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Zusammenfassung

Die vorliegende Dissertation behandelt kombinatorische Optimierungsprob-
leme, die mit dem Erweitern von Websites durch zusätzliche Hyperlinks
zusammenhängen.

Das Einfügen ggf. speziell hervorgehobener zusätzlicher Links, so genann-
ter Hotlinks, ist ein Verfahren zur Optimierung von Websites. Ein Vorteil
dieses Verfahrens ist, dass es nicht destruktiv ist, da die ursprüngliche Struk-
tur der Site erhalten bleibt. Hotlinks können - abhängig von den Interessen
der Benutzer - so zugeordnet werden, dass auf beliebtere Seiten schneller
zugegriffen werden kann. Auf diese Weise wird die erwartete Anzahl an
,,Klicks“ minimiert und der Datenverkehr gleichzeitig verringert.

Eine hierarchisch aufgebaute Website kann formal als gewichteter Baum
T = (V, E, ω) beschrieben werden, wobei (V, E) ein Baum mit Wurzel r ∈
V ist. Die Gewichtsfunktion ω : V → IR+

0 ordnet jedem Knoten eine
Zugriffswahrscheinlichkeit zu. Ein Hotlink Assignment ist eine Menge A ⊂
V × V von zusätzlichen Kanten, welche für die Benutzer Abkürzungen dar-
stellen. Aus Gründen der Übersichtlichkeit ist nur eine gewisse Anzahl K
ausgehender Hotlinks pro Seite erlaubt. Ein Hotlink Assignment ist für einen
gegebenen gewichteten Baum optimal, wenn es unter allen zulässigen Assign-
ments die erwartete Länge des Pfades von der Wurzel r zu einem Knoten im
Baum minimiert. Hierbei betrachten wir nicht den kürzesten Pfad, sondern
gehen davon aus, dass jeder Hotlink auf dem Weg von der Wurzel zum Ziel-
knoten durch die Benutzerin oder den Benutzer unmittelbar benutzt wird.

Nach einer ausführlichen Einführung in die Problemstellung befassen wir
uns zunächst mit der Berechnungskomplexität der optimalen Lösung. Hierbei
zeigen wir, dass es NP-vollständig ist, zu entscheiden, ob für einen gegebenen
Baum ein Hotlink Assignment existiert, welches eine bestimmte erwartete
Pfadlänge erreicht. Dies gilt selbst für den Fall, dass maximal ein Hotlink
von jedem Knoten ausgehen darf und dass nur die Blätter positive Zugriffs-
wahrscheinlichkeit haben. Das Ergebnis wurde in [Jac08b] veröffentlicht.

Im darauffolgenden Kapitel identifizieren wir eine praxisrelevante Ein-
schränkung des Lösungsraumes, unter deren Berücksichtigung das Hotlink-
Assignment-Problem in Polynomialzeit gelöst werden kann. Es handelt sich
hierbei um die Anforderung, dass Hotlinks nur auf die Blätter des Baumes
weisen dürfen. Dieses Ergebnis wurde ebenfalls in [Jac08b] veröffentlicht.

Im weiteren Verlauf der Dissertation geben wir Algorithmen an, die in
Polynomialzeit Näherungslösungen mit konstanten Approximationsfaktoren
berechnen. Der Greedy-Algorithmus fügt immer den Hotlink in den Baum
ein, welcher momentan die größte Verbesserung erzielt. Wir zeigen, dass mit
diesem Verfahren mindestens die Hälfte der maximal möglichen Verbesserung
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erreicht wird. Des Weiteren geben wir ein Approximationsschema (PTAS)
an, welches Lösungen mit beliebigem Näherungsgrad in Polynomialzeit be-
rechnet, wobei der Grad des Polynoms vom gewünschten Näherungsgrad
abhängt. Letzterer bezieht sich auch hier auf die maximal mögliche Verbes-
serung. Eine alternative Zielsetzung ist es, die erwartete Pfadlänge möglichst
gut zu approximieren. Hierfür präsentieren wir einen Polynomialzeitalgo-
rithmus mit Approximationsfaktor 2. Diese drei Näherungsalgorithmen und
deren Analyse wurden in [Jac07] veröffentlicht.

Im letzten Kapitel der Dissertation präsentieren wir die Ergebnisse einer
ausführlichen experimentellen Studie. Neben den oben erwähnten Algorith-
men werden hier auch die in [DL05] und [DL06] vorgeschlagenen Strategien
evaluiert. Des weiteren geben wir eine neuartige heuristische Methode zum
Einfügen von Hotlinks an, die in der Praxis exzellente Ergebnisse erzielt.
Die Experimente basieren auf zwei Testdatensätzen. Der erste Datensatz
besteht aus Baum-Instanzen, welche die Struktur der Websites großer Uni-
versitäten repräsentieren. Der zweite Datensatz beinhaltet synthetische In-
stanzen, die von einem probabilistisch arbeitenden Algorithmus erzeugt wur-
den. Letzterer wurde bei dieser Studie erstmals eingesetzt. Die Experi-
mente zeigen, dass die heuristische Methode und der Greedy-Algorithmus
in der Praxis die besten Lösungen berechnen und dass bei Einschränkung des
Lösungsraumes auf Blätter durchaus vergleichbar gute Ergebnisse erzielt wer-
den. Auf der anderen Seite schneiden Algorithmen, die auf Approximations-
faktoren bezüglich der erwarteten Pfadlänge abzielen, in den Experimenten
deutlich schlechter ab. Die Studie wurde in [Jac08a] veröffentlicht.
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Abstract

This thesis treats combinatorial optimization problems that arise from the
task to enhance web sites with additional hyperlinks.

The goal of inserting additional hyperlinks called hotlinks is to optimize
web sites. An advantage of this approach is that it is non-destructive, i.e.
the original site structure is preserved. Hotlinks are typically assigned ac-
cording to the interests of the users, such that popular pages can be accessed
especially fast. This both minimizes user interaction and reduces web traffic.

A hierarchically structured web site can be formalized as a weighted tree
T = (V, E, ω), where (V, E) is a tree rooted at r ∈ V . The weight function
ω : V → IR+

0 assigns an access probability to each node. A hotlink assignment
is a set A ⊂ V × V of additional shortcut edges. For reasons of clearness,
only a certain maximum number K of hotlinks is allowed to leave each node.
A hotlink assignment is optimal for T if it minimizes the expected length
of the path from r to some other node. Instead of considering the shortest
path, we assume that the user immediately takes any hotlink on the path to
her or his destination node.

After a detailed introduction to the problem, we first address the compu-
tational complexity of the optimal solution. We show that it is NP-complete
to decide whether there exists a hotlink assignment for a given weighted tree
achieving a given expected path length. This even holds true in the case
where only one hotlink is allowed to leave each node and only the leaves can
have a positive access probability. The result has been published in [Jac08b].

Subsequently, we identify a restriction of the solution space that is rele-
vant in practice and allows for a polynomial time optimal algorithm. Namely,
we study the model where hotlinks may only point to the leaves of the tree.
This result has also been published in [Jac08b].

Returning our attention to the original hotlink assignment problem, we
give a number of polynomial time algorithms that compute solutions guar-
anteeing constant approximation factors. Greedy always inserts a hotlink
currently achieving the greatest improvement or gain. We prove that this
algorithm achieves at least one half of the optimal solution’s total gain. Fur-
thermore, we give an approximation scheme (PTAS) which computes solu-
tions with an arbitrary approximation ratio in polynomial time, where the
degree of the polynom depends on the desired ratio. Here the ratio also corre-
sponds to the gain. An alternative approach is to approximate the expected
path length as good as possible. To this end, we present a polynomial time
2-approximation. These algorithms and their analyses have been published
in [Jac07].

In the last chapter of the thesis, we present the results of an extensive
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experimental study. Besides the abovementioned algorithms, the assignment
methods proposed in [DL05] and [DL06] are also included in the study. More-
over, we propose a new heuristic that achieves excellent results in practice.
Our experiments are based on two data sets. One set contains tree instances
representing the structure of large university web sites. The other data
set consists of synthetic instances generated by a new random construction
method. The experiments show that in practice our heuristic method and
Greedy achieve the best results, and, in terms of solution quality, assign-
ments which are optimal under the restriction that hotlinks only point to
leaves are comparable to the best assignments not meeting that restriction.
On the other hand, algorithms tailored to approximate the expected path
length perform considerably worse in the experiments. The study has been
published in [Jac08a].
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Chapter 1

Introduction

This thesis is on algorithms for hotlink assignment. Hotlink assignment de-
notes a special kind of graph augmentation, where additional edges are in-
serted into a graph in order to decrease the length of certain paths. The
eponymous and most typical application are web graphs, with nodes repre-
senting web pages and edges representing hyperlinks. Here a hotlink is a
specially highlighted shortcut link. Hotlinks aim to reduce the amount of
interaction required for accessing popular pages. This does not only increase
user-friendliness, but also reduces web traffic and server load.

The focus of this thesis is on trees. Regarding web graphs, we believe
that this is no severe restriction. Users typically enter a web site via the
home page. This special page can be considered as the root of the tree. If
the site is well structured, the path users take to reach their destination page
will be the shortest possible one. Thus, from our point of view it suffices to
consider the shortest path tree rooted at the home page.

1.1 Minimizing Human Interaction

The value of information is always closely related to its accessibility. Due
to the extensive growth of the Internet as a huge information source, the
task of organizing the content of web sites in an effective way is becoming
increasingly important. Clearly, the worst case scenario of users looking for
a specific piece of information like a needle in a haystack is to be avoided.

To our knowledge, there are two main approaches for making contents
accessible in a convenient way. One is the usage of search engines, and the
other is to organize the information in a hierarchical structure. Modern web
sites typically offer both methods.

12



1.1 Minimizing Human Interaction Introduction

1.1.1 Search Engines

On search engines, user interaction is basically divided into two steps. In the
first step, the user enters one ore more keywords. She or he is then presented
a list of pages that she or he is possibly looking for. In the second step of
interaction, the user chooses one of these pages. An overview of a specific
area can be obtained by performing only the first step.

The main advantage of this approach is that, if the right keywords are
known to the user, the search effort is reduced to the two steps just described.
State-of-the-art implementation of search engines allow answer times that are
negligible. Ranking algorithms (cf. e.g. [BP98]) are employed to order the
resulting page list by decreasing relevance.

One drawback is that the user has to know the right keyword. This may
become a problem when there are several synonyms of one expression. It is
also possible that typing errors occur in the query, or in the page the user
is looking for. There are however approaches to the development of search
engines that can handle those kinds of problems.

Another drawback is that the page lists generated by search engines are
unstructured, making it hard to obtain a clear overview of the available
contents. For example, if a user is interested in car stereos, entering the
keyword “car stereo” to the search engine of an online store will result in a
long list of radios, CD-players, speakers, and other accessories, ordered by
sales rank.

As a conclusion one can say that search engines certainly are a highly
useful tool for information retrieval, but they can never be a substitute for
web indexes.

1.1.2 Hierarchical Indexes

Large web sites typically make their contents available via a hierarchical
index. In order to be helpful, the index has to fulfill certain requirements.

First, its hierarchy has to be such that users always know which hyperlink
will lead them towards their destination. This requirement is only met if the
structure represents some semantic hierarchy of the content. For example,
a user looking for an overview of a specific type of car stereo at an online
store might subsequently click hyperlinks labeled “HiFi”, “Car HiFi”, “CD
Players”, and “Models with mp3 support”.

Second, the number of hyperlinks on any index page must be somehow
limited, as the cognitive effort for choosing an item from a list rapidly in-
creases with the list size.

These requirements imply that there are not many degrees of freedom
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1.1 Minimizing Human Interaction Introduction

for the design of a hierarchical index. In [PE00], Perkowitz and Etzioni
propose an algorithm called PageGather for automatically generating index
pages based on correlating user access patterns. However, they point out
that new index pages should always be approved by the webmaster before
being inserted.

1.1.3 Access Frequencies

The interests of the users of a web site are usually highly correlated. They
typically follow a Zipf distribution, where about 80% of all requests corre-
spond to about 20% of the contents [Pit99]. Therefore, it is advisable to take
access frequencies into account when designing web indexes. Placing popular
pages close to the home page will pay off in terms of user interaction, web
traffic, and web server load. Access patterns can easily be read off from the
web server log files.

One difficulty is that the requirements outlined in Section 1.1.2 still have
to be met. Moreover, the interests of users are likely to change rapidly over
time, e.g. flash crowds may occur. Therefore, some adaptivity of the web
structure is desirable. Redesigning the index from scratch is certainly not an
option as this would be more confusing than helpful for the users.

In this thesis we address a non-destructive approach for improving the
structure of web sites. Via a minor enhancement that can be inserted and
updated automatically, the expected amount of user interaction can be sig-
nificantly reduced.

1.1.4 Hotlinks

A hotlink is an additional hyperlink on a web page, i.e. hotlinks do not belong
to the original site structure. In practice, it is advisable that the hotlinks
are somehow specially highlighted or appear at a special position on the
pages. The maximum number of hotlinks on a web page can be fixed to some
constant, or it can be specified by the web designer for each page individually.
A set of hotlinks for the web site meeting these restrictions can then be
assigned automatically. Such a hotlink set is called a hotlink assignment
(HLA). The assignment can be updated regularly in case of changing access
patterns.

It is straightforward to measure the quality of a hotlink assignment as
the expected number of “clicks” that are necessary to reach a web page.
The expectation is calculated on the basis of the access frequencies. The
task of finding a hotlink assignment for a given web site that is optimal with
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1.2 Formal Model Introduction

respect to this measure is called the Hotlink Assignment Problem. This thesis
addresses algorithmic aspects of the problem.

1.2 Formal Model

In this section we give a formal definition of the Hotlink Assignment Problem.
Like mentioned in the beginning of this chapter, a web site can be modeled
as a directed graph G = (V, E), where nodes represent pages and edges
represent hyperlinks. The home page of the web site is some special node
r ∈ V that will be called the root.

Clicking a hyperlink corresponds to traversing an edge from one node to
another. It is assumed that every user starts from the root and traverses a
path towards some destination node. A hotlink assignment A ⊆ V × V is a
set of additional shortcut edges.

1.2.1 User Behavior

Before going into details about the quality measure for hotlink assignments,
we have to be clear about how users behave in a graph that is enhanced with
hotlinks. There are two models of user behavior that have been considered
in literature.

The first model assumes that users always take the shortest path in the
enhanced graph (V, E ∪A). At first glance this might seem natural, as users
try to avoid any unnecessary effort. However, such a behavior requires that
users know the entire graph (V, E ∪A). Such an assumption is unrealistic at
least for A because the hotlinks do not belong to the fixed graph structure.
This is why that model has later been named the clairvoyant user model
[GKMP03].

In this work we consider the more realistic greedy user model. Users
follow the shortest path in G, and immediately use any hotlink that takes
them closer to their destination node. The example in Figure 1.1 shows that
this can lead to suboptimal behavior.

1.2.2 Weighted Trees

As already mentioned in the beginning of the chapter, we restrict our atten-
tion to rooted trees in this thesis. A rooted tree T = (V, E) is a directed
graph that contains a unique node r ∈ V such there is exactly one path from
r to each node v ∈ V . This special node r is called the root of T .
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1.2 Formal Model Introduction

v1

v2

v3

v4

v5

v6

v7

Figure 1.1: A clairvoyant user would traverse the path v1, v2, v7, while a
greedy user traverses v1, v3, v4, v5, v6, v7. In the greedy user model, the hotlink
(v2, v7) is obsolete.

We use the following terminology: For u, v ∈ V with u 6= v, node v is
a descendant of u if the path from r to v contains u. We say that u is an
ancestor of v if v is a descendant of u, and v is a child of u if (u, v) ∈ E.
Nodes having no children are called leaves, while nodes having children are
internal nodes.

A weighted tree is a triple (V, E, ω), where (V, E) is a rooted tree and
ω : V → IR+

0 is a function assigning a non-negative weight to each node.
As unweighted or unrooted trees are not considered in this thesis, we do not
always explicitly mention that a tree is rooted and weighted.

The weights can be interpreted as access frequencies or access probabili-
ties. In the latter case, of course, they have to sum up to 1. However, as we
will see in Subsection 1.2.4, the objective functions are linear in the weights.
This means that the weights can be scaled arbitrarily, so from an algorith-
mic point of view it makes no difference whether or not they constitute a
probability distribution.

In literature about hotlink assignment it is often assumed that only leaves
have non-zero weights, i.e. there is a strict separation between navigation
pages and content pages. We will adopt that restriction only in Chapter 3
and 5.

1.2.3 Feasibility

A straightforward consequence of the greedy user assumption is that, for any
hotlink (u, v) in a reasonable assignment, v is a descendant of u. Furthermore,
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1.2 Formal Model Introduction

there are no crossing hotlinks, i.e. there is no hotlink from an ancestor of u
to a node on the path between u and v. Otherwise, the hotlink (u, v) would
never be taken by a greedy user (cf. Figure 1.1).

Throughout this thesis we will consider only hotlink assignments that do
not contain such unreasonable hotlinks. Due to the greedy user assumption,
this is no restriction. On the other hand, whenever a greedy user takes a
hotlink (u, v), we know that there is no hotlink from one of the nodes by-
passed by the hotlink to a descendant of v. This means that (u, v) also would
have been taken by a clairvoyant user. So the greedy user’s path is always
the shortest one and, consequently, the explicit greedy user assumption is
not needed any more.

Definition 1.1 A hotlink assignment A for a weighted tree T is called fea-
sible, if, for any hotlink (u, v) ∈ A, u is an ancestor of v and there is no
hotlink in A from an ancestor of u to v or a node bypassed by (u, v).

Clearly, if there was no restriction concerning the number of hotlinks that
are allowed to leave a node, then any reasonable hotlink would start in the
root. This is however not desirable, as the number of hyperlinks on a concise
web page must be somehow limited.

In the most common formulation of the Hotlink Assignment Problem,
only one hotlink is allowed to start in each node. A natural generalization is
to say that a K-hotlink assignment is a feasible assignment where each node
is the source of up to K hotlinks. We will also consider the model where
the number of outgoing hotlinks is specified individually for each node and
hotlinks are only allowed to end in leaves.

1.2.4 Performance Measures

The weighted path length or simply path length of a hotlink assignment A for
a tree T = (V, E, ω) rooted at r is defined as

p(A, T ) =
∑

v∈V

ω(v)distA(r, v) ,

where distA(u, v) is the length of the shorted path between u and v in (V, E∪
A). In the preceding subsection we have seen that, if the assignment is
feasible, this is equal to the number of edges and hotlinks a greedy user has
to traverse on her or his way from u to v.

The K-Hotlink Assignment Problem denotes the task of finding an op-
timal K-hotlink assignment for a given weighted tree. An assignment A is
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1.3 Applications Introduction

optimal for T if it minimizes the path length among all K-hotlink assign-
ments for T . This is equivalent to saying the assignment maximizes the
gain

g(A, T ) = p(∅, T )− p(A, T ) ,

which is the improvement achieved by A. Clearly, a hotlink assignment
achieves a minimum path length if and only if it maximizes the gain. Despite
equivalence with respect to optimal solutions, the problem formulations are
not equivalent when we are interested in approximation ratios.

Let Alg be a hotlink assignment algorithm, and let Alg(T ) be the as-
signment computed by Alg for the tree T . Let Opt be an optimal hotlink
assignment algorithm. Following the common definition of approximation al-
gorithms, we say that Alg is a c-approximation in terms of the path length, if

p(Alg(T ), T )

p(Opt(T ), T )
≤ c for any tree T .

Respectively, we say that Alg is a c-approximation in terms of the gain, if

g(Opt(T ), T )

g(Alg(T ), T )
≤ c for any tree T .

Note that both the path length and the gain are linear in the node weights.
This implies that the approximation ratios are invariant to weight scaling,
which is why there is no need to specially consider the case when the weights
constitute a probability distribution.

1.3 Applications

The eponymous application of hotlink assignment is the enhancement of web
sites. If the weights of the nodes are access probabilities, then the path length
of a hotlink assignment is the expectation of the number of hyperlinks a user
has to click in order to reach her or his destination page.

The straightforward approach for estimating such a probability distribu-
tion is to take past access frequencies into account. The distribution could
be updated regularly in order to actualize the hotlink assignment respec-
tively. Due to the linearity of the objective function, the hotlink assignment
algorithm can work directly on the frequencies, i.e. they do not have to be
scaled.

Hotlink assignments can be global or personal. In the global case, one
assignment is provided for all users of a web site. Such an assignment should
be based on a global estimate of access probabilities. If the web server has
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the possibility to recognize its individual users (e.g. by web cookies or a
login interface), it is also imaginable that each user sees a personal hotlink
assignment based on her or his interests.

Past access patterns are not the only possible way to obtain weights of the
nodes. It is also thinkable to exploit domain specific knowledge. For example,
when a new product comes into the market, it is likely that many users will
be interested in it. Or, in the case of personal hotlink assignments, the
interests of individual users can be estimated based on similarities as regards
content. For example, a user having read a number of poems by a certain
author will probably be interested in further literature by the same author.
For global hotlink assignment, online stores would supposably consider sales
ranks rather than access frequencies.

The concept of hotlink assignment can be applied in a number of addi-
tional scenarios. In principle, any hierarchical structure where access proba-
bilities can be estimated and where restructuring the whole hierarchy is not
possible could be enhanced with hotlinks. Examples are knowledge bases,
file system browsers and large menus of computer applications.

A further application has been discovered by Bose, Krizanc, Langerman,
and Morin [KLM02]. Asymmetric communication is characterized by a server
and a client, where the bandwidth with which the server can send packets to
the client is much larger than vice versa. The objective is to speed up the
data transmission from the client to the server by exploiting the bandwidth
of the other direction. It is assumed that the communication is based on
an alphabet Σ that is encoded in binary, and the server has access to a
probability distribution of Σ. It computes a hotlink assignment for the binary
tree representing the encoding of Σ. During the transmission of a letter, client
and server keep track of the prefix that has already been sent. In each round,
the server presents all edges and hotlinks that leave the tree node associated
with the current prefix, and the client returns the index of the edge or hotlink
that leads to the maximal prefix of the letter it wants to transmit. Unlike
approaches using Huffman encoding, only the server needs to have access to
the probability distribution and the hotlink assignment, and the assignment
can be updated whenever the probability distribution changes. Although
this is not explicitly mentioned by Bose et. al., the tree traversal carried out
during the transmission of a letter corresponds to the behavior of a greedy
user.

19



1.4 Related Work Introduction

1.4 Related Work

To our knowledge, the concept of assigning hotlinks has first been proposed
by Perkowitz and Etzioni in [PE97]. The first paper describing algorithms
for hotlink assignment has been published in 2000 by Bose et. al. [BKK+00].
Since then, a considerable amount of research has been spent on the related
combinatorial optimization problems.

In the following. when considering a hotlink (u, v), we say that u is the
hotparent of v, and v is a hotchild of u.

1.4.1 Bookmark Assignment

A Bookmark assignment is a set of k hotlinks starting in the source node
of a web graph. In [CKPM02], Czyzowicz et. al. show that calculating an
optimal bookmark assignment for a directed acyclic graph is NP-hard.

Regarding trees, they also discover that the problem is equivalent to the
placement of at most k proxies in tree networks with a single server. The
latter problem is described as a server and a number of clients that are
associated with nodes in a tree. The server node can be considered as the
tree root. Instead of accessing the server, clients can alternatively connect to
a proxy node. The total number of edges on the paths between clients and
server (or the next proxy on the path to the server) is to be minimized.

Polynomial time algorithms for solving the proxy placement problem for
trees have been proposed in [LDGS98, KRS00, JLH+00, LS04]. These al-
gorithms work in the presence of node weights and/or edge weights. In
[CKPM02], an O(k) time algorithm is given for the special case of complete
binary trees with node weights and k ≤

√
n + 1, where n is the tree size.

In this thesis, bookmark assignment algorithms will be an ingredient of
a greedy algorithm for the K-Hotlink Assignment Problem.

1.4.2 Entropy

In [BKK+00], Bose et. al. point out a close connection between weighted
trees and the encoding of an alphabet (cf. Section 1.3). For the moment,
let us assume that only the leaves of a tree T carry weights, and that these
weights constitute a probability distribution1 p = {p1, . . . ,pm}. Let further
∆ be the degree of the tree, i.e. the maximum number of children of any tree
node.

We can associate every edge of T with a letter from a ∆-ary alphabet,
such that any two edges leaving the same tree node carry unequal letters.

1In order to avoid confusion with the path length, we use the bold p for probabilities.
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Then, T can be interpreted as a ∆-ary encoding of its leaves: Each leaf l is
encoded with the letters associated with the edges on the path from the root
r to l.

As only the leaves of T have weights, the code is prefix-free, i.e. no code
word is the prefix of another code word. The weighted path length of the
tree, p(∅, T ), corresponds to the expected word length of the code.

Shannon’s theorem [Abr63] states that the expected word length of a

prefix code is at least H(p)
log ∆

, where

H(p) =

m
∑

i=1

pi log
1

pi

is the entropy of the probability distribution. Translated into our terms, this
means that

p(∅, T ) ≥ H(p)

log ∆
.

It is easy to observe that the same holds for general directed graphs2 as
the weighted path length does not change if we extract a shortest path tree by
deleting all edges that do not belong to a shortest path. As a consequence,
any assignment A of at most K hotlinks to each node of a ∆-ary tree will
result in a path length of at least

p(A, T ) ≥ H(p)

log(∆ + K)
.

This entropy bound holds both in the clairvoyant and greedy user model.
It can easily be generalized to the case of arbitrary weights. Let ω(T ) be
the sum of all leaf weights. We define the probability of the ith leaf li as
pi = ω(li)/ω(T ). The entropy bound is then

p(A, T ) ≥ ω(T )
H(p)

log(∆ + K)
.

In order to simplify notation, we omit the factor ω(T ) in the rest of Sec-
tion 1.4.

If we also allow internal nodes to carry non-zero weights, then the cor-
responding code is not prefix-free any more, so the entropy bound does not
hold directly. However, by relocating the weight of each internal node to an
additional leaf child of that node, we obtain a (∆+1)-ary tree, and the path
to any weighted node is increased by at most 1. This corresponds to adding

2In directed graphs, we can consider those nodes as leaves that have no outgoing edges.
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a termination symbol to a coding alphabet. As Shannon’s Theorem holds
for the modified tree, we can conclude that

p(A, T ) ≥ H(p)

log(∆ + K + 1)
− 1

for the original tree T .
Note that the entropy bound would still hold if an optimal (∆ + K)-ary

tree was constructed from scratch (e.g. by Huffman encoding [Huf52]) instead
of enhancing the existing tree with hotlinks. Thus, it might seem that this
lower bound is rather untight. However, in the following subsections we will
see that any tree can be enhanced with only one hotlink leaving each node
such that a path length of O(H(p)) is achieved.

1.4.3 NP-Hardness for DAGs

For the clairvoyant user model, Bose et. al. prove in [BKK+00] that the
1-Hotlink Assignment Problem is NP-hard for directed acyclic graphs, even
if all leaves have the same weight. The proof is a reduction from 3-Set Cover
[Kar72].

Gerstel et. al. claim in [GKL+07] that the proof can be augmented to
prove also NP-hardness in the greedy user model. We are, however, convinced
that this is not true. In our opinion, it is not even clear how the greedy user
model can be extended to DAGs. Shortest paths in DAGs are not necessarily
unique, so paths taken by greedy users are not determined by the graph
structure.

This observation holds in particular with regards to the class of problem
instances considered in the NP-hardness proof of Bose et. al. For each leaf
in these graphs, users can possibly choose among several shortest paths, and
they do not know which of them is shortened by a hotlink.

1.4.4 Clairvoyant User Model

In [BKK+00], besides giving the entropy bound and the NP-hardness proof,
Bose et. al. also present a number of hotlink assignment methods for full
binary trees with special probability distributions of the leaves. In [FKW01],
Fuhrmann et. al. give algorithms for assigning K hotlinks to full ∆-ary trees.

To our knowledge, the first hotlink assignment algorithm for general trees
has been proposed by Kranakis et. al. in [KKS04]. Their algorithm assigns
one outgoing hotlink to each node, and achieves a maximum path length of

H(p)
log(∆+1)−(∆/(∆+1)) log ∆

+ ∆+1
∆

. We note that this guarantee also holds in the
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greedy user model because the algorithm only computes hotlink assignments
that satisfy our definition of feasibility given in Section 1.2.3.

The first constant factor approximation for the K-Hotlink Assignment
Problem has been presented by Matichin and Peleg in [MP03]. The authors
show that a natural greedy strategy achieves the gain of an optimal hotlink
assignment up to the constant factor of 2. The analysis holds for general
graphs.

1.4.5 Greedy User Model

The greedy user model has first been explicitly considered by Gerstel et. al.
[GKMP03] and Pessoa et. al. [PLdS04a] (called “obvious navigation assump-
tion” in the latter work). These papers independently report on the same
dynamic programming algorithm for the computation of optimal assignments
of at most K hotchildren to each node. The runtime of their algorithm is
exponential in the tree depth. Thus, for balanced trees, where the depth is
logarithmic in the number of nodes, it runs in polynomial time.

The algorithm can be adapted such that is computes hotlink assignments
that minimize the length of the longest path. That version runs in polynomial
time even on arbitrary trees.

The following approximation algorithms have been proposed for the 1-
Hotlink Assignment Problem.

Like for the clairvoyant user model, Matichin and Peleg also were the first
authors who have presented a constant factor approximation for the greedy
user model. The algorithm proposed in [MP07] guarantees to achieve at least
one half of the optimal solution’s gain. This is attained by calculating the
best assignment of hotlinks that bypass exactly one node.

In [DL05], Doüıeb and Langerman give a hotlink assignment algorithm
that guarantees a maximum path length of 3H(p). Recall that the path

length of any hotlink assignment is at least H(p)
log ∆

, so the latter algorithm
is a constant factor approximation for trees of constant degree ∆. It also
is the only known hotlink assignment algorithm that runs in linear time.
In addition, the authors propose an efficient data structure for maintaining
hotlinks when nodes are added, deleted, or weights are modified.

In [DL06], Doüıeb and Langerman improve upon their previous work by
presenting a method that guarantees a path length of 1.141H(p) + 1. They
propose a sophisticated implementation of the improved algorithm guaran-
teeing a worst case runtime of O(n log n), and it is shown by reduction from
sorting that this is asymptotically optimal.
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1.4.6 Experimental Results

A number of experimental papers related to hotlink assignment have ap-
peared.

In an early work [CKK+01], Czyzowicz et. al. evaluate greedy-like hotlink
assignment methods. Their experiments are based both on real and synthetic
tree instances.

Kranakis et. al. [KKM02] have developed a software tool for assigning
hotlinks to web sites that is empowered with one of the greedy algorithms. In
[KKM03], the same authors evaluate a similar greedy approach for optimizing
the data transfer of web servers.

The first comparative study has been conducted by Czyzowicz et. al. in
[CKK+03]. The study shows empirically that the algorithm given in [KKS04]
is outperformed by greedy-like methods. The result is confirmed in [PLdS04b]
and [GKL+07].

In the latter papers, Gerstel et. al. also report on the performance of an
implementation of their optimal hotlink assignment algorithm. It turns out
that optimal solutions can be computed for trees having hundred thousands
of nodes, as long as the depth is moderate.

1.5 Outline of the Thesis

In this thesis we contribute a number of new insights, both theoretical and
practical, into the Hotlink Assignment Problem for trees. We exclusively
consider the greedy user model, as we believe that it is much more realistic
than the clairvoyant model.

It has been an open questions for several years if there is hope to develop
an efficient and optimal hotlink assignment algorithm for arbitrary trees. In
Chapter 2 we answer that question negatively. By a reduction from the well-
known 3-Set Cover Problem we show that the Hotlink Assignment Problem
is NP-hard, even if only one hotlink is allowed to start in each node and only
leaves have non-zero weights. This means that optimal hotlink assignments
for arbitrary trees cannot be computed in polynomial time unless P=NP.

In Chapter 3 we identify a restricted problem version that is computa-
tionally tractable. In our opinion, the restriction arises from practice. In
many applications where hotlinks are actually used, they only point directly
to leaves. Examples are the product recommendations of amazon.com and
similar sites, suggestions for possible completions of typed-in prefixes in web
browsers, or suggestions for frequently used functions in menus of computer
applications. The probable reason for such a restriction is that users would
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find it confusing to end up on another navigation page after following a
hotlink.

We present a polynomial time optimal algorithm for that problem ver-
sion. While the set of possible outputs of our algorithm is restricted, the set
of possible inputs is rather general. The algorithm accepts not only a tree
and a weight function as parts of the input, but also a function K : V → IN0

specifying the maximum number of outgoing hotlinks for each node individ-
ually.

We turn our attention back to the original Hotlink Assignment Problem
in Chapter 4, where we present a number of algorithms that substantially
improve upon the best approximation ratios previously known for both the
path length and the gain.

The natural greedy algorithm Greedy, which always adds a hotlink
achieving the greatest gain, has exhibited the best performance among the
approximation algorithms studied experimentally in [CKK+01, CKK+03,
GKL+07]3. We show that Greedy is a 2-approximation in terms of the
gain for the K-Hotlink Assignment Problem. Furthermore, we prove the ex-
istence of a polynomial time approximation scheme (PTAS) in terms of the
gain for the K-Hotlink Assignment Problem. For the 1-Hotlink Assignment
Problem, we present the first algorithm that yields a constant approximation
factor in terms of the path length for trees of unbounded degree. The result-
ing ratio is 2. Our approximation algorithms all work in the model where
also internal nodes can have non-zero weights.

The analyses of the approximation algorithms are based on three oper-
ations for the modification of hotlink assignments. We believe that these
operations are of independent interest, as they provide general insights into
the problem. For example, a basic fact exploited in the analysis of the greedy
algorithm in [MP03] is that, in the clairvoyant user model, new hotlinks never
increase the length of any shortest path. Surprisingly, this observation holds
also true in the greedy user model, if some further adjustments are made to
preserve the assignment’s feasibility.

In Chapter 5 we report on an extensive experimental study of all recent
hotlink assignment algorithms. We have implemented the methods proposed
by Doüıeb and Langerman [DL05, DL06], and all algorithms developed in
Chapter 3 and 4. Moreover, we present an additional hotlink assignment
method PMin that is easy to implement and turns out to perform excellently
in practice. Our experiments are conducted with both real and synthetic
tree instances. The synthetic trees have been generated by a new random
construction method that produces more realistic instances than the method

3Greedy is called recursive in [CKK+01, CKK+03] and greedyBFS in [GKL+07].
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used in previous experiments.
The main conclusion from our experimental results is that algorithms

tailored to approximate the gain achieve the best results in practice. Another
finding is that, in practice, it is not a severe restriction if hotlinks may only
point to leaves.

1.6 Notation and Terms

This section summarizes the terms and notational concepts that are used
throughout the chapters of this thesis. Some of them have already been
utilized in the preceding sections of Chapter 1.

1.6.1 Hotlinks

When considering a hotlink (u, v), we use the following expressions: Node
u is the hotparent of v, while v is a hotchild of u. The hotlink starts in its
source u and ends in its sink v.

1.6.2 Abbreviations

For the sake of simplicity, we write v ∈ T for a node v belonging to T . As the
tree under consideration will most often be clear from the context, we then
also write p(A) and g(A) instead of p(A, T ) and g(A, T ), and dist(u, v) =
dist∅(u, v) denotes the distance between nodes u and v in the original tree.

1.6.3 Trees and Subtrees

We recapitulate and formalize the terms introduced in Section 1.2.2. Let
u, v ∈ T, u 6= v.

Node v is a descendant of u, if the path from r to v contains u. The set
of all descendants of u is denoted desc(u). We say that u is an ancestor of
v, if v is a descendant of u. The set of all ancestors of v is denoted anc(v).
Finally, v is a child of u if there is an edge from u to v, and the set of u’s
children is denoted ch(u). The term parent is defined respectively, and the
parent of v is par(v).

Throughout this thesis, subscripts of tree identifiers are reserved for de-
nominating subtrees. We denote by Tv the maximal subtree of T rooted
at v. For any set V ′ of nodes, let T \ V ′ be the tree obtained from T
by omitting all maximal subtrees rooted at a node in V ∩ V ′. Let further
Tv,A = Tv \ {v′ ∈ desc(v) | ∃(u, v′) ∈ A : u ∈ anc(v)} be the maximal
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subtree rooted at v, where the maximal subtrees rooted at the hotchildren
of v’s ancestors are omitted. Finally, for any subtree T ′ of T , we define
A|T ′ = {(u, v) ∈ A | u, v ∈ T ′}.
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Chapter 2

Complexity

In this chapter we address the computational complexity of the Hotlink As-
signment Problem. The main result is that it is NP-hard to compute the
optimal solution to a given problem instance, even if only one hotlink is al-
lowed to start in each node and only the leaves carry non-zero weights. We
explicitly show the NP-completeness of the following decision problem:

Definition 2.1 Given a weighted tree T and a real number α, the Hotlink
Assignment Decision Problem is to decide whether there exists a hotlink as-
signment A for T with p(A) ≤ α and any node having at most one hotchild.

This chapter is organized as follows: In Section 2.1 we specify the NP-
hard problem 3-Set Cover (X3C) we reduce from. In Section 2.2-2.6, the
weighted tree instance corresponding to an instance of X3C is defined, and
the main idea of the reduction is outlined. The formal proof of equivalence
is presented in Section 2.7. Section 2.8 concludes the chapter.

2.1 3-Set Cover

Definition 2.2 (Exact Cover by 3-Sets, X3C) Given some set C with
|C| = 3k, k ∈ IN , and a collection D of 3 element subsets of C, the problem
X3C is to decide whether there is a sub-collection D′ ⊆ D, such that each
element of C occurs in exactly one member of D′.

Problem X3C is well-known to be NP-hard [Kar72]. We will use the
following additional terminology: The elements of C are c1, . . . , cn, so n = 3k
is the size of C. The size of D is m, and its members are denoted D1, . . . , Dm,
with Di = {d1

i , d
2
i , d

3
i } for 1 ≤ i ≤ m.
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We assume an order among the elements in the subsets, i.e. x < y < z
for any Di = {d1

i , d
2
i , d

3
i } with d1

i = cx, d
2
i = cy, d

3
i = cz. Furthermore, we

assume that each element of C is contained in at least one member of D.
These assumptions clearly preserve the hardness of the problem.

The version of X3C just described is the starting point of our reduction
to the Hotlink Assignment Decision Problem. In the following sections we
show how an instance (T, α) corresponding to an instance (C, D) of X3C can
be constructed.

In this chapter, index i will always serve to specify some subset Di or
associated entity, while index j will always specify an element cj of C or
associated entity. Consequently, 1 ≤ i ≤ m and 1 ≤ j ≤ n will always hold.

2.2 Tree Structure

Throughout this chapter, T will be the tree corresponding to an X3C in-
stance. We first give the structure of T . For each Di ∈ D we construct a
subtree T i of depth 1. The root of T i is denoted as ri and the eight leaves are
πi, π̄i, σ

1
i , σ̄

1
i , σ

2
i , σ̄

2
i , σ

3
i , and σ̄3

i . For x ∈ {1, 2, 3}, σx
i and σ̄x

i will correspond
to element dx

i ∈ Di.
Another part of T is the path P defined by the nodes {pi | 1 ≤ i ≤

m} ∪ {p̄i | 1 ≤ i ≤ m} and the edges {(pi, p̄i) | 1 ≤ i ≤ m} ∪ {(p̄i, pi−1) | 2 ≤
i ≤ m}. Additionally, for 1 ≤ i ≤ m there are nodes si, ai, and edges (p̄i, si)
and (si, ai).

The final important part of T is the path Q. The set of nodes in Q is
{qj | 1 ≤ j ≤ n} ∪ {q̄j | 1 ≤ j ≤ n} ∪ {tj | 1 ≤ j ≤ n} ∪ {bj | 1 ≤ j ≤ n}.
The edges are {(qj, q̄j) | 1 ≤ j ≤ n} ∪ {(q̄j , qj−1) | 2 ≤ j ≤ n} ∪ {(q̄j , tj) | 1 ≤
j ≤ n} ∪ {(tj, bj) | 1 ≤ j ≤ n}.

P and Q are connected via the edge (p̄1, qn). Between Q and the subtrees
T i, there are two extra nodes u1 and u2. Although the existence of those
nodes is not necessary, they avoid the occurrence of a special case at one
point of the analysis. The construction of T is completed by inserting the
edges (q̄1, u2), (u2, u1) and (u1, ri) for 1 ≤ i ≤ m. The corresponding tree is
depicted in Figure 2.1.

2.3 Terminology

For 1 ≤ i ≤ m, the set {pi, p̄i} is denoted by Pi. Respectively, {qj, q̄j} = Qj

for 1 ≤ j ≤ n. Recall that there is a subtree T i and a set Pi for each subset
Di ∈ D, and there is a set Qj for each element cj ∈ C. From a very abstract
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Figure 2.1: The tree corresponding to an instance of the 3-Set Cover Problem
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point of view, cj being covered by Di will be translated into hotlinks from
Qj pointing into T i.

We call the hotlink assignment B = {(pi, ri) | 1 ≤ i ≤ m}∪{(p̄i, ai) | 1 ≤
i ≤ m} ∪ {(q̄j, bj) | 1 ≤ j ≤ n} the basic assignment for T . The surplus of
a hotlink assignment A for T is defined as the improvement upon the basic
assignment, i.e. p(B)− p(A).

Instead of explicitly specifying a threshold path length α for the decision
problem, we will define a certain surplus value β = p(B)− α and claim that
a surplus of at least β can be achieved if and only if there is a solution to
the instance of 3-Set Cover.

We now introduce two different concepts, which correspond to two differ-
ent points of view from which hotlink assignments for T can be described.
The concept of being open or closed refers to the configuration of the hotlinks
that start in a Pi or Qj . Conversely, the notion of development describes the
hotlinks that end in a subtree T i.

We start with the latter concept. Fix any T i and let d1
i = cj1 , d

2
i = cj2

and d3
i = cj3 in the X3C instance.

We say that T i is undeveloped, if there is a hotlink (pi, ri) (Figure 2.2a).
Observe that in B each T i is undeveloped.

From the status of being undeveloped, T i is developed to j3 by replacing
(pi, ri) with (pi, πi), (p̄i, π̄i), and (qj3 , ri) (Figure 2.2b).

For x ∈ {2, 3}, from the status of being developed to jx, T i is developed
to jx−1 by replacing (qjx

, ri) with (qjx
, σx

i ), (q̄jx
, σ̄x

i ), and (qjx−1, ri).
From the status of being developed to j1, T i becomes fully developed by

replacing (qj1, ri) with (qj1, σ
1
i ) and (q̄j1 , σ̄

1
i ) (Figure 2.2c).

Observe that, if T i is fully developed, then it contains all hotchildren of
Pi, Qj1, Qj2, and Qj3 . Therefore, there is a solution to an instance of X3C if
and only if there is a hotlink assignment for the corresponding tree T where
exactly k subtrees T i1 , . . . , T ik are fully developed.

We proceed specifying the converse point of view. For a given hotlink
assignment A, we say that Pi is closed if (pi, ri), (p̄i, ai) ∈ A. This means
in particular that T i is undeveloped. In fact, each Pi is closed in the ba-
sic assignment B. Let d3

i = cj . We say that Pi is open subject to j if
(pi, πi), (p̄i, π̄i) ∈ A.

Respectively, we say that Qj is closed if (qj , ri), (q̄j , bj) ∈ A, where ri is
the root of some T i with dx

i = cj for some x ∈ {1, 2, 3} in the X3C instance.
We say that Qj is open, if (qj, σ

x
i ), (q̄j, σ̄

x
i ) ∈ A with dx

i = cj in the X3C
instance. In case of x ∈ {2, 3} and dx−1

i = cj′, we say that Qj is open subject
to j′.

Note that, in general, knowing that a Pi or Qj is closed or open does not
necessarily mean that the corresponding subtree is correctly developed. Pi
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Figure 2.2: Subtree T i representing the subset {cj1, cj2, cj3} = Di ∈ D, as it
is (a) undeveloped, (b) developed to j3, and (c) fully developed. Accordingly,
Pi is closed in (a), Pi is open subject to j3 and Qj3 is closed in (b) and Pi,
Qj3 , Qj2, and Qj1 are open in (c).
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2.4 Outline of the Proof Complexity

or Qj being closed or open only is a statement about a subset of the hotlinks
pointing into that subtree.

2.4 Outline of the Proof

We define

β = 3
n

∑

j=1

Wj + k , (2.1)

where Wj will be defined in the following section. We claim that a surplus
of β can be achieved if and only if there is a solution to the X3C instance.
The proof of this claim has the following structure:

1. We define the weights such that, for 1 ≤ j ≤ n, developing a subtree to
j is rewarded with a surplus of 3Wj . Furthermore, for the final step to
the full development of a subtree, an extra surplus of 1 can be gained.

2. We prove that if an optimal hotlink assignment for T achieves a reward
of at least β, then each Pi and each Qj is either open or closed, and
for each j = 1, . . . , n there is exactly one Pi or Qj′ that is open subject
to j.

3. We show that the preceding property implies that the transformation
from B to an optimal assignment A∗ can be described as a sequence of
subtree developments. This makes it easy to reason about the surplus
of A∗.

4. We finally prove that a surplus of β can be achieved if and only if there
is a solution to the X3C instance. While the “if”-direction directly
follows from the weight assignment, one can show that the converse
direction is implied by the existence of the transformation procedure.

The second and third proposition will be proved simultaneously by induction
over j. It is also shown that the weights of T can be represented by a
number of bits polynomial in the size of the X3C instance, which completes
the reduction from X3C.

2.5 Weight Assignment

As mentioned at the beginning of the chapter, internal nodes of T have no
weights. We assign weights to the leaves of T in an iterative manner.
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2.5 Weight Assignment Complexity

There will be m + n different weight classes W1, . . . , Wn+m. Let h =
2(n + m) + 3 be the depth of T . We begin by setting W1 = h. We assign
ω(b1) = 2W1 and ω(σx

i ) = ω(σ̄x
i ) = 2W1 + 1 for each dx

i = c1 in the X3C
instance.

For a fixed j, 2 ≤ j ≤ n, assume that Wj′ and the weights of all bj′ and
all σx

i and σ̄x
i with dx

i = cj′ are given for any j′ < j. We denote the set of
those leaves as Lj−1. We define

Wj = 2h
∑

v∈Lj−1

ω(v) + 1 . (2.2)

As a consequence, Wj is more than twice the total weighted path length to
all leaves lighter than Wj .

We assign ω(bj) = 2Wj and, for any dx
i = cj , we assign ω(σ̄x

i ) = 2Wj + 1.
Furthermore, ω(σx

i ) = 2Wj + wx−1
i , where wx−1

i is chosen as follows:
In case of x ∈ {2, 3}, let dx−1

i = cj′. We choose wx−1
i such that the

reward (i.e. decrease in path length) for deleting the hotlink (q̄j , bj) and then
developing T i to j′ is 3Wj′. When deleting (q̄j , bj), the length of the path to
bj increases by one. During the development, the path to σx

i is shortened by
one, the length of the path to σ̄x

i does not change, and the path length to all
σy

i and σ̄y
i with y < x is increased by dist(qj , qj′). Thus, the overall weighted

path length decreases by

wx−1
i − dist(qj , qj′) ·

∑

1≤y<x

(

ω(σy
i ) + ω(σ̄y

i )
)

.

So, in order to provide the desired reward, we choose

wx−1
i = dist(qj, qj′) ·

∑

1≤y<x

(

ω(σy
i ) + ω(σ̄y

i )
)

+ 3Wj′ . (2.3)

In case of x = 1, we choose wx−1
i = 1 so that fully developing T i achieves

an extra reward of 1, which can be shown by a similar calculation.
As we have assumed that in 3-Set Cover the subsets are ordered, the

values of ω(σy
i ) and ω(σ̄y

i ) have already been assigned for y < x, dx
i = cj, so

our weight-assignment is well-defined.
It remains to specify the weights of πi, π̄i and ai for 1 ≤ i ≤ m, which

is done with respect to similar objectives: For i = 1, . . . , m, Wn+i must be
greater than two times the weighted path length to all leaves lighter than
Wn+i, and the reward for deleting (p̄i, ai) and then developing T i to j′ (with
d3

i = cj′ in the X3C instance) must be exactly 3Wj′.
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2.6 Problem Size Complexity

Let Ln = {σx
j , σ̄x

j , bj | 1 ≤ j ≤ n, x ∈ {1, 2, 3}}. Assume that, for a
fixed i, Wn+i′ and the weight of any πi′ , π̄i′, ai′ for 1 ≤ i′ < i is already given.
We assign

Wn+i = 2h ·
(

∑

v∈Ln

ω(v) +
i−1
∑

i′=1

(

ω(πi′) + ω(π̄i′) + ω(ai′)
)

)

+ 1 , (2.4)

ω(ai) = 2Wn+i, ω(π̄i) = 2Wn+i + 1 and ω(πi) = 2Wn+i + w3
i . Let d3

i = cj′.
Then, due to the same argumentation as above, we choose

w3
i = dist(pi, qj′) ·

∑

1≤x≤3

(

ω(σx
i ) + ω(σ̄x

i )
)

+ 3Wj′ .

2.6 Problem Size

The number of nodes in the tree T corresponding to an instance of 3-Set Cover
is O(h). Therefore, W1 = h and Wy = O(h·h·Wy−1) for 2 ≤ y ≤ n+m. Thus,
Wm+n = O(hO(h2)), and we need at most O(h) log(O(hO(h2))) = O(h3 log h)
bits to represent the weights of T , which is polynomial in the size of the X3C
instance.

2.7 Proof of Equivalence

Lemma 2.1 Let A∗ be an optimal hotlink assignment for T . Then Pi is
either closed or open in A∗ for i = 1, . . . , m.

Proof. The claim is proved by induction over decreasing values of i, where
the argumentation naturally includes the base case i = m. For any fixed i
assume that the lemma has already been proven for i′ > i. As a consequence,
no path from the root of T to any leaf πi′ , π̄i′ , or ai′ with i′ > i contains pi

or any descendant of pi in P and Q. We restrict our attention to the subtree
Tpi,A∗ , which contains all leaves of T except for πi′ , π̄i′ , and ai′ with i′ > i.
As A∗ is optimal, it is clear that A∗|Tpi,A∗ is optimal for Tpi,A∗ in particular.

Observe that the only leaves in Tpi,A∗ that have a weight greater than
Wn+i are ai, πi, and π̄i. Equation 2.4 ensures that the total weighted path
length to all other leaves is smaller than Wn+i/2.

In any hotlink assignment where Pi is closed or open, the path length in
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2.7 Proof of Equivalence Complexity

Tpi,A∗ is at most

max{ 2ω(πi) + 2ω(π̄i) + 2ω(ai) + Wn+i/2 ,

ω(πi) + 2ω(π̄i) + 3ω(ai) + Wn+i/2 }
= max{ 12.5Wn+i + 2w3

i + 2, 12.5Wn+i + w3
i + 2}

= 12.5Wn+i + 2w3
i + 2 < 13.5Wn+i .

By systematically considering all possible configurations of the hotlinks
starting in pi and p̄i, we show that any but the open or closed configuration
results in a suboptimal hotlink assignment. In particular, A∗ is already
suboptimal when p(A∗|Tpi,A∗) ≥ 13.5Wn+i.

First, we address the case where the hotchild of pi is a node different from
ai, ri, πi, π̄i, or does not exist. One can easily show that then two of the three
leaves ai, πi, and π̄i have a distance of at least 3 from pi. This means that the
total path length to those leaves is at least 7 and thus p(A∗|Tpi,A∗) ≥ 14Wn+i.

If the hotchild of p̄i is any other node than ai, ri, πi, π̄i, or does not exist,
then one can show by similar arguments that the total path length to ai,
πi, and π̄i is at least 7, which contradicts the optimality of A∗ for the same
reason.

It remains to consider the cases with the hotchildren of pi and p̄i being
ai, ri, πi, or π̄i. If (pi, ri) ∈ A∗, then we have just shown that (p̄i, ai) ∈ A∗,
i.e. Pi is closed.

If (pi, πi) ∈ A∗ and (p̄i, ai) ∈ A∗, then the assignment can be improved
by at least 1 if we replace (p̄i, ai) with (p̄i, π̄i).

If (pi, π̄i) ∈ A∗, then the assignment can be improved by interchanging
the hotparents of πi and π̄i, or, if πi has no hotparent in A∗, by replacing
(pi, π̄i) with (pi, πi).

If (pi, ai) ∈ A∗ then, as we know that A∗ contains either (p̄i, ri), (p̄i, πi),
or (p̄i, π̄i), the assignment can be improved by interchanging the hotchildren
of pi and p̄i. �

Lemma 2.2 Let A∗ be an optimal hotlink assignment for T achieving a sur-
plus of at least β. Then, for each j = 1, . . . , n, Qj is either closed or open
and there is exactly one Pi or Qj′ that is open subject to j.

For proving this and another lemma we define a procedure with which
the basic assignment B can be transformed into an optimal assignment A∗.
Assume for a fixed j that Lemma 2.2 has already been proven for j′ > j, i.e.
for each j′ = j +1, . . . , n, Qj is either closed or open and there is exactly one
Pi or Qj′′ that is open subject to j′. The transformation proceeds as follows:
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2.7 Proof of Equivalence Complexity

(1) For j′ = n, . . . , j+1, let T i be the unique subtree containing hotchildren
of the unique Pi or Qj′′ that is open subject to j′ in A∗. Delete the
hotlink (p̄i, ai) or (q̄j′′ , bj′′) and develop Ti to j′. This switches Pi or
Qj′′ from closed to open, and Qj′ becomes closed.

(2a) For i = m. . . . , 1, if Pi is open subject to some j′′ in A∗ and has not been
switched to open in Step (1), delete the hotlink (p̄i, ai) and develop the
subtree T i to j′′. Observe that j′′ ≤ j.

(2b) For j′ = n, . . . , j + 1, if Qj′ is open in A∗ and has not been switched
to open in Step (1), let T i be the subtree containing hotchildren of Qj′

in A∗. Delete the hotlink (q̄j′, bj′). If Qj′ is open subject to some j′′ in
A∗, then develop T i to j′′ (it also holds here that j′′ ≤ j), otherwise
fully develop T i.

(3) Modify the outgoing hotlinks of qj and its descendant nodes such that
the resulting assignment is A∗.

Lemma 2.3 The transformation sequence described above is well-defined
and transforms B into A∗.

Proof. For j′ = n, . . . , j, let Aj′ be the temporary hotlink assignment
obtained after Step (1) has been iterated for index j′ + 1 and before it is
iterated for index j′. In particular, An equals B and Aj is the assignment
resulting from Step (1). We show the following invariants to hold:

I1: For each n ≥ j′′ > j′ ≥ j′′′ ≥ 1 where Qj′′ is open subject to j′′′ in A∗,
it holds that Qj′′ is closed in Aj′ and some T i is developed to j′′ in Aj′.

I2: For each n ≥ j′′ > j′, it holds that in Aj′ the hotchild of qj′′ belongs to
the same subtree T i as it does in A∗.

We use induction over decreasing values of j′ to prove both the invariants
and the soundness of Step (1). Clearly, the invariants hold for An = B.

Fix a j′ > j and assume that the invariants hold for Aj′. The precondition
of the lemma states that there is a unique Pi or Qj′′ that is open subject
to j′. In case of Pi, the fact that there is only one index Pi can be open
subject to implies that Pi is still closed and T i is undeveloped in Aj′, so
the transformation step from Aj′ to Aj′−1 is applicable. In case of Qj′′, the
applicability follows from I1.

Now we show that the invariants hold for Aj′−1. As Qj′ becomes closed
by the development to j′, it is easy to observe that I1 is established for
Aj′−1. For showing that I2 is established as well, it suffices to prove that
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2.7 Proof of Equivalence Complexity

after Step (1) has been applied for index j′, the hotchild of qj′ belongs to the
same subtree T i in Aj′−1 and A∗.

Let T i be the subtree containing the hotchild of qj′ in A∗. From the
precondition of the lemma we know that Qj′ is either closed or open in A∗.
It follows that dx

i = cj′ for some x ∈ {1, 2, 3}.
P i must be open in A∗, because if it were closed, then no descendant of

pi could have a hotchild in T i. If x = 3, then Pi is open subject to j′ in A∗,
so T i is developed to j′ in Step (1) and I2 follows.

Otherwise, Pi is open subject to some index j′′ > j′ in A∗. T i has been
developed to j′′ in a previous iteration of Step (1), so in Aj′ the node qj′′ has
a hotchild in T i. From the induction hypothesis regarding I2 we know that
the hotchild of qj′′ in A∗ also belongs to T i.

Therefore, we know that there is at least one index j′′ > j′ such that in
A∗ the hotchildren of j′ and j′′ are in the same subtree T i. Now consider
j′′ to be the smallest possible index satisfying that property. We know that
Qj′′ is either open or closed, but it must be open subject to some j′′′ because
otherwise a hotlink from qj′ into T i could not exist.

It is not possible that j′′′ > j′, as this would violate the minimality
property of j′′. It is either not possible that j′′′ < j′, because then there
could be no dx

i = cj′. So j′′′ = j′ must hold, i.e. Qj′′ is open subject to j′ in
both A∗ and Aj′.

From the induction hypothesis regarding I2 follows that the hotchild of
qj′′ belongs to T i also in Aj′, so Step (1) effectuates that the hotchild of qj′

belongs to T i in Aj′−1 as well. This proves I2 for Aj′−1.
Now the remaining claims of the lemma follow straightforwardly. After

Step (1) has been completed, the invariants hold for Aj . Therefore, Step
(2a) and (2b) are well-defined. Step (2) might result in some nodes from Q
having more than one hotchild, but this cannot be the case for Qj′, j′ > j.
After Step (2) has been applied, the open/closed status of the ancestor nodes
of qj is as in A∗, and, because of I2, the hotchildren also belong to the same
subtrees as in A∗. This means that also Step (3) is well-defined, as it suffices
in fact to modify only the hotlinks of qj and its descendants for obtaining
A∗. �

Proof of Lemma 2.2. We divide the lemma into three claims.

Claim 1: For j = 1, . . . , n, there is at least one Pi or Qj′ that is open
subject to j.

Claim 2: For j = 1, . . . , n, there is at most one Pi or Qj′ that is open
subject to j.
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2.7 Proof of Equivalence Complexity

Claim 3: For j = 1, . . . , n, Qj is either closed or open.

We prove the claims by induction over decreasing values of j. The argu-
mentation naturally includes the base case j = n. Fix a j and assume that
the lemma has already been shown for j′ > j. From Lemma 2.3 we know
that A∗ can be obtained from B by the above transformation procedure.

Claim 1: From the weight assignment follows that the surplus achieved
in Step (1) is exactly

n
∑

j′=j+1

3Wj′ .

After Step (2), the hotchildren of P and Qj′ , j′ > j, are already as in A∗.
If we assume for the sake of contradiction that no Pi or Qj′ is open subject

to j, then each pair of deletion and development in Step (2) improves the
assignment by at most 3Wj−1, so the total improvement of that step is at
most

(m + n) · 3Wj−1 < 3hWj−1 < 0.5Wj ,

as we have assumed that in the 3 Set Cover instance there is at least one
dx

i = cj , thus there are at least 3 nodes u with Wj−1 ≤ ω(u) < Wj in T , and
Equation 2.2 guarantees that their total weight is less than 1

2h
Wj .

The only leaf of weight greater than Wj whose path to is possibly affected
by Step (3) is bj . The path length to bj can only increase by one, which
happens if the hotlink (q̄j, bj) is replaced with (qj, bj). So the surplus achieved
in Step (3) is less than

2Wj + h
∑

v∈Lj−1

ω(v) < 2.5Wj .

Summing up the surplus terms results in a total surplus of A∗ strictly less
than 3

∑n
j′=1 Wj′, a contradiction.

Claim 2: Consider a Pi or Qj′ that is open subject to j in A∗. W. l. o. g.
we assume that it is Pi that is open subject to j. Let cj = dx

i in the X3C
instance. For deleting (p̄i.ai) and developing T i to j in Step (2), a reward of
3Wj is gained. Then, in Step (3), the hotlinks leading to ri, σx

i and σ̄x
i are

possibly reassigned.
In the following, we show that the hotchild of qj in A∗ must be a node from

T i. Claim 3 then follows from the fact that qj can only have one hotchild.
For contradiction, we assume that the hotchild of qj does not belong to T i

and show that this always causes A∗ to be suboptimal.
First, assume that also the hotchild of q̄j is neither ri, σx

i , nor σ̄x
i . Then

the total length of the paths to σx
i and σ̄x

i has increased by at least 3 in
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2.7 Proof of Equivalence Complexity

Step (3)1. This means that the weighted path length to those two leaves has
increased by more than 6Wj. The other leaves in T i affected by Step (3) are
all lighter than Wj and so the weighted path length to them has decreased
by at most Wj/2 in Step (3). Altogether, the weighted path length to the
leaves in T i has increased by at least 5.5Wj in Step (3), which is more than
the reward gained for developing Ti to j in Step (2). Therefore, one would
obtain a better assignment than A∗ by keeping Pi closed in Step (2).

We now know that a hotparent of bj can only be qj . But then, as both
σx

i and σ̄x
i are heavier than bj , A∗ would be improved by interchanging the

hotchildren of qj and q̄j.
Therefore, bj has no hotparent at all in A∗. The hotlink (p̄j, bj) must have

been deleted in Step (3), and so the length of the path to bj has increased
by one. As we still assume that the hotchild of qj does not belong to T i, the
total length of the paths to σx

i and σ̄x
i has increased by at least 1 during Step

(3). As the weight of bj , σx
i , and σ̄x

i is at least 2Wj each, the weighted path
length to those leaves has increased by at least 4Wj in Step (3). The other
leaves in T i affected by Step (3) are all lighter than Wj and so the weighted
path length to them has decreased by at most Wj/2 in that step. Altogether,
the weighted path length to the leaves in T i and bj has increased by at least
3.5Wj in Step (3), which is more than the reward gained for developing Ti

to j in Step (2). Therefore, one would obtain a better assignment than A∗

by keeping Pi closed in Step (2) and not deleting (p̄j , bj) in Step (3).
Claim 3: From Claim 1 and 2 we already know that there is a unique Pi

or Qj′ that is open subject to j in A∗, say w.l.o.g. Pi. Let cj = dx
i in the X3C

instance. Similar to the proof of Lemma 2.1, we consider the subtree Tqj ,A∗

and the partial assignment A∗|Tqj ,A∗ , which must be optimal for Tqj ,A∗ . The
only leaves heavier than Wj in that subtree are bj , σx

i , and σ̄x
i .

This is the same situation as in the proof of Lemma 2.1. With Wn+i, pi,
πi, π̄i, and ai respectively replaced with Wj , qj , σx

i , σ̄x
i , and bj , one can prove

that Qj not being closed or open leads to a contradiction to the optimality
of A∗. �

Lemma 2.4 There is a solution to the instance (C, D) of X3C if and only if
there is a hotlink assignment for the corresponding tree T achieving a surplus
of β.

Proof. “⇒”: Let D′ = Di1, . . . , Dik be a solution to (C, D), i.e. the elements
of D′ are pairwise disjoint. Equivalently, each element cj ∈ C is contained in
exactly one Di ∈ D′.

1For this to hold also in case of j=1 the extra nodes u1, u2 are required.
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2.7 Proof of Equivalence Complexity

Starting with the basic assignment B, we construct a suitable hotlink
assignment for T . For each Di ∈ D′, apply the following transformation: Let
d1

i = cj1 , d
2
i = cj2 and d3

i = cj3 . Delete the hotlink (p̄i, ai) and develop T i to
j3. Then, for x = 3, 2, delete the hotlink (q̄jx

, bjx
) and develop T i to jx−1.

Finally, delete (q̄j1 , bj1) and fully develop T i. This causes Pi, Qj3 , Qj2, and
Qj1 to be open.

During the transformation, a subtree is developed to each j = 1, . . . , n.
So for those developments, a surplus of

∑n
j=1 3Wj is gained. Furthermore, k

subtrees are fully developed, each time gaining an extra surplus of 1. There-
fore, the total surplus of the resulting hotlink assignment is exactly β.

“⇐” If a hotlink assignment A for T achieves a surplus of at least β,
then so does an optimal hotlink assignment A∗ for T . Therefore, due to
Lemma 2.2, each Pi and each Qj is either closed or open in A∗, and for each
j = 1, . . . , m there is exactly one Pi or Qj′ that is open subject to j.

Now we consider again the transformation procedure whose soundness
has been proven in Lemma 2.3. From to Lemma 2.2 follows that we can set
j = 0. Then A∗ already results from Step (1). As the surplus of A∗ is at
least β = 3

∑n
j=1 Wj + k, the procedure must include a development to j for

each j = 1, . . . , m and k times the step to the full development of a subtree.
Before a subtree T i can be fully developed, that subtree must have been

developed to three different indices j1, j2, j3. Moreover, these index sets of
fully developed subtrees have to be pairwise disjoint. Therefore, there are k
different subtrees having disjoint index sets. This corresponds to the exis-
tence of a solution to the X3C instance. �

We are now ready to prove the main theorem of this chapter.

Theorem 1 The Hotlink Assignment Decision Problem is NP-Complete.

Proof. The path length of any hotlink assignment can be calculated in
polynomial time, i.e. the problem is in NP.

In Section 2.2 and 2.5 we have given a construction method for a weighted
tree corresponding to an instance of 3-Set Cover, which is NP-hard [Kar72].
The construction can be performed in polynomial time. In particular, the
size of the corresponding tree is polynomial in the size of the X3C instance,
which has been shown in Section 2.6. Lemma 2.4 states that there is a
solution to the X3C instance if and only if there is a hotlink assignment for
the corresponding tree achieving a path length of p(B)−β, where β is given
in Equation 2.1, and B has been defined in the beginning of Subsection 2.3.

�
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2.8 Remarks Complexity

2.8 Remarks

In this chapter we have proven that the Hotlink Assignment Problem is NP-
hard. This holds true in the common model where hotlinks can end in any
node.

The intractability of the problem even remains under certain restrictions
concerning the sinks of hotlinks. Consider the case when hotlinks may only
end in nodes having only leaf children. If there is a solution to an X3C
instance, then the hotlink assignment proposed for the corresponding tree
in this chapter satisfies that restriction. If there is no solution to the X3C
instance, then no hotlink assignment achieves a surplus of β, which also
includes all feasible assignments in the restricted model.

On the other hand, we will see in the next chapter that optimal solutions
can be computed efficiently in the scenario where hotlinks may only end in
leaves.
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Chapter 3

Optimal Assignment of
Hotlinks Pointing to Leaves

In this chapter we consider a model where the solution space of feasible
hotlink assignments is limited by an additional constraint. In many scenarios
where hotlinks are actually used, they only point directly to leaves, i.e. to
the destination pages of users. Examples include product recommendations
of online stores, or suggestions of frequently used functions in large menus of
computer applications. The supposable reason for such a restriction is that
users would possibly be confused to end up on another navigation page or
sub-category after following a hotlink.

It turns out that under this restriction optimal solutions can be computed
in polynomial time. This is even possible when K is a function, i.e. the
maximum number of outgoing hotlinks is specified for each node individually.

This chapter is organized as follows: In Section 3.1 we formally define
the model. Our polynomial time algorithm is presented in Section 3.2. Sec-
tion 3.3 concludes.

3.1 Problem Definition

Let T = (V, E, ω) be a weighted tree rooted at r. Let L ⊆ V be the set of
leaves inside T . The weight function ω : L → IR+

0 assigns a non-negative
weight to each leaf. Furthermore, we are given a function K : V → IN0

specifying the maximum number of hotlinks that are allowed to start from
each node. We assume that K(v) ≤ |L| for any v ∈ V . Problem instances in
this chapter are given by a pair (T, K).

A hotlink assignment A ⊂ V × L is feasible, if |{(u, v) ∈ A}| ≤ K(u)
for each u ∈ V , and if it is feasible according to Definition 1.1. Note that
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3.2 A Polynomial Time Algorithm Hotlinks Pointing to Leaves

the impossibility of crossing hotlinks like shown in Figure 1.1 already follows
from the restriction concerning hotchildren.

The objective function is the path length as given in Section 1.2.4. As
here we are interested in the optimal solution, we could as well consider the
gain.

3.2 A Polynomial Time Algorithm

We develop a dynamic programming algorithm that is able to compute op-
timal hotlink assignments in polynomial time.

Definition 3.1 Given a problem instance (T, K) and a node v ∈ T , we
denote by K+v/K−v the function obtained from K by increasing/decreasing
the image of v by 1.

Assume that there is an efficient method PullUp for transforming an
optimal assignment A for (T, K) into an optimal assignment A+ for (T, K+r).
Then Algorithm 1 computes an optimal solution for any problem instance
(T, K), because assignment A0 is clearly optimal for (T, K ′), where K ′ is
obtained from K by setting the image of r to 0.

Algorithm 1: L-Opt (main idea)

Input: (T, K), a problem instance, where T is rooted at r
Output: A, a hotlink assignment for (T, K)

if T has a depth of less than 2 then1

A = ∅2

else3

A0 =
⋃

v∈ch(r) L-Opt(Tv)4

for i = 1, . . . , K(r) do5

Ai = PullUp(T, Ai−1)6

A = AK(r)
7

The remainder of this section is devoted to the development of the trans-
formation method PullUp. We start by proving two basic lemmas.

Lemma 3.1 Let A be an optimal hotlink assignment for some problem in-
stance. If (v1, l1), (v2, l2) ∈ A, v2 ∈ desc(v1), and l1 ∈ desc(v2), then
ω(l1) ≥ ω(l2).
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v

v1

v2

v3

l1

l3
l4

l2

Figure 3.1: When applying the transformation sequence (l1, l2, l3, l4), the
solid hotlinks are replaced with the dashed ones. Dotted lines represent tree
paths.

Proof. Assume ω(l1) < ω(l2). By swapping the hotchildren of v1 and v2,
we can improve the path length of A by dist(v1, v2)(ω(l2) − ω(l1)), which is
strictly positive. �

Lemma 3.2 Let A be optimal for (T, K) and let (v, l) ∈ A. Then A\{(v, l)}
is optimal for (T \ {l}, K−v).

Proof. If any A′ was better than A \ {(v, l)} for (T \ {l}, K−v), then A′ ∪
{(v, l)} would be better than A. As A is optimal, this is not possible. �

Definition 3.2 Let A be a hotlink assignment for (T, K). A transformation
sequence for A into K+v is a sequence of leaves (l1, . . . , lk), k ≥ 0, where li
has a hotparent vi ∈ anc(li+1) in A for 1 ≤ i ≤ k − 1.

Such a sequence represents the modification of A where all hotlinks point-
ing to l1, . . . , lk are replaced with (v, l1) and (vi, li+1) for 1 ≤ i ≤ k−1. In case
of k = 0, we speak of the empty transformation sequence, which represents
the identity.

The transformation sequence is optimal if the resulting hotlink assignment
is optimal for (T, K+v).

Figure 3.1 shows an example of the modification that can be described
by a transformation sequence.

Lemma 3.3 Let A be an optimal hotlink assignment for (T, K), and let
v ∈ T . There exists an optimal transformation sequence for A into K+v.
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Proof. We prove the lemma by induction over the number of leaves. If T
has only one leaf l1, an optimal assignment for (T, K+v) can be obtained by
the transformation sequence (l1) or the empty sequence.

Assume that the lemma holds for trees with n − 1 leaves and less. Let
T have n leaves and let A+ be an optimal assignment for (T, K+v). If v has
less than K(v) + 1 hotchildren in A+, then it is clear that A is also optimal
for (T, K+v).

Otherwise, there is a hotlink (v, l1) ∈ A+ with (v, l1) /∈ A. The leaf
l1 becomes the first component of our transformation sequence. Let T ′ =
T \ {l1}. We distinguish between two cases.

Case 1: l1 has no hotparent in A. Then A is also optimal for (T ′, K).
Thus, A is at least as good as A+ \ {(v, l1)} for (T ′, K). Let A′ be the result
of applying the transformation sequence (l1) to A, i.e. A′ = A∪{(v, l1)}. As
also A+ = (A+ \ {(v, l1)}) ∪ {(v, l1)}, A′ achieves at most the path length of
A+ for (T, K+v) and is therefore optimal.

Case 2: (v1, l1) ∈ A. Lemma 3.2 implies that A \ {(v1, l1)} is optimal
for (T ′, K−v1). From the induction hypothesis follows that there is a finite
transformation sequence (l2, . . . , lk) for A \ {v1, l1} into K, such that the
resulting hotlink assignment A′ is optimal for (T ′, K). Thus, A′ is at least as
good as A+ \ {(v, l1)} for (T ′, K). The assignment A′′ = A′∪{(v, l1)} can be
considered as the result of applying the transformation sequence (l1, . . . , lk)
to A. As A+ = (A+ \ {(v, l1)}) ∪ {(v, l1)}, A′′ is at least as good as A+ for
(T, K+v) and therefore optimal. �

Definition 3.3 Let (l1, . . . , lk) be a transformation sequence for A into K+v.
Let v0 = v and let vi be the hotparent of li for 1 ≤ i ≤ k − 1. We say that
the sequence is ordered, if vi ∈ desc(vi−1) for 1 ≤ i ≤ k − 1, and, in case of
lk having a hotparent vk in A, vk ∈ desc(vk−1).

The transformation sequence depicted in Figure 3.1 is ordered.

Lemma 3.4 Let A be an optimal hotlink assignment for (T, K). There is
an optimal ordered transformation sequence for A into K+r.

Proof. We show that any optimal transformation sequence for A into K+r

can be modified such that it is ordered and still optimal. We do this by
induction over the length of the sequence. For the basic case, the empty
sequence, there is nothing to show. For the induction step it suffices to show
that from any optimal sequence of length 1 or greater that is not ordered,
one component can be removed without increasing the path length of the
resulting assignment.
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Let (l1, . . . , lk) be an optimal transformation sequence for A into K+r,
and, for 1 ≤ i ≤ k, let vi be the hotparent of li in A (note that vk possibly
does not exist). If v1 violates the specification of ordered transformation
sequences, i.e. is no descendant of r, then v1 = r and we can remove l1 from
the sequence without affecting the resulting assignment.

Otherwise, let A+ be the hotlink assignment obtained from A by applying
(l1, . . . , lk). Assume that, for some m ≥ 1, lm+1 is the first component of the
sequence with vm+1 /∈ desc(vm) . As we know that vm ∈ desc(vm−1) and A+ is
optimal, Lemma 3.1 implies ω(lm) ≥ ω(lm+1). As vm+1 is no descendant of vm

and lm+1 ∈ desc(vm)∩desc(vm+1), either vm+1 = vm or vm+1 ∈ anc(vm) holds.
In the former case, lm+1 can be removed from the sequence without affecting
the resulting assignment. In the latter case, because of the optimality of A
and Lemma 3.1, ω(lm) ≤ ω(lm+1), i.e. ω(lm) = ω(lm+1). Then we can remove
lm from the sequence, increasing the path length of the resulting assignment
by

(

(dist(vm−1, lm)− 1) ω(lm) + (dist(vm, lm+1)− 1) ω(lm+1)
)

−
(

(dist(vm−1, lm+1)− 1) ω(lm+1) + (dist(vm, lm)− 1) ω(lm)
)

= ω(lm)
(

dist(vm−1, vm)− dist(vm−1, vm)
)

= 0 .

�

Theorem 2 Given an optimal hotlink assignment for (T, K), an optimal
assignment for (T, K+r) can be computed in polynomial time.

Proof. Let A be optimal for (T, K). From Lemma 3.4 follows that it suffices
to find an optimal ordered transformation sequence for A into K+r. We
describe the algorithm for solving that task in a recursive manner. Assumed
that (T, K) and A are fixed, the algorithm takes a node v ∈ T as the input,
and computes an optimal transformation sequence for A|Tv,A into K+v.

If Tv,A contains no leaves, this is the empty sequence. Otherwise, for each
leaf l in Tv,A the algorithm computes a best ordered transformation sequence
that starts with l. If l has no hotparent in A, then that sequence is (l). Else,
if (v′, l) ∈ A, the algorithm recursively computes an optimal transformation
sequence for A|Tv′,A into K+v′ and appends that sequence to l. For each leaf l,
the algorithm calculates the benefit (decrease in path length) s(v, l) caused
by the corresponding best sequence and returns the sequence maximizing
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that benefit. Formally,

s(v) =

{

max
l is a leaf in Tv,A

s(v, l) if Tv,A contains a leaf

0 otherwise ,
(3.1)

s(v, l) =

{

(

dist(l, v)− 1
)

ω(l) if l has no hotparent in A

dist(v′, v) ω(l) + s(v′) if l has a hotparent v′ in A .
(3.2)

As (T, K) and A are fixed, a table containing all possible values of s(v)
and the corresponding transformation sequences has linear size. At most |V |
different possibilities have to be compared during the computation of any
table entry, so the table can be built in quadratic time.

We formally prove the correctness of the algorithm by induction over the
number of leaves in Tv,A. The base case is obvious, and for the induction
step it suffices to show that Equation 3.2 is correct. The case of l having
no hotparent in A is clear. Otherwise, by the induction hypothesis, an op-
timal ordered transformation sequence for A|Tv′,A into K+v′ is computed by
the recursive call. Let A+ be the assignment resulting from applying that
sequence to A|Tv′,A. From Lemma 3.2 follows that A+|(Tv′,A \{l}) is optimal
for (Tv′,A \ {l}, K).

Let T ′
v′,A = Tv′,A \ {l}. Observe that any transformation sequence for

A|Tv,A into K+v that starts with l, besides adding (v, l), only affects A|T ′
v′,A.

Thus, the corresponding resulting assignment A′ can be partitioned into
A′ = {(v, l)} ∪ (A|Tv,A \ A|Tv′,A) ∪ A′|(T ′

v′,A). As the weighted path length
to the leaves in T ′

v′,A is dist(v, v′) + p(A′|T ′
v′,A, T ′

v′,A), the overall path length
p(A′, Tv,A) is minimized when p(A′|T ′

v′,A, T ′
v′,A) is minimized. This is guar-

anteed by A′|T ′
v′,A being equal to A+|Tv′,A \ {l}, which is achieved by the

transformation sequence selected by the algorithm. �

We postpone a detailed pseudo-code description of PullUp to Chap-
ter 5.1.8, where some improvements addressing the runtime will be proposed.

Corollary 3.1 An optimal solution to any problem instance (T, K) can be
computed in polynomial time.

Proof. Let T = (V, E). Straightforward observation shows the correctness
of Algorithm 1. During its execution, the number of recursive calls of L-Opt
is at most |V |, and there are at most

∑

v∈V K(v) ≤ |V |2 calls of PullUp.
The latter procedure has quadratic runtime, so the overall runtime of L-Opt
is O(|V |4). �
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3.3 Remarks

In this chapter we have seen that the model of hotlinks pointing only to
leaves is computationally tractable. We will see in Chapter 5 that L-Opt
can be implemented such that on typical tree instances it is one of the fastest
hotlink assignment methods. Moreover, the solutions are comparable to the
best assignments of hotlinks that can point to arbitrary nodes.

We have assumed that only the leaves of a tree have non-zero weights.
Without that assumption, we believe that the restriction of hotchildren to
leaves is not sensible. Alternatively, one could assume that users only follow
hotlinks that lead directly to their destination node. That scenario can easily
be simulated by our model, namely, by relocating the weight of each internal
node v to an additional leaf sibling of v.
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Chapter 4

Approximation Algorithms

In this chapter we readdress the original Hotlink Assignment Problem, where
hotlinks can start and end anywhere in the tree. From the hardness result in
Chapter 2 follows that optimal solutions cannot be computed in reasonable
worst case time unless P=NP.

Therefore, we address the task of developing polynomial time algorithms
having at least constant approximation ratios. We present two constant
factor approximations and one PTAS, and thus substantially improve upon
the best approximation factors previously known for both the path length
and the gain.

This chapter is organized as follows: In Section 4.1, some additional nota-
tion is introduced. The analyses of our algorithms are based on an analytical
tool set consisting of three operations for hotlink modification. These op-
erations are given in Section 4.2. The approximation algorithms are then
presented in the following three sections. Section 4.6 concludes the chapter.

4.1 Notation

We introduce a number of notational concepts that facilitate the description
and analysis of the approximation algorithms.

In this chapter, unless otherwise stated, we assume that the maximum
number of outgoing hotlinks is some constant K. Furthermore, we consider
the model where any tree node can carry a non-zero weight.

The cumulated weight of a node u is obtained by summing up the weights
of all nodes v where u is located on the greedy user’s path from r to v.
Formally,

W A(u) =
∑

v∈Tu,A

ω(v) . (4.1)

50



4.2 Basic Operations Approximation Algorithms

The cumulated weights have a natural interpretation when ω constitutes an
access probability distribution. Regarding the hotlink assignment A, W A(u)
is the probability with which node u is traversed. Note that W A(u) indeed
depends on A. We abbreviate W ∅ with W .

Now, the gain of a hotlink assignment A can be reformulated as the sum
over the path shortening contributions of its hotlinks, i.e.

g(A) =
∑

(u,v)∈A

W A(v)(dist∅(u, v)− 1) . (4.2)

The gain of a single hotlink (u, v) ∈ A is defined as gA(u, v) = (dist((u, v)−
1) ·W A(v). Intuitively, the gain of a hotlink is the number of bypassed nodes
times the total weight of the nodes affected by the hotlink. We abbreviate
g∅(u, v) by g(u, v).

Lemma 4.1 Let A = A1∪̇A2 be a partition of a feasible hotlink assignment.
Then g(A) ≤ g(A1) + g(A2).

Proof. As A1 ⊆ A, Tu,A is completely contained in Tu,A1 for any u ∈ T .
Therefore, W A(u) ≤ W A1(u) due to Equation 4.1. Analogously, W A(u) ≤
W A2(u).

According to Definition 1.1, each node in T has only one hotparent in A.
This implies that the sets of nodes that are reached by hotlinks from A1 and
A2 are disjunctive, and

g(A) =
∑

(u,v)∈A

W A(v)(dist(u, v)− 1)

=
∑

(u,v)∈A1

W A(v)(dist(u, v)− 1) +
∑

(u,v)∈A2

W A(v)(dist(u, v)− 1)

≤
∑

(u,v)∈A1

W A1(v)(dist(u, v)− 1) +
∑

(u,v)∈A2

W A2(v)(dist(u, v)− 1)

=g(A1) + g(A2) .

�

4.2 Basic Operations

In this section we introduce an analytical tool set consisting of three basic
operations for the modification of hotlink assignments. Note that none of
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these operations is actually applied by any algorithm given in the thesis. We
require them however for the performance analyses in this chapter.

Typically, we show that an optimal hotlink assignment Opt(T ) can be
transformed into the assignment Alg(T ) computed by the algorithm Alg.
The transformation can be expressed in terms of those basic operations,
making it easier to prove that the solution quality deteriorates only by a
certain factor.

In the following, we assume T and A to be fixed. The first operation
aims to get rid of all hotlinks starting in a certain node: After applying
PushDown(u) to A, the node u is guaranteed to have no hotchild.

PushDown(u)

if u has a hotchild in A then1

U ← {v ∈ ch(u) | ∃(u, v′) ∈ A : v′ ∈ {v} ∪ desc(v)}2

forall v ∈ U do3

PushDown(v)4

forall (u, v′) ∈ A with v′ ∈ {v} ∪ desc(v) do5

replace (u, v′) with (v, v′)6

delete any self-loop from A7

Lemma 4.2 Operation PushDown(u) causes a decrease in gain of at most
W A(u). If K = 1, then PushDown(u) causes a decrease in gain of at most
W A\{(u,v′)}(v), where v′ is the hotchild of u in A and v ∈ ch(u) ∩ anc(v′).

Proof. We prove the lemma by induction over the depth of the tree. For
trees of depth 1 or less there is nothing to show. For the induction step, let
us assume that T has a depth of n, and let A′ be the hotlink assignment that
results from the application of PushDown(u) to A. If A assigns no hotchild
to u then A′ = A, and no decrease in gain occurs.

Otherwise, let U be the set computed in Line 2 of the operation, and let
v1, . . . , vK ′ be the hotchildren of u in A.

By the induction hypothesis, Line 4 causes a total decrease in gain of at
most

∑

v∈U

W A(v) ≤ W A(u)−
K ′

∑

j=1

W A(vj) .

Due to Line 6, the gain decreases by

K ′

∑

j=1

W A(vj) .
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Summing up both kinds of losses gives a maximum total decrease in gain
of W A(u).

We now consider the case of K = 1. By the induction hypothesis, Line 4
decreases the gain by at most W A(v). Line 6 costs W A(v′), so the total loss
is not more than W A\{(u,v′)}(v). �

A convenient property of the clairvoyant user model is that hotlinks can
arbitrarily be added to an existing assignment without decreasing the gain.
This property does not directly carry over to the greedy user model, as here
the feasibility constraint could be violated.

However, with the help of FreeInsert, it is possible to insert a new
hotlink (u, v) into an assignment whenever v ∈ Tu,A. The operation makes a
number of further adjustments such that both the feasibility and the gain is
preserved.

FreeInsert(u, v)

Precondition: v ∈ Tu,A

(u, u1, . . . , un, v)← the path from u to v1

uf(1), . . . , uf(m) ← nodes having a hotchild in Tv, where f is decreasing2

for i = 1,. . . ,m do3

PushDown(v)4

foreach hotchild v′ of uf(i) with v′ ∈ Tv do5

replace hotlink (uf(i), v
′) with (v, v′)6

insert hotlink (u, v)7

Lemma 4.3 No decrease in gain occurs when applying FreeInsert.

Proof. We adopt the definitions from Line 1 and 2 of FreeInsert. For
1 ≤ i ≤ m, let

wi =
∑

(uf(i),v′)∈A,v′∈Tv

W A(v′)

be the sum of the cumulated weights of uf(i)’s hotchildren in Tv. Let P =
{u, u1, . . . , un, v}, let b be the number of nodes in P that a bypassed by some
hotlink that both starts and ends in P . For 1 ≤ i ≤ m, let bi be the number
of such nodes that are descendants of uf(i).

After the ith iteration of outer loop, the cumulated weight of v is

W A(v) +

i
∑

j=1

wj .
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Thus, in the ith iteration we loose a maximum amount of gain of

(

W A(v) +
i−1
∑

j=1

wj

)

+ (n− f(i) + 1− bi)wi .

The first summand accounts for Line 4, while the second summand accounts
for Line 5 and 6. Summing up for 1 ≤ i ≤ m gives a total loss of at most

m
∑

i=1

(

W A(v) +

i−1
∑

j=1

wj +
(

n− (f(i)− 1)− bi

)

wi

)

= mW A(v) +
m

∑

i=1

(m− i) · wi +
m

∑

i=1

(

n−
(

f(i)− 1
)

− bi

)

wi .

Because of the feasibility condition, m ≤ n− b. Regarding A, (m− i) is the
number of nodes in P ∩anc(vf(i)) having hotchildren in Tv, and (b− bi) is the
number of nodes bypassed by hotlinks from

(

P ∩anc(vf(i))
)

×
(

P ∩anc(vf(i))
)

.
So, |P ∩ anc(vf(i))| = f(i)− 1 ≥ (m− i) + (b− bi). Thus, the loss term can
be bounded above by

(n− b)
(

W A(v) +

m
∑

i=1

wi

)

,

which is exactly the increase in gain achieved by Line 7 of FreeInsert. �

The third and last operation splits a hotlink (u, v) into two hotlinks (u, v′)
and (v′, v). Like the other operations, some further adjustments are made to
the assignment in order to preserve feasibility and bound the gain loss.

Split(u, v′, v)

Precondition: (u, v) ∈ A, v′ ∈ desc(u) ∩ anc(v)

FreeInsert(u, v′)1

PushDown(v′)2

replace hotlink (u, v) with (v′, v)3

Lemma 4.4 Let A′ be the hotlink assignment obtained from A by the appli-
cation of Split(u, v′, v). Then g(A)− g(A′) ≤W A′

(v′).
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operation precondition effect maximum cost

PushDown(u) - u has no K-HLA: W A(u)

hotchild 1-HLA: W A′

(v)

FreeInsert(u, v) v ∈ Tu,A (u, v) ∈ A′ 0

Split(u, v′, v) (u, v) ∈ A (u, v) /∈ A′ W A′

(v′)
v′ ∈ desc(u) ∩ anc(v) (u, v′) ∈ A′

(v′, v) ∈ A′

Table 4.1: Overview of the operations introduced in Section 4.2. A and A′

represent the assignment before and after applying the operation.

Proof. Let A1 be the HLA that results from applying FreeInsert(u, v′),
and let A2 be the assignment obtained after applying PushDown(v′). From
Lemma 4.2 and 4.3 follows that g(A) ≤ g(A1) ≤ g(A2) + W A1

(v′) = g(A′) +
W A2

(v) + W A2
(v′) = g(A′) + W A′

(v′). �

It is straightforward to observe that PushDown, FreeInsert, and
Split preserve the feasibility of A, and the resulting hotlink assignment
is still a K-HLA. Table 4.1 summarizes the characteristics of the operations.

4.3 A Natural Greedy Strategy

In this section we analyze a natural greedy strategy Greedy for the K-
Hotlink Assignment Problem.

Greedy-like hotlink assignment methods have been proposed before. In
[CKK+01], different greedy algorithms are compared experimentally. One
of those algorithms is also studied experimentally in [KKM02]. A greedy
algorithm for the clairvoyant user model has been proved in [MP03] to be a
2-approximation in terms of the gain.

The description of a greedy strategy called greedyBFS in [GKL+07] corre-
sponds to the version we consider in Algorithm 2. Nevertheless, our version
is more general as it is applicable for the K-Hotlink Assignment Problem.

Line 5 of Algorithm 2 corresponds to solving the Bookmark Assignment
Problem, where K ′ hotlinks starting in the root have to be chosen so as
to maximize the gain. An optimal set of bookmarks can be computed in
polynomial time (cf. Chapter 1.4.1).

4.3.1 Upper Bound

Theorem 3 GR holds an approximation ratio of 2 in terms of the gain.

55



4.3 A Natural Greedy Strategy Approximation Algorithms

Algorithm 2: Greedy

Input: T = (V, E, ω), a weighted tree rooted at r
Output: A, a hotlink assignment for T

if T has a depth of less than 2 then1

A = ∅2

else3

K ′ ← min{K, |V | − 1}4

V ′ ← arg maxU⊂V,|U |=K ′ g({(r, v′) | v′ ∈ U})5

A← {(r, v′) | v′ ∈ V ′}6

foreach T ′ ∈ {Tv \V ′ | v ∈ ch(r)} ∪ {Tv′ \ (V ′ \ {v′}) | v′ ∈ V ′} do7

A← A ∪Greedy(T ′)8

Proof. We prove the claim by induction over the tree depth. For trees
of depth 1 or less there is nothing to show. Assume that the theorem has
already been proven for trees of depth less than n and let T have a depth
of n. Let A∗ be optimal for T and let AGreedy be the assignment computed
by Greedy. Let further V ∗ be the set of r’s hotchildren in A∗. We obtain
A1 from A∗ by deleting all hotlinks starting in r. Let V ′ be the set of
hotchildren that are chosen at Line 5 of Algorithm 2. We obtain A2 from
A1 by applying FreeInsert(r, v) for all v ∈ V ′. Consider the partition
R = {Tv \ V ′ | v ∈ ch(r)} ∪ {Tv′ \ (V ′ \ {v′}) | v′ ∈ V ′} of T . We obtain
AGreedy from A2 by deleting all hotlinks from A2|T ′ and applying Greedy
to T ′ for each T ′ ∈ R. Applying Lemma 4.1, 4.3, and the greedy criterion,
we can upper bound the gain of A∗ by

g(A∗) ≤ g({(r, v) | v ∈ V ∗}) + g(A1) ≤ g({(r, v) | v ∈ V ∗}) + g(A2)

= g({(r, v) | v ∈ V ∗}) + g({(r, v′) | v′ ∈ V ′}) +
∑

T ′∈R

g(A2|T ′, T ′)

≤ 2g({(r, v) | v ∈ V ′}) + 2
∑

T ′∈R

g(AGreedy|T ′, T ′) = 2g(AGreedy) .

�

4.3.2 Lower Bounds

The instance depicted in Figure 4.1 shows that, concerning the gain, the
approximation ratio of Greedy is not better than 2. With K = 1, the
optimal assignment achieves a gain of 2n−1, while the gain of Greedy is n.
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. . . n

OPT-hotlink

1

n − 1

Greedy-hotlink

Figure 4.1: Greedy holds no better approximation ratio than 2.
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Figure 4.2: Greedy holds no constant approximation ratio in terms of the
path length.
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The instance illustrated in Figure 4.2 shows that Greedy holds no con-
stant approximation ratio in terms of the path length. For n≫ m and K = 1,
Greedy assigns the hotlinks {(ui, vi)|1 ≤ i ≤ m}. The path length is

m + 1 +
m

∑

i=1

i · m
n

= m + 1 +
O(m3)

2n
.

A better assignment is {(u1, v)}∪{(ui, vi−1|2 ≤ i ≤ m}∪{(x, vm)}, achieving
a path length of

1 +

m+1
∑

i=2

i
m

n
= 1− m

n
+

O(m3)

2n
.

For n≫ m the ratio between Greedy and the better assignment is m.

4.4 An Approximation Scheme for the Gain

In this section we present an approximation scheme in terms of the gain for
the K-Hotlink Assignment Problem. In [MP07], Matichin and Peleg show
that restricting hotlinks to a length of 2 at most halves the possible gain.
They give an algorithm that computes an optimal length 2 hotlink assignment
and, therefore, is a 2-approximation. From an abstract point of view, our
approach can be interpreted as a generalization of theirs. However, both our
proof technique and our algorithmic idea are completely different.

4.4.1 Length Restricted Hotlink Assignment

Let the length of a hotlink (u, v) be defined as dist(u, v). We prove that at
most a fraction of 1

h
of the possible gain must be sacrificed when restricting

hotlinks to a maximum length of h.

Lemma 4.5 For any tree T and integer h > 1, there is a hotlink assignment
Ah for T with dist(u, v) ≤ h for each (u, v) ∈ Ah and h

h−1
g(Ah) ≥ g(A∗),

where A∗ is an optimal HLA for T .

Proof. We prove the claim by induction over the tree depth. For trees
having a depth of h and less, there is nothing to show. For a fixed n > h,
assume that T has a depth of n and that the lemma has already been proven
for trees of depth less than n. Let V1 = {v ∈ V | (r, v) ∈ A∗, dist(r, v) > h},
V2 = {v ∈ V | (r, v) ∈ A∗, dist(r, v) ≤ h}, and let U = {v′ ∈ V | dist(r, v′) =
h, desc(v′) ∩ V1 6= ∅}.
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For each v′ ∈ U we apply Split(r, v′, v) for some v ∈ V1 ∩ desc(u). From
the definition of Split follows that this causes v′ to have only one hotchild.
So for any v′′ ∈ desc(v′) ∩ (V1 \ {v}), we can replace (r, v′′) with (v′, v′′) and
still have a K-HLA. We denote the resulting hotlink assignment as A′.

Let V ′ = U ∪ V2 and consider the partition R =
(
⋃

v∈ch(r) Tv \ V ′
)

∪
(
⋃

v∈V ′ Tv \ (V ′ \ {v})
)

. We obtain Ah from A′ by, for each T ′ ∈ R, replacing
A′|T ′ with an optimal length h hotlink assignment Ah|T ′. Clearly, Ah is a
length h assignment. Its gain is bounded below by the following inequation:

g(A∗) ≤
∑

v′∈U

W (v′) + g(A′)

=
∑

v′∈U

W (v′) + g({(r, v) | v ∈ V ′}) +
∑

T ′∈R

g(A′|T ′, T ′)

≤ 1

h− 1
g({(r, v′) | v′ ∈ U}) + g({(r, v) | v ∈ V ′}) +

∑

T ′∈R

h

h− 1
g(Ah|T ′, T ′)

≤ h

h− 1
g({(r, v) | v ∈ V ′}) +

h

h− 1

∑

T ′∈R

g(Ah|T ′, T ′) =
h

h− 1
g(Ah) .

�

4.4.2 Algorithm Lpath

Now we show how to efficiently compute optimal length-restricted hotlink
assignments. The PATH algorithm presented in [PLdS04a] computes an
optimal hotlink assignment A that satisfies distA(r, u) ≤ h for any node u.
We give a modified version Lpath which computes an optimal K-HLA A
under the restriction that distA\{(u,v)}(u, v) ≤ h for any (u, v) ∈ A. Since
the latter restriction is weaker than demanding dist∅(u, v) ≤ h, the HLA
computed by Lpath is at least as good as any K-assignment of hotlinks of
maximum length h. Thus, Lemma 4.5 implies an approximation ratio of h

h−1
.

We begin by fixing some arbitrary order “≻” among the nodes of T . The
successor sibling succ(u) of a node u is the sibling v of u with u ≻ v and
v ≻ v′ for any other sibling v′ with u ≻ v′. The first child fc(u) of a node u
is the unique child v of u having no sibling v′ ≻ v.

Here we employ a slightly different view of the gain. In Equation 4.2, the
gain of a single hotlink (u, v) ∈ A depends on A in the sense that W A(u)
might be less than W (u). In the description of Lpath below, we consider
the equivalent formula

g(A) =
∑

(u,v)∈A

W (v)(distA\{(u,v)}(u, v)− 1) , (4.3)
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so here the gain of a single hotlink (u, v) ∈ A depends on A in the sense that
other hotlinks might already shorten the path between u and v. Remark that
these other hotlinks must be contained in desc(u) ∩ anc(v).

The main algorithmic idea is to determine the concrete hotchildren of the
nodes as late as possible. Assume that we are given a subtree T ′ together
with a number of hotlinks that start outside that subtree and have already
been decided to end somewhere in T ′. One of these hotlinks could end in
the root r′ of T ′. For each of the others, we only decide whether or not they
point into the subtree rooted at the first child of r′.

Formally, subproblems are given by a triple (a, b, v). The first component
a = (a1, . . . , an, an+1) ∈ {0, . . . , K}n+1 is a (K + 1)-ary vector, b ∈ {0, 1},
and v 6= r is a node in T . Such a triple represents the problem of computing
an optimal assignment for the tree T n,v, which is defined as follows: Let
r′ = par(v), and let T v = Tr′ \{v′ ∈ ch(r′) | v′ ≻ v} be the maximum subtree
of T such that v is the first child of the root of T ′. T n,v is obtained by
appending T v to a path q1 → . . .→ qn of length n via the edge (qn, r

′). The
vector a represents a number of restrictions concerning hotlink assignments
for T n,v. No path node qi is allowed to be a hotchild, and at most ai hotlinks
are allowed to start in qi. Furthermore, r′ is allowed to have at most an+1

hotchildren and may have a hotparent only if b = 1. The original problem is
given by ((K), 0, fc(r)).

We proceed describing how Lpath computes an optimal HLA for (a, b, v)
(cf. Figure 4.3). The algorithm considers two main possibilities. The first
possibility only exists if b = 1.

Case I: There is a hotlink that ends in r′. The hotparent of r′ is some
node qi with ai ≥ 1. Due to the impossibility of crossing hotlinks, there
can be no reasonable hotlink starting in any qj with j > i. In terms of
Equation 4.3, the distance between qj and v is reduced by (dist(qi, r

′) − 1).
Consequently, the path nodes qi+1, . . . , qn can be deleted. The gain of an
optimal assignment for (a, b, v) is calculated by

g̃I(a, b, v) = max
ai≥1
{(n− i) ·W (r′) + g̃((a1, . . . , ai−1, ai − 1, an+1), 0, v)} .

Case II: No hotlink ends in r′. The hotchildren of r′ and any qi must be
either in Tv or T v \ {v} = T succ(v). The algorithm has to distinguish between
four sub-cases.
Case IIa: The node v is a leaf and has no sibling in T v. Then the best
assignment consists of only one hotlink, and

g̃II(a, b, v) =

{

(n−min{i | ai ≥ 0}+ 1)ω(v) ∃i : ai ≥ 1
0 otherwise

.
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Case IIb: The node v is an internal node and has no sibling in T v. Then

g̃II(a, b, v) = g̃((a1, . . . , an+1, K), 1, fc(v)) .

Case IIc: The node v is a leaf and has a sibling in T v. For 1 ≤ i ≤ n + 1,
let ai− be the vector obtained from a by decrementing the ith component.
Then

g̃II(a, b, v) = max( {g̃(a, 0, succ(v))}∪
{(n− i + 1)W (v) + g̃

(

(ai−, 0, succ(v)
)

} | ai ≥ 1} ) .

Case IId: The node v is an internal node and has a sibling in T v. We use a
vector c ∈ {0, . . . , K}n+1 to describe the distribution of hotchildren among
the two subtrees Tv and T succ(v). The set C contains all feasible vectors for
the subproblem, i.e. C = {c ∈ {0, . . . , K}n+1 | ci ≤ ai for 1 ≤ i ≤ n + 1}.
The gain of an optimal assignment is calculated by

g̃II(a, b, v) = max
c∈C
{g̃((c1, . . . , cn+1, K), 1, fc(v)) +

g̃((ai − c1, . . . , an+1 − cn+1), 0, succ(v))} .

As we want to bound the relative length of hotlinks to h, we cut off the
first n − h components of a whenever n > h. This constitutes the only
difference between PATH and Lpath, as PATH would set the gain to −∞
in case of n > h.

Observe that in Case IIa and IIc a length h + 1 hotlink leading to v is
possibly assigned. This could be prevented by explicitly excluding q1 from
the set of possible hotparents for v. However, by allowing q1 to be selected
as the hotparent of v, the solution quality can only be improved.

The main formula used by Lpath for calculating the gain of an optimal
HLA for the subproblem (a, b, v) is

g̃(a, b, v) =







g̃((an−h+1, . . . , an+1), b, v) if n > h
g̃II(a, b, v) if b = 0
max{g̃I(a, b, v), g̃II(a, b, v)} otherwise .

(4.4)

We postpone a pseudo-code description of Lpath to Chapter 5, where
some practical improvements will be discussed.
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r = 1

r = 0

...... ...

r = 0 r = 1

Figure 4.3: Computation scheme of Lpath for K = 1. Only white path nodes
are allowed to have a hotchild (i.e. ai = 1 for the corresponding component
of a). From the subproblem depicted in the middle, the set of dashed hotlinks
leads to the subproblems on the right, while the solid hotlink would lead to
the subproblem on the left.

4.4.3 Resource Requirements

Lpath employs dynamic programming, maintaining a table which stores
g̃(a, b, v) and the corresponding selection of hotlinks for each configuration
of (a, b, v). Thus, the memory requirements are O(|V |(K + 1)h).

For the runtime analysis we have to sum up the number of possibilities
that are compared for each subproblem. For Case II, the most comparisons
are clearly performed in Case IId, and this number dominates the Case I
comparisons. So in our calculation we neglect Case I and assume that Case
IId applies to each node in V . For each v ∈ V , we have the runtime

∑

a∈{0,...,K}h+1

h+1
∏

i=1

(ai + 1) =

K+1
∑

a1=1

a1

K+1
∑

a2=1

a2 . . .

K+1
∑

ah+1=1

ah+1

=

(

(K + 2)(K + 1)

2

)h+1

.

Therefore, the total runtime is O(|V |(1
2
(K + 2)(K + 1))h). For K = 1, the

runtime is O(|V |3h).

Theorem 4 For any ǫ > 0, Lpath computes a (1 + ǫ)-approximation in

time O(|V |(1
2
(K + 2)(K + 1))

1
ǫ ) and space O(|V |(K + 1)

1
ǫ ).

Proof. For a given ǫ > 0, choose h such that h
h−1
≤ 1 + ǫ < h−1

h−2
. Accord-

ing to Lemma 4.5, the left inequality implies that Lpath with parameter h
guarantees an approximation ratio of (1 + ǫ).
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For the runtime and memory analysis we assume (1+ǫ) = h−1
h−2

, as a smaller ǫ

only implies weaker runtime and memory demands. Thus, h = 2+ 1
ǫ

and the

runtime of Lpath is in O(|V |(1
2
(K + 1)(K + 2))2+ 1

ǫ ) = O(|V |(1
2
(K + 1)(K +

2))
1
ǫ ), while the algorithm uses O(|V |K 1

ǫ ) space. �

4.4.4 Lower Bounds

Assignments of hotlinks having a maximum length of h cannot generally
achieve more than (h − 1)/h of the optimal assignment’s gain, and they do
not hold a constant approximation ratio in term of the path length. These
propositions are easy to observe considering a path of sufficient length.

However, as Lpath considers all hotlink assignments satisfying a weaker
restriction, it is not clear if the ratio of h/(h − 1) is a tight bound for the
gain of that algorithm. But considering a very long path it is still possible to
argue that Lpath is no constant factor approximation in terms of the path
length.

Proposition 4.1 Lpath is no constant factor approximation algorithm in
terms of the path length.

Proof. Let T = v1 → . . . → vm → l with ω(l) = 1 and ω(vi) = 0 for
1 ≤ i ≤ m be our counter-example. The optimal hotlink assignment for T
achieves a path length of 1. In order to have an approximation factor of c,
the greedy user’s path from v1 to l must contain at most c hotlinks. So all we
have to show is that the length of any hotlink assigned by Lpath is bounded
above.

Throughout the proof we drop the employment of dynamic programming
in Lpath, i.e. we assume that no solutions to subproblems are stored and
reused. This does not influence the computed solutions, but it makes the
analysis more intuitive.

In the original description of the PATH algorithm in [PLdS04a], subprob-
lems are not only determined by (a, b, v), but also by a path q = q1, . . . , qn.
That path contains the nodes the selected hotchildren are actually assigned
to. While this notation makes the algorithm more intuitive, it is not neces-
sary to carry q along, because the solution to the subproblem only depends
on (a, b, v). Nevertheless, we assume in this proof that q is carried along.
This does not alter the computed solution, but it makes it easier to identify
the nodes which are represented by the components of a.

Due to the structure of T , Lpath can only choose between Case I and
Case IIb. In both of these cases only one further subproblem has to be con-
sidered. This means that the computation of an assignment can be regarded
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as a linear sequence of subproblems. During such a sequence, after a node
has left q (because it has been cut off from q or because it has been bypassed
by a hotlink ), it will never enter q again. Moreover, as Lpath never assigns
a hotlink that ends in a component of q, that path constitutes the greedy
user path from q1 to qn in the assignment computed by Lpath.

Let (u, v) be a hotlink assigned by Lpath. From the point of time when u
enters q until the time when (u, v) is assigned, u must remain in q. Between
these two points of time, every node between u and v is entering q. The
fact that the length of q never exceeds h implies that the greedy user path
from u to any node between u and v has a length of at most h in the final
assignment.

The unification of the user paths from u to the nodes in desc(u)∩ anc(v)
results in a tree which contains all nodes bypassed by (u, v). The degree of
that tree is at most K + 1, and its depth is at most h, so the number of
bypassed nodes is bounded above by O((K + 1)h). �

4.5 A 2-Approximation for the Path Length

In this section we develop the first constant factor approximation in terms
of the path length for the 1-Hotlink Assignment Problem. We give a lower
bound pmin for the path length of any hotlink assignment. Then we show that
pmin is an upper bound for the detriment induced by restricting our attention
to hotlink assignments that satisfy the centipede property (see Definition 4.2).
Finally, we give a polynomial time algorithm for computing optimal centipede
assignments.

Throughout this section, we denote the set of leaves of T by L.

4.5.1 A Lower Bound for the Path Length

Definition 4.1 The function pmin is defined as

pmin(T ) =
∑

v∈V \{r}

W (v)−
∑

v∈V \L

max
v′∈ch(v)

W (v′) .

Intuitively, pmin is the sum over the cumulated weights of all nodes having a
heavier sibling.

Lemma 4.6 pmin(T ) is a lower bound for the path length that any 1-hotlink
assignment can achieve.
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Proof. Let A be a hotlink assignment for T . By applying PushDown
to every internal node of T in BFS-order, due to Lemma 4.2 we increase
the path length by at most

∑

v∈V \L maxv′∈ch(v) W (v′). We obtain the empty

assignment, which has a path length of
∑

v∈V \{r} W (v). Thus, the path

length of A is at least pmin(T ). �

4.5.2 Centipede Hotlink Assignments and Trees

Definition 4.2 A hotlink assignment A satisfies the centipede property, if
and only if

(u, v) ∈ A, u′ ∈ desc(u) ∩ anc(v)⇒ u′ ≻ u′′ ∀ siblings u′′ of u′ ,

where ”≻” is some fixed total order of the children of a node with W (u′) >
W (u′′)⇒ u′ ≻ u′′.

Intuitively, in a centipede hotlink assignment, no node having a heavier
sibling is bypassed by a hotlink. Ties are broken by fixing a suitable order
“≻”. Note that in this section “≻” has to satisfy stronger constraints than
in Section 4.4.

Lemma 4.7 For any weighted tree T there exists a hotlink assignment Ac

satisfying the centipede property with p(Ac) ≤ 2 · p(A) for any assignment A.

Proof. We show how to transform any hotlink assignment A into a centipede
assignment Ac while increasing the path length by at most the factor 2. Fix
some order “≻” satisfying the property demanded in Definition 4.2. We
show the claim by induction over the tree depth. For trees of depth 1 or
less, there is nothing to show. Assume that T has a depth of n and assume
that the lemma has already been shown for trees having a depth of less than
n. Let r be the root of T and let u be the first child of r with respect to
“≻”. Furthermore, let v be the node closest to r that is bypassed by the
hotlink starting in r and is not the first child of its parent. If v is a sibling
of u, then W (v) ≤W (u), i.e. W (v) ≤ 1

2

∑

v′∈ch(r) W (v′). Otherwise, W (v) ≤
1
2
W (u) ≤ 1

2

∑

v′∈ch(r) W (v′) as well. We obtain the assignment A1 by applying

Split(r, v, v′′) to A ∋ (r, v′′). Consider the partition R =
⋃

v′∈ch(r) Tv′,A1 ∪Tv

of T . We obtain Ac from A1 by replacing A1|T ′ with a centipede assignment
Ac|T ′ under exploitation of the induction hypothesis for each T ′ ∈ R. The
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path length of Ac is bounded above by the following inequality:

p(A) ≥ p(A1)−W (v)

=
∑

v′∈ch(r)

W (v′) +
∑

T ′∈R

p(A1|T ′, T ′)− 1

2

∑

v′∈ch(r)

W (v′)

≥ 1

2

∑

v′∈ch(r)

W (v′) +
∑

T ′∈R

1

2
p(Ac|T ′, T ′) =

1

2
p(Ac).

�

It remains to show that an optimal HLA satisfying the centipede property
can be computed in polynomial time. Assume that we want to compute a
centipede assignment for a tree T . For any node u having a sibling u′ ≻ u,
there can be no hotlink from an ancestor of u to a descendant of u. This fact
has two implications. The first is that, when computing the hotchildren of
u’s ancestors, we can consider the tree T ′ obtained from T by deleting u’s
descendants and transforming u into a leaf of weight W (u). The second im-
plication is that the partial assignment A|Tu can be computed independently
from T \ {u}. So the subtrees T ′ and Tu can be considered separately.

By applying this observation to every node u having a sibling u′ ≻ u (cf.
Figure 4.4 ), we split the tree into the set of heavy centipedes C1, . . . , Cn,
where Ci is a centipede tree for 1 ≤ i ≤ n.

Algorithm 3: SplitIntoCentipedes

Input: T , a weighted tree rooted at r
Output: C, a collection of centipede trees

C ← ∅1

u← r2

while u is an internal node do3

foreach non-heaviest child v of u do4

C ← C ∪ SplitIntoCentipedes(Tv)5

replace Tv with a leaf of weight W (v) in T6

u← the heaviest child of u7

C ← C ∪ {T}8

Definition 4.3 A centipede tree is a tree whose internal nodes have at most
one non-leaf child. Let h be the depth and r be the root of a centipede tree.
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Figure 4.4: A tree is split into the set of heavy centipedes.

Then

lev(v) =

{

h− dist(v, r) if v is an internal node,
h− dist(v, r) + 1 if v is a leaf.

The definition of lev implies that in a non-trivial centipede tree each level
consists of exactly one internal node and the leaf children of that node.

In the remainder of the section we show that for the heavy centipedes
C1, . . . , Cn it is possible to efficiently compute optimal hotlink assignments
A1, . . . , An. Then the union

⋃

1≤i≤n Ai of these assignments is an optimal
centipede HLA for T and, due to Lemma 4.7, holds an approximation ratio
of 2.

4.5.3 Optimal Assignments for Centipede Trees

We prove two structural properties of optimal hotlink assignments for cen-
tipede trees and subsequently formulate a dynamic programming algorithm
that takes advantage of these properties.

Lemma 4.8 For any centipede tree C rooted at r there is an optimal hotlink
assignment A satisfying the following property:
(r, l) ∈ A, l is a leaf ⇒ lev(l) ≤ lev(l′) for all leaves l′ with ω(l′) ≥ ω(l).

Proof. Let A ∋ (r, l) be an optimal hotlink assignment for C and let l be
a leaf. Assume that there are leaves l′ with ω(l′) ≥ ω(l) and lev(l′) < lev(l).
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Among those leaves, we consider one l′ that is on the lowest possible level.
It suffices to show that the assignment A can be transformed into a HLA
containing (r, l′) or (r, v) for some internal node v without decreasing the
gain.

If the greedy user path length from r to l′ in A is not shorter than
distA\{(r,l)}(r, l), then (r, l) can be replaced with (r, l′) without decreasing
the gain. Otherwise, there must be a hotlink (v′, v) with v′ 6= r that by-
passes the parent of l. If there is more than one such hotlink, we consider
the one where v is on the lowest possible level. So v is on the greedy user path
from r to l′ and W A(v) ≥W (l′) ≥W (l). Thus, we can swap the hotchildren
of r and v′ without decreasing the gain. �

Motivated by the preceding lemma, we now extend “≻” (see Defini-
tion 4.2) to be some total order of all leaves of a centipede tree satisfying

(

ω(l) > ω(l′)
)

∨
(

ω(l) = ω(l′) ∧ lev(l) < lev(l′)
)

⇒ l ≻ l′ .

The relation will serve as a priority with which leaves will be chosen to be
the hotchild of the root. This policy is justified by the following lemma.

Lemma 4.9 For any centipede tree C rooted at r there is an optimal hotlink
assignment A satisfying the following property: If the hotchild of r is a leaf
l, then l ≻ l′ for any leaf l′ with lev(l′) ≤ h− 2, where h is the depth of C.

Proof. Let A be an optimal hotlink assignment for C satisfying the property
specified in Lemma 4.8. It suffices to show that, if (r, l) ∈ A and l is a leaf,
then there is no leaf l′ with ω(l′) > ω(l) and h − 2 ≥ lev(l′) ≥ lev(l).
Throughout the proof we will assume that there is such a leaf l′. By an
extensive case analysis we show that this contradicts the optimality of A.
Let u be the internal node at level 2, and let v be the hotchild of u in A.

Case I: lev(v) > lev(l′). Let v′ be the parent of l′. Observe that
distA(r, v′) ≥ 3. The following modification improves A: (1) Insert (r, l′).
This increases the gain by at least 2ω(l′). (2) If there are hotlinks bypassing
v′, let (u1, v1) be the one with the source u1 being on the highest level. Ap-
ply Split(u1, v

′, v1) and obtain the assignment A2. This costs a maximum
amount of gain of W A2(v′). (3) Apply PushDown(v′). This also costs at
most W A2(v′). (4) Insert (r, v′). This increases the gain by at least 2W A2(v′).
In the resulting assignment, r has three hotchildren and no hotlink is leaving
v′. (5) Replace (r, l) by (v′, l), decreasing the gain by ω(l). (6) Remove the
hotlink (r, l′), which costs ω(l′). We obtain a 1-hotlink assignment and have
experienced a total increase in gain of at least ω(l′)− ω(l), which is strictly
positive.
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Case II: lev(v) = lev(l′). If v is a leaf and ω(v) < ω(l′), then the assign-
ment is improved by interchanging the hotparents of v and l′. If v is a leaf
and ω(v) ≥ ω(l′), we improve A by interchanging the hotparents of l and v.

Otherwise, v is the parent of l′. Then we consider the following modifi-
cation: (1) Insert (r, l′), causing the gain to increase by 2ω(l′). Obtain the
assignment A1. (2) Apply PushDown(v), which decreases the gain by at
most W A1(v). (3) Replace (u, v) with (r, v) to compensate for the loss that
has occurred the preceding step. (4) Remove (r, l′). This decreases the gain
by ω(l′). (5) Replace (r, l) with (v, l), decreasing the gain by ω(l). We obtain
a 1-hotlink assignment and have experienced a total increase in gain of at
least ω(l′)− ω(l), which is strictly positive.

Case III: v is an internal node with lev(l′) > lev(v) ≥ lev(l). The fol-
lowing modification improves A: (1) Insert (u, l′). This increases the gain by
at least ω(l′). (2) Apply PushDown(v). The gain is decreased by at most
W A(v). (3) Replace (u, v) with (r, v). This increases the gain by exactly
W A(v). (4) Replace (r, l) with (v, l). The gain is decreased by ω(l). We
obtain a 1-hotlink assignment and have experienced a total increase in gain
of at least ω(l′)− ω(l), which is strictly positive.

Case IV: v is a leaf with lev(l′) > lev(v) ≥ lev(l). Let v′ be the parent of
v. Consider the following modification: (1) Replace (u, v) by (r, v), increasing
the gain by ω(v). (2) Apply FreeInsert(u, v′), obtain the assignment A2.
(3) Apply PushDown(v′), decreasing the gain by at most W A2(v′). (4)
Replace (u, v′) with (r, v′). This increases the gain by exactly W A2(v′). In
the resulting assignment, r has the three hotchildren v′, v and l, while no
hotlink leaves u or v′. (5) Remove (r, v) from the assignment, decreasing
the gain by ω(v). (6) Replace (r, l) with (v′, l). This decreases the gain by
ω(l). (7) Finally, insert (u, l′), which increases the gain by at least ω(l′). The
whole modification improves the gain by an amount of at least ω(l′)− ω(l),
and the resulting HLA is a 1-hotlink assignment.

Case V: lev(v) < lev(l). Let v′ be the parent of l. Our modification
works as follows: (1) Apply Split(u, v′, v) to obtain the assignment A1.
The maximum decrease in gain is W A1(v′). (2) Replace (u, v′) with (r, v′).
This causes the gain to increase by W A1(v′). (3) Remove the hotlink (r, l),
decreasing the gain by ω(l). (4) Insert (u, l′), causing a benefit of at least
ω(l′). Again, we obtain a 1-HLA and we have achieved a strictly positive
total surplus of at least ω(l′)− ω(l). �

Theorem 5 An optimal hotlink assignment for centipede trees can be com-
puted in polynomial time.

Proof. Let C be a centipede tree of depth h. For any leaf l and h ≥ x >
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y ≥ 1, the tree C[x, y, l] is defined as the maximum subtree of C satisfying
the following properties:

(a) It contains only nodes v with x ≥ lev(v) ≥ y.

(b) It contains no leaves on level x.

(c) It contains no leaf l′ � l.

To describe the original tree we consider C[h, 1, lD], where lD is a dummy
leaf heavier than any leaf in C. From an optimal algorithm’s point of view
there is no difference between C and C[h, 1, lD], because hotlinks to nodes
on level h would never be assigned.

For 1 ≤ i ≤ h, let vi denote the internal node at level i. When computing
an optimal hotlink assignment for C[x, y, l], there are two main possibilities
for choosing the hotchild of that subtree’s root vx.

The first possibility is that the hotchild of vx is a leaf. Lemma 4.9 implies
that this leaf is either the first leaf l′max with respect to “≻” among all nodes
on a level between x− 2 and y, or it is on level x− 1. In the latter case, for
reasons of optimality, we can assume that lmax is the first among all leaves
of its level. Lemma 4.9 further implies that lmax ≻ l′ for any leaf l′ on any
other level. Therefore, lmax is the first leaf in the whole subtree C[x, y, l], see
Figure 4.5 for an example. Note that in practice it will often be the case that
l′max = lmax. Under the assumption that the hotchild of vx is a leaf, the gain
of an optimal assignment for C[x, y, l] is calculated as

GL(x, y, l) = max{g(vx, l
′
max) + g̃(C[x− 1, y, l′max])

g(vx, lmax) + g̃(C[x− 1, y, lmax])} .

The second possibility is that the hotchild of vx is an internal node. In
that case the gain of an optimal assignment is

GN (x, y, l) = max
y≤i<x

{ g((vx, vi), C[x, y, l])+

g̃(C[x− 1, i + 1, l]) + g̃(C[i, y, l])} .

The main formula for the gain of an optimal HLA for C[x, y, l] is

g̃(C[x, y, l]) =

{

max{GL(x, y, l), GN(x, y, l)} if x− y ≥ 1
0 otherwise

(4.5)

Let n be the number of nodes in C. There are O(n3) different configura-
tions of (x, y, l). Thus by dynamic programming we can compute an optimal
hotlink assignment for C with space requirements O(n3). For each config-
uration of (x, y, l) we have to compare O(n) different possibilities and thus
the overall runtime is O(n4). �
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Figure 4.5: One of the centipede trees resulting from the application of
SplitIntoCentipedes to the tree in Figure 4.4

Corollary 4.1 There is a polynomial time 2-approximation algorithm in
terms of the path length for the 1-hotlink assignment problem.

Proof. The claim follows directly from Lemma 4.7 and Theorem 5. �

4.5.4 Lower Bound

By restricting HLAs to those satisfying the centipede property we can loose
an unbounded percentage of the maximum gain. Consider a tree rooted at
r, where ch(r) = {u1, u2}, ch(u1) = l0 and ch(u2) = {l1, . . . , ln}. The weight
function is defined such that ω(l0) = 1, ω(li) = (1 + ǫ)/n for i = 1, . . . , n,
and the internal nodes’ weights are zero. The ratio between the gain of the
best HLA and the gain achieved by the best centipede HLA converges to ∞
for large n and small ǫ.

4.5.5 Generalization to K > 1?

The results of this section are not directly generalizable to the model where
nodes can have up to K hotchildren. The lower bound pmin would have to be
generalized such that it is the sum over the weights of all nodes, except for
the K heaviest children of each node. So for our 2-approximation, the tree
would have to be decomposed into a generalized form of centipedes, where
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Algorithm 4: C-Opt

Static: C, a centipede tree; T , the dynamic programming table
Input: [x, y, l], defining a subtree of C
Output: A, a hotlink assignment for C[x, y, l]

if T contains solution for [x, y, l] then1

A← T [x, y, l]2

else3

recursively compute the hotlink assignment A achieving the gain4

specified in Equation 4.5

Algorithm 5: Centipede

Input: T , a weighted tree
Output: A, a hotlink assignment for T

C ← SplitIntoCentipedes(T )1

A← ∅2

foreach C ∈ C do3

initialize the static variables in C-Opt according to C4

A← A ∪C-Opt([x, y, l]), where C[x, y, l] = C5

each internal node can have up to K non-leaf children. Computing optimal
hotlink assignments for such trees seems to be much more difficult than it is
for standard centipede trees.

4.6 Remarks

In this chapter we have presented three approximation algorithms for the
Hotlink Assignment Problem. Each of these algorithms guarantees an at
least constant approximation factor either for the path length or for the
gain. We have also seen that each algorithm only approximates one of the
performance measures up to a constant ratio.

We remark that none of the analyses can be generalized to the model
considered in Chapter 3, where the maximum number of hotchildren is arbi-
trarily determined by a function K : V → IN0. Even when K : V → {0, 1},
the operations PushDown, FreeInsert, and Split cannot be applied.
The approximability of that more general problem remains open.
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Chapter 5

An Experimental Study

In the preceding two chapters we have proposed a number of polynomial
time hotlink assignment algorithms, and we have proven worst case bounds
for the quality of their solutions. In this chapter we focus on their response
to inputs that occur in practice.

We report on an extensive experimental study performed using a test
bed of real-world and realistic random instances. The real-world instances
represent the structure of large university web sites containing up to several
hundred thousands of pages. The synthetic instances have been generated
by a new random construction method based on a technique proposed by
Barabási and Albert [BA99]. We evaluate solution quality and runtime of the
algorithms, and draw conclusions about which strategies are recommendable
in practice.

Besides the hotlink assignment strategies we have presented in Chapter 3
and 4, our experimental setup also includes two methods recently proposed
by Doüıeb and Langerman [DL05, DL06]. Those algorithms are tailored to
compute hotlink assignments whose path length is close to the entropy (cf.
Section 1.4.2 and 1.4.5). Moreover, we propose a new heuristic method that
has turned out to compute near-optimal solutions to all test instances in our
experiments.

Not all algorithms evaluated in this chapter are designed for the K-
Hotlink Assignment Problem. Therefore, we mainly concentrate on the
model where only one hotlink is allowed to start in each node. Recall that
this problem version is already NP-hard (cf. Chapter 2). For the same rea-
son, our test bed consists of instances where only the leaves carry non-zero
weights.

As optimal solutions can be computed in time exponential in the tree
depth [GKL+07], and this depth is typically not too large, we are in the
lucky situation of being able to compute optimal hotlink assignments for a
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large subset of our test instances. Therefore, one main focus of our study is
on approximation ratios that are achieved in practice.

This chapter is organized as follows: In Section 5.1 we give a description
of all algorithms included in our study, except for those that have already
been described in the preceding chapters. We also discuss implementation
issues here. In Section 5.2 we specify our experimental setup, including the
test bed and the performance measures. Section 5.3 reports and interprets
the results of our study, and Section 5.4 concludes the chapter.

5.1 Algorithms

In this section we recapitulate all algorithms that are are included in the
experimental study. Wherever our implementation is not straightforward,
we also discuss that issue.

5.1.1 Notation

Before beginning to specify the algorithms, we introduce some additional
notation simplifying their description.

The relation ”≻“ is defined, like in Definition 4.2, as a total order among
siblings such that ω(u) > ω(u′) ⇒ u ≻ u′ for any pair u, u′ of siblings. Ties
are broken arbitrarily. The direct successor sibling of u with respect to that
order is denoted by succ(u). The first child fc(u) is the unique child of u
having no predecessor.

Next, we define the heavy path of a node u (cf. [DL05]). If u is a leaf,
then its heavy path only consists of u. Otherwise, it is the path obtained by
appending the heavy path of fc(u) to u.

The term top-down method term has been introduced in [DL06] and de-
notes hotlink assignment algorithms that assign a hotlink (r, v) and then
recursively apply themselves to Tv and all Tu \ {v}, u ∈ ch(r). Thus, any
top-down method is fully characterized by the choice of v.

5.1.2 Greedy

Greedy is specified in Algorithm 2, Chapter 4.3. Observe that it can also
be formulated as a top-down method. It has exhibited the best performance
among the approximation algorithms studied experimentally so far [CKK+01,
CKK+03, PLdS04b, GKL+07].
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5.1.3 H/Ph

The H/Ph-strategy is also a top-down method. Let h be the node whose
weight is closest to ω(r)/2. If ω(h) > αω(r), then h is chosen as the hotchild
of r. Otherwise the parent ph of h becomes r’s hotchild. The threshold α is
given as the solution of ( α

1−α
)2(1−α) = α, i.e. α ≈ 0.2965.

The H/Ph-algorithm has been proposed in [DL06], where it is proved to
guarantee a path length of at most 1.141H(ω)+ 1. Thus it is asymptotically
a (1.141 log(∆ + 1))-approximation in terms of the path length, where ∆ is
the outdegree of the tree (cf. Section 1.4.2).

In [DL06] the authors propose an implementation of H/Ph that runs in
worst case time O(n log n). They observe that it suffices to traverse the root’s
heavy path when looking for h. As this path can have a length of O(n) in the
worst case, an involved tree representation is employed for finding h in time
O(log n). We do not adopt the tree representation in our implementation,
because in typical tree instances, including our test set, the depth is rather
small.

5.1.4 PMin

Assume that there was an oracle telling the exact minimum path length
popt(T ) a hotlink assignment can achieve for a given tree T . Then an optimal
assignment could be easily computed by a top-down method that chooses the
hotchild v of r such that

popt(Tv) +
∑

u∈ch(r)

popt(Tu \ {v})

is minimized. Due to Chapter 2, such an oracle needs superpolynomial an-
swer time unless P=NP.

Our algorithmic idea is to guess popt by some fast estimation method.
After experimenting with a number of such methods, it turned out that the
usage of pmin from Definition 4.1 produces excellent results and is very robust.
The results are even improved if we employ

p′min(T ) = pmin + max
v∈ch(r)

W (v) .

For an efficient implementation, instead of explicitly calculating p′min we
evaluate the improvement to p′min(T ) caused by the hotlink (r, v). For deter-
mining that improvement it suffices to traverse the path between v and r.
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5.1.5 HeavyPath

HeavyPath has been proposed in [DL05]. It works as follows: First split
the tree into the set of heavy paths. This can be done in linear time by
recursively computing the set of heavy paths of the subtrees rooted at the
children of r, joining these sets, and appending r to the path containing
the first child of r. Then interpret each of these paths as a list of weighted
elements. The weight W(u) of each such element u is W (u)−W (fc(u)). If
u is a leaf, then W(u) = ω(u).

A hotlink assignment for each such list u1, . . . , un is computed as follows:
Assign a hotlink (u1, ui) such that

∑

1≤j<iW(uj) and
∑

i<j≤nW(uj) are both

at most 1
2

∑

1≤j≤nW(uj), and recursively apply the algorithm to the sublists
u2, . . . , ui−1 and ui, . . . , un. Using exponential search for determining ui, the
hotlinks can be assigned in time O(n).

Therefore, the heavy path strategy has the lowest worst case runtime
among all strategies evaluated in this chapter. It guarantees a maximum
path length of 3H(ω), i.e. it is a (3 log(∆ + 1))-approximation in terms of
the path length.

5.1.6 Lpath

The approximation scheme Lpath has been presented in Section 4.4.2. Recall
that for a given value of h it computes a hotlink assignment that is at least
as good as the best length h assignment. In our experiments, we also use
Lpath as an optimal algorithm by setting h to the tree’s depth.

We discuss a number of implementation issues using the terminology of
Section 4.4.2. Note that there the order “≻” has been arbitrary, so the
definition introduced at the beginning of this chapter constitutes a possible
implementation.

The dynamic programming approach for the algorithm has been adopted
from the PATH algorithm of Pessoa, Laber, and Souza [PLdS04b]. The only
difference to Lpath is that, whenever a component a of a subproblem (a, b, v)
represents a path longer than h, PATH gives up.

In [PLdS04b] Pessoa et. al. have proposed two improvements to their
algorithm. The first is to increase the number of considered hotlink assign-
ments by always cutting the first component off from a until a1 = 1. That
improvement is already included in the original definition of Lpath, as the
latter strategy always cuts the first components off from q and a when they
become too long.

The second improvement is based on the observation, that, in the optimal
solution to any subproblem (a, b, v), the total number of hotlinks bypassing
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v is limited by the number of leaves in T v. To our knowledge, a proof of that
claim has not yet been published, neither in [PLdS04b] nor in the journal
version of the paper [GKL+07]. Therefore, for reasons of completeness, we
give a proof at this point.

Lemma 5.1 For any subproblem (a, b, v) with T v containing m leaves, there
is an optimal solution where at most m hotlinks are bypassing v.

Proof. For each leaf l ∈ T v there is at most one hotlink on the greedy user
path to l that is bypassing v. Therefore, there are at most m hotlinks that
bypass v and shorten the path to a leaf in T v. Any other hotlink bypassing
v is obsolete and can be removed without increasing the path length. �

Note that this version of the lemma only holds in the model where only
the leaves carry weights. If also internal nodes have weights, then the number
of hotlink bypassing v is bounded by the total number of nodes in T v.

Let â =
∑

1≤i≤|a| ai and let m be the number of leaves in T v. We adopt
the second improvement by inverting the â−m components of a having the
highest possible indices from 1 to 0 whenever â > m.

We have observed in our experiments that the memory requirements of
Lpath are by far more critical than the runtime is. For all tree instances the
algorithm either terminated in reasonable time (2-3 minutes or less), or the
memory requirements exceeded our hardware limit. So the purpose of our
main improvement is to reduce space consumption.

The total number of subproblems considered by Lpath is Θ(|V |2h). For-
tunately, we do not need to store all of them simultaneously. For any fixed
node v, let Sv be the set of solutions for all possible values of (a, b, v). Then
Ssucc(v) and Sfc(v) suffice to compute any element of Sv. Furthermore, Ssucc(v)

and Sfc(v) are not required for any further computation, so these sets can be
removed from memory after computing Sv.

Let v1, . . . , vn be the unique postorder sequence of V − {r} where each
node appears before its successor with respect to “≻”. We successively com-
pute Sv1 , . . . , Svn

and delete any set as soon as it is not required anymore.
It is easy to observe that with this policy any solution of a subproblem is
guaranteed to be available when it is required. The solution to the original
problem is contained in Svn

. The following lemma bounds the number of
solution sets that are simultaneously stored.

Lemma 5.2 Let d be the depth of the tree. At any time during the execution
of Lpath, for 1 ≤ x ≤ d, there is at most one node v with dist(r, v) = x
whose solution set Sv is currently stored and not currently computed.
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Proof. Let v and v′ be two nodes that have the same distance to the root
and let v′ occur after v in the postorder sequence. Let Sv′ be currently stored
and completely computed. If v and v′ are siblings, then Sv has been used
for the computation of Sv′′ , where v′′ is either v′ or another sibling between
v and v′, so Sv has already been deleted. If v and v′ are not siblings, then
the parent u of v occurs in the postorder sequence before v′. In that case Su

has already been computed, which implies that Sv has been used and thus
deleted. �

As only one solution set is computed at a time, it follows directly from
Lemma 5.2 that at most d + 1 solution sets are simultaneously stored and
thus the memory requirements of our implementation are O(d2h). The im-
provement is significant in practice, as the depth is typically small compared
to the number of nodes (cf. Table 5.1).

Algorithm 6 outlines our implementation of Lpath. Remark that the
pseudo-code description applies to the model considered in this chapter,
where each node can have at most one hotchild and only leaves carry non-zero
weights.

Algorithm 6: Lpath

Input: T , a weighted tree rooted at r; h, an integer
Output: A, a hotlink assignment for T

v1, . . . , vn ← postorder sequence of T − {r} with1

vi ≺ vj ∧ par(vi) = par(vj)⇒ i < j
for v = v1, . . . , vn do2

h′ ← min{dist(r, v), h}3

m← the number of leaves in T v
4

foreach a ∈ {0, 1}h′+1, b ∈ {0, 1} do5

a′ ← a6

â′ ←∑

1≤i≤h′+1 a′
i7

if â′ > m then8

invert the â′ −m components of a′ having the highest9

possible indices from 1 to 0
compute solution for (a′, b, v) according to Equation 4.4,10

cutting the first component of any a′′ ∈ {0, 1}h+2 that might
occur in a subproblem before looking up the solution
store solution at table position (a, b, v)11

delete any solution for (·, ·, succ(v)) and (·, ·, fc(v)) from the table12
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5.1.7 Centipede

The Centipede algorithm is completely specified in Section 4.5. We have
implemented it as outlined in Algorithm 3, 4, and 5.

5.1.8 L-Opt

Algorithm L-Opt is the main result of Chapter 3. It computes an optimal
hotlink assignment under the restriction that hotlinks only end in leaves.

Implementing Algorithm 1 in a straightforward manner would result in
∑

v∈T K(v) calls of the method PullUp, which is described in the proof
of Theorem 2. This would mean that the dynamic programming table for
the values of s(v) (Equation 3.2) has to be rebuilt

∑

v∈V K(v) times from
scratch.

Instead, we maintain one table throughout the execution of the algorithm,
updating it each time PullUp is executed.

Recall the definitions given in Section 3.2. Let A be optimal for (T, K)
and let (l1, . . . , ln) be an optimal ordered transformation sequence for A into
K+r. Let vn be the hotparent of ln in A, or, if ln has no hotparent in A, let
vn be the parent of ln. Any hotparent of a component li of the sequence is
an ancestor of vn.

Consider any node v. Recall that s(v) represents the path length reduc-
tion achieved by an optimal ordered transformation sequence for A|Tv,A into
K+v, and this sequence only depends on Tv,A and A|Tv,A. So after applying
the transformation sequence (l1, . . . , ln), the value of s(v) has to be updated
only if a component li from the sequence is contained in Tv,A. This is the
case only if v ∈ anc(vn).

So, for correctly updating the table, it suffices to consider the table entries
corresponding to the path from vn to r. The following lemma further reduces
that set.

Lemma 5.3 When updating a value of s(v), that value never increases.

Proof. In this proof, the assignment A in Equation 3.1 and 3.2 will not
always be clear from the context, so we will write s(v, A) and s(v, l, A).

We prove the lemma by induction over the depth of Tv. The basic case is
trivial. Let A+ be the assignment obtained from A by applying the transfor-
mation sequence. If the lemma does not hold, then s(v, l′, A+) > s(v, l′, A)
for the leaf l′ maximizing Equation 3.2 with respect to A+. This is only possi-
ble if l′ has a hotparent v′ in A+. If l′ has the same hotparent in A, then s(v′)
must have increased, which is not possible due to the induction hypothesis.
Therefore, l′ is contained in the transformation sequence, which means that
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v′ has a hotchild l 6= l′ in A which is the predecessor of l′ in the sequence. As
the sequence is ordered, Lemma 3.1 implies ω(l) ≥ ω(l′). Thus, s(v, l, A) =
dist(v′, v)ω(l) + s(v′, A) ≥ dist(v′, v)ω(l′) + s(v′, A+) = s(v, l′, A+). As l′

maximizes s(v, l′, A+), we have s(v, A) ≥ s(v, A+), a contradiction. �

When updating a value of s(v), we first look up the leaf l maximizing
Equation 3.2 from the table. If s(v, l) has not decreased, neither has s(v).
Since due to Lemma 5.3 that value also never increases, there is no need to
update then.

Our implementation of L-Opt is described in Algorithm 7. The recur-
sive calls are performed in Line 4. The dynamic programming table T is
built during the recursive execution of the algorithm, so Line 9 is a simple
table lookup. After the transformation sequence has been applied to A, the
dynamic programming table is updated in Line 16-20. Note that here, for
any descendant v′ of the current ui, the updated value of s(v′) is already
available in T . The main computational effort of the algorithm is required
for executing Line 20, as here the complete subtree Tui,a has to be scanned.

5.2 Experimental Setup

5.2.1 Real Instances

Our set of real instances consists of 104 trees. 84 of them represent the struc-
ture of Brazilian and U.S. university sites and have been made available by
the authors of [GKL+07]. Access patterns measured over the time horizon
of one week are available for one of those instances, namely puc-rio.br.
We have extended the set by 20 instances representing web sites of German
universities. All trees have been extracted from the corresponding sites us-
ing breadth-first search, which implies that, for any page v in the original
structure, a shortest path from the home page to v is the unique path from
r to v in the resulting tree.

We note that the German university instances, unlike the others, partially
have a large depth up to 179. These kinds of trees are especially hard to
handle by optimal algorithms. Typically, very deep subtrees correspond to
online tutorials or image series that do not have an index page. Table 5.1
shows the main characteristics of our test set.

As only the access frequency distribution of one tree instance is available
to us, we have assigned weights to the leaves of the others randomly. We did
so using Zipf distribution, i.e., the ith heaviest leaf, which is chosen uniformly
at random, is assigned a weight of 1

iHm
, where Hm is the mth Harmonic

number and m is the number of leaves. Zipf distribution is considered as
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Algorithm 7: L-Opt (implementation)

Input: (T, K), a problem instance
Output: A, a hotlink assignment for (T, K)
Static: T , the dynamic programming table, storing a value s(v) and

the leaf l maximizing s(v, l) for each v ∈ T

1 A← ∅
2 r ← the root of T
3 foreach v ∈ ch(r) do
4 A← A ∪ L-Opt(Tv, K)

5 repeat K(r) times
6 transformation sequence t← ()
7 v ← r
8 while Tv,A contains a leaf do
9 append the leaf l maximizing Equation 3.1 to t

10 if l has a hotparent v′ in A then
11 v ← v′

12 else
13 break loop
14 apply transformation sequence t to A

15 u1, . . . , un ← path from r to the last component of t
16 for i = n, . . . , 1 do
17 l ← the leaf stored in T as the leaf maximizing s(ui, l)
18 if s(ui) < s(ui, l) then
19 find leaf l′ maximizing s(ui, l

′) in subtree Tui,A

20 store l′ together with the new value of s(ui) in T
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Table 5.1: Characteristics of the set of real tree instances

min max average
size 32 512484 32652

depth 179 3 16

10−6

10−5

10−4

10−3

10−2

10−1

100

1 10 100 1000 10000

w
ei

gh
t

of
it

h
h
ea

v
ie

st
n
o
d
e

i

real access distribution
Zipf distribution

Figure 5.1: Real and synthetic access frequency distribution

the typical access distribution, see e.g. [Pit99]. The same method has also
been employed in [CKK+01, PLdS04b, GKL+07]. Figure 5.1 confirms the
validity of that approach by comparing the access frequency distribution of
puc-rio.br with Zipf distribution.

5.2.2 Synthetic Instances

Making reliable statements about the algorithms’ behavior for different input
sizes requires a large number of test instances. The available set of real trees
it not sufficient for that purpose. In [PLdS04b], Pessoa et. al. increase the
number of instances by considering each subtree of minimum depth 3 that is
rooted at a node in one of their original trees. This approach causes strong
dependencies in the data set and is therefore problematic in our opinion.

Instead, we randomly generate a large number of synthetic trees. Czyzow-
icz et. al. [CKK+03] have observed that the outdegree ∆ of internal nodes
follows a power-law, i.e. p[∆ = i] ∼ i−k. They have chosen the exponent
k = 2.72 from literature about the graph structure of the World Wide Web.
Their proposed algorithm maintains a FIFO-queue where all new nodes are
stored. In each iteration step a node is removed from that queue and is
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assigned i new nodes as its children, where i is chosen at random according
to the abovementioned power-law distribution. The algorithm terminates as
soon as the desired number of nodes has been generated.

In our opinion there are two problems with that method. The first is
that the leaves of any possible output tree are basically all on the same level,
which is a consequence of the breadth-first and top-down manner of the con-
struction. The second problem is that, according to our given data sets,
the chosen value of k does not seem to be adequate. Maximum-likelihood-
estimation of that parameter (see e.g. [GMY04]) based on our real instances
resulted in k ≈ 1.78. This value is also problematic as for k ≤ 2 the expecta-
tion of the number of children is infinity, which is unrealistic for trees having
a limited number of nodes.

We have therefore developed a new algorithm that is based on a model
of Barabási and Albert [BA99]. In their model a graph, initially containing
a small number of m0 nodes, is built by adding a new node vi adjacent to
m existing nodes in each iteration step i = 1, . . . , n. The probability for any
node v to be chosen as one of vi’s neighbors is proportional to one plus the
number of nodes already adjacent to v. The authors show that for large n the
number of neighbors of a node converges against a power-law distribution.
In our case m0 = m = 1, so that the resulting graph is a tree. Unlike the
algorithm of Czyzowicz et. al., our construction generates trees with leaves
at all levels.

The data set generated for our experiments consists of trees having sizes
1000, 2000, . . . , 100000. For each size ten instances have been generated, so
their total number is 1000. Like for the real web trees, the weights of the
leaves have been generated using Zipf distribution.

In these synthetic trees the distribution of the nodes’ outdegree is similar
to the typical distribution in real instances, as Figure 5.2 shows. Figure 5.3
displays the depth of the generated trees. It turns out that the depth tends
to grow only very slowly with the size.

5.2.3 Test Environment

We have run all algorithms described in Section 5.1 on both the real and the
synthetic tree instances. In case of Lpath we have applied each configuration
of h = 2, . . . , 15. Computations that required more than one hour or exceeded
a RAM limit of 500MB have been aborted.

We have measured the path length of the resulting hotlink assignments
as well as the runtime of the algorithms. Based on the path length we have
calculated a number of additional values. As defined in Section 1.2.4, the gain
g(A) of an assignment A is p(∅)− p(A). The main focus of our study lies on
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the approximation ratios that occur in practice. Therefore, for all instances
where an optimal solution OPT could be computed by our implementation
of Lpath, we have calculated p(A)/p(OPT) as well as g(OPT)/g(A).

The algorithms and the test environment have been programmed in Java.
The experiments have been conducted on an Intel Pentium 4 at 2,53 GHz
with 1 GB of RAM, Fedora Linux 5 Version 2.6.15-1.2054 FC5, and Java
HotSpot Client Virtual Machine (build 1.5.0 10-b03). The heap size limit of
the Virtual Machine has been adjusted to 500MB.

5.3 Results

Our implementation of Lpath returns optimal solutions for all but 16 of
the real instances. This improves upon the implementation of an optimal
solution proposed in [PLdS04b], since we have been able to solve some of
the instances that had remained open in that work. However, in the journal
version of that paper [GKL+07] those instances have also been solved. The
authors of the latter report about two hard instances that require 488MB and
>1GB of RAM for being solved by the dynamic programming algorithm. Our
experience with these two instances is nearly the same.

Our remaining unsolved instances have a depth of between 14 and 179
and a size of between 74042 and 512484. Due to their smaller depth (cf.
Figure 5.3), optimal solutions for all but one synthetic instances could be
computed within our resource bounds.

5.3.1 Solution Quality

Table 5.2 gives an overview of the approximation ratios the algorithms have
achieved on the real and random instances1, and compares these ratios to
the theoretical upper bounds. For H/Ph and HeavyPath no bound in
terms of the gain has been given yet. However, trees having a depth of 2 to
which no hotlink is assigned at all by these strategies are easy to construct,
so their ratios in terms of the gain do not exist. As we can see in the
table, this scenario even occurs in practice. Also L-Opt, used as a heuristic
in the model where any node can be a hotchild, guarantees no constant
approximation ratio. A counterexample is a long path whose last node has
a large number of leaf children of equal weight.

Although the results achieved for the real and random trees are not iden-
tical in terms of absolute values, the relative performance ranking of the

1Of course only those instances are considered in the table where an optimal hotlink
assignment is available.
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approximation ratios in terms of the gain
worst real instances random trees puc-
case max average deviation avg. dev. rio.br

Greedy 2 1.351 1.029 0.066 1.046 0.034 1.283
PMin ? 1.094 1.008 0.018 1.010 0.010 1.000
H/Ph ∞ ∞ ∞ ∞ 1.772 0.265 2.966

HeavyPath ∞ ∞ ∞ ∞ 1.731 0.272 2.977
Centipede ∞ 2.041 1.138 0.193 1.084 0.026 1.064

L-Opt ∞ 2.523 1.222 0.263 1.101 0.077 1.558
Lpath, h = 2 2 1.530 1.128 0.136 1.205 0.056 1.113
Lpath, h = 3 1.5 1.096 1.013 0.023 1.040 0.022 1.000
Lpath, h = 4 4/3 1.047 1.001 0.006 1.005 0.006 1.000

approximation ratios in terms of the path length
worst real instances random trees puc-
case max average deviation avg. dev. rio.br

Greedy ∞ 1.062 1.009 0.013 1.025 0.018 1.051
PMin ? 1.052 1.004 0.009 1.006 0.006 1.000
H/Ph O(log ∆) 1.460 1.167 0.078 1.241 0.034 1.154

HeavyPath O(log ∆) 1.488 1.195 0.077 1.233 0.040 1.155
Centipede 2 1.148 1.036 0.022 1.043 0.010 1.014

L-Opt ∞ 1.547 1.096 0.122 1.052 0.040 1.084
Lpath, h = 2 ∞ 1.372 1.069 0.090 1.100 0.035 1.024
Lpath, h = 3 ∞ 1.090 1.010 0.019 1.023 0.014 1.000
Lpath, h = 4 ∞ 1.030 1.001 0.004 1.003 0.004 1.000

Table 5.2: Theoretical worst case approximation ratios and experimentally
observed ratios
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algorithms is consistent. The deviation among the real instances is signifi-
cantly larger. We suppose that this is due to the higher variability of the
tree depth.

Concerning the path length, H/Ph and HeavyPath achieve approxima-
tion factors less than 1.5 on all instances. However the ratios of all other
algorithms are better for both ratios. Besides the PTAS, the best results
are achieved by PMin, which outperforms its competitors in terms of ap-
proximation factors. It is only beaten by Lpath for h ≥ 4. Like observed
in previous experiments on hotlink assignment, Greedy also achieves com-
paratively good results. It is by far better than Lpath for h = 2, which
has the same worst case approximation ratio as Greedy and simulates the
behavior of the 2-approximation given in [MP07]. Centipede, being a 2-
approximation in terms of the path length, computes solutions of higher
quality than H/Ph and HeavyPath, but is not that excellent as Greedy
or even PMin.

The rows corresponding to L-Opt show that one sacrifices not too much
by restricting hotlinks to end in leaves, even though there are no constant
worst case bounds for its approximation ratios. In practice, the algorithm
achieves ratios between those of Centipede and HeavyPath. The devia-
tion of the solution quality, however, is comparably high.

The results with respect to puc-rio.br can be found in the rightmost
column of Table 5.2. They confirm all observations described in this para-
graph.

Our experiments based on the random instances allow for some more
detailed findings. The average gain and the standard deviation for varying
tree size is visualized in Figure 5.4. The figure shows exemplarily for the gain
of Greedy that the algorithms’ solution quality is basically independent
from the tree size. The picture looks similar for all algorithms and types of
ratios.

The relative performance ranking observed from Table 5.2 is confirmed
by the histograms in Figure 5.5, 5.6, and 5.7. For almost all instances, PMin
is less than 5% away from the optimal solution’s path length (Figure 5.5).
The ratio of Greedy is better than 1.1 on most instances. The same holds
for Centipede, but the majority of its solutions are clearly worse than
the solutions computed by Greedy. The quality of L-Opt’s solutions is
distributed among a comparably wide range, being sometimes nearly optimal
and somtimes far-off from its competitors. The ratios of algorithms H/Ph
and HeavyPath are between 1.15 and 1.35. They are not included in the
histograms for reasons of readability.

All these phenomena can also be observed for the gain (Figure 5.6), al-
though all ratios are typically higher here. The difference between PMin
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and Greedy is even more pronounced, and the ratios for the gain of H/Ph
and HeavyPath are mainly distributed between 1.3 and 2.2.

Figure 5.7 visualizes the behavior of Lpath for different values of h. Only
for h > 3 Lpath performs better than PMin. In Figure 5.8 the influence
of parameter h is visualized. On each of the four selected instances of real
trees, the approximation ratio converges to 1 much faster than in theory.
Typically, the speed of convergence is lower for trees having a greater depth
d, but there are exceptions. Recall that for h ≥ d a ratio of 1 is guaranteed.

5.3.2 Runtime

The runtime of Lpath, as expected, grows exponentially with h, up to some
characteristic value (Figure 5.9). For h greater than that value the runtime
remains constant. The characteristic value depends on the tree instance. It
is typically slightly smaller than the tree’s depth, when there are only few
possibilities for length h hotlinks.

The runtimes for processing the synthetic instances by the other algo-
rithms are depicted in Figure 5.10, 5.11, and 5.12. Apparently, for each
algorithm the runtime values form a point cloud that is quite compact, i.e.
the runtimes are reliable. The only exception is the Greedy, having many
outliers above it typical runtime. Note that the order of magnitude differs
among the runtime scales in the figures. Centipede is by far the slowest
algorithm, and it is also the only method whose runtime is clearly superlin-
ear in practice. It is followed by algorithms PMin, H/Ph, and Greedy.
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Surprisingly, our implementation of L-Opt is much faster than all top-down
algorithms. The fastest method is HeavyPath. This also is somewhat sur-
prising, as from its description it seems more complicated than, for example,
H/Ph. On the other hand, HeavyPath is the only method having linear
worst case runtime.

5.3.3 Investigation of L-Opt

In Chapter 3 we have shown that L-Opt is optimal in the model where
hotlinks may only point to leaves, and where the maximum number of out-
going hotlinks is specified by a function K : V → IN 0. In the preceding
sections of this chapter we have demonstrated for K = 1 that in practice,
despite O(n3) worst case running time, an efficient implementation of that
algorithm is faster than most other hotlink assignment methods.

For investigating the behavior of L-Opt for larger numbers of outgoing
hotlinks, we consider constant functions K = 1, . . . , 15. Figures 5.13 and 5.14
exemplarily show the behavior of runtime and path length on four selected
instances. Apparently, the runtime grows linearly with K. This is what one
would expect from the worst case of O(n2

∑

v∈V K(v)).
Figure 5.14 visualizes the benefit of allowing more hotlinks to start in the

nodes. The curves show that the path length decreases only logarithmically
with K. As a larger number of hotlinks not only increases the runtime of the
assignment algorithm, but also reduces the clearness of web pages, one can
conclude that only small values of K are advisable in practice.
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5.4 Summary and Conclusion

We summarize the most important findings of our study.
Algorithm PMin computes better solutions than all approximation algo-

rithms with known performance guarantees except for the PTAS. It is easy to
implement, but the running time is quite high compared to other strategies.

The Greedy strategy also exhibits a very good performance. It is slightly
worse than PMin in practice, but the guaranteed approximation ratio of 2
concerning the gain is what makes this algorithm a good choice. It is also
easy to implement and runs faster than PMin.

Although the path length seems to be the more natural optimization term,
strategies tailored to approximate it are not the first choice in practice. The
Centipede algorithm has a very high running time. As the quality of its
solutions is only moderate, this algorithm is only advisable if for some reason
one wants a guaranteed approximation factor of 2 for the path length.

Algorithm H/Ph and HeavyPath exhibit the worst performance among
all algorithms studied in this work. Anyhow, HeavyPath is extremely fast,
making it interesting for quickly computing hotlink assignments for large
trees. L-Opt is also one of the fastest algorithms and, in terms of solution
quality, it is significantly better than HeavyPath.

For small values of h, Lpath is outperformed by Greedy and PMin. So
this PTAS is only recommendable in practice for h > 3.
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Chapter 6

Conclusion and Outlook

In this thesis we have established a number of new theoretical and practical
results regarding the Hotlink Assignment Problem.

In Chapter 2, we have proven that it is NP-complete to decide whether
there is a 1-hotlink assignment for a given tree that achieves a given gain
value. In retrospect, this has been the most challenging part of our theoretical
work. We remark that the leaves of the tree instances we reduce to carry
weights that are exponentially large, i.e., it is still open whether there exists
a pseudopolynomial optimal algorithm for the problem. In contrast, the
Hotlink Assignment Problem for DAGs is known to be strongly NP-hard
[BKK+00] in the clairvoyant user model.

In Chapter 3, we have given a polynomial time optimal algorithm L-Opt
for the case that hotlinks may only end in leaves. The experiments described
in Chapter 5 have shown that, regarding solution quality, this is typically
not a severe restriction. Furthermore, a careful implementation of L-Opt
is faster than most approximation algorithms for the general model. So, in
applications where hotlinks pointing to internal nodes might be confusing for
the users, L-Opt is certainly the algorithm of choice.

An alternative approach would be to consider the leaf-restricted model
as a weighted bipartite matching problem. One issue for future research
is to investigate if this approach yields an algorithm improving upon the
worst-case and/or practical runtime of L-Opt.

We have presented approximation algorithms for the path length and the
gain in Chapter 4. More precisely, we have proven the existence of a PTAS
in terms of the gain, and we have given a 2-approximation in terms of the
path length. Therefore, some gaps concerning the approximability remain.
In particular, it is not known yet if there is a constant factor approximation
in terms of the path length for the K-Hotlink Assignment Problem.

Unlike previous papers [FKW01, KKS04, DL05, DL06], we have not em-
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ployed the entropy bound (cf. Chapter 1.4.2) in our analyses. For any fixed
value of ∆, there are simple instances of ∆-ary trees where it is not possible
to achieve a path length less than H(p). As the entropy bound for ∆-ary
trees is H(p)/ log(∆+1), it is impossible to prove a constant approximation
factor by comparing some global upper bound on the path length achieved
by an algorithm to the entropy bound. The experiments from [CKK+03] and
Chapter 5 demonstrate that algorithms tailored to approximate the entropy
are dominated by other simple hotlink assignment methods also in practice.

Instead, our analyses are based on a tool set of three new hotlink modifi-
cation operations that might be similarly useful in future work. Note however
that these operations require each node to have the same maximum number
of outgoing hotlinks. This is a reason why there is no approximation algo-
rithm yet known for the model where the number of hotchildren is specified
by an arbitrary function K : V → IN0.

The path length and the gain of a hotlink assignment for a tree T always
sum up to p(∅, T ). Therefore, the path length of an assignment is strictly
decreasing in its gain. This observation enables us to easily combine different
approximation methods. For example, an algorithm that chooses the best
HLA between Greedy(T ) and Centipede(T ) is a 2-approximation in terms
of both performance measures.

The latter idea can be carried over to practice. In Chapter 5, we have
demonstrated that, regarding solution quality, the heuristic PMin outper-
forms nearly all algorithms with provable worst case approximation ratios.
So, for example, by choosing the best assignment between those computed
by PMin, Greedy, and Centipede, one would obtain a solution which has
the quality of PMin and is guaranteed to be a 2-approximation in terms of
both the gain and the path length.

Although large web sites typically have a hierarchical structure, it is
reasonable to ask whether the results for trees can be extended to general
graphs. Unfortunately, the question has to be answered negatively regarding
the greedy user model. As mentioned in the introduction, the greedy model is
not even well-defined for graphs. In our opinion, there is no straightforward
way to model user behavior here. We outline three main possibilities.

The first possibility is to resort to the clairvoyant user model. Here,
computing an optimal hotlink assignment is strongly NP-hard [BKK+00],
and the natural greedy heuristic yields an approximation factor of 2 in terms
of the gain [MP03]. The main drawback of the clairvoyant model is that
it is rather unrealistic with respect to users of web graphs. There could
however be applications where shortest paths are indeed taken. Examples
are computer networks, road networks, or electric circuits.

The second way to model user behavior is to assume that users visiting
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a node v all take the same unique path from the root to v. The union of
all these paths is not necessarily a tree, but it is questionable if the non-tree
case ever occurs in practice.

The third possibility emerges from the second one by considering user be-
havior as nondeterministic. For any target node v, the user chooses between
a number of alternative paths from the root to v. Here the gain of a hotlink
(u, v) is the product of the probability with which a user travels from u to
v and the expected length of the corresponding path. This seems to be the
most realistic model, but it is also the most complicated one. Furthermore,
the web server would have too keep track of the probabilities for a very large
(possibly exponential) number of alternative paths, which is not practica-
ble. A possible simplification is to assume that the event of a user clicking
a hyperlink (u, v) is independent from the path the user has taken to reach
node u. In that case it suffices that the web server logs the access frequencies
of the pages and the frequencies with which the hyperlinks are clicked. The
downside is that now the objective function is rather complicated. The input
data corresponds to a Markov chain, and a system of linear equations has to
be solved in order to determine the gain of even a single hotlink.

A different generalization which also makes sense when the input graph
is a tree is to assume that users take hotlinks only with a certain probability
γ. We believe that this extra parameter adds more realism to the greedy
model. Note that virtually any hotlink (u, v) of an assignment has a positive
probability of being taken unless γ = 0 or γ = 1, so a feasibility restriction
like Definition 1.1 is not reasonable here. Optimal solutions can be computed
by an adapted version of the algorithm proposed in [PLdS04a, GKMP03],
whose runtime is exponential only in the tree depth. To investigate whether
the known approximation algorithms can also be generalized that way is
another task to be addressed in future work.
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