most basic of tabletop environments,
and involves a good mixture of active (e.g. dice, cards, money, player pieces)
and passive (e.g. street boxes) onscreen widgets.

Figure 14.7: Tabletop Monopoly, developed in-house.

14.9.1 Handling ‘Out-of-Turn’ Actions

Monopoly is a turn-based game, and each new turn is preceded by the rolling
of the dice. Depending on where on the street boxes the player lands, he/she
can decide to make a purchase, auction, or pay rent to the owner of the street
box property. Here, we are most interested in the last bit – the paying of rent.
From the rules of the Monopoly game, the owner of the particular street box
must demand a payment from his/her opponent who has just landed on the
owner’s property. This action must be done ‘out-of-turn’, that is, the owner of
the stipulated property needs to ask for rent payment before the next rolling
of the dice, or the owner forfeits the amount due. Around the tabletop, the
owner of the property may not necessarily sit in the next turn of the current
player (Monopoly changes players’ turns in clockwise round). And because our
Monopoly is programmed for manual play, the computer does not know which
players own what properties.

230

This is where the advantage of our method comes in. We made use of up
to eight easy-to-draw family of gestures in the game, and instructed the players
to use them as communication protocols to affect their commands to the game
controller. That is for example, a player performs a gesture to roll the dice,
then gestures on his/her piece to move it across the board in the number of
steps indicated by the dice, and gesture once more to indicate his/her desire to
purchase or auction the street box property that he/she has just landed on. In
the same manner, the owner of the street box property gestures anywhere on the
tabletop to demand payment from his/her opponent. The computer deciphers
this gesture and translates it to obtain the ‘demand-rent’ protocol-command as
well as derive which corner of the table the gesture came from. Assuming that
the owner of the property does not change places throughout the duration of
the game, the computer is able to properly service the owner as per required.
Figure 14.8 details this scenario graphically.

Figure 14.8: North player gesturing ‘out-of-turn’, after East player landed on
North player’s property.

Other ‘out-of-turn’ actions in the Monopoly game that take advantage of the
dis-oriented gestures include buying houses and hotels, redeeming mortgaged
properties, and selling/buying owned properties between any two players.

14.9. TABLETOP MONOPOLY 231

14.9.2 Correctness of Identification

Rubine, in his original paper, suggested several ways of rejecting false positives
that trigger a misclassification of an ambiguous gesture-type [107, 36]. This
happens when there is a near tie for the maximum per-gesture-type evaluation
in the linear discriminator. And as the corner information of the gesture-type is
tied strongly to the features f1 to f20, our implementation of Rubine’s method
yielded the same results of at least 98% recognition rate of the correct gesture-
type as well as the table corner. This is the corollary of the gesture-classification
algorithm working.

Now, with respect to our Monopoly table-game, we collected results from
a log file that we save at each run of the game. We ran the game 20 times;
14 involving four players, four involving three players, and two involving two
players. The log file kept count of the number of times a gesture was made while
a player was in-turn, and it also noted the number of times out-of-turn gestures
were made. The results are shown in Table 14.1.

A typical complete game of Monopoly averages 27% out-of-turn gestures,
and out of that, more than 98% were correctly classified (both gesture-type and
table-corner).

Gesture Action Frequency Correct Misclassified

In-turn 73.00% 99.21% 0.79%

Out-of-turn 27.00% 98.87% 1.13%

Table 14.1: Breakdown of gesture-actions for the Monopoly table-game.

14.9.3 Generality of Methods

Our method of determining the table-corner from which a gesture comes from
is derived directly from the pen-gesture technology that involves conventional
digital screen environments, which we presented these at the TableTop confer-
ence [85]. These screens are usually upright, sometimes wall-mounted, but always
having only one orientation and only cater for one anonymous pen-input at a
time. The tabletop display, on the other hand, makes use of a conventional digital
screen, laid out flat on a table, and can only receive asynchronous pen-inputs.

The key point brought forward in this chapter is that users of our tabletop
environment will be required to gesture to the system with their digital pens,
in order to register their intention and start the protocol for communication.
As long as users continue to use gestures as their means of controlling their
communication and interfacing on the tabletop, our method should still remain
valid. We just need to ensure that proper training of the gesture-types is carried

232

out promptly irregardless of the medium used for gesturing (digital pen, fingers,
etc.).

Also, if new tabletop hardwares that can handle multiple inputs simultane-
ously, can subtly separate all incoming information and pipe complete gestures
for serial processing, then the tabletop software controlling the environment can
be tweaked so that synchronous inputs can be processed the same way as the
current asynchronous ones. Since the raw-gesture information are then intact,
we will be able to determine which corners all incoming gestures come from.

Part IV

Conclusion

233

CHAPTER 15

Conclusion

In many ways, the first part of the thesis attempted to emulate Ockham’s razor,
in solving the problem of improving and sustaining the quality of digital freehand
writings with symbolically represented curves. Where through the law of suc-
cinctness, William of Ockham, a 14th century English logician and Fransciscan
friar, proclaimed in Latin,

“Entia non sunt multiplicanda praeter necessitatem.”

This is roughly translated as “Entities must not be multiplied beyond neces-
sity”, and is often paraphrased, as we popularly know of it today, as “All other
things being equal, the simplest solution is the best.” [82] A superficially simple
phenomenon may have a complex mechanism behind it. A simple explanation
would be simplistic if it failed to capture all the essential and relevant parts.

What we found with the active-smoothing solution is an amalgamation of a
series of subtly simple, yet important and non-trivial observations of the hidden
characteristics of the Bézier family of spline curves. Our quest to smooth a
set of time-ordered and indeterministically positioned points in a Trace on
the 2D plane, took us from the classical cubic spline interpolation methods,
to approximating the Traces exclusively with elliptic arcs, and ended with
the frugally efficient and highly adaptable rational quadratic Bézier curves that
completed our active-smoothing concept. Along the way, we pointed out several
state-of-the-art approximation techniques that are highly intuitive, complex, and
time consuming, which, unfortunately, may not produce the correct smoothing
results that we are after when these techniques are applied to our domain of
digital freehand writings.

Our conceived notions to smooth out the set of indeterministically positioned
points lie not in consistently adding superfluous points to the current set, but
rather to get rid of over 70% of the total points in any one Trace. The points

235

236

retained are the crucial ones, and they not only dictate the overall shapes of
the Traces they represent, but preserve them as well. Together with the mea-
sures of the first and second derivatives, and the measures of curvatures at those
crucial points, we essentially have the basic ingredients to reconstruct a set of
well-placed composite Curves that desirably approximate the original Traces,
at any desired resolution. This was carried out specifically through the two new
smoothing methods we presented, namely, the Elliptic Segmentation and the
Bézier Segmentation. With these methods, we achieved highly precise curves
that well-estimated the Traces, while strictly adhering to the Weierstrass ap-
proximation theorem, and significantly reducing the amount of storage space. It
was directly from the two new methods that we brought out the exigent char-
acteristics of the second-order curves, which then enabled us to reduce the O(n)
complex computations per input point down to a constant. These contributed
to the final fragments we needed to assemble a very fast algorithm that we pre-
sented through the active-smoothing solution. Its performance, we saw, took less
than 20% of the processor resources to smooth digital handwritings and render
the resultant high quality, symbolicaly represented curves, while the primitive
resolution sampling process from the transducer device is still ongoing.

The figures throughout the thesis, depicting the various examples of the
active-smoothing process, are the product of incorporating our algorithm into
Asymptote codes [41]. Asymptote is a vector graphics language that provides
a natural coordinate-based framework for technical drawing. The labels and
equations within the figures are typeset with LaTeX, and together they produce
high-quality PostScript output. This is our attempt to prove our claims that
the curves produced by our algorithms to smooth the pixelated Traces are of
extremely high quality. We invite the reader to use his/her Adobe Acrobat pro-
gram, while scrutinizing this thesis (in PDF), to zoom-in to the deepest level
at 1800%, and to notice that the rendered curves never once degenerate into
pixelated line-segments.

The prototypes of our algorithms were developed solely on the Java platform, but
were later exported to MS Visual C++ to handle the demands of the Lecturnity
software, and MS Visual C# to handle the climate mapping tool described in
section 8.8. The stability of our algorithms in these programming domains is
another indication of the stoutness and correctness of the concepts and routines
within.

Once we have established the robustness of the smoothing routines, we went
on to exploit the various branches that the intrinsic features within the Traces
can be used to support. Not only were we able to differentiate between writing
and gesturing on a common, unsegregated platform, but we were also able to
determine the locations from which the Traces and Gestures originated. The
former was portrayed through our work in developing “intelligent user inter-
faces” for the huge wall-mounted boards, and the latter based on the TableTop

15. Conclusion 237

environment.

In conclusion, the combined parts of smoothing freehand written Traces
with our new methods, both passively and actively, and the implementation of
our gesture-based user applications, complete our proposed concepts and solu-
tions to efficiently handle the digital ink.

238

CHAPTER 16

Non-Related Works

Throughout the course of my doctoral candidacy, I have also been involved with
several other research projects offered by the Chair of Algorithms and Data
Structures, that are completely not related to the topic presented in this thesis.
These works centred around the common theme of “IP network algorithms”,
broken down into two primary parts: IP packet classification, and IP conflict
detection.

We have successfully communicated our ideas to the wider research community,
through our publications, as well as through the completed works of the stu-
dents working with us. The following lists the more significant contributions in
chronological order.

• Versioning Tree Structures by Path-Merging (Frontiers in Algorith-
mics Workshop, 2008) [86]. We proposed path-merging as a refinement of
techniques which we use to make linked data structures partially persis-
tent. The technique’s strengths lie in their subtle, yet effective ways of
merging non-essential versions of the original underlying methods of per-
sistence to derive efficient time and space bounds. They are primed for
handling applications where it makes sense to store only the substantially
essential versions. The main ideas presented in this article came from the
submitted work by Langner, which we describe the third listed item.

• Is the Popular R*-tree Suited for Packet Classification? (Network
Computing and Applications, 2008) [65]. The benchmarks showcased in
this paper depicted how well an R*-tree can be utilised for packet classi-
fication. The work describes two representative classification algorithms
using the ClassBench tools suite.

• Using Partial Persistence to Support Bursts of Operations in
IP-lookup (Bachelor Thesis, 2007) [62]. The original work here highlights

239

240

the enhancement of the classical path-copying method, which makes linked
data structures partially persistent, into what we term as the path-merging
method. The new algorithm was tested on partially persistent red-black
binary search trees, and gave efficient results in support of the SlabDetect
algorithm, which resolves conflicts in a set of 1D packet filters.

• A New Output-Sensitive Algorithm to Detect and Resolve Con-
flicts in Internet Router Tables (InfoComm, 2007) [64]. This article
contains the full description of the SlabDetect algorithm mentioned above.
The algorithm runs in O(n log n) time to detect all conflicts in a given set
of 1D packet filters, and reports at most O(n) conflicts that are deemed
essential.

• Geometrical Algorithms for Packet Filter Conflict Detection (Bach-
elor Thesis, 2007) [105]. This work is primarily based on Klee’s measure
problem to determine (and report) all overlaps from a given set of n iso-
oriented rectangles which are not tightly covered. We developed a geomet-
rical algorithm for use in the IP filter conflict detection environment by
evolving the representation of overlapping rectangles in a Hasse diagram
(by applying a transivity rule) and adapting it to a trellis structure. The
implementation runs in O(n

√
n log n+ k) time, where k refers to the num-

ber of parts of the broken up regions that are in conflict, which is O(n2).

Bibliography

[1] Anderson, R. J., Hoyer, C., Wolfman, S. A., and Anderson, R. A study
of digital ink in lecture presentation. In CHI ’04: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (New York, NY, USA, 2004),
ACM, pp. 567–574.

[2] Àngel Jorba, and Tatjer, J. C. On the divergence of polynomial interpola-
tion. Journal of Approximation Theory 120, 1 (2003), 85–110.

[3] Arge, L., de Berg, M., Haverkort, H. J., and Yi, K. The priority R-tree: A
practically efficient and worst-case optimal R-tree. In SIGMOD ’04: Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data
(New York, NY, USA, 2004), ACM, pp. 347–358.

[4] Backer, J., and Kirkpatrick, D. Finding curvature-constrained paths that
avoid polygonal obstacles. In SCG ’07: Proceedings of the Twenty-Third An-
nual Symposium on Computational Geometry (New York, NY, USA, 2007), ACM,
pp. 66–73.

[5] Banks, M., and Cohen, E. Real time spline curves from interactively sketched
data. In SI3D ’90: Proceedings of the 1990 Symposium on Interactive 3D Graphics
(New York, NY, USA, 1990), ACM, pp. 99–107.

[6] Bargeron, D., and Moscovich, T. Reflowing digital ink annotations. In CHI
’03: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (New York, NY, USA, 2003), ACM, pp. 385–393.

[7] Barrientos, F. A., and Canny, J. F. Cursive: Controlling expressive avatar
gesture using pen gesture. In Proceedings of the 4th International Conference on
Collaborative Virtual Environments (2002), ACM Press, pp. 113–119.

[8] Barsky, B. A., and DeRose, T. D. Geometric continuity of parametric curves:
Three equivalent characterizations. Computer Graphics and Applications 9, 6
(November 1989), 60–69.

[9] Baxter, L. K., and Asano, S. Graphical input tablet. United States Patent,
Patent No. 3670103, Shintron Company, Inc. (Cambridge, MA, US), June 1972.

[10] Biswas, M. K., Dresevic, B., and Kallay, M. Method and apparatus for
scale independent cusp detection. United States Patent, Patent No. 7146046,
Microsoft Corporation (Redmond, WA, US), May 2006.

[11] Bunt, A., Conati, C., and McGrenere, J. What role can adaptive support
play in an adaptable system? In IUI ’04: Proceedings of the 9th International
Conference on Intelligent User Interfaces (New York, NY, USA, 2004), ACM,
pp. 117–124.

[12] Burden, R. L., and Faires, J. D. Numerical Analysis, 7th ed. Brooks Cole,
Pacific Grove, CA 93950, USA, 2001.

241

242 BIBLIOGRAPHY

[13] Callahan, J. R., Hopkins, D., Weiser, M. D., and Shneiderman, B. A.
An empirical comparison of pie vs. linear menus. In CHI ’88: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (New York, NY,
USA, 1988), ACM, pp. 95–100.

[14] Catmull, E., and Rom, R. A class of local interpolating splines. Computer
Aided Geometric Design (1974), 317–326.

[15] Chakerian, G. D. Mathematical Plums. Mathematical Association America,
1979, ch. 7. A Distorted View of Geometry.

[16] Chung, K.-L., Lin, F.-C., and Chen, W.-C. Cost-optimal parallel B-spline
interpolations. In ICS ’90: Proceedings of the 4th International Conference on
Supercomputing (New York, NY, USA, 1990), ACM, pp. 121–131.

[17] Corel Corp. Corel R©GrafigoTM2. In COREL [online] http://www.ritescript.
com/Products/ritePen.aspx, 2008.

[18] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction
to Algorithms, 2nd ed. The MIT Press, Cambridge, Massachusetts 02142-1315,
USA, 2001, ch. 18. B-Trees, pp. 434–454.

[19] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction
to Algorithms, 2nd ed. The MIT Press, Cambridge, Massachusetts 02142-1315,
USA, 2001, ch. 15. Dynamic programming, pp. 323–369.

[20] Crowley, J. L., Coutaz, J., and Bérard, F. Perceptual user interfaces:
Things that see. Communications of the ACM 43, 3 (2000), 54–64.

[21] Cutler, R., and Turk, M. View-based interpretation of real-time optical flow
for gesture recognition. In Proceedings of the Third IEEE International Conference
on Automatic Face & Gesture Recognition (1998), IEEE Computer Society, pp. 416
–421.

[22] Cyber SIGN, Inc. Technology overview. In Biometric signature verification
[online] http://www.cybersign.com/com/techoverview.htm, 2008.

[23] Danielsson, M., and Müller, R. A time-evolving data structure scalable
between discrete and continuous attribute modifications. Computer Science in
Perspective (2003), 98–114.

[24] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O.
Computational Geometry: Algorithms and Applications, 2nd ed. Springer-Verlag
Berlin Heidelberg, 2000, ch. 2. Line segment intersection, pp. 19–44.

[25] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O.
Computational Geometry: Algorithms and Applications, 2nd ed. Springer-Verlag
Berlin Heidelberg, 2000, ch. 10. More geometric data structures, pp. 211–234.

[26] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O.
Computational Geometry: Algorithms and Applications, 2nd ed. Springer-Verlag
Berlin Heidelberg, 2000.

[27] DeRose, T. D., and Barsky, B. A. Geometric continuity, shape parame-
ters, and geometric constructions for Catmull-Rom splines. ACM Transactions on
Graphics 7, 1 (1988), 1–41.

http://www.ritescript.com/Products/ritePen.aspx
http://www.ritescript.com/Products/ritePen.aspx
http://www.cybersign.com/com/techoverview.htm

BIBLIOGRAPHY 243

[28] Dietz, P., and Leigh, D. Diamondtouch: a multi-user touch technology. In
UIST ’01: Proceedings of the 14th Annual ACM Symposium on User Interface
Software and Technology (New York, NY, USA, 2001), ACM, pp. 219–226.

[29] Dominguez, S. M., Keaton, T., and Sayed, A. H. Robust finger tracking for
wearable computer interfacing. In PUI ’01: Proceedings of the 2001 Workshop on
Perceptive User Interfaces (New York, NY, USA, 2001), ACM, pp. 1–5.

[30] Douglas, D. H., and Peucker, T. K. Algorithms for the reduction of the num-
ber of points required to represent a digitized line or its caricature. Cartographica:
The International Journal for Geographic Information and Geovisualization 10, 2
(December 1973), 112–122.

[31] Evans, D. G., Schweitzer, P. N., and Hanna, M. S. Parametric cubic
splines and geologic shape descriptions. Mathematical Geology 17, 6 (January
2005), 611–624.

[32] Evernote Corp. ritepen 3.0 product details. In Ritescript Products [online]
http://www.ritescript.com/Products/ritePen.aspx, 2008.

[33] Faloutsos, C., Sellis, T., and Roussopoulos, N. Analysis of object oriented
spatial access methods. SIGMOD Record 16, 3 (1987), 426–439.

[34] Flöry, S., and Hofer, M. Constrained curve fitting on manifolds. Computer
Aided Design 40, 1 (2008), 25–34.

[35] Fornberg, B., and Zuev, J. The Runge phenomenon and spatially variable
shape parameters in RBF interpolation. Computers & Mathematics with Applica-
tions 54, 3 (2007), 379–398.

[36] Frankish, C., Hull, R., and Morgan, P. Recognition accuracy and user
acceptance of pen interfaces. In CHI ’95: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (New York, NY, USA, 1995), ACM
Press/Addison-Wesley Publishing Co., pp. 503–510.

[37] GRAHL Software Design. Annotate, edit and comment PDF files. In PDF An-
notator [online] http://www.ograhl.com/en/pdfannotator/index.php, 2008.

[38] Grasset, R., Looser, J., and Billinghurst, M. OSGARToolKit: Tangible +
transitional 3d collaborative mixed reality framework. In ICAT ’05: Proceedings
of the 2005 International Conference on Augmented Tele-Existence (New York,
NY, USA, 2005), ACM, pp. 257–258.

[39] Guru, D. S., and Nagendraswamy, H. S. Symbolic representation of two-
dimensional shapes. Pattern Recognition Letters 28, 1 (2007), 144–155.

[40] Guttman, A. R-trees: A dynamic index structure for spatial searching. In
SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD International Conference
on Management of Data (New York, NY, USA, 1984), ACM, pp. 47–57.

[41] Hammerlindl, A., Bowman, J., and Prince, T. Asymptote: The vector
graphics language. In Asymptote [online] http://asymptote.sourceforge.net/,
2008.

[42] Hangai, S., Yamanaka, S., and Hamamoto, T. Writer verification using
altitude and direction of pen movement. International Conference on Pattern
Recognition 3 (2000), 483–486.

http://www.ritescript.com/Products/ritePen.aspx
http://www.ograhl.com/en/pdfannotator/index.php
http://asymptote.sourceforge.net/

244 BIBLIOGRAPHY

[43] Hansford, D. The Essentials of CAGD, 1st ed. AK Peters, October 2000, ch. 6.
Bézier Patches, pp. 71–94.

[44] Hershberger, J., and Snoeyink, J. Speeding up the douglas-peucker line-
simplification algorithm. Tech. rep., University of British Columbia, Vancouver,
BC, Canada, Canada, 1992.

[45] Hurst, G. S. Electrographic sensor for determining planar coordinates. United
States Patent, Patent No. 3798370, Elographics, Inc. (Oak Ridge, TN, US), March
1974.

[46] Hurst, G. S., and Park, J. E. Electrical sensor of plane coordinates. United
States Patent, Patent No. 3662105, The University of Kentucky Research Foun-
dation (Lexington, KY, US), May 1972.

[47] Hürst, W., Maass, G., Müller, R., and Ottmann, T. The “authoring
on the fly” system for automatic presentation recording. In CHI ’01 extended
abstracts on Human factors in computer systems (2001), ACM Press, pp. 5–6.

[48] Hürst, W., Maass, G., Müller, R., and Ottmann, T. The “Authoring
on the Fly” system for automatic presentation recording. In CHI ’01: CHI ’01
extended abstracts on Human Factors in Computing Systems (New York, NY,
USA, 2001), ACM, pp. 5–6.

[49] Hürst, W., and Mohamed, K. A. Enhancing Learning through Human Com-
puter Interaction. Information Science Reference, London, WC2E 8LU, January
2007, ch. II. Human Computer Interaction for Computer-Based Classroom Teach-
ing, pp. 21–42.

[50] Hürst, W., and Müller, R. A synchronization model for recorded presenta-
tions and its relevance for information retrieval. In MULTIMEDIA ’99: Proceed-
ings of the Seventh ACM international Conference on Multimedia (Part 1) (New
York, NY, USA, 1999), ACM, pp. 333–342.

[51] Igarashi, T., Edwards, W. K., LaMarca, A., and Mynatt, E. D. An
architecture for pen-based interaction on electronic whiteboards. In AVI ’00:
Proceedings of the Working Conference on Advanced Visual Interfaces (New York,
NY, USA, 2000), ACM, pp. 68–75.

[52] IMC AG. Rapid authoring tool LECTURNITY – Rapid learning. In imc Ad-
vanced Learning Solutions [online] http://www.lecturnity.de/, 2008.

[53] Jain, A. K., Griess, F. D., and Connell, S. D. On-line signature verification.
Pattern Recognition 35, 12 (2002), 2963–2972.

[54] Jameson, A. Adaptive interfaces and agents. The Human-Computer Interac-
tion Handbook: Fundamentals, Evolving Technologies and Emerging Applications
(2003), 305–330.

[55] Jenks, G. F. Lines, computers, and human frailties. Annals of the Association
of American Geographers 71, 1 (March 1981), 1–10.

[56] Johnson, R. A., and Bhattacharyya, G. K. Statistics – Principles and
Methods, 3rd ed. John Wiley & Sons, Inc., Toronto, Canada, 1996.

http://www.lecturnity.de/

BIBLIOGRAPHY 245

[57] Kendon, A. An agenda for gesture studies. In Semiotic Review of Books 7, 3
[online] http://www.univie.ac.at/wissenschaftstheorie/srb/srb/gesture.
html, 1996.

[58] Knuth, D. E. The Metafont book. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1986.

[59] Kobayashi, M., and Koike, H. EnhancedDesk: integrating paper documents
and digital documents. Computer Human Interaction, 1998. Proceedings. 3rd Asia
Pacific (July 1998), 57–62.

[60] Krueger, W., and Froehlich, B. The responsive workbench. IEEE Computer
Graphics and Applications 14, 3 (1994), 12–15.

[61] Kruger, R., Carpendale, S., Scott, S. D., and Greenberg, S. How people
use orientation on tables: comprehension, coordination and communication. In
GROUP ’03: Proceedings of the 2003 International ACM SIGGROUP Conference
on Supporting Group Work (New York, NY, USA, 2003), ACM, pp. 369–378.

[62] Langner, T. Using partial persistence to support bursts of operations in IP-
lookup. Bachelor Thesis, Albert-Ludwigs-Universität Freiburg (March 2007).

[63] M, M. S., and Raza, S. A. Capturing outline of fonts using genetic algorithm
and splines. Proceedings of the Fifth International Conference on Information
Visualisation (2001), 738–743.

[64] Maindorfer, C., Mohamed, K. A., Ottmann, T., and Datta, A. A new
output-sensitive algorithm to detect and resolve conflicts in internet router tables.
In INFOCOM 2007: Proceedings of the 26th IEEE International Conference on
Computer Communications (May 2007), IEEE Press, pp. 2431–2435.

[65] Maindorfer, C., and Ottmann, T. Is the popular R*-tree suited for packet
classification? Seventh IEEE International Symposium on Network Computing
and Applications (July 2008), 168–176.

[66] Malavard, L. C., and Marty, P. M. Graphical input system. United States
Patent, Patent No. 3449516, IIT Research Institute (Chicago, IL, US), October
1969.

[67] Malavard, L. C., and Marty, P. M. Graphic data transcription system.
United States Patent, Patent No. 3632874, Agence V, Nationale De Valorisation
De La Recherche A. N. A. R. (Puteaux, France), April 1972.

[68] Manly, B. F. J. Multivariate Statistical Methods: A Primer, 3rd ed. Chapman
& Hall/CRC, Boca Raton, Florida 33431, USA, 2004.

[69] Manocha, D., and Canny, J. F. Detecting cusps and inflection points in
curves. Computer Aided Geometric Design 9, 1 (May 1992), 1–24.

[70] Marino, J. S. Identification of characteristic points along naturally occurring
lines – an empirical study. Cartographica: The International Journal for Geo-
graphic Information and Geovisualization 16, 1 (June 1979), 70–80.

[71] Mark, D. M. Conceptual basis for geographic line generalization. In Proceedings
of the 9th International Symposium on Computer-Assisted Cartography (Journals
Division, 5201 Dufferin Street, Toronto, ON, Canada, M3H 5T8, April 1989),
University of Toronto Press and Cartographica, pp. 68–77.

http://www.univie.ac.at/wissenschaftstheorie/srb/srb/gesture.html
http://www.univie.ac.at/wissenschaftstheorie/srb/srb/gesture.html

246 BIBLIOGRAPHY

[72] Masoodian, M., McKoy, S., and Rogers, B. Hands-on sharing: collabora-
tive document manipulation on a tabletop display using bare hands. In CHINZ
’07: Proceedings of the 7th ACM SIGCHI New Zealand Chapter’s International
Conference on Computer-Human Interaction (New York, NY, USA, 2007), ACM,
pp. 25–31.

[73] Matuschek, O. Climate mapping tool. Bachelor Thesis, Albert-Ludwigs-
Universität Freiburg (April 2008).

[74] McCowan, I., Gatica-Perez, D., Bengio, S., Moore, D., and Bourlard,
H. Towards computer understanding of human interactions. Machine Learning
for Multimodal Interaction 3361/2005 (January 2005), 56–75.

[75] McGrenere, J., Baecker, R. M., and Booth, K. S. An evaluation of a
multiple interface design solution for bloated software. In CHI ’02: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (New York,
NY, USA, 2002), ACM, pp. 164–170.

[76] McKay, E. Enhancing Learning through Human Computer Interaction. Infor-
mation Science Reference, London, WC2E 8LU, January 2007.

[77] McKinley, S., and Levine, M. Cubic spline interpolation. Tech. rep., College
of the Redwoods, Eureka, CA 95501, USA, 1998.

[78] McMaster, R. B. A statistical analysis of mathematical measures for linear sim-
plification. Cartography and Geographic Information Science 13, 2 (April 1986),
103–116.

[79] McMaster, R. B. Automated line generalization. Cartographica: The Inter-
national Journal for Geographic Information and Geovisualization 24, 2 (1987),
74–111.

[80] McMaster, R. B. The integration of simplification and smoothing algorithms
in line generalization. Cartographica: The International Journal for Geographic
Information and Geovisualization 26, 1 (1989), 101–121.

[81] Melkman, A. A. On-line construction of the convex hull of a simple polyline.
Information Processing Letters 25, 1 (1987), 11–12.

[82] Menger, K. A counterpart of Occam’s razor in pure and applied mathematics
ontological uses. Synthese 12, 4 (December 1960), 415–428.

[83] Mohamed, K. A. Increasing the accuracy of anticipation with lead-lag tim-
ing analysis of digital freehand writings for the perceptual environment. In IC-
CMSE ’04: Proceedings of the International Conference on Computational Meth-
ods in Sciences and Engineering (Leiden, The Netherlands, 2004), T. Simos and
G. Maroulis, Eds., VSP/Brill Science Citation Index, pp. 387–390.

[84] Mohamed, K. A., Belenkaia, L., and Ottmann, T. Post-processing InkML
for random-access navigation of voluminous handwritten ink documents. In Pro-
ceedings of the 13th International World Wide Web Conference (New York, NY,
USA, 2004), ACM, pp. 266–267.

[85] Mohamed, K. A., Haag, S., Peltason, J., Dal-Ri, F., and Ottmann,
T. Disoriented pen-gestures for identifying users around the tabletop without
cameras and motion sensors. TableTop 2006. First IEEE International Workshop
on Horizontal Interactive Human-Computer Systems (January 2006), 43–50.

BIBLIOGRAPHY 247

[86] Mohamed, K. A., Langner, T., and Ottmann, T. Versioning tree structures
by path-merging. In Proceedings of the Second Annual International Workshop,
Frontiers in Algorithmics FAW 08 (Berlin, 2008), LNCS Springer, pp. 101–112.

[87] Mohamed, K. A., and Ottmann, T. Fast interpretations of pen gestures with
competent agents. In Proceedings of the IEEE Second International Conference on
Computational Intelligence, Robotics and Autonomous Systems (CIRAS) (2003),
IEEE Press, pp. PS09–04.

[88] Mohamed, K. A., and Ottmann, T. Encyclopedia Of Human Computer In-
teraction. IGI Global, Hershey, PA 17033, USA, December 2005, ch. Pen-Based
Digital Screen Interaction, pp. 323–369.

[89] Mohamed, K. A., and Ottmann, T. Active-smoothing in digital ink envi-
ronments. In EMME ’07: Proceedings of the International Workshop on Educa-
tional Multimedia and Multimedia Education (New York, NY, USA, 2007), ACM,
pp. 119–120.

[90] Morse, A., and Reynolds, G. Overcoming current growth limits in ui devel-
opment. Communications of the ACM 36, 4 (1993), 72–81.

[91] Mukhopadhyay, S., and Smith, B. Passive capture and structuring of lectures.
In Proceedings of the seventh ACM international conference on Multimedia (Part
1) (1999), ACM Press, pp. 477–487.

[92] Müller, R., and Ottmann, T. The “authoring on the fly” system for auto-
mated recording and replay of (tele)presentations, Special issue on “multimedia
authoring and presentation techniques”. Multimedia Systems 8, 3 (October 2000),
158–176.

[93] Opheim, H. Smoothing a digitized curve by data reduction methods. In Euro-
graphics ’81: Proceedings of the International Conference and Exhibition (Ams-
terdam, The Netherlands, 1981), J. L. Encarnacao, Ed., North-Holland Publishing
Company, pp. 127–135.

[94] Pal, S., Biswas, P., and Abraham, A. Face recognition using interpolated
Bézier curve based representation. Proceedings of the International Conference on
Information Technology: Coding and Computing 1 (April 2004), 45–49.

[95] Pavlidis, T. Curve fitting with conic splines. ACM Transactions on Graphics 2,
1 (1983), 1–31.

[96] Pentland, A. Perceptual user interfaces: Perceptual intelligence. Communica-
tions of the ACM 43, 3 (2000), 35–44.

[97] Pham, B. Conic B-splines for curve fitting: A unifying approach. Computer
Vision, Graphics, and Image Processing 45, 1 (1989), 117–125.

[98] Plass, M., and Stone, M. Curve-fitting with piecewise parametric cubics.
SIGGRAPH Computer Graphics 17, 3 (1983), 229–239.

[99] Pottmann, H., and Wallner, J. Computational Line Geometry, 1st ed.
Springer, Heidelberg, 69126 Germany, August 2001.

[100] Rekimoto, J. Smartskin: an infrastructure for freehand manipulation on inter-
active surfaces. In CHI ’02: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (New York, NY, USA, 2002), ACM, pp. 113–120.

248 BIBLIOGRAPHY

[101] Ren, Y., Yang, C., Yu, Z., and Wang, P. A way to speed up buffer generaliza-
tion by douglas-peucker algorithm. Geoscience and Remote Sensing Symposium,
2004. IGARSS ’04. Proceedings. 2004 IEEE International 5 (September 2004),
2916–2919.

[102] Reumann, K., and Witkam, A. P. M. Optimizing curve segmentation in
computer graphics. In Proceedings of the International Computing Syposium (New
York, NY, USA, 1974), A. Gunther, B. Levrat, and H. Lipps, Eds., Elsevier,
pp. 467–472.

[103] Rice, J. A. Mathematical Statistics and Data Analysis, 2nd ed. Duxbury Press,
Belmont, California 94002, 1995.

[104] Richter, S. Abstracting digital ink traces with efficient line simplification al-
gorithms. Studienarbeit Thesis, Albert-Ludwigs-Universität Freiburg (September
2004).

[105] Ritter, G. Geometrical algorithms for packet filter conflict detection. Bachelor
Thesis, Albert-Ludwigs-Universität Freiburg (January 2007).

[106] Rogers, Y., Hazlewood, W., Blevis, E., and Lim, Y.-K. Finger talk: col-
laborative decision-making using talk and fingertip interaction around a tabletop
display. In CHI ’04: Human Factors in Computing Systems (New York, NY, USA,
2004), ACM, pp. 1271–1274.

[107] Rubine, D. Specifying gestures by example. SIGGRAPH Computer Graphics 25,
4 (1991), 329–337.

[108] Russell, G., Chee, Y.-M., Seni, G., Yaeger, L., Tremblay, C., Franke,
K., Madhvanath, S., and Froumentin, M. Ink markup language [online],
Available: http://www.w3.org/TR/InkML/. W3C Working Draft (October 2006).

[109] Ryall, K., Forlines, C., Shen, C., and Morris, M. R. Exploring the effects
of group size and table size on interactions with tabletop shared-display groupware.
In CSCW ’04: Proceedings of the 2004 ACM Conference on Computer Supported
Cooperative Work (New York, NY, USA, 2004), ACM, pp. 284–293.

[110] Salzberg, B., and Tsotras, V. J. Comparison of access methods for time-
evolving data. ACM Computing Surveys (CSUR) 31, 2 (1999), 158–221.

[111] Sarfraz, M. A rational spline with tension: some CAGD perspectives. Pro-
ceedings of the 1998 IEEE Conference on Information Visualization (Jul 1998),
178–183.

[112] Sarfraz, M., Asim, M., and Masood, A. Capturing outlines using cubic Bézier
curves. Proceedings of the 2004 International Conference on Information and
Communication Technologies: From Theory to Applications (April 2004), 539–
540.

[113] Sederberg, T., and Farouki, R. Approximation by interval Bézier curves.
Computer Graphics and Applications, IEEE 12, 5 (September 1992), 87–95.

[114] Sellis, T. K., Roussopoulos, N., and Faloutsos, C. The R+-tree: A
dynamic index for multi-dimensional objects. In VLDB ’87: Proceedings of the
13th International Conference on Very Large Data Bases (San Francisco, CA,
USA, 1987), Morgan Kaufmann Publishers Inc., pp. 507–518.

http://www.w3.org/TR/InkML/

BIBLIOGRAPHY 249

[115] Shneiderman, B. A. Direct manipulation for comprehensible, predictable and
controllable user interfaces. In IUI ’97: Proceedings of the 2nd International Con-
ference on Intelligent User Interfaces (New York, NY, USA, 1997), ACM, pp. 33–
39.

[116] Shneiderman, B. A., and Maes, P. Direct manipulation vs. interface agents.
Interactions 4, 6 (1997), 42–61.

[117] Siepmann, D. Cardinal interpolation by polynomial splines: Interpolation of data
with exponential growth. Journal of Approximation Theory 53, 2 (1988), 167–183.

[118] Sinden, F. W. Method and apparatus for parametric representation of hand-
written symbols. United States Patent, Patent No. 6580826, Lucent Technologies
Inc. (Murray Hill, NJ), June 2003.

[119] Smarandache, F. Generalisations et Generalites, nouvelle ed. Ed. Nouvelle, Fes,
Marocco, 1984, ch. Chap. Generalizations of Ceva’s Theorem and Applications,
pp. 15–20.

[120] Sohel, F. A., Karmakar, G. C., and Dooley, L. S. A generic shape de-
scriptor using Bézier curves. International Conference on Information Technology:
Coding and Computing 2 (April 2005), 95–100.

[121] Sunday, D. Algorithm 16: Polyline simplification. In Geometry Algorithms [on-
line] http://geometryalgorithms.com/Archive/algorithm_0205/algorithm_

0205.htm, 2006.

[122] Toraichi, K., Kwan, P. W. H., Katagishi, K., Sugiyama, T., Wada, K.,
Mitsumoto, M., Nakai, H., and Yoshikawa, F. On a fluency image coding
system for beef marbling evaluation. Pattern Recognition Letters 23, 11 (2002),
1277–1291.

[123] Turk, M., and Robertson, G. Perceptual user interfaces (introduction). Com-
munications of the ACM 43, 3 (2000), 32–34.

[124] Ullmer, B., and Ishii, H. The metaDESK: models and prototypes for tangible
user interfaces. In UIST ’97: Proceedings of the 10th Annual ACM Symposium
on User Interface Software and Technology (New York, NY, USA, 1997), ACM,
pp. 223–232.

[125] Ünlü, A., Brause, R., and Krakow, K. Handwriting analysis for diagnosis
and prognosis of Parkinsons disease. In Proceedings of the International Sympo-
sium on Biological and Medical Data Analysis (2006), N. Maglaveras, I. Chou-
varda, V. Koutkias, and R. Brause, Eds., LNCS Vol 4345, Springer Verlag Heidel-
berg, pp. 441–450.

[126] Vaughan, J., Whyatt, D., and Brookes, G. A parallel implementation of the
douglas-peucker line simplification algorithm. Software: Practice and Experience
21, 3 (1991), 331–336.

[127] von Hardenberg, C., and Bérard, F. Bare-hand human-computer interac-
tion. In PUI ’01: Proceedings of the 2001 Workshop on Perceptive User Interfaces
(New York, NY, USA, 2001), ACM, pp. 1–8.

[128] Weisstein, E. W. Brianchon point. In MathWorld – A Wolfram Web Resource
[online] http://mathworld.wolfram.com/BrianchonPoint.html, 2008.

http://geometryalgorithms.com/Archive/algorithm_0205/algorithm_0205.htm
http://geometryalgorithms.com/Archive/algorithm_0205/algorithm_0205.htm
http://mathworld.wolfram.com/BrianchonPoint.html

250 BIBLIOGRAPHY

[129] Weisstein, E. W. Conway triangle notation. In MathWorld – A Wolfram Web
Resource [online] http://mathworld.wolfram.com/ConwayTriangleNotation.

html, 2008.

[130] Weisstein, E. W. Inellipse. In MathWorld – A Wolfram Web Resource [online]
http://mathworld.wolfram.com/Inellipse.html, 2008.

[131] Weisstein, E. W. Trilinear coordinates. In MathWorld – A Wolfram Web Re-
source [online] http://mathworld.wolfram.com/TrilinearCoordinates.html,
2008.

[132] Wellner, P. Interacting with paper on the digitalDesk. Communications of the
ACM 36, 7 (1993), 87–96.

[133] Wexelblat, A. Gesture at the user interface: A CHI ’95 workshop. ACM
SIGCHI Bulletin 28, 2 (1996), 22–26.

[134] White, E. R. Assessment of line-generalization algorithms using characteristic
points. Cartography and Geographic Information Science 12, 1 (April 1985), 17–28.

[135] Wu, M., and Balakrishnan, R. Multi-finger and whole hand gestural interac-
tion techniques for multi-user tabletop displays. In UIST ’03: Proceedings of the
16th Annual ACM Symposium on User Interface Software and Technology (New
York, NY, USA, 2003), ACM, pp. 193–202.

[136] Yang, H.-M., Lu, J.-J., and Lee, H.-J. A Bézier curve-based approach to
shape description for Chinese calligraphy characters. Proceedings of the Sixth In-
ternational Conference on Document Analysis and Recognition (September 2001),
276–280.

[137] Yap, C. K. Complete subdivision algorithms, I: Intersection of Bezier curves. In
SCG ’06: Proceedings of the Twenty-Second Annual Symposium on Computational
Geometry (New York, NY, USA, 2006), ACM Press, pp. 217–226.

[138] Zupancic, B., and Horz, H. Lecture recording and its use in a traditional
university course. In Proceedings of the 7th annual conference on Innovation and
technology in computer science education (2002), ACM Press, pp. 24–28.

http://mathworld.wolfram.com/ConwayTriangleNotation.html
http://mathworld.wolfram.com/ConwayTriangleNotation.html
http://mathworld.wolfram.com/Inellipse.html
http://mathworld.wolfram.com/TrilinearCoordinates.html

	Zusammenfassung
	Abstract
	Acknowledgements
	Part I Preface
	Introduction
	The Digital Ink Metaphor
	Object-Oriented Derivations
	Spatial Indexing
	Temporal Indexing and InkML
	Digital Ink Domains
	Touch Screens and Tablets
	Wall-Mounted Digital Boards

	Order and Overview of Chapters
	Objectives and Problem Specification
	Structure

	Geometric Entities of the Digital Ink
	Discrete Ink Entities
	Continuous Ink Entities
	The Notion of `Curves' vs. Curves
	Crucial Points
	Algebraic and Geometric Viewpoints

	Handling Digital Ink Entities
	Road Map: From Discrete Traces to Smoothed Curves
	Continuity and Joints
	Deriving First and Second Derivatives
	Deriving Curvature, Inflection Points, and Sharp-Edge Vertices

	Support Data Structures
	Active Point
	Temporal Traces
	Spatial Traces

	Active Sampling

	Part II Active-Smoothing & Symbolic Representation
	Confluent Lines Over Ordered Point Sets
	Undulating Spline Curves
	Lagrange Interpolation
	Cubic Splines
	Natural Cubic Spline
	Parabolic Runout Spline
	Cubic Runout Spline
	Other Types of Cubic Splines
	Related Works Involving Cubic Splines

	Bézier Curves
	Parametric Continuity
	Controlling Cubic Bézier Curves
	Related Works Involving Cubic Bézier Curves

	Are Quadratic Curves Sufficient?
	Symbolic Representation

	Polyline Simplification
	Categorization of Algorithms
	Measuring the Quality of Simplified Polylines
	The Douglas-Peucker (DP) Algorithm
	The Reumann-Witkam (RW) Algorithm
	Improving the Solutions of Reumann-Witkam's
	The Opheim Algorithm
	The RW-DP Algorithm

	The Optimal Polyline Simplification
	Simplified Polylines for Smoothing Routines

	Rendering Curves with Elliptic Arcs
	The Ellipse – an Abstract Conic
	Problems with Rendering Composite Functions
	Extracting Essential Ellipse Information
	Reconstructing a Perfect Elliptic Arc

	Estimating with Elliptic Arcs
	Deriving Six Conditions from TS
	Inconics and Inellipses
	Steiner Inellipse
	Orthic Inconic
	Brocard Inellipse
	Mandart Inellipse

	Adaptive Midpoint Inellipse
	Measuring the Quality of Approximated Curves
	Elliptic Segmentation
	The Naïve Approach
	An Improved Approach
	Speeding Up with a Guided Trajectory Approach

	Results and Discussions

	The Bézier Curve Approach
	De Casteljau's Recursive Midpoint Rule
	Quadratic Bézier Curves
	Rational Quadratic Bézier Curves
	Constraint-Triangle ABC and Area Relations
	The Significance of the Weight w1
	Selective Error Measurement
	Bézier Segmentation
	Climate Mapping with Smooth Contours

	The Active-Smoothing Solution
	Maintaining Appropriate Segments
	Maintaining Farthest Point Reference
	Maintaining Areas and Lengths
	The Active-Smoothing Algorithm
	Performance Analyses

	Random Access Navigation
	Replaying Ink in Real Time
	Random Access Navigation
	Streaming Freehands
	Accessing Objects
	Timing Significance

	Ink Markup Language (InkML)
	Structuring InkML
	Object Modules

	Replay Scenarios
	Scenario I – Raw InkML
	Scenario II – Applied Object Modules
	Scenario III – Cumulative Modules

	Measurables and Data Contents
	Results and Observations
	Analysis
	Performance
	Correlations
	Recommendations

	Part III Gesturing & Feature Interactions
	Gesticulations and the Gesture Continuum
	The Gesture Entity
	Features
	Classifying a Gesture
	Training the Weights

	Gesturing versus Normal Writing
	Temporal Relationships in Digital Freehands
	Freehand Writing
	Freehand Drawing
	Standalone Components and Gestures

	Ink States
	Sampling Freehand Styles
	Ink Component Categories
	Correlating the Lead- and Lag-Times
	Regional Areas
	Categorical Distributions
	The Bivariate Data

	Statistical Acceptance
	Test Statistic
	Inferring the Bivariate Data
	Chances of Getting a Gesture

	UI-on-Demand and Within-Reach
	Perceptual User Interface (PUI)
	Writing Space versus Interactions
	Adaptability versus Adaptivity
	Lack of Interfacing Mechanisms

	Active Background Tracking
	The Background Model
	Strategy
	Deriving Interfaces from Inputs

	Findings and Evaluations
	Inks, Commands, and the UIs
	Users' Choices

	Disoriented Gestures for TableTop Environments
	The TableTop Environment
	The Disoriented Pen-Gestures Approach
	Pen-Gestures as Interaction Protocols
	Significance of Trace-Features
	The Linear Discriminator
	Centre of Gravity and Angular Velocity
	The Disoriented Features

	TableTop Gesture Groups
	Family Group
	Corner Group

	Variance Comparison in Trained-Weights wci
	Training by Table Corners for Family
	Observation of the Trained-Weights wci
	TableTop Monopoly
	Handling `Out-of-Turn' Actions
	Correctness of Identification
	Generality of Methods

	Part IV Conclusion
	Conclusion
	Non-Related Works
	Bibliography

