
Resistive Bridging Faults
Defect-Oriented Modeling and

Efficient Testing

Dissertation zur Erlangung des Doktorgrades der
Technischen Fakultät der Albert-Ludwigs-Universität

Freiburg im Breisgau

vorgelegt von

Piet Engelke

Januar 2009

Institut für Informatik ·Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 51 ·D-79110 Freiburg im Breisgau

Dekan: Prof. Dr. Hans Zappe
Albert-Ludwigs-Universität, Freiburg im Breisgau

Erstreferent: Prof. Dr. Bernd Becker
Albert-Ludwigs-Universität, Freiburg im Breisgau

Zweitreferent: Dr. Michel Renovell
Directeur de Recherche CNRS
Laboratoire d’Informatique, de Robotique et de
Microélectronique de Montpellier, Montpellier

Datum der Promotion: 27. März 2009

Zusammenfassung

Resistive Bridging Faults –
Defektorientierte Modellierung und effizienter Test
Die vorliegende Dissertation beschäftigt sich mit defektorientiertem Test widerstandsbe-
hafteter Kurzschlussdefekte. Die Auswirkung dieser Defekte auf das Verhalten digitaler
Logikschaltungen wird durch das von Renovell et al. in [152, 154] vorgestellte Fehlermo-
dell für widerstandsbehaftete Brückenfehler (engl. resistive bridging fault (RBF) model)
beschrieben. Das Modell hat Gültigkeit für Schaltungen in komplementärer Metall-Oxid-
Halbleitertechnologie (CMOS) und ist auf statischen Spannungstest ausgerichtet. In dieser
Arbeit wird das Modell von Renovell et al. in mehrerer Hinsicht erweitert. Dadurch kann
die Testbarkeit widerstandsbehafteter Kurzschlussdefekte signifikant verbessert werden.
Die Erweiterungen betreffen zum einen die Fehlermodellierung als solche, wodurch das Ein-
satzspektrum des Modells deutlich vergrößert wird. Zum anderen wird auf die Entwicklung
leistungsfähiger Algorithmen und Programme eingegangen. Mit Hilfe der hier diskutierten
Programme ist es möglich, widerstandsbehaftete Kurzschlussdefekte in Schaltkreisen von
praktisch relevanter Größe effizient zu testen. Des Weiteren demonstrieren umfassende
Experimente, wie das in dieser Arbeit erweiterte Fehlermodell für widerstandsbehaftete
Brückenfehler gewinnbringend in weiten Bereichen des Schaltungstests eingesetzt werden
kann.

Die hier vorgestellten Erweiterungen des Fehlermodells für widerstandsbehaftete Brücken-
fehler betreffen unterschiedliche Aspekte. Es wird beschrieben, wie die elektrische Kom-
ponente des Modells an die Eigenschaften zweier aktueller CMOS-Prozesstechnologien
angepasst werden kann. Damit ist die Anwendung des Modells auf Schaltungen neuester
Bauart möglich. Zugleich verdeutlicht dies, dass das Modell dank seiner Anpassungs-
fähigkeit mit der ständig fortschreitenden technischen Entwicklung Schritt halten kann.
Weiterhin wird die elektrische Komponente des Modells so erweitert, dass sich die Ein-
flüsse der Versorgungsspannung und der Umgebungstemperatur auf die Auswirkungen
des Kurzschlusses exakt modellieren lassen. Dadurch ist es möglich, die Wirksamkeit
von Teststrategien zu untersuchen, bei denen die Versorgungsspannung (engl. low-voltage
testing) und die Umgebungstemperatur (engl. low-temperature testing) moduliert wer-
den. Des weiteren wird ausgeführt, wie sich das Modell um die Möglichkeit ergänzen
lässt, neben dem Spannungstest auch die Entdeckbarkeit von Kurzschlussdefekten im
Rahmen eines Ruhestromtests (engl. Iddq testing) zu evaluieren. Schließlich erlauben es
die hier vorgestellten neuartigen Metriken zur Berechnung der Fehlerüberdeckung, die ver-
schiedenen Testverfahren für widerstandsbehaftete Kurzschlussdefekte exakt miteinander
zu vergleichen.

iii

Zusammenfassung

Eine Grundvoraussetzung für den praktischen Einsatz eines Fehlermodells für wider-
standsbehaftete Kurzschlussdefekte ist die Existenz leistungsfähiger Fehlersimulatoren und
automatischer Testmustergeneratoren (ATPG), die auf Grundlage dieses Modells arbeiten.
Die vorliegende Arbeit präsentiert mehrere effiziente Algorithmen dank derer sich solche
Programme realisieren lassen. Es wird gezeigt, wie sich die sogenannte Sectioning-Methode
(engl. sectioning technique), die von Shinogi et al. [174] für widerstandsbehaftete Brücken-
fehler entwickelt wurde, mit einem bitparallelen Fehlersimulationsverfahren kombinieren
lässt. Diese Kombination kommt in dem in dieser Arbeit beschriebenen Simulator Utilizing
Parallel Evaluation of Resistive Bridges (SUPERB) zum Einsatz. Dieser Fehlersimulator
ist deutlich schneller als alle vergleichbaren Programme und erlaubt die Verarbeitung von
Fehlerlisten realistischer Größe für Schaltungen mit mehreren Millionen Gattern. Auf dem
Gebiet der Testmustererzeugung wird das Programm RBF-ATPG vorgestellt. Dieses ist
das erste Programm seiner Art, welches in der Lage ist Testmustersätze zu erzeugen, die
Kurzschlussdefekte für alle entdeckbaren Widerstandsbereiche testbar machen. RBF-ATPG
vereint die Sectioning-Methode mit einem Algorithmus zur Testmustererzeugung, der auf
einer Prozedur zur Lösung des Erfüllbarkeitsproblems der Aussagenlogik (SAT) basiert.
Ausgehend von den mittels RBF-ATPG berechneten entdeckbaren Widerstandsbereichen
ist es nun möglich, die exakte Fehlerüberdeckung für widerstandsbehaftete Brückenfehler zu
ermitteln. Weiterhin werden auf formalem Wege Bedingungen hergeleitet, unter denen sich
eine bestimmte Klasse von widerstandsbehafteten Brückenfehlern garantiert entdecken lässt.
Testmustererzeugung für diese Klasse von Fehlern wird auf Grundlage dieser Bedingungen
deutlich vereinfacht.

Um den Nutzen der Erweiterungen des Fehlermodells und der Programme SUPERB und
RBF-ATPG zu unterstreichen, wird in der vorliegenden Arbeit eine Vielzahl von Experi-
menten durchgeführt. Diese untersuchen unter anderem die Wirksamkeit von low-voltage
und low-temperature Tests. Auf Grundlage der gewonnenen analytischen Ergebnisse
werden Richtlinien angegeben, welche es ermöglichen, die Vorzüge der jeweiligen Tech-
nik optimal auszunutzen. Weitere Experimenten stellen Spannungs- und Ruhestromtest
gegenüber. Auch in diesem Bereich lassen sich dank der in dieser Arbeit beschriebenen
Erweiterungen die optimalen Anwendungsgebiete für jede der beiden Techniken analytisch
feststellen. Darüber hinaus wird ein Experiment dargelegt, welches die Auswirkungen
zweier Verfahren für den Selbsttest (engl. built-in self test, BIST) auf die Entdeckbarkeit
von Defekten untersucht. Mit Hilfe der hier gezeigten Vorgehensweise lässt sich allgemein
für Selbsttestverfahren bewerten, inwieweit sie die Entdeckbarkeit von Defekten beein-
flussen. Schlussendlich wird evaluiert wie häufig widerstandsbehaftete Kurzschlussdefekte
sogenannte Doppelfehler (engl. double error) hervorrufen. Die hierbei gewonnenen Ergeb-
nisse sind insbesondere für die Analyse von Techniken zur Verbesserung der Fehlertoleranz
von großem Interesse.

iv

Acknowledgements

This work could only be completed successfully with the help of several people – I highly
appreciate their contribution.

Most notably, I would like to express my gratitude to my supervisor, Prof. Dr. Bernd
Becker, for the invaluable support which he has provided me during the course of this
research. He created the excellent environment which made working at the University of
Freiburg a stimulating and enjoyable experience.

My special thanks are due to the external examiner of this thesis, Dr. Michel Renovell, for
the numerous discussions which provided profound insight into the modeling of resistive
shorts. Without his contributions my research would not have been possible.

I also wish to extend special thanks to Dr. Ilia Polian for the very fruitful collaboration
and for checking the manuscript. His creativity and scientific curiosity heavily influenced
the direction of my research.

Furthermore, I would like to thank all my colleagues from the computer architecture
group. In particular, Matthew Lewis, who proof-read the manuscript with special diligence.
Last but not least, I want to thank my family, my girlfriend, and all my friends for their
encouragement and constant support.

Freiburg im Breisgau, March 2009 Piet Engelke

v

Acknowledgements

vi

Contents

1 Preface 1
1.1 Contributions . 2
1.2 Structure of the Thesis . 3

2 Preliminaries 5
2.1 Digital Circuits . 5

2.1.1 Combinational and Sequential Circuits 5
2.1.2 Implementation of Digital Circuits 9
2.1.3 Levels of Abstraction . 12

2.2 Testing of Digital Circuits . 13
2.2.1 General Terminology . 14
2.2.2 Testing of Sequential Circuits . 15
2.2.3 Stuck-At Faults . 16
2.2.4 Built-In Self Test . 17

I Bridging Fault Models 19

3 Fundamentals of Bridging Faults 21
3.1 Basic Properties and Terminology . 21
3.2 Bridging Fault Model Classification . 23
3.3 Bridging Fault Extraction . 25

4 Non-Resistive Bridging Fault Models 29
4.1 Simple Logic Models . 30

4.1.1 Wired-Logic And Dominance-Behavior Models 30
4.1.2 The 4-way Model . 32

4.2 Technology-Based Models . 33
4.2.1 The Voting Model . 35
4.2.2 The Biased Voting Model . 36

4.3 Generalized Logic Models . 38
4.3.1 The Unified Model . 39
4.3.2 The Precise Test Generation Model 42

5 The Resistive Bridging Fault Model 45
5.1 Introduction of the Resistive Bridging Fault Model 46

vii

Contents

5.2 Calculating Critical Resistances . 49
5.2.1 General Framework . 50
5.2.2 Technology-Specific Models . 51

5.3 Analogue Detectability Intervals . 59
5.4 Fault Coverage Metrics . 60
5.5 Fault Effect Propagation . 65

5.5.1 Interval-Based Technique . 66
5.5.2 Sectioning Technique . 68
5.5.3 Feedback-Bridging Faults . 72
5.5.4 Occurrence of Double Errors . 74
5.5.5 Double Observation of Two Successor Bridging Faults 76

6 Summary and Discussion of Part I 81

II Applications of the Resistive Bridging Fault Model 83

7 SUPERB – A Resistive Bridging Fault Simulator 85
7.1 Efficient Simulation of Resistive Bridging Faults 86

7.1.1 Fault List Preprocessing and Data Storage 87
7.1.2 Fault Simulation Procedure . 89

7.2 Experimental Results . 92
7.3 Conclusions . 97
Experimental Data . 98

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults 103
8.1 ATPG for Resistive Bridging Faults . 105

8.1.1 Example: Deriving Test Patterns for Circuit 106
8.1.2 ATPG Algorithm in Detail . 109

8.2 Experimental Results . 112
8.2.1 Evaluation of n-Detection and 4-way Test Vectors 117
8.2.2 Test Pattern Generation for Different Technology Models 119

8.3 Conclusions . 121
Experimental Data . 122

9 Advanced Testing Methods 127
9.1 Low-Voltage and Low-Temperature Testing 128

9.1.1 Extensions of the Resistive Bridging Fault Model 130
9.1.2 Experimental Results . 137
9.1.3 Coverage Loss by Low-Voltage Testing 143

9.2 Delta-Iddq Testing . 146
9.2.1 Extensions of the Resistive Bridging Fault Model 148
9.2.2 Delta-Iddq Testing of Sequential Circuits 153
9.2.3 Experimental Results . 155

9.3 Conclusions . 158
Experimental Data . 159

viii

Contents

10 Benchmarking BIST Techniques 171
10.1 Detection of Non-Target Defects by Deterministic Logic BIST 172

10.1.1 Deterministic Logic BIST with Bit-Flipping 173
10.1.2 Experimental Results . 176

10.2 Non-Target Defect Coverage Impact of X-Masking 179
10.2.1 The X-Masking Logic . 180
10.2.2 Experimental Results . 183

10.3 Conclusions . 188
Experimental Data . 189

11 Summary and Discussion of Part II 193

Concluding Remarks 195

Author’s Publications 197

Bibliography 201

List of Algorithms 215

List of Figures 217

List of Tables 221

ix

Contents

x

1 Preface

In today’s world electronic devices are virtually omnipresent. The application of integrated
circuits (IC) is no longer limited to only “traditional” computers. Almost unnoticed ICs
also became the central component of many “ordinary” appliances such as dish washers
and coffee machines. All this is possible thanks to constant miniaturization of the IC
manufacturing technology. The downside of this impressive growth in complexity is that
assuring IC quality becomes more and more difficult. Low numbers of defective parts per
million (DPM) are critical for the commercial success of a product. In many application
domains, IC quality and reliability is even vital for the safety of the customers. One of the
key manufacturing steps, which screens defective parts and thus guarantees IC quality, is
test. Traditionally testing of digital circuits relies on the stuck-at fault model. Yet, for
many years it has been known that a lot of defects are not adequately represented by this
fault model [5, 43, 66, 79, 109, 131]. Unfortunately, the deficiency of the stuck-at fault
model is even intensified by the constant miniaturization of integrated circuits.

Defect-oriented or defect-based testing [109, 169] is a systematic methodology to derive
accurate fault models which closely match the behavior of actual defects occurring in the
IC manufacturing process. According to [163] a defect is defined as follows:

“Defects are undesired features in the silicon layer structure of an IC. They
can take form of missing or extra pieces of material, as well as of random and
systematic shifts in the outcome of the semiconductor process.”

The class of local defects which is provoked by extra or missing material is often referred
to as spot defects [163]. The inductive fault analysis (IFA) developed by Shen et al. [172]
can be used to extract the most likely spot defects from the design of an integrated circuit.
Furthermore, this technique allows to inductively construct a fault model from the defects
observed in the IC. By IFA and related techniques it could be proven that one particularly
prominent class of spot defects are the so-called shorts [45, 51]. This type of defect creates
an unwanted connection between two or more conducting elements of the circuit. The
impact of shorts on circuit behavior is represented by the resistive bridging fault (RBF)
model which has been proposed by Renovell et al. in [152, 154].

This doctoral thesis aims at extending the resistive bridging fault model and explores
potential application domains.

1

1 Preface

1.1 Contributions

In the following we present our contributions to defect-oriented testing of resistive shorts.
We significantly improved the testability of these defects by enhancing the resistive bridging
fault model, devised by Renovell et al., in several aspects. On the one hand we evolved the
model, thus extending its scope of application. On the other hand we developed efficient
algorithms and high-performance tools. These tools enable testing of resistive shorts in
circuits of practically relevant size. Our extensive experiments demonstrate the benefits of
the resistive bridging fault model in numerous application domains.

Our contributions to the core of the resistive bridging fault model cover several aspects.
We transferred the model’s versatile electrical framework to two recent technology nodes.
This enables application of the model to current integrated circuits. At the same time, we
demonstrated that its versatility allows the model to keep pace with technological progress.
Furthermore, we extended the electrical framework to account for the impact of variable
operating temperature and power supply voltage during test application. Hence, we are
able to analyze the effectivity of low-voltage and low-temperature testing strategies in
the coverage of resistive shorts. Moreover, we expanded the capabilities of the resistive
bridging fault model to quiescent current testing. Thus, we can now directly compare
voltage and quiescent current testing within the same analytical frame. Several novel
fault coverage metrics are introduced to accurately evaluate the various testing options for
resistive shorts.

A refined fault model for resistive shorts can only be of value if there are tools implementing
test generation and fault simulation for that model. For this purpose we developed several
efficient algorithms. We combined the well-known sectioning technique, which maps resistive
bridging faults to stuck-at faults, with a bit-parallel fault simulation engine. This algorithm
is implemented in our novel, high-performance Simulator Utilizing Parallel Evaluation of
Resistive Bridges (SUPERB). We demonstrated that the resistive bridging fault simulator
SUPERB is substantially faster than competing state-of-the-art tools for the same fault
model. SUPERB enables accurate resistive bridging fault simulation of multi-million
gate designs for fault lists of realistic size. Furthermore, we considerably advanced test
pattern generation for resistive bridging faults by our tool RBF-ATPG. This automatic
test pattern generator (ATPG) is the first tool of its kind which is able to determine test
vectors covering resistive shorts for all detectable resistance ranges. RBF-ATPG combines
the sectioning technique with an ATPG procedure which exploits a solver for Boolean
satisfiability problems (SAT). Based on the data provided by RBF-ATPG, it is now possible
to compute exact fault coverages for resistive bridging faults. We were also able to formally
derive conditions that guarantee detection of a certain class of resistive bridging faults.
Accounting for these conditions drastically simplifies test pattern generation for that class
of faults.

We have exploited the opportunities provided by SUPERB and RBF-ATPG to perform
numerous experiments. We explored the effectivity of low-voltage testing, low-temperature
testing, and their combination. Based on our analytical results we derived guidelines
for optimal use of each technique. Furthermore, we contrasted voltage and quiescent

2

1.2 Structure of the Thesis

current testing exposing the strengths and weaknesses of each technique. Additionally,
we scrutinized the defect detection capabilities of two built-in self test (BIST) techniques.
Our procedure may serve as a prototype for a methodology which optimizes the defect
detection of BIST architectures. Finally, we investigated the occurrence of double errors
induced by resistive bridging faults. Our results have significant influence on the analysis
of fault-tolerance techniques.

1.2 Structure of the Thesis

After a general introduction to the field of testing in Chapter 2, the main part of this thesis
covers the particularities of bridging faults. The main part is structured into two units.
These parts do not differ in their principal topic, rather they both deal with bridging faults.
Yet, they approach the topic from two different perspectives.

In Part I we focus on the defect-oriented modeling of resistive shorts. First, in Chapter 3,
we give a basic introduction to the terminology commonly used to qualify shorts and their
impact on circuit behavior. There, we will also lay the groundwork which allows us to
evaluate the bridging fault models to be discussed afterwards. Furthermore, we highlight
techniques that identify areas of the circuit which are potentially vulnerable to shorts.
Subsequently, Chapter 4 reviews the non-resistive bridging fault models. These conventional
models do not explicitly account for the intrinsic resistance of a short. Instead, some of them
assume this resistance to be negligible even though it has been proven that a substantial
number of shorts has non-zero resistance. Other models try to implicitly represent a short’s
behavior for any possible intrinsic resistance. We cover several bridging fault models
proposed in literature. In the course of our discussion, it will turn out, that neglecting
a short’s resistance substantially compromises modeling accuracy. Therefore, in Chapter
5 we will focus on the resistive bridging fault model. This parametric model explicitly
regards the whole continuum of the intrinsic short resistance. We will demonstrate that
by parametrizing the resistance, the modeling accuracy is improved considerably. At the
same time, however, the model’s revolutionary parametric approach imposes fundamental
changes on the meaning of testing concepts such as fault coverage and redundancy. Hence,
we will explain how Renovell et al. fitted these concepts to the requirements of the
resistive bridging fault model. Likewise, the handling of resistance dependent fault effects
is nontrivial. Currently, there are two major approaches to tackle this problem: the
interval-based and the sectioning technique. In particular, the latter technique is of great
importance for the second part of this thesis.

The core of the resistive bridging fault model is founded by a sophisticated electrical
framework. We adapted this framework to two new circuit technology nodes. This
adaption is detailed in Chapter 5 as well. There, we also report on our findings on the
number of double errors induced by resistive bridging faults. Furthermore, we formulate
necessary conditions for guaranteed detection of a certain class of resistive shorts. Finally,
Chapter 6 summarizes the insights we gained in Part I.

3

1 Preface

In Part II we bring testing of resistive shorts into focus. In this part, the efficient algorithms,
which enable the integration of the resistive bridging fault model into serviceable tools,
are of particular importance. Yet, we also discuss in which way several defect-oriented
testing techniques may be exploited for resistive shorts. This is the part of this thesis
in which most of our contributions are covered. In Chapter 7 we introduce our high-
performance resistive bridging fault simulator SUPERB which renders accurate simulation
of multi-million gate designs possible. There, we will detail the algorithms which efficiently
combine the sectioning technique with bit-parallel simulation techniques. Chapter 8
introduces RBF-ATPG, our test pattern generator for resistive bridging faults. This
chapter thoroughly describes the techniques we have developed to allow the computation
of the detectable resistance range of a resistive bridging fault. In the succeeding Chapter
9, we will demonstrate how the electrical framework of the model can be extended to
evaluate low-voltage, low-temperature, and quiescent current testing. There, we will also
define several fault coverage metrics which enable us to exactly quantify the benefits of
these techniques. Subsequently, in Chapter 10, we will explore whether built-in self test
techniques impact the coverage of non-target defects. We employ resistive bridging faults as
a surrogate for these defects. Finally, Chapter 11 summarizes our contributions presented
in Part II.

The Chapter “Concluding Remarks” completes this thesis and sketches several open
questions. A compilation of our publications can be found in the Chapter “Author’s
Publications” located in the back of this thesis.

4

2 Preliminaries

This chapter is meant to serve as a brief introduction to the fundamental concepts of digital
circuit testing. These concepts are a prerequisite to understand the main part of this thesis.
We decided to separate this introduction from the main part as the separation enables the
reader to consult a dedicated chapter to look up repeatedly used terms. Advanced concepts
and techniques, however, which are only referenced in some chapters, are introduced at
first use. Hence, a reader who is familiar with the basics of testing may wish to directly
continue reading Part I.

Testing of digital circuits is a well understood discipline with a mature theoretical back-
ground. Elaborating every aspect of this field would be far beyond the scope of this
thesis. Similarly, it would be cumbersome to detail the theoretical background as this
would add complexity, rather than insight. Therefore, we will give an intuitive but concise
introduction to testing. Readers who are interested in learning more about the field are
directed to one of the many good text books on testing, e.g. [1, 21, 77]. In the following,
we fill first introduce digital circuits in Chapter 2.1. There we will highlight the basic terms
and describe the construction principles of digital logic circuits. Then we will switch to
testing of digital circuits in Chapter 2.2. After a general introduction this chapter will
review the most relevant concepts.

2.1 Digital Circuits

As the principal topic of this thesis is the testing of digital circuits, it is critical that we
provide our understanding of this term. Chapter 2.1.1 informally introduces combinational
and sequential digital circuits. The chapter also establishes the basic concepts used to
describe the components of digital circuits. We will focus on circuits constructed in the
complementary metal-oxide-semiconductor (CMOS) technology. The basic principles of this
technology are reviewed in Chapter 2.1.2 (more information can be found in e.g. [10, 201]).
As the structure of digital circuits is very complex, several levels of abstraction are used to
reduce complexity – they are summarized in Chapter 2.1.3.

2.1.1 Combinational and Sequential Circuits

In the context of this thesis we will regard digital circuits as devices which process Boolean
logical values, i.e. values from the set B = {0, 1}, sometimes also referred to as bits. A

5

2 Preliminaries

Table 2.1: Symbols of different types of logic gates.

Symbol Name Symbol Name

NAND XNOR

AND XOR

NOR NOT

OR BUF

combinational circuit expects a set of logical values at its primary inputs (PI). The circuit
maps these values to a set of logical values which can be observed at its primary outputs
(PO). Let the combinational circuit C have n primary inputs and m primary outputs.
The Boolean function computed by C is defined as fC : Bn → Bm. Digital circuits are
implemented using one or more logic gates, each of which calculates a Boolean function.
The function computed by a gate is dependent on its type. A gate library is a collection
of gate types. In general, the gate library is provided by the manufacturer of the circuit
(e.g. a foundry). When constructing a circuit, we are only allowed to use those gate types
which are contained in the respective gate library.

In the following, we will assume a small gate library that contains the standard gate types,
which in general we can expect to be part of every larger industrial gate library. Table
2.1 lists some of the gate types which we will consider. Columns labeled “Symbol” denote
the graphical representation used in all figures; columns labeled “Name” state the name
of the respective gate type. For all gates listed in the two leftmost columns of the table,
i.e. NAND, AND, NOR, and OR, we will also allow instances with more than two inputs.
Occasionally we will refer to the NOT gate as to an inverter. Furthermore, our gate
library contains a primary input and a primary output which represent the connection of
a circuit to its environment. A primary input has no inputs and one output and feeds
a logical value supplied by the environment into the circuit. Hence, primary input i,
where 1 ≤ i ≤ n, provides the i-th component xi ∈ B of the bit-string (x1, . . . , xn) to
be processed by the circuit. Inversely, a primary output exhibits only one input and no
output. A primary output makes a logical value computed by the circuit accessible to the
environment. Primary output j, where 1 ≤ j ≤ m, makes the j-th component zj of the
bit-string (z1, . . . , zm) observable to the environment. We say output (z1, . . . , zm) has been
computed by the circuit in response to the bit-string (x1, . . . , xn) assigned to its primary
inputs.

Figure 2.1(a) depicts a combinational circuit C with three primary inputs in1, in2, and in3

and two primary outputs out1, and out2. Primary inputs and outputs are indicated by a
small square symbol. Furthermore, the circuit consists of three logic gates A, B and C. In
combination, the logic gates compute the following function (where ¬, ∨, and ∧ represent

6

2.1 Digital Circuits

in1
out1

out2
in2

in3

1

2

3

4

5

6

7

8
A

a
C

B

a0 a2

a1 B

C
in1

in2

out1
Fclk

Y

y

B

CA

out1

a

(a) (b)

Figure 2.1: Example of (a) combinational and (b) sequential circuit.

NOT, OR, and AND operations, respectively): fC = (¬(in1 ∨ (in2 ∧ in3)),¬(in2 ∧ in3)).
We associate a circuit node with the output of every logic gate (this includes the primary
inputs). Each circuit node is connected to exactly one gate output – we say the node is
driven by that output – and to one or more gate inputs. The connection between a gate’s
output and a circuit node is referred to as stem. Each connection between a circuit node
and a gate input is called a fanout branch. In Figure 2.1(a) the stem of node a is indicated
as a0, its two fanout branches are marked by a1 and a2, respectively.

If we assign the bit-string (0, 0, 1) to the primary inputs in1, in2, and in3 of our example
circuit, the logical values (1, 1) computed according to function fC will be observable at
its primary outputs out1 and out2. To obtain this result we have to propagate the logical
assignments through the circuit visiting the gates in topological order. Propagation for a
gate g means that we apply the Boolean function associated with g to the logical values
observed at the nodes which are connected to the inputs of g. Subsequently, we assign the
resulting logical value to the node driven by the output of g. The topological order tC of
a circuit C is a mapping which enumerates all gates G contained in C, i.e. tC : G → N.
Function tC for a gate g ∈ G is defined such that for all gates g′ ∈ G, that are driving
nodes directly connected to the inputs of g, it holds that tC(g′) < tC(g). Gates without
inputs are assigned the lowest topological number that is so far unallocated. A possible
topological order for the gates in our example circuit from Figure 2.1(a) is indicated by
the numbers in circles.

We will use the term path to denote a well-defined sequence of logic gates which are
connected via nodes. A path starts at the output of a logic gate and ends at a primary
output. In the circuit from 2.1(a), primary input in2, gates A and B, and the primary
output out1 are on a path. A fanout cone associated with a gate g subsumes all gates lying
on any arbitrary path which starts at g and ends at some primary output. The fanout
cone of gate A in the circuit from 2.1(a) encompasses gates B and C and primary outputs
out1 and out2.

A sequential circuit is a circuit which contains memory elements, i.e. so-called flip-flops.
Figure 2.1(b) illustrates such a circuit with flip-flop F . We assume that this special gate
type is also contained in our gate library. Just like combinational circuits the sequential
ones process Boolean values provided at their primary inputs. The output of sequential

7

2 Preliminaries

C...

x1

FF1FFj FF2...
z1

...

...

...

y 1

Y 1

next
state

present
state

pr
im

ar
y

in
pu

ts

pr
im

ar
y

ou
tp

ut
s

pseudo
primary inputs

pseudo
primary outputs

y 2y j

Y 2Y j

x2

xn

z2

zm

Figure 2.2: Model of a synchronous sequential circuit S.

circuits is, however, not only dependent on those input values but also on the circuit’s
internal state, i.e. the logic values stored in the flip-flops. The sequential circuit from
Figure 2.1(b) is very similar to the one depicted in 2.1(a). Yet, in contrast to the latter
combinational circuit, the logical value computed by gate C is not observable at a primary
output. Rather, the value is stored in flip-flop F which is connected to C via node Y . Gate
F drives node y and thus feeds the stored logical value back into the circuit to the upper
input of gate B. The flip-flop only stores a value if the clock signal clk is active otherwise
it will provide the retained logical value.

To compute the response of our sequential circuit to an assignment to its primary inputs,
we have to know the value stored in flip-flop F . For the moment we will assume that F
retains logical value 0 and that (0, 1) is assigned to primary inputs in1 and in2. Then, a
logical value 1 will be observable at the circuit’s primary output out1. Furthermore, logical
value 1 is driven at the input of flip-flop F . If we now activate clock signal clk, gate F
will replace its former contents by the new logical value 1. Provided that we keep the
input assignment (0, 1) constant, logical value 0 will now be observable at primary output
out1. If we neither can make assumptions about the contents of a flip-flop nor are able to
control its contents (e.g. by performing a reset operation), we say that the flip-flop stores
an unknown value. The unknown value, often denoted by symbol “X”, can represent either
logical value 0 or 1. If an unknown value is stored in flip-flop F of our example circuit
and we continue to assign (0, 1) to its primary inputs, the value observable at the primary
output will be unknown as well.

In the following, we will restrict the class of sequential circuits to synchronous sequential
circuits. These are circuits in which all flip-flops are controlled by a clock signal. To
model a synchronous sequential circuit, we separate the flip-flops from the combinational
(core) logic. Now, we assume that the flip-flops are replaced by ideal memory elements.
Controlled by the clock signal, these elements either store the logical values provided by
the combinational core or feed their contents back into the core. This concept is illustrated
in Figure 2.2 for circuit S with n primary inputs, m primary outputs, and j flip-flops
FF 1,FF 2, . . . ,FF j. The outputs y1, y2, . . . , yj of the flip-flops serve as pseudo primary

8

2.1 Digital Circuits

G

S

D

B G

S

D

B

(a) (b)

Figure 2.3: Symbol of (a) p-channel and (b) n-channel MOS-FET.

inputs (PPI) to the combinational core C of S. They provide the current content of the
memory elements which is processed by the combinational core C. When the clock is active,
the values present at flip-flop inputs Y1, Y2, . . . , Yj are stored in the memory elements.
These inputs are treated as pseudo primary outputs (PPO) of the combinational core,
which take the “present state” of the circuit. Subsequently, the new content of the memory
elements, i.e. their “next state”, is fed back into the circuit. The function computed by the
combinational core C of circuit S with j flip-flops can be written as fS : Bn+j → Bm+j.

Up to now, we have only discussed how circuits operate in the domain of Boolean values.
Yet, there is also a time aspect to their operation. Each gate requires a certain amount
of time, called propagation delay, for the gate’s output to respond to a change of the
logical values assigned to the gate’s inputs. In general, the propagation delay is specified
as a range rather than a fixed value and is given individually for each gate type. The
signal propagation delay is the time elapsing until the primary outputs of a circuit have
stabilized to correct logical values in response to a change of the logical values assigned
at the circuit’s primary inputs. The signal propagation delay must be larger than the
maximal total propagation delay on any path from a (pseudo) primary input to a (pseudo)
primary output. In sequential circuits, the signal propagation delay determines the clock
cycle, i.e. the phase in which the clock signal toggles once between active and inactive
state. This in turn dictates the frequency at which new logical values are applied to the
inputs of the circuit.

2.1.2 Implementation of Digital Circuits

In this thesis we will focus on the complementary metal-oxide-semiconductor (CMOS) [200]
logic family. This chapter is meant as a brief introduction to the principles of this logic
family, details can be found in e.g. [10, 201]. We will use the term logic family to refer to a
certain technology used to implement digital circuits. This does not necessarily presume
interoperability or electrical compatibility of devices implemented in that technology.
The building-block of the CMOS logic family is the logic gate. Each logic gate consists
of a number of transistors. These transistors are metal-oxide-semiconductor field-effect
transistors (MOS-FET) which come in two different versions: The p-channel and the n-
channel MOS-FET. Most of the time we will refer to them as p-transistor and n-transistor,
respectively. MOS-FETs have four terminals called gate (G), source (S), drain (D), and
bulk (B). In many applications bulk and source terminal are held at the same voltage

9

2 Preliminaries

V dd

A Y

Figure 2.4: Standard CMOS implementation of a NOT gate with input A and output Y .

potential. Contrary to that, source and bulk may attain different potentials in CMOS.
Commonly positive supply voltage Vdd is applied to the bulk terminal of a p-transistor
and negative supply voltage Vss (often 0 V, i.e. ground) is supplied to the bulk terminal of
an n-transistor. Throughout this work we use the simplified symbols depicted in Figure
2.3(a) and 2.3(b) to denote p- and n-channel MOS-FET, respectively. We will omit the B
terminal in these symbols.

A voltage applied to the gate G (more precisely a difference in the voltage potential
between G and B terminal) controls the current flowing through the path from drain to
source – provided that there is a difference in the voltage potential between the D and
the S terminal. The amount of current conducted is correlated to the difference of the
voltage potential between G and B. The p- and the n-transistor have a complementary
relation between voltage and current. The p-transistor allows current to flow whenever a
low voltage is applied to its G terminal, i.e. there is a sufficiently large difference in the
voltage potential between G and Vdd (applied to the B terminal). In this case, we say the
device is activated. If the voltage difference between these terminals is sufficiently close
to zero the current path is blocked – we say the device is deactivated. Contrary to that,
the n-transistor is activated whenever a high voltage is present at its G terminal. This
means, that the difference of the voltage potential between G and ground potential at B is
sufficiently large.

Each input of a (basic) logic gate (such as AND, NAND, OR, NOR, NOT, and BUF) of the
CMOS logic family is connected to the gate terminal of at least one p- and one n-channel
MOS-FET. Utilization of a (symmetric) set of complementary MOS-FETs led to the name
“complementary metal-oxide-semiconductor” for this technology. As a consequence the
number of transistors in a (basic) logic gate with i inputs is 2 · i. Figure 2.4 depicts the
standard CMOS implementation of an inverter, i.e. a NOT gate, with input A and output
Y . The p-transistor connects the power supply terminal Vdd to the inverter’s output Y . The
n-transistor links the ground terminal – indicated by a triangular symbol (sometimes also
denoted by GND or Vss) – to output Y . The G terminals of both transistors are connected
to input A of the inverter. When A is set to low voltage potential (sufficiently close to
ground potential), which is identified with logical value 0, the p-transistor is activated.
Thus, it establishes a connection between Vdd and Y . At the same time, the n-transistor
is blocked. Current supplied through the Vdd terminal can now be distributed to all G
terminals of all transistors in the logic gates connected to Y . These transistors can be
seen as a capacitive load which is charged to an elevated voltage potential (close to Vdd).

10

2.1 Digital Circuits

a

A

V dd

pull-down
network

pull-up
network

a i n
1

a i n
n

..
.

..
.

..
.

..
.

C1

Cq

Figure 2.5: Pull-up and pull-down network of a logic gate.

This potential is identified with the logical value 1. Consequently the n-transistors in the
logic gates connected to Y are activated – we say the gates interpret the logical value 1.
If on the other hand input A of the inverter is set to an elevated voltage potential, the
n-transistor is activated while the p-transistor is blocked. As a consequence a current path
between output Y and the ground terminal is established. It discharges the capacitive load
formed by all transistors in the logic gates connected to Y , thus creating a low voltage
potential (close to ground potential). Hence, the p-transistors in these gates are activated –
we say the gates interpret logical value 0. This explanation confirms that the logic gate
depicted in Figure 2.4 indeed implements the functionality of an inverter.

A logic gate g interprets the voltage at any of its inputs with respect to the input’s logic
threshold voltage. Let V o be the voltage driven at output o of logic gate g. In accordance
with e.g. [3, 146] we define the logic threshold voltage V i

lt of input i of g as the voltage which
has to be applied to i in order to obtain V o = V i

lt. This definition assumes that all other
inputs of the logic gate are held at a stable voltage corresponding to the non-controlling
value. Each input of each gate type may have a distinct logic threshold voltage. Gates
of different types may have different (sets of) thresholds. There may even be several
versions of the same gate type, e.g. several two-input NAND gates, having different sets of
logic thresholds. In the absence of noise, any voltage at i which is lower than V i

lt will be
interpreted as logical value 0. Any voltage larger than V i

lt will be interpreted as logic 1.
Voltages which are very close to the threshold value may not always be clearly resolvable.

According to the design principle of a (basic) CMOS logic gate, there will always at least
one, sometimes several interconnected p-transistors forming a so-called network. This
p-transistor network connects the Vdd terminal to the output of the logic gate. Furthermore
all n-transistors form a network – the n-transistor network – which links the output of
the logic gate to the ground terminal. As the p-transistor network establishes an elevated
voltage potential at the output of the logic gate, it is often called a pull-up network.
Contrary to that, the n-transistor network enforces a low voltage potential at the output
and is thus called a pull-down network. Provided that the voltages at the inputs of the logic
gate are stable and sufficiently close to either low or high voltage potential, the output of
a defect-free CMOS logic gate is always at either low or high voltage potential. Figure 2.5

11

2 Preliminaries

depicts pull-up and pull-down networks of the n input gate A driving q gates C1 to Cq.

Even though the general construction principle of CMOS logic gates has remained virtually
unchanged, the manufacturing technology is always evolving. The minimum size of a
feature, which can be used to construct the transistors of a logic gate, is defined by
the technology node. Currently, circuits implemented in 45 nm technology are in mass
production. But the potential for downscaling the feature sizes is not exhausted yet and
future technology nodes are already under development.

2.1.3 Levels of Abstraction

Digital circuits are very complex devices which are composed of a gigantic number of
structures. Circuit behavior, which is a result of the interaction of all these structures,
is governed by intricate physical phenomena. Thus, it is impossible to regard a circuit
containing several million gates in every detail of its implementation. However, in many
steps of the design process of such a circuit, this richness of detail is not necessary, and only
entails excessive complexity. Therefore, at each design step the circuit may be considered
at those levels of abstraction matching the needs of that step. The idea of abstraction is
to create a simplified model closely representing the original behavior of a circuit. This
means that certain implementation details are hidden which reduces complexity of the
circuit description.

In literature there is no definite set of levels of abstraction. Rather, several authors
adapt the concept to their needs (see [50, 67, 196] for some of the approaches). Since we
focus on the testing part of the circuit design process, a selection of abstraction levels is
sufficient. These levels are – in descending order – gate-level, switch-level, transistor-level,
and layout-level. They are defined as follows:

Gate-level: The gate-level representation of a circuit has already been covered in Chapter
2.1.1. At this level of abstraction, a circuit is regarded as a collection of connected
logic gates, flip-flops, and nodes. This collection forms the so-called gate-level netlist.
At the gate-level the circuit processes Boolean values provided at its primary inputs.
Logical values computed according to the circuit’s Boolean function are observable
at its primary outputs.

Switch-level: At the switch-level, the representation of logic gates and flip-flops is refined.
We now consider the network of transistors forming a logic gate instead of assuming
the gate to be a monolithic block. Each transistor is controlled by voltages which
correspond to the logical values employed at the gate-level. A gate’s transistors are
modeled as ideal switches. These switches are operated by voltages which are applied
to the inputs of a gate. A network of activated switches couples the output of a gate
to either positive or negative supply voltage. All transistors in a circuit are connected
by wires, and electrical contacts link the wires to the circuit’s environment.

Transistor-level: In contrast to the switch-level, the transistor-level models transistor
behavior in more detail. A transistor is no longer an ideal switch. Rather, its

12

2.2 Testing of Digital Circuits

behavior depends on the voltages and currents which are applied to its terminals.
Furthermore, resistors and capacitors may be connected to the terminals of transistors.
The description of a circuit at this level is referred to as transistor-level netlist. Each
component of the netlist may be represented by differential equations. They try to
replicate a circuit’s electrical behavior. By performing an electrical simulation, we
can determine the electrical behavior of a circuit. This process essentially involves
solving the differential equations describing the circuit’s components. Inputs to this
process are the currents and the voltages applied to the electrical contacts.

Layout-level: The actual integrated digital circuit consists of several conducting, non-
conducting, and semi-conducting layers. During production, the structures composing
each layer are transferred to a piece of silicon using photolithographic processes.
These processes employ masks on which geometric shapes prevent radiation from
reaching the silicon. The geometric shapes on each mask are represented by the
so-called layout. At the layout-level wires and transistors of a chip are described
as a collection of polygons. We refer to the layout representation of a wire as an
interconnect.

In general, an algorithm used in testing of digital circuits can be more efficient if it operates
on a high level of abstraction. Therefore, nearly all of the techniques covered in this
thesis operate on the gate-level. However, to be able to accurately represent defects, more
information is required than can be derived from the gate-level. Thus, to increase accuracy
we will occasionally have to resort to lower abstraction levels. For instance, in Chapter 3.3,
we will identify circuit nodes which have a high probability of being affected by a short
at the layout-level. Furthermore, in Chapter 5, we will determine the consequences of a
resistive short on circuit behavior by considering the gates affected by that defect at the
transistor-level.

2.2 Testing of Digital Circuits

In the next chapters we will discuss the fundamental concepts of circuit testing in more
detail. First Chapter 2.2.1 will summarize the general terminology used in the main part
of this thesis. The particularities of testing sequential circuits are highlighted in Chapter
2.2.2. The contents of this chapter enable the reader to understand the discussion of our
results on Delta-Iddq testing elaborated in Chapter 9.2. Then we define the “traditional”
stuck-at fault model in Chapter 2.2.3. Moreover, we will also formulate two conceptual
extensions to this model: namely multiple-stuck-at and conditional multiple-stuck-at faults.
These formalisms are exploited extensively in the chapters to come. Finally, in Chapter
2.2.4 we lay the groundwork for the built-in self test technique which may simplify testing
of circuits considerably. Our experiments in Chapter 10 verify if this advantage is paid for
by reduced defect detection.

13

2 Preliminaries

2.2.1 General Terminology

In the following we will understand a fault as a representative of a physical defect. In
general a defect may result in a deviation of the observed circuit behavior from the expected
behavior. A fault model reflects the impact of a physical defect on the behavior of a circuit,
we say it models the fault effect. We will consider structural fault models. These fault
models act on the assumption that the structure of the circuit is known to us. They also
assume that a fault may only affect the connections between gates while the logic function
of each individual gate is intact. Furthermore, we will focus on verifying the Boolean
behavior of a circuit. This is referred to as static testing or static voltage testing, as during
test application voltage levels representing Boolean values are measured. Fault models,
which target circuit behavior in the time domain, are not covered in this thesis.

In general, similar defects may affect different parts, e.g. nodes, of the circuit. Each of
these defects will be represented by a different fault. We call a defect-free circuit a good
circuit. The circuit, however, which contains a defect is labeled the defective circuit or
faulty circuit. In a defective circuit, a defect may deviate the logical value observed at some
circuit node n from the value seen in the good circuit at the same node. We say the logical
value present at node n in the latter circuit is a fault-free logical value (or fault-free value)
whereas the logical value seen at n in the faulty circuit is referred to as the faulty logical
value (or faulty value). A node, which displays a faulty value, is denoted as faulty node.

Let C be a combinational circuit with n primary inputs and m primary outputs which
implements function f : Bn → Bm and let l be a fault. We denote an instance of C which
contains the defect represented by l as Cl. Due to the defect, the function fl : Bn → Bm

implemented by Cl may be different from the intended function f . A test vector, test
pattern, or simply test is a bit-string x ∈ Bn such that f(x) 6= fl(x). We say that x detects
or covers fault l. If there is no test pattern for fault l, i.e. for all 2n possible bit-strings
x ∈ Bn we obtain f(x) = fl(x), we say that l is redundant. The process in which, given a
fault l, we try to determine a test x such that f(x) 6= fl(x) is referred to as (automatic)
test pattern generation (ATPG). Inversely, we may already have a bit-string x and a set of
faults F and wish to determine the set F det ⊆ F of faults which are detected by x. This
process is called fault simulation. In this context, we are often interested in a single figure
which quantifies the percentage of faults from F covered by x. This figure is provided by
the fault coverage (FC) defined as follows (|X| denotes the number of elements contained
in set X):

FC = 100% · |F
det|
|F |

(2.2.1)

To compute the fault coverage of a set of s test vectors T = {t1, t2, . . . , ts} we first derive
the set of faults F i ⊆ F , 1 ≤ i ≤ s, detected by every individual vector ti. Subsequently,
we join the sets F i to obtain the complete set F det of detected vectors, i.e. F det =

⋃s
i=1 F

i,
and compute the fault coverage according to Equation (2.2.1).

The expressiveness of the fault coverage can be refined if we know the set F red of redundant
faults contained in F (note that F red ⊆ F). The fault efficacy (FE), sometimes also referred

14

2.2 Testing of Digital Circuits

C0 C1 Cn-1...

...

...
F
F
1

F
F
n-
1

F
F
2

F
F
n

... ...

Time Frame 0 Time Frame 1 Time Frame n-1

x0 x1 xn−1

z0 z1 zn− 1

y 0 Y 1 y 1 Y 2 y n−1 Y n

...

Figure 2.6: Time-frame expansion of a synchronous sequential circuit.

to as fault efficiency, quantifies the percentage of detectable faults F det which are covered
by test vector x (if F red = F the fault efficacy evaluates to 0%):

FE = 100% · |F det|
|F | − |F red|

(2.2.2)

As we have to know F red in order to be able to compute the fault efficacy this metric is
not as universal as the fault coverage. In particular, it is very problematic to identify the
set of redundant faults for sequential circuits.

2.2.2 Testing of Sequential Circuits

The difficulty of testing sequential circuits arises from the flip-flops. Just as for combina-
tional circuits, to test for a fault we have to place specific values at the circuit’s primary
inputs. In addition to that, however, to test a sequential circuit we have to control the
values present in the flip-flops as well. Yet, we can only manipulate the contents of the
flip-flops from the primary inputs. Furthermore, even if we manage to activate a fault, it
might be impossible to directly propagate any of its effects to a primary output. Rather,
the fault effects may have to pass through one or more flip-flops before we can actually
observe them. As a consequence, in general we have to test faults in sequential circuits by
a sequence of primary input assignments. This complicates ATPG substantially and may
even prevent test pattern generation for certain faults. Therefore, unlike for combinational
circuits, a fault in a sequential circuit is not necessarily redundant if it is untestable.

The time frame expansion is one method to facilitate test pattern generation and fault
simulation for sequential circuits. This method uses a combinational iterative array
concept which exploits the model of a synchronous sequential circuit depicted in Figure
2.2. The sequential circuit is again split into two parts, i.e. the memory elements and the
combinational core. An n frame time frame expansion is depicted in Figure 2.6. Within
time frame i, where 0 ≤ i ≤ n − 1, combinational core Ci processes the primary input
assignment xi and the next state yi which has been stored in the preceding time frame. At
the end of the clock cycle, response zi is observable at the primary outputs of Ci. Moreover

15

2 Preliminaries

the circuit’s present state Y i+1 is written to the memory elements FF i+1. Hence, one
time frame models the state of a sequential circuit for one clock period. In each time
frame one test pattern is applied to the primary inputs and one circuit response may be
observed at the primary outputs. Thus, for one time frame, test pattern generation and
fault simulation are very similar to their equivalents for combinational circuits.

The time frame expansion is a software concept which simplifies the algorithmic part of
test generation. Yet, it does not ease the test generation itself. This means that it is
still difficult to control the contents of the flip-flops and propagate the fault effects. This
problem is drastically reduced by so-called scan chains. A scan chain connects (some of)
the flip-flops contained in a circuit in a serial manner, i.e. it is a solution implemented in
hardware. The start and the end of a scan chain are connected to a primary input and
a primary output, respectively. This provides the ability to serially shift values provided
at this primary input into the flip-flops organized in the chain. At the same time, the
contents of these flip-flops are serially shifted out to the primary output. Hence, we can
observe the values stored in the flip-flops connected to a chain. Therefore, a scan chain
allows us to control and observe the contents of all flip-flops arranged in that chain. As a
consequence, we may treat the pseudo primary inputs and outputs corresponding to these
flip-flops just like regular primary inputs and outputs. In the following we will assume all
circuits to be full scan circuits. This means that every flip-flop in these circuits is part of a
scan chain. From the perspective of test pattern generation and fault simulation there is
no difference between a full scan circuit and a combinational circuit. Whenever we do not
explicitly want to distinguish between primary outputs and pseudo primary outputs we
will subsume both as observable points. In summary, a scan chain is a hardware concept
which is specifically designed into a sequential circuit to enhance its testability. Hence,
scan chains are often called a design for testability (DFT) measure.

2.2.3 Stuck-At Faults

The most common fault model used both in industry and academia is the stuck-at fault
model. The stuck-at fault model assumes that due to some defect, circuit node v permanently
assumes a fixed logic value vval ∈ B – for any logical assignment to the primary inputs of
the circuit. We say that v is stuck-at vval or in short “v s-a-vval”. A test x which detects
v s-a-vval must induce value vval at node v; we say x activates the fault. Furthermore x
must propagate the fault effect vval such that a faulty value is observable at one or more
observable points of the circuit, e.g. primary outputs.

Typically it is assumed that only a single (stuck-at) fault, i.e. a single relevant defect, is
present in a circuit at any time – we will retain this assumption. Yet, as we want to use
the concept of stuck-at faults to represent more complex fault models introduced in Part I
of this thesis, we allow stuck-at faults affecting multiple circuit nodes. A multiple-stuck-at
(MS@) fault s affecting m ∈ N>0 nodes v1, v2, . . . , vm permanently induces value vval

i ∈ B at
vi, where 1 ≤ i ≤ m. We specify multiple-stuck-at fault s as {v1/v

val
1 , v2/v

val
2 , . . . , vm/v

val
m }.

A test x which detects s must activate at least one fault vi s-a-vval
i and make a faulty

value observable at one or more observable points of the circuit. Whenever appropriate

16

2.2 Testing of Digital Circuits

we will refer to the common stuck-at fault model which assumes a single fault site as to
the single-stuck-at fault model. Note that for m = 1 a multiple-stuck-at fault actually
represents a single-stuck-at fault.

In some cases, fault effects may only be induced by a defect if specific logical values
are present at a set of circuit nodes. To represent such a situation we can use a con-
ditional multiple-stuck-at fault (CMS@). Basically CMS@ faults are an extension of
multiple-stuck-at faults. A CMS@ fault s combines a multiple-stuck-at fault consisting
of m ∈ N>0 stuck-at faults or victims {v1/v

val
1 , v2/v

val
2 , . . . , vm/v

val
m } with l ∈ N so-called

aggressors {a1/a
val
1 , a2/a

val
2 , . . . , al/a

val
l }. Each aggressor is defined by a node ai and a

value aval
i ∈ B, where 1 ≤ i ≤ l. In order to detect fault s, test x must assign to each

aggressor ai the respective value aval
i . Furthermore it must detect the multiple-stuck-at fault

{v1/v
val
1 , v2/v

val
2 , . . . , vm/v

val
m } as described above. Note that a CMS@ fault with empty

aggressor list, i.e. l = 0, can be represented by a multiple-stuck-at fault.

2.2.4 Built-In Self Test

Traditionally, circuits are tested by automatic test equipment (ATE). The ATE applies
a set of test patterns which is stored in its internal memory to the circuit under test
(CUT). Furthermore, it samples the response of the CUT to each pattern and compares
the sampled values to the response expected for that pattern. As soon as the observed
response does not match the reference values, the CUT is said to have failed the test and is
considered defective. Since test application and response evaluation are performed by the
ATE, the speed of this device determines the frequency at which the CUT may be tested.
This, however, means that in order to test high-performance parts at their dedicated clock
frequency, the ATE has to be faster than these parts. ATEs which can keep pace with
high-speed circuits are extremely costly and may even be unavailable for the fastest circuits
in production.

Built-in self test (BIST) is a DFT measure which transfers test pattern application and
response evaluation onto the chip. This drastically reduces the performance requirements
for the ATE, and in particular, enables at-speed test of high speed circuits which may
facilitate the detection of certain defects. BIST circuits can also perform autonomous
self-test in the field, i.e. once they have been integrated into a system. This is crucial for
high reliability systems.

A basic BIST architecture is depicted in Figure 2.7. It consists of a pattern generator (PG)
which feeds test patterns to the CUT. Circuit responses are evaluated by the test response
evaluator (TRE). Both PG and TRE are operated by the BIST control block. The control
block is linked to the external ATE which initiates and monitors the self test procedure.
This communication channel may be omitted if the circuit is performing an autonomous
self-test. Further communication channels between PG and ATE, and TRE and ATE,
respectively, may be required depending on the BIST architecture. It is obvious that BIST
adds hardware to the CUT which increases silicon area demands and thus production
cost. Beyond that, parts of the BIST hardware may introduce additional delay on certain

17

2 Preliminaries

ATE

Under

Circuit

Test

BIST

control

T
R

E

..
.

..
.P

G

Figure 2.7: Basic built-in self test architecture.

functional paths in the circuit. This in turn reduces the maximum operating frequency of
the device.

For both the PG and the TRE several different designs have been proposed in literature.
We will only highlight one particularly prominent instance of each component. Pattern
generators are often implemented as linear feedback shift registers (LFSR). An LFSR
consists of a shift register with a feedback connection implemented using XOR gates. The
shift register of the LFSR runs through a repeatable sequence of states. The contents of
the shift registers, i.e. the state variables, can be supplied as test vectors to the CUT. As
the sequence generated by an LFSR fulfills many empirical properties for randomness it is
often referred to as pseudo random test pattern source. LFSRs can be designed to comply
with a variety of criteria. Often it is desirable to achieve completeness which means that
all 2n test patterns possible for a CUT with n inputs can actually be generated by the
PG. Furthermore, it may be required that each pattern is contained at most once in the
generated sequence, this is referred to as uniqueness. In some applications only a part of
the LFSR generated sequence is applied to the CUT. Hence, it is beneficial if those test
patterns are sampled uniformly from the domain of 2n potentially possible test patterns.

A very popular TRE is the multiple-input shift register (MISR) which is virtually an
extended LFSR. Just as most of the other TRE designs, the MISR compresses the responses
of the CUT on-chip into a so called signature. Compression is absolutely necessary as
an on-chip comparison with the complete response of the fault-free circuit would require
prohibitive amounts of memory. The signatures, however, are rather small. Hence, it is
feasible to provide memory for the signatures of a good circuit on the chip. This enables
response evaluation by the BIST hardware. On the other hand, a signature may also be
transferred in certain intervals to the ATE and can thus be evaluated externally. In this
case the fault-free signatures are stored off-chip such that no memory is required for the
TRE. As compression is a lossy process, it is possible that two responses of the CUT are
represented by the same signature. This effect can lead to aliasing, i.e. the phenomenon
that a fault-free and a faulty response are both mapped to the same signature. If possible
aliasing should be avoided, as otherwise defective circuits may remain undetected.

18

Part I

Bridging Fault Models

19

3 Fundamentals of Bridging Faults

Several studies [45, 51, 66, 169] have reported that a substantial number of defects manifest
themselves as shorts between conducting elements of the circuit. This is not a new
development but has been known for many years. Fault models for shorts were already
mentioned in the 1960s (e.g. in Roth’s fundamental work on ATPG [161]). By that time,
it was already obvious that the characteristics and the effects of this defect class cannot
be captured satisfyingly by the common stuck-at faults. Therefore a new fault model
was needed: The bridging fault model. In the following Chapter 3.1 we will subsume the
observations that led to this conclusion and casually introduce the basic terminology used
in the field of bridging fault testing. Subsequently, in Chapter 3.2 we will motivate the
classification of bridging fault models used throughout this thesis. Finally, in Chapter 3.3
we will describe how potential locations for short defects can be derived from the layout of
a given circuit.

3.1 Basic Properties and Terminology

In 1973 Williams et al. [202] summarized several characteristics of shorts that are still valid
today. They demonstrated that the effects caused by an unwanted connection between
nodes a and b, i.e. a short, can only be observed when contrary logical values are driven on
the two nodes, i.e. a driven to logical value 1 and b to logical value 0 or vice versa. As
the nodes are connected by a conducting defect, only contradicting logical values lead to
an electrical conflict (called drive fight or logic contention in [146]) which may expose the
short. A test assigning the same logical value to both a and b would not make the defect
detectable.

In principle, shorts involving more than two nodes, i.e. p > 2 nodes, are possible. Depending
on the logic family used to construct the circuit, they can be modeled by a composition
of p− 1 two-node bridging faults.[1, p. 290] In the following we will adopt the common
assumption of two-node shorts.

In [202] it is also reported that a short between the outputs of two gates may affect the
electrical state of the shorted nodes such that even gates connected to the same node might
not interpret a consistent logical value any more. This would later be termed Byzantine
General’s Problem [4] or Byzantine behavior.

Williams et al. also realized that the number of two-node shorts – and thus the number of
bridging faults – theoretically possible in a circuit can be enormous. This was rendered
more precisely by Mei in [115]:

21

3 Fundamentals of Bridging Faults

“The total number of possible bridging faults in a circuit with n leads (ed.:

nodes) is
(
n
2

)
.”

Williams et al. advised to focus on the subset of shorts affecting interconnects physically
adjacent in the circuit’s layout, as these are the most likely defect locations. We will refer
to these defects as layout extracted shorts (or layout extracted bridging faults when relating
to their modeling). In general we will use the term short to denote an actual defect. The
term bridging fault or bridge refers to the model representation for one or several shorts
which affect the same (logical) circuit nodes. Extraction of such shorts has been realized
later on by several authors (see Chapter 3.3).

Another property mentioned in the 1973 paper is that shorts may create feedback-loops.
According to Mei [115], a so-called feedback bridging fault modeling such a defect is defined
as follows:

“A feedback bridging fault is a bridging fault such that both involved leads (ed.:
nodes) lie on the same path in the circuit.”

We will refer to the node with the lower topological order as back line. The node with
the higher topological order will be denoted as front line. Under certain circumstances a
feedback loop may provoke oscillating logical values on some nodes in the circuit. In other
cases state-holding, i.e. sequential, behavior has been observed (see e.g. [2, 65, 89, 115] for a
discussion). In general, detection of shorts causing such loops is difficult and requires special
techniques. Therefore a separated consideration of feedback and non-feedback bridging
faults (for which no such path exists) is common.

Just like the authors of [165] we distinguish inter-gate bridging faults, i.e. bridges affecting
the outputs of (two) gates, and intra-gate bridges. (In [118] a “bridging fault taxonomy”
with finer granularity is reported.) The latter type of shorts involves conducting elements
of the gate’s internal structure only. Our discussion of bridging faults will be restricted
to the inter-gate type.1 Approaches tackling intra-gate bridging faults may be found in
[36, 123, 145, 153, 173].

One property of a short not mentioned so far is its intrinsic resistance. This resistance
is primarily dependent on the defect’s size, location, and material. It has a substantial
influence on the impact of the short and thus on the behavior of the defective circuit. A
short with low intrinsic resistance will permanently change this behavior and can thus
be detected by static testing methods. Yet, the larger the intrinsic resistance the less
influential the coupling between the two shorted nodes will be. A short with sufficiently
large resistance may solely affect the dynamic behavior of circuit and can thus be detected
by delay testing methods only. We will report on bridging fault models explicitly considering
the intrinsic resistance and call them resistive bridging fault (RBF) models. We will also
discuss non-resistive bridging fault (NRBF) models which neglect the impact of the intrinsic

1This is supported by an experimental study in [177] which provides evidence that the predominant
share of shorts affect the outputs of different logic gates.

22

3.2 Bridging Fault Model Classification

a

b

A

B E

0

1

1

0

1

0/1

C

D

Figure 3.1: Example circuit with a bridging fault.

resistance or handle it implicitly. For both resistive and non-resistive models our discussion
will be restricted to static testing methods.

Figure 3.1 illustrates the terms we just introduced. It depicts a circuit with a two-node
inter-gate bridging fault creating an unwanted connection between nodes a and b. We will
call the gates directly preceding the shorted nodes – here A and B – the driving gates. As
A drives its output a to logical value 1 and B drives its output b to logical value 0, the
bridge is activated. The gates directly succeeding the bridged nodes (C, D, and E) will
be called driven gates. Typically only one input of each driven gate is directly connected
to any of the shorted nodes. Thus, when appropriate, we will identify the driven gate
with this input. We will distinguish the logical values imposed on the shorted nodes by
the driving gates from the values actually observed by the driven gates. The former will
be called driven values (in accordance with [2]). In this example, gate E is assumed to
recognize the faulty logical value 1 instead of the fault-free driven value 0 due to the fault.
Gates C and D interpret the fault-free driven value 1.

3.2 Bridging Fault Model Classification

There exists a large body of knowledge on the modeling of shorts. Yet, basically there is
no such thing as the bridging fault model. Rather, this notion is a placeholder for a model
which reflects the impact of a physical defect shorting conducting elements of a circuit.
The characteristics of the actual model depend on many factors such as the technology
used to implement the circuits under consideration, the desired modeling accuracy, and
the computational complexity granted by the user. The latter is measured as the number
of combinations of logical assignments to the driving gates, and fault effects seen by the
driven gates, which is instantiated to represent a single bridging fault. The complexity is
directly related to the computational effort required when performing fault simulation or
test pattern generation using the respective model. Motivated by their physical nature,
there exists to a certain degree a common understanding of certain properties of shorts
which have to be respected by any bridging fault model. These properties are summarized
in Chapter 3.1.

23

3 Fundamentals of Bridging Faults

..
.

..
.

a i n
1

a i n
n

bi n
1

bi n
m

a=aout

b=bout

A

B

c i n
1

c i n
p

d i n
1

d i n
q

C1

C p

D1

Dq

cout
1

cout
p

d out
1

d out
q

..
.

..
.

Figure 3.2: Portion of the circuit relevant for bridging fault models.

One of the parameters which recently was added to the list of relevant properties is the
short’s intrinsic resistance. It was found that this resistance heavily influences the electrical
behavior of the defect and thus its impact on the logic function of the defective circuit.
While some authors already account for this relevant parameter and factor it into their
resistive bridging fault model, the majority of publications addresses non-resistive bridging
fault models. The latter do not (explicitly) handle the intrinsic defect resistance. This
means the models disregard that the exact resistance is dependent on the particular defect
and cannot be known a priori. Non-resistive models either completely neglect the influence
of this random parameter or assume an arbitrary but fixed value for the resistance.2
There are also approaches which try to model circuit behavior for any (reasonable) defect
resistance. This considerably reduces modeling complexity, although it comes at the
expense of accuracy.

In fact, modeling accuracy is another important aspect. It is nearly indispensable that
extremely accurate replication of a short’s effects can only be achieved at the expense of
high computational costs. Yet, given the large number of potential bridging fault locations,
this is hardly acceptable for any practical application. It is a common understanding
among most authors in the field that a sufficiently accurate replication can be obtained
when focusing on very few gates surrounding the fault site. This localized view allows the
use of classical Boolean techniques for fault simulation and test pattern generation – at
least for the larger part of the circuit. The fault site itself can be evaluated by different
techniques using several levels of abstraction. Usually most of the exact data generated at
lower levels is mapped back to the gate-level, i.e. to Boolean values.

We will in the following limit our discussion to models considering the circuit excerpt
depicted in Figure 3.2. The bridging fault affects two nodes aout and bout (for reasons of
simplicity they will be referred to as a and b respectively). The shorted node a(b) is driven
by gate A(B) which has n(m) inputs a1

in, . . . , a
n
in(b1

in, . . . , b
m
in). Node a(b) is observed by p(q)

2A special case is the hard short [108], i.e. a defect whose intrinsic resistance is assumed to be (sufficiently
close to) 0 Ω.

24

3.3 Bridging Fault Extraction

gates C1, . . . , Cp(D1, . . . , Dq). Each Ci, 1 ≤ i ≤ p, has one output ciout and is connected
to node a via input ciin. Each Dj, 1 ≤ j ≤ q, has one output djout. The gate’s input djin
is connected to node b. Any further inputs to the driven gates have been omitted in the
figure. This model of a bridging fault is the prototype used for the explanations in the
chapters to come.

3.3 Bridging Fault Extraction

As we have hinted above it is impractical to test a circuit for all theoretically possible
two-node shorts. This, however, does not necessarily imply that many defects have to
remain undetected. Rather, it is important to focus on testing those shorts which are
likely to be present in the circuit under consideration. Many of the shorts which are
theoretically possible, actually only occur very rarely in a real circuit. Imagine for instance
two interconnects which are physically located in opposite corners of the manufactured
circuit. Theoretically these interconnects may be shorted by a defect. In practice, however,
a defect affecting both interconnects rarely occurs. In fact a manufacturing imperfection
which results in these two interconnects being shorted would severely impact the behavior
of the circuit. Thus, it is likely that it will be detected by one of the numerous screening
procedures conducted before the actual logic-level test.

Therefore, the question we have to ask is: Which shorts are actually likely to occur
and should be tested for? The two most common techniques which try to answer this
question are based on either the concept of critical area or the fringe capacitances. Both
approaches first inspect the circuit layout to identify all pairs of circuit interconnects which
are adjacent. In a second (optional) step these pairs of interconnects are sorted according
to their likelihood of occurrence (in descending order). Finally each interconnect is mapped
to the equivalent node in the gate-level netlist. Those pairs of nodes corresponding to the
n topmost interconnect pairs are assumed to be the most probable candidates for a short.
Threshold n may be set by the user depending on the desired coverage of defects. Since
the resulting potential short locations are derived from the circuit layout we will refer to
them as layout extracted shorts.

The most popular technique to extract probable short locations from a circuit layout is
based on the critical area [46]. The critical area of two adjacent interconnects is defined
as that part of their region of adjacency in which the center of a defect can lie in order
to short the two interconnects. Those pairs of nodes corresponding to the n interconnect
pairs with the largest critical area are assumed to be the most probable candidates for a
short. It is evident that the size of the critical area is directly dependent upon the size of a
potential defect. Thus, the defect size distribution [180] is a prerequisite for this metric.
Unfortunately, this distribution may not always be available. Furthermore, computation of
the critical area is a very time consuming task. As a consequence, the critical area metric
may not always be applicable. Numerous algorithms and tools exploiting the concept of
critical area have been developed [7, 44, 57, 61, 75, 125, 129, 130, 179, 195, 211, 213]. For
the most part these approaches differ in the algorithm employed to compute the critical

25

3 Fundamentals of Bridging Faults

d

l1

d

l2
l

l

d1

d2

(a) (b)

Figure 3.3: Influence of adjacency region and lateral distance on capacitance.

area and the assumptions made during that computation. Current implementations have
evolved the algorithms for critical area extraction such that they can even be applied to
large designs, like a commercial microprocessor [92].

Alternatively, layout extracted shorts can also be obtained by exploiting the fringe ca-
pacitances [110, 182]. The fringe capacitance is usually extracted during the construction
of an integrated circuit. It is defined between two interconnects, and is composed of
the coupling capacitances of all conducting elements belonging to either interconnect.
Potential short locations are identified by extracting the fringe capacitances between all
pairs of interconnects adjacent in the layout. Those pairs of nodes corresponding to the n
interconnect pairs with the largest fringe capacitance are assumed to be the most probable
candidates for a short.

The idea of this approach can be motivated by considering the parallel-plate model of
capacitance (although in practice the fringe capacitance is computed using a far more
elaborated model). In the parallel-plate model, capacitance C is expressed with respect to
the dielectric constant ε, the area A of the plates, and the distance d between them. Given
these parameters C can be calculated as C = ε ·A/d.3 This means that the capacitance
between the two conducting elements is proportional to the area and inversely proportional
to the distance between them. The very same relation also holds for the probability that a
bridging fault occurs between two conducting elements. This is illustrated in Figure 3.3(a)
for two pairs of conductors which both have the same lateral distance d. Their region of
adjacency, however, is different. The upper pair of conductors runs in parallel for distance
l1. As the lower pair only runs in parallel for distance l2, and l1 � l2, the upper pair of
conductors has a higher capacitance. Analogously, the upper pair of interconnects would
also have a higher probability to be affected by a short than the lower pair. In Figure 3.3(b)
the region of adjacency of either pair of conductors is the same – both run in parallel for a
distance l. Their lateral distance however, is different. As the lower pair of interconnects
is further apart than the upper one (d1 � d2) the upper pair has a higher capacitance.

3Constant ε can be set to the dielectric constant of the layer on which the interconnects under
consideration are located.

26

3.3 Bridging Fault Extraction

Analogously, again the upper pair of interconnects would have a higher probability to be
affected by a short than the lower pair. This reasoning is very similar to the one used
to motivate the critical area based metric – the relation between both metrics is further
explored in [55].

Another way to obtain layout extracted shorts is discussed by Khare et al. in [84]. They
propose to identify potential short locations by simulating the manufacturing process step
by step. At each step, possible contaminations are injected and their potential to cause a
short is evaluated.

We conducted all our experiments reported in this thesis for randomly extracted short
locations. We decided not to use any layout extracted shorts, as this would have biased
our results towards the specifics of a particular layout. This would only introduce another
stochastic variable into the experimental setup which distracted from the essence of the
respective experiment.

27

3 Fundamentals of Bridging Faults

28

4 Non-Resistive Bridging Fault Models

This chapter gives a brief overview of non-resistive bridging fault models known in literature.
These models differ substantially in terms of complexity and accuracy. The simplest
approaches consider only the Boolean values at the two bridged nodes. They use basic
Boolean functions to derive the logical values seen by the driven gates in the presence
of a short. Examples are the dominance-behavior [202] and the wired-logic [115] models,
as well as the closely related 4-way [92] model. More elaborate approaches, such as the
precise test generation model proposed by Maeda et al. [107], try to account for any
potentially possible defect induced behavior by exhaustively testing both driven gates.
Alternatively, all possible stuck-at fault combinations are tested by the unified model
introduced by our co-operation partners Chen et al. [P10]. The voting model by Acken
et al. [3, 43, 121] targets accurate replication of the defect by including the driving gates’
electrical properties and the assignments to their inputs into the modeling procedure. An
extension by Maxwell et al. [112], called biased voting, additionally considers electrical
parameters of each driven gate to improve the modeling accuracy. Some authors go beyond
this by introducing sophisticated procedures which compute the impact of a short by
using switch-level [35] or transistor-level [37] descriptions of the defect site. In [60], the
bridging fault simulator E-PROOFS is proposed by Greenstein et al. which uses electrical
simulations at run-time instead. Even though this approach suggests very high modeling
accuracy, the computational overhead introduced by electrical simulations and complex
matrix operations (“with the time complexity of O(N3), where N is the number of circuit
nodes [59]” quoted in [100]) leads to prohibitive run-times for large circuits with many
bridging faults. To alleviate this problem several authors, e.g. [27, 29, 146], recommend
performing all necessary electrical simulations in a preprocessing step and to tabulate
the results. This strategy maintains high modeling accuracy at reduced computation
time. However, depending on the size of the gate library used to implement the circuit
under consideration, these tables may become very large; improved data storage has been
reported by Di et al. in [38]. Furthermore, tables may be inflexible with respect to changes
of the gate library. Comparative studies covering some of the aforementioned non-resistive
bridging fault models can be found in [12, 105].

In the following we will focus on models which go beyond the straightforward tabulation of
data gained by electrical simulations. The spectrum of models to be discussed includes
simple logic models, which offer reduced modeling accuracy at low computational costs
(see Chapter 4.1). Chapter 4.2 will target technology-based models, merging low-level
technological knowledge (similar to that gained from electrical simulations) with a compact
and efficient data representation to form an accurate and simple modeling strategy. Gener-
alizing approaches are introduced in Chapter 4.3. They use an abstracting description of

29

4 Non-Resistive Bridging Fault Models

the changes in logic behavior caused by a short to avoid biasing the model towards specific
technological parameters. This, however, leads to high computational overhead.

4.1 Simple Logic Models

The simple logic models are directly related to the single-stuck-at fault model. They
neither explicitly consider any low-level technical data, nor do they try to account for
low-level effects by using a generic description of the defect induced behavior. Chapter
4.1.1 introduces the well-known dominance-behavior and wired-logic models. Both models
are combined by the 4-way model which recently gained popularity and will be discussed
in Chapter 4.1.2.

4.1.1 Wired-Logic And Dominance-Behavior Models

The early approaches known for modeling the logic effects caused by a short were actually
extensions of the single-stuck-at fault model. Similar to the latter model, it is assumed
that the activation of a fault can be determined locally by evaluating the driven values at
the fault site in the good circuit. Yet, in contrast to the single-stuck-at case, two nodes
are affected by the bridge and thus the logic state of both nodes has to be considered.
Moreover, fault effects of an activated bridge are assumed to be observable by all successors
of one of the two bridged nodes only. Again this is comparable to a stuck-at fault affecting
the stem of this node. This assumption is justified by the observation that in certain
logic families the two driving gates are not equally capable of affecting the electrical state
of the bridged nodes (this will be discussed below in more detail). Usually, one of the
driving gates is more influential such that the logical value driven at its output node, called
the aggressor node, overrides the logical value driven at its counterpart, the victim node.
In the presence of a short, the gates connected to the victim node interpret the logical
value imposed by the aggressor node. Depending on the criteria for assigning the roles
of aggressor and victim to the shorted nodes, and the way in which the faulty logical
value is determined, the early bridging fault models can be divided into two classes: the
dominance-behavior [202] and the wired-logic [115, 161] models.

The dominance-behavior models attribute to each node involved in a bridge a fixed role.
Given a bridge between two nodes a and b, either a or b can be the aggressor, i.e. the
dominant node. Two combinations of assigning aggressor and victim to a and b are possible.
Hence, there are two different dominance-behavior models: a-dominant and b-dominant.

In contrast to the dominance-behavior models in the wired-logic models, the assignment
of the roles of aggressor and victim is done with respect to the logic state of the bridged
nodes. There are two different versions, one of them being the wired-AND model. In this
model the bridged node driven to logical value 0 in the fault-free circuit is the aggressor,
whereas its counterpart driven to logical value 1 is the victim. The victim’s successors
interpret the faulty logical value 0. In other words the value interpreted by all driven gates

30

4.1 Simple Logic Models

Table 4.1: Aggressor and victim nodes for wired-logic and dominance-behavior models, “X”
marks combination of aggressor,victim, and stuck-at fault used by the model.

Value at Aggressor Victim wired-logic dominance-behavior
a b Node Node Fault wired-AND wired-OR a-dom. b-dom.

1 0 a b s-a-1 - X X -
b a s-a-0 X - - X

0 1 a b s-a-0 X - X -
b a s-a-1 - X - X

corresponds to the logical AND of the logic assignments seen in the fault-free circuit at the
bridged nodes.

In a similar manner the second variant of the model, called wired-OR, can be defined by
attributing the role of the aggressor to the node driven to logical value 1. This corresponds
to calculating the logical OR of the values assigned to the nodes involved in the bridge.

Table 4.1 summarizes the models assuming a bridging fault between two nodes a and b.
The first two columns state the driven values for the bridged nodes (only combinations
activating the fault are considered). The third column identifies the aggressor node.
Victim node and stuck-at fault to be inserted at its stem are stated in columns four and
five, respectively. Depending on the logic state of a and b, each model uses a different
combination of aggressor/victim assignment and stuck-at fault to represent the behavior of
the bridge. This mapping is given in columns six to nine. As we can see the conjunction
of both fault models in either class results in the same set of combinations of aggressor,
victim, and stuck-at fault.

Relation to Stuck-At faults

The interdependence between stuck-at faults and the wired-logic and dominance-behavior
bridging fault models has been the subject of several publications (see e.g. [1, p. 292ff.]
for an overview). Mei [115] extensively studied the detection conditions for various types
of bridging faults and their relation to stuck-at faults. Friedman [47] sought to extend
stuck-at fault test pattern generation strategies such that the generated test patterns detect
certain classes of wired-logic bridging faults as well. Kodandapani et al. [87] developed the
concept of redundancy for bridging faults and demonstrated that a redundant bridging
fault can render tests for stuck-at faults invalid. The approach by Abramovici et al. [2]
allows one to derive the coverage of bridging faults from stuck-at fault simulation and
discusses test pattern generation for less restricted classes of bridging faults.

All studies exploit one key property: In principle the early bridging fault models inject a
s-a-v fault at the victim node (which has to be activated by assigning v to the node) and
additionally enforce logical value v on the aggressor node. This has been, for instance,
reported by Williams et al. [202]. For the wired-AND model their findings can be formalized
as follows (adapted from [2]):

31

4 Non-Resistive Bridging Fault Models

A test t detects the wired-AND non-feedback bridging fault between nodes a
and b iff either t detects a s-a-0 and sets b = 0, or detects b s-a-0 and sets a = 0.

This only holds if the stuck-at faults affect the stem of a node, i.e. all successors of this
node. A detailed proof can be found in [1, p. 292]. Obviously it is possible to make similar
assertions for wired-OR, a-dominant, and b-dominant models.

Technological Background

The close relation of both wired-logic and dominance-behavior model to stuck-at faults
(which hardly refer to real physical defects) might be somewhat misleading. In fact
these bridging fault models are motivated by the impact of actual shorts in certain logic
families.

If two nodes are shorted in a circuit implemented in emitter-coupled logic (ECL), the
one with driven value 1 will always override the node carrying logical value 0. In this
technology the abovementioned justification for the basic bridging fault models holds: A
short can indeed be modeled as a wired-OR [116]. To n-type metal oxide semiconductor
logic (NMOS), the contrary applies, i.e. logical value 1 will always be overridden by logical
value 0 in presence of a short. For this logic family wired-AND is a valid bridging fault
model [121]. Similar arguments justify using the wired-AND model for circuits implemented
in transistor-transistor logic (TTL) [87]. Two nodes shorted in a circuit implemented in
complementary metal-oxide-semiconductor (CMOS) digital logic may see voltage levels
which cannot be interpreted unambiguously by all driven gates. Therefore the wired-logic
and dominance-behavior models do not apply in this case [4]. This has been demonstrated
by electrical simulations in [43, 60, 121]. In general, circuits are implement using only one
logic family. Hence, there is no technological justification for considering a mixture of any
of the bridging fault models introduced so far [115].

We will in the following focus on the CMOS digital logic family. Even though wired-logic
and dominance-behavior bridging fault models have no technological foundation in this
technology, they still provide a good example of a simple and technologically sound bridging
fault model.

4.1.2 The 4-way Model

When modeling bridging faults in an industrial setting it is not only the model’s accuracy
that matters. Excessive run-times of ATPG and simulation tools for multi-million gate
designs cannot be afforded. Therefore the model’s computational complexity should be
moderate. Compatibility with standard commercial tools typically developed for single-
stuck-at faults is favorable as well. Furthermore, certain technological data might not be
accessible (e.g. for reasons of intellectual property protection). A high-level approach, only
relying on gate-level information, might be the only bridging fault model applicable in
such cases.

32

4.2 Technology-Based Models

Table 4.2: Aggressor and victim nodes for 4-way model.

Value at Aggressor Victim
a b Node Node Fault

1 0 a b s-a-1
b a s-a-0

0 1 a b s-a-0
b a s-a-1

All the abovementioned requirements are fulfilled by the wired-logic and dominance-
behavior models. But as each of them has been demonstrated to be inappropriate for
CMOS digital logic (see Chapter 4.1.1), it is questionable whether their application in an
industrial setting will help to achieve low DPM targets. Findings on the interdependence of
wired-OR, wired-AND, a-dominant, and b-dominant models in [105], however, indicate that
the combined use of both wired-logic (or both dominance-behavior) models may mitigate
the disadvantages of each individual model.

One of the first references for the industrial application of the 4-way model is [92]. It
reports on a bridging fault model which represents each fault by four combinations of
aggressor constraint and victim stuck-at fault which has been applied to a commercial
microprocessor. Further studies from the same context can be found in [25]. Some authors
refer to the 4-way model as to the Aggressor/Victim model [102].

Table 4.2 states constraints and single-stuck-at faults assigned to aggressor and victim
nodes by the 4-way model (assuming a bridge between two nodes a and b). The driven
values on these nodes are specified in columns one and two. Column three(four) denotes the
aggressor(victim) node. The stuck-at fault assigned to the victim node is given in column
five. The 4-way model only adds a constraint on the aggressor node to the single-stuck-at
fault model. Thus, handling of 4-way faults by (modified) state-of-the-art stuck-at tools is
possible.

Cusey et al. [34] proposed the use of an extended version of the 4-way model for their
automatic test pattern generator BART. Their approach, targeting the CMOS technology,
combines the basic 4-way model with electrical awareness. BART seeks to assign logical
values to the inputs of the driving gates which (due to the properties of CMOS logic gates)
enhance the probability that faulty logical values actually occur at the node predicted by
the 4-way model. In Chapter 8.2 we compare experimental results obtained with our tool
RBF-ATPG with data presented in [34]. The experimental results for the 4-way model
can be found there as well.

4.2 Technology-Based Models

The simple logic models presented so far do not exploit any low-level knowledge about
the functionality of CMOS digital logic. In this respect it is questionable if they can

33

4 Non-Resistive Bridging Fault Models

a

b
E

1

0/1

C

D

A

B

0

0

1

1

V dd

V dd

Figure 4.1: Transistor level view of driving gates in CMOS technology.

accurately reflect the effect of a bridging fault in this logic family. For the wired-logic and
dominance-behavior models simple electrical simulations did show that this is not the case.
In the following we will introduce two models which have been developed specifically for
CMOS technology.

At first, however, we will briefly discuss the impact of a short in a circuit implemented in
CMOS technology. Such a defect, shorting the outputs of two gates, connects the transistor
networks within the gates which were originally designed to drive two (electrically) separate
nodes. The capacitive load the networks have to drive may be approximated by the sum of
the lumped loads connected to each individual gate output (further load is e.g. contributed
by capacitive coupling etc.). If the bridge is activated, one of the gates tries to drive its
output to logical value 1, i.e. its pull-up network is activated. The other gate attempts to
drive its output to logical value 0, which means that its pull-down network is active. This
is illustrated in Figure 4.1 which depicts a short between two gate outputs a and b (this is
the same situation as in Figure 3.1). Both driving gates are shown at the transistor level
– node a is driven by NAND gate A with two inputs, node b is driven by the two-input
NOR gate B. The dominant part of the (cumulative) capacitive load is contributed by the
transistors in the driven gates C, D, and E. Logical assignment (0, 0) to the inputs of gate
A activates both p-transistors connected in parallel in the pull-up network of that gate. The
pull-down network consisting of two n-transistors connected in series is inactive. Logical
assignment (1, 1) applied to gate B activates both n-transistors connected in parallel in
the gate’s pull-down network. At the same time both p-transistors connected in series are
inactive. Due to the short, the current supplied by the pull-up network in A to charge the
load is drained immediately by the discharging pull-down network of B. The current left
to charge the cumulative capacitive load is – according to Kirchhoff’s first law 1 – equal to
the difference of the currents which flow through the active transistor networks. As this
current is lower than that in a fault-free node, the transistors in the succeeding (driven)

1The sum of the currents flowing into a node is equal to the sum of the currents flowing out of the
node.

34

4.2 Technology-Based Models

gates may not be charged to full-scale voltage levels. Consequently, a closer examination is
necessary to determine the logical values interpreted by these gates.

Acken et al. proposed the voting model in [3]. The model uses a strategy which allows it to
compute the logical values interpreted by the driven gates. Its essence is the combination
of profound technological data with a voting scheme. This allows it to resolve digital
values in a very simple manner. We introduce the voting model in Chapter 4.2.1. It has
been demonstrated, however, that some of the simplifying assumptions used by the voting
model may affect modeling accuracy. An extension of the model, the biased voting model,
proposed by Maxwell et al. [112], helps to alleviate these problems. This model will be
covered in Chapter 4.2.2.

4.2.1 The Voting Model

According to the paradigm of the voting model [3, 4, 120], the driving gate whose transistor
network is capable of providing or draining more current will determine the state of the
capacitive load and thus the logical values recognized by the driven gates. If for instance
the p-transistor network can sustain more current than the n-transistor network is able to
drain the voltage potential of the bridged nodes will be closer to Vdd and the driven gates
are assumed to interpret logical value 1.

The amount of current flowing through a gate is determined by two major factors. On
the one hand, there are static design parameters such as the topology of the transistor
networks (connection in parallel or in series), process parameters (such as doping etc.), and
the size of each transistor. The latter is defined by the width (W) and length (L) of the
transistor’s gate, subsumed by the W/L ratio. The amount of current flowing through a
transistor is proportional to its W/L ratio. On the other hand the current is determined by
the logical assignment to the gate’s inputs which is dependent on the current logic state of
the whole circuit and is thus variable. The assignment influences not only which transistor
network is conducting but also which of the transistors within this network are active. An
example is depicted in Figure 4.1 where (0, 0) assigned to gate A activates two p-transistors.
For a given gate and an input assignment the voting model represents all factors impacting
the ability of the active transistors to drive or drain current by the equivalent resistance R.
This resistance is inversely proportional to the amount of current conducted by the active
transistors. More intuitively, this is captured by the active transistors’ conductance C
which is defined as C = 1

R
. When normalized by the conductance of a single n-transistor,

the conductance of the active p- or n-transistors is called relative puissance [120], denoted
by RP .2 The relative puissances can be obtained by electrical simulations. For a given logic
gate library, all transistor networks used in the logic gates are simulated for all possible
input assignments. The relative puissances thus obtained are tabulated. Let cp(cn) be the
number of legal configurations of the p(n)-transistor networks for the library. Hence, the
size of this table will be cp · cn. Assuming the library of the circuit in Figure 4.1 contains

2The term “puissance” is – according to [4] – supposed to underline that due to the non-linear properties
of transistors the normalized conductance can neither be used to determine voltages nor time constants.

35

4 Non-Resistive Bridging Fault Models

only a two-input NAND and a two-input NOR we obtain the following legal transistor
configurations for both pull-up and pull-down network: single transistor, two transistors in
series, and two transistors in parallel. As a consequence the table of relative puissances for
this circuit would have nine entries.

According to the voting model, the relative puissances of the complementary transistor
networks driving the shorted nodes may be compared to determine the logical value
observed by the driven gates. Given a bridging fault and an activating assignment to the
driving gates this can be done as follows:

(1) Identify the active transistors in both the pull-up and pull-down network. Fetch
the relative puissance RPu(RPd) of the active transistors in the pull-up(pull-down)
network from the precomputed table of relative puissances.

(2) Compare the relative puissances: If RPu > RPd the p-transistor network is able to
conduct more current and consequently logical value 1 is interpreted by the driven
gates. Otherwise the n-transistors are dominant and logical value 0 is interpreted.

Step (1) of this procedure first identifies which of the transistors actually drive the shorted
nodes according to the input assignment. Then the corresponding relative puissances are
determined. Step (2) of this procedure is similar to a vote. The driving gate with the
larger RP “wins” and all driven gates are assumed to interpret the “winner’s” driven value.
In the situation depicted in Figure 4.1 the relative puissance RPu of the pull-up network
of gate A is larger than the relative puissance RPd of the pull-down network of gate B.
Hence, the voting model would predict that the pull-up network wins and therefore all
driven gates interpret logical value 1.

So far we have presumed that the voltage induced at the shorted nodes can always be
interpreted as a well-defined logical value by the driven gates. However, as confirmed by
Acken et al. in [3] this voltage is unlikely to reach the extreme values ground and Vdd,
respectively. Rather, it will assume some intermediate level which does not necessarily
have to be resolvable unambiguously to a logical value. Experiments conducted by Acken
et al. indicate that only very few driving gate configurations may result in a voltage at the
bridged nodes which falls into this critical range. This motivates the following conclusion:
“a short in that range is unlikely” [3]. Thus, assuming the interpretation of a well-defined
logical value is mostly correct.

4.2.2 The Biased Voting Model

Like any other bridging fault model, the voting model as presented in Chapter 4.2.1 uses
several assumptions to reduce modeling complexity. However, as highlighted by Maxwell
et al. in [112] some of these assumptions can have a detrimental impact on the model’s
accuracy. To overcome this deficiency they proposed the biased voting model [112] which
refines some assumptions introduced in the voting model while at the same time maintaining
its simplicity.

36

4.2 Technology-Based Models

a

b

A

B D

0

1

1

0

0/1C

1

1/0

V br=1.50V

V l t
ci n=1.57V

V l t
d i n=1.47V

Figure 4.2: Interpretation of voltage Vbr at the bridged nodes a and b by driven gates C
and D.

The first and most severe inaccuracy they identified is caused by the handling of logic
threshold voltages. The voting model assumes a single fixed threshold for all inputs of all
gates (Vdd/2 in [3]). Yet as outlined in Chapter 2.1.2, the logic thresholds of different gate
types and inputs are not necessarily equal. Hence, using a single fixed value may lead to
wrong predictions as illustrated in Figure 4.2. Assume that voltage Vbr induced on the
bridged nodes a and b is 1.50 V (for Vdd = 3.30 V). As the logic threshold V cin

lt of gate C is
1.57 V and thus larger than Vbr the gate interprets logical value 0. Whereas the fault-free
logical value driven by A is logical value 1. According to the logic threshold V din

lt = 1.47 V
of gate D this gate interprets logical value 1 – instead of the fault-free logical value 0 driven
by B. If we had considered a single fixed logic threshold voltage of Vdd/2 = 1.65 V, only
gate C would be assumed to interpret a faulty logical value, i.e. logical value 0. Obviously
not predicting a faulty logical value when actually a difference to the fault-free behavior
could be observed may result in an underestimation of the fault coverage. Inversely, the
model could also predict faulty logical values to be observable which actually are not
present. When different gates interpret the same voltage level as contrary logical values,
this is called Byzantine General’s Problem [4].3

For the voting model the Byzantine General’s Problem has been solved in a refined version
of the model introduced in [4]. In addition to that, the biased voting model is able to tackle
a second source of inaccuracy which is inherent to the voting model. The relative puissances
of the latter model are determined for a fixed voltage Vbr at the bridged nodes (Vbr = Vdd/2
is used in [3]). As demonstrated by Maxwell et al. in [112] this overly simplifies the matter.
The relative puissance of a transistor (network) is defined as the conductance of this network
relative to the conductance of a single n-transistor. Electrical simulations clearly indicate
that the conductance of a transistor (network) changes with varying Vbr. Let Cp(Cn) be
the conductance of a p(n)-transistor network. The experiments show that compared to
their value at Vbr = Vdd/2 for Vbr > Vdd/2 the value of Cp(Cn) is increasing(decreasing).
Contrary to that for Vbr < Vdd/2 the value of Cp(Cn) is decreasing(increasing). Data in
[112] proves that this effect heavily impacts the relative puissances and thus the outcome
of the vote. In conclusion, in order to obtain accurate results it is inevitable to consider the
conductance of each transistor network with respect to the voltage induced at the bridged

3This alludes to the “Byzantine Generals Problem” known in communication theory (see [96]).

37

4 Non-Resistive Bridging Fault Models

nodes. Unfortunately, if we want to correctly handle the Byzantine General’s Problem as
well, this leads to the following dilemma: To determine the logical value interpreted by a
gate we have to know Vbr (or at least its relative magnitude with respect to the gate input’s
logic threshold voltage). It is possible to calculate Vbr if the conductances of the transistor
networks driving the bridged nodes are known. These are, however, dependent on Vbr.

Maxwell et al. proposed a procedure to break this “vicious circle”. It is based on the
assumption of an idealized circuit in which the conductances of both pull-up and pull-down
network are independent of Vbr. The procedure has to be applied individually to every
input of all driven gates connected to either of the shorted nodes. Let Vlt be the logic
threshold of such an input:

(1) Determine the ratio ri of the conductance of the pull-down and pull-up network for
Vbr = Vlt assuming an idealized circuit.

(2) Identify the active transistors in both the pull-up and pull-down network. Then
determine the ratio rt of the conductances of the pull-down and pull-up network the
actual transistors would require in order for Vbr = Vlt to hold.

(3) Compare ri and rt: If rt > ri, logical value 0 will be interpreted by the driven gate;
otherwise the gate will see logical value 1.

Step (1) of this procedure determines the ratio ri of conductances which would be required
for an idealized circuit to attain Vbr = Vlt. In the next step (2) the ratio rt of conductances
of the actual active transistor networks is computed again assuming Vbr = Vlt. Typically
this data has been precomputed by electrical simulations and can now be retrieved from
tables. If rt > ri the pull-down network of the actual transistors is much stronger than
necessary to induce Vbr = Vlt (see step (3)). Therefore, the pull-down network “wins” the
vote. Inversely, if rt < ri the pull-down network of the actual transistors is weaker than
required to pull the voltage below Vlt. Consequently, in this case the pull-up network “wins”
the vote.

In summary, the biased voting model is able to correctly handle the Byzantine General’s
Problem and further increases modeling accuracy by considering the voltage dependency
of transistor conductance. At the same time the complexity of the voting procedure,
introduced by the voting model, is only marginally increased.

4.3 Generalized Logic Models

In the preceding chapters we have highlighted that several parameters impact the effects
caused by a short. A bridging fault model addressing as many of them as possible can
be expected to be very accurate. However, we have also emphasized that some of these
parameters may be inaccessible in certain application scenarios. Additionally, parametric
variations expected to occur in future deep sub-micron technologies might introduce further
complexity which might complicate accurate (technology-based) models. The generalized
logic models address these issues by using a generic description of a short’s effects – thus

38

4.3 Generalized Logic Models

a

b

A

B

d i n
2

d i n
1

c i n
3

c i n
1

c i n
2

C1

C2

C3

D1

D2

a i n
1

a i n
2

bi n
1

bi n
2

Figure 4.3: Example of circuit with a non-resistive bridging fault.

avoiding the need for low-level circuit parameters. In the following we will introduce
two representatives of this type: The unified model (Chapter 4.3.1) and the precise test
generation model (Chapter 4.3.2).

4.3.1 The Unified Model

The unified model4, developed by our co-operation partners Chen et al. [P10] pursues a
completely different approach than the technology-based models from Chapter 4.2. Instead
of trying to bring the accuracy of bridging fault modeling to perfection, it attempts to
capture the behavior of a bridge by a generic description of all potential fault effects caused
by a short.

The electrical state of two nodes affected by a short is mainly influenced by the relative
strengths of the driving gates and the defect’s resistance. Because of the Byzantine General’s
Problem, each driven gate observing one of these nodes may interpret its state differently
depending on the gate input’s logic threshold. Consider a defect shorting two nodes a and
b (see Figure 4.3) and five driven gates C1, C2, C3, D1, and D2. Given a fixed assignment
to a and b which activates the bridge each driven gate either interprets the fault-free state
of the respective bridged node or it determines the faulty (inverse) value. For five gates
there are 25 = 32 combinations of these two states. Omitting the state in which all gates
interpret the respective fault-free logical value, we can have 25 − 1 = 31 combinations of at
least one faulty logical value. This is equivalent to assigning all possible multiple-stuck-at
faults to the gate inputs c1

in, c2
in, c3

in, d1
in, and d2

in. In general, for a bridge shorting node a
with p branches and node b with q branches (and assuming a fixed activating assignment)
we obtain 2p+q − 1 multiple-stuck-at faults. Note that there might be multiple assignments
to the driving gates each activating the bridge. For every assignment the same number of

4The fault representation technique employed by the unified model can be applied to interconnect open
defects as well. Hence, the model represents a unified approach which is able to handle both opens and
bridges. Aspects of the model relating to open defects are covered in [148].

39

4 Non-Resistive Bridging Fault Models

a

b
d i n
2

d i n
1

c i n
3

c i n
1

c i n
2 o1

o2

o3

Figure 4.4: Primary outputs reachable from driven gates’ inputs.

multiple-stuck-at faults is considered. In our example there are 10 activating assignments
to the inputs of the two input NAND gate A and the two input NOR gate B. Obviously
each logical assignment to the driving gates can be interpreted as a constraint. From this
combination of a constraint and a multiple-stuck-at fault we can compose a CMS@ fault.
Hence, we obtain 10 · (25 − 1) = 310 conditional multiple-stuck-at faults modeling the
potential behavior of the bridge in Figure 4.3.

It is very time consuming to process this huge amount of CMS@ faults required to model
a practically relevant number of bridges in a given circuit. In [P10] two strategies have
been proposed to reduce the number of CMS@ faults which have to be addressed explicitly.
The first strategy is called implicit fault simulation. Consider a s-a-1 fault at the input c1

in

of C1 in Figure 4.3. Assume furthermore that for a given assignment to gates A and B we
can detect this fault at an observable point while at the same time applying an unknown
value to the remaining driven gates, i.e. c2

in = c3
in = d1

in = d2
in = X . From this we can

conclude that c1
in s-a-1 can be detected irrespective of the values interpreted by the other

driven gates involved in the bridge. As a consequence we can mark all 24 = 16 CMS@
faults involving c1

in s-a-1 as detected and remove them from the list of faults. Applying this
strategy iteratively to each driven gate for all activating assignments allows to determine
the detections statuses of large parts of the set of CMS@ faults.

The second strategy, called structural analysis method, exploits the notion of fan-out cones
(i.e. the set of observable points reachable from a given circuit node via a path). Assume
that (as depicted in Figure 4.4) in our example, fault effects at c1

in and c2
in can be detected

at observable point o1. Furthermore c2
in, c3

in, and d1
in(c2

in, c3
in, d1

in, and d2
in) can be observed

at o2(o3). A stuck-at fault affecting c1
in can only be detected at o1 whereas the effect of

a stuck-at fault at d2
in can solely be observed at o3. As there is no interaction between

these two stuck-at faults during effect propagation, it is sufficient to either detect the fault
at c1

in or the fault at d2
in to detect the bridging fault. Consequently it is not necessary to

explicitly consider CMS@ faults describing multiple-stuck-at faults which affect both c1
in

40

4.3 Generalized Logic Models

Table 4.3: Instances of unified fault model.

Affected Activation
Bridge Nodes Implicit Explicit

Single Faulty Node ISFN ESFN
Two Faulty Node ITFN ETFN

and d2
in. Based on this conclusion we can split the set of CMS@ faults describing this bridge

into three groups: (1) those faults affecting c1
in and c2

in which can be detected at o1, (2)
those CMS@ faults addressing c2

in, c3
in, and d1

in observable at o2, and (3) the group of faults
involving c2

in, c3
in, d1

in, and d2
in detectable at o3. Note that the set of CMS@ faults contained

in group (2) is a subset of those belonging to group (3). Thus we have to explicitly consider
the CMS@ faults belonging to groups (1) and (3) only. In our example this reduces the
number of CMS@ faults from 10 · (25 − 1) = 310 to 10 · ((22 − 1) + (24 − 1)) = 180. If we
finally take into account that faults affecting c2

in are contained in both sets we can further
reduce this number to 170 CMS@ faults. This is far less than the 310 faults contained in
the original fault list.

The unified model allows us to model shorts at several levels of accuracy. By modulating
the number of CMS@ faults used to describe a bridging fault, the modeling accuracy
and thus the models complexity can be controlled. Given a bridge between two nodes a
and b, it is possible that (some of) the gates driven by node a interpret a faulty logical
value whereas all gates driven by node b see a fault-free logical value or vice versa. This
type of bridging fault is referred to as single faulty node (SFN) bridge. On the other
hand, the bridge could also affect both nodes such that gates driven by node a as well as
gates driven by b may recognize a faulty logical value. This is termed a two faulty node
(TFN) bridge. Bridging faults which induce different faulty logical values depending on the
assignments to the driving gates are said to require explicit activation. For these faults, the
unified model considers all assignments to driving gates activating the bridge. If, however,
only the activation of the bridging fault is relevant – i.e. the logical values driven at the
shorted nodes – the bridge is said to require implicit activation. In this case, all activating
assignments to the driving gates producing the same pair of driven values are treated as
equivalent. This is similar to the wired-logic and the dominance-behavior models covered
in Chapter 4.1.1.

Based on these categories four different instances of the unified model can be defined.
SFN(TFN) bridges requiring explicit activation are captured by the ESFN(ETFN) instance.
Analogously, SFN(TFN) bridges for which implicit activation is sufficient are modeled
by the ISFN(ITFN) instance. Table 4.3 summarizes the instances of the unified model;
columns two and three refer to the activation, while rows two and three state the affected
nodes. From the construction of the model’s instances one can deduce that the set of
CMS@ faults modeling ISFN bridges is contained in the set of faults representing ITFN
bridges. Similarly the set of CMS@ fault modeling ESFN bridges is contained in the one
created for ETFN bridges.

41

4 Non-Resistive Bridging Fault Models

For the bridge example depicted in Figure 4.3 the number of CMS@ faults (without using
any of the reduction techniques described above) ranges from 2 · ((22 − 1) + (23 − 1)) = 20
for the ISFN instance5 to 10 · (25 − 1) = 310 for the ETFN instance.

In an application scenario in which the relative order of the driven gates’ logic thresholds
is known (exact values are not required), a bridging fault can be modeled by a reduced
number of CMS@ faults. Let V i

lt be the logic threshold of gate input i. Assume that
V
c1in

lt < V
c2in

lt < V
c3in

lt and that the observed node a is driven to logical value 1 (see Figure
4.3). For gate C1 to recognize a faulty logical value 0 the voltage at node a, V a, has to
be lower than the logic threshold of c1

in, i.e. V a < V
c1in

lt . As V c1in
lt < V

c2in
lt < V

c3in
lt it is evident

that in this case c2
in and c3

in have to recognize a faulty logical value as well. Exploiting this
knowledge we can now eliminate all CMS@ faults which attribute a stuck-at-0 fault to c1

in

but not to both c2
in and c3

in. Instances of the unified model which extend this reasoning
to all driven gates, fault locations, and values are indicated by the suffix ’_TH’ (which
alludes to the consideration of the logic threshold), e.g. ISFN_TH.

Our co-operation partners have successfully integrated the unified model into a state-of-the-
art commercial tool for stuck-at test pattern generation and simulation. Moreover, they
have applied the model to industrial circuits with more than one million gates. Further
details and experimental results can be found in [P10]. In Chapter 8.2 we compare results
on test pattern generation for the unified model from [P10] with data obtained with our
tool RBF-ATPG.

4.3.2 The Precise Test Generation Model

The precise test generation model (PTG) by Maeda et al. [107], and the unified model
(described in Chapter 4.3.1) share a very similar motivation. Both approaches try to
implicitly model all potential electrical effects influencing the behavior of a bridge and both
use a comparable, generalized description of this behavior. In the following we point out
the key features of the PTG model and its differences with respect to the unified model.
We will exclude, however, all aspects related to test generation. For details on this topic
please refer to [107].

Just as the unified model, the PTG model neither addresses the relative strengths of the
driving gates nor the non-predictable resistance of the intrinsic short resistance. Instead all
assignments to the driving gates which activate the bridge are considered – the bridge is
said to require explicit activation in the terminology of the unified model. Given a bridge
between two nodes a and b and a fixed activating assignment, the PTG model assumes that
the state of node a and the state of node b can be degraded by the defect. Yet the short
cannot affect the successors of both nodes at the same time. This corresponds to a single
faulty node (SFN) bridge in the nomenclature of the unified model. Contrary to the latter
model the PTG approach does not consider the Byzantine General’s Problem – all driven
gates connected to the same bridged node are assumed to interpret the same (faulty) logical

5We assume that logical values on node a and on node b are (independently) degraded by the short.

42

4.3 Generalized Logic Models

value. Consequently, for a given activating assignment (equaling a constraint) the bridge
is modeled by two CMS@ faults, one affecting node a and one addressing node b. The
very same pair of faults is attributed to all remaining activating assignments. Assuming t
activating assignments, the number of CMS@ faults used by the PTG model to describe a
bridge is 2 · t. In contrast to the unified model, no techniques to reduce the number of
faults are proposed for the PTG model in [107].

In summary, the PTG model can be best compared to the ESFN instance of the unified
model. Yet, as it does not provide for the Byzantine General’s Problem the CMS@ faults
used by the PTG model are only a subset of those encompassed by the ESFN model.
Consequently, the number of faults is reduced substantially at the expense of modeling
accuracy.

43

4 Non-Resistive Bridging Fault Models

44

5 The Resistive Bridging Fault Model

As we have pointed out in Chapter 4, the majority of bridging fault models address non-
resistive faults. Yet, as it has been shown experimentally in [158], a substantial fraction
of shorts have a non-zero resistance, typically lower than 500 Ω (this is also supported
by data from [134]). The exact intrinsic resistance of this type of defect is dependent
on many factors including parameters like its shape, size, conductivity, exact location on
the die, evaporation behavior, and electromigration. Consequently, different shorts will
have a different intrinsic resistance even if they may be represented by the same (resistive)
bridging fault, i.e. affect the same pair of circuit nodes. When modeling resistive shorts
we therefore have to treat their intrinsic resistance as an unknown parameter and should
consider the whole continuum of this parameter.

A model which is able to efficiently and accurately reflect the behavior of a circuit in the
presence of a short with random resistance is the resistive bridging fault model proposed
by Renovell et al. in [152, 154]. In this chapter we will introduce this model. In doing
so, we will demonstrate that the short’s resistance has indeed a non-negligible influence
on the behavior of a circuit, and that it should be modeled explicitly. It will turn out
that a test vector which detects a short with one particular resistance might not be able
to detect a short with another resistance even though both affect the same circuit nodes.
Furthermore, we will demonstrate that the parametric nature of the resistive bridging fault
model imposes fundamental changes on the meaning of well-known testing concepts such
as fault coverage and redundancy.

In the following we will first elaborate on the influence of the intrinsic short resistance on
circuit behavior and introduce the model as proposed by Renovell et al. in Chapter 5.1. The
electrical aspects of the model will then be discussed in Chapter 5.2. In particular, we will
give general indications in which way we can adapt the electrical core of the model to future
technologies. We also report on how we successfully transferred the electrical core to two
new technology nodes. Then, we will explain how Renovell et al. fitted the notion of fault
detection to the requirements of a parametric fault model in Chapter 5.3. Probabilistic
fault coverage definitions which reflect coverage of shorts with random resistance will be
discussed in Chapter 5.4. Subsequently, in Chapter 5.5, we will bring these components
together and describe different techniques which allow us to determine for which short
resistances a given resistive bridging fault may be detected. There, we will also briefly
discuss the particularities of feedback bridging faults. In the same chapter, we present our
experimental results on the occurrence of double errors induced by resistive bridging faults.
Finally, we will prove that irrespective of technological parameters detection of certain
classes of resistive bridging faults can be guaranteed.

45

5 The Resistive Bridging Fault Model

a

b

A

B E

0

1

1

0
(1)

C

D
Rsh

V l t
C

V l t
D

V l t
E

Figure 5.1: Example of circuit with a resistive short affecting nodes a and b.

5.1 Introduction of the Resistive Bridging Fault Model

In the following, we will introduce the findings of Renovell et al. [152, 154] as they have
been covered in [W2, W3], [P4], and [J3]. Consider a resistive bridging fault affecting
two nodes a and b driven by a two-input NAND gate A and a two-input NOR gate B,
respectively (see Figure 5.1). Due to the input assignment (0, 0) two parallel p-transistors
in the pull-up network of gate A are active (refer to Figure 4.1 for the transistor structure of
both gates). They drive node a to Vdd – corresponding to logical value 1 – in the fault-free
case. Contrary to that, node b is driven to 0 V in the fault-free case – equaling the logical
value 0 – by two parallel n-transistors in gate B. They are activated by assigning (1, 1) to
the gate’s inputs.

Yet, due to the short nodes a and b cannot attain their fault-free voltage level. Rather
the voltages at both nodes are dependent on the defect’s intrinsic resistance. Figure 5.2(a)
qualitatively illustrates the voltage Va(Vb) at node a(b) on the ordinate as a function of
the short’s resistance Rsh on the abscissa. As can be seen, Va and Vb assume an equal
intermediate voltage potential V0 for Rsh = 0 Ω. In the presence of a short which has
a non-zero intrinsic resistance, voltages in a and b monotonically approach the levels
observable in the fault-free case. For an infinitely high short resistance both Va and Vb
reach the fault-free levels Vdd and 0 V, respectively. The characteristics of Va and Vb have
been verified by electrical simulations (see [154]).

In digital circuits the interpretation of voltage levels as Boolean values is of particular
interest. As outlined in Chapter 2.1.2, this interpretation is done with respect to a single
well-defined logic threshold voltage Vlt which may be different for each input of each gate
type. We assume – in accordance with previous works – that voltages can be interpreted
without ambiguity. In their study of (non-resistive) bridging faults in an Advanced Micro
Devices (AMD) design, Ma et al. [105] reported that disregarding potentially ambiguous
intermediate voltages in the vicinity of the logic threshold had an impact on fault coverage
which was below 0.007%. A possible variation of the logic threshold across different
manufactured ICs is not considered. Furthermore, it is assumed that due to the high gain1

1Due to the high gain of CMOS logic gates, a voltage which slightly deviates from the logic threshold
voltage of a gate’s input may be amplified to a very high (low) voltage at the gate’s output.

46

5.1 Introduction of the Resistive Bridging Fault Model

V

RshRERC

V b

V a

V l t
C

V l t
D

V l t
E

V 0

V

RshRERC
'RE

'RCRD
'

V b

V a

V l t
C

V l t
D

V l t
E

(a) (b)

Figure 5.2: Characteristics of voltages at nodes a and b as a function of the short’s resistance
Rsh: (a) input assignment (0, 0, 1, 1), and (b) input assignments (0, 0, 1, 1) and
(0, 1, 1, 1).

of CMOS logic (see e.g. [3, 146]), gates connected to the driven gates receive voltages
corresponding to well-defined logical values at their inputs. Recently an extension to the
resistive bridging fault model has been proposed by Cheung et al. [30]. It accounts for a
range of uncertain interpretation surrounding each gate’s logic threshold. Up to now, the
necessity of this extension is not proven, as neither the typical extent of this uncertainty
region nor its impact on the quality of results is sufficiently quantified in that work.

Nodes a and b in Figure 5.1 are observed by gates C, D and E, respectively. Note that in
our example the types of these gates as well as the logic state of any non-defect affected
inputs are irrelevant. In Figure 5.2(a) the logic threshold V C

lt of gate C’s input – driven
by node a – is depicted as a horizontal line. The resistance obtained when projecting the
intersection between characteristic Va and the threshold of C to the abscissa is called the
critical resistance, denoted by RC in this case. For shorts having a resistance smaller than
RC , the voltage characteristic of node a is below V C

lt , i.e. the voltage would be interpreted
as the faulty logical value 0 by C. The characteristic Va is above the threshold for any
short having a resistance greater than RC . Consequently, in presence of such a defect, gate
C would interpret the fault-free logical value 1. Obviously, only for shorts with an intrinsic
resistance smaller than RC , a faulty logical value would be interpreted by C. In this sense
RC constitutes an upper bound on the resistance of shorts. The conducting path created
by these low ohmic defects would have a very strong influence on the voltage potentials of
the shorted nodes and would be able to pull the voltage at a below V C

lt . Inversely, for Rsh

greater than RC the short’s influence would be too little to sufficiently affect Va – gate C
would interpret logical value 1.

Gate E in our example is driven by node b. The intersection of gate E’s logic threshold
V E

lt and Vb defines the critical resistance RE. In the presence of a short having a resistance
smaller(greater) than RE, gate E would interpret the faulty(fault-free) logical value 1(0).
Since there is no intersection between Va and V D

lt , there is no critical resistance for gate D.

47

5 The Resistive Bridging Fault Model

As a consequence, this gate would interpret a fault-free logical value 1 irrespective of the
short’s resistance.

Assume that we now apply the pattern (0, 1, 1, 1) to the driving gates A and B. In contrast
to the first pattern (0, 0, 1, 1), this one only activates one p-transistor in the pull-up network
of A, the assignment to gate B and thus the strength of the gate’s pull-down network
remains unchanged. Because of the weakened pull-up network both voltage characteristics
may be shifted towards 0 V, as illustrated by the dashed curves in Figure 5.2(b). Note
that the characteristics depicted by continuous lines in this figure are the ones obtained for
the first pattern. Clearly the logic thresholds of C, D, and E are invariant to the changed
input assignment. Due to the shifted curves, however, we get new intersections and thus
new critical resistances R′C and R′E for gates C and E, respectively. Remarkably for this
pattern there is also an intersection between Va and V D

lt , the logic threshold of gate D,
resulting in the critical resistance R′D.

We can observe that the maximum range of short resistances for which faulty logical values
are interpreted by any driven gate differs for the two patterns. When the first pattern
(0, 0, 1, 1) is applied faulty logical values are observed for 0 Ω ≤ Rsh < RE, while for the
second one (0, 1, 1, 1) this range is 0 Ω ≤ Rsh < R′C . Since in Figure 5.2(b) it holds that
R′C < RE it is easy to see that the first pattern is able to expose defects from a larger
resistance range. Hence, in this sense the first pattern is superior to the second one.

From our observations we conclude that based on the critical resistance we can identify
those shorts which induce faulty logical values in a circuit. Moreover, the critical resistance
Rcrit which is associated with the input i of a gate driven by the shorted node n is affected
by two factors:

1. the fixed logic threshold V i
lt of the driven gate’s input i and

2. the voltage characteristic Vn of the shorted node n.

The voltage characteristic is a function of the short’s resistance Rsh ∈ R≥0. Furthermore,
it is dependent on the electrical properties of the active transistor networks in the driven
gates and on the networks’ topologies. The active transistors in turn are determined by the
assignment to the inputs of the driven gates. Consequently the formation of fault effects
caused by resistive bridging faults is pattern-dependent. The voltages at the shorted nodes
are interpreted with respect to the individual logic thresholds of each driven gate. This
means that the resistive bridging model also captures the Byzantine General’s Problem.2

For a fixed input assignment and driven gate input the critical resistance Rcrit ∈ R>0 is
defined as the resistance for which Vn(Rcrit) = V i

lt. Note that if no such Rcrit exists this
implies that the respective gate does not interpret a faulty logical value for any short under

2Note that both voting and biased voting model (discussed in Chapters 4.2.1 and 4.2.2, respectively),
implicitly determine V0. In particular, the biased voting model derives the same logical values as those
observed for 0 ≤ Rsh < Rmin (with Rmin being the minimum critical resistance obtained for the current
pattern).

48

5.2 Calculating Critical Resistances

the given input assignment. Based on Rcrit we can identify two sets of short resistances:

F = {x ∈ R≥0|0 ≤ x < Rcrit} (5.1.1)
G = {x ∈ R>0|Rcrit < x <∞} (5.1.2)

Let v ∈ B be the logical value driven at node n in the fault-free case. If Rsh ∈ F holds,
input i will interpret a faulty logical value v. For Rsh ∈ G, however, i will interpret the
logical value v observed in the fault-free circuit. The RBF model cannot unambiguously
resolve the logical value for Rsh = Rcrit. Yet, for the fault coverage metrics introduced in
Chapter 5.4, which are defined for integrals of resistance ranges, this can be neglected.
Values for finitely many single points do not contribute to the improper integral of a
monotonic function for (half-)open intervals. In the following we will denote this relation
between short resistance and logical value by the interval [0, Rcrit] v/v.3 Alternatively
we could describe the same situation by [Rcrit,∞] v/v. Note that this notation does not
discriminate between faulty and fault-free logical value.

To return to the example discussed above: When applying pattern (0, 0, 1, 1) to the driven
gates, gate C interprets logical value 0 for Rsh < RC and logical value 1 for Rsh > RC .
This can be indicated by [0, RC] 0/1 and [RC ,∞] 1/0, respectively.

5.2 Calculating Critical Resistances

As we have already pointed out in Chapter 5.1, critical resistances are technology dependent.
A procedure which derives the critical resistance for the input of a driven gate has to
take into account the input’s logic threshold and the characteristics of the voltages at the
shorted nodes. Both factors are influenced by the electrical properties of the circuit. Two
conceptually different approaches for such a procedure are known. The first technique –
favored in [30, 98, 165, 166] – performs an electrical simulation of both driven gates and
the driving gate for which a critical resistance is to be determined. To avoid repetition of
time consuming simulation runs the computed critical resistances are stored in look-up-
tables. Consequently all possible combinations of gates from a gate library only have to be
simulated and stored once for a certain circuit technology.

Unfortunately, electrical simulations have to be repeated in case the technology changes,
even if only some of the parameters are affected. Therefore we prefer the second, more
flexible approach, proposed by Huc [72, pp. 72] and Renovell et al. [154]. It is based on a
general framework of electrical equations which exploit the functions describing the output
characteristics (Ids-Vds characteristics) of each transistor and is thus very flexible. In the
following we will first introduce the general framework in Chapter 5.2.1. Then Chapter
5.2.2 will reproduce how this framework was used by Huc and Renovell et al. to enable the
calculation of critical resistances. This description has been adapted from our publication
[J3]. Finally, in the same chapter we will introduce our instantiations of the electrical
framework for two recent technology nodes which have been reported in [P8].

3Sar-Dessai et al. refer to this range as detectable resistance interval in [166].

49

5 The Resistive Bridging Fault Model

V dd

D

R sh

S

D

G

D

G
S

C

n0

n1
V l t

C

V l t
D

I 0

0 V

V dd

Figure 5.3: Transistor level view of a resistive bridging fault shorting two inverters.

5.2.1 General Framework

Figure 5.3 depicts a bridging fault shorting the outputs of two inverters (refer again to
Figure 2.4 for the transistor structure of an inverter gate). The fault is activated as logical
value 0, equaling 0 V, is applied to the inverter driving node n1. Thus, the p-transistor of
this gate creates a connection between Vdd and the gate’s output. Furthermore, logical
value 1 which corresponds to Vdd, is applied to the inverter driving node n0. Consequently
the n-transistor of this gate connects the ground terminal to the gate’s output. Note that
the inactive n-transistor(p-transistor) network in the upper(lower) gate is omitted in the
figure. Node n1(n0) is observed by gate C(D) with the logic threshold V C

lt (V D
lt). The

short introduces a conducting connection with resistance Rsh between nodes n1 and n0.
As a consequence there is a current path linking the positive and negative power supply
terminals, Vdd and Vss (or ground potential), respectively. This path encompasses the
p-transistor, the defect, and the n-transistor. No other current sources or sinks exist on
this path. Hence, the same current is flowing through the three elements – we will denote
it by I0. Current I0, as well as voltage Vn1 at node n1 and voltage Vn0 at node n0 are
dependent on Rsh.

The current flowing between D and S terminal of a transistor is specified by the transistor’s
Ids-Vds characteristic. Naming conventions for the difference in voltage potentials between
the transistor terminals are listed in Table 5.1. Note that the bulk terminal – which we omit
in all figures – is commonly held at Vdd(Vss) for a p-transistor(n-transistor). In this chapter
we will assume Vdd > Vss = 0 V. Let Ip(Vds) and In(Vds) be the output characteristic of
the p- and n-transistor, respectively. Then for the situation illustrated in Figure 5.3 the
following system of equations has to hold (see [72, p. 74] and [100]):

I0 = Ip(Vdd − Vn1)
I0 = In(Vn0)
Rsh = (Vn1 − Vn0)/I0

(5.2.1)

50

5.2 Calculating Critical Resistances

Table 5.1: Naming conventions for the difference in the voltage potentials between the
transistor terminals.

Symbol Difference in voltage
n-transistor p-transistor potential between

Vds,n Vds,p Drain and source
Vgs,n Vgs,p Gate and source
Vbs,n Vbs,p Bulk and source

Suppose we want to determine the critical resistance RC for the input of gate C (which
is driven to logical value 1 in a fault-free circuit) from Figure 5.3. This means we have
to determine Rsh in the system of equations for which Vn1 = V C

lt (refer again to Chapter
5.1). Assume that the inverse functions of In and Ip are available and denoted by I−1

n and
I−1
p , respectively. Since we know Ip and Vdd we can easily compute I0 = Ip(Vdd − Vn1).

Next we obtain Vn0 using the inverse function I−1
n of In as Vn0 = I−1

n (I0). Finally we can
calculate the critical resistance solving RC = Rsh = (Vn1 − Vn0)/I0. To determine the
critical resistance RD for the input of gate D (which is driven to logical value 0) we set
Vn0 = V D

lt and calculate I0 = In(Vn0). Using the inverse function I−1
p of Ip we obtain Vn1

and finally RD = Rsh.

This framework reduces critical resistance calculation to the problem of solving a simple
system of equations. At the same time it allows for a high degree of flexibility. Changes
affecting the technological parameters can now be easily addressed. Furthermore the
framework is applicable to any arbitrary CMOS technology (including company-internal
solutions) provided that Ids-Vds characteristics for p- and n-transistors and their inverse
functions are known. Output characteristics are a common means to describe the behavior
of transistors and are thus widely available. In the following we will demonstrate how
to instantiate the general framework for a particular technology’s Ids-Vds characteristics
to obtain a technology specific model. To underline the framework’s flexibility we will
discuss instantiations for three different technology generations. Experimental results we
performed to compare the three models with respect to their influence on test pattern
generation and fault simulation can be found in Chapter 8.2.2.

5.2.2 Technology-Specific Models

The first model, proposed by Huc and Renovell et al., uses the Shockley equations from the
1940s [175] and is valid for conventional technologies. We will refer to it as Shockley model.
More recent technologies, for which Shockley’s equations are not necessarily valid, can be
addressed by our Fitted model. We have obtained this model by fitting data from electrical
simulations. For current deep sub-micron manufacturing technologies our Predictive model
can be used. It is based on Berkeley Predictive Technology Model [22] (BPTM), which is
provided by the Device Group at UC Berkeley, in combination with Berkeley Short-channel

51

5 The Resistive Bridging Fault Model

Table 5.2: Technological parameters for Shockley and Fitted model (n- and p-channel
MOS-FET).

Symbol Meaning
n-transistor p-transistor

Cox Cox oxide capacitance per area unit
µn µp mobility
Wn Wp channel width
Ln Lp channel length
Vtn0 Vtp0 zero bias threshold voltage
Γn Γp body effect coefficient
Φn Φp substrate potential

IGFET Model 4 (BSIM4), which is valid for 90 nm technologies.4 In particular, it can be
used for predicting the transistor behavior in future 65 nm and 45 nm technologies. A new
iteration of the model reported in [214] can even predict transistor behavior down to 32 nm
technology. BPTM/BSIM4 accounts for the numerous non-trivial electrical phenomena in
nanoscale technologies, including Non-Uniform Lateral Doping (NULD), Narrow Width
Effect, Short-Channel Effect, Drain-Induced Barrier Lowering (DIBL), Drain-Induced
Threshold Shift (DITS) and Bulk Charge Effect. Hence, the three models describe past,
present and future technologies; nevertheless they share the same basic framework.

Shockley Model

For the linear operation region of a n-transistor Shockley’s equation for the drain current
Ids,n as a function of the drain-to-source voltage Vds,n is given as:

Ids,n(Vds,n) = µnCox
Wn

Ln

(
(Vgs,n − Vtn0)Vds,n −

Vds,n
2

2

)
. (5.2.2)

Refer to Table 5.2 for an explanation of the symbols used.

Similarly, for a p-transistor the drain current Ids,p as a function of the drain-to-source
voltage Vds,p is governed by:

Ids,p(Vds,p) = −µpCox
Wp

Lp

(
(Vgs,p − Vtp0)Vds,p −

Vds,p
2

2

)
. (5.2.3)

Observing that the n-transistor’s source terminal is connected to ground potential and
that logical value 1, equaling to Vdd, is applied to its gate, Vgs,n = Vdd has to hold (refer to

4When our paper [P8] was published, BSIM4.4.0 [208] was available. Our discussion, being based on
[P8], is thus restricted to this version of BSIM4. The updated version BSIM4.6.1, available since May
2007, might induce changes to our material presented in the following.

52

5.2 Calculating Critical Resistances

Figure 5.3). Furthermore, Vds,n equals Vn0 . Hence, Equation (5.2.2) can be transformed to
obtain the current flowing through the n-transistor as a function of the voltage at node n0:

In(Vn0) = µnCox
Wn

Ln

(
(Vdd − Vtn0)Vn0 −

Vn0

2

2

)
. (5.2.4)

As logical value 0, equaling 0 V, is applied to the gate of the p-transistor and its source
terminal is connected to Vdd it holds that Vgs,p = −Vdd and Vds,p = (Vn1−Vdd). Furthermore
for a p-transistor Vtp0 < 0 is true. Now Equation (5.2.3) can be transformed, taking into
account that I0 = −Ids,p and by substituting Vds,p and Vgs,p. The resulting equation
describes the current flowing through the p-transistor as a function of the voltage at the
node n1:

Ip(Vn1) = µpCox
Wp

Lp

(
(Vdd − |Vtp0|)(Vdd − Vn1)−

(Vdd − Vn1)
2

2

)
. (5.2.5)

We need to know the logic threshold Vlt of the gate’s input, in order to calculate the critical
resistance for a gate connected to the shorted node driven to logical value 0 according to
the procedure described in Chapter 5.2.1. Furthermore, In from Equation (5.2.4) and I−1

p

are required. The inverse equation of Ip can be obtained by solving the quadratic equation
I0 = Ip(Vn1) (Equation (5.2.5)). In [72, pp. 74], [154], and [J3] the following closed-form
formula for the critical resistance of a gate that is driven by the n-transistor network has
been proposed:

Rcrit,n =
|Vtp0| − Vlt +

√
(Vdd − |Vtp0|)2 − 2In(Vlt)

CoxµpWp/Lp

In(Vlt)
. (5.2.6)

Similarly for a gate connected to the shorted node driven to logical value 1 we require the
gate’s logic threshold Vlt, Ip from Equation (5.2.5), and I−1

n . The latter can be obtained
from Equation (5.2.4). The closed-form formula for the critical resistance of a gate that is
driven by the p-transistor network is (see [72, pp. 74], [154], and [J3]):

Rcrit,p =
Vlt − Vdd + Vtn0 +

√
(Vdd − Vtn0)2 − 2Ip(Vlt)

CoxµnWn/Ln

Ip(Vlt)
. (5.2.7)

If in both driving gates only a single transistor is active (as in the inverter example in
Figure 5.3) both Equations (5.2.6) and (5.2.7) can be used directly. The transistors‘ channel
widths and lengths simply have to be inserted into the equation. For gates with more
complex pull-up and pull-down networks the width and length of all active transistors first
has to be combined to form a single equivalent transistor. The set of active transistors for
each driving gate is determined by the gate’s input assignment.

For active transistors connected in parallel (such as e.g. the p-transistors in a NAND gate)
this simply means summing up the width/length ratio of each individual transistor. Let

53

5 The Resistive Bridging Fault Model

the width/length ratio of the i-th n-transistor(p-transistor) be (Wn/Ln)i((Wp/Lp)i). Then
the width/length ratio (W/L)equ,n of the equivalent transistor for n-channel networks and
the ratio (W/L)equ,p for p-channel networks, respectively, are computed as follows:

(
W

L

)
equ,n

=
k∑
i=1

(
Wn

Ln

)
i

(5.2.8)

(
W

L

)
equ,p

=
k∑
i=1

(
Wp

Lp

)
i

(5.2.9)

The resulting width/length ratio of the equivalent transistor can now be used in Equations
(5.2.6) and (5.2.7) – just as in the single transistor case.

If the active transistors are connected in series (such as e.g. the n-transistors in a NAND
gate) this process is more complex. One solution which takes body-bias effect and substrate
potential into account has been reported in [72, pp. 47] and [155]. The width/length ratio
(W/L)equ,n of the equivalent transistor for a network of k n-channel transistors is given by:

(
W
L

)
equ,n

= 1Pk
i=1(

Ln
Wn

)
i

· Corn(k, V0)

Corn(k, V0) = 1−
Γn

“√
Φn+V0

k−1
2k
−
√

Φn

”
Vdd−Vtn0−V0

2

(5.2.10)

For a network of k p-channel transistors the width/length ratio (W/L)equ,p of the equivalent
transistor is calculated as:

(
W
L

)
equ,p

= 1Pk
i=1

“
Lp
Wp

”
i

· Cor p(k, V0)

Cor p(k, V0) = 1−
Γp

“√
Φp+(Vdd−V0) k−1

2k
−
√

Φp

”
Vdd−|Vtp0|−

Vdd−V0
2

(5.2.11)

As Huc could demonstrate in [72, pp. 53] for V0 = Vdd the accuracy of Equations (5.2.10)
and (5.2.11) is sufficiently close to the results obtained from electrical simulations. Increased
correlation can be achieved by setting V0 = Vlt, where Vlt is the logic threshold voltage of
the gate input, for which the critical resistance is to be calculated.

For some complex gate types, pull-up and pull-down network consist of combinations of
parallel and serial transistors. These cases can be resolved by iteratively applying Equations
(5.2.10), (5.2.8), and (5.2.11), (5.2.9), respectively (for details see e.g. [72, p. 55]).

54

5.2 Calculating Critical Resistances

Fitted Model

For our Fitted model5 the n-transistor’s output characteristic is described by:

In(Vn0) = AnWn

(
(Vdd −Bn)Vn0 −

Vn0

2

2

)
. (5.2.12)

The corresponding equation for a p-transistor is:

Ip(Vn1) = ApWp

(
(Vdd − |Bp|)(Vdd − Vn1)−

(Vdd − Vn1)
2

2

)
. (5.2.13)

We obtained parameters An, Ap, Bn, and Bp used in both Equation (5.2.12) and (5.2.13)
by fitting results of electrical simulations. These parameters are specific for each transistor
configuration of each gate type. In particular, they also account for the impact of multiple
transistors being active within one network. Hence, calculation of equivalent transistors –
as in the Shockley model – is not required. Note that for An = µnCox/Ln, Ap = µpCox/Lp,
Bn = Vtn0, and Bp = Vtp0 Equations (5.2.12) and (5.2.13) equal their respective counterparts
for the Shockley model. We also experimented with fitting results of electrical simulations
using the Alpha-Power Law model [164]. Yet, we were able obtain more accurate results
using Equations (5.2.12) and (5.2.13).

Based on In from Equation (5.2.12), we compute the critical resistance for a gate connected
to the shorted node driven to logical value 0 (i.e. by an n-transistor) as follows:

Rcrit,n =
|Bp| − Vlt +

√
(Vdd − |Bp|)2 − 2In(Vlt)

ApWp

In(Vlt)
. (5.2.14)

For a gate connected to the shorted node driven to logical value 1 by a p-transistor the
corresponding equation is (where Ip according to Equation (5.2.13) is used):

Rcrit,p =
Vlt − Vdd +Bn +

√
(Vdd −Bn)2 − 2Ip(Vlt)

AnWn

Ip(Vlt)
. (5.2.15)

To evaluate the accuracy of the Shockley and our Fitted model we performed a comparison
with simulation data obtained from the electrical simulator HSPICE. We took parameters
from the model card of a 0.35µm technology from austriamicrosystems AG (AMS), Austria.
Results for a bridging fault shorting the outputs of two inverters (columns 2 to 4), and
a fault affecting the outputs of two NAND gates can be found in Table 5.3. For the
latter case we distinguish between one and two active p-transistors in the NAND gate’s
pull-up network (in columns 5 to 7 and 8 to 10, respectively). Furthermore we compared
several different widths for both n- and p-transistors. Note that for the bridge between
two inverters, critical resistances were computed for a gate driven by the p-transistor. For

5We are thankful to Prof. P. Maurine (LIRMM, France) for his insights on the fitting approach.

55

5 The Resistive Bridging Fault Model

Table 5.3: Results of Shockley and Fitted models compared to HSPICE; Lp = Ln = 0.35µm,
Vdd = 3.3 V, logic threshold Vlt = Vdd/2.

2-inverter 2-NAND bridge, 2-NAND bridge,
bridge 1 active p-transistor 2 active p-transistors

Wp [µm] 2 4 8 2 4 8 2 4 8
Wn [µm] 1 2 4 1 2 4 1 2 4

Rcrit,C [Ω] Rcrit,D [Ω] Rcrit,D [Ω]

HSPICE 2,422 1,159 567 1,686 838 418 4,250 2,064 1,018
Shockley 2,304 1,152 576 2,305 1,152 576 4,660 2,330 1,165
Fitted 2,415 1,157 566 1,685 838 419 4,266 2,072 1,019

the two-NAND case, resistances computed for the gate driven by the n-transistor network
are stated.

From our data it is evident that the deviation between the critical resistances obtained
using our Fitted model and the HSPICE simulated values is very low – in fact it never
exceeds 0.4%. In contrast to that, the comparison of the resistances computed with the
Shockley model and the simulated data yields a much larger discrepancy. For the – rather
simple – two inverter case the deviation is already up to 5%. In the two-NAND case, even
differences larger than 35% could be observed.

Predictive Model

For BPTM/BSIM46 the output characteristic of an n-channel transistor in the relevant
Vds,n region is given by:

Ids,n(Vds,n) =

Wn

Ln
µeff,nQch0,nVds,n

(
1− Vds,n

2Vb,n

)
1 +

Vds,n

Esat,n·Ln

. (5.2.16)

where µeff,n is the effective mobility, Qch0,n is the channel charge density and Esat,n is the
critical electrical field at which the carrier velocity becomes saturated. Vb,n is defined
as (Vgsteff,n + 2vt)/Abulk,n, where Vgsteff,n is the effective (Vgs,n − Vth,n), vt is the thermal
voltage (kBT/q) and Abulk models the bulk charge effect. All these parameters can be
calculated from over 100 technology dependent process parameter values. Parameter
sets for technologies ranging from 130 nm down to 32 nm are provided by the authors of
[22, 214].

The equation Ids,p(Vds,p) for the output characteristic of p-transistors is essentially the same
as Equation (5.2.16). However, parameters µeff,n, Qch0,n etc. have to be replaced by their
p-transistor equivalents (indicated by subscript “p”).

6We are thankful to Prof. B. Nikolic (UC Berkeley, USA) for his hint on BPTM/BSIM4.

56

5.2 Calculating Critical Resistances

D

G S

V n0

I 2

D

G
S

R sh

V*

I 1

D
V l t
D

V dd

V dd

V dd

V n1

S

D

G

S

D

G
I 1

V*

I 2

C
V l t

C

Rsh

0 V

0 V

(a) (b)

Figure 5.4: Transistor level view of a series network with (a) two n-transistors, and (b) two
p-transistors.

From Equation (5.2.16) and its p-transistor equivalent, we can derive In and Ip in a
straightforward manner. To compute I0 from Vn0 for a single n-transistor using In, we have
to set Vbs,n to 0 V and Vgs,n to Vdd. Given I0, Vn1 can be computed for a single p-transistor
using Ip and again setting Vbs,p to 0 V and Vgs,p to −Vdd.

Algorithm 5.1: Computation of Vn0 = I−1
n (I0) for a single (or parallel) n-transistor(s).

Input: Current I0

Output: Voltage Vn0

/* Calculate V ′ = Vn0 assuming Vds,n = 0 V */
Extract parameters for Vds,n = 0 V;1

Calculate V ′ := I−1
n (I0) for Vbs,n = 0 V and Vgs,n = Vdd;2

/* Repeat lines 1 and 2 for Vds,n = V ′ */
Extract parameters for Vds,n = V ′;3

Calculate V ′ := I−1
n (I0) for Vbs,n = 0 V and Vgs,n = Vdd;4

return V ′; /* return Vn0 */5

The inverse equations I−1
n and I−1

p are obtained – just as for Shockley and Fitted model
– by solving a quadratic equation. Unfortunately, parameters Vgsteff,n, µeff,n, Qch0,n, and
Vb,n are (implicitly) dependent on the transistor threshold, which in turn depends on
Vds,n. Obviously when calculating Vds,n = I−1

n (I0), Vds,n is unknown beforehand. The same
interdependency problem exists for p-transistors as well.

To solve this problem for a single n-transistor we propose Algorithm 5.1. Given I0 it
calculates Vn0 in a two step process. First we assume Vds,n = 0 V (for p-transistors:
Vds,p = 0 V) and extract all parameters relevant for solving I−1

n . Then, in line 2, we
determine the voltage V ′ at node n0 under this assumption (for p-transistors the voltage
at n1 is calculated using I−1

p with Vbs,p = 0 V and Vgs,p = −Vdd). Next we re-extract the
parameters assuming Vds,n = V ′ (for p-transistors: Vds,p = V ′) and repeat the calculation

57

5 The Resistive Bridging Fault Model

of V ′ (line 4). The resulting voltage Vn0 = V ′ is returned in line 5 (for p-transistors
Vn1 = (Vdd + V ′) is returned). We have found that the maximum deviation between the
two consecutive computations of V ′ never exceeded 2 mV and that changes in current were
below 10−14 µA. When optimizing Algorithm 5.1 for speed, the second iteration can thus
be omitted without significant loss of accuracy.

As for the width/length ratio of parallel n- and p-transistors, the same additive relations
expressed in Equations (5.2.8) and (5.2.9) hold. Hence, In, Ip and their inverse counterparts
can also be used for parallel networks of active transistors.

Again, the handling of serial transistor networks is more complicated. Consider the case
of two n- and two p-transistors connected in series as depicted in Figure 5.4(a) and (b),
respectively. The complementary active network in the second driven gate is omitted in
both figures. By V ∗ we will denote the voltage potential attained “in between” the two
serial transistors. Symbol I1 denotes the current flowing through the transistor which is
directly connected to Vdd and ground terminal, respectively. The current flowing through
the second transistor in the network (connected to the gate’s output) is referred to as I2.

Algorithm 5.2: Computation of I0 = In(Vn0) for two n-transistor in series.
Input: Voltage Vn0 , threshold ε
Output: Current I0

V ∗ := Vn0/2;1

while (true) do2

/* Determine I1 and I2 using Equation (5.2.16) */
Calculate I1 := In(V ∗) with Vbs,n = 0 V and Vgs,n = Vdd;3

Calculate I2 := In(Vn0 − V ∗) with Vbs,n = −V ∗ and Vgs,n = Vdd − V ∗;4

I∗ := (I1 + I2)/2;5

if (|I1 − I2| < ε) then return I∗; /* return I0 */6

/* Calculate V ∗ from I∗ */
Extract parameters for Vds,n = 0 V;7

Calculate V ∗ := I−1
n (I∗) for Vbs,n = 0 V and Vgs,n = Vdd;8

end9

The current flowing through both transistors has to be the same, i.e. I1 = I2 has to hold.
This property is exploited by our Algorithm 5.2 which, given Vn0 , computes I0 = In(Vn0)
for two n-transistors connected in series. Our algorithm approximates the true value of
(the initially unknown voltage) V ∗ until the absolute difference between I1 and I2 is smaller
than a predefined value ε. The average of those two currents is an approximation of I0.

In the beginning, V ∗ = Vn0/2 is assumed in line 1 (for p-transistors we presume V ∗ =
(Vn1 + Vdd)/2). Within the loop, first I1 and I2 are calculated in lines 3 and 4, respectively.
(For p-transistors we compute I1 = Ip(V

∗ − Vdd) for Vbs,p = 0 V and Vgs,p = −Vdd in line 3,
and I2 = Ip(Vn1−V ∗) for Vbs,p = (Vdd−V ∗) and Vgs,p = −V ∗ in line 4.) Once the difference
between both currents is below ε our algorithm exits by returning the approximated value
of I0 (line 6). Otherwise a new estimation for V ∗ is determined based on the average of

58

5.3 Analogue Detectability Intervals

I1 and I2 in line 8 (for V ∗ = V ′ this is equivalent to line 2 in our Algorithm 5.1) and a
new iteration begins. For ε = 1µA we could observe that our algorithm always terminated
after six iterations.

Algorithm 5.3: Computation of Vn0 = I−1
n (I0) for two n-transistors in series.

Input: Current I0

Output: Voltage Vn0

/* Calculate V ∗ and V ′ assuming Vds,n = 0 V */
Extract parameters for Vds,n = 0 V;1

Calculate V ∗ = I−1
n (I0) for Vbs,n = 0 V and Vgs,n = Vdd;2

Calculate V ′ = I−1
n (I0) for Vbs,n = −V ∗ and Vgs,n = Vdd − V ∗;3

/* Repeat lines 1-3 for Vds,n = V ∗ + V ′ */
Extract parameters for Vds,n = V ∗ + V ′;4

Calculate V ∗ = I−1
n (I0) for Vbs,n = 0 V and Vgs,n = Vdd;5

Calculate V ′ = I−1
n (I0) for Vbs,n = −V ∗ and Vgs,n = Vdd − V ∗;6

return V ∗ + V ′; /* return Vn0 */7

For the inverse scenario, i.e. calculate Vn0 = I−1
n (I0) for two n-transistors in series, we

propose Algorithm 5.3. Its basic structure is similar to that of our Algorithm 5.1: For the
initial voltage calculation parameters are extracted assuming that Vds,n equals 0 V. The
resulting voltages are used to refine the expected value of Vds,n; parameters are extracted
again, and the final value of Vn0 is computed.

Voltage Vn0 for transistors in series is composed of two parts. One is contributed by the
difference in potential between the ground terminal and V ∗ which is computed in lines 2 and
5 (for p-transistors I−1

p is used for Vbs,p = 0 V and Vgs,p = −Vdd). The second contribution
V ′ comes from the difference in potential between V ∗ and the gate’s output driving n0; it
is calculated in lines 3 and 6 (for p-transistors Vbs,p = (Vdd − V ∗) and Vgs,p = −V ∗). The
resulting voltage Vn0 is returned in line 7 (Vn1 = (Vdd + V ∗ + V ′) is the return value for
p-transistors).

5.3 Analogue Detectability Intervals

Using simulation techniques described in Chapter 5.5, the intervals of short resistances
introduced in Chapter 5.1 can be propagated to the observable points of a circuit. For a
given bridging fault and an assignment to the circuit’s inputs these techniques yield for
each observable point the range of short resistances for which the fault is detectable at
that point. In accordance with [149, 151], we will call such a range analogue detectability
interval (ADI).7 Typically an ADI is of the form [R1, R2] with R1 equaling to 0 Ω. However,
due to reconvergencies of fault effects for instance, non-contiguous ADIs are also possible

7In [98] the range of detectable short resistances is called detection condition set (DCS).

59

5 The Resistive Bridging Fault Model

(see [149]). In general, if we assume an ADI consisting of n disjoint ranges, we can write
the range of detectable resistances – analogously to Equation (5.1.1) – as:

{x ∈ R|R1 < x < R2} ∪ {x ∈ R|R3 < x < R4} ∪ . . . ∪ {x ∈ R|R2·n−1 < x < R2·n}

Note that we require R2·i < R2·i+1 for i ∈ [1, n − 1]. Using a notation similar to
the one introduced together with Equations (5.1.1) and (5.1.2), we will denote this by
{[R1, R2], [R3, R4], . . . [R2·n−1, R2·n]}. For a circuit with m observable points this definition
can be extended as follows: Let t be the test vector applied to the inputs of the circuit.
We denote the ADI propagated by t to the observable point j for a given bridging fault f
as ADIj(f, t). The union of all ADIs of f covered by a given test set T = {t1, t2, . . . , tk}
is defined as C-ADI(f) = ∪ki=1 ∪mj=1 ADIj(f, ti). The union of all ADIs of f which can be
obtained for an exhaustive test set, i.e. a test set which contains all 2n input combinations
possible for a combinational circuit with n inputs, T is referred to as G-ADI (where G
stands for ‘global‘). While C-ADI contains all short resistances for which the bridging fault
f can be detected by the test set given, G-ADI includes all the resistances for which the
fault is detectable by any test set. In particular this means that C-ADI(f) ⊆ G-ADI(f)
holds. We will consider all shorts at bridging fault location f whose intrinsic resistance
Rsh is not covered by G-ADI(f), i.e. Rsh /∈ G-ADI(f), as being redundant.8 G-ADI does
not necessarily have to be calculated using exhaustive fault simulation. It can be obtained
as a “byproduct” of ATPG for resistive bridging faults as well (see Chapter 8). In general,
it is unlikely that an efficient algorithm calculating G-ADI can be constructed. Since, as
Polian has proven in [136, pp. 75], the existence of a polynomial-time algorithm for the
computation of G-ADI would imply P = NP .

5.4 Fault Coverage Metrics

Commonly, the quality of a test set with respect to a set of faults is quantified by a single
number – the fault coverage. In “traditional” fault models, such as e.g. the stuck-at model,
the fault’s detection status is binary: Either the fault is detected or not. Contrary to
that in the RBF model, a fault’s detection status is given by the (potentially empty) ADI.
In Chapter 5.1 we have demonstrated that different test vectors may lead to different
detection ranges. Consequently, they may also result in different ADIs. Hence, in order for
a fault coverage metric to fully account for the quality of a test set with respect to the
RBF model this resistance information may not be neglected.

In [36] the concept of a probabilistic fault coverage metric was developed for intra-gate
bridging faults (it is based on ideas from [42]). The metric evaluates the detection
probability of a resistive intra-gate bridging fault by calculating the expected value of
a random variable d ∈ [0, 1], where d = 1(d = 0) means that the fault is detected(not
detected). Assuming that a given test set detects the intra-gate bridging fault in question

8This type of redundancy is called “analog redundancy” in [149, 150] as opposed to “digital redundancy”
which means that G-ADI(f) = ∅ and thus at f no defect of any short resistance is detectable by voltage
testing.

60

5.4 Fault Coverage Metrics

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

D
en

si
ty

Short Resistance r [Ω]

ρ(r)

Figure 5.5: Probability density function ρ for short resistance r as proposed by Renovell et
al. [154].

for all intrinsic resistances between 0 Ω and RT the expected value E of d is calculated as:

E(d) =

RT∫
0

ρ(r)dr. (5.4.1)

In this equation ρ denotes the probability density function of the short’s resistance, i.e. the
probability that a short with a given resistance r occurs. In [154] Renovell et al. have
obtained ρ by approximating data from an experimental study performed by Rodríguez-
Montañés et al. [158] using a normal distribution. The experimental study reports that
shorts with an intrinsic resistance between 0 Ω and 500 Ω are most common in CMOS. The
probability density function derived according to the proposal by Renovell et al. is depicted
in Figure 5.5. The authors of [165] use a slightly different approach to derive ρ for the same
experimental data. A more recent work by Spica et al. [178] found that ρ is uniform for
copper processes. In an industrial setting ρ may be determined using monitor structures
manufactured in the same facility or even on the same wafer as the actual product.

The concept expressed in Equation (5.4.1) can be extended to ADIs and is thus applicable
to resistive inter-gate bridging faults as well. Several probabilistic fault coverage metrics
are known in literature. In the following we present a compilation of these metrics adapted
from our publication [J3].9

9In the original papers these metrics are typically referred to as ‘fault coverage‘ – to facilitate the
discussion we will assign distinguishable names to them.

61

5 The Resistive Bridging Fault Model

The pessimistic fault coverage P -FC proposed in [154] is defined for one fault f as:

P -FC(f) = 100% ·

 ∫
C-ADI(f)

ρ(r)dr

 /

 ∞∫
0

ρ(r)dr

 . (5.4.2)

The range of resistances detected by the test set is “weighted” using ρ(r). The numerator
is then related to the “weighted” continuum of short resistances ranging from 0 Ω to ∞.10

It is very likely that even when considering any possible test set, a bridging fault cannot
be detected for the whole continuum of short resistances (at least if effects on reliability,
signal propagation delay and Iddq are not taken into account). As already mentioned,
we will regard shorts having a resistance from the remaining undetectable range as being
redundant. Obviously, in the denominator of P -FC in Equation (5.4.2) redundant shorts
are not excluded; this makes the metric pessimistic.

The fault coverage proposed in [166] focuses on the range of short resistances for which
faulty logical values may be visible at the fault site. Let Rmax(f) be defined as the maximum
critical resistance which can be determined at fault location f for any activating assignment
to the driving gates and any driven gate. For a fault location f , where the driving gates
have n inputs, and there are m driven gates, determining the maximum critical resistance
has a computational complexity of O(2n · m). Usually both n and m are rather small,
single digit numbers and only a subset of the 2n assignments to the driving gates actually
activates the bridging fault. As a consequence, the maximum critical resistance can be
determined very quickly (using e.g. a procedure similar to Algorithm 5.4).

Once C-ADI(f) and Rmax(f) are known the excitation based fault coverage E-FC for
bridging fault f is calculated as:

E-FC(f) = 100% ·

 ∫
C-ADI(f)

ρ(r)dr

 /

 Rmax(f)∫
0

ρ(r)dr

 . (5.4.3)

By using [0, Rmax(f)] instead of [0,∞] in the denominator, E-FC excludes all shorts
which cannot be activated (i.e. excited) locally at the fault site. Yet, the metric does not
consider whether fault effects can be propagated from the fault site to observable points.
Additionally, it is neglected that there might be no assignment to the circuit’s inputs which
justifies the logical values required to activate the bridge and to propagate faulty effects.
Consequently, E-FC may still account for some redundant defects.

Based on G-ADI, [149] has proposed a metric we will refer to as global fault coverage G-FC.
For a bridging fault f with non-empty G-ADI(f) metric G-FC(f) is defined as (in case
G-ADI(f) = ∅, G-FC(f) evaluates to 0%):

G-FC(f) = 100% ·

 ∫
C-ADI(f)

ρ(r)dr

 /

 ∫
G-ADI(f)

ρ(r)dr

 . (5.4.4)

10Note that ρ(r) is typically defined such that
∫∞
0
ρ(r)dr approximates 1.

62

5.4 Fault Coverage Metrics

Since G-FC focuses on those resistances for which the fault is detectable it can be considered
as the exact metric. Thus, in case G-FC(f) < 100% is yielded for a test set there is a
high probability that defective ICs may pass that particular test. Unfortunately, as the
calculation of G-FC requires G-ADI, the applicability of this metric is restricted by two
factors: (1) as already mentioned no efficient algorithm for the calculation of G-ADI can
be expected to exist and (2) the extension of G-ADI to sequential circuits is problematic
as the adequate handling of unreachable states is an open question.

In [J3] we proposed the following metric: It reflects whether the test set detects the resistive
bridging fault f for at least one short resistance. The metric will be referred to as the
optimistic fault coverage O-FC defined for a bridging fault f as:

O-FC(f) =

{
100% , if C-ADI(f) 6= ∅,
0% , otherwise.

(5.4.5)

As we can see, O-FC neglects the detailed resistance information provided by an ADI
and only reports if the fault is detectable at all, i.e. if C-ADI(f) 6= ∅. In this sense our
metric is very similar to non-probabilistic metrics common for “traditional” fault models.
On the other hand, once C-ADI is known, O-FC can be calculated without any further
(computational-complex) input.

All fault coverage metrics introduced so far are defined for a single bridging fault. For a
set of N faults {f1, f2, . . . , fN} we calculate the average of the individual faults’ coverages.
This can be obtained for each of the metrics by the equation (with ‘∗‘ being replaced by
‘P ‘, ‘E‘, ‘G‘ or ‘O‘, as adequate):

∗-FC =
1

N
·
N∑
i=1

∗-FC(fi). (5.4.6)

Note that if appropriate we do not distinguish between a metric for one single fault and
the averaged version of the same metric according to Equation (5.4.6).

If G-ADI(fi) is known for every 1 ≤ i ≤ N we may exploit the fact that all shorts with
Rsh /∈ G-ADI(f) are considered as being redundant. This yields a refined instance of G-FC:
the global fault efficacy G-FE. Note that the essence of this metric is related to the concept
of “fault efficiency” for single-stuck-at faults, i.e. the ratio of the number of detected faults
and the number of detectable faults. The fault efficacy excludes all redundant bridging
faults from consideration and focuses only on the coverage of detectable faults. The share
of redundant bridging faults R, i.e. the number of faults which have an empty G-ADI, is
defined as:

R = | {fi ∈ {f1, f2, . . . , fN} |G-ADI(fi) = ∅} |.

Based on the number of redundant faults we can compute the global fault efficacy by
modifying Equation (5.4.6) for G-FC as follows:

G-FE =
1

N −R
·
N∑
i=1

G-FC(fi). (5.4.7)

63

5 The Resistive Bridging Fault Model

When comparing fault coverage metrics P -FC, E-FC, and G-FC we can see that they
share the same numerator. Furthermore, keeping in mind that ρ is a positive function and
that G-ADI(f) ⊆ [0, Rmax(f)] ⊂ [0,∞], we observe that:

∫
G-ADI(f)

ρ(r)dr ≤
Rmax(f)∫

0

ρ(r)dr ≤
∞∫

0

ρ(r)dr.

Recall that C-ADI(f) ⊆ G-ADI(f) and that according to Equation (5.4.5) O-FC(f) =
100%, iff C-ADI(f) 6= ∅. Thus, we obtain the following relation between the fault coverage
metrics introduced above:11

P -FC(f) ≤ E-FC(f) ≤ G-FC(f) ≤ O-FC(f). (5.4.8)

The equation has been successfully validated by experiments we published in [J3]. Results
show that (averaged over all circuits considered in the experiments) difference between
P -FC and E-FC is larger than among E-FC, G-FC and O-FC. This underlines that P -FC
is indeed a pessimistic metric.

The results we obtained in [J3] prove to be valuable for the calculation of G-FC, which
is the preferred metric for resistive bridging faults. Since its computation is subject to
limitations as discussed above, approximating G-FC may be an interesting alternative. As
Equation (5.4.8) suggests, G-FC is bounded by E-FC and O-FC. Both metrics do not share
the limitations of G-FC – in particular they can be calculated efficiently. Consequently,
G-FC may be approximated by averaging these two fault coverages. In case the accuracy
of this approximation is below the desired level, calculation of G-FC should be considered.
Results from [J3] indicate that indeed E-FC and O-FC allow good approximation of G-FC.
This is also supported by findings obtained with our test pattern generator for resistive
bridging faults (see Chapter 8.2).

Impact of Process Variations

The electrical framework of the resistive bridging fault model is assuming fixed process
parameters. In practice, these parameters are subject to statistical process variations (also
referred to as parametric variations) which, amongst others, may affect transistor length
L, gate oxide thickness, and substrate doping (see e.g. [6, 15, 127]). This may result in
a deviation of the voltage characteristics and input logic thresholds with respect to the
assumptions of the electrical model. As a consequence, the critical resistances, the analogue
detectability intervals, and the fault coverages may vary among the circuits. In general, we
expect this variation to be monotonic. This assumption entails, that if in a manufactured
circuit a critical resistance exceeds the value predicted by the model, all other critical
resistances computed by the model will also be likely to underestimate the values observed
in that particular circuit (and vice versa). This directly translates to C-ADI and G-ADI
which are bounded by critical resistances. Hence, in this scenario it is to be expected that
due to process variations in the manufactured circuit C-ADI and G-ADI will either both

11In general it is not valid to replace G-FC by G-FE in this equation.

64

5.5 Fault Effect Propagation

Table 5.4: Resistance intervals reconverging at XOR gate.

Node Resistance Ranges [Ω]
[0, 100] [100, 200] [200,∞]

v 0 0 1
w 1 0 0

z 1 0 1

be larger or smaller compared to the model’s predictions. Since the fault coverage metrics
are defined as fractions of integrals over C-ADI and G-ADI, the monotonicity means that,
in many instances the impact of process variations on the actual resistive bridging fault
coverage will be limited. The validity of this scenario is still to be verified by simulation
experiments and on manufactured silicon.

5.5 Fault Effect Propagation

For a given bridging fault and an assignment to the driving gates we are already able to
determine for every driven gate the range of short resistances for which the gate sees a
faulty logical value. We also know how to calculate the fault coverage for a given ADI. Yet,
we are still missing the link between both steps, i.e. an answer to the following question:
How do we determine for which range of short resistances are the fault effects not only
visible at the fault site but also at the circuit’s observable points? From the discussion in
Chapter 5.1 we have learned that the assignments to the driving gates – which are induced
by combinations of logical values at the circuit’s primary inputs and/or by its internal
state – impact the size of the resistance intervals obtained. Moreover, as an extensive
study by Renovell et al. [149] has revealed, propagation of resistance intervals influences
the resistance range covered by the resulting ADI. They found that propagation obeys
complex mechanisms and that there is in general no one-to-one mapping from the interval
obtained at the fault site to the ADI. In particular, the study demonstrated that intervals
of resistances, reconverging at the inputs of a gate can map to non-trivial intervals at the
gate’s output. Consider as an example an XOR gate with inputs v and w and output z.
Assume that input v observes a faulty logical value 0 for short resistances from the range
0 Ω ≤ Rsh < 200 Ω, and fault-free logical value 1 otherwise. Recall that this corresponds
to [0, 200] 0/1. Assume furthermore, that input w sees [0, 100] 1/0, i.e. faulty logical value
1 for 0 Ω ≤ Rsh < 100 Ω and the fault-free logical value 0 otherwise. Table 5.4 clarifies
this, listing the nodes in column 1 and the relevant resistance ranges in columns 2 to
4. We observe that only for shorts having a resistance 100 Ω < Rsh < 200 Ω do both
input nodes v and w assume the same logical value 0, while for all other short resistances
v 6= w holds. Obeying the logic function of the XOR gate we can conclude that z will see
faulty logical value 0 for 100 Ω < Rsh < 200 Ω only and fault-free logical value 1 otherwise.
Hence, we obtain [100, 200] 0/1 at z which is equal to the non-contiguous resistance range
{[0, 100] ∪ [200,∞]} 1/0.

65

5 The Resistive Bridging Fault Model

This example demonstrates that the logical values represented by the intervals, the covered
resistance ranges, and a gate’s logic function have to be taken into account during fault
effect propagation. Several approaches to determine ADIs have been proposed. Motivated
by [149] the interval-based techniques consider the full continuum of short resistances and
use set operations to propagate intervals of resistances from the fault site to the circuit’s
observable points. The sectioning technique maps resistance intervals to a collection of
conditional multiple-stuck-at faults to which the propagation rules of conventional Boolean
fault simulation apply. ADIs can be reconstructed without a loss of accuracy from the
results of the CMS@ simulation. A radically different approach has been proposed by
Favalli et al. in [41]. For a given test vector and a bridging fault they assign Boolean
variables to each input of a driven gate connected to any of the shorted nodes. Then they
derive the logic function computed at each of the circuit’s observable points (reachable from
the shorted nodes) with respect to the assigned variables. The analysis of these functions
yields combinations of logical values which when observed by the driven gates allow us
to detect the fault. In the last step these logical values are matched with the true values
interpreted according to the voltage characteristics induced by the test vector. Thereby
critical resistances can be deduced which in turn form the detected ADI.

The experimental results published by Favalli et al. in [41] indicate that their technique is
able to handle the ISCAS 85 [19] benchmark circuits in feasible time. Nevertheless we will
restrict our discussion to the interval-based and the sectioning technique. Both approaches
are more common and may easily be adapted to the standard fault simulation flow (see
our publication [J3] and Chapter 7). In the following Chapter 5.5.1, we will reproduce
the fundamental properties of the interval-based technique which immediately implements
the interval concept of the resistive bridging fault model. Subsequently we will focus on
the sectioning technique in Chapter 5.5.2. This technique proves to be more flexible than
the interval-based one and allows for our high performance simulator SUPERB presented
in Chapter 7. There, we will also present a detailed comparison of SUPERB with tools
implementing either the interval-based or the sectioning technique. Subsequently, we will
highlight our findings on the particularities implied by feedback bridging faults on fault
effect propagation in Chapter 5.5.3. Furthermore, we investigate the probability of double
errors induced by resistive bridging faults in Chapter 5.5.4. Finally, in Chapter 5.5.5 we
prove that irrespective of technological parameters, detection of certain classes of resistive
bridging faults can be guaranteed.

5.5.1 Interval-Based Technique

Interval-based techniques exploit the fact that intervals of short resistances are directly
related to sets (refer again to Equations (5.1.1) and (5.1.2)). Thus, once we know the
intervals and the logical values present at the inputs of a gate, we can compute the interval
at its output using set operations. These operations have to respect both the logic function
implemented by the gate and the logical values represented by the intervals at its inputs.
Consequently, set operations tailored to each combination of logical values and gate function
have to be used – for a detailed list of set operations refer e.g. to [98].

66

5.5 Fault Effect Propagation

a

b

A

B

0

1

1

1

Rsh

D

F

C[0,RC
'
]0 /1

[0,RD
'
]0 /1

[0,RE
'
]1 /0

[0,RC
'
]0 /1

[0,RE
'
]0/1

[0,RE
'
]1 /0

[RE
' , RC

'
]0 /1

E

G
0

0

0

1

c

d

e f

v

w

z

Figure 5.6: Example of interval-based simulation.

An example illustrating the propagation of resistance intervals in a small circuit is depicted
in Figure 5.6. It is an extended instance of the circuit from Figure 5.1. From the analysis
of the latter circuit we already know that for an input assignment (0, 1, 1, 1), gates C, D
and E interpret faulty logical values for intervals [0, R′C] 0/1, [0, R′D] 0/1, and [0, R′E] 1/0,
respectively. Using the abovementioned set operations these intervals can be propagated
through the circuit. Observe how both the gates’ logic functions as well as the logical
values assigned to the non-defect affected inputs of some of the gates are respected during
this process. At the circuit’s outputs we obtain the interval [R′E, R

′
C] 0/1. In the fault-free

case z would see the logical value 1, hence, the resulting ADI is [R′E, R
′
C]. Note that the

situation at gate G exactly corresponds to the one from the example in Table 5.4 for
R′C = 200 Ω and R′E = 100 Ω.

In [J3] we managed to simplify interval propagation considerably by using a technique
originally proposed by [72, p. 87]. Instead of allowing intervals to describe any logical value,
e.g. [R1, R2] 0/1 and [R1, R2] 1/0, we have implicitly assumed that every interval specifies
the resistance range in which the logical value 1 is present. This means that [R1, R2] 0/1 is
described by [0, R1] ∪ [R2,∞] and [R1, R2] 1/0 is represented by [R1, R2]. As a result, we
do not have to consider logical values explicitly during propagation. Hence, the number of
set operations required for each logic gate is reduced to one.

Our publication [J3] was the first to describe resistive bridging fault simulation for sequential
circuits as well. When simulating multiple time-frames, memory elements contained in
this class of circuits complicate interval propagation. Fault effects which have been stored
in flip-flops may be introduced into the circuit in later time-frames. This may increase
the number of reconverging intervals. When intervals are propagated to the inputs of the
driving gates, this gives rise to a phenomenon we termed the multiple strength problem.
Due to the potential overlapping of intervals present at the inputs of the driving gates
the logical assignment is no longer homogeneous for the whole continuum of resistances.
Consequently, the fault’s activation is dependent on the short’s resistance. In particular,
the driving strength of both driving gates may vary with Rsh. This may lead to different
characteristics depending on Rsh and likewise to different critical resistances. The multiple
strength problem is not restricted to sequential circuits but may also be observed in

67

5 The Resistive Bridging Fault Model

(combinational) circuits exposing feedback bridging faults (see Chapter 5.5.3).

In summary, the interval-based technique is indeed effective in computing ADIs. Several
tools implementing this technique have been discussed in literature: see [98, 165, 166] and
our publication [J3].

5.5.2 Sectioning Technique

A strategy which dramatically simplifies fault simulation and test generation for resistive
bridging faults has been proposed by Shinogi et al. in [174]. We present an introduction of
their technique adapted from our publications [W14] and [P15, P18]. The technique from
[174] is based on two observations:

1. ADI boundaries are constituted by critical resistances only,

2. all critical resistances can be determined locally at the fault site.

This means that once we have computed all the critical resistances for a given bridging
fault (which can be done very fast) we know the boundaries of all potential ADIs for this
fault. Within each ADI the logical value is well-defined by definition. Consequently, the
detection statuses of all shorts having a resistance from the same ADI is uniform. Either
all of these shorts are detected or none are.

According to Shinogi et al., a section is an interval [Rl, Ru] such that Rl and Ru are critical
resistances, Rl < Ru, and there exists no other critical resistance Rc, with Rl < Rc < Ru.
Let Rcrit = (R1, R2, . . . , Rm) be the list of all critical resistances, sorted in ascending order,
which can be calculated for resistive bridging fault f . Then the following m+ 1 sections
exist: [0, R1], [R1, R2], . . . , [Rm−1, Rm], and [Rm,∞]. Note that in the last section no
faulty logical values are observed by any driven gate input. This means that shorts having
a resistance from the range [Rm,∞] are undetectable by static logic testing, thus, we can
omit this section. Occasionally we will refer to R1 as the minimum critical resistance
Rmin(f) of f . Inversely, Rm is referred to as the maximum critical resistance Rmax(f) of
resistive bridging fault f .

To determine the list of all critical resistances Rcrit for a given bridging fault f we developed
Algorithm 5.4. It assumes a generalized bridging fault situation as depicted in Figure 3.2.
The fault f shorts outputs aout and bout of driving gates A and B, respectively. Their
inputs are denoted as a1

in, . . . , a
n
in and b1

in, . . . , b
m
in. Driven gates are C1, . . . , Cp connected to

aout, and D1, . . . , Dq connected to bout. Inputs of driven gates, which are either connected
to aout or bout, are ciin (1 ≤ i ≤ p) for gate C and djin (1 ≤ j ≤ q) for gate D. Initially the
algorithm creates a set V (line 1) which contains all logical assignments to the inputs of
A and B for which the gates’ outputs aout and bout, respectively, assume contrary logical
values (i.e. activate the bridge). Furthermore, the set of all relevant driven gate inputs G
is initialized in line 2. The algorithm successively inserts critical resistances into a set R
which is instantiated in line 3.

68

5.5 Fault Effect Propagation

Algorithm 5.4: Generation of sorted list of critical resistances Rcrit for bridging fault f .
Input: Bridging fault f .
Output: Sorted list of critical resistances Rcrit.

/* Determine set of patterns activating f (i.e. input assignments to gates
A and B which imply aout = 0, bout = 1 or aout = 1, bout = 0). */

V :=
{
v ∈ B(n+m) | v applied to (a1

in, . . . , a
n
in, b

1
in, . . . , b

m
in) activates f

}
;1

/* Determine set of inputs of driven gates C and D */
G := {c1

in, . . . , c
p
in, d

1
in, . . . , d

q
in};2

/* Create empty set of critical resistances */
R := ∅;3

foreach (v ∈ V) do4

foreach (g ∈ G) do5

if (g driven by pull-down for v) then /* fault-free value is 0 */6

Calculate Rcrit,n for Vlt = V g
lt and Wn/Ln as induced by v;7

R := R ∪ {Rcrit,n}; /* Insert Rcrit,n into R */8

else /* fault-free value is 1 */9

Calculate Rcrit,p for Vlt = V g
lt and Wp/Lp as induced by v;10

R := R ∪ {Rcrit,p}; /* Insert Rcrit,p into R */11

end12

end13

end14

Rcrit := sort(R); /* Sort set of critical resistances in ascending order. */15

return Rcrit; /* Return sorted list of all critical resistances for f. */16

69

5 The Resistive Bridging Fault Model

Now critical resistances for all activating assignments v and all driven gate inputs g are
calculated. In case g is driven by an n-transistor network, i.e. connected to the node driven
to logical value 0 by v in the fault-free case, Rcrit,n is calculated in line 7 (e.g. according to
Equation (5.2.6)). Note that V g

lt denotes the logic threshold of the driven gate input g. The
resulting critical resistance is subsequently added to R (see line 8). Alternatively g is driven
by a p-transistor network and the corresponding Rcrit,p is computed (using e.g. Equation
(5.2.7)) and added to R (lines 10 and 11).12 Finally the set of critical resistances R is
sorted in ascending order (line 15) and the resulting list Rcrit is returned. Note that R,
and consequently Rcrit as well, do not contain any duplicate critical resistances. The total
number of critical resistances for a bridging fault depends on the fault site and is bounded
by two factors:

1. The maximum number of input assignments to the two driving gates. This in
turn is limited by the largest number of inputs a gate from the gate library under
consideration can have (multiplied by two).

2. The maximum number of gate inputs driven by the bridged nodes. This number is
circuit specific, but is in general unrelated to the circuit’s size.

In summary, the computational complexity of the main loop of our Algorithm 5.4 is
O(|G| · |V |), where |V | ≤ 2(n+m). Note that depending on the logic function implemented
by the driving gates, not all possible assignments to their inputs actually activate the
bridge. Hence, typically |V | will be smaller than 2(n+m). The number of critical resistances
is bounded by |G| · |V |. Likewise the number of sections is limited by the number of critical
resistances.

Since within each section the logical values observed by the driven gates are well-defined, we
can use conventional Boolean simulation methods to propagate potential fault effects to the
circuits’ observable points. Consequently, simple Boolean simulation yields the detection
status of a section. Once we know the detection status of every section, we can construct
the respective ADI as the union of the detected sections. Assume for instance, that for some
fault f a faulty logical value can be observed for sections [R1, R2], [R2, R3], and [R4, R5]
while section [R3, R4] remains undetected. The resulting ADI is thus {[R1, R3], [R4, R5]}.
The segmentation of the continuum of short resistances into sections motivates the name
of this approach: sectioning technique.

Consider again the circuit depicted in Figure 5.6 (which embeds the circuit from Figure
5.1). From the discussion in Chapter 5.1 we know that the patterns (0, 0, 1, 1) and (0, 1, 1, 1)
activate the bridging fault. From the point of view of the critical resistance calculation
covered in Chapter 5.2, (0, 1, 1, 1) is equivalent to (1, 0, 1, 1) due to the symmetric transistor
structure of the NAND gate’s pull-up network. For the sake of simplicity, we will assume
that these patterns are the only valid assignments to gates A and B. From the analysis
of Figure 5.2(b) – or by using Algorithm 5.4 – we know that the sorted list of critical
resistances for this bridging fault is Rcrit = (R′D, RC , R

′
E, R

′
C , RE). This corresponds to

the following sections: [0, R′D], [R′D, RC], [RC , R
′
E], [R′E, R

′
C], and [R′C , RE]. As already

12In general we will assume the values calculated using Rcrit,n and Rcrit,p to be natural numbers. For
increased precision, rational numbers could be used as well.

70

5.5 Fault Effect Propagation

Table 5.5: Section-based propagation in circuit from Figure 5.6.

Circuit Fault-free Logical value assumed in section
node value [0, R′D] [R′D, RC] [RC , R

′
E] [R′E, R

′
C] [R′C , RE]

c 1 0 0 0 0 1
d 1 0 1 1 1 1
e 0 1 1 1 0 0
f 1 0 0 0 1 1
v 1 0 0 0 0 1
w 0 1 1 1 0 0
z 1 1 1 1 0 1

mentioned section [RE,∞] does not have to be considered explicitly. For pattern (0, 1, 1, 1),
Table 5.5 lists the logical assignments assumed by each node (column 1), their fault-free
logical value (column 2), and their faulty logical value for each section (columns 3 to 7).
Comparing the logical values interpreted for instance by input c of gate C in each section
with its fault-free logical value 1, we observe that the faulty logical value 0 is present in
[0, R′D], [R′D, RC], [RC , R

′
E], and [R′E, R

′
C]. In section [R′C , RE] (and in [RE,∞]), however,

the gate derives the fault-free logical value 1. This exactly corresponds to the interval
[0, R′C] 0/1 associated with line c in Figure 5.6.

Logical values interpreted by gate inputs c, d, and e within one section can be propagated
to output z of the circuit using the Boolean function attributed to each gate. Once we
have obtained the logical value of z for all sections, we can compare this value with the
expected fault-free logical value 1. It turns out that in our example the faulty logical value
0 is present in section [R′E, R

′
C] only, while in all other sections the fault-free logical value 1

is attained. Hence, [R′E, R
′
C] is the resulting ADI – which agrees with the result derived by

the interval-based technique. This underlines that the sectioning technique involves no
loss of accuracy and allows us to produce results equivalent to those of the interval-based
approach.

The logical values interpreted by the driven gates for one section can be read as a multiple-
stuck-at fault. Each driven gates’ input sees a well-defined logical value which either
matches the fault-free or the faulty logical value. In combination this corresponds to a
collection of stuck-at faults. Furthermore, for one section, logical values can be propagated
from the driven gates’ inputs to observable points of the circuit using multiple-stuck-at
fault simulation techniques. As we know, however, the values interpreted by the driven
gates are not only dependent on the section but also on the assignment to the driving
gates’ inputs. As a consequence, each multiple-stuck-at fault is only valid if the respective
assignment is present – this equals an activation condition. Hence, for one section we
can represent the Boolean situation at the fault site by a conditional multiple-stuck-at
fault (one for each activating assignment). To fully determine the ADI for a bridging
fault which can be split into m sections, the detection statuses of at least m conditional
multiple-stuck-at faults have to be evaluated. CMS@ faults for each section of our example

71

5 The Resistive Bridging Fault Model

Table 5.6: Conditional multiple-stuck-at faults corresponding to resistive bridging faults.

Condition Section Multiple-stuck-at fault

0111 [0, R′D] c s-a-0, d s-a-0, e s-a-1
0111 [R′D, RC] c s-a-0, e s-a-1
0111 [RC , R

′
E] c s-a-0, e s-a-1

0111 [R′E, R
′
C] c s-a-0

0111 [R′C , RE] –
0111 [RE,∞] –
0011 [0, R′D] c s-a-0, e s-a-1
0011 [R′D, RC] c s-a-0, e s-a-1
0011 [RC , R

′
E] e s-a-1

0011 [R′E, R
′
C] e s-a-1

0011 [R′C , RE] e s-a-1
0011 [RE,∞] –

circuit can be found in Table 5.6 (activation conditions in column 1, sections in column 2
and multiple-stuck-at faults in column 3). For instance, in the situation in section [RC , R

′
E],

pattern (0, 1, 1, 1) corresponds to the following multiple-stuck-at fault: c s-a-0 and e s-a-1.
Simulating this fault indeed yields z = 1 (as the stuck-at faults cancel each other at the
XOR gate), which matches the data in Table 5.5.

Even though not explicitly discussed by Shinogi et al., the sectioning technique can also be
applied to sequential circuits without modification. Thus, it is a simple and flexible way to
derive ADIs for resistive bridging faults.

5.5.3 Feedback-Bridging Faults

Feedback bridging faults are a very problematic class of bridges. Due to the feedback
loop created by the short and the logic path between the two circuit nodes state-holding
behavior or oscillating logical values may be observed. This complicates detection of such
defects. Moreover, feedback bridges constitute a non-negligible fraction of all bridging
faults. A study performed by Ma et al. [105] reports that roughly 10% of all bridging fault
locations they extracted from a commercial microprocessor are of the feedback type. For
layouts of ISCAS 85 [19] benchmarks circuits, Chess et al. [28] found that 10% to 60% of
all bridges cause feedback loops.

Consequently, many authors cover this non-trivial and frequently occurring type of bridging
fault. One of the first references in this area is Mei [115] from 1974, who has identified the
basic properties of feedback bridging faults. For the wired-logic models, the detectability
of these faults has been theoretically analyzed by Karpovsky et al. [80, 81]. Their work,
however, is restricted to feedback loops shorting a circuit’s primary inputs and outputs.

72

5.5 Fault Effect Propagation

Assuming the same class of bridges Xu et al. [209, 210] found that fault detection can be
guaranteed using a sequence of two test patterns. Abramovici et al. [2] have extended the
analysis to general classes of feedback bridging faults and report on a gate-level simulator for
the wired-logic models. Their experiments demonstrate that most feedback bridging faults
can be detected by a single test vector. Dahlgren [35] discusses a switch-level simulator for
feedback bridging faults. Malaiya et al. [108] provided insight into the electrical conditions
that impact the effects imposed by feedback loops in CMOS logic. They found the gates’
propagation delays to be very influential and identified the short’s resistance as a relevant
factor. Rajsuman [143] has developed a technique to estimate the oscillation frequency of
feedback bridging faults affecting inverter chains. The method has been generalized and
refined by Hashizume et al. [64, 65].

Feedback bridging faults have also been mentioned in the context of both the voting model
[3] and the biased voting model [112]. Several simulation (see e.g. [60, 146]) and test
pattern generation tools (amongst others [29, 121]) have been proposed which are able to
deal with non-resistive feedback bridging faults.

The combination of resistive bridging faults and feedback loops, however, has only been
discussed in our publications [P3] and [J1]. We found that depending on the bridge
resistance, a test vector may detect the defect, not detect the defect, or lead to oscillation.
Therefore, non-contiguous ADIs are possible. Determining these ADIs can be expected
to be very time consuming. To alleviate the problem we proposed a simplified technique
in [J1]. For a given feedback bridging fault f we split the continuum of short resistances
into three intervals: [0, Rmin(f)], [Rmin(f), Rmax(f)], and [Rmax(f),∞]. Again Rmin(f) and
Rmax(f) denote minimum and maximum critical resistance of f , respectively. Obviously,
in the latter interval, no fault effects can be observed; consequently we can exclude this
range from consideration. The remaining two intervals cover the range of potentially
detectable short resistances. In the lowest interval [0, Rmin(f)] the bridging fault behaves
as if its resistance was 0 Ω. It is rather simple to determine the detection status for this
range of shorts exploiting the rich knowledge accumulated for non-resistive bridging faults.
Shorts having a resistance from the lowest interval may either be detected, not detected,
or lead to oscillation. As our analysis in [J1] has demonstrated, determining the detection
status of shorts with a resistance from the interval [Rmin(f), Rmax(f)] is possible but time
consuming. To reduce computational complexity we advocate to pessimistically assume
that these shorts cause oscillation. This means that observability of fault effects cannot be
guaranteed. Rather it depends on the sensitivity of the automatic test equipment (ATE),
whether oscillating logical values are recognized as such, or fault-free logical values are
assumed instead.

To account for this impact, we proposed adapting the fault coverage metrics from Chapter
5.4 to feedback bridging faults in [J1]. We assumed, that the simulation of a feedback
bridging fault f according to the simplified technique yielded two detection ranges. Let
A be the C-ADI of f , i.e. the resistance range in which detection of the fault can be
guaranteed. Let O be the potential detection range of f , that is the resistance range in
which either detection can be guaranteed or oscillation is possible. Note that this implies
A ⊆ O; if A = O no oscillation occurs. By FCA we denote the fault coverage obtained

73

5 The Resistive Bridging Fault Model

for the guaranteed detection range A using Equation (5.4.3), i.e. the excitation based
fault coverage E-FC.13 Applying the same equation to the potential detection range O
yields FCO. For FCA = FCO no oscillation occurs. If, however, FCA < FCO holds, the
“true” fault coverage is dependent on the sensitivity of the ATE and thus bounded by FCA

and FCO. If the probability that the ATE recognizes oscillation is known to be k ∈ [0, 1]
the “true” fault coverage FC can be defined as FC = (1− k) · FCA + k · FCO. The larger
the difference between FCA and FCO, the more important it is to understand the ATE
behavior exactly.

Although in [J1] we proposed a simplified technique for interval-based simulation we can
adapt the approach to the sectioning technique in a straightforward manner. We assume
a three-valued simulator as can be found for instance in [167]. This type of simulator
performs stuck-at fault simulation for logical values from {0, 1, X}. We use value X
to indicate oscillation. Again, we only have to focus on the two intervals covering the
range of potentially detectable short resistances: [0, Rmin(f)] and [Rmin(f), Rmax(f)]. The
former interval coincides with the section corresponding to the lowest resistance range.
Its detection status can be determined very easily using techniques similar to those for
interval-based simulation. The latter interval typically decomposes into several sections.
They can be simulated just as in the non-feedback case by assigning X to the driven gates’
inputs. Finally, detection ranges O and A, as introduced above, are assembled according to
the section’s detection status. Fault coverage may then be computed taking into account
the ATE’s sensitivity.

5.5.4 Occurrence of Double Errors

Consider again the circuit from Figure 5.1 and assume we apply the pattern (0, 0, 1, 1) to its
inputs. From the analysis of the voltage characteristics depicted in Figure 5.2(a), we recall
that both driven gates C and E interpreted a faulty logical value if Rsh < RC holds. Note
that gate C is driven by shorted node a while gate E is connected to shorted node b. This
means that for this particular situation, faulty logical values are simultaneously induced at
both nodes affected by the bridge. In the following we will term this a double error induced
by a resistive bridging fault. Expressed in a more general way: Let C1, . . . , Cp(D1, . . . , Dq)
be the successors of gate A(B) driven by the shorted node a(b). If at least one Ci (1 ≤ i ≤ p)
and at least one Dj (1 ≤ j ≤ q) interprets a faulty logical value for some assignment to
A and B and some Rsh this is a double error. Note that it is not sufficient if more than
one successor of gate A interprets a faulty logical value but no successor of gate B (or vice
versa).

Probability of double errors is relevant for the analysis of fault-tolerance techniques [78].
To be effective these techniques have to make assumptions about the number of fault
locations which can be present simultaneously in a circuit. Typically, the common single
fault assumption [1, p. 94] is adopted [58]. This assumption may not be valid for double
errors induced by resistive bridging faults. Yet, as our analysis presented in the following

13Since G-ADI is not well-defined for feedback bridging faults G-FC cannot be used.

74

5.5 Fault Effect Propagation

will demonstrate, the assumption of a single fault location is in general not invalidated by
resistive bridging faults.

We modified the local analysis performed in Algorithm 5.4 to evaluate the occurrence of
double errors and performed two experiments. In the first experiment we enumerated
all possible combinations of driving and driven gates which can be constructed from a
given gate library. We applied our modified Algorithm 5.4 to each combination. For our
experiment we considered all gate types which are instantiated in any ISCAS 85 [19],
ISCAS 89 [18], or ITC 99 [33] circuit. Furthermore, all gate types instantiated in any of the
industrial circuits by NXP semiconductors (the Netherlands) were considered as well. In
total, we evaluated 35,721,000 combinations. Equations from Chapter 5.2.2 were employed
to calculate critical resistances. For the Shockley technology model we used parameters
from the SPICE model card of a 0.35µm technology from AMS. We employed HSPICE
with a BSIM3v3 0.35µm model card to obtain the values Ap, An, Bp and Bn for the Fitted
model. Parameters for the Predictive model were taken from the 65 nm BSIM4 model card
made available by the Device Group at UC Berkeley in [22].

For the Shockley technology model, double errors were observed in 61,792 cases (equaling
0.17% of all combinations). The number of double errors for the Fitted Shockley model
was 76,081 (this is 0.21%). For the Predictive model, this number was slightly higher at
455,400 (which corresponds to 1.28%). To evaluate the fault coverage impact of double
errors, we performed the following experiment: For every combination of driving gates
and every input assignment causing a double error we related the resistance interval in
which double errors were observable to the maximum resistance range detectable for that
pattern. This is very similar to fault coverage E-FC from Equation (5.4.3). Probability
density function ρ as proposed in [165] was used during this experiment. This yielded an
average coverage of 18.85% for the Shockley, 34.80% for the Fitted Shockley, and 2.55% for
the Predictive model. Consequently, the range of short resistances for which faulty logical
values are present at the fault site in case of a double error is rather small if compared to
the full resistance range in which faulty logical values may be observed.

To verify that the combinations of driving and driven gates which lead to double errors
actually occur in circuits, we performed a second experiment for ISCAS 85 and the
combinational cores of the ISCAS 89 benchmark circuits. For each circuit we randomly
selected 10,000 non-feedback bridging faults, where available.14 Subsequently, each bridge
was evaluated with the same algorithm used for the first (generic) experiment. It turned
out that amongst the 363,897 resistive bridging faults extracted from all circuits, some
faults indeed induce double errors. The numbers we obtained were: 504 (0.14% of all
bridges) for the Shockley, 146 (equaling 0.04%) for the Fitted Shockley, and 2518 (which
corresponds to 0.69%) for the Predictive model. This again underlines that double errors
are possible but do occur rarely. Furthermore, their coverage impact is very low.

14Note that the fault lists used in this experiment are equal to those employed in the experiments
discussed in Part II of this work.

75

5 The Resistive Bridging Fault Model

a

b

A

D

Rsh

C
V l t
C

V l t
D

B

...
...

Figure 5.7: Prototype of a two successor bridge affecting nodes a and b.

5.5.5 Double Observation of Two Successor Bridging Faults

Resistive shorts have a non-trivial impact on the behavior of a circuit. Therefore we cannot
expect that there are universal guidelines which guarantee the detection of all possible
shorts at any fault location. Nevertheless we are able to formally derive requirements which
enable us to guarantee that for a specific class of bridging faults, the fault effects of resistive
shorts are observable. These are faults for which there are two driven gates and each of
the single output driving gates is observed by exactly one of these gates. In the following
we will refer to this class of bridging faults as two successor bridges (TSB). Though it
might seem that this requirement is very stringent resulting in very few TSBs, this is not
necessarily the case. A closer look at several sets of benchmark circuits reveals that circuit
nodes with a single successor are very common and, thus, there is high potential for the
existence of TSBs. The average share of circuit nodes with a single successor (with respect
to all circuit nodes) is 62% for ISCAS 85 [19], 78% for ISCAS 89 [18] and 66% for ITC 99
[33] benchmark circuits.

An example for a TSB can be found in Figure 5.7. It depicts a short with resistance Rsh

affecting outputs a and b of two arbitrary single output gates A and B. Each of the two
nodes is observed by exactly one of the (disjoint) driven gates – C and D in our case. Any
potential side inputs to the driven gates are omitted in the figure. The logic thresholds of
gates C and D are V C

lt and V D
lt , respectively.

Before we provide the complete set of requirements guaranteeing the observability of fault
effects and formally prove their effectiveness we first want to illustrate the general idea of
the method. Consider the voltage characteristics Va and Vb at nodes a and b depicted in
Figure 5.8 for different driving strengths of gates A and B. The voltage characteristics
are monotonic functions and we defined V0 as the voltage both characteristics assume for
Rsh = 0 Ω, i.e. Va(0) = Vb(0) = V0. Note that we arbitrarily presume V D

lt < V C
lt .

First assume that the fault-free logical values driven at the shorted nodes are a = 1 and
b = 0 as illustrated in Figure 5.8(a). Depending on the strength of the pull-up network
of gate A and the pull-down network of gate B, the voltage at a and b for Rsh = 0 Ω can

76

5.5 Fault Effect Propagation

V

Rsh

V b

V a

V l t
C

V l t
D

RD

RC , RD

RC

V 0

V

Rsh

V a

V b

V l t
C

V l t
D

V 0 ─

RC

RD

(a) (b)

Figure 5.8: Possible voltage characteristics and critical resistances for activating assign-
ments: (a) a = 1, b = 0, and (b) a = 0, b = 1.

attain different levels. If V0 is larger than V C
lt then there is an intersection between Vb and

V D
lt , yielding critical the resistance RD for gate D. Characteristic Va however will not cross

any threshold. For V D
lt < V0 < V C

lt there is an intersection of both characteristics with the
logic threshold of the respective driven gate. Consequently, we obtain critical resistances
RC and RD for gates C and D, respectively. In case that V0 < V D

lt there is an intersection
between Va and V C

lt resulting in critical resistance RC for gate C; there is no intersection
for characteristic Vb. Recall that the resistive bridging fault model may not unambiguously
resolve critical resistances if the voltage at a bridged node equals the logic threshold of
the gate observing that node. As a consequence these cases have to be excluded from
consideration.

Possible voltage characteristics for a = 0 and b = 1 are depicted in Figure 5.8(b). Now the
pull-up network of gate B is active, while in gate A the pull-down network is activated. For
V0 > V C

lt we obtain the critical resistance RC for the input of gate C. In case V D
lt < V0 < V C

lt

neither Va nor Vb crosses the logic threshold of the respective driven gate. Hence, no critical
resistances exist and fault detection is impossible. If V0 < V D

lt we derive the critical
resistance RD for the input of gate D.

As we may observe – with one exception – at least one of the driven gates will always
interpret a faulty logical value for some short resistances. This is independent of the type
of the driving gates and their current input assignment. However, we have to make sure
that both a = 1, b = 0 and a = 0, b = 1 are tested to rule out that fault detection is
precluded by a situation like the one depicted in Figure 5.8(b) for V D

lt < V0 < V C
lt .

Note that the essence of our observations is not invalidated if we assume V D
lt > V C

lt . Rather
the occurrence of critical resistances is distributed differently for the considered cases.

77

5 The Resistive Bridging Fault Model

Even for V D
lt = V C

lt our observations are not invalidated. In this case it is impossible that
V D

lt < V0 < V C
lt (or V C

lt < V0 < V D
lt). This means in particular, that any single activating

assignment to nodes a and b will cause one of the driven gates to interpret a faulty logical
value.

Our observations can be summarized as follows: For a TSB, the range of short resistances
for which faulty effects are observable is non-empty, provided that both activating logical
assignments are applied. Neither type nor electrical properties of both driving and driven
gates have to be known.

As a next step we will give a formal proof for the validity of our observation. First of all we
have to establish the requirements for the existence of a critical resistance. Recall that we
defined the critical resistance Rcrit ∈ R>0 associated to input i of a gate connected to node
n as the short resistance for which Vn(Rcrit) = V i

lt, where Vn is the voltage characteristic
at node n and V i

lt is the logic threshold of gate input i driven by n. Without loss of
generality we will restrict the discussion to the input c of gate C which is connected to
node a. Depending on the logical value v driven at a in the fault-free circuit, a critical
resistance does exist, if:

a) V C
lt > V0, if v = 1,

b) V C
lt < V0, if v = 0.

Note that in case a) Va is a monotonically increasing function, while in case b), Va is
monotonically decreasing. To prove our assertion we have to consider each case separately
and make the following assumptions:

v = 1: Assume a critical resistance existed if V C
lt ≤ V0. We distinguish two cases:

Case V C
lt = V0: The resistive bridging fault model cannot unambiguously resolve

critical resistances for this case. Therefore we have to exclude it from considera-
tion. We may, however, take a conservative position and assume that no critical
resistance exists if V C

lt = V0.
Case V C

lt < V0: In this case there must be a resistance r ∈ R>0 such that Va(r) = V C
lt .

Then it would hold that Va(r) = V C
lt < V0 = Va(0) ⇔ Va(r) < Va(0). Yet, as

r > 0 and Va is a monotonically increasing function, it must be that Va(r) ≥ Va(0)
and, thus, since we assumed V C

lt < V0, there is no critical resistance. This is a
contradiction to our assumption.

v = 0: Assume a critical resistance existed if V C
lt ≥ V0. We again distinguish two cases:

Case V C
lt = V0: We may use the same argumentation as for v = 1 in this case.

Case V C
lt > V0: There must be a resistance r ∈ R>0 such that Va(r) = V C

lt . Then it
would hold that Va(r) = V C

lt > V0 = Va(0)⇔ Va(r) > Va(0). Yet, as r > 0 and
Va is a monotonically decreasing function it must be that Va(r) ≤ Va(0) and,
thus, since we assumed V C

lt > V0, there is no critical resistance. Again, this is a
contradiction to our assumption.

�

78

5.5 Fault Effect Propagation

Inversely, we may prove in an analogous way that no critical resistance exists, if:

a) V C
lt < V0, if v = 1,

b) V C
lt > V0, if v = 0.

Now that we have identified the conditions for the existence of a critical resistance, we
can prove the observability of TSBs. Let us define two assignments t1 and t2 which when
applied to the inputs of our example circuit have the following properties:

1) vector t1 sets a = 0 and b = 1,

2) vector t2 set a = 1 and b = 0.

Again we consider a TSB like the one depicted in Figure 5.7. If for this kind of defect there
is an assignment t1 with property 1) and an assignment t2 with property 2), then there
exists at least one short resistance Rsh for which a faulty logical value is interpreted by at
least one driven gate if t1 and t2 are applied. This means that if t1 and t2 are assigned to
the inputs of the circuit, we are always able to compute a critical resistance for (at least)
one of the driven gates. To prove this assertion we assume that if t1 and t2 are applied
no driven gate interprets a faulty logical value for any value of Rsh and, thus, there exist
no critical resistances. Depending on the logic thresholds of the driven gates we have to
distinguish two cases:

Case V C
lt = V D

lt : We define Vlt = V C
lt = V D

lt . Since nodes a and b are at opposite values it
would hold that Vlt < V0 and at the same time Vlt > V0 (note that we have to rule
out that Vlt = V0). Therefore, exactly one critical resistance must be obtained and
we derived a contradiction to our assumption.

Case V C
lt 6= V D

lt : Depending on the fault activation it holds that:

i) if t1 is applied V C
lt > V0 and V D

lt < V0,
ii) if t2 is applied V C

lt < V0 and V D
lt > V0.

From i) we can conclude that V C
lt > V D

lt , and from ii) it follows that V C
lt < V D

lt . Since
the gate’s logic thresholds are fixed for all input assignments this is impossible and
contradicts our assumption.

�

We have proven that the interval of short resistances for which faulty logical values are
interpreted is non-empty if both t1 and t2 are applied. This, however, does not necessarily
imply that shorts having a resistance from this interval are actually detectable. In the
following we will derive a sufficient condition for the detection of TSBs. In doing so, we
will make no assumptions about the type or the electrical properties of both driving and
driven gates.

From the discussion we have learned that – without specific knowledge about the gates
involved in the TSB – we cannot predict if fault effects may be interpreted by either gate
C or gate D or both gates. In order to detect a defect we therefore have to propagate fault
effects simultaneously from both nodes to an observable point. This means that we have
to rephrase the requirements for t1 and t2 as follows:

79

5 The Resistive Bridging Fault Model

1) Vector t1 detects single-stuck-at faults a s-a-1 and b s-a-0 as well as the multiple-
stuck-at fault formed by the combination of both faults.

2) Vector t2 detects single-stuck-at faults a s-a-0, b s-a-1, and the combined multiple-
stuck-at fault.

We have to require that both single- and multiple-stuck-at faults are detected to ensure
that shorts are detected even if resistance intervals reconverging at the inputs of a gate map
to non-trivial intervals at the gate’s output. However, as the study introduced in Chapter
5.5.4 proved, most of the shorts cause errors originating from a single shorted node only.
Therefore, we may mitigate the detection requirement by solely enforcing the detection
of single-stuck-at faults. Then, however, fault detection is not guaranteed for all TSBs.
A test vector set which is guaranteed to detect some defects at all two successor bridge
locations has to contain for every TSB: one vector satisfying condition 1) and another
vector fulfilling condition 2). Our result drastically simplifies ATPG for two successor
bridges by eliminating the need to solve the equations discussed in Chapter 5.2. This also
implies that the profound technological data required for these equations does not have to
be provided for TSBs.

80

6 Summary and Discussion of Part I

In Part I of this thesis we discussed a wide range of conceptually refined models for
the effects of shorts on the behavior of a logic circuit. We identified the handling of a
short’s intrinsic resistance as the most prominent distinction between the models under
consideration. The first group, termed non-resistive bridging fault (NRBF) models, either
considers this property implicitly or neglects its impact. Whereas the second group, the
resistive bridging fault (RBF) model, explicitly handles the whole continuum of the intrinsic
resistance. Thus, this model accounts for arbitrary resistive shorts.

We found that the non-resistive bridging fault models differ substantially in terms of the
accuracy with which effects of shorts are reflected. Additionally, we explored the models’
complexity. We related their complexity to the number of combinations of logic assignments
to the driving gates with fault effects seen by the driven gates, that represents a single
bridging fault. This number of combinations directly translates to the computational effort
required when performing fault simulation or test pattern generation using the respective
model.

We identified three classes of non-resistive models based on accuracy and complexity. The
first class contains simple logic models like the wired-logic, the dominance-behavior, and the
4-way model. These models share a similarly low accuracy combined with low complexity.
Yet, they only reflect very basic properties of shorts and completely ignore the specifics
of CMOS technology. Technology-based (biased) voting models from the second class
combine profound technological knowledge with an efficient voting strategy. This entails
increased accuracy in conjunction with moderate complexity. The third class of models, the
generalized models, favor a generic description of a short’s behavior. They are not biased
towards specific technological properties or defect related parameters. The unified model
and the precise test generation model belong to this class. Both display extremely high
complexity paired with low modeling accuracy. Apart from that, the generalized models
may be advantageous whenever parameters affecting defect behavior are inaccessible or
highly variable.

The extreme complexity of the generalized models has to be accepted if a short’s intrinsic
resistance is not considered accurately. Otherwise the bridging fault model might fail to
explain fault effects caused by some resistive shorts. This is because the intrinsic resistance
heavily impacts the effects caused by a short. In particular, it could be proven that a
test vector which detects a short with some resistance R1 might not be able to detect
another short with a different resistance R2, even though both affect the same pair of
circuit nodes. The resistive bridging fault model is able to accurately reflect these effects
due to its parametric nature. This is made possible by a refined technological modeling

81

6 Summary and Discussion of Part I

framework in combination with the dedicated consideration of the continuum of intrinsic
short resistances.

The resistive bridging fault model is based on the notion of critical resistance. The
critical resistance is associated with the input of a driven gate. It constitutes an upper
bound for the intrinsic resistance of shorts, which are potentially detectable. Critical
resistances are computed using a very flexible electrical modeling framework based on
technology specific equations. We presented two novel instantiations of this framework
for current technology nodes, thus underlining its versatility. Those shorts for which
faulty logical values are actually seen at a circuit’s observable points are identified by the
analogue detectability interval (ADI). Hence, the ADI specifies the range of detectable
short resistances. When obtained for a given test set, the ADI is denoted as C-ADI. We
were able to prove that for two successor bridges, a non-empty C-ADI can be guaranteed
under certain conditions. Accounting for these conditions drastically simplifies test pattern
generation for two successor bridges. Furthermore, we reported on our recent findings
which demonstrate that double errors induced by resistive bridging faults hardly occur.
This result is of vital importance for the analysis of fault-tolerance techniques.

Finally, we also discussed approaches which compute the ADI given the resistance ranges
in which fault effects are observable at the fault site. We addressed both feedback and
non-feedback resistive bridging faults. In particular, we introduced the sectioning technique
which allows the mapping of a resistive bridging fault to a collection of conditional multiple-
stuck-at faults. The latter can be handled using methods known for conventional stuck-at
faults. The sectioning technique is the key to the efficiency of our fault simulator SUPERB
and our test pattern generator RBF-ATPG, which we will introduce in Part II of this
thesis.

Similar to the idea of the sectioning technique, the fault effects attributed to a bridging
fault by any other model presented in Part I can be represented as a set of CMS@ faults
as well. For the generalized models this has already been elaborated on. Likewise, the
aggressor/victim combinations used by the simple logic models can be represented as a
collection of CMS@ faults. This holds, as they essentially extend a single-stuck-at fault
by an additional constraint. Yet, for the technology based models the existence of such
a mapping might not be obvious. However, both voting models establish a well-defined
mapping from logical values assigned to the driving gates to a set of faulty logical values
interpreted by the driven gates. This again equals a condition and a multiple-stuck-at
fault, i.e. a CMS@ fault.

The most general of the models discussed in Part I is the ETFN instance of the unified model.
It attributes all possible multiple-stuck-at fault combinations to each logic assignment
which activates the driven gates. Every other bridging fault model can be seen as a method
to identify a relevant subset of the CMS@ faults instantiated by the ETFN model.

In summary, the models presented in Part I of this thesis are substantially different in
terms of accuracy and complexity. The resistive bridging fault model is superior in terms
of accuracy as it explicitly considers a short’s intrinsic resistance. This is complemented by
only moderate complexity.

82

Part II

Applications of the Resistive Bridging
Fault Model

83

7 SUPERB – A Resistive Bridging
Fault Simulator

Conventional simulators for resistive bridging faults considered the continuum of short
resistances as a whole. Implementations are based on interval manipulation techniques
introduced in Chapter 5.5.1. They can simultaneously determine the detection status of all
possible shorts at a given bridging fault location. Reports on tools of this kind have been
published by Sar-Dessai et al. [165, 166] and Lee et al. [98]. Our simulator [J3] belongs to
this class of tools as well. The tool from Sar-Dessai et al., implemented in the Toolkit (tcl)
scripting language, can be considered a prototype. In [166] results for ISCAS 85 circuits
are reported but no run-times are stated. PROBE by Lee et al. employs refined techniques
for pattern-parallel simulation. Again, results for ISCAS 85 benchmarks are found in [98].
Our simulator [J3] was the first to handle sequential and combinational circuits. We have
successfully applied our tool to both ISCAS 85 and ISCAS 89 benchmarks.

Unfortunately those interval-based approaches suffer from two inherent disadvantages.
First of all, operations on the continuum of resistances are computationally complex.
This holds, even though detection ranges are typically covered by single intervals only.
Secondly, it is difficult to transfer effective speed-up techniques developed for stuck-at
fault simulation – such as exploiting bit-parallelism – to interval manipulation techniques.
An alternative has been put up for discussion by Shinogi et al. in [174]. They have
found a way to map resistive bridging faults to conditional multiple-stuck-at faults using
the sectioning technique described in Chapter 5.5.2. They also suggested extending the
sectioning technique to parallel-pattern simulation. Yet in [174] they only describe a tool
which implements single fault, single pattern simulation.

This chapter presents our novel Simulator Utilizing Parallel Evaluation of Resistive Bridges
(SUPERB) published in [W14] and [P15, P18]. SUPERB is a resistive bridging fault
simulation tool which efficiently combines sectioning technique with bit-parallel operations
on machine words known from stuck-at simulation. When we first published SUPERB in
[P15] there had been no implementation which actually followed the suggestion of Shinogi
et al. to extend the sectioning technique to parallel-pattern simulation. At the same
time, Cheung et al. [30] reported another sectioning based parallel-pattern simulator for
resistive bridging faults. In contrast to SUPERB, it uses a modified version of the resistive
bridging fault model which considers a range of uncertain interpretation around each logic
threshold. This slightly increases the modeling complexity, yet, has not been proven to
provide advantages in terms if accuracy.

85

7 SUPERB – A Resistive Bridging Fault Simulator

Electrical
Analysis

CMS@
Simulation

CMS@
Creation

Electrical
Data

Netlist

Test
Patterns

Bridge
Fault List

Coverage
Calculation

Detected
Bridges

Distribution
ρ(r)

C-ADI
Assembly

Figure 7.1: Resistive bridging fault simulation flow.

In the following, we will report on our experiments which demonstrate that SUPERB
enables simulation of resistive bridging faults for multi-million gate designs in manageable
time and without loss of accuracy. Furthermore, SUPERB will turn out to be more efficient
than the tool from [30].

First we will introduce the outline of SUPERB in Chapter 7.1. Detailed experimental
results, including a comparison of SUPERB with several competing resistive bridging
fault simulators – i.e. PROBE, our tool from [J3], and the simulator from [30] – are then
presented in Chapter 7.2. Finally conclusions are drawn in Chapter 7.3.

7.1 Efficient Simulation of Resistive Bridging Faults

The simulation flow of SUPERB is outlined in Figure 7.1. It can be structured into three
phases. In the first phase the user specified bridging fault list is analyzed and prepared
for fault simulation. First of all this requires an electrical analysis which takes the fault
list, and the circuit’s gate-level netlist, the process technology, and other electrical data
into account. In the analysis step, the sectioning technique as detailed in Chapter 5.5.2, is
applied to each bridging fault from the list. Subsequently, the data yielded in the electrical
analysis is used to create conditional multiple-stuck-at faults which are stored into an
efficient data structure to allow for fast access during simulation.

In the second phase, conditional multiple-stuck-at faults corresponding to all sections of all
bridging faults are simulated for a given set of test vectors. Since every section is completely

86

7.1 Efficient Simulation of Resistive Bridging Faults

specified by its associated set of conditional multiple-stuck-at faults, no features specific to
resistive bridging faults have to be taken into account in this phase. The simulation engine
we have integrated into SUPERB performs a three-valued bit-parallel simulation of CMS@
faults. By considering the two logical values from B and the unknown logical value, current
circuit designs can be accurately simulated. Furthermore, as SUPERB is exploiting bit-
parallel operations on machine words, computing resources provided by modern computers
can be used efficiently. While parallel simulation techniques are well-known in the domain
of single-stuck-at fault simulation, we had to extend them to conditional multiple-stuck-at
faults. As a result, the efficient fault simulation engine of SUPERB enables fast and
accurate simulation of resistive bridging faults.

After simulation, the detection status of each section is known. Now, in the last phase,
which is again tailored to resistive bridging faults, the C-ADI of each bridging fault is
assembled. If the probability density function of the short’s resistance is provided, the
fault coverage E-FC or G-FC is calculated (according to Equations (5.4.3) and (5.4.4),
respectively). Furthermore, the list of detected resistive bridging faults may be stored
upon user request. In the following we will cover phase one in more detail in Chapter 7.1.1.
Phase two will be explained thoroughly in Chapter 7.1.2.

7.1.1 Fault List Preprocessing and Data Storage

For a single bridging fault the sectioning technique provides all activating assignments to
the driving gates. Additionally, it yields the resistances bounding the sections and the
logical values interpreted by the driven gates within each section. The critical resistances
required for this procedure are identified using equations from Chapter 5.2. Alternatively
they could also be obtained from electrical simulations as discussed for instance in [165].
From the section data, conditional multiple-stuck-at faults are created as explained in
Chapter 5.5.2. These faults have to be quickly accessible during simulation and thus should
be stored efficiently. At the same time storage requirements have to be kept low to allow
processing large numbers of bridging faults in one pass.

Figure 7.2 visualizes the data structure used in SUPERB to store a single bridging fault.
For illustration purposes data from Table 5.6 is used in the figure. It consists of a fault-
specific bridging fault structure which stores general information applicable to the fault
and all its sections – such as e.g. the nodes affected by the short (i.e. the fault location).
Furthermore, each section is represented by its own dedicated section structure. Section
specific information is retained here. This includes e.g. the interval covered by the respective
section and its detection status.

The core of the data structure is the storage of CMS@ faults which is split into two
parts. Fault activation conditions, i.e. the assignments to the driving gates which activate
the bridge, are kept in a hash table (see e.g. [32, pp. 221]) located in the bridging fault
structure. The hash table contains one entry for every assignment activating the bridge.
Each assignment is mapped to a unique index. In the hash table from Figure 7.2, two

87

7 SUPERB – A Resistive Bridging Fault Simulator

Location: a, b

Bridging Fault

0 1 1 1 → 0
0 0 1 1 → 1

Hash Table

Interval: [0,R'
D
]

Status: undetected

Section

c d e

0 sa-0 sa-0 sa-1

1 sa-0 – sa-1

Interval: [R'
C
,R

E
]

Status: undetected

Section

c d e

0 – – –

1 – – sa-1

..
.

Figure 7.2: Data structure for a single bridging fault.

assignments are stored: Pattern (0, 1, 1, 1) is mapped to index 0 while index 1 is allocated
to pattern (0, 0, 1, 1).

In contrast to the fault activation conditions, the multiple-stuck-at faults are section specific.
Thus, they are kept in fault tables located separately within each section structure. Each
row in a section’s fault table corresponds to one multiple-stuck-at fault. The activation
condition triggering this fault is indicated by the index in the first column of the table.
Hence, the index links an activating assignment to the respective multiple-stuck-at fault
representing the section. The individual stuck-at faults seen by the driven gates are listed
in the preceding columns (in the figure “–” indicates that a gate interprets the fault-free
logical value). It is important to realize that there is no one to one mapping between section
and multiple-stuck-at fault. Rather, the assignment to the driven gates determines which
multiple-stuck-at fault represents a section. To obtain, for instance, the multiple-stuck-at
fault to be simulated for pattern (0, 0, 1, 1) and section [0, R′D] (illustrated by the upper
section structure in the figure) we first have to look-up the pattern’s index in the hash
table. Once we known this index, 1 in our example, we have to inquire the fault table
belonging to the section in question. The row labeled 1 in the data structure for section
[0, R′D] yields the following multiple-stuck-at fault: c s-a-0 and e s-a-1.

For efficiency reasons the keys to the hash table, i.e. the assignments to the driven gates,
are represented as 32-bit unsigned integers. This is valid as the length of these keys cannot
exceed 2 · Imax where Imax is the maximum number of inputs of any logic gate from the
gate library, and we assume Imax to be less than or equal to 16. The size of the hash table,
as well as the number of rows of the individual fault tables within each section structure,
is bounded by 22·Imax . In practice, the tables turn out to be quite small. For each bridging
fault from the fault list there is exactly one bridging fault structure. Similarly, for each
section there exists one section structure, each of which belongs to exactly one bridging
fault. Let n be the number of bridging faults. Then, if the number of sections for bridging

88

7.1 Efficient Simulation of Resistive Bridging Faults

fault i, 1 ≤ i ≤ n, is denoted by si, the total number of sections is s =
∑n

i=1 si. Since
si is typically a one-digit number, the memory overhead for storing the data structure is
manageable.

7.1.2 Fault Simulation Procedure

The simulation engine we have integrated into SUPERB exploits bit-parallel operations on
machine words to support simulation in two different modes: parallel-pattern single-fault
processing [193, 194] (PPSFP) and single-pattern parallel-fault processing [171] (SPPFP).
On a machine which uses machine words of bit-width w, a bit-string Bj of length w is
assigned to every node j in the circuit.1 Note that in order to realize three-valued simulation,
two bit-strings B0

j and B1
j of length w are required at every circuit node. The encoding of

the three logical values used in SUPERB is equal to the one proposed by Waicukauski et
al. in [194]. To simplify the discussion we will assume, however, that only the two logical
values from B are used. Hence, assigning a single bit-string to each circuit node is sufficient.
In PPSFP mode one section is simulated for w test patterns p1, . . . , pi, . . . , pw in parallel.
In this mode, the value of the i-th bit of bit-string Bj corresponds to the value for test
pattern pi at node j in the presence of the injected fault. In SPPFP mode w sections
s1, . . . , si, . . . , sw, which do not necessarily belong to the same bridging fault, are simulated
simultaneously for a single test pattern. In this mode, the value of the i-th bit of Bj reflects
the value at circuit node j for the given pattern in the presence of the fault induced by the
section si.

Fault injection is performed by manipulating bit masks of length w. For a given section,
two masks are assigned to the inputs of all driven gates which are connected to one of the
shorted nodes addressed in that section. Let j be one of these inputs. The masks assigned
to j are AND mask Aj and OR mask Oj. If no stuck-at fault is present at input j, all the
bits of Aj are set to the logical value 1 and all the bits of Oj are set to the logical value 0.
To insert a stuck-at 0 fault at the i-th bit position of j, bit i of Aj has to be set to logical
value 0. A stuck-at 1 fault is injected at bit i of input j by assigning the logical value 1 to
the i-th position of Oj.

The simulation in PPSFP mode is performed using Algorithm 7.1. It takes the circuit’s
netlist C, a set of test patterns P , the width of a machine word w, and the set of all section
structures S to be simulated as input. Note that the list of bridging faults does not have
to be supplied explicitly. Initially, two bit-strings Bj and B′j of length w are allocated for
every circuit node j and the empty set of detected sections Sd is instantiated.

Starting in line 4, the outer loop of the algorithm iteratively selects w consecutive patterns
from pattern set P for simulation. If the size of the pattern set |P | is no integral multiple
of w, less than w patterns may be selected in the last iteration of the loop (the number
of patterns to be selected is determined in line 5). Subsequently good_simulation() is
executed in line 7 which performs the parallel-pattern good-machine simulation of C. The
routine assigns the patterns from P ′ to the bit-strings from B corresponding to the primary

1Typically w = 32 or w = 64 for current computers.

89

7 SUPERB – A Resistive Bridging Fault Simulator

Algorithm 7.1: PPSFP simulation of sections from S for test pattern set P .
Input: Circuit C, set of sections S, set of test patterns P , width of machine word w.
Output: Set of detected sections Sd.

/* Allocate bit-string of length w for each circuit node. */
/* n := number of nodes in C, Bi ∈ Bw for 1 ≤ i ≤ n */
B := (B1, . . . , Bn); /* Good-machine copy. */1

B′ := (B′1, . . . , B
′
n); /* Faulty-machine copy. */2

/* Create empty set of detected sections. */
Sd := ∅;3

for (i := 1; i ≤ |P |; i := i+ w) do4

/* Select partition of up to w patterns from P */
k := min(w − 1, |P | − i);5

P ′ := {pj ∈ P |i ≤ j ≤ (i+ k)};6

/* Perform parallel-pattern good-machine simulation of circuit. */
good_simulation(C, B, P ′);7

foreach (s ∈ S) do8

if (activated(B, s)) then /* Check if s is activated by any pattern. */9

/* Init. masks for inputs of driven gates addressed in s. */
M := create_fault_masks(B, s);10

/* Perform faulty-machine simulation with fault masks M. */
fault_simulation(C, B′, M , P ′);11

if (obs_difference(B, B′)) then /* Check if s is detected. */12

Mark s as detected;13

S := S \ {s}; /* Remove section s from S... */14

Sd := Sd ∪ {s}; /* ...and insert it into Sd. */15

end16

end17

end18

end19

return Sd; /* Return set of sections detected by P. */20

90

7.1 Efficient Simulation of Resistive Bridging Faults

inputs; pattern pi ∈ P ′ is assigned to the i-th bit. Then, these assignments are propagated
to the observable points processing the circuit in topological order. A logic gate driving
node j is simulated by applying its bit-wise logic function to the bit-strings of its inputs
and then storing the resulting string in Bj.

The inner loop (starting in line 8) iteratively selects a section s from S. Note that every
section contained in S gets selected exactly once in this loop. Only sections which are
activated by at least one pattern from P ′ are simulated. This check is performed by
activated() in line 9. To find out if a section is activated, the assignments to the driven
gates induced by the patterns from P ′ are extracted from B. Every assignment is looked-up
in the hash table located in the bridging fault structure belonging to s. Only if the inquiry
of the hash table was successful and a multiple-stuck-at fault is present (for at least one
pattern) in the respective row of the fault table in section s, will activated() be satisfied.

Prior to fault simulation, the AND and OR masks have to be initialized as explained
above. This is performed by create_fault_masks() in line 10. Masks are initialized only
for the gates driven by any of the two nodes shorted by the bridging fault represented by
s. Similar to activated() the activating assignment at every bit position i is looked-up in
the hash table. The respective multiple-stuck-at fault, which is found in the fault table in
s can then be injected. Note that in contrast to regular parallel-pattern fault simulation
masks Oj and Aj do not necessarily have to contain identical values. This is, because the
multiple-stuck-at faults are dependent on the activation conditions induced by assignments
to the driven gates.

Now, the faulty-machine simulation is conducted for the patterns from P ′ and section s by
executing fault_simulation() in line 11. The algorithm is very similar to good_simulation()
except for two differences. First of all, it modifies the faulty-machine bit-strings B′.
Secondly, the driven gates’ AND and OR masks from M have to be respected. If for
instance a driven gate is a three-input NOR which drives node j and has inputs k, l, and
m, then B′j is obtained as

B′j =¬ ((B′k∧Ak∨Ok)∨(B′l∧Al∨Ol)∨(B′m∧Am∨Om))

where ¬, ∨, and ∧ represent bit-wise NOT, OR, and AND operations, respectively.

After completing the fault simulation, the detection status of section s is determined by
obs_difference() in line 12. The check simply evaluates if the bit-strings B and B′ differ
for any of the circuit’s observable points. If so, s is marked as detected and the section
is removed from set S and inserted into the set of detected sections Sd. After having
simulated all sections from S for all patterns from P , Algorithm 7.1 terminates returning
the detected sections Sd.

For single-pattern parallel-fault simulation, the Algorithm 7.1 has to be slightly modified.
Instead of selecting w test patterns only one pattern p is simulated in the outer loop (line 4).
Inversely the inner loop injects w sections s1, . . . , si, . . . , sw (line 8) which are activated by
test pattern p. As a consequence, activated(), create_fault_masks(), and obs_difference()
have to be adapted such that they are able to process a list of sections instead of a single

91

7 SUPERB – A Resistive Bridging Fault Simulator

section. This basically means repeating the steps described for the PPSFP algorithm for
several sections s1, . . . , si, . . . , sw but a single pattern p.

The interval-based simulator PROBE employs a technique called “pseudo-PPSFP” in [98].
Similar to SUPERB, the state of each circuit node is evaluated for several test patterns
in one simulation pass. Yet, fault effect propagation does not use any bit-parallelism,
rather, for each pattern, a node’s state is represented by an interval. To avoid repetitive
computations, the intervals generated are stored in a list. Whenever an interval is to be
created, which has already been computed, the respective entry can simply be referenced,
avoiding computational complex interval operations.

7.2 Experimental Results

We applied 10,000 random test vectors to ISCAS 85 [19] circuits, the combinational cores of
ISCAS 89 [18] and ITC 99 [33] benchmarks and industrial circuits by NXP semiconductors.
We used the Shockley technology model and parameters from the SPICE model card of a
0.35µm technology from austriamicrosystems AG (AMS) to determine critical resistances
(refer again to Chapter 5.2.2). Experimental results for SUPERB in 64-bit parallel-pattern
simulation mode are reported in Tables 7.2, 7.3, 7.4, and 7.5, respectively.

The first column of the tables states the circuit name. It is followed by the total number of
cells contained in its combinational core, and the number of primary inputs and outputs.
The largest circuit considered is the industrial 2.5 million gate design p2927k. Column
five of the tables lists the number of bridging faults considered in the experiments. Where
available we randomly selected 10 · c faults, c being the number of cells of the circuit as
given in column two. Alternatively, we could also use layout extracted bridging faults
(refer to Chapter 3.3). The number of faults was chosen to be close to the size of fault lists
obtained with layout-based extraction methods.

The total number of sections can be found in column six. Depending on the benchmark
suite we observed on average between 1.75 and 5.73 sections per fault. The maximum
number of sections for any fault was 69. Fault coverage E-FC, according to Equation
(5.4.3), is given in column seven. We used the distribution ρ proposed in [165] which
is based on data from [158]. Subsequently, we quote the time (in seconds) needed for
preprocessing the fault list (as described in Chapter 7.1.1) in column eight, the simulation
time in column nine (using Algorithm 7.1) and the time required to simulate one fault for
one vector in column ten (the latter is given in milliseconds). For B bridging faults, V test
vectors and total simulation time T (in seconds), the normalized time per bridging fault
TBV calculates as:

TBV =
T · 103

B · V
. (7.2.1)

For comparison purposes we also performed single-stuck-at fault simulation with the same
simulation engine integrated into SUPERB and the identical set of 10,000 random test

92

7.2 Experimental Results

vectors. Number of single-stuck-at faults, stuck-at fault coverage and simulation time are
stated in columns 11 to 13. Averages can be found in the last row of the table. We ran
all experiments on a 2.8 GHz AMD Opteron Linux machine with 16 GB random access
memory (RAM). SUPERB is implemented in C++.

From the tables we can observe that bridging fault coverage E-FC for 10,000 random
patterns tends to be smaller for larger circuits. There are, however, also some medium-sized
circuits – such as e.g. p77k – which seem to have many random-pattern resistant faults [40]
and consequently display low E-FC. For many circuits we found the bridging fault coverage
to be larger than the single-stuck-at fault coverage. Yet, this cannot be generalized, since
for some circuits, such as p78k and p378k, the exact opposite is the case.

Time required for the preprocessing phase is very small. For the large industrial circuits,
less than nine seconds on average were needed to process one million bridging faults. The
largest simulation time of roughly eight hours was observed for the 2.5 million gate design
p2927k. For the industrial circuits bridging fault simulation took on average 16 times longer
than single-stuck-at simulation. For benchmark sets with smaller circuits this ratio was
higher. Yet, we have to take into account that the average number of bridging faults exceeds
the number of stuck-at faults by a factor of five. In fact the number of multiple-stuck-at
faults simulated is even higher: Each bridging fault contains several sections (on average
2.6 for the industrial circuits) for each of which at least one conditional multiple-stuck-at
fault has to be simulated.

Figure 7.3 shows the normalized simulation time per bridging fault as a function of the
circuit size (both plotted on a logarithmic scale). It can be seen that, except for two
outliers, the time per fault is almost independent of the circuit size. Figure 7.4 plots
bridging fault simulation time against single-stuck-at simulation time on a logarithmic scale.
The dependency is almost perfectly linear, with the exception of the smallest circuits.

Comparison with Competing Resistive Bridging Fault Simulation Tools

Table 7.6 compares SUPERB in 32-bit parallel-pattern simulation mode with the sectioning
based simulator by Shinogi et al. [174], the interval-based tool PROBE [98], and our
interval-based simulator [J3]. Column one of the table states the name of the ISCAS 85
benchmark circuit. Subsequently, the number of bridging faults, total simulation time
in seconds and simulation time per bridging fault in milliseconds (according to Equation
(7.2.1)) are quoted for the abovementioned tools. Note that the run-times for the tool
by Shinogi et al. and PROBE were reported in minutes in the respective original papers.
The number of test vectors was 10,000 for the tool by Shinogi et al., SUPERB, and our
simulator [J3]. PROBE simulated 10,016 vectors. Total simulation time for all circuits and
average TBV , respectively, can be found in the last row of the table.

SUPERB is approximately two orders of magnitude faster than the tool from Shinogi et
al., three orders of magnitude faster than our simulator [J3], and five orders of magnitude
faster than PROBE. Shinogi et al. ran their simulator on an 850 MHz Pentium III, which
may be three to five times slower than the machine we used. Moreover, the average number
of sections for the circuits from Table 7.6 was 3.61 for the tool from Shinogi et al. and

93

7 SUPERB – A Resistive Bridging Fault Simulator

10-5

10-4

10-3

10-2

101 102 103 104 105 106 107

N
or

m
al

iz
ed

 R
un

-ti
m

e
T B

V
 [m

s]

Circuit Size

ISCAS85
ISCAS89

ITC99
NXP

Figure 7.3: Simulation time per resistive bridging fault as function of circuit size.

10-1

100

101

102

103

104

105

10-2 10-1 100 101 102 103 104

R
es

is
tiv

e
B

rid
gi

ng
 F

au
lts

 [s
]

Single-stuck-at Faults [s]

ISCAS85
ISCAS89

ITC99
NXP

Figure 7.4: Simulation time for resistive bridging faults vs. single-stuck-at faults.

94

7.2 Experimental Results

100

101

102

103

104

105

106

c0880
c1355

c1908
c2670

c3540
c5315

c6288
c7552

cs00820

cs00832

cs00838

cs00953

cs01196

cs01238

cs01423

cs01488

cs01494

cs05378

cs09234

cs13207

cs15850

cs35932

cs38417

cs38584

R
un

-ti
m

e
[s

]

PPSFP SPPFP Interval

Figure 7.5: Run-time of SUPERB vs. interval-based approach from [J3].

3.11 for SUPERB, which may account for some 15% of the acceleration. The remaining
difference in run-time may be predominantly attributed to the bit-parallelism employed by
SUPERB and its efficient implementation. The experiments in [98] were performed on a
Sun SPARC 5 with an unspecified clock frequency which may explain a slowdown of at
most two orders of magnitude. The remaining difference in run-time must be attributed
to the interval-based simulation technique which could not be accelerated sufficiently by
the tool’s “pseudo-PPSFP” approach. In contrast to the aforementioned tools, results
for the simulator from [J3] were obtained on the same machine, for identical fault lists2,
and the same set of test vectors. Thus, the data is directly comparable. Consequently,
run-time comparison with this tool underlines the superiority of the sectioning technique
for the simulation of resistive bridging faults. Even though PROBE and the tool form [J3]
employ the same basic simulation technique, run-times differ substantially. This might be
explained to some degree by the improved representation of intervals used in the latter
fault simulator.

Figure 7.5 gives further insight into the difference in performance between interval- and
sectioning-based technique. For a selection of ISCAS 85 and ISCAS 89 benchmark circuits,
the figure compares run-times for the interval-based simulator from [J3] and the 32-bit
version of SUPERB in both parallel-pattern and parallel-fault mode. All simulations were
performed on the same machine for identical fault lists and the same 10,000 random test
vectors; run-times are plotted on a logarithmic scale. Taking all ISCAS 85 and ISCAS 89
benchmark circuits together (including those not contained in the figure) average run-times
were 13,406.98 seconds for the interval-based simulator. For SUPERB we observed 16.44
seconds in parallel-pattern, and 163.24 seconds in parallel-fault mode. Comparing SUPERB

2Note that unless otherwise specified, the fault lists used in this chapter are equal to those employed in
all other experiments discussed in Part II of this work.

95

7 SUPERB – A Resistive Bridging Fault Simulator

Table 7.1: Comparison with the parallel-pattern resistive bridging fault simulator from
Cheung et al. [30].

Circuit Cheung et al. [30] SUPERB (PPSFP)
Faults Vectors Time TBV Faults Vectors Time TBV

[s] [ms] [s] [ms]
c0432 9,132 157 7 0.00488 5,253 10,000 1.24 0.00002
c0499 16,681 149 5 0.00201 8,985 10,000 0.76 0.00001
c0880 81,899 207 21 0.00124 10,000 10,000 3.70 0.00004
c1355 90,165 399 39 0.00108 10,000 10,000 7.17 0.00007
c1908 307,416 557 11,219 0.06552 10,000 10,000 2.97 0.00003
c2670 171,603 581 38 0.00038 10,000 10,000 4.69 0.00005
c3540 206,839 540 305 0.00273 10,000 10,000 3.18 0.00003
c5315 156,699 299 68 0.00145 10,000 10,000 1.34 0.00001
c6288 191,363 61 389 0.03332 10,000 10,000 13.77 0.00014
c7552 163,137 271 75 0.00170 10,000 10,000 3.29 0.00003∑
,∅ 12,166 0.01143 42.11 0.00004

in pattern-parallel mode with interval-based simulation we can observe an average speedup
of 800. Parallel-fault simulation is one order of magnitude slower than parallel-pattern
simulation. This is supported by results obtained for 64-bit parallel-fault simulation and
the same setup used for PPSFP mode. Here, run-times of SUPERB were on average 4004.71
seconds for the ITC 99 benchmark set and 63,339.08 seconds for the industrial circuits.
This again corresponds to an acceleration of one order of magnitude. The interval-based
simulator [J3] did not terminate in practical time for neither ITC 99 benchmarks nor
industrial circuits.

It can be observed in Figure 7.5, that for many circuits, simulation times in PPSFP-mode
track the run-times of the interval-based simulator. There are, however, exceptions such
as cs1238 and cs1494. Run-times reported by SUPERB in pattern-parallel mode are 3.36
and 2.11 seconds, respectively. For the interval-based tool run-times were 335.88 and
366.46 seconds, respectively. This discrepancy can be explained by the number of sections
targeted by SUPERB. Our simulator [J3] considers intervals of short resistances which are
typically contiguous. Hence, simulation times are hardly affected by the number of distinct
critical resistances. While the average number of sections for all ISCAS 89 circuits is 2.99,
SUPERB creates on average 3.41 sections for cs1238, which is 14% above the average. For
cs1494 only 1.97 sections had to be targeted, which is 34% below the average.

Table 7.1 compares SUPERB in 32-bit parallel-pattern simulation mode with the sectioning
based simulator by Cheung et al. [30] which also employs parallel-pattern simulation. The
outline of the table is similar to the one of Table 7.6, except that we also quote the number
of vectors simulated by both tools. We opted to repeat the results of SUPERB for (up to)
10,000 faults and vectors in the table to ensure a balanced comparison with the number
of faults and patterns processed by the tool from [30]. The results clearly show that in
terms of the run-time, the latter tool is far less efficient than SUPERB. Even if we remove

96

7.3 Conclusions

c1908 – which seems to be an outlier – from consideration, simulation of the remaining
circuits still takes 947 seconds. This is 20 times more than the 42.11 seconds consumed
by SUPERB for the full list of circuits. Direct comparison of these numbers seems to
be justifiable as the 2.4 GHz Intel Core2 should have very similar performance than our
2.8 GHz AMD Opteron. Average TBV also underlines our conclusion. To a certain degree,
the difference in performance may be attributed to the large number of sections targeted
by the simulator from [30] (on average 5.38 vs. 3.35 for SUPERB). Furthermore, Cheung
et al. consider a range of uncertain detection. This might impose more stringent detection
conditions and could thus result in less faults being dropped during simulation. However,
despite this, results do underline the superiority of SUPERB.

7.3 Conclusions

This chapter has introduced SUPERB, our novel, fast simulator for resistive bridging
faults. The tool combines the sectioning technique, i.e. a lossless mapping of resistive
bridging faults to conditional multiple-stuck-at faults, with bit-parallel simulation and
efficient data structures. This allows use to use acceleration techniques which are known
from conventional stuck-at fault simulation. Experimental results underline that SUPERB
is several orders of magnitude faster than conventional interval-based simulators while
achieving identical accuracy. Comparison with competing sectioning based simulators
confirms the superiority of SUPERB. Due to its performance, the tool enables simulation
of large industrial circuits for faults lists of realistic size. Simulation of resistive bridging
faults is on average one order of magnitude slower than that of single-stuck-at faults. Yet,
for larger circuits the difference in simulation time tends to diminish.

97

7 SUPERB – A Resistive Bridging Fault Simulator

Table
7.2:E

xperim
entalresults

for
SU

P
E

R
B

,ISC
A

S
85

circuits,and
10,000

test
vectors.

C
ircuit

C
ells

P
I

P
O

R
esistive

bridging
fault

sim
ulation

Stuck-at
fault

sim
ulation

Faults
Sections

E
-FC

P
reproc.

[s]
Sim

.
[s]

T
B
V

[m
s]

Faults
FC

T
im

e
[s]

c0017
13

5
2

2
8

98.59
0.01

0.00
0.00050

22
100.00

0.00
c0095

39
5

7
77

441
95.90

0.03
0.20

0.00030
110

95.45
0.00

c0432
203

36
7

2,030
7,022

98.59
0.06

0.50
0.00003

524
99.24

0.00
c0499

275
41

32
2,750

4,919
98.14

0.04
0.25

0.00001
758

98.94
0.01

c0880
469

60
26

4,690
16,977

97.78
0.07

1.87
0.00004

942
99.79

0.01
c1355

619
41

32
6,190

20,433
97.50

0.08
4.49

0.00007
1,574

99.49
0.02

c1908
938

33
25

9,380
30,338

99.35
0.09

2.67
0.00003

1,879
99.52

0.02
c2670

1,566
233

140
15,660

44,340
96.65

0.12
7.26

0.00005
2,747

88.31
0.08

c3540
1,741

50
22

17,410
49,222

98.81
0.31

5.67
0.00003

3,428
95.83

0.04
c5315

2,608
178

123
26,080

73,894
99.65

0.31
3.81

0.00002
5,350

98.90
0.05

c6288
2,480

32
32

24,800
83,190

91.65
0.22

39.33
0.00016

7,744
99.56

0.17
c7552

3,827
207

108
38,270

122,133
99.04

0.38
12.79

0.00003
7,550

94.29
0.14

∅
97.64

0.14
6.57

0.00011
97.44

0.05

98

Experimental Data
Ta

bl
e

7.
3:

E
xp

er
im

en
ta

lr
es

ul
ts

fo
r

SU
P

E
R

B
,c

om
bi

na
ti

on
al

co
re

s
of

IS
C

A
S

89
ci

rc
ui

ts
,a

nd
10

,0
00

te
st

ve
ct

or
s.

C
ir

cu
it

C
el

ls
P

I
P

O
R

es
is

ti
ve

br
id

gi
ng

fa
ul

t
si

m
ul

at
io

n
St

uc
k-

at
fa

ul
t

si
m

ul
at

io
n

Fa
ul

ts
Se

ct
io

ns
E

-F
C

P
re

pr
oc

.
[s

]
Si

m
.

[s
]

T
B
V

[m
s]

Fa
ul

ts
FC

T
im

e
[s

]
cs

00
02

7
21

7
4

2
10

10
0.

00
0.

01
0.

00
0.

00
05

0
32

10
0.

00
0.

00
cs

00
20

8
13

1
18

9
1,

31
0

3,
91

1
95

.7
0

0.
01

0.
71

0.
00

00
5

21
7

10
0.

00
0.

00
cs

00
29

8
15

6
17

20
1,

56
0

4,
51

4
97

.6
5

0.
02

0.
66

0.
00

00
4

30
8

10
0.

00
0.

00
cs

00
34

4
21

0
24

26
2,

10
0

5,
73

4
94

.0
1

0.
02

1.
35

0.
00

00
7

34
2

10
0.

00
0.

00
cs

00
34

9
21

1
24

26
2,

11
0

5,
85

8
94

.1
3

0.
01

1.
43

0.
00

00
7

35
0

99
.4

3
0.

00
cs

00
38

2
20

9
24

27
2,

09
0

7,
69

8
98

.6
0

0.
02

0.
75

0.
00

00
4

39
9

10
0.

00
0.

01
cs

00
38

6
18

5
13

13
1,

85
0

3,
52

9
96

.7
7

0.
03

0.
63

0.
00

00
4

38
4

10
0.

00
0.

00
cs

00
40

0
21

3
24

27
2,

13
0

8,
11

9
98

.3
0

0.
04

0.
94

0.
00

00
5

42
4

98
.5

8
0.

00
cs

00
42

0
26

9
34

17
2,

69
0

7,
81

2
92

.4
6

0.
03

2.
22

0.
00

00
8

45
5

86
.5

9
0.

01
cs

00
44

4
23

2
24

27
2,

32
0

8,
95

2
98

.0
7

0.
03

1.
20

0.
00

00
5

47
4

97
.0

5
0.

00
cs

00
51

0
24

9
25

13
2,

49
0

10
,5

65
95

.0
4

0.
03

2.
12

0.
00

00
9

56
4

10
0.

00
0.

00
cs

00
52

6
24

5
24

27
2,

45
0

8,
31

0
97

.4
6

0.
05

1.
39

0.
00

00
6

55
3

99
.6

4
0.

01
cs

00
64

1
47

6
54

43
4,

76
0

8,
32

1
99

.4
3

0.
05

0.
39

0.
00

00
1

46
7

98
.2

9
0.

01
cs

00
71

3
48

9
54

42
4,

89
0

9,
66

4
98

.4
1

0.
03

1.
31

0.
00

00
3

58
1

92
.0

8
0.

00
cs

00
82

0
33

6
23

24
3,

36
0

13
,1

59
94

.4
8

0.
09

3.
91

0.
00

01
2

85
0

98
.4

7
0.

01
cs

00
83

2
33

4
23

24
3,

34
0

13
,2

79
94

.7
0

0.
08

4.
03

0.
00

01
2

87
0

96
.6

7
0.

01
cs

00
83

8
54

5
66

33
5,

45
0

16
,0

73
76

.6
8

0.
05

9.
22

0.
00

01
7

93
1

64
.3

4
0.

03
cs

00
95

3
49

2
45

52
4,

92
0

22
,1

79
94

.3
6

0.
07

6.
30

0.
00

01
3

1,
07

9
97

.6
8

0.
01

cs
01

19
6

59
3

32
32

5,
93

0
19

,6
47

97
.1

3
0.

06
3.

27
0.

00
00

6
1,

24
2

97
.5

8
0.

01
cs

01
23

8
57

2
32

32
5,

72
0

19
,5

32
97

.0
0

0.
04

3.
53

0.
00

00
6

1,
35

5
92

.4
7

0.
02

cs
01

42
3

82
7

91
79

8,
27

0
23

,7
67

97
.0

7
0.

07
3.

56
0.

00
00

4
1,

51
5

98
.7

5
0.

01
cs

01
48

8
69

2
14

25
6,

92
0

13
,5

89
97

.9
4

0.
06

2.
03

0.
00

00
3

1,
48

6
99

.8
0

0.
01

cs
01

49
4

68
6

14
25

6,
86

0
13

,4
80

98
.1

2
0.

07
2.

25
0.

00
00

3
1,

50
6

99
.0

0
0.

01
cs

05
37

8
3,

22
1

21
4

22
8

32
,2

10
92

,8
57

99
.1

7
0.

23
8.

53
0.

00
00

3
4,

60
3

98
.1

8
0.

06
cs

09
23

4
6,

09
4

24
7

25
0

60
,9

40
13

3,
20

5
95

.5
6

0.
34

36
.9

2
0.

00
00

6
6,

92
7

84
.5

5
0.

48
cs

13
20

7
9,

44
1

70
0

79
0

94
,4

10
19

1,
22

2
98

.0
9

0.
55

37
.1

5
0.

00
00

4
9,

81
5

90
.9

2
0.

46
cs

15
85

0
11

,0
67

61
1

68
4

11
0,

67
0

22
2,

79
7

98
.2

6
0.

61
34

.6
7

0.
00

00
3

11
,7

25
91

.5
7

0.
59

cs
35

93
2

19
,8

76
1,

76
3

2,
04

8
19

8,
76

0
54

0,
15

0
96

.4
0

1.
40

13
2.

28
0.

00
00

7
39

,0
94

89
.8

1
2.

03
cs

38
41

7
25

,5
85

1,
66

4
1,

74
2

25
5,

85
0

66
5,

75
8

96
.0

0
1.

61
15

9.
89

0.
00

00
6

31
,1

80
88

.7
5

1.
69

cs
38

58
4

22
,4

47
1,

46
4

1,
73

0
22

4,
47

0
58

8,
93

1
95

.8
7

1.
87

12
9.

01
0.

00
00

6
36

,3
03

94
.5

2
1.

57
∅

96
.1

0
0.

25
19

.7
2

0.
00

00
8

95
.1

6
0.

23

99

7 SUPERB – A Resistive Bridging Fault Simulator

Table
7.4:E

xperim
entalresults

for
SU

P
E

R
B

,com
binationalcores

ofIT
C

99
circuits,and

10,000
test

vectors.
C

ircuit
C

ells
P

I
P

O
R

esistive
bridging

fault
sim

ulation
Stuck-at

fault
sim

ulation
Faults

Sections
E

-FC
P

reproc.
[s]

Sim
.

[s]
T

B
V

[m
s]

Faults
FC

T
im

e
[s]

b01
54

7
7

472
1,878

96.80
0.02

0.29
0.00007

122
100.00

0.00
b02

31
5

5
103

340
92.79

0.02
0.09

0.00011
62

100.00
0.00

b03
183

34
34

1,830
6,900

98.57
0.04

0.58
0.00003

394
100.00

0.00
b04

694
77

74
6,940

26,380
98.68

0.06
3.28

0.00005
1,540

99.35
0.01

b05
608

35
70

6,080
26,387

98.52
0.07

4.08
0.00007

1,554
98.78

0.02
b06

64
11

15
364

1,518
96.30

0.02
0.28

0.00008
140

100.00
0.00

b07
476

50
57

4,760
19,020

98.38
0.06

2.83
0.00006

1,129
96.90

0.01
b08

192
30

25
1,920

8,281
96.19

0.03
2.38

0.00013
417

99.76
0.00

b09
188

29
29

1,880
6,254

94.11
0.03

1.23
0.00007

414
100.00

0.00
b10

197
28

23
1,970

9,587
97.32

0.03
1.77

0.00009
486

100.00
0.01

b11
579

38
37

5,790
25,212

98.21
0.08

3.52
0.00006

1,436
99.30

0.01
b12

1,127
126

127
11,270

46,370
98.31

0.17
7.08

0.00006
2,827

93.92
0.03

b13
370

63
63

3,700
14,889

99.32
0.05

0.92
0.00003

801
100.00

0.01
b14_

1
4,624

277
299

46,240
205,399

97.75
0.62

48.17
0.00011

12,475
92.63

0.36
b14

5,923
277

299
59,230

264,644
96.85

0.95
81.57

0.00014
16,167

88.87
0.96

b15_
1

8,422
484

518
84,220

340,942
77.92

1.28
298.12

0.00036
22,060

60.83
4.86

b15
8,026

485
519

80,260
334,187

89.56
1.16

230.41
0.00029

21,282
73.64

6.10
b17_

1
25,983

1,449
1,509

259,830
1,053,806

79.58
3.95

1059.33
0.00041

67,861
62.08

19.56
b17

25,719
1,451

1,511
257,190

1,074,642
87.30

4.03
963.14

0.00038
68,207

71.10
25.36

b18_
1

74,881
3,307

3,293
748,810

3,264,135
89.24

12.03
3744.42

0.00050
202,888

75.81
155.91

b18
76,513

3,307
3,293

765,130
3,327,674

89.14
12.01

3826.46
0.00050

206,812
75.80

137.65
b20_

1
11,199

522
512

111,990
513,879

97.93
1.70

127.44
0.00012

30,813
92.92

1.38
b20

12,991
522

512
129,910

581,664
97.67

2.00
163.44

0.00013
35,731

91.65
2.27

b21_
1

10,696
522

512
106,960

485,942
98.49

1.55
102.62

0.00010
29,155

94.39
1.17

b21
13,168

522
512

131,680
589,635

97.51
1.88

167.47
0.00013

36,058
90.48

2.69
b22_

1
16,416

735
725

164,160
741,831

98.21
2.26

169.65
0.00010

44,835
93.48

2.17
b22

18,789
735

725
187,890

841,580
97.89

2.90
223.87

0.00012
51,341

92.01
3.82

∅
94.76

1.81
416.09

0.00016
90.51

13.49

100

Experimental Data

Ta
bl

e
7.

5:
E

xp
er

im
en

ta
lr

es
ul

ts
fo

r
SU

P
E

R
B

,c
om

bi
na

ti
on

al
co

re
s

of
N

X
P

ci
rc

ui
ts

,a
nd

10
,0

00
te

st
ve

ct
or

s.
C

ir
cu

it
C

el
ls

P
I

P
O

R
es

is
ti

ve
br

id
gi

ng
fa

ul
t

si
m

ul
at

io
n

St
uc

k-
at

fa
ul

t
si

m
ul

at
io

n
Fa

ul
ts

Se
ct

io
ns

E
-F

C
P

re
pr

oc
.

Si
m

.
T

B
V

Fa
ul

ts
FC

T
im

e
[s

]
[s

]
[m

s]
[s

]
p3

5k
48

,9
27

2,
91

2
2,

22
9

48
9,

27
0

1,
06

4,
80

7
82

.4
4

3.
50

92
2.

17
0.

00
01

9
67

,7
33

58
.6

8
14

.4
9

p4
5k

46
,0

75
3,

73
9

2,
55

0
46

0,
75

0
1,

17
6,

70
2

97
.7

4
3.

55
36

0.
13

0.
00

00
8

68
,7

60
93

.0
4

9.
91

p7
7k

75
,0

33
3,

48
7

3,
40

0
75

0,
33

0
1,

76
2,

68
9

78
.5

0
6.

14
24

,9
42

.2
0

0.
00

33
2

12
0,

34
8

59
.5

1
2,

63
5.

85
p7

8k
80

,8
75

3,
14

8
3,

48
4

80
8,

75
0

2,
25

8,
10

9
97

.8
5

7.
00

51
9.

27
0.

00
00

7
16

3,
31

0
10

0.
00

3.
24

p8
1k

96
,7

22
4,

02
9

3,
95

2
96

7,
22

0
3,

02
0,

79
2

87
.1

7
12

.8
1

1,
72

8.
02

0.
00

01
8

20
4,

17
4

69
.2

7
18

.1
4

p8
9k

92
,7

06
4,

68
3

4,
55

7
92

7,
06

0
2,

29
9,

11
8

92
.0

0
7.

96
1,

42
6.

09
0.

00
01

5
15

0,
53

8
75

.8
9

26
.9

1
p1

00
k

10
2,

44
3

5,
90

2
5,

82
9

1,
02

4,
43

0
2,

65
7,

26
9

98
.2

8
8.

88
82

4.
15

0.
00

00
8

16
2,

12
9

93
.5

7
27

.4
6

p1
41

k
18

5,
36

0
11

,2
90

10
,5

02
1,

85
3,

60
0

4,
45

5,
69

3
98

.0
2

14
.7

7
98

7.
11

0.
00

00
5

28
2,

42
8

91
.5

0
24

.7
1

p2
67

k
29

6,
40

4
17

,3
32

16
,6

21
2,

96
4,

04
0

6,
66

7,
73

3
97

.1
0

20
.4

9
2,

07
5.

97
0.

00
00

7
36

6,
87

1
90

.4
1

42
.3

5
p2

69
k

29
7,

49
7

17
,3

33
16

,6
21

2,
97

4,
97

0
6,

68
7,

22
5

97
.1

2
21

.1
4

2,
11

5.
01

0.
00

00
7

36
9,

05
5

90
.5

9
43

.0
0

p2
95

k
31

1,
90

1
18

,5
08

18
,5

21
3,

11
9,

01
0

7,
10

8,
62

0
90

.8
0

24
.2

8
4,

21
4.

95
0.

00
01

4
47

2,
02

2
77

.6
3

70
.0

4
p3

30
k

36
5,

49
2

18
,0

10
17

,4
68

3,
65

4,
92

0
8,

61
0,

62
0

96
.1

2
29

.2
0

2,
70

6.
34

0.
00

00
7

54
0,

75
8

86
.6

6
61

.0
6

p3
78

k
40

4,
36

7
15

,7
32

17
,4

20
4,

04
3,

67
0

11
,2

97
,4

29
97

.9
6

35
.8

1
2,

70
2.

50
0.

00
00

7
81

6,
53

4
10

0.
00

23
.0

2
p3

88
k

50
6,

03
4

25
,0

05
24

,0
65

5,
06

0,
34

0
12

,5
46

,3
88

98
.8

7
42

.4
0

2,
22

3.
50

0.
00

00
4

88
1,

41
7

96
.0

6
71

.8
4

p4
69

k
49

,7
71

63
5

40
3

49
7,

71
0

2,
26

8,
24

0
98

.4
3

8.
74

22
,0

91
.8

0
0.

00
44

4
14

2,
75

1
98

.5
3

2,
84

0.
19

p9
51

k
1,

14
7,

49
1

92
,0

27
10

4,
74

7
11

,4
74

,9
10

25
,2

91
,4

73
99

.0
1

93
.7

8
4,

53
5.

13
0.

00
00

4
1,

55
7,

91
4

95
.3

2
12

7.
63

p1
52

2k
1,

19
3,

82
4

71
,4

14
68

,0
35

11
,9

38
,2

40
27

,0
85

,5
56

93
.2

6
99

.3
6

15
,7

75
.4

7
0.

00
01

3
1,

69
7,

66
2

80
.9

1
28

7.
23

p2
92

7k
2,

53
9,

05
2

10
1,

84
4

95
,1

43
25

,3
90

,5
20

57
,4

65
,5

42
96

.5
7

18
4.

06
27

,6
68

.1
6

0.
00

01
1

3,
52

7,
60

7
88

.5
6

1,
10

0.
29

∅
94

.2
9

34
.6

6
6,

54
5.

44
0.

00
05

2
85

.9
0

41
2.

63

101

7 SUPERB – A Resistive Bridging Fault Simulator

Table
7.6:C

om
parison

ofSU
P

E
R

B
w

ith
other

sim
ulation

tools
for

resistive
bridging

faults.
C

ircuit
Shinogiet

al.[174]
P

R
O

B
E

[98]
Interval-based

[J3]
SU

P
E

R
B

(P
P

SF
P

)
Faults

T
im

e
T

B
V

Faults
T

im
e

T
B
V

Faults
T

im
e

T
B
V

Faults
T

im
e

T
B
V

[s]
[m

s]
[s]

[m
s]

[s]
[m

s]
[s]

[m
s]

c0432
n/a

n/a
n/a

157
780.00

0.49602
5,253

413.63
0.00787

5,253
1.24

0.00002
c0499

n/a
n/a

n/a
136

900.00
0.66071

8,985
801.15

0.00892
8,985

0.76
0.00001

c0880
1,000

18.00
0.00180

949
6,960.00

0.73223
10,000

776.71
0.00777

10,000
3.70

0.00004
c1355

1,000
114.00

0.01140
639

12,960.00
2.02493

10,000
1,555.15

0.01555
10,000

7.17
0.00007

c1908
2,000

78.00
0.00390

1,662
37,680.00

2.26353
10,000

2,072.06
0.02072

10,000
2.97

0.00003
c2670

5,000
840.00

0.01680
4,294

151,020.00
3.51138

10,000
1,252.85

0.01253
10,000

4.69
0.00005

c3540
5,000

720.00
0.01440

4,431
202,860.00

4.57089
10,000

1,720.28
0.01720

10,000
3.18

0.00003
c5315

8,000
540.00

0.00675
7,121

418,500.00
5.86760

10,000
1,549.68

0.01550
10,000

1.34
0.00001

c6288
4,000

1,800.00
0.04500

3,216
603,240.00

18.72750
10,000

4,614.88
0.04615

10,000
13.77

0.00014
c7552

13,000
2,700.00

0.02077
12,106

1,194,480.00
9.85108

10,000
1,780.01

0.01780
10,000

3.29
0.00003

∑
,∅

6,810.00
0.01510

2,629,380.00
4.87059

16,536.40
0.01700

42.11
0.00004

102

8 RBF-ATPG – An Automatic Test
Pattern Generator For Resistive
Bridging Faults

Automatic test pattern generation (ATPG) for bridging faults has been targeted by several
authors. Yet, only some of these publications are actually taking the intrinsic short
resistance into account. Even less of them are based on the resistive bridging fault model
discussed in Chapter 5. One reason for this might be that in contrast to traditional ATPG
for single-stuck-at faults, it is not sufficient to just generate any detecting vector. Rather,
we are interested in finding one or more test vectors which cover a bridging fault for the
largest detectable resistance range, as this translates into detection of as many shorts
as possible. Obviously, this requires a more refined test vector selection strategy which
complicates the test generation algorithm considerably.

Several test pattern generators respect the intrinsic resistance [34, 85, 107, 166, 174]. In
[P10] our co-operation partners Chen et al. have also proposed such an ATPG. BART
from Cusey et al. [34] uses a mapping of bridging faults to single-stuck-at faults which is
similar to the 4-way model discussed in Chapter 4.1.2. The circuit’s netlist is modified
to stimulate the justification of assignments to the driving gates’ inputs which are likely
to result in improved detection conditions. This allows them to generate test patterns
using a conventional single-stuck-at test pattern generator. The bridging fault simulator
E-PROOFS from [60] is employed to validate the results for a fixed bridge resistance of 1 kΩ.
In [107], Maeda et al. present the automatic test pattern generator RBFTG which uses
the precise test generation model (refer to Chapter 4.3.2 for an introduction of the model).
The concept of their tool is to guarantee the application of all activating assignments
to the driving gates of a bridge, but no electrical parameters are considered. A similar
approach is pursued by Chen et al. in our joint publication [P10] (see also Chapter 4.3.1
for a discussion). They also favor a generalized logic model which, however, allows them to
incorporate the logic thresholds of the driven gates to enhance detectability.

Sar-Dessai et al. proposed an ATPG system in [166] which employs the resistive bridging
fault model and extends the fundamental test vector selection strategies developed in [104].
Their algorithm adapts PODEM [56] such that routines for justification and propagation
emphasize the detection of the highest short resistance possible. For a bridging fault
which is detected by two vectors v1 (covering the fault for 0 < Rsh < R1) and v2 (which
covers the fault for 0 < Rsh < R2), where R1 < R2, they would generate the latter test
vector v2. There are, however, also bridging faults for which any vector detecting the

103

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

highest value of Rsh is not able to cover the same fault for lower resistance ranges. These
faults require one or more additional vectors to assure detection of all detectable shorts.
Assume for instance that vector v3 detects a given bridging fault for [0, R4] and another
vector v4 detects the fault for [R3, R5], where R3 < R4 < R5. In this case, the resistance
range [0, R5] can only be covered by a test set which contains both v3 and v4. Yet, the
ATPG system in [166] does not generate multiple vectors for a single fault. The tool from
[166] is a prototype implementation in the Toolkit (tcl) scripting language. ATPG results
are available only for ISCAS 85 circuits c0432, c0499, and c0880. In [174], Shinogi et
al. proposed an automatic test pattern generation system based on the sectioning technique.
They have recommended the use of a conventional stuck-at ATPG approach to generate
test patterns detecting each section representing a bridging fault. They do not discuss any
strategies to guide the selection of sections targeted explicitly for test pattern generation.
As a result, similar detection conditions imposed by different sections representing the
same bridging fault are not exploited. This might lead to unnecessarily large test sets. In
[174], only experimental results for fault simulation of ISCAS 85 circuits are reported (see
Chapter 7.2 for a discussion). No experimental data concerning test pattern generation is
published in that paper.

In the following we will introduce RBF-ATPG which we published in [W6], [P7], and [J4].
RBF-ATPG is the first automatic test pattern generator for resistive bridging faults which
combines the sectioning and the interval-based technique (see Chapter 5.5 for a discussion
of both techniques). Our tool is able to target both combinational and full-scan circuits.
It allows test generation for arbitrary non-feedback bridges between two nodes, including
ones detectable at higher bridge resistance and undetectable at lower resistance, and faults
requiring more than one vector for detection. Hence, it is – to the best of our knowledge
– the first ATPG which enables computation of G-ADI for designs which may not be
exhaustively simulated. Our experimental results for ISCAS 85 and ISCAS 89 benchmark
circuits are reported which indicate a higher efficiency of RBF-ATPG in comparison with
state-of-the-art single-stuck-at ATPGs.

Inspired by the combination of sectioning and interval-based technique, Khursheed et
al. [85] have recently extended the approach of our tool RBF-ATPG to circuits which
support adaptive power management (APM). APM allows a circuit to adapt its power
consumption to the current operating conditions by dynamically switching between several
combinations of power supply voltage and operating frequency. Detectability of resistive
bridging faults is impacted by the power supply voltage (see Chapter 9.1 for a discussion).
This is exploited by [85] to assure that a circuit operates correctly for all available power
supply voltages.

This chapter is structured as follows: Chapter 8.1 presents an overview of RBF-ATPG
and discusses the ATPG algorithm in detail. Subsequently, Chapter 8.2 gives detailed
experimental results for RBF-ATPG and compares the tool with competing test generation
systems. Furthermore, the implications of manufacturing technology on the test pattern
generation process are explored. We also study the resistive bridging fault coverage
achievable by alternative test pattern generation strategies. Conclusions are presented in
Chapter 8.3.

104

8.1 ATPG for Resistive Bridging Faults

8.1 ATPG for Resistive Bridging Faults

Our automatic test pattern generator for resistive bridging faults RBF-ATPG combines
the sectioning and the interval-based technique (refer to Chapter 5.5 for a discussion of
both techniques). For a given list of target bridging faults, test patterns are generated by
targeting sections of a fault. Each generated pattern is simulated using our interval-based
simulator [J3] to perform fault dropping on the list of target faults, i.e. to remove all bridges
detected by that pattern from the list. Note that our sectioning based simulator SUPERB
from Chapter 7 could also be used to perform fault dropping. Yet, experimental results
that will be presented in Chapter 8.2 indicate that the impact of the fault simulation engine
on the total run-time is negligible. Test patterns are generated using an approach based on
the Boolean satisfiability problem (SAT) which is similar to e.g. [24, 54, 97, 176, 181], and
to our high-performance test pattern generator TIGUAN published in [W15] and [P20].
First the test pattern generation problem for a given section is formulated in conjunctive
normal form (CNF). Subsequently, a solution to the problem, i.e. a logical assignment
satisfying the CNF, may be found using a SAT solver. This solution yields a test vector,
or, if no solution could be determined, the proof that no such vector exists. We employ the
SAT solver Chaff from [124] which could, however, be substituted by more recent solvers
such as e.g. MiraXT introduced in [101]. Our RBF-ATPG tightly integrates the SAT solver
and the fault dropping engine which results in an efficient tool.

For a given bridging fault f the ATPG engine always targets the section covering the highest
undetected resistance range first (we will call this the “highest section”). A test pattern
generated for this section is likely (although not guaranteed) to detect the largest resistance
range, i.e. the highest number of sections. Additionally, the conditional multiple-stuck-at
faults representing this section are probably the most difficult to detect as they typically
induce less faulty logical values at the driven gates. This strategy guides the pattern
generation process such that the number of section explicitly targeted by the ATPG engine
is kept as low as possible. This is illustrated in Table 8.1. It is based on data which
has been obtained for a bridging fault affecting the outputs of a two-input NAND gate
and a two-input NOR gate, each of which has a single successor. Critical resistances in
this table have been computed with equations from Chapter 5.2.2 based on the Shockley
transistor model. Column 1 of the table enumerates all activating logical assignments
to the driving gates’ inputs. Columns 2–7 give the sections composable from the list of
all critical resistances which could be obtained for this bridging fault situation. An “X”
indicates that for the respective combination of input assignment and section at least one
of the two driven gates sees a faulty logical value. In the highest section [841, 1298] (section
[1298,∞] can be excluded since it is always fault-free) only assignments 8 and 9 induce
faulty logical values. A test vector detecting this section has a high probability to detect
sections covering lower resistance ranges as well since both assignment 8 and 9 induce
faulty logical values within all sections. This is obviously not the case for every assignment
which detects e.g. section [0, 324].

Due to the flexibility of SAT based test generation we are able to target all conditional
multiple-stuck-at faults representing one section of f at the same time. If successful, this

105

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

Table 8.1: Section data for resistive bridging fault shorting a two-input NAND and a
two-input NOR gate. Symbol “X” indicates that any driven gate interprets a
faulty logical value.

Driving Gate Sections (Values in [Ω])
Assignment [0, 324] [324, 420] [420, 502] [502, 841] [841, 1298] [1298,∞]

0 X – – – – –
1 X X – – – –
2 X X X – – –
3 X X X – – –
4 X X X X – –
5 X X X X – –
6 X X X X – –
7 X X X X – –
8 X X X X X –
9 X X X X X –

yields a test vector which detects one of these multiple-stuck-at faults and consequently
covers the section. Subsequently this vector is simulated for all bridging faults contained
in the list of target faults. For every fault Rsh ranges covered by the vector are marked as
detected. All faults for which the complete G-ADI has been detected are dropped. It is
possible that the target fault f is not removed from the fault list, although a test vector
detecting the highest section has been found. In this case the highest section of f which
remained undetected is targeted next. This ensures complete detection of resistive bridging
faults for which more than one vector is required to cover the whole G-ADI.

If the SAT solver determines that no logical assignment satisfying the CNF exists, it is
proven that no test vector detecting the targeted section of f can be found. Hence, the
section is redundant and has to be removed from G-ADI(f) (initially, G-ADI(f) is set to
[0, Rmax(f)], which is the maximal, potentially detectable range). Consequently, the ATPG
procedure not only yields a set of test vectors covering the G-ADI of every fault in the
list of target bridging faults, but also their exact G-ADI. Since G-ADI is the prerequisite
when calculating the exact fault coverage G-FC according to Equation (5.4.4), RBF-ATPG
also enables the use of this metric. The only alternative method for determining G-ADI
known so far is based on exhaustive simulation which is virtually unfeasible even for smaller
designs.

The following chapters describe RBF-ATPG in more detail. First, we will demonstrate the
ATPG procedure by means of an example circuit. The example will also underline that
more than one test vector may be required to cover G-ADI. Chapter 8.1.2 gives a thorough
description of the algorithm.

8.1.1 Example: Deriving Test Patterns for Circuit

Figure 8.1 depicts a circuit affected by a defect shorting nodes a and b. In the fault-free
case the circuit computes the equivalence (XNOR) function (x ≡ y) on output e and

106

8.1 ATPG for Resistive Bridging Faults

a

b

Rsh

C

E
e

D

x

y

F

d

c

f

B

A

Figure 8.1: Example of circuit with a resistive short affecting nodes a and b.

propagates the value of x to output f . In the following we will first demonstrate that we
need two test vectors to detect the defect for any short resistances detectable by static logic
testing, i.e. to cover its complete G-ADI.1 Afterwards we will use this circuit to illustrate
the ATPG procedure.

Introduction of Circuit

Both driving gates A and B in Figure 8.1 are buffers of identical type. There are three
driven gates C, D, and F . While gate C is an inverter, gates D and F are buffers of the
same type (which does not necessarily agree with the type of gates A and B). In particular,
this implies that the logic thresholds of gates D and F are equal, i.e. V D

lt = V F
lt . For the

logic threshold of the inverter V C
lt we assume V C

lt > V D
lt = V F

lt . Only two assignments to
inputs x and y activate the bridging fault: (1, 0) and (0, 1). The characteristics of the
voltages induced by the two assignments on the shorted nodes a and b as a function of the
short resistance Rsh, are depicted in Figures 8.2(a) and (b), respectively.

Consider input assignment (1, 0) depicted in Figure 8.2(a). Obviously the fault-free output
values are e = 0 and f = 1 for this vector. In the faulty case, using an analysis similar
to the one performed in Chapter 5.1, we obtain critical resistance RC for the input of
driven gate C, and critical resistance RD for the input of driven gate D. Since there is no
intersection between characteristic Va and the threshold V F

lt of gate F (which is driven by
node a) this gate does not see a faulty logical value. Consequently, we do not obtain a
critical resistance in this case and no fault detection is possible on f for this vector. For
Rsh < RD, gate C interprets the logical value 0, resulting in c = 1. Gate D interprets the
logical value 1, hence d = 1 and e = 0 (which corresponds to the fault-free logical value).
For RD < Rsh < RC , gate C interprets the logical value 0 (c = 1) and D interprets the
logical value 0 (d = 0). This results in e = 1; hence, for interval [RD, RC] and assignment

1We consider static test application only. This is in contrast to two-pattern testing required to detect
delay faults (see e.g. [74]). In delay fault testing, the two vectors must be applied at-speed and their
order is relevant. Neither of this is required for the detection considered here. Resistive bridging faults
may also result in delay faults (see [102, 197] for details).

107

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

V l t
C

V l t
D /F

V

Rsh

V a

V b

RD RC RshRF

V l t
C

V l t
D /F

V
V b

V a

(a) (b)

Figure 8.2: Characteristics of voltages at nodes a and b as a function of short resistance
Rsh: (a) input assignment (1, 0) and (b) input assignment (0, 1).

(1, 0) the fault is detected on output e. For Rsh > RC , C interprets the logical value 1, and
D interprets the logical value 0, resulting in c = d = e = 0 and thus no detection on e.

Now consider the input assignment (0, 1) illustrated in Figure 8.2(b). For all values of Rsh,
the voltage Va on node a is interpreted as the logical value 0 by inverter C, and Vb on node
b is interpreted as the logical value 1 by inverter D. As a consequence, output e assumes
the fault-free logical value 0 independent of Rsh. Buffer F , however, interprets voltage
Va as the logical value 1 for Rsh < RF which is the faulty logical value for this vector. If
Rsh > RF , the fault-free logical value 0 is interpreted by F . Taking into account that gates
D and F are of the same type, it holds that RD = RF . Therefore, we can conclude that
the fault can be detected for resistance interval [0, RD] at output f for assignment (0, 1).

In summary, we derived a total of three critical resistances RD = RF , and RC . Two
sections can be composed out of these resistances: [0, RD] and [RD, RC]. Section [0, RD] is
only detected by assignment (0, 1), while solely assignment (1, 0) detects section [RD, RC].
Consequently G-ADI for this fault is [0, RC] and two test vectors are necessary to completely
cover this resistance range.

ATPG Procedure for Circuit

Before the SAT solver may be used to generate a test pattern for a given fault, the
test pattern generation problem has to be constructed. It is based on the Boolean
function bf of the fault-free and the faulty circuit. The fault-free function of our example
circuit is bf (x, y) = (e(x, y), f(x, y)) = ((x ≡ y), x). For section [0, RD], the function is
bf [0,RD](x, y) = ((x ≡ y), (x∨y)), and for section [RD, RC], the function is bf [RD,RC](x, y) =
((x ∨ y), x).

According to the strategy of RBF-ATPG, the highest section is to be targeted first.
Consequently the ATPG algorithm tries to generate a test vector for section [RD, RC].
This is achieved by finding a logical assignment to the circuits’ inputs x and y such that

108

8.1 ATPG for Resistive Bridging Faults

any of the components of the following function evaluate to the logical value 1:2

bf (x, y)⊕ bf [RD,RC](x, y) = ((x ≡ y)⊕ (x ∨ y), x⊕ x) = (x ∧ y, 0).

This construction corresponds to a miter circuit (see [16]). The only assignment which
sets at least one component of bf ⊕ bf [RD,RC] to the logical value 1 is x = 1 and y = 0.
Therefore, the test vector computed is (1, 0), which matches the result we already obtained
analytically.

Since test vector (1, 0) is unable to cover the complete G-ADI [0, RC], the highest section
which remained undetected so far has to be targeted next. In our example this is section
[0, RD]. A test vector detecting this interval can be determined by finding an assignment
such that any of the components of the following function evaluate to logical value 1:

bf (x, y)⊕ bf [0,RD](x, y) = ((x ≡ y)⊕ (x ≡ y), x⊕ (x ∨ y)) = (0, x ∧ y).

Again, there is only one satisfying assignment: x = 0 and y = 1. The test vector detecting
section [0, RD] is thus (0, 1). This also matches the results obtained in our analysis. At
this point the ATPG procedure drops the fault since no undetected sections remain.

The ATPG procedure yielded two test vectors which both have to be applied in order
to cover the fault’s complete G-ADI. No redundant sections were identified during the
procedure. Hence the G-ADI indeed equals [0, RC]. The next section describes the ATPG
procedure in more detail.

8.1.2 ATPG Algorithm in Detail

The main procedure of RBF-ATPG may be summarized by our Algorithm 8.1. It takes
the circuit C and a set of N target faults F = {f1, f2, . . . , fN}, and returns a set of test
vectors V which detect G-ADI(fi) for all faults fi, 1 ≤ i ≤ N . Furthermore, the algorithm
yields G-ADI(fi) as a byproduct.

In the preprocessing phase (starting on line 2) for every fault f ∈ F its maximum critical
resistance Rmax(f) is computed using a modified version of Algorithm 5.4. Furthermore for
each fault, two intervals Gf and Lf are initialized to [0, Rmax(f)], which is the maximal,
potentially detectable range of short resistances for fault f . Interval Lf stores all short
resistances which are left to detect. Once Lf becomes empty fault, f will be dropped.
When the algorithm terminates, interval Gf contains G-ADI(f).

The main outer loop, which starts on line 7, iteratively processes the set of faults F . The
algorithm terminates once F becomes empty, i.e. all the faults are dropped. A fault is
dropped if each of its sections is either detected by one of the test vectors generated so
far or proven redundant. In every iteration of the loop a fault f ∈ F is selected to be
targeted by ATPG. Initially, the list of all critical resistances Rcrit = R1, R2, . . . , Rm of f
is calculated in line 9 using Algorithm 5.4. From this list, all sections of fault f can be

2Note that the SAT solver operates on a CNF representation of this problem.

109

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

Algorithm 8.1: ATPG procedure for resistive bridging faults.
Input: Circuit C, set of faults F = {f1, f2, . . . , fN}
Output: Test set V = {v1, v2, . . .} that covers G-ADIs of all faults in F
V := ∅;1

/* Compute the maximum critical resistance Rmax(f) for every fault f
(using a modified version of Alg. 5.4) and initialize Gf and Lf. */

foreach (f ∈ F) do2

Compute Rmax(f);3

Gf := [0, Rmax(f)];4

Lf := [0, Rmax(f)];5

end6

while (F not empty) do7

Select fault f ∈ F ;8

/* Compute the critical resistances for f using Algorithm 5.4. */
Compute the critical resistances for f : 0 Ω = R0 < R1 < · · · < Rm <∞;9

repeat10

/* Determine section [Rj−1, Rj] covering the highest resistance range
yet undetected. */

j := max{k ∈ N>0 | ([Rk−1, Rk] ∩ Lf) 6= ∅};11

v := gen_test(C, f , [Rj−1, Rj]); /* Generate vector v for [Rj−1, Rj]. */12

if (no v found) then13

Gf := Gf \ [Rj−1, Rj]; /* [Rj−1, Rj] is redundant. */14

Lf := Lf \ [Rj−1, Rj];15

if (Lf = ∅) then F := F \ {f}; /* Drop fault f. */16

else17

V := V ∪ {v}; /* Insert v into test vector set V . */18

foreach (f ′ ∈ F) do19

D := fsim(C, f ′, v); /* Determine interval D detected by v. */20

Lf ′ := Lf ′ \D;21

if (Lf ′ = ∅) then F := F \ {f ′}; /* Drop fault f ′. */22

end23

end24

until (Lf = ∅) ;25

end26

return V ;27

110

8.1 ATPG for Resistive Bridging Faults

constructed as described in Chapter 5.5.2. Note that, as section data has to be maintained
only for the current target fault, memory consumption of the algorithm is moderate.

In the inner loop, starting in line 10, one or more test vectors are generated until set Lf
becomes empty. This loop ensures that faults requiring more than one test vector for full
coverage of G-ADI are processed correctly. The section to be targeted next by the ATPG
procedure is determined on line 11. As outlined before we always target the highest section
[Rj−1, Rj] undetected so far, i.e. the highest section contained in Lf .

Next, on line 12 procedure gen_test() is used to generate a test vector v detecting section
[Rj−1, Rj] of f . Let circuit C have n inputs and p outputs. The procedure constructs the
CNF representation of the fault-free circuit, bf C : Bn → Bp, and the CNF of the faulty
circuit, bf C,f,[Rj−1,Rj] : Bn → Bp. The CNF representing the Boolean function computed by
the i-th output of C is denoted by bf iC and bf iC,f,[Rj−1,Rj], respectively. Test generation is
performed by finding an assignment to Boolean variables x1, . . . , xn satisfying the formula:

p∨
i=1

(
bf iC(x1, . . . , xn)⊕ bf iC,f,[Rj−1,Rj](x1, . . . , xn)

)
. (8.1.1)

As mentioned above, we integrated the SAT solver Chaff into RBF-ATPG. The program
library of Chaff maintains the clause database which stores the CNF and provides algorithms
to solve the formula. It would be possible to replace Chaff by any other SAT solver.
Furthermore, our procedure is not necessarily restricted to SAT based ATPG, and can be
adapted to circuit-structure based algorithms as e.g. [49, 56, 62, 161, 168], as well.

If no solution to Equation (8.1.1) is found (lines 14 – 16), the interval [Rj−1, Rj] is redundant
and can be removed from Gf . Furthermore, the range is eliminated from Lf , and if Lf is
empty, fault f is dropped. If an assignment satisfying Equation (8.1.1) could be found (lines
18 – 23) vector v = (x1, . . . , xn) is inserted into the set of test vectors V and simulated for
all faults f ′ ∈ F . On line 20 resistive bridging fault simulation is performed by routine
fsim(), which takes circuit C, fault f ′, and test vector v. In the current implementation of
RBF-ATPG, our interval-based simulator [J3] is used. It would, however, be possible to
employ our simulator SUPERB from Chapter 7, which uses the sectioning technique, as
well. For every fault f ′ the simulator returns the ADI D covered by v. If D is non-empty,
the ADI is removed from Lf ′ and does not have to be targeted by ATPG in subsequent
iterations. If Lf ′ is empty after simulation, fault f ′ can be removed from the set of target
faults. Consequently, not all faults from F have to be targeted explicitly by ATPG. This
also ensures that the current target fault f is dropped if it has been fully covered. If at
the end of this iteration interval Lf of f is non-empty, i.e. f remained undetected for some
values of Rsh, the inner ATPG loop of the algorithm is repeated, starting on line 10.

In the (theoretical) worst case, the inner loop of the algorithm is executed m times for
every fault explicitly targeted by ATPG, where m is the number of sections of that fault.3

3In the experiments discussed in Chapter 7.2 we observed that on average m is a small single digit
number.

111

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

This ensures that every section of every fault in F is either covered by a test vector or
proven redundant.

8.2 Experimental Results

We applied the RBF-ATPG procedure to the ISCAS 85 [19] and the combinational cores
of the ISCAS 89 [18] benchmark circuits. The fault list contained 10,000 randomly
selected non-feedback bridging faults, where available.4 Alternatively, we could also
use layout extracted bridging faults (refer to Chapter 3.3). We employed the Shockley
technology model and parameters from the SPICE model card of a 0.35µm technology
from austriamicrosystems AG (AMS) to determine the critical resistances (refer again to
Chapter 5.2.2). All experiments were performed on a 2 GHz Pentium IV with 2 GB main
memory.

Experimental results for RBF-ATPG can be found in Table 8.4. The first column states
the name of the circuit, which is followed by the number of randomly selected bridging
faults in column two. Column three, labeled “UF”, gives the number of faults that were
undetectable for any value of Rsh. Note that fault refers to a bridging fault, consequently
a bridge with m sections is counted as one single fault. Subsequently the fourth column
“Vec” quotes the number of test vectors obtained with RBF-ATPG. The next column
contains the tools efficiency “Eff”, which is defined as the ratio of the number of faults
and the number of test vectors, i.e. column two divided by column four. In column six
the number of undetectable sections “US” is given. The succeeding column lists the ratio
G-ADI/[0, Rmax], which assesses the impact of undetectable sections on G-ADI. The last
two columns contain the time in seconds needed for solving all SAT instances and the total
run-time of RBF-ATPG. In the table’s last row averages are given.

Each call of the SAT solver may yield one out of three possible results: (1) a solution to the
problem formulated as a CNF exists. In this case a test vector was successfully generated.
(2) there does not exist any solution to the problem. This means that the section for
which the CNF was generated is provably redundant. (3) the SAT solver run was aborted
(e.g. due to excessive memory usage). In our experiments we did not experience any aborts
for the circuits quoted. As a consequence, the number of SAT solver calls equals the sum
of columns “Vec” and “US”. The number of undetectable sections is high, many times
it exceeds the number or test vectors generated. On average we observed 17.12% of all
sections to be undetectable. The maximum number of undetectable sections is obtained
for cs00386, for which 2077 out 3529 sections are undetectable, this is 58.86%. To assess
the impact of the undetectable sections, we related G-ADI – which contains detectable
sections only – to the range [0, Rmax] of all shorts that can be activated locally at the fault
site – which comprises both detectable and undetectable sections. Our following equation

4Note that unless otherwise specified the fault lists used in this chapter are equal to those employed in
all other experiments discussed in Part II of this work.

112

8.2 Experimental Results

computes the quotient of both ranges weighting each individually by the probability density
function ρ to account for the occurrence probability of short resistances:

G-ADI
[0, Rmax]

= 100% ·

 ∫
G-ADI

ρ(r)dr

 /

 Rmax∫
0

ρ(r)dr

 . (8.2.1)

The numbers in Table 8.4 we determined for ρ based on the data from [178] which is in
particular appropriate for modern copper interconnect technology.

Equation (8.2.1) is especially valuable to determine the accuracy to be expected when
approximating G-FC by E-FC (Equations (5.4.4) and (5.4.3), respectively) as proposed
in Chapter 5.4. Recall that G-FC is based on G-ADI while E-FC utilizes [0, Rmax] as a
reference. If the equation evaluates to 100% this means that G-ADI and [0, Rmax] perfectly
match. Hence, E-FC is an equivalent substitute for G-FC. Values considerably smaller
than 100% indicate that the approximation is less accurate. In summary, the impact of
undetectable sections is less than expected given their high number. The poorest result
is 85.58% (for cs00953), the best result is 99.33% (for cs13207), and the average over
all circuits is 94.43%. Even the ratio of 93.97% obtained for cs00386, the circuit which
featured the largest number of undetectable sections, is only slightly below the average.
This may indicate that the undetectable sections are relatively small and/or cover resistance
ranges with low occurrence probability. Furthermore it demonstrates that E-FC provides
in general a reasonable approximation of G-FC.

Most of the difference between the total run-time of the tool and the time needed to solve
the SAT instances is consumed by CNF composition and the fault simulation runs. Yet, as
on average more than 99% of the total run-time is dedicated to SAT solving, the influence
of activities not related to the solving process is negligible. We believe that the tool’s
overall run-time may be reduced significantly by either using a SAT solver with higher
performance or a powerful circuit-structure based test pattern generation algorithm.

Performance of Single-Stuck-At Test Vectors

To explore the efficacy of single-stuck-at test patterns for the detection of resistive bridging
faults we performed an experiment whose results are listed in Table 8.5. Column one
of the table gives the name of the circuit. The following column, labeled “RBF”, states
the number of test vectors obtained with RBF-ATPG for the complete set of bridging
faults (quoted from column 4 of Table 8.4). Subsequently, in column three we list the
number of single-stuck-at test patterns which were created by a commercial tool. The
succeeding column contains the number of top-up vectors. This is the number of test
patterns generated by RBF-ATPG for the list of sections which remained undetected
after simulation of the single-stuck-at test patterns. In the last column we give the fault
efficacy G-FE (from Equation (5.4.7)) obtained when simulating only the single-stuck-at
test patterns.

As can be seen, the performance of single-stuck-at test vectors is rather low – the average
resistive bridging fault coverage is 96.05%. A substantial number of top-up vectors is

113

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

c1908
c2670

c3540
c5315

c7552
cs01423

cs01488

cs01494

cs05378

cs09234

cs13207

cs15850

cs35932

cs38417

cs38584

N
um

be
r o

f T
es

t V
ec

to
rs

RBF Stuck-at Top-up

Figure 8.3: Performance of resistive bridging fault test vectors in comparison with combi-
nation of stuck-at and top-up vectors.

needed to cover the complete G-ADI and to obtain 100% coverage. On the other hand, a
combination of single-stuck-at and RBF-ATPG test vectors may be beneficial in terms of
the total number of test vectors. This is illustrated in Figure 8.3 where the number of test
vectors generated by RBF-ATPG is plotted next to the size of the combined single-stuck-at
and top-up test vector set (for a selection of circuits). In particular, for the large ISCAS 89
circuits the number of test vectors contained in the combined set is drastically smaller than
what is obtained from RBF-ATPG alone – even though G-FE is 100% in both cases. This
can be attributed in part to the aggressive compaction techniques which were employed
when generating the single-stuck-at test sets. Currently equivalent techniques are not
available in RBF-ATPG.

Comparison with Competing ATPG Systems

Table 8.2 compares RBF-ATPG with BART [34], which is based on a reduction of non-
resistive bridging to stuck-at faults, and the resistive bridging fault test pattern generator
from Sar-Dessai et al. [166]. Column one lists the name of the circuit. Note that in fact for
s298, s344, and s641 only combinational cores were considered by all authors. In column
two the efficiency “Eff” of RBF-ATPG is given (quoted from column five of Table 8.4).
The remaining columns contain number of faults, vectors and the efficiency for BART and
Sar-Dessai’s tool, respectively. Efficiency is again computed as number of faults divided
by number of vectors. For the circuits contained in [34] the efficiency of RBF-ATPG is
considerably higher. Note that higher efficiency implies that more faults are detected per
vector. Comparability with Sar-Dessai’s ATPG is limited due to the small number of
circuits considered. Efficiency, however, seems to be similar to that of RBF-ATPG.

114

8.2 Experimental Results

Table 8.2: Efficiency of RBF-ATPG compared with BART and ATPG by Sar-Dessai et al.

RBF-ATPG BART [34] Sar-Dessai’s ATPG [166]
Circuit Eff Faults Vectors Eff Faults Vectors Eff

c432 7.18 1,000 542 1.85 1211 151 8.02
c499 166.39 1,000 270 3.70 1640 130 12.62
c880 13.42 1,000 622 1.61 2813 130 21.64
c1908 37.45 1,000 703 1.42 n/a n/a n/a
s298 35.74 1,000 200 5.00 n/a n/a n/a
s344 37.67 1,000 121 8.26 n/a n/a n/a
s641 32.89 1,000 160 6.25 n/a n/a n/a

We also compared RBF-ATPG with the automatic test pattern generator proposed in [P10]
for the unified model (refer to Chapter 4.3.1). Table 8.3 summarizes results obtained for the
ISFN_TH instance of the unified model for which data for ISCAS 89 circuits is available
in [P10]. Column one and two give the circuit name and the efficiency of RBF-ATPG
for the complete list of bridging faults, respectively (the latter figures are quoted from
Table 8.4, column five). For the experiments, randomly selected bridging faults (different
from those used by RBF-ATPG) were simulated – the number of faults is listed in column
three. Test generation for the unified model employs a two-stage approach. In the first
stage a single-stuck-at test set (generated by a commercial ATPG) is simulated and all
faults detected by these vectors are removed from consideration. Only the remaining faults
are explicitly targeted by the ATPG from [P10] in the second stage. The number of test
vectors simulated in the first stage is given in column four; the number of top-up test
vectors generated in stage two is found in column five. It is followed by the total size of
the combined test set required to cover all bridging faults. In column seven of the table
efficiency of the test pattern generator for the unified model is given. The last row of the
table states average vector counts and efficiencies, respectively.

With the exception of cs09324, for all circuits the efficiency of the unified model ATPG
exceeds that of RBF-ATPG. To a certain extent this may be attributed to the single-
stuck-at test set employed in the first stage of the test generation process. Typically
these test sets are highly compacted and, although they do not detect all bridging faults,
they do allow for a basic coverage. We observed similar mechanisms when evaluating the
performance of single-stuck-at test sets for resistive bridging faults listed in Table 8.5. To
improve comparability we calculated the efficiency achieved with the test sets combining
single-stuck-at test patterns and top-up vectors generated by RBF-ATPG. Results are
found in column eight of Table 8.3. Note that the single-stuck-at test sets used for the
experiments with the unified model are not the same as the ones used by RBF-ATPG.
Comparison of the last two columns of the table indicates that for a comparable setup,
efficiency of [P10] is similar to that of RBF-ATPG.

To further assess the efficiency of RBF-ATPG we also compare the tool with the bridging
fault ATPG system RBFTG from Maeda et al. [107] and with state-of-the-art single-stuck-

115

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

Table 8.3: Efficiency of RBF-ATPG compared with unified model (instance ISFN_TH).

RBF-ATPG Unified Model [P10] RBF-ATPG
Complete Number of Vectors Top-up

Circuit Eff Faults Stuck-at Top-up Total Eff Eff
cs09234 11.06 5,000 209 428 637 7.85 17.12
cs13207 8.14 5,000 295 226 521 9.60 15.31
cs15850 9.43 5,000 201 234 435 11.49 24.10
cs38417 8.49 5,000 185 145 330 15.15 17.73
cs38584 5.49 5,000 191 160 351 14.25 14.37

8.52 216.20 238.60 454.80 11.67 17.73

at ATPG systems ATOM [62] and SPIRIT [54].5 Maeda et al. employ locally exhaustive
test generation based on the PTG model (refer to Chapter 4.3.2). Results are presented in
Table 8.6. Column one of the table gives the name of the circuit. It is followed in column
two by the efficiency of RBF-ATPG (quoted from Table 8.4, column five). Subsequently
number of faults, number of vectors “Vec”, and the efficiency “Eff” of RBFTG are stated in
columns 3–5. (Note that in [107] only results for ISCAS 89 circuits are available.) The
fault lists used by Maeda et al. are based on a random selection of 1,000 bridging faults
(where available) from which feedback faults were excluded. We quote the lowest number
of vectors achieved by either method RDM (based on random test vectors) or ALG (based
on deterministic ATPG) published in [107]. Column six of Table 8.6 gives the number of
collapsed single stuck-at faults presented to both ATOM and SPIRIT. This is followed
by the number of generated test vectors and the tools’ efficiency. Note that similar to
RBF-ATPG both ATOM and SPIRIT perform fault dropping but do not employ any test
set compaction techniques, such as reverse-order simulation (see e.g. [168]).

Even though the fault list considered by RBF-ATPG is much larger than the list used by
RBFTG (up to 10,000 vs. up to 1,000 bridging faults) the number of vectors generated by
RBF-ATPG is comparable and in many cases even smaller. Consequently, in comparison,
the efficiency of RBFTG is very low – on average a difference of factor 10 can be observed.
In comparison with both single-stuck-at ATPG systems, ATOM and SPIRIT, the number
of test vectors generated by RBF-ATPG is commonly higher. However, the number of
target faults considered by the bridging fault tool considerably exceeds the size of the
single-stuck-at fault set (RBF-ATPG potentially targets multiple sections per bridging
fault). Contrary to that, in terms of efficiency, RBF-ATPG outperforms both single-stuck-
at tools for all but the largest circuits. This is somewhat counterintuitive since detection
conditions imposed by the conditional multiple-stuck-at faults representing a section can
be expected to be more specific than those imposed by single-stuck-at faults. Only a few
test vectors might be able to fulfill these requirements and these vectors may not be useful
in detecting other faults. Additionally, it is at least theoretically possible that more than
one test vector is needed to detect a resistive bridging fault for the maximal resistance

5We are grateful to E. Gizdarski (Synopsis, USA) for providing unpublished data on the number of
test vectors generated by SPIRIT.

116

8.2 Experimental Results

range (see Chapter 8.1.1). On the other hand, a vector that sensitizes an output of a gate
may detect several bridging faults with that output involved, but only two stuck-at faults.
Furthermore, the larger number of faults targeted by RBF-ATPG increases the chance,
that a vector detects multiple faults. Overall, however, it seems that the vectors that
satisfy the detection conditions for the highest values of Rsh are also highly effective in
detecting other faults.

8.2.1 Evaluation of n-Detection and 4-way Test Vectors

It is frequently argued that n-detection [106, 147] test sets are very effective in the detection
of defects (see e.g. [8, 13]). These test sets contain vectors which detect each possible
single-stuck-at fault at least n times (if feasible). Since resistive shorts are one particularly
prominent class of defects, we should expect n-detection vectors to be extremely effective
in their detection.6 While the n-detection paradigm targets arbitrary defects, the 4-way
model (refer again to Chapter 4.1.2) is tailored to be used as a basis for ATPG for (resistive)
shorts. In this chapter we want to investigate whether any of the two approaches indeed
produces vectors effective in the detection of shorts. We will use the resistive bridging
fault model as an indicator for the quality of the test vectors. Beyond that, the amount of
vectors produced by either model will be taken into account.

We simulated n-detection and 4-way test vectors with the bridging fault simulator SUPERB
introduced in Chapter 7. We focused on the large ISCAS 85 and the combinational cores
of the large ISCAS 89 benchmark circuits for which n-detection test patterns from the
Kyushu Institute of Technology7 (Japan) were made available to us. The considered values
of n were 1 (i.e. conventional single detection), 5, and 10. We randomly selected 10,000
non-feedback resistive bridging faults. For these fault lists, test patterns for the 4-way
model were generated using a commercial tool. The n-detection test pattern generation
targets all single-stuck-at faults. Resistive bridging fault simulation was conducted for the
Shockley model and the parameters from the model card of the AMS 0.35µm technology.
Fault efficacy G-FE was calculated using Equation (5.4.7) and the probability distribution ρ
based on findings from [178]. All experiments were conducted on a 2.8 GHz AMD Opteron
Linux machine with 4 GB RAM.

Detailed experimental results can be found in Table 8.7. Column one of the table gives
the name of the circuit. Then the number “EVec” of test patterns detecting at least one
short, the size “Vec” of the complete test pattern set and the global fault efficacy G-FE are
quoted for all considered test pattern sets. The last row of the table contains the total
number of vectors and the average fault coverage, respectively.

As can be seen, the test set sizes differ substantially. In contrast to RBF-ATPG, the tools
used to generate the test vector sets under consideration employed aggressive compaction

6In Chapter 10.2 multiple detection of single-stuck-at faults is identified as an effective criterion which
helps to maintain the coverage of resistive shorts in a BIST environment.

7We are grateful to Prof. X. Wen (Kyushu Institute of Technology, Japan) for providing the n-detection
test pattern sets.

117

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

 0

 200

 400

 600

 800

 1000

 1200

c5315
c6288

c7552
cs15850

cs38417

cs38584

 0

 20

 40

 60

 80

 100

N
um

be
r o

f V
ec

to
rs

P
er

ce
nt

ag
e

of
 E

ffe
ct

iv
e

V
ec

to
rs

n = 1 n = 5 n = 10 4-way

 0

 200

 400

 600

 800

 1000

 1200

c5315
c6288

c7552
cs15850

cs38417

cs38584

 0

 20

 40

 60

 80

 100

N
um

be
r o

f V
ec

to
rs

P
er

ce
nt

ag
e

of
 E

ffe
ct

iv
e

V
ec

to
rs

Figure 8.4: Number of test vectors (bar graph) and share of test vectors effective in detection
of resistive bridging faults (line graph) for n-detection and 4-way test sets.

strategies. The smallest test sets are always obtained for n = 1, i.e. the regular single
detection single-stuck-at scenario.8 For n = 5 test sets are considerably larger, an average
increase by a factor of 3.8 may be observed. The largest test sets were generated for n = 10.
Compared to those for n = 1 they contain, on average, seven times more vectors. By
contrast the test sets constructed for the 4-way model are considerably smaller (factor 2.8
larger than those for n = 1). For the ISCAS 89 circuits, test set sizes range between the
number of vectors obtained for n = 1 and n = 5, while sizes of test sets for ISCAS 85
benchmarks are comparable to those for n = 5. Test set sizes are depicted as a bar graph
in Figure 8.4.

We also investigated the share of effective vectors, i.e. patterns that detected at least one
short at any bridging fault location. With the exception of cs15850 (96.12% effective
vectors), for n = 1 all test vectors are effective. To some degree this may be attributed
to the extremely small test vectors sets. A similar effect can be observed for c6288 which
features very small test sets for all considered values of n and the 4-way model. For the
latter model the percentage of effective vectors consistently exceeds that of the test sets
for n = 5 and n = 10. The lowest share of effective vectors is found for n = 10, on average
only 46% of the vectors detect at least one short. In Figure 8.4 this data is illustrated as a
line graph.

In terms of the coverage of resistive bridging faults, test sets for n = 1 always yield the
lowest results of, on average, 98.10%. For all other test sets, values of G-FE are very close,

8Note that these test sets are not the same as the ones used for the experiment detailed in Table 8.5.
For this experiment an ATPG was used from which solely patterns for n = 1 were available. We decided
to use only one test pattern source for all values of n to ensure comparability of results.

118

8.2 Experimental Results

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

c5315
c6288

c7552
cs15850

cs38417

cs38584

Fa
ul

t C
ov

er
ag

e
n = 1 n = 5 n = 10 4-way

Figure 8.5: Resistive bridging fault coverage of n-detection and 4-way test sets.

ranging on average between 99.59% and 99.80% (results are summarized in Figure 8.5).
The highest coverage is obtained – for the majority of circuits – for n = 10 followed very
closely by the results for the 4-way model.

In summary, the resistive bridging fault coverages of the n-detection vectors for n = 5 and
n = 10, and the 4-way model test vectors are very high, exceeding 99.0%. Furthermore all
coverage figures are very close. Consequently, in terms of the coverage, no clear trend can
be recognized. This picture changes when we also take the number of vectors required to
achieve these results into account. Only the 4-way model features both, reasonable resistive
bridging fault coverage, and small test sets. Even though the 5-detection test sets for some
circuits are comparable in size, they are on average considerably larger and contain more
vectors ineffective in the detection of the bridging faults under consideration.

8.2.2 Test Pattern Generation for Different Technology Models

Test pattern generator RBF-ATPG as well as SUPERB (see Chapter 7) and our simulator
[J3] support three different technology models: the Shockley, the Fitted and the Predictive
model (refer again to Chapter 5.2.2 for a discussion). This chapter studies the impact of
these models on the test pattern generation process and the implications of design shrinking
[73, 157], i.e. manufacturing an existing device in a next-generation technology without
actual redesign, for resistive bridging fault detection.

For the experiments we used HSPICE with a BSIM3v3 0.35µm model card to obtain the
values Ap, An, Bp and Bn for the Fitted model. For the Predictive model we used the
65 nm BSIM4 model card made available by the Device Group at UC Berkeley in [22]. The

119

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

c0880
c1355

c1908
c2670

c3540
c5315

c7552
cs00820

cs00832

cs00838

cs00953

cs01196

cs01238

cs01423

cs01488

cs01494

cs05378

cs09234

cs13207

cs15850

cs35932

cs38417

cs38584

N
um

be
r o

f T
es

t V
ec

to
rs

Shockley Fitted Predictive

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

c0880
c1355

c1908
c2670

c3540
c5315

c7552
cs00820

cs00832

cs00838

cs00953

cs01196

cs01238

cs01423

cs01488

cs01494

cs05378

cs09234

cs13207

cs15850

cs35932

cs38417

cs38584

N
um

be
r o

f T
es

t V
ec

to
rs

Figure 8.6: Number of test vectors for different technology models. Horizontal line indicates
average over all circuits/technology models considered in Table 8.8.

Shockley model parameters were again taken form the model card of the AMS 0.35µm
technology. We applied RBF-ATPG to ISCAS 85 and the combinational cores of the
ISCAS 89 benchmark circuits. The fault list contained the same 10,000 randomly selected
non-feedback bridging faults used for the aforementioned experiments with RBF-ATPG.
All experiments were performed on a 2 GHz Pentium IV with 2 GB RAM.

Table 8.8 lists the results. The circuit name can be found in column one. Columns two and
three repeat the number of faults and the number of test vectors obtained for the Shockley
model (from Table 8.4, columns two and four). Subsequent columns four and five give the
number of test vectors obtained by RBF-ATPG for the Fitted and the Predictive model,
respectively. In the last row of the table, average numbers can be found.

We can see that the number of generated vectors varies quite substantially with no clear
trend. Yet, on average the lowest relative difference in the number of test vectors is observed
when comparing the Shockley with the Fitted model. This might be explainable by the
similarities of the two technologies which might result in comparable detection conditions.
Overall there is, however, no indication that any of these models stands out in terms of
ATPG complexity. This is also illustrated by Figure 8.6 which depicts the number of
test vectors generated for a selection of circuits. The horizontal line indicates the average
number of vectors (458.94) obtained for all circuits and all technology models.

To determine the impact of design shrinking on the quality of the test set, we simulated
the test vectors generated for the Shockley model under the Fitted and the Predictive
model using our simulator [J3].9 This may yield information on whether vectors generated

9The same results would be observable when using our simulator SUPERB from Chapter 7 instead.

120

8.3 Conclusions

for a design are still effective after porting the design to a more recent technology node.
Fault efficacy G-FE was calculated using Equation (5.4.7) and the probability distribution
ρ based on findings from [178]. This probability distribution particularly suits modern
copper interconnect technology. Results for the Fitted and the Predictive model can be
found in Table 8.8, columns six and seven, respectively. Note that the fault coverage of the
simulated test vectors is always 100% under the Shockley model.

Our results indicate that test vectors generated for the Shockley model are still effective
for the Fitted and the Predictive model. In particular, for the former model, average fault
efficacy remains extremely high at 99.79% (standard deviation is 0.2). The lowest figure
for an individual circuit, obtained for cs38584, is 99.14%. For the Predictive model test
vectors, efficacy is less superior; on average 98.35% were calculated. The lowest coverage of
90.97% was observed for cs00386. Yet, as the standard deviation for all circuits is 1.66,
this result seems to be an outlier. Taking into account the huge differences between the
behavior of transistors modeled by Shockley’s equations as opposed to transistor behavior
under the BPTM/BSIM4 deep submicron model for 65 nm, this appears to be acceptable.
Nevertheless, the results strongly advocate a fault simulation run after a major design
shrinking to ensure appropriate resistive bridging fault coverage.

8.3 Conclusions

In this chapter we introduced RBF-ATPG, our automatic test pattern generator for non-
feedback resistive bridging faults. In contrast to similar test pattern generators for resistive
bridging faults, RBF-ATPG is able to accurately determine G-ADI, which is a prerequisite
for the computation of the exact fault coverage metric G-FC. This is enabled by a refined
algorithm which can cope with many non-trivial detection phenomena, including faults
for which more than one test vector is required to completely cover their G-ADI. Our
experimental results demonstrate that the efficiency of RBF-ATPG is higher than that of
state-of-the-art ATPG tools for single-stuck-at faults.

Extensive experiments investigated the performance of test vectors generated for common
fault models, such as the single-stuck-at model, in the detection of resistive shorts. Our
results underline that dedicated test pattern generation for resistive shorts is required to
ensure complete coverage of the defects. This is also supported by our experiments exploring
the detection capabilities of n-detection and 4-way model test vectors. Further experiments
studying the impact of different technology models on the test pattern generation process
were also performed. It turns out that none of the technologies investigated stands out in
terms of ATPG complexity. Moreover, we found that a new ATPG run may be adequate
after a major design shrinking to ensure constantly high fault coverages.

121

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

Table 8.4: Experimental results for RBF-ATPG.

Time [s]
Circuit Faults UF Vec Eff US G-ADI

[0,Rmax] SAT Total
c0017 2 0 2 1.00 0 96.69 0.00 0.00
c0095 77 0 18 4.28 51 87.88 0.00 0.01
c0432 5,253 38 732 7.18 591 97.48 4.28 15.56
c0499 8,985 136 54 166.39 304 97.94 309.88 321.46
c0880 10,000 9 745 13.42 1,816 94.56 32.53 47.83
c1355 10,000 15 178 56.18 4,167 94.40 75.25 96.95
c1908 10,000 139 267 37.45 981 97.39 173.60 185.85
c2670 10,000 41 366 27.32 917 97.92 103.09 114.48
c3540 10,000 59 489 20.45 1,323 97.34 3,017.08 3,051.61
c5315 10,000 6 384 26.04 480 99.10 622.41 641.63
c7552 10,000 10 357 28.01 704 98.78 1,554.13 1,579.12
cs00208 3,986 47 124 32.15 1,375 90.84 0.28 1.20
cs00298 4,468 34 125 35.74 817 94.73 0.52 1.61
cs00344 7,760 83 206 37.67 3,199 86.28 1.30 5.66
cs00349 7,881 79 197 40.01 3,374 85.92 1.46 5.88
cs00382 7,809 22 255 30.62 1,324 96.23 1.38 4.78
cs00386 9,384 110 77 121.87 2,077 93.97 0.86 3.09
cs00400 8,290 24 245 33.84 1,493 96.14 1.35 4.95
cs00420 10,000 72 317 31.55 3,398 91.56 2.32 7.96
cs00444 10,000 41 312 32.05 2,752 94.88 2.74 9.18
cs00510 10,000 32 320 31.25 5,122 88.09 1.49 9.71
cs00526 10,000 76 372 26.88 2,060 95.12 5.47 12.36
cs00641 10,000 21 304 32.89 272 99.21 1.94 4.61
cs00713 10,000 40 332 30.12 1,581 97.30 15.86 23.07
cs00820 10,000 138 454 22.03 5,302 87.99 5.46 18.70
cs00832 10,000 122 445 22.47 5,349 87.83 5.08 18.75
cs00838 10,000 65 473 21.14 3,490 91.57 11.06 21.36
cs00953 10,000 15 422 23.70 6,949 85.58 19.09 36.29
cs01196 10,000 43 500 20.00 2,301 95.08 55.08 66.70
cs01238 10,000 62 508 19.69 2,539 94.60 79.52 92.25
cs01423 10,000 62 514 19.46 2,099 93.06 28.78 43.51
cs01488 10,000 44 234 42.74 1,311 96.37 3.62 9.52
cs01494 10,000 42 225 44.44 1,387 96.16 3.78 10.47
cs05378 10,000 9 824 12.14 668 98.28 217.66 245.57
cs09234 10,000 50 904 11.06 941 97.41 1,479.33 1,541.57
cs13207 10,000 9 1,228 8.14 353 99.33 2,126.42 2,240.41
cs15850 10,000 8 1,060 9.43 501 98.99 4,576.99 4,684.61
cs35932 10,000 148 516 19.38 3,213 94.32 100,750.51 101,045.79
cs38417 10,000 1 1,178 8.49 1,678 94.16 51,801.47 52,233.31
cs38584 10,000 93 1,822 5.49 1,147 96.69 88,748.90 89,227.03
∅ 51.13 452.13 30.35 1,985.15 94.43 6,396.05 6,442.11

122

Experimental Data

Table 8.5: Performance of single-stuck-at test sets.

Number of Vectors G-FE
Circuit RBF Stuck-at Top-up (Stuck-at)
c0017 2 5 2 36.44
c0095 18 12 8 93.88
c0432 732 61 319 95.09
c0499 54 63 15 99.89
c0880 745 64 558 93.88
c1355 178 95 71 99.76
c1908 267 148 166 99.13
c2670 366 109 240 98.46
c3540 489 166 325 98.06
c5315 384 127 144 99.37
c7552 357 184 171 99.47
cs00208 124 36 76 96.18
cs00298 125 33 79 96.90
cs00344 206 24 127 96.06
cs00349 197 26 116 96.94
cs00382 255 34 162 96.41
cs00386 77 79 34 98.21
cs00400 245 35 177 95.88
cs00420 317 81 193 97.18
cs00444 312 34 229 96.40
cs00510 320 69 191 97.37
cs00526 372 63 253 96.44
cs00641 304 43 149 98.12
cs00713 332 49 122 98.58
cs00820 454 124 265 96.95
cs00832 445 126 273 96.84
cs00838 473 162 276 97.58
cs00953 422 102 293 97.46
cs01196 500 174 318 97.44
cs01238 508 178 329 97.49
cs01423 514 64 300 96.69
cs01488 234 134 113 99.11
cs01494 225 138 93 99.25
cs05378 824 155 424 97.79
cs09234 904 219 365 98.03
cs13207 1,228 307 346 98.76
cs15850 1,060 197 218 99.07
cs35932 516 56 129 98.75
cs38417 1,178 194 370 98.80
cs38584 1,822 209 487 97.72
∅ 452.13 104.48 213.15 96.05

123

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

Table 8.6: Efficiency comparison with Resistive Bridging Fault Test Generator RBFTG
[107] and single-stuck-at ATPGs ATOM [62] and SPIRIT [54].

RBFTG [107] #s@- ATOM [62] SPIRIT [54]
Circuit Eff Faults Vec Eff faults Vec Eff Vec Eff
c0017 1.00 n/a n/a n/a 22 n/a n/a 9 2.44
c0095 4.28 n/a n/a n/a n/a n/a n/a n/a n/a
c0432 7.18 n/a n/a n/a 524 110 4.76 72 7.28
c0499 166.39 n/a n/a n/a 758 127 5.97 98 7.73
c0880 13.42 n/a n/a n/a 942 133 7.08 78 12.08
c1355 56.18 n/a n/a n/a 1,574 192 8.20 155 10.15
c1908 37.45 n/a n/a n/a 1,879 210 8.95 185 10.16
c2670 27.32 n/a n/a n/a 2,747 242 11.35 194 14.16
c3540 20.45 n/a n/a n/a 3,428 264 12.98 242 14.17
c5315 26.04 n/a n/a n/a 5,350 216 24.77 215 24.88
c7552 28.01 n/a n/a n/a 7,550 393 19.21 318 23.74
cs00208 32.15 231 131 1.76 217 65 3.34 42 5.17
cs00298 35.74 784 274 2.86 308 52 5.92 48 6.42
cs00344 37.67 815 159 5.13 342 62 5.52 29 11.79
cs00349 40.01 n/a n/a n/a 350 65 5.38 33 10.61
cs00382 30.62 770 348 2.21 399 72 5.54 46 8.67
cs00386 121.87 877 355 2.47 384 109 3.52 82 4.68
cs00400 33.84 487 251 1.94 424 71 5.97 40 10.60
cs00420 31.55 643 245 2.62 455 98 4.64 65 7.00
cs00444 32.05 703 273 2.58 474 77 6.16 45 10.53
cs00510 31.25 916 241 3.80 564 90 6.27 n/a n/a
cs00526 26.88 873 579 1.51 555 107 5.19 82 6.77
cs00641 32.89 688 405 1.70 467 99 4.72 n/a n/a
cs00713 30.12 708 330 2.15 581 100 5.81 88 6.60
cs00820 22.03 964 694 1.39 850 190 4.47 n/a n/a
cs00832 22.47 965 681 1.42 870 200 4.35 169 5.15
cs00838 21.14 836 254 3.29 857 183 4.68 n/a n/a
cs00953 23.70 906 328 2.76 1,079 138 7.82 n/a n/a
cs01196 20.00 871 455 1.91 1,242 227 5.47 216 5.75
cs01238 19.69 911 448 2.03 1,355 240 5.65 229 5.92
cs01423 19.46 779 353 2.21 1,515 135 11.22 95 15.95
cs01488 42.74 963 430 2.24 1,486 196 7.58 176 8.44
cs01494 44.44 957 464 2.06 1,506 191 7.88 178 8.46
cs05378 12.14 977 946 1.03 4,603 358 12.86 386 11.92
cs09234 11.06 983 663 1.48 6,927 660 10.50 633 10.94
cs13207 8.14 979 430 2.28 9,815 709 13.84 710 13.82
cs15850 9.43 954 601 1.59 11,725 643 18.23 675 17.37
cs35932 19.38 998 122 8.18 39,094 129 303.05 373 104.81
cs38417 8.49 n/a n/a n/a 31,180 1,458 21.39 1,585 19.67
cs38584 5.49 n/a n/a n/a 36,303 989 36.71 1,419 25.58

124

Experimental Data

Ta
bl

e
8.

7:
Te

st
ve

ct
or

se
ts

fo
r
n
-d

et
ec

ti
on

an
d

4-
w

ay
m

od
el

an
d

th
ei

r
re

si
st

iv
e

br
id

gi
ng

fa
ul

t
co

ve
ra

ge
.

C
ir

cu
it

1-
de

te
ct

io
n

5-
de

te
ct

io
n

10
-d

et
ec

ti
on

4-
w

ay
E

V
ec

V
ec

G
-F

E
E

V
ec

V
ec

G
-F

E
E

V
ec

V
ec

G
-F

E
E

V
ec

V
ec

G
-F

E
c5

31
5

85
85

99
.0

3
19

7
22

3
99

.8
2

25
3

41
8

99
.9

3
23

6
35

7
99

.9
9

c6
28

8
24

24
97

.1
9

56
56

99
.4

2
90

94
99

.8
1

83
85

99
.5

2
c7

55
2

94
94

99
.0

2
25

7
37

4
99

.9
1

29
7

73
5

99
.9

7
26

7
38

4
99

.9
5

cs
15

85
0

12
4

12
9

98
.4

1
31

9
49

6
99

.7
3

37
2

96
9

99
.9

2
25

4
33

6
99

.9
4

cs
38

41
7

11
9

11
9

98
.1

3
33

5
50

7
99

.5
5

39
9

83
2

99
.6

8
22

4
24

1
99

.5
8

cs
38

58
4

13
0

13
0

96
.8

0
43

5
61

4
99

.1
2

52
8

11
47

99
.5

1
23

2
26

6
99

.2
8

∅
,Σ

57
6

58
1

98
.1

0
1,

59
9

22
70

99
.5

9
19

39
41

95
99

.8
0

12
96

16
69

99
.7

1

125

8 RBF-ATPG – A Test Pattern Generator For Resistive Bridging Faults

Table 8.8: Comparison of ATPG results for different technology models.

Number of Patterns Fault Efficacy G-FE
Number of Generated for Model (Shockley Vectors)

Circuit Faults Shockley Fitted Predictive Fitted Predictive
c0095 77 18 20 16 99.20 98.74
c0432 5,253 732 659 489 99.83 99.71
c0880 10,000 745 816 341 99.87 99.73
c1355 10,000 178 240 243 99.70 94.83
c1908 10,000 267 329 391 99.73 98.24
c2670 10,000 366 371 459 99.78 98.59
c3540 10,000 489 464 576 99.84 98.05
c5315 10,000 384 382 419 99.86 99.34
c7552 10,000 357 377 388 99.81 99.56
cs00208 3,986 124 120 145 99.97 97.11
cs00298 4,468 125 158 141 99.54 99.06
cs00344 7,760 206 221 145 99.93 97.99
cs00349 7,881 197 172 149 99.98 97.91
cs00382 7,809 255 253 198 99.91 99.56
cs00386 9,384 77 72 164 99.99 90.97
cs00400 8,290 245 276 205 99.89 99.58
cs00420 10,000 317 305 405 99.96 96.90
cs00444 10,000 312 320 238 99.81 99.62
cs00510 10,000 320 334 263 99.87 99.69
cs00526 10,000 372 432 264 99.75 99.52
cs00641 10,000 304 333 352 99.95 98.60
cs00713 10,000 332 364 324 99.93 98.55
cs00820 10,000 454 481 341 99.79 99.22
cs00832 10,000 445 489 350 99.75 98.96
cs00838 10,000 473 511 653 99.92 96.91
cs00953 10,000 422 429 344 99.94 99.65
cs01196 10,000 500 515 581 99.77 96.82
cs01238 10,000 508 524 583 99.75 96.87
cs01423 10,000 514 536 418 99.92 99.60
cs01488 10,000 234 230 254 99.96 98.03
cs01494 10,000 225 221 247 99.96 97.77
cs05378 10,000 824 846 650 99.95 99.56
cs09234 10,000 904 904 736 99.72 98.30
cs13207 10,000 1,228 1,192 879 99.60 98.98
cs15850 10,000 1,060 1,027 757 99.73 99.10
cs35932 10,000 516 726 607 99.38 98.52
cs38417 10,000 1,178 1,114 732 99.75 99.52
cs38584 10,000 1,822 1,883 1,197 99.14 97.68
∅ 474.45 490.68 411.68 99.79 98.35

126

9 Advanced Testing Methods

This chapter addresses testing methodologies which are meant to extend or even complement
the “traditional” static voltage test in order to increase the coverage of resistive shorts. In
this respect they may be understood as advanced or non-standard testing methods. The
resistive bridging fault model was originally aimed at the “traditional” testing approach.
Yet, due to the flexibility of its analytical concept, it is possible to extend the model such
that it reflects the impact of advanced methods on the detection of resistive shorts as well.
In the following, we will describe both the necessary extensions as well as the coverage
impact of the advanced methods.

Two conceptually different approaches will be investigated. The first approach aims
at modifying the operating conditions the device under test is exposed to during test
application. We will consider the effect of controlling both voltage and temperature,
i.e. low-voltage and low-temperature testing, on the coverage of shorts. The second
strategy, known as quiescent current, or (Delta-)Iddq testing, exploits the fact that a
resistive short may increase the amount of current drawn by a circuit. This increase can
be measured and used as an indicator for the presence of a defect. Both approaches are
particularly effective in detecting hard defects. Hard defects cause failures under regular
operating conditions and may be detected by “traditional” voltage testing. In addition
to that, each of the two approaches has been reported to be successful in the detection
of flaws [63] in the so-called weak ICs. These are defects resulting in infant mortality1,
reduced reliability, or transient faults, rather than catastrophic failures. Yet, flaws may
become catastrophic in the future, due to aging processes such as gate oxide breakdown,
hot carrier effects and electromigration [133, 204]. There are alternative methods to detect
flaws, such as burn-in [76], which are, however, often associated with considerable costs.

We will show that the extensions to the resistive bridging fault model allow us to determine
the efficacy of both approaches on the detection of hard (short) defects. Furthermore, we
will also introduce metrics which make it possible to estimate the coverage of flaws. Low-
voltage and low-temperature testing are explored in Chapter 9.1. Chapter 9.2 demonstrates
that (Delta-)Iddq testing can be integrated into the resistive bridging fault model which
allows to evaluate the effectiveness of voltage and current testing within the same framework.
Conclusions with respect to both techniques are given in Chapter 9.3.

1If a product fails during the phase of its “initial” use by the customer this is referred to as “infant
mortality”; this is also called an “early life failure”. The extent of the “initial” phase depends on the
reliability requirements for the product under consideration.

127

9 Advanced Testing Methods

9.1 Low-Voltage and Low-Temperature Testing

It is well-known that testing at reduced power supply voltage, i.e. low-voltage testing,
as well as testing at reduced operating temperature, also called low-temperature testing,
enables the detection of defects which have escaped conventional test runs. Numerous
studies have demonstrated the effectiveness of low-voltage testing. Hao et al. [63] reported
on experiments with manufactured ICs, Renovell et al. [156] performed a mathematical
analysis for resistive bridging faults. For the same class of faults Liao et al. [103] contributed
data on electrical simulation with SPICE and Sar-Dessai et al. [165] provided results from
a fault simulation experiment. Kruseman et al. [93, 95] compared the effectiveness of Iddq
and low-voltage testing. Note that some authors refer to low-voltage testing as very-low-
voltage testing. A related technique is called MinVDD testing [14, 188]. Low-temperature
testing was investigated at Intel corporation (United States of America) where it has been
deemed to be effective in detecting three defect classes observed in manufactured devices
[128]. In [189] low-temperature testing was found to be an efficient supplement to burn-in
and helps to pinpoint defects in resistive silicide (i.e. TiSi2 used to enhance the conductivity
of polycrystalline silicon). It has also been applied successfully in combination with Iddq
testing [82].

Low-temperature testing is a cost-intensive technique as it requires special equipment, such
as a thermal chuck to control the temperature of the device during test application. In
contrast to, that low-voltage testing involves no additional costs. However, as a reduction
in the power supply voltage degrades the operating speed of the device, the frequency at
which the test vectors are applied has to be reduced [192]. This implies that the overall test
time is increased. Or, if this is not acceptable, the test set has to be truncated appropriately.
Theoretically, the minimal power supply voltage at which a conventional CMOS logic gate
will function correctly, is slightly above the maximum absolute threshold voltage of any
transistor (denoted by Vtn0 and Vtp0 for n- and p-transistors, respectively) within that gate
[63]. Yet, in practice a whole IC will not be able to operate properly at the theoretical
minimal voltage, due to e.g. noise issues. The question which value of Vdd is optimal for
low-voltage testing is, for instance, explored in [26, 93]. However, no clear consensus is
found: While [93] opts for 1.5 · VT , with VT being defined as VT = min (Vtn0, |Vtp0|), the
authors of [26] see an optimal range between 2.0 · VT and 2.5 · VT .

To simplify the discussion we will use the term nominal conditions to denote the operating
conditions, the device is exposed to during normal operation. Testing under non-nominal
conditions and low-X testing refers to either testing under reduced temperature, reduced
voltage, or both.

If for a given test set a short with a certain resistance is detected by low-X testing but not
by testing under the nominal conditions, this may have two reasons:

1. Theoretically the defect is detectable under the nominal conditions, i.e. it is a hard
defect. Yet, none of the test vectors which allows for the defect’s detection is contained
in the test set given.

128

9.1 Low-Voltage and Low-Temperature Testing

2. There exists no test vector which detects the defect under the nominal conditions
(e.g. because its intrinsic resistance is too high). In this case the defect is deemed to
be a flaw and is commonly considered as redundant.

In the first case, low-X testing improved the detection capabilities of the test set. A defect
from the second category might be considered irrelevant. Yet, as already mentioned, various
aging mechanisms are likely to aggravate this kind of defect. Consequently, the defective
IC might fail burn-in or become an early life failure. Depending on the application these
weak ICs might be intolerable.

In the following we will investigate the effect of low-voltage testing, low-temperature testing
and their combination on the detection of resistive bridging faults – a class of defects which
contributes many flaws. This study has been adapted from our publications [W5], [P6, P9],
and [J5].2 We will extend the resistive bridging fault model to be able to account for the
impact of power supply voltage and temperature on transistor behavior. Furthermore, we
will take the temperature dependence of the short’s resistance into consideration. This
will enable us to exactly quantify the effectiveness of both techniques for the detection
of resistive bridging faults, while at the same time accurately discriminating between the
coverage of flaws and that of hard defects. We will not consider the impact of statistical
process variations on the detection of defects.

We will consider two application scenarios:

Scenario CN (cost neutral) assumes that additional costs due to low-X testing are
unacceptable. This implies that low-temperature testing, which is very cost-intensive,
may not be used and low-X testing is restricted to low-voltage testing only. Testing
at reduced voltage, however, degrades the operating speed of the device under test
and, thus prolongs test application time. Since this implies increased cost we have to
truncate the test set to keep test time and cost constant. Scenario CN is designed
to reflect the requirements of high-volume manufacturing test.

Scenario AS (additional screening) targets products with elevated reliability requirements.
This means that an increase of test costs is tolerable if test quality is improved. Under
Scenario AS we allow for two test runs, one under the nominal conditions followed
by a low-X test application run. Both low-voltage and low-temperature testing may
be employed. The complete test set is applied irrespective of a potential increase in
test time.

To quantify the efficiency of low-X testing for the detection of resistive shorts, we introduce
several new fault coverage metrics. They are designed to accurately discriminate between
the coverage of flaws and that of hard defects. Furthermore, we account for the impact of
performance degradation in Scenario CN. We integrated the modified resistive bridging
fault model and the coverage metrics into the resistive bridging fault simulator from [J3].
Numerous experiments were performed with this tool. Results enable us to decide whether
it is more beneficial under Scenario CN to perform low-voltage testing with a truncated

2We would like to thank Prof. I. Pomeranz (Purdue University, USA) for her contributions to this
work.

129

9 Advanced Testing Methods

a

b

Rsh

DB

x

y

1

CA

Figure 9.1: Example of circuit with a resistive short affecting nodes a and b.

test set or apply the unabbreviated test set at the nominal power supply voltage. Under
both Scenario CN and AS we are able to suggest for each circuit values for temperature
and power supply voltage which yield the best coverage. Moreover, we describe a situation
in which low-voltage testing, contrary to conventional wisdom, actually results in coverage
loss and quantify its extent.

The extensions and modifications of the resistive bridging fault model which allow to
address the impact of low-X testing are described in Chapter 9.1.1. Subsequently we
present experimental results obtained with the modified simulator from [J3] in Chapter
9.1.2. An example for coverage loss is given in Chapter 9.1.3. There we also introduce
metrics quantifying this effect and present experimental results. Conclusions are given in
Chapter 9.3.

9.1.1 Extensions of the Resistive Bridging Fault Model

Consider the circuit from Figure 9.1 in which a defect shorts nodes a and b driven by gates
A and B, respectively. To highlight the impact of low-X testing rather than reiterating the
propagation phenomena of the RBF model, we assume two simplifications: (1) all possible
activating assignments induce the logical value 1 at the input of gate B (resulting in the
logical value 0 at node b), and (2) fault effects propagated via gate D can be ignored when
evaluating the defect detection (e.g. in a larger circuit propagation of fault effects might be
blocked for the activating assignments). Consequently, only assignments to inputs x and
y of gate A, which induce the logical value 1 at the gate’s output, activate the bridging
fault.

Assume we apply the pattern (0, 0, 1) at the nominal Vdd to the inputs of gates A and B.3
Due to the input assignment both p-transistors in the pull-up network of A are activated.
In gate B the pull-down network is active. For this scenario, the characteristic of voltage
V nom

001 at node a is illustrated in Figure 9.2 (we omitted the characteristic at node b to
increase readability). In the nominal case, the logic threshold of the input of gate C is
V C,nom

lt . The projection of the intersection between this threshold and voltage characteristic

3We assume circuits with one single nominal power supply voltage. Circuits that employ adaptive
power management techniques such as dynamic voltage scaling (DVS) have to operate correctly under
multiple supply voltages. Our framework can be easily extended to such circuits using strategies similar
to the ones discussed in [85].

130

9.1 Low-Voltage and Low-Temperature Testing

V l t
C ,nom

V l t
C , nn

V 001
nom

V 101
nom

V 001
nn

V 101
nn

R001
nom R101

nom R001
nn R101

nn Rsh

V

Figure 9.2: Voltage characteristic at node a as a function of Rsh for nominal (“nom”) and
non-nominal (“nn”) operating conditions and two test vectors.

V nom
001 to the x-axis yields the critical resistance Rnom

001 . Therefore, the faulty logical value 0
is interpreted by gate C for any short having a resistance in the range [0, Rnom

001], which is
also the ADI for this pattern.

When we apply the input pattern (1, 0, 1) to the driving gates’ inputs, only a single p-
transistor in the pull-up network network of A is activated. This implies that the voltage
characteristic V nom

101 at node a is shifted and we obtain a different critical resistance Rnom
101 for

this pattern. Fault effects are thus interpreted by gate C for any short having a resistance
in the range [0, Rnom

101]. This is also the ADI for this pattern which in addition contains the
ADI for pattern (0, 0, 1). Due to the symmetric transistor structure of the NAND gate,
input pattern (0, 1, 1) leads to the same situation and thus Rnom

011 = Rnom
101 holds. Input

pattern (1, 1, 1) does not activate the defect and consequently yields an empty ADI. Thus,
C-ADI for test pattern set {(0, 0, 1), (1, 1, 1)} is [0, Rnom

001] ∪ ∅ = [0, Rnom
001] and G-ADI for

this bridging fault is [0, Rnom
101].

So far we have assumed that testing is performed under the normal operating conditions
of the device. However, as already mentioned, it can be beneficial to modify the operating
conditions, namely temperature and/or power supply voltage, during test application. This
will in general affect the voltage characteristics at the shorted nodes, lead to different
critical resistances, and consequently result in other ADIs than those obtained when testing
under the nominal operating conditions. We denote C-ADI and G-ADI derived for the
nominal conditions as Cnom and Gnom, respectively. Their equivalents for the non-nominal
conditions are referred to as Cnn and Gnn, respectively. To compute Cnn and Gnn we may
use the same procedures valid for the nominal case. Yet, the electrical equations founding
the basis of the resistive bridging fault model have to be modified accordingly. Before we
describe these modifications in more detail, we will analyze the influence of non-nominal
operating conditions within the bounds of the model and propose metrics to assess their
coverage impact. Subsequently, means to account for the performance degradation involved
with low-voltage testing are developed. Finally, we will cover the changes imposed on the
electrical model.

131

9 Advanced Testing Methods

Metrics for Detection Under Non-Nominal Conditions

Refer again to Figure 9.2 and assume we reduce the power supply voltage Vdd below its
nominal value. In this case the voltage characteristics at node a for both input patterns
(0, 0, 1) and (1, 0, 1) will be shifted towards lower voltage levels. Moreover, the logic
threshold of gate C, which is also dependent on Vdd, will be scaled as well. Possible voltage
characteristics for this scenario are indicated as V nn

001 and V nn
101, respectively. The reduced

logic threshold is denoted as V C,nn
lt . As can be seen, new critical resistances Rnn

001 and Rnn
101

are obtained for this case. Thus, Cnn of the test set {(0, 0, 1), (1, 1, 1)} is [0, Rnn
001] and Gnn

is [0, Rnn
101].

By reducing Vdd, both C-ADI and G-ADI have been enlarged beyond the range observed
under the nominal conditions – this coincides with the results obtained in [63, 103, 156].
In particular, it holds that Cnom ⊂ Cnn, i.e. the range of resistances detected under the
non-nominal conditions exceeds that obtained by testing under the nominal conditions
while keeping the test set unchanged. Furthermore, Gnom ⊂ Cnn holds which means that
in the non-nominal case even the suboptimal test set manages to detect the defect for
any short resistance Rsh, which is detectable under the nominal conditions. In addition to
that, it detects some flaws having a resistance from the interval [Rnom

101 , R
nn
001]. In summary,

testing under the non-nominal conditions has two effects on the coverage of defects:

1. It may increase the coverage of hard defects, which are shorts detectable at the
nominal conditions, i.e. shorts for which Rsh ∈ Gnom holds.

2. Non-nominal testing may contribute flaw coverage, i.e. detect some defects which are
undetectable by static (e.g. scan) testing under the nominal conditions irrespective
of the test set used. The resistance Rsh of a flaw is from the range [0 Ω,∞] \Gnom.

The second category includes defects that are detectable by delay testing only, latent
defects which might deteriorate and lead to early life failures [133], and defects which
are redundant in terms of the resistive bridging fault model (refer again to Chapter 5.3).
Metrics assessing the impact of non-nominal testing have to correctly discriminate between
hard defects and flaws.

The coverage of hard defects by low-X testing is evaluated by our non-nominal fault
coverage metric. It accounts for the range of short resistances detected by non-nominal
testing which is detectable under the nominal conditions as well (Rsh ∈ Cnn ∩Gnom). This
interval is related to the (non-empty) range of resistances detectable under the nominal
conditions (Figure 9.3 illustrates the metric in form of a Venn diagram). Our nominal fault
coverage computes as:

FCnn = 100% ·

∫
(Cnn∩Gnom)

ρ(r)dr∫
Gnom ρ(r)dr

. (9.1.1)

Metric FCnn may be seen as an extension of G-FC (see Equation (5.4.4)) capturing the
coverage of hard defects when performing low-X testing only (Scenario CN).4

4In fact for Cnn = Cnom both metrics FCnn and G-FC are equivalent (recall that Cnom ⊂ Gnom).

132

9.1 Low-Voltage and Low-Temperature Testing

Gnom
Cnom Cnn

Gnn

Figure 9.3: Venn diagram for non-nominal fault coverage FCnn (Equation (9.1.1)). Diagonal
lines indicate the numerator, vertical lines show the denominator.

Gnom
Cnom Cnn

Gnn

Figure 9.4: Venn diagram for combined fault coverage FCnn
comb (Equation (9.1.2)). Diagonal

lines indicate the numerator, vertical lines show the denominator.

In Scenario AS we allow for two test runs, one under the nominal and one under the
non-nominal conditions. We developed the combined fault coverage metric to evaluate the
probability that a hard defect is detected during either of the two test runs. In this case
the defect has a resistance Rsh ∈ (Cnom ∪ Cnn) ∩Gnom. The metric is visualized in Figure
9.4 and is defined as follows:

FCnn
comb = 100% ·

∫
((Cnom∪Cnn)∩Gnom)

ρ(r)dr∫
Gnom ρ(r)dr

. (9.1.2)

Both FCnn and FCnn
comb focus on the detection of hard defects. To capture the coverage

of flaws, however, we propose the flaw coverage metric. Flaws are undetectable at the
nominal conditions (Rsh ∈ [0 Ω,∞] \ Gnom) but are detected by low-X testing (Rsh ∈
Cnn). Consequently, flaws detected by non-nominal testing must have a resistance Rsh ∈
([0 Ω,∞]\Gnom)∩Cnn. The metric relates this resistance range to the interval of resistances
representing all flaws as follows (see Figure 9.5 for an illustration):

FCnn
flaw = 100% ·

∫
(([0 Ω,∞]\Gnom)∩Cnn)

ρ(r)dr∫
[0 Ω,∞]\Gnom ρ(r)dr

. (9.1.3)

Assume for instance that Cnom is [0, 800], Gnom is [0, 1000], and that due to test application
at the non-nominal conditions, Cnn becomes [0, 1250] and Gnn extends to [0, 1400]. Hence,
in the numerator of FCnn

flaw, we obtain [1000, 1250]. This is the range of short resistances of

133

9 Advanced Testing Methods

Gnom Cnom Cnn Gnn

Figure 9.5: Venn diagram for flaw coverage FCnn
flaw (Equation (9.1.3)). Diagonal lines

indicate the numerator, vertical lines show the denominator.

those defects which can be detected by non-nominal testing only. The denominator will be
[1000,∞]. Certainly the definition of this metric is only sound if there exists a limit Rlim

such that ρ(r) = 0 for any r > Rlim. Yet, since for short defects the probability density
function ρ is monotonic and decreasing [158], and the size distribution of particles that
may cause short defects is also decreasing [180], we can definitely assume the existence of
the limit Rlim.

Impact of Performance Degradation Implied by Low-Voltage Testing

When performing low-voltage testing the operating speed of the device under test is
degraded with respect to the nominal operating conditions. In order to account for this
degradation the frequency at which the test vectors are applied to the device has to be
reduced. This in turn leads to an increased test application time. When prolonged test
time (and the associated cost) is unacceptable one has to decide whether to apply the given
test set TS “as it is” at the nominal power supply voltage, or to reduce Vdd and frequency
and to apply a sub-set TS ′ (TS that preserves test application time.

This is exemplified in Figure 9.6 for test set TS = {v0, . . . , v5} which contains six vectors.
We define one time unit as the time required to apply one test vector, i.e. the duration of
one clock cycle, at the circuit’s nominal operating frequency. Consequently the total test
time is chosen such that the complete application of TS at this frequency is possible. If the
power supply voltage is reduced, individual vectors may detect more defects but the time
needed to apply a single vector increases, and, thus, exceeds one time unit. This means
that less vectors can be applied if the total test application time is fixed (as in Scenario
CN). In our example, test set TS has to be cut back to four vectors (TS ′ = {v0, . . . , v3})
to keep test time within the allowed budget.

Refer again to our example circuit from Figure 9.1. Assume that under the nominal
conditions we apply test set TS = {(0, 0, 1), (1, 0, 1)} while in the low-voltage testing
scenario our restricted time budget allows for the application of test set TS ′ = {(0, 0, 1)}
only. We obtained TS ′ from TS by truncating the second test vector. Now we have to
decide whether to perform the test under the nominal conditions, and apply the full test
set TS (including vector (1, 0, 1) which is more effective than (0, 0, 1)), or to reduce the

134

9.1 Low-Voltage and Low-Temperature Testing

vvvvvnominal

reduced

v
0

vv
0

v v v v
54321

1 2 3 4 5
t

t

time unit

Figure 9.6: Performance degradation due to low-voltage testing.

power supply voltage, lower the frequency, and apply the truncated set TS ′ only. From
our analysis we know that TS detects all short resistances from [0, Rnom

101] (which is also the
G-ADI for nominal Vdd) and TS ′ detects [0, Rnn

001] under the non-nominal conditions. Since
Rnom

101 < Rnn
001, it is obvious that the low-voltage testing scenario is superior as it covers Gnom

and detects some additional flaws as well. However, if Rnn
001 < Rnom

101 would hold, leaving
(1, 0, 1) in TS appeared to be the better choice than lowering the power supply voltage.
In this simple example, it would actually be more efficient to apply only vector (1, 0, 1)
at low-voltage (instead of (0, 0, 1)). However, in more complex circuits, excluding vectors
which are less effective for one bridging fault could result in loss of coverage of other defects
for which the vectors have originally been generated.

Our analysis, following in Chapter 9.1.2, will give more insight into the trade-off between
the vectors’ increased defect detection capabilities caused by low-voltage testing and the
test set truncation implied by the frequency reduction. In particular, we will be able
to make recommendations regarding the testing conditions which lead to a better defect
coverage. In order to do so, we have to be able to make concise assertions about the
performance degradation caused by low-voltage testing. A time unit has been defined as
the duration of one clock cycle at the nominal operating frequency. Consequently, when
testing under the nominal conditions, k test vectors can be applied in k time units. Let
the performance degradation implied by low-voltage testing be expressed by the factor
τpd ∈ R≥1 (τpd = 1.1 would mean that circuit performance is reduced by 10%). Then, under
the non-nominal conditions, bk/τpdc test vectors can be applied in the same period of time.
The fault coverage impact of low-voltage testing is evaluated by first performing resistive
bridging fault simulation of the test set TS = {t1, t2, . . . , tm} under the nominal conditions
and computing fault coverage G-FC according to Equation (5.4.4). Then simulation is
repeated under the non-nominal conditions for the truncated test set TS ′ = {t1, t2, . . . , tm′},
where m′ = bm/τpdc. Subsequently FCnn is calculated using Equation (9.1.1). Finally,
comparing G-FC and FCnn gives the answer whether testing under the nominal conditions
or low-voltage testing detects more defects within an identical period of time and, thus, is
more effective under the test time constraint imposed by Scenario CN.

Voltage- and Temperature-Dependence Model

Changes in the circuit’s operating conditions which affect power supply voltage and/or
temperature do not have any implications on the fault effect propagation. They do, however,

135

9 Advanced Testing Methods

necessitate modifications of the electrical model used to determine critical resistances (refer
again to Chapter 5.2).5 We have to account for two basic effects:

1. The resistance of the short defect itself, Rsh, is a function of temperature T .

2. A critical resistance Rcrit obtained under the nominal operating conditions shifts to
a new value Rnn

crit due to a change in voltage and/or temperature. This affects both
C-ADI and G-ADI.

In the following we will describe the modifications required to integrate these two effects
into the electrical model of the resistive bridging fault model.

Dependence of Rsh on T : Changes in temperature affect the resistivity of a material. A
reasonable approximation of this effect is given by (see e.g. [132, p. 81f]):

R = Rref · (1 + α · (T − Tref)) , (9.1.4)

where Rref is the resistance at temperature Tref , α is the temperature coefficient of electrical
resistance at temperature Tref (usually 293.15 K = 20 ◦C) and T is the actual temperature.
For metals, resistance rises with increasing temperature. Temperature coefficients α of
metals used in semiconductor processing range between 0.003715 K−1 and 0.005866 K−1.

Dependence of Rcrit on Vdd: Power supply voltage Vdd is part of the equations used to
calculate the critical resistance (see e.g. Equations (5.2.6) and (5.2.7)). Furthermore,
changes in power supply voltage affect the logic thresholds of the driven gates. They may
be determined analytically or from electrical equations. Using the modified parameters,
Rnn

crit is calculated just like Rcrit.

Dependence of Rcrit on T : We considered the temperature dependence of the transistor
threshold voltages Vtn0 and Vtp0, of the mobility µ, and of the intrinsic carrier concentration
ni. We used the temperature dependence model from Berkeley Predictive Technology
Model (BPTM, which is provided by the Device Group at UC Berkeley) [22] in connection
with the Berkeley Short-channel IGFET Model 4 (BSIM4) in version BSIM4.4.0 released
in March 2004 (discussed in [208]).6

We calculated critical resistances for low-temperature testing scenarios using Equations
(5.2.6) and (5.2.7) with adapted values of Vtn0, Vtp0, and µ. When computing equivalent
transistors using Equations (5.2.10) and (5.2.11), we addressed the changes in substrate
potential Φ which relies on the temperature dependent parameter ni. Furthermore, we
considered that the resistance of a short is reduced by a decrease in temperature according to
Equation (9.1.4). This has the following effect: Suppose that the ratio between the resistance
at nominal (high) temperature and the resistance at non-nominal (low) temperature is
1.2 : 1. Assume furthermore, that we we calculated Rnn

crit = 1000 Ω. Then, any short having
5Note that all effects described in this chapter also have to be considered when obtaining critical

resistances from electrical simulations. In general, this implies that all precomputed data will have to be
collected for every parameter/voltage setting while only a simple change of parameters is required in our
(extended) analytical approach.

6The updated version BSIM4.6.1, available since May 2007, might induce changes to the material
presented in the following.

136

9.1 Low-Voltage and Low-Temperature Testing

a resistance of up to 1000 Ω which causes faulty logical values at non-nominal temperature
will have a resistance of up to 1200 Ω under the nominal conditions. Consequently, Rnn

crit

must be multiplied by a factor of 1.2.

9.1.2 Experimental Results

We applied 1,000 random test vectors to ISCAS 85 [19] circuits and the combinational
cores of the ISCAS 89 [18] benchmarks. The fault list contained 10,000 randomly se-
lected non-feedback bridging faults, where available.7 Alternatively, we could have also
used layout extracted bridging faults (refer to Chapter 3.3). We employed the Shockley
technology model and parameters from the SPICE model card of a 0.35µm technology
from austriamicrosystems AG (AMS) to determine the critical resistances. Probability
density function ρ proposed in [165] has been employed when calculating fault coverages.
However, all experiments in this chapter could be repeated with any other short resistance
distribution. All simulations were performed using a modified version of the simulator from
[J3] which ran on a 2 GHz Pentium IV with 2 GB RAM. Yet, as modifications discussed in
Chapter 9.1.1 are restricted to the electrical model, the simulator SUPERB from Chapter
7 could be used as well. Whenever required, G-ADI has been calculated using RBF-ATPG
introduced in Chapter 8.

We decided to exclude feedback bridging faults from consideration. As the discussion
in Chapter 5.5.3 and the detailed analysis in [P3][J1] have demonstrated, this type of
bridging fault displays highly complex behavior. Fault coverages can only be determined if
assumptions on the sensitivity of the automatic test equipment are made. Consequently,
feedback bridging faults would have primarily introduced another stochastic variable, which
distracted from the focus of this analysis.

Scenario CN

In Scenario CN, additional costs due to test application under the non-nominal conditions
are unacceptable. We assume that only low-voltage testing is performed and that no
additional testing under the nominal conditions is allowed. Test time may not exceed
the time granted under the nominal conditions, thus, test sets have to be truncated
appropriately.

During test-application we held the temperature constantly at 300 K. For the AMS 0.35µm
technology under consideration, nominal power supply voltage V nom

dd is 3.3 V. We considered
several low-voltage settings, namely 3.0 V, 2.8 V, 2.5 V, and 2.0 V. To obtain the number
of vectors to cut off, we determined the performance degradation factors τpd. We computed
τpd by first calculating individual gate delays under the considered voltages and then
performed critical path analysis (see e.g. [170]). The values of τpd ranged between 1.08 and

7Note that unless otherwise specified the fault lists used in this chapter are equal to those employed in
all other experiments discussed in Part II of this work.

137

9 Advanced Testing Methods

1.11 (i.e., between 8% and 11%) for 3.0 V, between 1.14 and 1.20 for 2.8 V, between 1.27
and 1.39 for 2.5 V, and between 1.66 and 1.91 for 2.0 V.

Fault coverages for 10, 100, and 1,000 time units can be found in Tables 9.3, 9.4, and 9.5,
respectively. One time unit corresponds to the duration of one clock cycle at the circuit’s
nominal operating frequency. Column one of the tables gives the name of the circuit. This
is followed in column two by the fault efficacy G-FE (Equation (5.4.7)) obtained under the
nominal conditions. Columns three to six of the tables state FCnn according to Equation
(9.1.1) for the low-voltage settings. All faults redundant under the nominal conditions
(i.e. Rsh /∈ Gnom) had to be excluded when calculating FCnn; this ensures comparability
with G-FE. Bold font indicates the maximum coverage achieved for the available number
of time units per circuit. The last row of each table gives average coverages.

Consider the circuit c1355 and 100 time units (Table 9.4). For 3.3 V, which is the nominal
Vdd, 100 test vectors have been applied, resulting in a fault efficacy G-FE of 97.02%. For
3.0 V, the performance degradation factor τpd has been determined to be 1.11. Thus, only
90 test vectors out of originally 100 could be applied; however, the non-nominal fault
coverage achieved in this case is 97.13%. Note that the detections of defects not detectable
at 3.3 V are not accounted for. Consequently, if only 100 time units are at our disposal, it
is better to lower Vdd and to apply the first 90 vectors of the test set than to apply all 100
vectors at nominal Vdd. For 2.8 V, 2.5 V, and 2.0 V the value of τpd is 1.20, 1.38, and 1.91,
and the numbers of applied vectors are 83, 72, and 52, respectively. From the figures in
Table 9.4 it can be seen that fault coverage is maximal for 2.8 V.

Based on this data, we can conclude that under Scenario CN, the benefits of low-voltage
testing are higher if more test time is available. For 10 time units the maximum fault
coverage for most of the circuits (25 out of 38) is obtained at the nominal Vdd. The optimal
voltage tends to drop, if 100 or even 1,000 time units are at our disposal. On average
for 100 time units, the optimal voltage seems to be 2.8 V (16 circuits). For 1,000 time
units, however, maximum fault coverage is achieved at 2.5 V for most of the circuits (21 in
number).

The graphs in Figures 9.7 and 9.8 show the progression of the fault coverage (adjusted for
performance degradation) over time for circuit c2670 and all considered values of Vdd. The
performance degradation factors were 1.10 at 3.0 V, 1.19 at 2.8 V, 1.37 at 2.5 V, and 1.89
at 2.0 V. In the first 100 time units (Figure 9.7) fault coverage for 2.5 V, 2.8 V, 3.0 V, and
the nominal voltage (indicated by a solid line) are very close. By contrast, the non-nominal
coverage at 2.0 V is distinctively lower. Between time units 100 and 1,000 (Figure 9.8), the
picture changes and the coverages obtained at non-nominal voltages exceed those for the
nominal Vdd. In the figure the y-axis is restricted to the range between 90% and 100%.
Even for a voltage of 2.0 V, at which the lowest number of vectors can be applied, the
coverage surpasses the figures obtained under the nominal conditions after slightly over 100
time units. The highest coverage is achieved at 2.5 V. These observations are consistent
with the conclusions previously drawn.

Table 9.6 reports the results for flaw coverage metric FCnn
flaw from Equation (9.1.3) and

1,000 time units. The structure of the table is similar to the one of Tables 9.3–9.5. The flaw

138

9.1 Low-Voltage and Low-Temperature Testing

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Fa
ul

t C
ov

er
ag

e

Time Units

2.0V
2.5V
2.8V
3.0V
3.3V

Figure 9.7: FCnn for c2670 and different values of Vdd as function of test time for time
units 0 through 100.

 90

 92

 94

 96

 98

 100

 100 200 300 400 500 600 700 800 900 1000

Fa
ul

t C
ov

er
ag

e

Time Units

2.0V
2.5V
2.8V
3.0V
3.3V

Figure 9.8: FCnn for c2670 and different values of Vdd as function of test time for time
units 100 through 1,000.

139

9 Advanced Testing Methods

coverage at nominal Vdd has been excluded as it is 0% by definition. As can be seen, for all
circuits flaw coverage is maximal when the power supply voltage is at 2.0 V. However, we
already discovered that the non-nominal fault coverage is not optimal at 2.0 V. Therefore
both maximal coverage of flaws and hard defects may not be realized at the same time.

In summary, if only one test application run can be afforded, low-voltage testing is efficient,
yet power supply voltage should be lowered moderately, i.e., to 2.5 V, 2.8 V, or 3.0 V, rather
than to the lowest considered value of 2.0 V.

Scenario AS

In Scenario AS we allow for one test application under the nominal conditions supplemented
by an additional test run under the non-nominal conditions. In the latter run, low-
temperature testing and low-voltage testing may be used in combination. We disregard
the performance degradation implied by low-voltage testing, i.e. the complete test set is
applied even at reduced power supply voltage.

In the experiments we considered two values for the nominal temperature T nom: 370 K
and 300 K. During testing, the device dissipates power which leads to increased junction
temperature, unless the temperature is controlled during (nominal) testing using a thermal
chuck. Nominal temperature of 300 K is valid when the temperature is controlled, whereas
T nom of 370 K holds if the temperature is not controlled. Note that the operating temper-
ature of a packaged IC is in general closer to 370 K than to 300 K. For this experiment
the nominal power supply voltage V nom

dd is again 3.3 V. For the low-X test application, we
considered voltages of 3.0 V, 2.8 V, 2.5 V, and 2.0 V. Furthermore, operating temperatures
T of 300 K and 196 K (which is the evaporating temperature of nitrogen) were evaluated.
For the experiments reported in [189], a nominal temperature of 373 K (100 ◦C) was taken,
while 273 K (0 ◦C) was regarded as low temperature. By contrast we chose a higher value
of 300 K for our “reduced-temperature” scenario, as it is less likely to lead to condensation
problems.

When factoring the impact of low-temperature testing into the electrical part of the
resistive bridging fault model, we considered the effects discussed in Chapter 9.1.1. All
necessary parameters were taken from the SPICE model card provided for the AMS 0.35µm
technology. We assumed the defect material to be aluminum, which – for T nom = 370 K
and T = 300 K – resulted in a resistance reduction by a factor of 1.29 between nominal
and low temperature.

Experimental results for a combination of nominal and low-X testing with T nom = 370 K
and T = 300 K can be found in Table 9.7. It features the name of the circuit in column one.
Column two gives the fault efficacy G-FE from Equation (5.4.7) for nominal temperature
and voltage. In column three, we give FCnn

comb from Equation (9.1.2) which we obtained
when lowering only the operating temperature. In addition to that, power supply voltage
was lowered as well to derive FCnn

comb from columns 4–7. The last row of the table gives
average coverages.

140

9.1 Low-Voltage and Low-Temperature Testing

Table 9.1: Average FCnn
comb for different values of Vdd, T nom, and T .

T nom T FCnn
comb

[K] [K] 3.3 V 3.0 V 2.8 V 2.5 V 2.0 V

300 196 97.35 97.41 97.43 97.44 97.52
370 196 97.46 97.49 97.51 97.52 97.59
370 300 97.21 97.35 97.41 97.49 97.56
370 370 96.83 97.11 97.23 97.40 97.55

From Table 9.7 we can see that the coverage of hard defects is indeed increased by a
combination of low-voltage and low-temperature testing. Yet, on average this increase
is rather low and does not exceed 1%. We repeated the same experiment with several
different temperature configurations – average values of FCnn

comb can be found in Table 9.1.
The last row of the tables refers to testing at reduced power supply voltage but nominal
temperature. Results confirm the observations made for T nom = 370 K and T = 300 K.
In summary, even though the combination of low-voltage and low-temperature testing
increases the coverage of hard defects, this coverage gain is limited. In particular there is no
advantage over testing at reduced supply voltage only. Given the fact that low-temperature
testing is very cost-intensive, it does not seem to be a justifiable method to detect hard
defects.

Contrary to that, a very high flaw coverage is obtained when combining low-voltage and
low-temperature testing. Tables 9.8, 9.9, 9.10, and 9.11 list experimental data for FCnn

flaw

and different configurations of T nom and T . The first column of each table gives the name of
the circuit followed by the flaw coverages derived for the considered power supply voltages in
columns 2–6. The last row of the tables gives the respective average coverages. Additionally,
averages are visualized in Figure 9.9. We may observe that low-X testing is very effective in
detecting flaws. Most notably, the combination of low-voltage and low-temperature testing
yields superior results of up to 92% flaw coverage. In particular, we may benefit from
low-temperature testing if power supply voltage cannot be overly reduced. For instance,
lowering the voltage from 3.3 V to 2.5 V while keeping the temperature constantly at 370 K
yields approximately 60% of the flaws. However, almost the same flaw coverage can already
be achieved for a Vdd of 3.0 V, if additionally the temperature is lowered to 196 K.

Discussion

Low-temperature and low-voltage testing differ substantially not only in their impact on the
process of testing but also in terms of their influence on the defect detection. Low-voltage
testing is very cost-effective as it increases the coverage of a given test set without affecting
test cost. Neither additional test equipment nor dedicated design for testability logic
is required for this method. Yet, testing at reduced power supply voltage may only be
performed when operating frequency is lowered as well, and, thus, this technique prolongs
test time. In contrast to that, low-temperature testing requires additional equipment to

141

9 Advanced Testing Methods

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2.02.52.83.03.3

Fl
aw

 C
ov

er
ag

e

Voltage

Tnom=300, T=196

Tnom=370, T=196

Tnom=370, T=300

Tnom=T=370

Figure 9.9: Average flaw coverage FCnn
flaw from Tables 9.8 – 9.11.

control the temperature during testing; this in turn implies additional cost. Test time,
however, is not affected by this method.

Low-voltage testing is particularly well suited for the detection of hard defects. Our
analysis demonstrated that this is especially true for larger test sets. Furthermore, we
found that the recommendable value for Vdd decreases with increasing size of the test
set. Low-temperature testing, on the other hand, only achieves mediocre coverage of
hard defects. Even if combined with low-voltage testing, the high costs involved with
temperature control may not be justified by its efficiency. Consequently, low-voltage testing
alone is the method of choice to detect hard defects.

Equally, the coverage of flaws is very high when using low-voltage testing. Optimal results
may be obtained if the power supply voltage is reduced to the lowest reasonable level,
regardless of whether the performance degradation is accounted for. The coverage of flaws
is also significantly improved by low-temperature testing. This suggests that combined
low-voltage and low-temperature testing is the supreme method to detect dynamic defects
and reliability defects by static (scan) test.

If test cost is extremely sensitive, low-temperature testing may not be acceptable. Hence,
we are restricted to the application of a truncated test set under reduced power supply
voltage only. Yet, voltage should only be moderately reduced to assure both optimal
detection of hard defects and coverage of a large share of flaws. Extreme reduction of
Vdd seems to be advisable only when an additional test run under nominal voltage and
temperature can be expended. Similarly, low-temperature testing is most efficient when
combined with a test run under the nominal conditions. This assures a largely improved
coverage of hard defects and optimal flaw detection.

142

9.1 Low-Voltage and Low-Temperature Testing

a

b

Rsh

E

x

y

A

B

f
F

d

cC

D

e

0

1

Figure 9.10: Example circuit with a resistive short affecting nodes a and b.

9.1.3 Coverage Loss by Low-Voltage Testing

In the research published so far it has always been argued that lowering the power supply
voltage will extend the range of short resistances detected under the nominal conditions.
We found, however, that in some situations this is not true and some defects detected at
nominal Vdd may become undetectable when lowering the voltage.

Consider the circuit from Figure 9.10 and assume that the only valid logical assignment to
inputs x and y, which activates the bridging fault, is x = 0 and y = 1. As both driving gates
are inverters this results in a = 1 and b = 0. In a fault-free circuit these values translate
into c = d = 1 (the side inputs of both driven gates C and D are fixed at non-controlling
values) and consequently f = 0; furthermore e = 0 holds.

The voltage characteristics present at the shorted nodes in the faulty circuit are illustrated
in Figure 9.11. Under the nominal power supply voltage, characteristics at a and b are
V nom
a and V nom

b , respectively. We will focus on the characteristic at node a since V nom
b

(depicted in gray) does not have any intersection with the logic threshold V E,nom
lt of driven

gate E and, thus, does not allow for detection of the defect. Logic thresholds of driven
gates C and D are V C,nom

lt and V D,nom
lt , respectively. We obtain two critical resistances

Rnom
C and Rnom

D , with Rnom
C < Rnom

D . For a short defect with resistance Rsh < Rnom
C both

driven gates interpret the logical value 0, resulting in c = d = 0 and consequently f = 0.
As this equals the fault-free logical value, a defect with a resistance from this range is
not detected. For a short with resistance Rnom

C < Rsh < Rnom
D it holds that c = 1, d = 0,

which translates into f = 1. Therefore, a defect from this resistance range is detected. For
Rsh > Rnom

D all nodes in the circuit assume the values present in the fault-free circuit.

If we now reduce Vdd below its nominal value, the characteristics at nodes a and b shift
as well as the logic thresholds of gates C, D, and E. The respective values are indicated
by superscript “nn” instead of “nom”. Again, no faulty values are interpreted by gate E.
Yet, we obtain two new critical resistances Rnn

C and Rnn
D at gates C and D, respectively.

An analysis similar to the one performed for the nominal Vdd yields that the only short
defects detectable under the non-nominal conditions have a resistance Rnn

C < Rsh < Rnn
D .

Since Rnom
D < Rnn

C , the detection ranges under the nominal and the non-nominal conditions
are disjoint. More precisely, this means that the short defects detected under nominal Vdd

143

9 Advanced Testing Methods

RC
nom RD

nom RC
nn RD

nn R sh

V l t
C , nn

V a
nom

V a
nn

V

Detected at
nominal V

dd

Detected at
reduced V

dd

V l t
D ,nn

V l t
E , nn

V l t
D ,nom

V l t
C , nom

V l t
E , nom

V b
nom

V b
nn

Figure 9.11: Voltage characteristics at nodes a and b as a function of Rsh for nominal
(“nom”) and non-nominal (“nn”) operating conditions.

are no longer detectable when the power supply voltage is reduced, even though the very
same test vector is applied in both cases. Nevertheless, the range of detected resistances
has actually been enlarged by lowering Vdd and previously undetectable defects are now
detected. Due to our assumptions, no other test vectors are able to cover the resistance
range [Rnom

C , Rnom
D], hence, defects from this range are redundant under the non-nominal

conditions.

Coverage loss due to low-voltage testing has been observed in the mathematical analysis
of Renovell et al. [156] as well. They found that this phenomenon may only occur if
transistors with very specific width/length parameters are utilized in the driving gates.
Yet, these kinds of transistors are – according to [156] – not typical for standard circuit
design. The mechanism described here is completely different. In fact, lowering Vdd has
indeed increased the range of resistances in which the driven gates interpret faulty logical
values, just as conventional wisdom claims. However, it is the propagation path that is
responsible for the coverage loss. Consequently, circuits designed according to standard
principles are not immune to this type of coverage loss caused by low-voltage testing.

A similar instance of this problem has been observed by Sar-Dessai et al. [165]. They
report on an electrical simulation experiment in which lowering Vdd resulted in coverage
loss which could be traced back to a specific circuit structure: A fault site where there
exists only a single driven gate which is fed by both driving gates. Yet, according to [165]
this situation is very rare.

Metric for Coverage Loss and Experimental Results

In order to quantify the coverage loss due to the abovementioned phenomenon, we introduce
the coverage loss metric. It focuses on those defects which are detectable under the nominal

144

9.1 Low-Voltage and Low-Temperature Testing

Gnom
Cnom Cnn

Gnn

Figure 9.12: Venn diagram for coverage loss FCnn
loss (Equation (9.1.5)). Diagonal lines

indicate the numerator, vertical lines show the denominator.

Table 9.2: Coverage loss FCnn
loss (circuits with FCnn

loss = 0% for all Vdd settings excluded).

Circuit 3.0 V 2.8 V 2.5 V 2.0 V
#F FCnn

loss #F FCnn
loss #F FCnn

loss #F FCnn
loss

c3540 1 0.0003 1 0.0004 1 0.0004 0 0.0000
cs00208 0 0.0000 0 0.0000 0 0.0000 2 0.0222
cs00420 0 0.0000 0 0.0000 0 0.0000 4 0.0176
cs00510 0 0.0000 0 0.0000 0 0.0000 32 0.1404
cs00838 0 0.0000 0 0.0000 0 0.0000 1 0.0044
cs09234 2 0.0125 2 0.0201 2 0.0201 2 0.0201
cs15850 1 0.0003 1 0.0003 1 0.0003 0 0.0000
cs38417 2 0.0009 2 0.0013 0 0.0000 0 0.0000

conditions but cannot be detected by an optimal test set under the non-nominal conditions
(Rsh ∈ Gnom \ Gnn). This range is related to the (non-empty) interval of resistances
detectable under the nominal conditions. The metric is defined as follows (see Figure 9.12
for an illustration):

FCnn
loss = 100% ·

∫
(Gnom\Gnn)

ρ(r)dr∫
Gnom ρ(r)dr

. (9.1.5)

Experimental results can be found in Table 9.2. We retained the same setup used for the
experiments from Chapter 9.1.2. For all circuits in Table 9.2 10,000 faults were simulated,
with the exception of cs00208, for which we considered 3,986 bridging faults. The name of
the circuit is found in column one. Columns two to nine give the number of faults “#F” for
which coverage loss was observed followed by the average FCnn

loss for a Vdd of 3.0 V, 2.8 V,
2.5 V, and 2.0 V. Note that we excluded all circuits for which no coverage loss was observed
at any low-voltage setting. It may be seen that coverage loss indeed occurs. Yet, only
a very small share (at most 32 out of 10,000) of these faults is affected by coverage loss.
Furthermore, FCnn

loss is extremely small in magnitude.

145

9 Advanced Testing Methods

9.2 Delta-IDDQ Testing

For many years it is feared that the ever increasing and highly variable leakage currents in
state-of-the-art CMOS circuits might render quiescent current (Iddq) testing unfeasible
[83]. Iddq testing is a methodology to detect resistive shorts and other types of defects
by monitoring the supply current (see [144] for a detailed survey). It is particularly well
suited for CMOS circuits which draw (in theory) only very little current in steady-state,
i.e. when the nodes are not switching. Therefore, an elevated supply current is an indicator
for the presence of a defect. To be detectable by Iddq testing, a resistive short only has
to be activated – no propagation of fault effects is necessary. This facilitates test pattern
generation for Iddq testing. On the other hand, the evaluation of the quiescent current is
very time-consuming, such that typically only a few Iddq measurements can be afforded.

Unfortunately, it is no longer true that the current drawn by a defect-free CMOS circuit is
negligible (Iddq ≈ 0) when the nodes are not switching. Rather, in recent circuits there is a
significant background Iddq current Iback flowing through the circuit regardless of whether
it is defective. This current is composed of the (sub-threshold) leakage current Ioff of the
inactive transistors. Although the contribution of every individual transistor is minute,
the cumulative effect of millions of transistors is considerable. Low-VT transistors used in
high-performance logic are particularly prominent contributors to Iback. Furthermore, due
to e.g. process variations Iback may differ substantially from die to die. As a consequence,
the conventional assumption of a single pass/fail threshold, which is universally valid for
all dies, is no longer sufficient to discriminate between good and defective devices [203].
Nevertheless, Iddq testing may still be used thanks to a combination of design measures
and innovative test methodologies, such as e.g. current signatures [52], current ratios [111],
and Delta-Iddq [48, 119, 184, 185].

Delta- or differential Iddq testing evaluates the difference in the amount of current drawn
by a defective circuit depending on whether the defect is activated or not. Consider a short
between two nodes a and b and a test set T containing two test vectors t1 and t2. Assume
that t1 induces the same logical value at both nodes a and b (e.g. a = b = 0), and that t2
induces opposite logical values at a and b (e.g. a = 1 and b = 0). Note that Iddq testing
only requires fault activation and that no fault effect propagation is necessary for detection.
In Delta-Iddq testing we first apply t1 and measure quiescent current IDDQ = Iback for
the inactive short. Then we apply the second vector t2, which activates the short and,
thus, creates an unwanted connection between the pull-up network driving node a and
the pull-down network driving node b. Through this connection additional current Idefect

is flowing. Therefore, the quiescent current measured for t2 is higher than that for t1.
More precisely, IDDQ consists of two components, the background current and the defect
induced current, i.e. IDDQ = Iback + Idefect. The relative increase in current observable when
comparing vectors t1 and t2 is evaluated by Delta-Iddq testing. If for different test vectors
the difference in the quiescent current exceeds a predefined threshold ∆Ilimit the circuit is
said to be defective. If, however, differences in IDDQ remain below ∆Ilimit Ampere for all
vectors applied, the circuit is said to defect-free.

146

9.2 Delta-Iddq Testing

There are essentially two criteria for the applicability of Delta-Iddq testing to today’s ad-
vanced technologies. First of all, the current measurement equipment should be sufficiently
fast to meet test time and cost constraints. Additionally, the equipment has to be sensitive
enough to allow discrimination of Iback and Iback + Idefect. Secondly, it has to be assured
that the test set used for Delta-Iddq testing contains for each short under consideration
one vector which activates the defect and one vector which does not activate the defect
[139]. All shorts for which this requirement is not met, i.e. which are either always or
never activated, are not detected by Delta-Iddq testing. An additional, yet optional
“requirement” is that the variation of IDDQ is small compared to Iback, as this affects the
screening efficiency. This might not be the case for high-performance parts such as the
largest microprocessors on the market. Yet, for many other products, including low-power
designs which contain high-VT transistors with well-controlled leakage, Delta-Iddq testing
is still applicable [83, 94]. This is also true, if Iback is subject to intra-die variations, as the
value of ∆Ilimit is rather die related and not necessarily constant for a whole production lot.
For the same die, background current may also vary depending on the test vector applied.
This is as the number of inactive transistors differs from test vector to test vector [113].
Fortunately, the average number of inactive transistors tends to stabilize with increasing
number of transistors. Consequently, the deviation between minimum and maximum Iback

of a defect-free device is rather small for large ICs [111]. This simplifies the choice of ∆Ilimit

and ensures the applicability of Delta-Iddq testing.

In the following we will investigate the detection of resistive shorts using Delta-Iddq
testing. To the best of our knowledge, this is the first study of its kind which is performed
within the framework of the resistive bridging fault model. The contents of this chapter
have been adapted from our publications [W10] and [P13]. We will focus on the detection
of active defects [52], i.e. defects which affect switching nodes (as opposed to passive nodes
such as Vdd and ground terminals) of the circuit, only. Furthermore, we will, as usual,
consider solely resistive inter-gate shorts (Iddq testing of intra-gate shorts is covered
e.g. in [160, 190]). We will extend the resistive bridging fault model to be able to compute
short resistance intervals detected by Delta-Iddq testing. Several metrics are introduced
which help to exactly quantify the effectiveness of resistive short detection by Delta-Iddq
testing, voltage testing and the combination of both techniques. The metrics thoroughly
discriminate between shorts detectable by voltage testing (hard defects) and those detected
by Delta-Iddq testing only (flaws).

Some authors claim that when applying Iddq testing to sequential circuits it is safe to
use the fault-free next state function to determine the activation of a fault [183]. Yet,
as was noted by [99, 134, 160] this may lead to incorrect results for certain shorts which
modify the values stored in flip-flops. We demonstrate that this effect also applies to
resistive bridging faults and that our approach is able to correctly resolve these non-trivial
situations. Beyond that, our study shows that there are circuit configurations in which
the interval of short resistances detected by Delta-Iddq testing is non-contiguous. This is
contrary to conventional wisdom, which suggests, that the detection ranges may only be
contiguous. Our results underline that for sequential circuits this conventional assumption
is not always true, and that fault effects stored in flip-flops may prevent the detection of
certain shorts by Delta-Iddq testing.

147

9 Advanced Testing Methods

Rsh

C

A

D
B

F

V l t
C

V l t
D

a

b

Figure 9.13: Example of a sequential circuit with a resistive short affecting nodes a and b.

Our experimental data indicates that Delta-Iddq testing is very valuable to detect resistive
shorts detectable by voltage testing and, in addition to that, adds coverage of flaws,
undetectable by conventional testing. This also applies to test sets which are considerably
smaller than those used for voltage testing. However, as we demonstrate, test sets have to
conform with the requirements of Delta-Iddq testing to guarantee superior results. Our
experiments, give indications on the improvements in coverage that may be obtained when
respecting these requirements. Furthermore, we show that a combination of Delta-Iddq
and voltage testing may increase the coverage of defects beyond what may be detected by
either method individually.

In the subsequent Chapter 9.2.1, we will introduce the extensions of the resistive bridging
fault model required to integrate Delta-Iddq testing and to quantify its effectiveness.
Then, Chapter 9.2.2 will discuss the particularities of resistive shorts in sequential circuits.
Experimental results are reported in Chapter 9.2.3. Finally, conclusions can be found in
Chapter 9.3.

9.2.1 Extensions of the Resistive Bridging Fault Model

This chapter will first demonstrate the application of Delta-Iddq testing to a small example
circuit. In particular, we will transfer the concepts of critical resistance and detectability
interval to this testing methodology. Subsequently, we will rephrase the general framework
of our electrical model to enable the computation of critical resistances for Delta-Iddq
testing. The effectiveness of quiescent current testing may be quantified and related to the
coverage of conventional voltage testing using the metrics introduced in the last part of
this chapter.

Analogue Detectability Intervals for Quiescent Current Testing

Consider the circuit from Figure 9.13. It depicts a short between the output a of buffer
A and the output b of NOR gate B. The shorted nodes are observed by driven gates C
and D and, possibly, some other gate driven by node a not shown in the figure. Gate F
represents some arbitrary flip-flop. Assume that the flip-flop stores the logical value 0 and

148

9.2 Delta-Iddq Testing

ΔI
limit

ΔI
DDQ

V Rsh

Rsh

V a

V b

RD
10

RIddq
10

RC
10

RIddq
11

V l t
D

V l t
C

RD
11 RC

11

Figure 9.14: Current flowing through the defect (upper diagram) and voltage characteristic
at nodes a and b (lower diagram) as a function of Rsh for two test vectors.

the logical value 1 is applied to the only input of the circuit. Obviously, in this case, a = 1
and b = 0 will hold. In a fault-free circuit this will result in the logical value 1 being driven
at the output of gate D.

The voltage characteristics at nodes a and b in the presence of the short of resistance
Rsh are depicted as a solid line in the lower diagram of Figure 9.14. Logic thresholds
are V C

lt of gate C and V D
lt of gate D. The characteristic cross the logic thresholds of

the respective driven gates and the projection of these intersections to the x-axis yields
two critical resistances, R10

C and R10
D . (Note that superscript “10” indicates that these

critical resistances are obtained when assigning the pattern (1, 0) to the inputs of gate B.)
Consequently, the faulty logical value 1 will be interpreted by gate C for Rsh < R10

C and
the faulty logical value 0 will be interpreted by gate D for Rsh < R10

D . Due to the logic
function of gate D, the gate’s output will be at the faulty logical value 0 in presence of a
short with resistance R10

D < Rsh < R10
C and at the fault-free logical value 1, otherwise.

The solid curve in the upper diagram of Figure 9.14 depicts the same situation from the
perspective of current. It shows the characteristic of a defect induced current flowing
through the short as a function of Rsh. We indicate the Delta-Iddq threshold ∆Ilimit as a
horizontal line. Similar to the case of voltage testing, we may observe an intersection of
the current characteristic with ∆Ilimit. The projection of this intersection to the abscissa
yields the critical resistance R10

Iddq. For any short having a resistance lower than R10
Iddq,

i.e. Rsh < R10
Iddq, the current flowing through the defect exceeds ∆Ilimit. Consequently, we

149

9 Advanced Testing Methods

may detect the defect by Delta-Iddq testing. For any short having a resistance larger
than R10

Iddq, i.e. Rsh > R10
Iddq, the defect induced current is smaller than ∆Ilimit and the

short will remain undetected by Delta-Iddq testing. Since in quiescent current testing
no propagation is required, the interval in which ∆Ilimit is exceeded corresponds to the
detection interval. Similar to the ADI for voltage testing of resistive bridging faults we will
denote the interval of short resistances detected by (Delta-)Iddq testing as ADI for Iddq
testing I-ADI. In our example, the I-ADI obtained with Delta-Iddq testing is [0, R10

Iddq].

Now assume, that the flip-flop stores the logical value 1 instead of the logical value 0
and we continue to apply the logical value 1 to the input of the circuit. In this case two
n-transistors are active in the pull-down network of gate B compared to only one in the
situation discussed above. The driving strength of gate A remains unchanged and, thus,
the voltage characteristics at nodes a and b may shift down. They are depicted as a dashed
line in the lower diagram of Figure 9.14. As a consequence, we may record two new critical
resistances R11

C and R11
D for gates C and D, respectively (superscript “11” denotes that now

the pattern (1, 1) is assigned to the inputs of gate B). In this case, the output of gate D
will see the faulty logical value 0 for an Rsh from the interval [R11

D , R
11
C] and the fault-free

logical value 1, otherwise.

Similar to the case of voltage testing, an increase in the driving strength of a gate B
influences the current flowing through the defect site. In our example we may observe an
increased current depicted as a dashed line in the upper diagram of Figure 9.14. Analogous
to voltage testing we derive the new critical resistance R11

Iddq for Delta-Iddq testing. Hence,
we obtain I-ADI [0, R11

Iddq].

Electrical Model

In this chapter we will introduce a methodology to compute critical resistances for Delta-
Iddq testing. In quiescent current testing our interest is focused on the increased current
flow which is caused by the unintended conducting path created by an activated short. Due
to this path, a faulty instance of a circuit draws more current than a fault-free instance
of the same circuit. This relative current increase can be measured and compared to a
reference value ∆Ilimit. Circuits for which ∆Ilimit is exceeded are considered to be defective.
Similarly to the voltage testing case, the critical resistance for Delta-Iddq testing is defined
as the maximum short resistance for which the current flowing through the unintended
current path created by that short exceeds ∆Ilimit.

The increased current flow may be ascribed to two effects. On the one hand the activated
defect itself creates a current path which allows additional current to be drawn. On the
other hand the activated defect may cause additional current to flow through the driven
gates (see [9] for a discussion). This is, because intermediate voltage levels may be present
at the shorted nodes due to the defect (an effect which is exploited by voltage testing). As
a consequence both pull-up and pull-down network may be active in some of the driven
gates (according to [162] this effect may even affect gates succeeding the driven gates).
This creates additional, unintended current paths, which contribute to the overall current

150

9.2 Delta-Iddq Testing

increase. We take a conservative position and do not account for the secondary current
increase caused by the driven gates. Thus, our fault coverage figures may be considered a
pessimistic lower bound.

To determine the critical resistance for Delta-Iddq testing, the general framework intro-
duced in Chapter 5.2 to calculate critical resistances for voltage testing has to be rephrased.
In the system of equations used in this framework (refer again to Equation (5.2.1)) the
current flowing through the defect is denoted as I0. This is illustrated in Figure 5.3 for the
case of two inverters. The current I0 contributes to the overall quiescent current drawn by
the circuit. We assume Iback to be independent of the defect-induced current. Hence, it is
regarded as a constant offset which does not influence defect detection. Consequently, our
analysis is valid for Delta-Iddq testing.

Given ∆Ilimit we are looking for the maximal short resistance Rsh for which the current
flowing through the defect I0 exceeds this limit, i.e. I0 > ∆Ilimit holds. Since for increasing
Rsh we can expect I0 to monotonically decrease, setting I0 = ∆Ilimit yields this critical
resistance. The short resistance is calculated – according to Equation (5.2.1) – as: Rsh =
(Vn1 − Vn0)/I0. Voltages Vn1 and Vn0 can be obtained for a given I0 using the inverse
output characteristics of p-transistors (I−1

p) and n-transistors (I−1
n), respectively. Thus, for

Vn1 = I−1
p (I0) and Vn0 = I−1

n (I0) we obtain:

Rsh =
I−1
p (I0)− I−1

n (I0)

I0

. (9.2.1)

Now we can set I0 = ∆Ilimit to determine the critical resistance for Delta-Iddq testing
RIddq

crit = Rsh. Using the inverse functions of the output characteristics for the Shockley
model, Equation (9.2.1) transforms to:

RIddq
crit =

1

∆Ilimit

(
|Vtp0|+

√
(Vdd − |Vtp0|)2 − 2 ·∆Ilimit

µpCoxWp/Lp

−Vdd + Vtn0 +

√
(Vdd − Vtn0)2 − 2 ·∆Ilimit

µnCoxWn/Ln

)
.

(9.2.2)

Refer to Table 5.2 for an explanation of the symbols used.

Obviously, the same methodology may also be used to derive similar equations for the
Fitted or the Predictive Model. We do not account for additional increased current flow
through the driven gates. In this sense Equation (9.2.1) (and thus Equation (9.2.2) as well)
derives a pessimistic lower bound for the critical resistance of Delta-Iddq testing.

Fault Coverage Metrics

To be able to accurately compare voltage testing and Delta-Iddq testing we define several
new fault coverage metrics which are introduced in this chapter. When evaluating the
detection of resistive shorts by either method, it is crucial to carefully distinguish between

151

9 Advanced Testing Methods

G-ADI C-ADI I-ADI G-ADI C-ADI I-ADI

(a) (b)

Figure 9.15: Venn diagram for (a) combined fault coverage FCIddq
comb (Equation (9.2.4))

and (b) flaw coverage FCIddq
flaw (Equation (9.2.5)). Diagonal lines indicate the

numerator, vertical lines show the denominator.

defects detectable by voltage testing, i.e. Rsh ∈ G-ADI, and those only detected by Delta-
Iddq testing (Rsh ∈ [0 Ω,∞] \G-ADI). We will refer to the latter category of defects as
flaws. As usual, all metrics are averaged if more than one fault is considered.

The first metric, which is defined for a single resistive bridging fault f , measures the
coverage of shorts by quiescent current testing only. The detection of flaws is not accounted
for, as we focus on short resistances contained in G-ADI(f). Let I-ADI(f) denote the union
of all resistance ranges for which resistive bridging fault f is detected by the individual
vectors of a given test set using quiescent current testing. The Iddq fault coverage FCIddq

is defined as:

FCIddq(f) = 100% ·

∫
(I-ADI(f)∩G-ADI(f))

ρ(r)dr∫
G-ADI(f)

ρ(r)dr
. (9.2.3)

To estimate the efficiency of the combination of voltage and quiescent current testing,
we determine the range of short resistances detected by either technique, i.e. Rsh ∈
C-ADI(f)∪ I-ADI(f). Note that again we are restricted to the range of defects detectable
by voltage testing. The combined fault coverage metric FCIddq

comb is illustrated in the form of
a Venn diagram in Figure 9.15(a); it computes as follows:

FCIddq
comb(f) = 100% ·

∫
((C-ADI(f)∪I-ADI(f))∩G-ADI(f))

ρ(r)dr∫
G-ADI(f)

ρ(r)dr
. (9.2.4)

All metrics introduced so far restricted the detected short resistance range to those defects
detectable by voltage testing. The detection of flaws, only detectable by quiescent current
testing, is captured by the Iddq flaw coverage metric FCIddq

flaw . It computes the range of
resistances detected by voltage or quiescent current testing which are undetectable by

152

9.2 Delta-Iddq Testing

Rsh

A

B A
D

Rsh

A

B C
D

Time-Frame 0 Time-Frame 1

[0,R Iddq
10

] IDDQ

[0,RC
10
]1/0

[0,R D
10
]0 /1

[R D
10 , RC

10
]0 /1 [0,RC

10
]1/0

[0,R Iddq
10

]∪[RC
10 , R Iddq

11
] IDDQ

[0,R D
10
]0 /1

[R D
10 ,RC

10
]0 /1

11

0

a

b

a

b

Figure 9.16: Two-frame time-frame expansion of the circuit from Figure 9.13 (I-ADIs are
marked by “IDDQ”).

voltage testing, i.e. ([0 Ω,∞] \G-ADI(f)) ∩ I-ADI(f). This is related to the range of all
flaws – see Figure 9.15(b) for an illustration. The definition of the metric is:

FCIddq
flaw (f) = 100% ·

∫
(([0 Ω,∞]\G-ADI(f))∩I-ADI(f)) ρ(r)dr∫

[0 Ω,∞]\G-ADI(f)
ρ(r)dr

. (9.2.5)

Assume for example that G-ADI is [0, 1000] and that I-ADI is [0, 1500]. Then the numerator
of Equation (9.2.5) will be [1000, 1500]. The denominator, on the other hand, will be
[1000,∞].

Note that FCIddq, FCIddq
comb, and FCIddq

flaw are closely related to metrics FCnn, FCnn
comb, and

FCnn
flaw, defined in Chapter 9.1.1.

9.2.2 Delta-IDDQ Testing of Sequential Circuits

Refer again to the circuit from Figure 9.13 and assume that the logical value 1 is applied
in two consecutive time-frames to the input of the circuit. Assume furthermore that before
the first application of a test, the flip-flop F is initialized to the logical value 0. Our
preceding analysis from Chapter 9.2.1 yielded two critical resistances R10

C and R10
D for the

case of voltage testing and critical resistance R10
Iddq when Delta-Iddq testing is performed

(refer to Figure 9.14). Similarly, if the logical value 1 is stored in the flip-flop our analysis
demonstrated that the critical resistances R11

C , R11
D , and R11

Iddq may be obtained. We assume
0 < R10

D < R10
Iddq < R10

C < R11
Iddq.

Figure 9.16 depicts the unrolled version of the circuit for the two consecutive time-frames,
i.e. the circuit’s two-frame time-frame expansion (refer to Chapter 2.2.2 for an introduction
of this technique). From the preceding discussion we know that in time-frame 0, i.e. when
the logical value 0 is present in the flip-flop, due to a short with an intrinsic resistance
from the range [R10

D , R
10
C], the logical value 0 will be stored instead of the fault-free logical

153

9 Advanced Testing Methods

V

Rsh

V a

RD
10

Rsh

V b

RIddq
10 RC

10 RIddq
11

ΔI
limit

ΔI
DDQ

Figure 9.17: Detection conditions for the second time-frame. Resistance ranges highlighted
in (light) gray are detected by Delta-Iddq testing.

value 1. As a consequence, in time-frame 1 the fault-free logical value 1 will be fed into the
circuit only if for the short’s resistance either Rsh < R10

D or R10
C < Rsh holds.

In time-frame 1 the characteristics of voltage and current, respectively will match those
illustrated by solid lines in Figure 9.14 only if Rsh ∈ [R10

D , R
10
C]. For all other short defect

resistances we have to refer to the characteristics illustrated by dashed lines in the figure;
this is clarified in Figure 9.17. From our prior analysis it is clear that if the logical value 1
is stored in the flip-flop and we assign the logical value 1 to the input of the circuit, Delta-
Iddq testing allows the detection of defects from [0, R11

Iddq]. Unfortunately, in time-frame 1
the complementary logical value 0 is supplied for Rsh ∈ [R10

D , R
10
C]. Short defects with a

resistance from this range may only be detected by Delta-Iddq testing if their resistance
is below R10

Iddq. Thus, in summary, Delta-Iddq detects shorts only if their resistance is
within [0, R10

Iddq] ∪ [R10
C , R

11
Iddq]. This is illustrated in Figure 9.17 by the resistance ranges

highlighted in gray (where light gray marks those ranges detected when the logical value
0 is stored in the flip-flop F). Obviously this range is neither contiguous nor does it
correspond to the interval [0, R11

Iddq] obtained when assuming the fault-free logical value 1 in
F in time-frame 1 (as suggested in [183]). Adopting this simplified assumption would mean
that defects with Rsh ∈ [R10

Iddq, R
10
C] were spuriously declared as detected by Delta-Iddq.

As was noted in [159], the behavior described above is unique for shorts with non-zero
resistance. For resistive shorts, the analysis framework proposed in this chapter is essential
to identify the exact conditions under which the standard assumption of a fault-free next
state is invalid. It would be impossible to derive this behavior without considering the
short resistance explicitly.

154

9.2 Delta-Iddq Testing

9.2.3 Experimental Results

We applied 1,000 random test vectors to the ISCAS 85 [19] and the combinational cores
of the ISCAS 89 [18] benchmark circuits. The fault list contained 10,000 randomly
selected non-feedback bridging faults, where available.8 Alternatively, we could also
use layout extracted bridging faults (refer to Chapter 3.3). We employed the Shockley
technology model and parameters from the SPICE model card of a 0.35µm technology
from austriamicrosystems AG to determine the critical resistances (for voltage testing
the Shockley Model equations from Chapter 5.2.2 were employed). When calculating
fault coverages we used the distribution ρ proposed in [165] which is based on data from
[158]. Yet, all experiments in this chapter could be easily repeated with any other short
resistance distribution. The Delta-Iddq threshold ∆Ilimit was set to 100µA. This is a
typical resolution of high-current (> 100µA) Iddq measurement systems although better-
resolving systems are available. We did not observe much variability in results using ∆Ilimit

of 50µA and even 10µA. All experiments were performed with an extended version of the
simulator from [J3] which ran on a 2 GHz Pentium IV with 2 GB RAM.

The main objective of our experiments was to provide insight into the detection capabilities
of Delta-Iddq testing only, and those of a combination of Delta-Iddq and voltage testing. In
general, the number of (Delta-)Iddq measurements is substantially lower than the number
of test vectors applied when using voltage testing. Hence, (Delta-)Iddq measurements are
only performed for a subset of the vectors used for voltage testing. To account for this
fact, we conducted (Delta-)Iddq experiments for 10, 100, and 1,000 out of 1,000 random
vectors contained in the test set for voltage testing.

Delta-Iddq testing may only be performed if the background current Iback of the device
under test is known. In order to obtain this reference value, there has to be at least one test
vector for which the defect does not contribute to the overall quiescent current. This implies
that for each resistive bridging fault tested there must at least one vector in the test set
which does not activate the fault. If for any fault this requirement is not met, i.e. all vectors
impose opposite values on the nodes shorted by the fault, this fault remains undetected by
Delta-Iddq testing. In the following we will refer to faults which are activated for all test
patterns in the test set as always activated (AA) faults. Typically, the number of always
activated faults tends to be higher for smaller test sets, such as the one containing only
10 test vectors. We evaluated the magnitude of AA faults by calculating the number of
bridging faults which were activated under all Iddq measurements. Furthermore, all AA
faults have been excluded when calculating fault coverages for Delta-Iddq testing. By
contrast, no restrictions concerning AA faults apply to voltage testing. Thus, all resistive
shorts detected by voltage testing were considered when calculating fault coverages.

The experimental results obtained for 10, 100, and 1,000 Iddq measurements can be found
in Tables 9.12, 9.13, and 9.14, respectively. Note that the test sets used for voltage testing
always contained 1,000 random vectors. All tables have the same outline. In column
one the name of the circuit is given. Column two states global fault efficacy G-FE from

8Note that unless otherwise specified the fault lists used in this chapter are equal to those employed in
all other experiments discussed in Part II of this work.

155

9 Advanced Testing Methods

 95

 96

 97

 98

 99

 100

c5315
c7552

cs05378

cs09234

cs13207

cs15850

cs35932

cs38417

cs38584

 0

 50

 100

 150

 200

 250

Fa
ul

t C
ov

er
ag

e
FC

Id
dq

N
um

be
r o

f A
A

 F
au

lts

10 100 1000

 95

 96

 97

 98

 99

 100

c5315
c7552

cs05378

cs09234

cs13207

cs15850

cs35932

cs38417

cs38584

 0

 50

 100

 150

 200

 250

Fa
ul

t C
ov

er
ag

e
FC

Id
dq

N
um

be
r o

f A
A

 F
au

lts

Figure 9.18: Iddq fault coverage FCIddq (bar graph) and number of AA faults (line graph)
for 10, 100, and 1,000 Delta-Iddq measurements.

Equation (5.4.7) obtained for logic testing only. The following four columns contain results
of the Delta-Iddq measurements. The number “AA” of always activated faults is given in
column three. Fault coverage FCIddq computed for Delta-Iddq testing only (with AA faults
excluded) can be found in column four. The combination of both techniques is evaluated
by the combined fault coverage FCIddq

comb which is given in column five. Subsequently, column
six contains the Iddq flaw coverage FCIddq

flaw . Recall that by definition, the flaw coverage of
voltage testing is 0%.

As may be seen, FCIddq obtained by solely performing Delta-Iddq measurements is strongly
correlated to the number of always activated faults. A large number of AA faults directly
implies low FCIddq and vice versa. This is illustrated by Figure 9.18 for a selection of large
circuits. The chart depicts FCIddq (as a bar graph) and the number of AA faults (as a line
graph) for 10, 100, and 1,000 Delta-Iddq measurements. The effectiveness of Delta-Iddq
testing improved significantly when combined with voltage testing – in particular, if only a
few Iddq measurements were allowed. To a certain extent, this may be attributed to the
fact that voltage testing detected some of the always activated faults which were missed by
Delta-Iddq testing. Yet, even for 1,000 measurements the additional voltage testing run
still improved the average coverage of detectable defects from 99.42% to 99.74%. Voltage
testing alone, however, achieved an average fault coverage of only 97.32%. This suggests
that Delta-Iddq testing detects defects not detected by voltage testing and vice versa.
We also observed extremely high flaw coverages, which are again closely correlated to the
number of AA faults.

To further investigate the impact of AA faults, we recomputed FCIddq and FCIddq
comb assuming

that both AA and non-AA faults are detectable. Results can be found in the last two

156

9.2 Delta-Iddq Testing

 60

 65

 70

 75

 80

 85

 90

 95

 100

c0880
c1355

c1908
c2670

c3540
c5315

c7552
cs00820

cs00832

cs00838

cs00953

cs01196

cs01238

cs01423

cs01488

cs01494

cs05378

cs09234

cs13207

cs15850

cs35932

cs38417

cs38584

Fa
ul

t C
ov

er
ag

e
FC

Id
dq

Delta-Iddq Iddq

Figure 9.19: Iddq fault coverage FCIddq for Delta-Iddq and Iddq testing (10 Iddq
measurements).

columns of Tables 9.12, 9.13, and 9.14 which are labeled “Iddq” (FCIddq in column seven
and FCIddq

comb in column eight). Note that these figures are mainly given for reference and
their physical meaning is limited. The numbers would have been correct if Iddq (not
Delta-Iddq) testing had been employed. However, in contrast to Delta-Iddq testing, Iddq
testing with a limit of only 100µA does not appear to be realistic. To verify our results,
we also ran experiments assuming a much higher threshold of up to 1, 500µA, which would
be appropriate for regular (not Delta-) Iddq testing. We found that this meant a drastic
reduction in fault coverage.

The additional results in the tables show that the coverage deterioration, which may be
accounted to the AA faults, is significant. This effect is most severe if only a few Iddq
measurements are allowed: For 10 measurements fault coverage FCIddq leaps from an
average of 93.48% to 96.48% if AA faults are not excluded (individual results are illustrated
in Figure 9.19). This implies that AA faults must be accounted for when establishing the
quality of a test set. Furthermore, the results show that a sufficient number of Iddq tests
is required to achieve a high Delta-Iddq fault coverage. Also, the need for special test sets
optimized to avoid AA faults and for ATPG tools to produce such test sets is obvious. In
this sense, the fault coverages obtained without elimination of AA fault detections may be
seen as an indicator for the efficiency to be expected from these improved test sets.

157

9 Advanced Testing Methods

9.3 Conclusions

We proposed extensions to the resistive bridging fault model which allow us to evaluate
the impact of two advanced testing methods on the coverage of shorts. The methods
investigated are very different in terms of their conceptual approach. Yet, both aim at
increasing the coverage of resistive shorts beyond what may be obtained by “traditional”
voltage testing.

In the first part of the chapter we addressed low-X testing, i.e. low-voltage testing, low-
temperature testing, and their combination. We extended the electrical model of the
resistive bridging fault model to account for the effect of both techniques on transistor
behavior and defect resistance. Furthermore, we proposed advanced fault coverage metrics
which reflect the coverage impact of low-X testing. The metrics accurately discriminate
between shorts detectable under the nominal conditions, i.e. hard defects, and those defects
which are detectable by low-X testing only, i.e. flaws. Based on the experimental results,
we gave indications for optimal use of each individual technique and their combination.
Moreover, we demonstrated that under certain situations, low-voltage testing can cause
coverage loss with respect to the range of short resistances detectable under the nominal
conditions. Experimental data underlines that this effect is actually observable for the
benchmark circuits considered.

The second part of this chapter dealt with Delta-Iddq testing. The extensions proposed
there enable the evaluation of both voltage and quiescent current testing within the
framework of the resistive bridging fault model. Again, fault coverage definitions were
introduced which accurately discriminate between hard defects, detectable by voltage
testing, and flaws, which are covered by Delta-Iddq testing. Our experiments accounted
for the specifics of Delta-Iddq testing, which prevent the detection of bridging faults
activated by every test vector (always activated faults). Experimental results confirm that
these shorts have a very detrimental impact on the fault coverage attainable by Delta-Iddq
testing, and thus must be addressed appropriately during both test pattern generation
and evaluation. We could demonstrate that Delta-Iddq testing allows excellent coverage
of resistive shorts, in particular if combined with voltage testing. Furthermore, we could
show that the tight integration of voltage and current testing aids to correctly resolve the
non-trivial detection conditions which may arise when applying Delta-Iddq testing to
sequential circuits.

Both extensions discussed in this chapter emphasize the advantages of the advanced
analytical concept forming the basis of the resistive bridging fault model. Once the
model has been extended to account for specific electrical and physical phenomena, their
impact can be evaluated for several parameter configurations without any additional effort.
Furthermore, the model’s parametric nature allows to compare conceptually different
techniques, such as voltage and current testing, side by side.

158

Experimental Data

Table 9.3: Non-nominal fault coverage FCnn for 10 time units and V nom
dd = 3.3 V.

Circuit 3.3 V 3.0 V 2.8 V 2.5 V 2.0 V
c0432 50.89 51.09 43.00 41.89 32.68
c0499 61.75 62.76 62.26 62.29 51.75
c0880 81.10 79.76 80.05 79.71 76.74
c1355 71.79 73.36 72.70 72.10 60.25
c1908 81.47 81.32 80.01 77.25 69.84
c2670 68.46 67.67 67.29 64.79 55.72
c3540 64.18 62.16 57.84 53.72 47.06
c5315 69.57 70.62 63.09 62.17 56.52
c7552 75.83 75.82 73.81 71.44 63.06
cs00208 58.84 59.72 56.74 54.92 46.76
cs00298 86.72 86.28 85.56 82.94 77.61
cs00344 81.75 82.19 79.14 79.40 74.16
cs00349 81.88 82.23 79.21 79.47 74.37
cs00382 83.54 82.57 82.94 78.95 68.42
cs00386 45.45 46.26 46.56 46.63 29.79
cs00400 82.94 81.99 82.32 78.58 56.67
cs00420 58.33 58.55 57.87 57.16 53.11
cs00444 61.86 57.18 57.09 57.46 57.43
cs00510 74.54 72.87 72.77 71.44 61.04
cs00526 73.57 70.27 70.28 70.96 67.93
cs00641 90.30 89.10 88.16 82.98 68.39
cs00713 89.33 87.77 86.55 81.37 66.34
cs00820 39.10 35.98 34.23 31.44 22.50
cs00832 37.51 34.94 34.35 31.24 22.41
cs00838 53.62 52.20 52.11 51.08 46.87
cs00953 54.25 55.15 55.30 55.74 51.76
cs01196 41.02 39.83 39.47 38.27 33.33
cs01238 42.53 41.60 41.15 39.89 34.84
cs01423 71.17 69.54 69.61 65.36 62.15
cs01488 45.14 39.96 39.79 37.17 28.44
cs01494 44.40 39.95 39.72 37.12 27.93
cs05378 75.12 74.89 72.62 71.47 68.77
cs09234 64.16 64.44 63.68 61.47 55.00
cs13207 85.09 85.84 85.36 84.52 79.12
cs15850 76.29 75.82 75.18 74.17 68.61
cs35932 69.59 61.44 61.86 46.95 38.86
cs38417 83.96 84.94 84.53 83.10 76.72
cs38584 67.83 64.31 64.71 64.72 62.73
∅ 66.97 65.85 64.71 62.67 55.15

159

9 Advanced Testing Methods

Table 9.4: Non-nominal fault coverage FCnn for 100 time units and V nom
dd = 3.3 V.

Circuit 3.3 V 3.0 V 2.8 V 2.5 V 2.0 V
c0432 97.71 98.32 98.43 98.70 98.02
c0499 89.26 86.42 86.57 86.55 84.81
c0880 96.32 97.14 97.77 97.98 97.90
c1355 97.02 97.13 97.27 97.15 95.14
c1908 95.07 95.86 95.55 95.62 93.41
c2670 92.73 93.59 93.93 93.22 90.87
c3540 93.40 93.77 93.71 92.79 90.13
c5315 99.02 99.33 99.35 99.00 97.88
c7552 97.63 98.23 98.44 98.22 97.39
cs00208 94.66 93.01 93.26 92.50 90.71
cs00298 98.43 98.83 98.69 98.81 98.36
cs00344 99.22 99.28 99.39 99.36 98.36
cs00349 99.24 99.29 99.40 99.36 98.33
cs00382 99.09 99.40 99.49 99.35 98.71
cs00386 74.47 73.99 74.41 73.91 73.92
cs00400 99.09 99.40 99.33 99.31 98.63
cs00420 80.11 80.29 80.47 79.93 76.36
cs00444 98.30 98.74 98.77 98.88 97.56
cs00510 97.70 97.89 98.07 97.78 96.88
cs00526 96.11 96.88 96.15 96.64 95.66
cs00641 98.50 99.24 99.61 99.51 99.47
cs00713 98.63 99.26 99.51 99.36 99.33
cs00820 79.48 77.92 77.57 74.09 69.09
cs00832 78.60 77.17 76.69 73.33 67.88
cs00838 62.81 63.36 62.65 62.84 62.66
cs00953 86.87 87.17 87.25 87.11 85.81
cs01196 82.68 82.17 82.59 81.58 76.93
cs01238 83.74 83.42 83.93 83.25 79.30
cs01423 96.05 96.76 97.09 96.73 95.66
cs01488 84.49 83.85 83.57 82.12 77.59
cs01494 84.10 83.43 82.92 81.56 77.23
cs05378 93.02 93.62 93.70 93.54 92.52
cs09234 78.56 79.37 80.02 79.58 78.10
cs13207 93.33 94.49 95.06 95.27 94.82
cs15850 90.26 91.26 91.67 91.69 91.06
cs35932 99.32 99.26 98.94 98.68 97.68
cs38417 95.16 96.27 96.89 97.12 96.82
cs38584 88.24 88.90 89.12 89.21 88.40
∅ 91.27 91.41 91.51 91.10 89.46

160

Experimental Data

Table 9.5: Non-nominal fault coverage FCnn for 1,000 time units and V nom
dd = 3.3 V.

Circuit 3.3 V 3.0 V 2.8 V 2.5 V 2.0 V
c0432 99.78 99.90 99.96 100.00 99.94
c0499 99.99 100.00 100.00 100.00 99.95
c0880 98.88 99.26 99.47 99.74 99.90
c1355 99.89 99.93 99.92 99.90 99.80
c1908 99.25 99.52 99.53 99.46 99.37
c2670 95.93 96.62 96.90 96.97 96.84
c3540 99.19 99.43 99.41 99.41 99.11
c5315 99.96 99.99 100.00 100.00 100.00
c7552 99.12 99.46 99.57 99.60 99.59
cs00208 99.56 99.52 99.53 99.33 98.25
cs00298 99.98 99.99 99.99 100.00 100.00
cs00344 99.97 99.98 99.98 99.99 100.00
cs00349 99.97 99.98 99.98 99.99 100.00
cs00382 99.96 99.97 99.98 99.98 99.99
cs00386 99.82 99.46 99.46 99.49 98.95
cs00400 99.96 99.98 99.98 99.98 99.99
cs00420 85.20 85.63 85.82 86.02 85.96
cs00444 99.98 99.98 99.99 99.96 99.96
cs00510 99.98 99.99 99.99 99.99 99.85
cs00526 99.44 99.62 99.73 99.80 99.59
cs00641 99.61 99.84 99.96 99.92 99.92
cs00713 99.68 99.84 99.93 99.90 99.90
cs00820 96.29 96.49 96.60 96.64 95.99
cs00832 96.13 96.31 96.44 96.47 95.69
cs00838 69.83 70.29 70.53 70.76 70.27
cs00953 97.33 97.76 98.00 98.19 98.13
cs01196 96.07 96.57 96.78 96.71 95.92
cs01238 96.49 96.96 97.12 97.24 96.71
cs01423 99.21 99.49 99.65 99.80 99.75
cs01488 99.65 99.77 99.81 99.77 99.47
cs01494 99.66 99.77 99.82 99.71 99.51
cs05378 98.68 98.91 99.04 99.16 99.00
cs09234 90.92 91.37 91.61 91.23 89.06
cs13207 95.90 96.86 97.17 97.26 97.09
cs15850 96.76 97.39 97.40 97.52 97.20
cs35932 100.00 100.00 100.00 100.00 100.00
cs38417 97.73 98.48 98.77 98.94 98.87
cs38584 92.42 92.77 92.95 93.06 92.43
∅ 97.32 97.55 97.65 97.68 97.42

161

9 Advanced Testing Methods

Table 9.6: Flaw coverage FCnn
flaw for 1,000 time units.

Circuit 3.0 V 2.8 V 2.5 V 2.0 V
c0432 23.47 39.39 60.22 88.62
c0499 18.73 33.61 53.40 85.82
c0880 21.34 35.29 55.65 87.18
c1355 17.64 31.92 51.53 85.28
c1908 18.87 33.09 52.65 84.09
c2670 17.28 30.75 51.46 83.95
c3540 20.97 35.46 56.28 86.99
c5315 20.34 34.97 56.45 88.18
c7552 19.02 33.34 54.50 86.93
cs00208 22.80 37.32 58.67 86.65
cs00298 23.26 38.12 60.00 89.28
cs00344 22.00 36.00 57.65 88.15
cs00349 22.07 36.13 57.80 88.25
cs00382 24.82 40.32 62.43 90.44
cs00386 20.73 34.40 55.84 86.76
cs00400 24.65 40.11 62.12 90.26
cs00420 17.86 29.70 47.92 74.25
cs00444 23.59 38.97 60.19 89.25
cs00510 24.56 40.05 61.82 89.91
cs00526 23.87 38.64 60.08 88.40
cs00641 20.64 35.05 55.78 88.20
cs00713 20.74 35.18 55.85 88.03
cs00820 23.24 37.95 57.98 84.02
cs00832 23.33 38.08 58.10 83.93
cs00838 14.09 23.55 38.21 59.47
cs00953 21.48 35.73 56.85 86.31
cs01196 19.38 32.79 53.52 83.08
cs01238 19.54 33.13 53.99 83.62
cs01423 21.18 35.31 56.20 87.43
cs01488 21.38 35.25 57.27 88.09
cs01494 21.39 35.26 57.26 88.18
cs05378 25.67 40.78 62.80 90.42
cs09234 16.27 28.00 46.90 76.97
cs13207 17.86 30.68 51.04 84.77
cs15850 18.98 31.99 52.35 85.08
cs35932 19.46 33.51 53.73 85.84
cs38417 19.15 32.63 53.73 86.73
cs38584 19.12 32.01 51.57 80.22
∅ 20.81 34.85 55.52 85.50

162

Experimental Data

Table 9.7: Combined fault coverage FCnn
comb for T nom = 370 K, T = 300 K, V nom

dd = 3.3 V
and different values of Vdd.

Circuit G-FE FCnn
comb

3.3 V 3.0 V 2.8 V 2.5 V 2.0 V
c0432 99.84 99.88 99.91 99.94 99.98 100.00
c0499 99.99 100.00 100.00 100.00 100.00 100.00
c0880 98.52 99.10 99.33 99.51 99.74 99.91
c1355 99.90 99.94 99.96 99.97 99.99 100.00
c1908 99.08 99.33 99.43 99.51 99.60 99.69
c2670 92.96 93.88 94.14 94.22 94.39 94.62
c3540 99.25 99.47 99.54 99.57 99.62 99.66
c5315 99.88 99.93 99.96 99.98 99.99 100.00
c7552 97.99 98.39 98.50 98.55 98.64 98.76
cs00208 99.57 99.73 99.78 99.80 99.81 99.82
cs00298 99.99 100.00 100.00 100.00 100.00 100.00
cs00344 99.97 99.99 99.99 99.99 100.00 100.00
cs00349 99.97 99.99 99.99 99.99 100.00 100.00
cs00382 99.96 99.97 99.98 99.98 99.99 99.99
cs00386 99.78 99.90 99.93 99.93 99.94 99.94
cs00400 99.96 99.97 99.98 99.98 99.99 99.99
cs00420 83.84 84.68 84.97 85.09 85.26 85.41
cs00444 99.99 99.99 100.00 100.00 100.00 100.00
cs00510 99.97 99.98 99.99 99.99 99.99 100.00
cs00526 99.56 99.70 99.79 99.82 99.85 99.88
cs00641 99.56 99.86 99.91 99.94 99.97 99.97
cs00713 99.61 99.86 99.91 99.93 99.95 99.95
cs00820 95.88 96.36 96.66 96.74 96.85 96.97
cs00832 95.48 95.92 96.21 96.30 96.41 96.54
cs00838 68.10 68.79 69.02 69.14 69.36 69.59
cs00953 97.24 97.65 97.84 97.95 98.09 98.20
cs01196 95.17 96.14 96.50 96.66 96.83 97.00
cs01238 95.29 96.19 96.56 96.72 96.92 97.12
cs01423 98.92 99.42 99.59 99.65 99.73 99.77
cs01488 99.62 99.79 99.84 99.85 99.85 99.85
cs01494 99.66 99.80 99.84 99.85 99.85 99.85
cs05378 98.57 99.02 99.24 99.31 99.37 99.39
cs09234 89.77 91.14 91.58 91.75 91.92 92.05
cs13207 94.15 95.34 95.76 95.93 96.11 96.27
cs15850 94.77 95.59 95.90 96.05 96.20 96.32
cs35932 100.00 100.00 100.00 100.00 100.00 100.00
cs38417 95.53 96.39 96.71 96.88 97.06 97.20
cs38584 92.15 92.77 93.02 93.16 93.34 93.51
∅ 96.83 97.21 97.35 97.41 97.49 97.56

163

9 Advanced Testing Methods

Table 9.8: Flaw coverage FCnn
flaw for V nom

dd = 3.3 V, T nom = T = 370 K and different values
of Vdd.

Circuit 3.0 V 2.8 V 2.5 V 2.0 V
c0432 51.55 68.35 83.41 95.61
c0499 34.90 50.90 68.16 88.70
c0880 33.07 48.06 64.50 84.15
c1355 49.23 69.70 87.21 97.63
c1908 34.56 50.70 67.96 86.28
c2670 28.25 40.77 57.36 79.51
c3540 32.90 46.15 63.71 86.57
c5315 34.85 49.68 67.80 89.63
c7552 34.13 49.93 67.83 87.63
cs00208 27.91 42.60 62.10 86.80
cs00298 26.30 38.19 55.72 83.16
cs00344 25.07 40.15 60.67 86.37
cs00349 25.32 40.38 61.10 86.66
cs00382 37.94 54.10 72.98 92.11
cs00386 18.03 28.57 48.37 80.84
cs00400 38.15 54.48 73.25 92.14
cs00420 21.08 32.15 47.91 70.25
cs00444 40.28 57.76 75.89 93.48
cs00510 29.91 44.63 64.45 89.41
cs00526 27.13 38.50 58.59 84.30
cs00641 18.96 28.75 49.33 80.91
cs00713 19.33 29.66 50.09 81.23
cs00820 27.13 37.41 55.24 79.77
cs00832 27.12 37.06 54.77 79.34
cs00838 16.80 25.54 38.06 56.49
cs00953 28.29 43.18 62.89 85.23
cs01196 28.10 40.60 57.86 81.23
cs01238 29.46 42.08 58.77 81.18
cs01423 25.66 40.09 59.51 84.81
cs01488 23.23 35.34 54.93 84.21
cs01494 23.53 35.66 55.18 84.34
cs05378 32.85 46.65 66.27 88.88
cs09234 18.76 28.87 46.54 73.02
cs13207 20.71 31.46 50.30 77.14
cs15850 21.58 33.12 52.30 78.75
cs35932 36.49 53.72 71.81 87.32
cs38417 22.63 34.88 53.67 79.61
cs38584 23.63 36.25 53.34 76.40
∅ 28.81 42.27 60.52 83.71

164

Experimental Data

Table 9.9: Flaw coverage FCnn
flaw for V nom

dd = 3.3 V, T nom = 370 K, T = 300 K and different
values of Vdd.

Circuit 3.3 V 3.0 V 2.8 V 2.5 V 2.0 V
c0432 5.94 33.24 54.55 80.78 97.17
c0499 11.50 13.51 32.71 68.63 94.73
c0880 14.90 32.43 50.35 72.64 92.72
c1355 1.63 11.13 37.46 76.03 97.44
c1908 12.34 23.19 43.51 71.38 92.03
c2670 17.37 30.29 45.50 67.77 87.16
c3540 23.69 41.16 55.87 76.29 94.88
c5315 20.78 34.16 51.14 76.27 96.43
c7552 15.66 28.16 46.79 73.42 93.45
cs00208 23.99 42.36 57.33 76.83 95.18
cs00298 24.08 40.57 54.20 74.24 94.87
cs00344 26.16 43.30 57.27 76.66 95.38
cs00349 25.69 42.84 56.92 76.55 95.50
cs00382 18.12 39.17 55.50 78.37 96.91
cs00386 30.36 44.03 55.72 73.25 94.29
cs00400 16.69 37.19 54.50 77.75 96.76
cs00420 18.52 33.71 45.74 61.82 79.00
cs00444 12.78 29.39 49.44 77.20 96.78
cs00510 17.51 34.65 52.21 75.38 96.04
cs00526 21.06 39.46 52.12 73.56 93.70
cs00641 31.13 46.83 58.50 74.76 95.36
cs00713 30.62 45.83 57.91 74.66 95.18
cs00820 16.93 36.82 48.26 67.34 87.94
cs00832 16.44 35.98 47.32 66.60 87.54
cs00838 14.41 26.50 36.11 48.99 62.81
cs00953 14.91 30.52 47.38 69.94 92.14
cs01196 16.93 33.28 48.67 69.50 89.70
cs01238 16.04 33.09 48.72 69.44 89.16
cs01423 22.57 40.86 55.43 74.74 94.68
cs01488 31.26 49.67 60.58 76.79 95.49
cs01494 31.40 49.87 60.79 76.93 95.54
cs05378 23.79 52.74 64.75 80.59 96.41
cs09234 21.17 34.71 46.69 64.60 84.76
cs13207 22.07 35.75 48.64 68.00 89.10
cs15850 23.91 38.68 51.29 70.09 90.18
cs35932 9.82 18.20 37.53 68.96 89.82
cs38417 23.60 39.83 52.43 70.89 90.68
cs38584 20.42 36.78 49.40 67.28 85.71
∅ 19.67 35.79 50.77 72.23 91.91

165

9 Advanced Testing Methods

Table 9.10: Flaw coverage FCnn
flaw for V nom

dd = 3.3 V, T nom = 370 K, T = 196 K and different
values of Vdd.

Circuit 3.3 V 3.0 V 2.8 V 2.5 V 2.0 V
c0432 24.34 29.69 43.50 70.35 90.49
c0499 28.52 30.97 38.62 48.64 72.38
c0880 40.70 47.98 56.21 77.17 97.61
c1355 4.63 5.65 8.73 29.53 54.52
c1908 29.92 34.91 42.55 60.52 92.21
c2670 45.01 52.07 58.78 70.67 88.97
c3540 57.53 65.30 71.74 81.54 96.92
c5315 49.55 56.43 63.76 76.90 98.68
c7552 39.35 45.47 53.36 69.26 94.79
cs00208 63.06 72.78 78.24 87.01 95.78
cs00298 64.11 70.76 76.89 90.34 98.96
cs00344 66.65 75.78 80.46 86.59 97.32
cs00349 66.37 75.65 80.64 86.99 97.13
cs00382 49.31 57.99 64.22 79.00 96.63
cs00386 76.28 84.32 89.96 95.65 98.69
cs00400 46.79 55.24 61.89 78.05 95.93
cs00420 51.60 60.62 65.73 73.34 81.59
cs00444 35.64 42.40 48.82 63.13 90.18
cs00510 51.74 60.30 68.27 82.87 95.30
cs00526 58.93 67.45 73.18 84.28 96.57
cs00641 75.30 84.15 90.28 96.30 99.68
cs00713 73.98 82.59 88.50 94.30 99.34
cs00820 49.10 57.81 63.94 77.45 89.93
cs00832 47.81 56.53 62.75 76.39 89.73
cs00838 40.41 47.49 51.53 57.58 64.42
cs00953 44.30 54.01 60.74 73.83 86.08
cs01196 47.76 56.13 62.86 77.20 92.60
cs01238 45.91 54.24 61.08 76.04 91.68
cs01423 60.18 70.63 78.91 89.77 96.99
cs01488 77.00 86.58 91.55 96.68 99.35
cs01494 77.10 86.68 91.61 96.71 99.37
cs05378 68.01 84.50 90.60 96.50 99.24
cs09234 55.07 63.71 69.82 77.38 88.96
cs13207 56.27 64.98 72.09 80.25 93.60
cs15850 59.09 68.03 74.69 82.55 94.13
cs35932 23.83 27.55 33.42 46.37 73.08
cs38417 59.93 69.57 75.51 82.85 95.32
cs38584 53.29 62.25 68.62 77.96 88.00
∅ 51.69 59.72 66.16 77.58 91.37

166

Experimental Data

Table 9.11: Flaw coverage FCnn
flaw for V nom

dd = 3.3 V, T nom = 300 K, T = 196 K and different
values of Vdd.

Circuit 3.3 V 3.0 V 2.8 V 2.5 V 2.0 V
c0432 21.50 30.66 46.20 72.66 90.24
c0499 22.59 29.52 36.87 54.63 71.93
c0880 31.13 42.51 54.23 79.06 97.37
c1355 4.33 7.19 10.89 36.12 54.06
c1908 23.33 33.50 41.74 68.53 91.94
c2670 33.47 46.14 54.73 72.75 88.49
c3540 43.69 57.46 65.87 82.24 96.50
c5315 37.88 51.18 59.91 80.33 98.16
c7552 30.33 42.53 51.17 74.34 94.23
cs00208 47.10 61.39 70.19 84.68 95.42
cs00298 48.42 59.05 69.43 87.15 98.75
cs00344 50.02 63.48 71.38 84.70 96.93
cs00349 49.98 63.72 71.86 84.93 96.74
cs00382 37.77 52.51 62.48 81.63 96.25
cs00386 56.83 69.53 78.81 89.86 98.29
cs00400 36.15 50.78 60.98 80.75 95.54
cs00420 37.83 50.49 58.32 71.09 81.26
cs00444 27.87 38.98 47.07 69.95 89.75
cs00510 40.00 52.32 63.47 81.55 95.01
cs00526 44.59 57.07 66.40 82.32 96.78
cs00641 55.36 69.85 79.40 90.45 99.24
cs00713 54.47 68.51 77.81 89.24 98.90
cs00820 37.18 48.83 59.44 75.50 90.11
cs00832 36.29 47.77 58.39 74.73 90.15
cs00838 29.49 39.42 45.66 55.95 64.18
cs00953 33.51 47.14 56.74 72.56 86.34
cs01196 35.63 48.42 58.52 77.41 92.21
cs01238 34.34 46.97 57.17 76.49 91.32
cs01423 45.25 61.47 72.00 86.08 96.62
cs01488 57.14 72.31 80.86 91.23 98.97
cs01494 57.23 72.44 80.94 91.28 99.00
cs05378 49.83 71.74 81.06 91.77 98.94
cs09234 39.64 53.44 61.99 76.06 88.53
cs13207 40.96 55.74 64.59 79.60 93.14
cs15850 43.25 58.00 66.85 81.20 93.69
cs35932 18.92 26.96 32.92 53.41 72.51
cs38417 43.77 58.57 67.34 81.55 94.88
cs38584 39.57 52.94 61.97 76.23 87.64
∅ 38.86 51.59 60.68 77.37 91.05

167

9 Advanced Testing Methods

Table 9.12: Fault coverages for Delta-Iddq testing with 1,000 test vectors for voltage
testing, current threshold ∆Ilimit = 100µA and 10 Iddq measurements.

Circuit G-FE Delta-Iddq Iddq
AA FCIddq FCIddq

comb FCIddq
flaw FCIddq FCIddq

comb

c0432 99.78 53 97.60 100.00 97.58 98.62 100.00
c0499 99.99 2 92.81 100.00 92.03 92.84 100.00
c0880 98.88 167 96.27 99.91 96.18 97.94 99.94
c1355 99.89 170 95.99 99.93 95.93 97.70 99.93
c1908 99.25 88 98.07 99.93 96.79 98.97 99.93
c2670 95.93 120 97.41 99.93 97.31 98.61 99.96
c3540 99.19 172 95.58 99.91 95.13 97.31 99.93
c5315 99.96 34 99.21 100.00 99.15 99.55 100.00
c7552 99.12 39 99.08 99.98 99.00 99.47 99.98
cs00208 99.56 370 81.82 99.95 81.33 91.22 99.96
cs00298 99.98 42 98.31 100.00 97.83 99.26 100.00
cs00344 99.97 31 99.09 100.00 98.74 99.49 100.00
cs00349 99.97 37 99.01 100.00 98.65 99.49 100.00
cs00382 99.96 112 97.25 99.98 97.11 98.69 99.98
cs00386 99.82 226 91.60 99.97 91.61 94.04 99.97
cs00400 99.96 134 96.75 99.98 96.61 98.37 99.98
cs00420 85.20 896 82.17 96.14 81.87 91.20 96.21
cs00444 99.98 108 97.22 100.00 97.04 98.30 100.00
cs00510 99.98 371 92.80 100.00 92.78 96.52 100.00
cs00526 99.44 177 96.50 99.94 96.18 98.29 99.98
cs00641 99.61 80 98.22 99.97 98.02 99.02 99.98
cs00713 99.68 121 97.62 99.95 97.28 98.84 99.95
cs00820 96.29 334 93.99 99.77 93.75 97.37 99.86
cs00832 96.13 330 93.46 99.70 93.29 96.80 99.79
cs00838 69.83 1,342 73.12 90.19 72.80 86.62 90.43
cs00953 97.33 1,942 61.44 99.21 61.41 80.89 99.35
cs01196 96.07 486 88.88 99.06 88.88 93.75 99.19
cs01238 96.49 494 88.00 98.67 87.97 92.94 98.90
cs01423 99.21 77 97.57 99.94 97.06 98.35 99.96
cs01488 99.65 81 93.61 99.96 93.58 94.43 99.96
cs01494 99.66 115 92.98 99.96 92.92 94.14 99.97
cs05378 98.68 172 95.89 99.83 95.84 97.61 99.89
cs09234 90.92 188 95.98 99.24 95.88 97.87 99.50
cs13207 95.90 190 95.63 99.17 95.57 97.51 99.28
cs15850 96.76 161 96.33 99.58 96.29 97.94 99.76
cs35932 100.00 66 98.89 100.00 98.46 99.56 100.00
cs38417 97.73 92 98.09 99.84 98.08 99.01 99.90
cs38584 92.42 229 95.57 98.95 94.77 97.88 99.60
∅ 97.32 93.68 99.44 93.44 96.48 99.50

168

Experimental Data

Table 9.13: Fault coverages for Delta-Iddq testing with 1,000 test vectors for voltage
testing, current threshold ∆Ilimit = 100µA and 100 Iddq measurements.

Circuit G-FE Delta-Iddq Iddq
AA FCIddq FCIddq

comb FCIddq
flaw FCIddq FCIddq

comb

c0432 99.78 0 100.00 100.00 99.96 100.00 100.00
c0499 99.99 0 96.70 100.00 95.86 96.70 100.00
c0880 98.88 8 99.82 99.96 99.73 99.90 99.96
c1355 99.89 89 97.92 99.94 97.85 98.81 99.94
c1908 99.25 45 99.30 99.97 98.00 99.76 99.97
c2670 95.93 6 99.94 100.00 99.87 100.00 100.00
c3540 99.19 26 99.71 100.00 99.24 99.97 100.00
c5315 99.96 5 99.95 100.00 99.89 100.00 100.00
c7552 99.12 1 99.98 100.00 99.90 99.99 100.00
cs00208 99.56 20 99.26 100.00 98.70 99.77 100.00
cs00298 99.98 8 99.80 100.00 99.31 99.98 100.00
cs00344 99.97 10 99.87 100.00 99.51 100.00 100.00
cs00349 99.97 10 99.87 100.00 99.52 100.00 100.00
cs00382 99.96 11 99.85 99.99 99.69 99.99 99.99
cs00386 99.82 26 99.43 100.00 99.37 99.71 100.00
cs00400 99.96 13 99.83 99.99 99.69 99.99 99.99
cs00420 85.20 368 92.75 97.01 92.47 96.45 97.03
cs00444 99.98 14 99.85 100.00 99.72 99.99 100.00
cs00510 99.98 2 99.97 100.00 99.97 99.99 100.00
cs00526 99.44 13 99.86 100.00 99.59 99.99 100.00
cs00641 99.61 14 99.84 100.00 99.64 99.98 100.00
cs00713 99.68 27 99.65 99.97 99.31 99.92 99.97
cs00820 96.29 13 99.83 99.98 99.68 99.96 99.98
cs00832 96.13 14 99.79 99.96 99.62 99.93 99.96
cs00838 69.83 876 83.43 93.13 83.14 92.25 93.18
cs00953 97.33 272 94.62 99.65 94.62 97.35 99.68
cs01196 96.07 18 99.56 99.89 99.53 99.74 99.89
cs01238 96.49 20 99.44 99.87 99.44 99.64 99.87
cs01423 99.21 2 99.91 99.99 99.38 99.93 99.99
cs01488 99.65 2 99.92 100.00 99.92 99.94 100.00
cs01494 99.66 3 99.95 100.00 99.90 99.98 100.00
cs05378 98.68 20 99.63 100.00 99.58 99.83 100.00
cs09234 90.92 66 98.67 99.62 98.57 99.34 99.68
cs13207 95.90 66 98.47 99.43 98.41 99.11 99.48
cs15850 96.76 27 99.23 99.90 99.20 99.50 99.92
cs35932 100.00 4 99.96 100.00 99.55 100.00 100.00
cs38417 97.73 6 99.83 99.96 99.82 99.89 99.96
cs38584 92.42 64 99.07 99.52 98.24 99.72 99.79
∅ 97.32 98.80 99.68 98.56 99.39 99.69

169

9 Advanced Testing Methods

Table 9.14: Fault coverages for Delta-Iddq testing with 1,000 test vectors for voltage
testing, current threshold ∆Ilimit = 100µA and 1,000 Iddq measurements.

Circuit G-FE Delta-Iddq Iddq
AA FCIddq FCIddq

comb FCIddq
flaw FCIddq FCIddq

comb

c0432 99.78 0 100.00 100.00 99.96 100.00 100.00
c0499 99.99 0 100.00 100.00 99.11 100.00 100.00
c0880 98.88 0 99.98 99.98 99.89 99.98 99.98
c1355 99.89 0 100.00 100.00 99.93 100.00 100.00
c1908 99.25 27 99.71 99.98 98.40 99.98 99.98
c2670 95.93 5 99.95 100.00 99.88 100.00 100.00
c3540 99.19 25 99.75 100.00 99.28 100.00 100.00
c5315 99.96 5 99.95 100.00 99.89 100.00 100.00
c7552 99.12 1 99.99 100.00 99.91 100.00 100.00
cs00208 99.56 6 99.85 100.00 99.27 100.00 100.00
cs00298 99.98 7 99.84 100.00 99.35 100.00 100.00
cs00344 99.97 10 99.87 100.00 99.51 100.00 100.00
cs00349 99.97 10 99.87 100.00 99.52 100.00 100.00
cs00382 99.96 11 99.86 100.00 99.71 100.00 100.00
cs00386 99.82 0 100.00 100.00 99.94 100.00 100.00
cs00400 99.96 13 99.83 99.99 99.69 99.99 99.99
cs00420 85.20 244 95.27 97.71 95.01 97.72 97.72
cs00444 99.98 14 99.86 100.00 99.73 100.00 100.00
cs00510 99.98 0 100.00 100.00 100.00 100.00 100.00
cs00526 99.44 12 99.88 100.00 99.61 100.00 100.00
cs00641 99.61 14 99.86 100.00 99.66 100.00 100.00
cs00713 99.68 19 99.81 100.00 99.47 100.00 100.00
cs00820 96.29 9 99.91 100.00 99.76 100.00 100.00
cs00832 96.13 8 99.92 100.00 99.75 100.00 100.00
cs00838 69.83 702 86.69 93.72 86.41 93.76 93.76
cs00953 97.33 17 99.65 99.81 99.65 99.82 99.82
cs01196 96.07 1 99.99 100.00 99.96 100.00 100.00
cs01238 96.49 1 99.99 100.00 99.99 100.00 100.00
cs01423 99.21 0 100.00 100.00 99.47 100.00 100.00
cs01488 99.65 0 100.00 100.00 100.00 100.00 100.00
cs01494 99.66 0 100.00 100.00 99.95 100.00 100.00
cs05378 98.68 3 99.97 100.00 99.92 100.00 100.00
cs09234 90.92 19 99.67 99.82 99.57 99.86 99.86
cs13207 95.90 16 99.43 99.57 99.39 99.59 99.59
cs15850 96.76 1 99.96 99.97 99.93 99.97 99.97
cs35932 100.00 4 99.96 100.00 99.55 100.00 100.00
cs38417 97.73 2 99.96 99.98 99.95 99.98 99.98
cs38584 92.42 33 99.56 99.74 98.76 99.89 99.89
∅ 97.32 99.42 99.74 99.18 99.75 99.75

170

10 Benchmarking BIST Techniques

Design for testability (DFT) methods are commonly used to improve the testability of
devices. In many cases, however, improving the testability primarily means achieving a
dedicated single-stuck-at fault coverage target. Even though in some applications this
might already be very challenging, high single-stuck-at fault coverage cannot be sufficient.
Particularly, as it is well-known that the single-stuck-at fault model is an imperfect
representative of actual defects. Consequently, it is critical to question DFT measures
with respect to their impact on the coverage of actual defects. Unfortunately, there is
no such thing as a model for defects. Therefore, we propose to use the resistive bridging
fault model as a surrogate for non-target defects [79], i.e. defects which have not explicitly
been targeted during construction of the DFT hardware. This approach is supported by
the fact that resistive shorts, modeled by the resistive bridging fault model, are a major
defect contributor in nanoscale technologies. Furthermore, the model accurately reflects
non-trivial electrical phenomena such as pattern-dependency and Byzantine-behavior –
effects which are discounted by the stuck-at fault model.

In this chapter we will evaluate two techniques used in the context of built-in self test
(BIST) in terms of their effect on the coverage of resistive shorts. During the past few
years, BIST solutions have gained widespread use in practice to complement or even replace
automatic test equipment (ATE) based test application. Obviously, it is important that
these techniques do not only guarantee high single-stuck-at fault coverage, but actually
provide a sufficient detection of defects. The techniques addressed in this chapter use
several measures to achieve excellent single-stuck-at fault coverage. Yet, their architectures
do not consider resistive bridging faults, and thus ignore many characteristics of shorts.
As a consequence, sufficient coverage of shorts cannot be presumed and may even be called
purely accidental. Hence, it is likely that the coverage of resistive bridging faults is a valid
indicator for the impact of a BIST solution on the detection of non-target defects.

The following Chapter 10.1 will target a BIST solution addressing the input side of the
circuit under test (CUT). The technique selectively modifies pseudo-random test patterns
supplied by an on-chip test pattern source to increase their single-stuck-at fault coverage.
Subsequently, we will move our focus to the output side of the CUT. Many circuits produce
unknown values which may impair the correct operation of a test response evaluator (TRE).
A technique which prevents the unknown values from entering the response evaluation
hardware is explored in Chapter 10.2. Conclusions are given in Chapter 10.3.

171

10 Benchmarking BIST Techniques

10.1 Detection of Non-Target Defects by Deterministic
Logic BIST

Usually, the pattern generator (PG) used in BIST solutions generates pseudo-random
patterns. Unfortunately, in many circuits a non-negligible share of faults is random pattern
resistant [40]. This means that these faults may only be detected by very specific input
combinations. While patterns detecting some of the random pattern resistant faults may be
contained “by chance” in the pseudo-random sequence, it is very unlikely that the sequence
covers all hard to detect faults. This problem may be alleviated to a certain degree by using
extremely long pattern sequences which, however, is unacceptable in many applications.
An alternative to this are deterministic patterns, specifically generated by an ATPG system
for those faults not detected by the random pattern sequence. These deterministic patterns
may be applied in addition to the pseudo-random sequence. This, however, also results
in prolonged test application time. Further solutions include the insertion of test points
[68] to enhance the observability of fault effects, weighted random testing [199, 205] which
modifies the signal probabilities of the pseudo-random pattern sequence, and the Circular
Self-Test Path technique [90, 135] that uses the circuit functionality to generate new test
patterns.

Deterministic logic BIST (DLBIST) techniques directly modify the pseudo-random pattern
sequence supplied by the PG to increase the fault coverage. Pseudo-random pattern
generators used in reseeding architectures include linear feedback shift registers (LFSR)
[91, 212], multiple-polynomial LFSRs [70, 71], twisted-ring counters [23], and folding
counters [69]. These techniques omit those parts of the pseudo-random sequence which do
not contribute to fault detection. A similar solution for two-pattern testing is based on
a multiple input shift register [137, 207]. Alternatively, pattern embedding modifies some
of the bits of a pseudo-random pattern sequence such that every vector from a given set
of deterministic test patterns is contained in the sequence. Pattern embedding may be
performed by either bit-fixing [187] or bit-flipping [86, 206]. Primarily, the techniques differ
in the logic employed to alter the pseudo-random pattern sequence: While bit-fixing uses
a combination of AND and OR gates, bit-flipping is restricted to XOR gates. A related
technique is Embedded Deterministic Test (EDT) [141], which involves interaction with
the tester and is therefore considered a test compression rather than a BIST method.

Commonly, DLBIST solutions are optimized for minimal silicon area, short test application
time (given by the length of the pattern sequence), and high single-stuck-at fault coverage.
Unfortunately the detection of actual defects is not considered. Since the correlation
between detection of single-stuck-at faults and defect coverage is rather limited, it is
questionable if DLBIST may achieve a sufficient coverage of non-target defects.

In the following, we present our study [W7, W8] on the relation between area cost, test
length, and the coverage of non-target defects for a DLBIST scheme based on bit-flipping.
We use resistive bridging faults as a surrogate for non-target defects. We synthesized
several bit-flipping DLBIST circuitries for various benchmark circuits and pattern sequence
lengths. In particular, we focused on the tradeoff between silicon area, sequence length,

172

10.1 Detection of Non-Target Defects by Deterministic Logic BIST

and resistive bridging fault coverage. Our experimental results demonstrate that longer
test sequences achieve higher coverage of non-target defects (resistive shorts) and imply a
smaller bit-flipping logic. In particular, this dependency on the sequence length indicates
that high single-stuck-at fault coverage alone is not sufficient to cover resistive bridging
faults and that pseudo-random patterns are required as well. As both deterministic single-
stuck-at and pseudo-random patterns are produced by bit-flipping DLBIST, we conclude,
that this solution is well suited to cover non-target defects.

Chapter 10.1.1 will give a brief overview over bit-flipping DLBIST. Experimental results
can be found in Chapter 10.1.2. In Chapter 10.3 conclusions are given.

10.1.1 Deterministic Logic BIST with Bit-Flipping

In bit-flipping the pseudo-random pattern sequence is modified by a special combinational
logic, called bit-flipping logic (BFL), such that some of the patterns match the vectors
contained in a given set of deterministic test patterns. The technique exploits the fact
that pseudo-random sequences contain many useless test vectors (see e.g. [186]). These
are patterns that do not contribute to the fault coverage in the sense that they do only
detect faults which have already been covered by other patterns preceding them in the
sequence. Furthermore, it is exploited that deterministic patterns contain a large number
of don’t care values (see e.g. [88]), i.e. bits which may be set to either the logical value 0 or
1. Therefore, a deterministic pattern may be mapped to a useless pseudo-random pattern
by modifying just a few bits without sacrificing the advantages of the pseudo-random
sequence.

Pattern embedding is performed in a preprocessing step. It identifies for each pattern d
from a given set of deterministic patterns a useless pattern r, such that d can be mapped
efficiently to r. The logic operations required to perform that mapping are captured by
the bit flipping function (BFF). Once the given test set has been processed completely,
the BFFs required to embed all deterministic patterns into the pseudo-random pattern
sequence are combined to form the control logic of the BFL.

In the next section, we will first introduce the architecture of the DLBIST bit-flipping
logic. Subsequently, we will give a short overview over the pattern embedding procedure
which is required to understand the experimental results. More details on the bit-flipping
logic and its synthesis may be found in [53, 86, 206].

Architecture of Deterministic Logic BIST

Figure 10.1 depicts the architecture used for deterministic logic BIST. The circuit under test
is augmented by a BIST control unit which operates the source of the random patterns and

173

10 Benchmarking BIST Techniques

T
e

s
t

R
e

s
p

.
E

v
a

l.

Counter
Pattern

Bit
Counter

L
F

S
R

BIST
control

..
.

..
.

Bit−flipping
Logic

Test

Under

Circuit

T
e

s
t

R
e

s
p

.
E

v
a

l.

Figure 10.1: Schematic of circuit under test with bit-flipping logic.

the test response evaluator. In our case, the test patterns are supplied by an LFSR1, while
the outputs of the CUT are analyzed by a test response evaluator (e.g. a multiple-input
shift register). The BIST control is supported by the pattern counter which keeps track of
the patterns applied so far and the bit counter which records the number of bits shifted into
the scan-chain(s). Both counters and the state of the LFSR are fed into the bit-flipping
logic. The BFL controls which bits supplied by the LFSR are flipped by driving either
the logical value 1 or 0 at the inputs of the XOR gates linking the LFSR with the CUT.
The logical value 1 causes the bit to be flipped, while the logical value 0 leaves the bit
unaltered. The architecture from Figure 10.1 may be applied to combinational circuits as
well as to circuits containing one or multiple scan-chains [86].

Synthesis of Bit-Flipping Logic

The bit-flipping logic has three inputs: the state LF of the LFSR, the value of the pattern
counter PC , and that of the bit counter BC . The bit flipping function implemented by the
BFL maps each state of the DLBIST logic, defined as LF × PC × BC , to a set of logical
values driven at the inputs of the XOR gates. For each bit i this assignment is derived as
follows: Assume the deterministic ATPG pattern d is to be mapped to pseudo-random
pattern r (supplied by the LFSR). When comparing the i-th bit position di and ri of
pattern d and r, respectively, three relevant cases may occur:

Matching bits : Bit di is specified and ri = di, i.e. either ri = di = 1 or ri = di = 0.

Conflicting bits : Bit di is specified and ri 6= di, i.e. ri = 1 and di = 0 or ri = 0 and di = 1.

Don’t care bits : Bit di is unspecified and ri has an arbitrary value.
1Note that the correlation of the patterns produced by an LFSR may be reduced by a phase shifter.

For bit-flipping, however, this is only optional as the same task may also be performed by the bit-flipping
logic itself [86].

174

10.1 Detection of Non-Target Defects by Deterministic Logic BIST

Conflicting bits must be flipped (BFL maps to 1) while matching bits must not be flipped
(BFL maps to 0). It is irrelevant whether don’t care bits are flipped or not. In the latter
case, the BFL may either drive the logical value 0 or 1, depending on which option leads
to a more efficient implementation of the BFF.

Five steps are required to derive the bit flipping function for a given combination of LFSR,
CUT, and fault list:

(1) Run fault simulation of the LFSR sequence and drop detected faults.

(2) Perform ATPG (without random filling of the don’t care positions) for the remaining
faults.

(3) For every deterministic test pattern obtained by ATPG, select a useless pseudo-
random pattern from the pseudo-random sequence to be transformed into that
pattern by flipping of individual bits. Determine the BFF necessary to perform the
pattern conversion.

(4) All BFFs are synthesized and a compact BFL is obtained that performs the transfor-
mation of useless patterns into deterministic patterns.

(5) Perform fault simulation of the final sequence produced by the LFSR in combination
with the BFL.

Steps (1) and (2) determine which faults are detected by the pseudo-random pattern
sequence and generate test patterns which cover the remaining undetected faults. In Step
(3), a useless pseudo-random pattern is assigned to each deterministic pattern. In order
to obtain an efficient implementation of the BFL, the pseudo-random pattern with the
minimum number of conflicting bits is selected. If several such patterns exist, the pattern
is chosen which minimizes the number of:

a) scan chains containing both matching and conflicting bits,

b) clock cycles during which matching and conflicting bits are shifted into the scan
chains.

Constraint a) attempts to minimize the BFL size per scan chain. Constraint b) has a
lower priority and attempts to maximize logic sharing among the BFLs corresponding to
different scan chains.

Once all deterministic patterns have been mapped to a pattern from the pseudo-random
sequence, the BFL is generated in Step (4). The problem of BFL construction is formulated
as an instance of logic synthesis with don’t cares [17] which may be solved using a procedure
based on binary decision diagrams [20, 39] (BDDs). All states of LF × PC × BC which
are mapped to the logical value 1 are represented as one BDD. Moreover, all states which
are mapped to the logical value 0 are represented as a second BDD. These BDDs are
transformed into an RTL description and synthesized using a commercial synthesis tool
(see [53] for details). Finally in Step (5) fault simulation of the test pattern sequence which
was produced by the resulting BFL is performed.

175

10 Benchmarking BIST Techniques

Table 10.1: Stuck-at coverage of pseudo-random sequences before deterministic pattern
embedding.

Sequence length
Circuit 1,000 5,000 10,000

c7552 92.38 93.51 94.68
cs09234 72.31 80.79 83.60
cs13207 76.56 86.76 91.47
cs15850 84.58 89.98 91.14
cs38417 86.23 90.57 92.61
cs38584 90.47 93.44 94.31

∅ 83.76 89.18 91.30

10.1.2 Experimental Results

We applied the pattern embedding procedure to the ISCAS 85 [19] and the combinational
cores of the ISCAS 89 [18] benchmark circuits. For each circuit pseudo-random test
sequences of 1,000, 5,000, and 10,000 patterns were generated. For a large share of the
considered circuits, the sequence of 10,000 patterns detected all detectable single-stuck-at
faults. These circuits were excluded from consideration. For the remaining circuits, single-
stuck-at fault coverages of the pseudo-random sequences can be found in Table 10.1 (the
last row of the table gives average coverages). The faults which remained undetected by
the sequences were targeted by a deterministic single-stuck-at ATPG which created test
patterns with don’t cares. Note that after embedding these patterns into the sequences, all
non-redundant faults not aborted by the ATPG are detected.

We performed resistive bridging fault simulations for the pseudo-random pattern sequences
before and after pattern embedding. The fault list contained 10,000 randomly selected
non-feedback bridging faults, where available.2 Alternatively, we could also use layout
extracted bridging faults (refer to Chapter 3.3). We employed the Shockley technology
model and parameters from the SPICE model card of a 0.35µm technology from austri-
amicrosystems AG (AMS) to determine critical resistances (refer again to Chapter 5.2.2).
When calculating fault coverages, we used the distribution ρ proposed in [165] which is
based on data from [158]. Yet, the experiments in this chapter could be easily repeated
with any other short resistance distribution. For each circuit, G-ADI was obtained by
RBF-ATPG covered in Chapter 8. All experiments were performed on a 2 GHz Pentium IV
with 2 GB RAM. The embedding procedure considers only single-stuck-at fault detection;
hence resistive bridging faults are a valid surrogate for non-target defects.

Experimental results can be found in Table 10.2 for all circuits for which the sequence of
10,000 patterns did not detect all detectable single-stuck-at faults. The first column of the
table states the name of the circuit. Then for each of the three sequence lengths under

2Note that unless otherwise specified the fault lists used in this chapter are equal to those employed in
all other experiments discussed in Part II of this work.

176

10.1 Detection of Non-Target Defects by Deterministic Logic BIST

Table 10.2: Fault coverage G-FE and logic size in GE for sequences of 1,000, 5,000, and
10,000 patterns.

Circuit 1,000 Patterns 5,000 Patterns 10,000 Patterns
G-FE Emb’d G-FE Emb’d G-FE Emb’d

Random Emb’d LSIZE Random Emb’d LSIZE Random Emb’d LSIZE

c7552 99.28 99.83 583 99.44 99.87 546 99.61 99.87 433
cs09234 90.68 98.55 1,097 95.30 99.26 824 96.55 99.39 683
cs13207 95.58 99.31 889 97.62 99.66 541 98.53 99.70 367
cs15850 96.29 99.36 1,107 98.34 99.67 783 98.81 99.70 686
cs38417 97.50 99.46 4,135 98.57 99.54 3,170 98.93 99.65 2,697
cs38584 93.01 98.74 894 95.10 99.43 878 96.47 99.67 590

∅ 95.39 99.21 97.40 99.57 98.15 99.66

consideration, global fault efficacy G-FE from Equation (5.4.7) is given before (column
“Random”) and after (column “Emb’d”) pattern embedding; furthermore in column “Emb’d
LSIZE” the size of the synthesized bit-flipping logic is quoted in gate equivalents (GE).
Note that the sequences before pattern embedding are obtained without BFL, consequently
LSIZE is zero for this scenario. Average G-FE can be found in the last row of the table.

Interestingly, we observe that the G-FE is consistently larger than the single-stuck-at fault
coverage for all circuits and all considered sequence lengths. When focusing on the results
before pattern embedding, it appears that the distribution of random pattern resistant
faults is different for single-stuck-at and resistive bridging faults. The lowest values of
G-FE may always be observed for cs09234 and cs38584 disregarding the sequence length.
Similarly, cs09234 consistently exhibits the lowest single-stuck-at fault coverage as well.
Circuit cs38584, however, ranks second highest in single-stuck-at fault coverage. This
suggests, that one has to be careful when transferring results on the magnitude of random
pattern resistant faults from single-stuck-at to resistive bridging faults. Results obtained
with our simulator SUPERB (see Chapter 7.2) demonstrate that for ISCAS 89 circuits,
correlation is indeed limited while for the industrial circuits from NXP semiconductors a
rather good correlation could be observed.

After pattern embedding, the global fault efficacy is significantly increased. Average values
can also be found as a bar graph in Figure 10.2. Nevertheless, we may not only attribute
improvements in fault coverage to the embedded deterministic patterns. Independent of the
pattern embedding, the coverage of resistive bridging faults rises with increasing sequence
length. The absolute impact of sequence length, however, is smaller when deterministic
patterns are embedded. Without pattern embedding, average fault coverages increase from
95.39% for a 1,000 pattern to 98.15% for a 10,000 pattern sequence. With embedding,
these numbers are 99.21% and 99.66%, respectively.

Similarly, the size of the synthesized bit-flipping logic is dependent on the sequence length:
A longer sequence implies a smaller BFL (up to a factor of 2.4 for cs13207) – Figure

177

10 Benchmarking BIST Techniques

 95

 96

 97

 98

 99

 100

1K 5K 10K
 500

 700

 900

 1100

 1300

 1500

Fa
ul

t C
ov

er
ag

e

Lo
gi

c
S

iz
e

[G
E

]

Random Embedded

 95

 96

 97

 98

 99

 100

1K 5K 10K
 500

 700

 900

 1100

 1300

 1500

Fa
ul

t C
ov

er
ag

e

Lo
gi

c
S

iz
e

[G
E

]

Logic Size

Figure 10.2: Average fault coverage G-FE and average logic size from Table 10.2.

10.2 illustrates the average logic size as a line graph. This may be explained by two
observations:

1. A longer pseudo-random pattern sequence involves more degrees of freedom for the
pattern embedding procedure.

2. Prior to pattern embedding, a larger sequence already implies higher single-stuck-at
fault coverage. Consequently less faults have to be targeted during the BFL synthesis
for longer sequences.

In summary, we observed that longer DLBIST sequence means less area for the DLBIST
logic and enhanced coverage of non-target defects. The downside of this is, however, that
longer test sequences also mean increased test application time.

178

10.2 Non-Target Defect Coverage Impact of X-Masking

10.2 Non-Target Defect Coverage Impact of X-Masking

The applicability of logic BIST to circuits containing random logic is substantially com-
promised by unknown values (also called unknowns). Sources of unknown values include
tri-stated or floating buses, uninitialized flip-flops or latches, signals that cross clock
domains in circuits with multiple clock domains, and X-values coming from analog or
memory blocks that are embedded in the random logic circuit. If unknown values reach
the test response evaluator (TRE), it may be no longer possible to distinguish between a
fault-free and a faulty circuit. The most popular TRE, the MISR (see e.g. [11, 114] for an
introduction), is particularly vulnerable to unknowns. Even a single unknown value may
render the complete signature invalid.

There exist two general approaches which try to compensate for the detrimental effect of
unknown values. On the one hand, there are X-tolerant compactors. These TREs are space
compactors3 which can cope with a certain amount of unknowns occurring in addition
to a number of faulty values. For instance X-COMPACT [122] and the Convolutional
Compactor [140, 142] belong to this class of TREs. The silicon area requirements for
X-tolerant compactors depend on the number of unknown values which can be tolerated.
Typically their area overhead is higher than that of space compactors without X-tolerance.

On the other hand, unknown values may also be masked out by dedicated logic blocks
[31, 126, 138, 191, 198]. This solution does not imply restrictions on the TRE used and
thus can be applied to both space and time compaction.4 Masking is, however, test set
specific. The silicon area requirements of this technique are very much dependent on the
implementation, e.g. whether data is stored on the tester or on the chip. Furthermore,
masking techniques may be deployed even if access to the circuit under test is restricted,
e.g. due to intellectual property protection issues.

In the following, we will focus on a technique to mask unknown values, referred to as the
X-masking technique. Yet, as will be discussed below, the problems investigated in our
study do apply to X-tolerant compactors as well. X-masking is enabled by the X-masking
logic (XML) which is a combinational block operated by the BIST control logic. The XML
may selectively replace logic values supplied by the outputs of the circuit under test (CUT)
by well-defined values, thus masking unknowns. In theory it is possible to exactly mask the
unknown values produced by the CUT only. This, however, implies a large silicon area cost
and is in general unnecessary to guarantee complete single-stuck-at fault coverage. The
majority of faults is detected by several test vectors and at more than one circuit output.
Therefore, we can afford to mask some of the known bits to obtain a compact XML without
losing any single-stuck-at fault coverage (this is similar to [126, 138]). Unfortunately this
approach might very well affect the coverage of non-target defects which is not considered
during XML construction. This chapter presents a study we published in [W4], [P5] and
[J2] on the impact of X-masking performed by the XML on the detection of non-target

3A space compactor takes a bit string from Bn as input and compacts it into a bit string from Bm,
with m < n.

4Time compactors, like a MISR, compact long sequences of output responses into a single short
signature.

179

10 Benchmarking BIST Techniques

defects.5 We use resistive bridging faults as surrogates for these defects. We explore the
impact of masking known bits by computing the resistive bridging fault coverage for several
XML configurations. In particular, we take into account silicon area requirements involved
with each XML configuration. Note that during XML construction no information on the
coverage of resistive bridging faults is considered.

This study is the first to evaluate the tradeoff between non-target defect coverage and
logic size. Even though our results are generated for the masking technique, the issue of
a potential decrease of non-target defect coverage also applies to X-tolerant compactors.
These compactors connect each circuit output to multiple XOR trees. As a consequence,
unknown values at outputs may invalidate detections at other circuit outputs connected
to the same XOR gates. Providing more compactor outputs (XOR trees) will increase
the circuit area and reduce the probability that a defect is missed. Hence, the trade-off
between area cost and non-target defect coverage, which is investigated here for the case of
X masking, exists also for X-tolerant compactors.

The contents of this chapter are structured as follows. The next Chapter 10.2.1 will
introduce outline, and construction of the X-masking logic in more detail. Subsequently,
setup and results of the resistive bridging fault simulation experiment are discussed in
Chapter 10.2.2. Conclusions are found in Chapter 10.3.

10.2.1 The X-Masking Logic

We consider X-masking in combination with deterministic logic BIST (DLBIST) based
on bit-flipping as introduced in Chapter 10.1. Yet, as X-masking does not impose any
constraints on both pattern generator and test response evaluator, it can be adapted to
any logic BIST or test compression architecture.

The structure of a circuit with DLBIST and XML is illustrated in Figure 10.3. LFSR,
bit-flipping logic, XML and TRE are operated by the BIST control logic. This block
is supported by the pattern counter, which stores the index of the current pattern, and
the bit counter, which keeps track of the scan shift/capture cycles. The LFSR supplies
pseudo-random patterns to the circuit’s inputs which may have been manipulated by the
bit-flipping logic in order to increase their fault coverage. Every output of the CUT is
connected to an OR gate which in turn is linked to the TRE (e.g. a MISR). Each OR gate
can be addressed individually by the XML to selectively mask the CUTs outputs.

Construction of X-Masking Logic

The XML is a combinational block which takes pattern (PC), and bit count (BC), as well
as the state of the LFSR (LF) as inputs. Based on this information the XML derives the
output bits to be masked. A value supplied by an output of the CUT is masked, iff the
XML drives logical value 1 at the OR gate, which links the respective output to the MISR.

5We acknowledge the contribution of V. Gherman (University of Stuttgart, Germany) to this work.

180

10.2 Non-Target Defect Coverage Impact of X-Masking

Counter
Pattern

Bit
Counter

L
F

S
R

BIST
controlXML

..
.

..
.

Test

Under

Circuit

Bit−flipping
Logic

T
e

s
t

R
e

s
p

.
E

v
a

l.

Figure 10.3: Deterministic logic BIST with X-masking logic.

Since the XML is not on the circuit’s critical path the only extra delay (provided that the
XML is not slower than the CUT) is introduced by the OR gates.

Let the CUT have o outputs and let the pattern set under consideration have p patterns.
(Note that the term “output” stands for “primary output” for combinational and non-scan
sequential circuits, scanout ports for full-scan circuits and primary outputs and scan-outs
for partial-scan circuits.) Furthermore, let the responses of the circuit be (r11, r12, . . . r1o),
(r21, r22, . . . r2o), . . . (rp1, rp2, . . . rpo), where rij ∈ {0, 1, X} is the value that is driven at
the j-th output of the fault-free CUT as a response to the i-th test pattern. Value X
denotes the unknown value, i.e. either logical value 0 or 1. The XML computes a function
XML : N × N → B such that XML(i, j) = 1 if rij = X, which means that all unknown
values must be masked. We refer to these rij as masked bits. Some of the rij supplied by
the CUT have to be preserved in order to maintain the fault coverage. These so-called
relevant bits must not be masked, i.e. XML(i, j) = 0 has to hold. All rij which neither
belong to the set of masked bits, nor to that of the relevant bits, are subsumed by the don’t
care (DC) set. For each rij from this set the XML may drive either logical value 0 or 1.

The construction of the XML can be formulated as an instance of logic synthesis with
don’t cares [17]. Each rij , which we will denote a bit in the following, is uniquely identified
by a combination of LFSR, pattern counter, and bit counter state, i.e. a value from the
state-triple LF × PC × BC . The ON set consists of all state-triples for which rij = X,
i.e. it corresponds to the set of masked bits. The OFF set is defined by the bits contained
in the set of relevant bits. All other state-triples constitute the DC set.

Logic synthesis may be performed as soon as the ON and the OFF set are known. In general,
smaller ON and OFF sets leave more degrees of freedom to the synthesis procedure and
thus result in a more compact XML. While the ON set consisting of all masked bits is fixed,
there are several possible collections of relevant bits which preserve the single-stuck-at fault

181

10 Benchmarking BIST Techniques

coverage. It is, however, not only the amount of relevant bits which should be minimized,
but also the number of patterns from which relevant bits are selected. Therefore, a careful
selection of relevant bits is crucial to ensure minimal silicon area cost.

Apart from the size of the XML, the impact of X-masking on the coverage of non-target
defects is of key interest to us. Even though X-masking is guaranteed to preserve full
single-stuck-at fault coverage, in general, it will reduce the number of times a single-stuck-at
fault is detected. Multiple single-stuck-at fault detection, known as n-detection [106, 147],
has been demonstrated to have a positive effect on the coverage of defects. Recent studies
are reported in [8, 13] and data on the coverage of resistive bridging faults by n-detection
test pattern can be found in Chapter 8.2.1. To limit the reduction in multiple detections,
and thus preserve as much of the non-target defect coverage as possible, we introduce the
following optimization criterion: We define a number n ≥ 1 of detections that have to be
retained when X-masking is performed. Assume, for instance, a given single-stuck-at fault
is detected five times without X-masking and we set n = 3. Then X-masking may reduce
the number of detections to four or three but not below. Increasing n leads to a higher
number of single-stuck-at fault detections (and hence hopefully to a better coverage of
non-target defects) but also to a larger set of relevant bits and thus to higher silicon area
requirements for the XML.

The relevant bits are selected from the set of all o · p bits (excluding the masked bits). We
employ two different strategies to identify the set of relevant bits (we published a detailed
description of the strategies in [J2]):

Bit-based strategy: For a given n and a given single-stuck-at fault f , this strategy aims
at selecting bits from as few patterns as possible. This is achieved by favoring patterns
which have already been selected and/or detect many stuck-at faults. Furthermore,
the strategy opts for patterns which contain low numbers of unknown values and
detect f at an output at which only few unknown values may be observed for all
patterns. This improves the decoupling of the ON and the OFF set.

Pattern-based strategy: For a given n and a given fault f , the method selects all bits
from at least n patterns in which at least one bit detects the fault. If there are
less than n such patterns then all the bits from all the patterns are selected. If the
number of such patterns exceeds n, patterns are preferred which have already been
selected, detect many faults, and have a low number of unknown values (which helps
to decouple the ON and the OFF set).

While the bit-based strategy exhibits in general higher computational complexity, the
pattern-based method classifies more bits as relevant for the same value of n.

In the following, we will explore the tradeoff between the value of n which controls both the
amount of masked known bits, as well as the size of the XML, and the resistive bridging
fault coverage. As additional parameters, we will consider the amount of unknown values
and the aforementioned relevant bit selection strategies.

182

10.2 Non-Target Defect Coverage Impact of X-Masking

10.2.2 Experimental Results

We applied the XML synthesis technique to ISCAS 85 [19] circuits and the combinational
cores of the ISCAS 89 [18] benchmarks. These circuit do not have tri-state buses or
multiple clock domains and consequently do not produce unknown values at their outputs.
Therefore, we assume a scenario in which a logic block producing X-values at its outputs
feeds the inputs of the circuits under consideration. Experimental results discussed in
Chapter 10.1 have indicated that when using DLBIST, the non-target defect coverage is
very sensitive to the length of the LFSR generated pseudo-random sequence. To focus
this study on the impact of X-masking, we have opted to use deterministic single-stuck-at
test patterns only. They were generated by a commercial tool; afterwards X-values were
injected randomly into the patterns. Subsequently, the resulting test sets (with injected
unknown values) were simulated using a three-valued simulator (similar to the one from
[167]) to obtain output responses containing X-values. This approach ensures realistic
correlation of unknown values in the output responses targeted by XML synthesis. We
conducted two X injection experiments:

1) For each pattern, X-values were randomly injected at 1% of the bit positions.

2) X-values were randomly injected at, on average, 3% of the bit positions. This was
achieved as follows: For each pattern we randomly chose a value y from [0, 6] (with
uniform probability) and set y% of the bit positions to an X-value – which results in
an average of 3% unknown values.

The XML circuitry has been synthesized using an approach based on binary decision
diagrams [20, 39] (BDDs) which is discussed in [53] (some of the features described in that
paper were not available when the experiments were performed). For selecting relevant bits,
we employed both the bit-based and the pattern-based approach (explained in Chapter
10.2.1) for different values of n.

Setup of Resistive Bridging Fault Simulation Experiment

To evaluate the impact of the XML on the coverage of non-target defects, we simulated
10,000 randomly selected non-feedback resistive bridging faults (where available) utilizing
our simulator [J3].6 Alternatively, we could also use layout extracted bridging faults
(refer to Chapter 3.3). We employed the Shockley technology model (refer again to
Chapter 5.2.2) and parameters from the SPICE model card of a 0.35µm technology
from austriamicrosystems AG (AMS) to determine the critical resistances. Probability
density function ρ proposed in [165] has been employed when calculating fault coverages.
However, all experiments in this chapter could be repeated with any other short resistance
distribution.

The resistive bridging fault model cannot handle unknown values in a meaningful way.
This is because critical resistances can only be calculated if the driving strength of both
driving gates is known. Therefore, the input assignment to these gates has to be completely

6Note that unless otherwise specified the fault lists used in this chapter are equal to those employed in
all other experiments discussed in Part II of this work.

183

10 Benchmarking BIST Techniques

specified, even if a controlling value is applied to one of the gates’ inputs. Therefore, we
performed a Monte Carlo simulation [117] experiment. Given a test set IP we randomly
assigned well-defined values from B to all X-values, yielding a completely specified test
set IP1. Subsequently, we conducted a resistive bridging fault simulation for IP1. Both
steps were repeated M − 1 times such that in total M different, completely specified test
sets IP1, . . . IPM were simulated. Finally, resistive bridging fault coverage was obtained by
averaging the fault coverages computed in each individual fault simulation run.

Algorithm 10.1: Monte Carlo estimation of non-target defect coverage.
Input: Input Pattern set IP which contains X-values;

Set XBase of output bits with X-values;
For k XMLs, sets X1, X2, . . . , Xk of bits to be masked;
The number of repetitions M

Output: Average RBF coverage FC∅Base of the base scenario;
For k XMLs, average RBF coverages FC∅1,FC∅2, . . . ,FC∅k

FCBase := FC1 := . . . := FCk := 0;1

/* Perform simulations for M instances of IP with X-values randomly
assigned to 0s/1s */

for (i := 1; i ≤M ; i := i+ 1) do2

IPi := IP with X-values randomly assigned to 0s/1s;3

FCBase := FCBase + RBFSim(IPi, XBase);4

for (j := 1; j ≤ k; j := j + 1) do FCj := FCj + RBFSim(IPi, Xj);5

end6

/* Compute average RBF coverages */
FC∅Base = FCBase/M ;7

for (j := 1; j ≤ k; j := j + 1) do FC∅j := FCj/M ;8

return FC∅Base,FC∅1,FC∅2, . . . ,FC∅k; /* Return average RBF coverages. */9

In the absence of the XML circuitry X-values are observed at certain bits when the original
test set IP is simulated. Detections of resistive bridging faults at these bits should not be
accounted for when simulating test sets IP1, . . . IPM . We refer to testing without XML as
to the base scenario, and denote the output bits with unknown values as XBase. Moreover,
in the presence of the XML, detection of resistive bridging faults is impossible at all masked
bit positions. This has to be respected during resistive bridging fault simulation. We
synthesized several different XML architectures using both bit-based and pattern-based bit
selection strategies, and different values of n. Let the number of these architectures be k,
and let Xi be the set of bits masked by the i-th XML, 1 ≤ i ≤ k. (Note that XBase ⊆ Xi

always holds). To account for outputs which do not contribute to fault detection, we
modified our simulator [J3] such that we may specify for each simulated pattern a set of
outputs at which fault detections are discarded. Note that the same extension could be
integrated into the simulator SUPERB introduced in Chapter 7.

For a given circuit the flow of the experiment may be described by Algorithm 10.1. It
takes the original pattern set IP (including X-values), the bit positions XBase at which IP

184

10.2 Non-Target Defect Coverage Impact of X-Masking

produces X-values, and the bits X1, . . . Xk masked by the considered XML configurations
as input. Furthermore, the number of Monte Carlo simulations M has to be specified; for
our experiments we used M = 100. Initially (see line 1) variables FCBase, and FC1, . . . ,FCk

are initialized. They store the accumulated resistive bridging fault coverages for the base
scenario and the k XML configurations, respectively. At the beginning of the outer loop
(lines 2 – 6) a new test pattern instantiation IPi is obtained from IP by randomly assigning
unknown values (line 3). For each instantiation of IP we conduct k + 1 resistive bridging
fault simulations using simulator [J3]. In the following, we denote our tool as RBFSim() to
indicate that we modified it to discard detections at masked output bits. First the resistive
bridging fault coverage of IPi for the base scenario is computed. This is performed by
executing RBFSim() using IPi and XBase as input (line 4), and accumulating the resulting
coverage in FCBase. Subsequently, RBFSim() is repeatedly executed for IPi and each
of the XML architectures Xj, 1 ≤ j ≤ k, in line 5. The respective fault coverages are
accumulated in FCj. Note that FCBase is always greater or equal than any FCj. The
difference FCBase − FCj is an indicator for the coverage loss of non-target defects due
to masking out specified (non-X) values by the j-th XML. Finally, in lines 7 and 8 the
average fault coverage FC∅Base for the base scenario and the respective average fault coverage
FC∅j for each of the k XML architectures is computed. These values are returned by the
algorithm.

Results of Resistive Bridging Fault Simulation Experiment

Results for X injection experiment 1 (X-values randomly injected at 1% of the inputs)
and the pattern-based relevant bit selection strategy can be found in Table 10.3. All
experiments in this chapter have been performed for M = 100, i.e. for 100 instances of
test set IP. In the first column of the table the name of the circuit can be found. The
succeeding columns two and three quote the number “Bits” of bits at which X-values are
observed in the base scenario and the average resistive bridging fault coverage “FC” for
this scenario. We synthesized XML architectures for n = 1, n = 3, n = 5, and n = 10.
For each architecture the table gives logic size “LS” of the synthesized XML circuitry in
gate equivalents (GE), followed by the number of bits masked by the XML (“Bits”) and
the average resistive bridging fault coverage “FC”. The last row of the table indicates
average fault coverages. For all but three circuits (c3540, c6288, and c7552) we were
able to compute G-ADI using RBF-ATPG discussed in Chapter 8 and thus calculated
average global fault efficacy according to Equation (5.4.7). For the remaining three circuits
excitation based fault coverage E-FC from Equation (5.4.3) had to be used instead. Recall
that this implies that for these circuits the fault coverages quoted may be below their
actual value. However, as the base scenario and all XML measurements are affected by
this to the same extent, comparing the numbers is still meaningful.

Table 10.4 gives the results for experiment 1 and the bit-based relevant bit selection strategy.
The structure of the table is similar to the one of Table 10.3, however, for this bit selection
strategy we additionally synthesized XML architectures for n = 10, n = 15, and n = 20.

Independent of the relevant bit selection strategy, we can observe that with increasing
n logic size grows. Yet, this growth is very moderate and much slower than n. Average

185

10 Benchmarking BIST Techniques

 0

 200

 400

 600

 800

 1000

 1200

 1400

n=1 n=3 n=5 n=10 No masking
 60

 70

 80

 90

 100

 110

 120

 130

 140

[B
its

]

[G
E

]

Masked bits/Xes Logic size

99.0

99.2

99.4

99.6

99.8

100.0

n=1 n=3 n=5 n=10 No masking
 60

 70

 80

 90

 100

 110

 120

 130

 140

[%
]

[G
E

]

RBF coverage Logic size

(a) (b)

Figure 10.4: Results for c1355, pattern-based relevant bit selection and 1% Xs: Number of
masked bits and logic size as function of n (a); RBF coverage and logic size
as function of n (b).

 0

 200

 400

 600

 800

 1000

 1200

 1400

n=1 n=3 n=5 n=10 n=15 n=20 No masking
 60

 80

 100

 120

 140

 160

 180

[B
its

]

[G
E

]

Masked bits/Xes Logic size

99.0

99.2

99.4

99.6

99.8

100.0

n=1 n=3 n=5 n=10 n=15 n=20 No masking
 60

 80

 100

 120

 140

 160

 180

[%
]

[G
E

]

RBF coverage Logic size

(a) (b)

Figure 10.5: Results for c1355, bit-based relevant bit selection and 1% Xs: Number of
masked bits and logic size as function of n (a); RBF coverage and logic size
as function of n (b).

186

10.2 Non-Target Defect Coverage Impact of X-Masking

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

n=1 n=3 n=5 n=10 n=15 n=20 No masking
 50

 100

 150

 200

 250

 300

 350

 400

 450

[B
its

]

[G
E

]

Masked bits/Xes Logic size

 70

 75

 80

 85

 90

 95

 100

n=1 n=3 n=5 n=10 n=15 n=20 No masking
 50

 100

 150

 200

 250

 300

 350

 400

 450

[%
]

[G
E

]

RBF coverage Logic size

(a) (b)

Figure 10.6: Results for c1355, bit-based relevant bit selection and 3% Xs: Number of
masked bits and logic size as function of n (a); RBF coverage and logic size
as function of n (b).

increase in logic size is higher for the bit-based strategy: for n = 10 the XML circuit is
on average 2.27 times larger than for n = 1. In contrast to that, the average logic size for
the pattern-based strategy exactly doubles when going from n = 1 to n = 10. In terms
of the absolute size the XML circuitry for the pattern-based strategy is (depending on n)
5% to 19% larger than that created for the bit-based strategy. Resistive bridging fault
coverage is hardly affected by the XML. For both relevant bit selection strategies average
coverage slightly drops for n = 1 and almost recovers for n = 3. Similar observations
can be made for the bit-based strategy. For c1355, the tradeoff between size of the XML
circuitry, number of masked bits and fault coverage is illustrated in Figures 10.4 (for the
pattern-based strategy) and 10.5 (for the bit-based strategy).

Table 10.5 reports experimental results for X injection experiment 2 (X-values randomly
injected at an average of 3% of the inputs) and the bit-based relevant bit selection strategy
(in this experiment no results for pattern-based strategy were generated). The structure of
the table is identical to that of Table 10.4. In contrast to experiment 1, the coverage drop
for n = 1 is large. On average 4.97 percentage points are lost due to the introduction of
the XML. High values of n are required to compensate for this loss in non-target defect
coverage. The growth in logic size is larger than in experiment 1, however, still considerably
lower than the increase of n. Again, results for c1355 are illustrated in graph form – see
Figure 10.6.

In summary the results suggest, that the loss in resistive bridging fault coverage due to
X-masking is very moderate if low fractions of unknown values are to be expected. This
is true, even if n-detection is not considered (n = 1). In combination with n-detection,
however, low values of n are sufficient to (nearly) compensate for the coverage loss due
to the XML. By contrast, higher percentages of X-values necessitate the preservation of
multiple detections. Otherwise the coverage of non-target defects may be compromised.

187

10 Benchmarking BIST Techniques

10.3 Conclusions

We evaluated two BIST techniques in terms of their effect on non-target defect detection.
Resistive bridging faults were used as a surrogate for non-target defects. Both BIST
techniques guarantee maximum single-stuck-at fault coverage, but are not optimized with
respect to defect detection.

In the first part of the chapter we investigated the non-target defect coverage of test vectors
supplied by deterministic logic BIST using bit-flipping. This technique maximizes the
single-stuck-at fault coverage of a sequence of pseudo-random patterns generated on-chip
by embedding deterministic single-stuck-at test patterns into the sequence. Experimental
results show that both the random pattern sequence as well as the embedded single-stuck-at
patterns are required to attain sufficiently high levels of resistive bridging fault coverage.
Coverage can be enhanced additionally if longer sequences of pseudo-random patterns are
used. This suggests that deterministic logic BIST is superior to conventional single-stuck-at
test application. Based on our findings, we advocate to exploit the available test time to
the extent possible to maximize the sequence length and thus increase defect coverage.
Additionally, this also helps to reduce the silicon area cost for the required bit-flipping
logic.

Subsequently, the second part of the chapter dealt with an X-masking technique based
on the X-masking logic (XML). X-masking prevents unknown logical values from entering
the test response evaluator replacing them by well-defined logical values. This enables the
use of arbitrary response evaluators including those vulnerable to unknown values. To
reduce the silicon area required to implement the XML, some known bits are allowed to
be masked in addition to the unknown bits as long as the single-stuck-at fault coverage is
not compromised. We considered a X-masking technique which modulates the amount of
masked known bits, and thus the area overhead, using a metric based on n-detection. For
several values of n we explored to what extent the masking of known logical values degrades
the coverage of non-target defects. Experimental results demonstrate that relatively small
values of n are sufficient to compensate for the reduction in non-target coverage imposed
by the X-masking logic – as long as the fraction of unknown values to be masked is low.
For a higher percentage of unknowns, n has to be increased substantially to counterbalance
the impact of the XML. This, however, is paid by increased silicon area demands.

In summary, our experiments demonstrated that the BIST techniques under consideration
hardly degrade and even improve non-target defect coverage. Yet, we also found that this
is only true if sequence length and value of n are carefully selected. This suggests that the
impact of a BIST technology on the non-target defect coverage has to be evaluated using
e.g. the resistive bridging fault model to avoid compromising defect detection.

188

Experimental Data

Ta
bl

e
10

.3
:E

xp
er

im
en

ta
lr

es
ul

ts
,p

at
te

rn
-b

as
ed

re
le

va
nt

bi
t

se
le

ct
io

n
(1

%
X

va
lu

es
at

th
e

in
pu

ts
).

C
ir

cu
it

B
as

e
n

=
1

n
=

3
n

=
5

n
=

10
B

it
s

FC
LS

B
it

s
FC

LS
B

it
s

FC
LS

B
it

s
FC

LS
B

it
s

FC
c0

43
2

28
95

.7
2

23
55

95
.6

9
26

31
95

.7
2

28
30

95
.7

2
30

28
95

.7
2

c0
49

9
63

99
.2

9
37

55
6

99
.2

9
53

36
1

99
.2

9
62

31
0

99
.2

9
75

17
6

99
.2

9
c0

88
0

20
96

.6
3

25
88

96
.3

7
29

39
96

.6
1

33
30

96
.6

2
35

23
96

.6
3

c1
35

5
12

8
99

.5
8

62
12

77
99

.2
2

86
89

4
99

.3
9

10
1

66
9

99
.4

4
13

2
52

1
99

.5
1

c1
90

8
18

3
99

.4
4

12
2

88
1

99
.4

1
16

8
65

6
99

.4
2

18
7

54
7

99
.4

4
21

9
39

4
99

.4
4

c2
67

0
16

0
97

.8
9

12
8

20
21

97
.7

3
18

1
11

03
97

.8
8

19
9

74
6

97
.8

9
24

3
42

0
97

.8
9

c3
54

0
20

5
96

.9
4

15
7

58
8

96
.9

1
17

1
38

3
96

.9
4

20
5

32
2

96
.9

4
21

2
27

8
96

.9
4

c5
31

5
40

6
99

.2
7

22
8

26
57

98
.9

2
36

5
14

85
99

.1
3

42
8

11
07

99
.1

9
49

4
77

0
99

.2
7

c6
28

8
14

3
90

.3
8

51
18

8
90

.2
5

53
15

1
90

.3
8

56
14

3
90

.3
8

56
14

3
90

.3
8

c7
55

2
60

2
98

.8
1

35
8

35
61

98
.6

6
46

8
20

56
98

.7
9

52
8

16
33

98
.8

0
58

2
11

00
98

.8
1

cs
00

29
8

8
97

.4
8

10
37

97
.4

5
11

18
97

.4
8

11
12

97
.4

8
12

11
97

.4
8

cs
00

34
4

11
95

.6
8

13
37

94
.6

0
14

18
95

.6
6

14
14

95
.6

6
15

11
95

.6
8

cs
00

40
0

17
98

.2
8

26
75

98
.1

9
27

43
98

.2
7

28
37

98
.2

4
30

29
98

.2
8

cs
00

44
4

9
97

.8
2

13
66

97
.7

6
16

35
97

.8
2

18
34

97
.8

2
20

17
97

.8
2

cs
00

52
6

23
98

.3
5

35
18

0
98

.2
9

45
96

98
.3

4
48

77
98

.3
5

49
54

98
.3

5
cs

00
71

3
15

98
.6

8
20

13
5

98
.5

7
27

69
98

.6
7

29
48

98
.6

7
31

25
98

.6
8

cs
05

37
8

20
24

98
.9

7
45

5
82

92
98

.8
4

60
8

52
62

98
.9

4
71

6
44

10
98

.9
5

86
3

33
20

98
.9

6
cs

13
20

7
28

08
99

.1
0

16
48

10
23

15
99

.0
4

23
64

61
53

1
99

.0
8

27
96

46
63

2
99

.0
9

34
61

26
85

8
99

.1
0

cs
15

85
0

21
15

98
.7

4
15

40
32

68
1

98
.5

8
20

59
18

42
2

98
.6

9
23

28
13

83
2

98
.7

2
28

95
83

63
98

.7
3

cs
38

58
4

56
26

96
.4

7
37

46
84

43
0

96
.1

4
55

35
46

97
4

96
.3

8
65

24
33

20
1

96
.4

3
79

17
20

76
3

96
.4

5
∅

97
.6

8
97

.5
0

97
.6

4
97

.6
6

97
.6

7

189

10 Benchmarking BIST Techniques

Table
10.4:E

xperim
entalresults,bit-based

relevant
bit

selection
(1%

X
values

at
the

inputs).
C

ircuit
B

ase
n

=
1

n
=

3
n

=
5

n
=

10
n

=
15

n
=

20
B

its
FC

LS
B

its
FC

LS
B

its
FC

LS
B

its
FC

LS
B

its
FC

LS
B

its
FC

LS
B

its
FC

c0432
28

95.72
21

66
95.58

24
50

95.68
25

41
95.71

26
31

95.72
28

29
95.72

28
29

95.72
c0499

63
99.29

35
586

99.29
51

347
99.29

58
293

99.29
73

165
99.29

85
117

99.29
99

84
99.29

c0880
20

96.63
23

110
96.35

30
36

96.62
32

30
96.62

34
23

96.63
35

23
96.63

36
21

96.63
c1355

128
99.58

60
1371

99.26
83

979
99.40

97
832

99.40
129

535
99.47

142
431

99.52
166

341
99.53

c1908
183

99.44
110

1215
99.26

139
920

99.40
157

646
99.43

197
531

99.44
225

440
99.44

232
344

99.44
c2670

160
97.89

112
2690

97.67
156

1360
97.85

185
1021

97.88
226

682
97.89

247
490

97.89
262

344
97.89

c3540
205

96.94
118

1080
96.64

149
580

96.92
169

487
96.92

191
403

96.93
214

287
96.94

225
269

96.94
c5315

406
99.27

206
3430

98.69
330

2021
99.15

369
1502

99.10
451

1103
99.24

467
1096

99.23
496

979
99.20

c6288
143

90.38
49

211
90.23

52
159

90.36
54

144
90.38

56
143

90.38
56

143
90.38

56
143

90.38
c7552

602
98.81

336
4359

98.52
437

3044
98.77

493
2225

98.80
550

1713
98.80

595
1283

98.80
610

1040
98.80

cs00298
8

97.48
9

36
97.45

11
13

97.48
11

15
97.48

12
10

97.48
13

8
97.48

13
8

97.48
cs00344

11
95.68

12
65

95.34
13

22
95.64

14
20

95.68
15

11
95.68

15
11

95.68
15

11
95.68

cs00400
17

98.28
25

117
97.91

27
52

98.27
27

45
98.27

28
29

98.28
32

22
98.28

33
17

98.28
cs00444

9
97.82

13
97

97.71
15

50
97.82

16
40

97.82
20

16
97.82

21
14

97.82
22

10
97.82

cs00526
23

98.35
33

281
98.09

41
166

98.32
44

97
98.34

48
58

98.35
50

43
98.35

51
37

98.35
cs00713

15
98.68

18
154

98.58
24

84
98.66

27
60

98.68
31

24
98.68

31
23

98.68
32

16
98.68

cs05378
2024

98.97
338

10383
98.63

470
7810

98.87
555

6556
98.91

703
5170

98.96
801

4448
98.97

883
4032

98.97
cs13207

2808
99.10

1351
113718

98.96
2082

70397
99.07

2604
56385

99.09
3333

35440
99.10

3911
23522

99.10
4291

17866
99.09

cs15850
2115

98.74
1164

40005
98.44

1807
22553

98.67
2161

15609
98.68

2775
9264

98.71
3120

7181
98.73

3275
6014

98.73
cs38584

5626
96.47

3286
97955

95.42
5145

53161
96.33

6177
37775

96.41
7724

22766
96.43

8490
16409

96.45
9050

13590
96.45

∅
97.68

97.40
97.63

97.64
97.66

97.67
97.67

190

Experimental Data

Ta
bl

e
10

.5
:E

xp
er

im
en

ta
lr

es
ul

ts
,b

it
-b

as
ed

re
le

va
nt

bi
t

se
le

ct
io

n
(3

%
X

va
lu

es
at

th
e

in
pu

ts
).

C
ir

cu
it

B
as

e
n

=
1

n
=

3
n

=
5

n
=

10
n

=
15

n
=

20
B

it
s

FC
LS

B
it

s
FC

LS
B

it
s

FC
LS

B
it

s
FC

LS
B

it
s

FC
LS

B
it

s
FC

LS
B

it
s

FC
c0

43
2

61
94

.0
1

33
12

2
93

.2
0

41
88

93
.8

6
43

78
94

.0
0

45
70

94
.0

1
46

66
94

.0
1

47
63

94
.0

1
c0

49
9

31
4

94
.5

3
75

12
22

43
.2

7
11

1
10

23
85

.5
7

12
3

91
2

88
.2

0
18

3
70

3
88

.5
9

23
1

52
5

94
.1

0
27

5
40

5
94

.5
2

c0
88

0
63

96
.3

4
51

24
0

95
.6

3
64

11
0

96
.2

5
67

11
7

96
.2

8
81

81
96

.3
4

83
71

96
.3

4
83

66
96

.3
4

c1
35

5
54

2
95

.1
0

98
22

45
70

.5
6

15
6

21
10

73
.8

9
20

3
18

59
76

.2
2

25
8

15
81

81
.8

0
30

4
12

87
88

.0
6

41
1

10
47

89
.2

4
c1

90
8

36
0

99
.1

0
13

6
17

57
98

.6
1

20
8

12
61

99
.0

1
24

9
11

32
99

.0
8

30
0

88
8

99
.1

0
33

3
77

6
99

.1
0

35
6

67
4

99
.1

0
c2

67
0

45
6

93
.9

8
20

7
44

77
92

.2
4

28
6

30
84

93
.8

0
35

8
21

76
93

.9
2

44
0

14
53

93
.9

7
50

7
12

05
93

.9
8

54
1

77
4

93
.9

8
c3

54
0

43
3

96
.1

8
21

9
15

03
95

.0
6

27
3

11
20

95
.8

0
31

4
93

0
96

.0
8

38
1

73
5

96
.1

5
41

4
64

0
96

.1
7

41
9

56
4

96
.1

7
c5

31
5

92
5

98
.8

1
30

5
50

90
96

.7
4

50
2

38
20

98
.1

4
62

3
31

53
98

.2
2

76
2

22
38

98
.5

1
84

6
19

76
98

.6
7

87
5

16
78

98
.7

3
c6

28
8

32
6

88
.2

5
72

42
7

85
.7

4
77

34
4

88
.1

2
82

33
3

88
.2

5
89

32
7

88
.2

5
89

32
6

88
.2

5
89

32
6

88
.2

5
c7

55
2

15
74

97
.5

7
53

2
68

01
95

.1
4

79
2

51
25

97
.2

8
88

0
48

66
97

.4
5

10
04

39
84

97
.5

0
10

71
33

25
97

.5
3

11
52

24
09

97
.5

3
cs

00
29

8
29

96
.9

4
29

13
3

96
.3

5
33

76
96

.9
0

38
45

96
.9

3
43

39
96

.9
4

44
33

96
.9

4
46

30
96

.9
4

cs
00

34
4

20
95

.6
9

21
71

94
.7

5
26

33
95

.6
7

29
27

95
.6

9
30

20
95

.6
9

30
20

95
.6

9
30

20
95

.6
9

cs
00

40
0

49
97

.5
8

38
25

3
95

.9
7

53
15

5
97

.3
6

57
12

3
97

.4
6

65
60

97
.5

8
70

54
97

.5
8

74
50

97
.5

8
cs

00
44

4
41

97
.0

1
36

19
1

95
.6

0
43

89
96

.8
8

48
86

96
.8

7
53

49
97

.0
0

54
45

97
.0

1
54

42
97

.0
1

cs
00

52
6

94
98

.1
9

77
49

3
97

.7
2

99
30

0
98

.0
8

10
4

23
5

98
.1

4
10

9
21

8
98

.1
7

13
2

14
6

98
.1

9
13

4
12

9
98

.1
9

cs
00

71
3

87
98

.3
1

57
44

7
97

.7
4

84
27

3
98

.1
9

99
17

4
98

.3
0

10
5

12
6

98
.3

1
10

7
12

3
98

.3
1

11
1

99
98

.3
1

cs
05

37
8

29
26

98
.5

4
51

8
16

11
2

97
.6

4
79

2
13

65
9

98
.3

5
99

7
11

49
7

98
.3

8
12

99
87

00
98

.5
0

14
84

70
34

98
.5

3
16

58
63

31
98

.5
3

cs
13

20
7

85
36

98
.9

3
20

41
16

60
74

97
.7

6
37

51
13

19
54

98
.2

0
48

74
11

31
99

98
.2

5
69

88
81

26
7

98
.2

9
83

97
55

94
0

98
.3

0
95

31
43

72
1

98
.3

0
cs

15
85

0
58

72
98

.3
8

17
86

64
68

4
96

.2
2

31
35

46
19

1
97

.3
4

40
56

36
47

2
97

.5
7

55
39

23
24

9
97

.7
4

65
27

17
22

9
97

.7
4

71
13

14
82

6
97

.7
5

cs
38

58
4

12
52

5
95

.9
5

50
53

14
97

02
94

.1
4

87
66

96
01

0
95

.6
9

11
07

8
74

15
8

95
.8

2
14

58
6

45
30

1
95

.9
2

16
42

3
32

52
0

95
.9

2
17

46
4

27
85

3
95

.9
0

∅
96

.4
7

91
.5

0
94

.7
2

95
.0

6
95

.4
2

96
.0

2
96

.1
0

191

10 Benchmarking BIST Techniques

192

11 Summary and Discussion of Part II

While Part I of this thesis gave an overview over several bridging fault models, and
particularly introduced the theoretical aspects of the resistive bridging fault model, the
second part focused on the translation of this theory into the practical application domain.
The applications considered can be roughly attributed to three areas:

1. The “traditional” testing disciplines of fault simulation and test pattern generation.

2. The integration of advanced testing concepts into the framework of the model.

3. The evaluation of testing methodologies with respect to their resistive short detection.

Our fault simulator SUPERB, and our test pattern generator RBF-ATPG introduced in
Chapters 7 and 8, respectively, belong to the first area. Both tools are core elements of
a testing methodology for resistive bridging faults without which all other applications
of the model would not be thinkable. They could only be realized by developing efficient
algorithms which exactly capture the parametric nature of the resistive bridging fault
model, its sophisticated electrical concept, and the probabilistic fault coverage metrics. In
particular, SUPERB demonstrates that fast and accurate resistive bridging fault simulation
is feasible, and actually renders handling of multi-million gate designs possible. Due to
the combination of the sectioning technique and parallel-pattern evaluation realized in
SUPERB, we are now able to simulate resistive shorts in circuits of practically relevant
size which enables testing of resistive shorts in practice.

The sectioning technique also forms the basis of the second component in this area: the test
pattern generator RBF-ATPG. Further ingredients of this tool include a solver for Boolean
satisfiability problems and an interval-based fault simulator. Test pattern generation is
a key task and – as our experimental comparison with n-detection and 4-way test sets
underlined – absolutely necessary to ensure complete coverage of resistive shorts. Besides
that, it proved to be extremely valuable that RBF-ATPG accurately determines G-ADI for
circuits which may not be exhaustively simulated. As a consequence, we can now compute
the exact fault coverage metric G-FC for a wide range of circuits. This is a prerequisite
to accurately grade test patterns, which is for instance required when evaluating testing
methodologies.

In the second area we explored two extensions to the resistive bridging fault model. There it
turned out to be beneficial that the model’s electrical concept is very powerful, yet flexible
enough to permit the integration of additional physical effects. Because of the extensions
proposed in Chapter 9 it is now possible to capture the influence of varying operating
temperature and power supply voltage on the coverage of resistive shorts. Furthermore,
we could also transfer the model’s basic electrical framework to a testing approach very

193

11 Summary and Discussion of Part II

different from voltage testing: quiescent current (Delta-Iddq) testing. This technique,
however, is not an isolated part of the model. Rather, voltage and quiescent current testing
are tightly integrated thanks to the parametric nature of the resistive bridging fault model.
Thus, their effectivity can be directly compared. Furthermore, due to the comparability of
detection intervals obtained in the voltage and the current testing domain, even sequential
circuits can be handled accurately.

We also exploited this tight integration for the experiments which may be attributed to
the third application area. Results reported in Chapter 9.2 underline that the combination
of voltage and Delta-Iddq testing is very effective in the detection of resistive shorts
detectable by conventional voltage testing only (hard defects). Additionally, we were
able to quantify the coverage of flaws by Delta-Iddq testing. Flaws are defects which
are undetectable by conventional voltage testing, yet pose a substantial reliability risk as
they may lead to catastrophic failures during the future use of the device. In particular,
experimental results demonstrate that voltage and current testing are orthogonal in the
sense that for the same set of test patterns, they cover different resistive shorts. Therefore,
even adding just a few Delta-Iddq measurements to a voltage testing scenario can increase
the overall coverage of resistive shorts.

In a scenario, however, which purely relies on voltage testing, flaws may also be covered by
testing at several operating temperatures and/or power supply voltages. In the extended
analytical framework of the resistive bridging fault model, these parameters can easily
be modified. This facilitates experiments like the ones discussed in Chapter 9.1 which
considered the impact of these advanced testing methodologies on the coverage of hard
defects and flaws. Additionally, our experiments accounted for the costs involved with
either technique. Extensive experimental data helps to find the optimal testing strategy in
terms of coverage and costs for both products with elevated reliability requirements as well
as high-volume manufacturing test.

The concept of the resistive bridging fault model even turns out to be beneficial in the
context of testing methodologies which are optimized to guarantee maximal single-stuck-at
fault detection, yet do not account for the coverage of defects. We demonstrated that the
coverage of resistive shorts can be used to quantify the effect of two BIST techniques on
the non-target defect detection. We used resistive shorts modeled by resistive bridging
faults as a surrogate for these defects. Experiments reported in Chapters 10.1 and 10.2
explored for each technique several configurations with respect to their silicon area demands
and the resulting non-target defect coverage. It turned out that the coverage is heavily
dependent on the configuration and thus should be evaluated explicitly to ensure optimal
defect detection along with low area demands.

In summary, the flexible and extensible concept of the resistive bridging fault model in
combination with efficient algorithms yields an accurate analytical tool and enables targeted
detection of resistive shorts.

194

Concluding Remarks

Taken together, this doctoral thesis demonstrates that the concept of the resistive bridging
fault model is extremely flexible and powerful. At the same time, the model accurately
reflects the impact of resistive shorts on the behavior of digital circuits. Thanks to the
model’s flexibility, we were able to extend its modeling capabilities to several advanced
testing concepts. These novel extensions allow us to accurately assess the influence of
variable operating conditions on the coverage of resistive shorts. Additionally, it is now
possible to directly compare the effectivity of quiescent current and voltage testing. We
developed several metrics which precisely evaluate the individual benefit of these advanced
testing concepts side by side. In combination, our contributions turn the resistive bridging
fault model into a highly accurate and extremely versatile analytical instrument. Moreover,
the model’s accuracy paired with its moderate complexity enables targeted detection of
resistive shorts in practical applications.

The practicality of the resistive bridging fault model is guaranteed by our fault simulator
SUPERB and our automatic test pattern generator RBF-ATPG. Powered by the efficient
algorithms we developed in this thesis, these tools exactly replicate the parametric nature
of the fault model. In particular, SUPERB demonstrates that fast and accurate resistive
bridging fault simulation is feasible and actually renders handling of multi-million gate
designs possible. The test patterns generated by RBF-ATPG completely cover all detectable
resistive shorts. Furthermore, the outputs of RBF-ATPG are a prerequisite for the accuracy
of our fault coverage metrics. Numerous experiments presented in this thesis underline
the applicability of the resistive bridging fault model, while demonstrating the versatility
of the model in various application domains. Our results help finding the optimal testing
strategy when resistive shorts are targeted. Yet, they also allow us to improve the defect
detection capabilities of techniques which are specializing in conventional stuck-at faults.

Despite our contributions, there are still some questions pending. First of all, we would
like to explore the impact of process variations on the resistive bridging fault model.
Furthermore, we plan to extend its modeling capabilities to the dynamic effects caused
by resistive shorts (in a way similar to Li et al. [102]). We emphasize the need for a tight
integration of dynamic effects into the parametric model – analogical to our approach for
resistive open defects in [P19]. Moreover, we intend to continue our research on the benefits
of the resistive bridging fault model for diagnosis. Locating shorts present in a circuit is a
key task, yet our studies on this topic are still in the early stages (see our publications
[W12, W13]). Finally, validation on manufactured silicon would provide the ultimate proof
of the efficiency of the methods studied in this thesis.

195

Concluding Remarks

196

Author’s Publications

Items marked with (*) are not discussed in this thesis.

Journal Articles

[J5] P. Engelke, I. Polian, M. Renovell, S. Kundu, B. Seshadri, and B. Becker. On
detection of resistive bridging defects by low-temperature and low-voltage testing.
IEEE Transactions on CAD of Integrated Circuits and Systems, 27(2):327–338, Feb.
2008. doi: 10.1109/TCAD.2007.913382.

[J4] P. Engelke, I. Polian, M. Renovell, and B. Becker. Automatic test pattern generation
for resistive bridging faults. Journal of Electronic Testing: Theory and Applications,
22(1):61–69, Feb. 2006. doi: 10.1007/s10836-006-6392-x.

[J3] P. Engelke, I. Polian, M. Renovell, and B. Becker. Simulating resistive bridging
and stuck-at faults. IEEE Transactions on CAD of Integrated Circuits and Systems,
25(10):2181–2192, Oct. 2006. doi: 10.1109/TCAD.2006.871626.

[J2] Y. Tang, H.-J. Wunderlich, P. Engelke, I. Polian, B. Becker, J. Schlöffel,
F. Hapke, and M. Wittke. X-masking during logic BIST and its impact on de-
fect coverage. IEEE Transactions on VLSI Systems, 14(2):193–202, Feb. 2006.
doi: 10.1109/TVLSI.2005.863742.

[J1] I. Polian, P. Engelke, M. Renovell, and B. Becker. Modeling feedback bridging faults
with non-zero resistance. Journal of Electronic Testing: Theory and Applications,
21(1):57–69, Feb. 2005. doi: 10.1007/s10836-005-5287-6.

Papers in Formal Proceedings (Refereed)

[P20] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. Reddy, and B. Becker. TIGUAN:
Thread-parallel integrated test pattern generator utilizing satisfiability anal-
ysis. In International Conference on VLSI Design, pages 227–232, 2009.
doi: 10.1109/VLSI.Design.2009.20. (*).

[P19] A. Czutro, N. Houarche, P. Engelke, I. Polian, M. Comte, M. Renovell, and B. Becker.
A simulator of small-delay faults caused by resistive-open defects. In IEEE European
Test Symposium, pages 113–118, 2008. doi: 10.1109/ETS.2008.19. (*).

197

http://dx.doi.org/10.1109/TCAD.2007.913382
http://dx.doi.org/10.1007/s10836-006-6392-x
http://dx.doi.org/10.1109/TCAD.2006.871626
http://dx.doi.org/10.1109/TVLSI.2005.863742
http://dx.doi.org/10.1007/s10836-005-5287-6
http://dx.doi.org/10.1109/VLSI.Design.2009.20
http://dx.doi.org/10.1109/ETS.2008.19

Author’s Publications

[P18] P. Engelke, I. Polian, J. Schlöffel, and B. Becker. Resistive bridging fault simulation
of industrial circuits. In Design, Automation and Test in Europe, pages 628–633,
2008. doi: 10.1109/DATE.2008.4484747.

[P17] S. Hillebrecht, I. Polian, P. Engelke, B. Becker, M. Keim, and W.-T. Cheng. Ex-
traction, simulation and test generation for interconnect open defects based on
enhanced aggressor-victim model. In IEEE International Test Conference, 2008.
doi: 10.1109/TEST.2008.4700642. (*).

[P16] S. Spinner, I. Polian, P. Engelke, B. Becker, M. Keim, and W.-T. Cheng. Automatic
test pattern generation for interconnect open defects. In IEEE VLSI Test Symposium,
pages 181–186, 2008. doi: 10.1109/VTS.2008.30. (*).

[P15] P. Engelke, B. Braitling, I. Polian, M. Renovell, and B. Becker. SUPERB: Simulator
utilizing parallel evaluation of resistive bridges. In IEEE Asian Test Symposium,
pages 433–438, 2007. doi: 10.1109/ATS.2007.71.

[P14] S. Spinner, J. Jiang, I. Polian, P. Engelke, and B. Becker. Simulating open-via defects.
In IEEE Asian Test Symposium, pages 265–270, 2007. doi: 10.1109/ATS.2007.72.
(*).

[P13] P. Engelke, I. Polian, H. Manhaeve, M. Renovell, and B. Becker. Delta-Iddq
testing of resistive short defects. In IEEE Asian Test Symposium, pages 63–68, 2006.
doi: 10.1109/ATS.2006.260994.

[P12] M. Renovell, M. Comte, I. Polian, P. Engelke, and B. Becker. Analyzing the memory
effect of resistive open in CMOS random logic. In International Conference on
Design and Test of Integrated Systems in Nanoscale Technology, pages 251–256, Sept.
2006. doi: 10.1109/DTIS.2006.1708691. (*).

[P11] M. Renovell, M. Comte, I. Polian, P. Engelke, and B. Becker. A specific ATPG
technique for resistive open with sequence recursive dependency. In IEEE Asian
Test Symposium, pages 273–278, 2006. doi: 10.1109/ATS.2006.261031. (*).

[P10] G. Chen, S. Reddy, I. Pomeranz, J. Rajski, P. Engelke, and B. Becker. An unified
fault model and test generation procedure for interconnect opens and bridges. In
IEEE European Test Symposium, pages 22–27, 2005. doi: 10.1109/ETS.2005.6.

[P9] S. Kundu, P. Engelke, I. Polian, and B. Becker. On detection of resistive bridging
defects by low-temperature and low-voltage testing. In IEEE Asian Test Symposium,
pages 266–269, 2005. doi: 10.1109/ATS.2005.83.

[P8] I. Polian, S. Kundu, J.-M. Gallière, P. Engelke, M. Renovell, and B. Becker. Resistive
bridge fault model evolution from conventional to ultra deep submicron technologies.
In IEEE VLSI Test Symposium, pages 343–348, 2005. doi: 10.1109/VTS.2005.72.

[P7] P. Engelke, I. Polian, M. Renovell, and B. Becker. Automatic test pattern generation
for resistive bridging faults. In IEEE European Test Symposium, pages 160–165,
2004. doi: 10.1109/ETSYM.2004.1347652.

[P6] P. Engelke, I. Polian, M. Renovell, B. Seshadri, and B. Becker. The pros and cons
of very-low-voltage testing: An analysis based on resistive short defects. In IEEE
VLSI Test Symposium, pages 171–178, 2004. doi: 10.1109/VTEST.2004.1299240.

198

http://dx.doi.org/10.1109/DATE.2008.4484747
http://dx.doi.org/10.1109/TEST.2008.4700642
http://dx.doi.org/10.1109/VTS.2008.30
http://dx.doi.org/10.1109/ATS.2007.71
http://dx.doi.org/10.1109/ATS.2007.72
http://dx.doi.org/10.1109/ATS.2006.260994
http://dx.doi.org/10.1109/DTIS.2006.1708691
http://dx.doi.org/10.1109/ATS.2006.261031
http://dx.doi.org/10.1109/ETS.2005.6
http://dx.doi.org/10.1109/ATS.2005.83
http://dx.doi.org/10.1109/VTS.2005.72
http://dx.doi.org/10.1109/ETSYM.2004.1347652
http://dx.doi.org/10.1109/VTEST.2004.1299240

Author’s Publications

[P5] Y. Tang, H.-J. Wunderlich, H. Vranken, F. Hapke, M. Wittke, P. Engelke,
I. Polian, and B. Becker. X-masking during logic BIST and its impact on de-
fect coverage. In IEEE International Test Conference, pages 442–451, 2004.
doi: 10.1109/TEST.2004.1386980.

[P4] P. Engelke, I. Polian, M. Renovell, and B. Becker. Simulating resistive bridging
and stuck-at faults. In IEEE International Test Conference, pages 1051–1059, 2003.
doi: 10.1109/TEST.2003.1271093.

[P3] I. Polian, P. Engelke, M. Renovell, and B. Becker. Modelling feedback bridging
faults with non-zero resistance. In IEEE European Test Workshop, pages 91–96,
2003. doi: 10.1109/ETW.2003.1231674.

[P2] I. Polian, P. Engelke, and B. Becker. Efficient bridging fault simulation of sequential
circuits based on multi-valued logics. In IEEE International Symposium on Multiple-
Valued Logic, pages 216–222, 2002. doi: 10.1109/ISMVL.2002.1011092. (*).

[P1] P. Engelke, B. Becker, and M. Keim. A parameterizable fault simulator
for bridging faults. In IEEE European Test Workshop, pages 63–68, 2000.
doi: 10.1109/ETW.2000.873780. (*).

Workshop Contributions (Refereed)

[W15] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. Reddy, and B. Becker. TIGUAN:
Thread-parallel integrated test pattern generator utilizing satisfiability analysis. In
edaWorkshop, pages 69–74, 2008. (*).

[W14] P. Engelke, I. Polian, J. Schlöffel, and B. Becker. Resistive bridging fault simulation
of industrial circuits. In GI/ITG Workshop “Testmethoden und Zuverlässigkeit von
Schaltungen und Systemen”, pages 143–148, 2008.

[W13] I. Polian, Y. Nakamura, P. Engelke, S. Spinner, K. Miyase, S. Kajihara, B. Becker,
and X. Wen. Diagnosis of realistic defects based on the X-fault model. In IEEE
International Workshop on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), pages 263–266, 2008. doi: 10.1109/DDECS.2008.4538798. (*).

[W12] I. Polian, Y. Nakamura, P. Engelke, S. Hillebrecht, K. Miyase, S. Kajihara, B. Becker,
and X. Wen. Diagnose realistischer Defekte mit Hilfe des X-Fehlermodells. In
GMM/GI/ITG-Fachtagung Zuverlässigkeit und Entwurf, pages 155–156, 2008. (*).

[W11] S. Spinner, I. Polian, P. Engelke, B. Becker, M. Keim, and W.-T. Cheng. Auto-
matic test pattern generation for interconnect open defects. In GI/ITG Workshop
“Testmethoden und Zuverlässigkeit von Schaltungen und Systemen”, pages 47–52,
2008. (*).

[W10] P. Engelke, I. Polian, H. Manhaeve, M. Renovell, and B. Becker. Delta-Iddq
testing of resistive short defects. In IEEE International Workshop On Current and
Defect-Based Testing, 2006.

199

http://dx.doi.org/10.1109/TEST.2004.1386980
http://dx.doi.org/10.1109/TEST.2003.1271093
http://dx.doi.org/10.1109/ETW.2003.1231674
http://dx.doi.org/10.1109/ISMVL.2002.1011092
http://dx.doi.org/10.1109/ETW.2000.873780
http://dx.doi.org/10.1109/DDECS.2008.4538798

Author’s Publications

[W9] P. Engelke, I. Polian, H. Manhaeve, M. Renovell, and B. Becker. Iddq testing of
resistive bridging defects. In GI/ITG Workshop “Testmethoden und Zuverlässigkeit
von Schaltungen und Systemen”, pages 123–124, 2006. (*).

[W8] P. Engelke, V. Gherman, I. Polian, Y. Tang, H.-J. Wunderlich, and B. Becker.
Sequence length, area cost and non-target defect coverage tradeoffs in deterministic
logic BIST. In IEEE International Workshop on Design and Diagnostics of Electronic
Circuits and Systems (DDECS), pages 11–18, 2005.

[W7] P. Engelke, V. Gherman, I. Polian, Y. Tang, H.-J. Wunderlich, and B. Becker.
Sequence length, area cost and non-target defect coverage tradeoffs in deterministic
logic BIST. In IEEE International Workshop on Current and Defect-Based Testing,
pages 43–48, 2005.

[W6] P. Engelke, I. Polian, M. Renovell, and B. Becker. Automatic test pattern generation
for resistive bridging faults. In IEEE International Workshop On Current and Defect-
Based Testing, pages 89–94, 2004.

[W5] P. Engelke, I. Polian, M. Renovell, B. Seshadri, and B. Becker. The pros and cons of
very-low-voltage testing: An analytical view. In GI/ITG Workshop “Testmethoden
und Zuverlässigkeit von Schaltungen und Systemen”, pages 149–153, 2004.

[W4] Y. Tang, H.-J. Wunderlich, H. Vranken, F. Hapke, M. Wittke, P. Engelke, I. Polian,
and B. Becker. X-masking during logic BIST and its impact on defect coverage. In
IEEE International Workshop on Test Resource Partitioning, pages 442–451, 2004.

[W3] P. Engelke, I. Polian, M. Renovell, and B. Becker. Simulating resistive bridging
and stuck-at faults. In IEEE International Workshop On Current and Defect-Based
Testing, pages 49–56, 2003.

[W2] P. Engelke, I. Polian, M. Renovell, and B. Becker. Simulating resistive bridging
faults. In GI/ITG Workshop “Testmethoden und Zuverlässigkeit von Schaltungen
und Systemen”, pages 92–97, 2003.

[W1] M. Keim, P. Engelke, and B. Becker. A parameterizable fault simulator for bridging
faults. In GI/ITG Workshop “Testmethoden und Zuverlässigkeit von Schaltungen
und Systemen”, 2000. (*).

200

Bibliography

[1] M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital Systems Testing and
Testable Design. Computer Science Press, 1990.

[2] M. Abramovici and P.R. Menon. A practical approach to fault simulation and test
generation for bridging faults. IEEE Trans. on Comp., C-34(7):658–663, July 1983.

[3] J.M. Acken and S.D. Millman. Accurate modeling and simulation of bridging faults.
In Custom Integrated Circuits Conference, pages 17.4.1–17.4.4, 1991.

[4] J.M. Acken and S.D. Millman. Fault model evolution for diagnosis; accuracy vs
precision. In Custom Integrated Circuits Conference, pages 13.4.1–13.4.4, 1992.

[5] R.C. Aitken. Finding defects with fault models. In Int’l Test Conf., pages 498–505,
1995.

[6] R.C. Aitken. Defect or variation? Characterizing standard cell behavior at 90 nm
and below. IEEE Trans. on Semiconductor Manufacturing, 21(1):46–54, Feb. 2008.

[7] G.A. Allan and A.J. Walton. Hierarchical critical area extraction with the EYE
tool. In Int’l Workshop on Defect and Fault Tolerance in VLSI Systems, pages 28–36,
1995.

[8] M.E. Amyeen, S. Venkataraman, A. Ojha, and S. Lee. Evaluation of the quality of
N-detect scan ATPG patterns on a processor. In Int’l Test Conf., pages 669–678,
2004.

[9] D. Arumí, R. Rodríguez-Montañés, J. Figueras, S. Eichenberger, C. Hora, B. Kruse-
man, M. Lousberg, and A.K. Majhi. Diagnosis of bridging defects based on current
signatures at low power supply voltages. In VLSI Test Symp., pages 145–150, 2007.

[10] R.J. Baker. CMOS – Circuit Design, Layout, and Simulation. IEEE Press, 2nd
edition, 1998.

[11] P.H. Bardell, W.H. McAnney, and J. Savir. Built In Test for VLSI: Pseudorandom
Techniques. John Wiley & Sons, New York, Dec. 1987.

[12] B.Chess and C. Roth. On evaluating competing bridge fault models for CMOS ICs.
In VLSI Test Symp., pages 446–451, 1994.

[13] B. Benware, C. Schuermyer, S. Ranganathan, R. Madge, P. Krishnamurty, N. Tama-
rapalli, K.H. Tsai, and J. Rajski. Impact of multiple-detect test patterns on product
quality. In Int’l Test Conf., pages 1031–1040, 2003.

[14] B.R. Benware, R. Madge, C. Lu, and R. Daasch. Effectiveness comparisons of outlier
screening methods for frequency dependent defects on complex ASICs. In VLSI Test
Symp., pages 39–46, 2003.

201

Bibliography

[15] K.A. Bowman, X. Tang, J.C. Eble, and J.D Meindl. Impact of extrinsic and intrinsic
parameter fluctuations on CMOS circuit performance. IEEE Jour. of Solid-State
Circ., 35(8):1186–1193, Aug. 2000.

[16] D. Brand. Verification of large synthesized designs. In Int’l Conf. on CAD, pages
534–537, 1993.

[17] R.K. Brayton, R. Rudell, A.L. Sangiovanni-Vincentelli, and A.R. Wang. MIS: A
multiple - level logic optimization system. IEEE Trans. on Comp., 6(6):1062–1081,
1987.

[18] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential bench-
mark circuits. In Int’l Symp. Circ. and Systems, pages 1929–1934, 1989.

[19] F. Brglez and H. Fujiwara. A neutral netlist of 10 combinational circuits and a target
translator in fortran. In Int’l Symp. Circ. and Systems, Special Sess. on ATPG and
Fault Simulation, pages 663–698, 1985.

[20] R.E. Bryant. Graph - based algorithms for Boolean function manipulation. IEEE
Trans. on Comp., 35(8):677–691, 1986.

[21] M.L. Bushnell and V.D. Agrawal. Essentials of electronic testing for digital, memory
and mixed-signal VLSI circuits. Kluwer Academic Publishers, 2001.

[22] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New paradigm of predictive
MOSFET and interconnect modeling for early circuit design. In IEEE CICC, pages
201–204, 2000.

[23] K. Chakrabarty, B.T. Murray, and V. Iyengar. Built-in test pattern generation for
high performance circuits using twisted-ring counters. In VLSI Test Symp., pages
22–27, 1999.

[24] S.T. Chakradhar, V.D. Agrawal, and S.G. Rothweiler. A Transitive Closure Algorithm
for Test Generation. IEEE Transactions on CAD, 12:1015–1028, 1993.

[25] S. Chakravarty, A. Jain, N. Radhakrishnan, E.W. Savage, and S.T. Zachariah.
Experimental evaluation of scan tests for bridges. In Int’l Test Conf., pages 509–518,
2002.

[26] J.T.Y. Chang and E.J. McCluskey. Quantitative analysis of Very-Low-Voltage testing.
In VLSI Test Symp., pages 332–337, 1996.

[27] T. Chen and I.N. Hajj. GOLDENGATE: a fast and accurate bridging fault simulator
under a hybrid logic/Iddq testing environment. In Int’l Conf. on CAD, pages
555–561, 1997.

[28] B. Chess and T. Larrabee. Bridge fault simulation strategies for CMOS integrated
circuits. In Design Automation Conf., pages 458–462, 1993.

[29] B. Chess and T. Larrabee. Logic testing of bridging faults in CMOS integrated
circuits. IEEE Trans. on Comp., 47(3):338–345, March 1998.

[30] H. Cheung and S.K. Gupta. Accurate modeling and fault simulation of byzantine
resistive bridges. In Int’l Conf. on Comp. Design, pages 347–353, 2007.

202

Bibliography

[31] T. Clouqueur, K. Zarrineh, K.K. Saluja, and H. Fujiwara. Design and analysis of
multiple weight linear compactors of responses containing unknown values. In Int’l
Test Conf., 2005.

[32] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.

[33] F. Corno, M.S. Reorda, and G. Squillero. RT-level ITC’99 benchmarks and first
ATPG results. IEEE Design & Test of Comp., 17:44–53, July/Sept. 2000.

[34] J. P. Cusey and J. H. Patel. BART: A bridging fault test generator for sequential
circuits. In Int’l Test Conf., pages 838–847, 1997.

[35] P. Dahlgren. Switch-level bridging fault simulation in the presence of feedbacks. In
Int’l Test Conf., pages 363–371, 1998.

[36] M. Dalpasso, M. Favalli, P. Olivo, and B. Riccò. Parametric bridging fault charac-
terization for the fault simulation of library-based ICs. In Int’l Test Conf., pages
486–495, 1992.

[37] C. Di and J.A.G. Jess. On CMOS bridge fault modeling and test pattern evaluation.
In VLSI Test Symp., pages 116–119, 1993.

[38] C. Di and J.A.G. Jess. An efficient CMOS bridging fault simulator: With SPICE
accuracy. IEEE Trans. on CAD, 15(9):1071–1080, Sept. 1996.

[39] R. Drechsler and B. Becker. Binary Decision Diagrams – Theory and Implementation.
Kluwer Academic Publishers, 1998.

[40] E.B. Eichelberger and E. Lindbloom. Random-pattern coverage enhancement and
diagnosis for LSSD logic self-test. IBM J. Res. and Develop., 27(3):265–272, May
1983.

[41] M. Favalli and M. Dalpasso. Symbolic handling of bridging fault effects. Jour. of
Electronic Testing: Theory and Applications, 10:271–276, June 1997.

[42] M. Favalli, P. Olivo, and B. Riccò. A probabilistic fault model for "analog" faults in
digital CMOS circuits. IEEE Trans. on CAD, 11(11):1459–1462, Nov. 1992.

[43] F.J. Ferguson and T. Larrabee. Test pattern generation for realistic bridge fault in
CMOS ICs. In Int’l Test Conf., pages 492–499, 1991.

[44] F.J. Ferguson and J.P. Shen. A CMOS fault extractor for inductive fault analysis.
IEEE Trans. on CAD, 7(11):1181–1194, Nov. 1988.

[45] F.J. Ferguson and J.P. Shen. Extraction and simulation of realistic CMOS faults
using inductive fault analysis. In Int’l Test Conf., pages 475–484, 1988.

[46] A.V. Ferris-Prabhu. Modeling the critical area in yield forecasts. IEEE Jour. of
Solid-State Circ., SC-20(4):874–878, Aug. 1985.

[47] A.D. Friedman. Diagnosis of short-circuit faults in combinational circuits. IEEE
Trans. on Comp., C-23(7):746–752, July 1974.

[48] A. Fudoli, A. Ascagni, D. Appello, and H. Manhaeve. A practical evaluation of
IDDQ test strategies for deep submicron production test application. experiences
and targets from the field. In European Test Workshop, pages 65–70, 2003.

203

Bibliography

[49] H. Fujiwara and T. Shimono. On the acceleration of test generation algorithms.
IEEE Trans. on Comp., 32:1137–1144, 1983.

[50] D.D. Gajski and R.H. Kuhn. Guest editors’ introduction: New VLSI tools. IEEE
Computer, 16(12):11–14, Dec. 1983.

[51] J. Galiay, Y. Crouzet, and M. Vergniault. Physical versus logical fault models MOS
LSI circuits: Impact on their testability. IEEE Trans. on Comp., C-29(6):527–531,
June 1980.

[52] A.E. Gattiker and W. Maly. Current signatures. In VLSI Test Symp., pages 112–117,
1996.

[53] V. Gherman, H.-J. Wunderlich, H. Vranken, F. Hapke, M. Wittke, and M. Garbers.
Efficient pattern mapping for deterministic logic BIST. In Int’l Test Conf., pages
48–56, 2004.

[54] E. Gizdarski and H. Fujiwara. SPIRIT: A highly robust combinational test generation
algorithm. IEEE Trans. on CAD, 21(12):1446–1458, 12 2002.

[55] M. Gkatziani, R. Kapur, Q. Su, B. Mathew, R. Mattiuzzo, L. Tarantini, C. Hay,
S. Talluto, and T.W. Williams. Accurately determining bridging defects from layout.
In IEEE Int’l Workshop on Design and Diagnostics of Electronic Circuits and Systems
(DDECS), pages 87–90, 2007.

[56] P. Goel. An implicit enumeration algorithm to generate test for combinational logic.
IEEE Trans. on Comp., 30:215–222, 1981.

[57] F.M. Gonçalves, I.C. Teixeira, and J.P. Teixeira. Realistic fault extraction for high-
quality design and test of VLSI systems. In Int’l Symp. on Defect and Fault Tolerance
in VLSI Systems, pages 29–37, 1997.

[58] M. Gössel. University of Potsdam. personal communication, 2008.

[59] G.S. Greenstein. CMOS bridging fault simulation. Master’s thesis, University of
Illinois, Urbana-Champaign, 1992.

[60] G.S. Greenstein and J.H. Patel. E-PROOFS: a CMOS bridging fault simulator. In
Int’l Conf. on CAD, pages 268–271, 1992.

[61] J.P. de Gyvez and C. Di. IC defect sensitivity for footprint-type spot defects. IEEE
Trans. on CAD, 11(5):638–658, May 1992.

[62] I. Hamzaoglu and J.H. Patel. New techniques for deterministic test pattern generation.
Jour. of Electronic Testing: Theory and Applications, 15:63–73, 1999.

[63] H. Hao and E.J. McCluskey. Very-Low-Voltage testing for weak CMOS logic ICs. In
Int’l Test Conf., pages 275–284, 1993.

[64] M. Hashizume, N. Inou, H. Yotsuyanagi, and T. Tamesada. Oscillation frequency esti-
mation for detecting feedback bridging faults. In Int’l Tech. Conf. on Circuits/Systems,
Comp. and Comm., pages 1980–1983, 2002.

[65] M. Hashizume, H. Yotsuyanagi, and T. Tamesada. Identification of feedback bridging
faults with oscillation. In Asian Test Symp., pages 25–30, 1999.

204

Bibliography

[66] C. Hawkins, J. Soden, A. Righter, and F. Joel Ferguson. Defect classes - an overdue
paradigm for CMOS IC testing. In Int’l Test Conf., pages 413–425, 1994.

[67] J.P. Hayes. Computer Architecture and Organization. McGraw-Hill, 2nd edition,
1989.

[68] J.P. Hayes and A.D. Friedman. Test point placement to simplify fault detection.
IEEE Trans. on Comp., C-33(7):727–735, 7 1974.

[69] S. Hellebrand, H.G. Liang, and H.J. Wunderlich. A mixed-mode BIST scheme based
on reseeding of folding counters. Jour. of Electronic Testing: Theory and Applications,
17(3-4):159–170, February 2001.

[70] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois. Built-in test
for circuits with scan based on reseeding of multiple-polynomial linear feedback shift
register. IEEE Trans. on Comp., 44(2):223–233, February 1995.

[71] S. Hellebrand, S. Tarnick, B. Courtois, and J. Rajski. Generation of vector patterns
through reseeding of multiple-polynomial linear feedback shift registers. In Int’l Test
Conf., pages 120–129, 1992.

[72] P. Huc. Test en tension des courts-circuits en technologie CMOS. PhD thesis,
Université de Montpellier II Sciences et Techniques du Languedoc, Montpellier,
France, March 1995.

[73] H. Iwai. CMOS technology – year 2010 and beyond. IEEE Jour. of Solid-State Circ.,
34(3):357–366, March 1999.

[74] V.S. Iyengar, B.K. Rosen, and I. Spillinger. Delay test generation 1 – concepts and
coverage metrics. In Int’l Test Conf., pages 857–866, 1988.

[75] A. Jee and F.J. Ferguson. Carafe: an inductive fault analysis tool for CMOS VLSI
circuits. In VLSI Test Symp., pages 92–98, 1993.

[76] F. Jensen and N.E. Petersen. Burn-in: an engineering approach to the design and
analysis of burn-in procedures. John Wiley & Sons, 1983.

[77] N. Jha and S. Gupta. Testing of Digital Systems. Cambridge University Press, 2003.

[78] B.W. Johnson. The Design and Analysis of Fault Tolerant Digital Systems. Addison
Wesley, 1989.

[79] R. Kapur, J. Park, and M.R. Mercer. All tests for a fault are not equally valuable
for defect detection. In Int’l Test Conf., pages 762–769, 1992.

[80] M. Karpovsky and S.Y.H. Su. Detecting bridging and stuck-at faults at input and
output pins of standard digital components. In Design Automation Conf., pages
494–505, 1980.

[81] M. Karpovsky and S.Y.H. Su. Detection and location of input and feedback bridging
faults among input and output lines. IEEE Trans. on Comp., C-29(6):523–527, June
1980.

[82] A. Keshavarzi, K. Roy, C.F.Hawkins, and V. De. Multiple-parameter CMOS IC
testing with increased sensitivity for Iddq. IEEE Trans. on VLSI Systems, 11(5):863–
870, Oct. 2003.

205

Bibliography

[83] A. Keshavarzi, K. Roy, and C.F. Hawkins. Intrinsic leakage in low power deep
submicron CMOS ICs. In Int’l Test Conf., pages 146–155, 1997.

[84] J. Khare and W. Maly. From contamination to defects, faults and yield loss. Kluwer
Academic Publisher, 1996.

[85] S. Khursheed, U. Ingelsson, P. Rosinger, B.M. Al-Hashimi, and P. Harrod. Bridging
fault test method with adaptive power management awareness. IEEE Trans. on
CAD, 27(6):1117 – 1127, June 2008.

[86] G. Kiefer and H.-J. Wunderlich. Deterministic BIST with multiple scan chains. In
Int’l Test Conf., pages 1057–1064, 1998.

[87] K.L. Kodandapani and D.K. Pradhan. Undetectability of bridging faults and validity
of stuck-at fault test sets. IEEE Trans. on Comp., C-29(1):55–59, Jan. 1980.

[88] B. Könemann. LFSR-coded test patterns for scan designs. In European Test Conf.,
pages 237–242, 1991.

[89] H. Konuk and F. Joel Ferguson. Oscillation and sequential behavior caused by
interconnect opens in digital CMOS circuits. In Int’l Test Conf., pages 597–606,
1997.

[90] A. Krasniewski and S. Pilarski. Circular self-test path: A low-cost BIST technique
for VLSI circuits. IEEE Trans. on CAD, 8(1):46–55, 1989.

[91] C.V. Krishna, A. Jas, and N.A. Touba. Test vector encoding using partial LFSR
reseeding. In Int’l Test Conf., pages 885–893, 2001.

[92] V. Krishnaswamy, A.B. Ma, and P. Vishakantaiah. A study of bridging defect
probabilities on a Pentium(tm)4 CPU. In Int’l Test Conf., pages 688–695, 2001.

[93] B. Kruseman, S. van den Oetelaar, and J. Rius. Comparison of Iddq testing and
Very-Low Voltage testing. In Int’l Test Conf., pages 964–973, 2002.

[94] B. Kruseman, R. van Veen, and K. van Kaam. The future of delta-Iddq testing. In
Int’l Test Conf., pages 101–110, 2001.

[95] B. Krusemann and S. van den Oetelaar. Detection of resistive shorts in deep sub-
micron technologies. In Int’l Test Conf., pages 866–875, 2003.

[96] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. on Programming Languages and Systems, 4(3):382–401, July 1982.

[97] T. Larrabee. Test pattern generation using boolean satisfiability. IEEE Trans. on
CAD, 11:4–15, 1992.

[98] C. Lee and D. M. H. Walker. PROBE: A PPSFP simulator for resistive bridging
faults. In VLSI Test Symp., pages 105–110, 2000.

[99] K.-J. Lee and M.A. Breuer. Design and test rules for CMOS circuits to facilitate
Iddq testing of bridging faults. IEEE Trans. on CAD, 11(5):659–670, May 1992.

[100] K.-J. Lee and J.-J. Tang. Two modeling techniques for CMOS circuits to enhance
test generation and fault simulation for bridging faults. In Asian Test Symp., pages
165–170, 1996.

206

Bibliography

[101] M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT solving. In ASP Design
Automation Conf., pages 926–931, 2007.

[102] Z. Li, X. Lu, W. Qiu, W. Shi, and D.M.H. Walker. A circuit level fault model
for resistive bridges. ACM Trans. on Design Automation of Electronic Systems,
8(4):546–559, 10 2003.

[103] Y. Liao and D.M.H. Walker. Fault coverage analysis for physically-based CMOS
bridging faults at different power supply voltages. In Int’l Test Conf., pages 767–775,
1996.

[104] Y. Liao and D.M.H. Walker. Optimal voltage testing for physically-based faults. In
Asian Test Symp., pages 344–353, 1996.

[105] S. Ma, I. Shaik, and R.S. Fetherston. A comparison of bridging fault simulation
methods. In Int’l Test Conf., pages 587–595, 1999.

[106] S.C. Ma, P. Franco, and E.J. McCluskey. An experimental chip to evaluate test
techniques experimental results. In Int’l Test Conf., pages 663–672, 1995.

[107] T. Maeda and K. Kinoshita. Precise test generation for resistive bridging faults of
CMOS combinational circuits. In Int’l Test Conf., pages 510–519, 2000.

[108] Y.K. Malaiya, A.P. Jayasumana, and R. Rajsuman. A detailed examination of
bridging faults. In Int’l Conf. on Comp. Design, pages 78–81, 1986.

[109] W. Maly. Realistic fault modeling for VLSI testing. In Design Automation Conf.,
pages 173–180, 1987.

[110] P. Maxwell, R. Aitken, and L. Huisman. The effect on quality of non-uniform fault
coverage and fault probability. In Int’l Test Conf., pages 739–746, 1994.

[111] P. Maxwell, P. O’Neill, R. Aitken, R. Dudley, N. Jaarsma, M. Quach, and D. Wiseman.
Current ratios: A self-scaling technique for production Iddq testing. In Int’l Test
Conf., pages 738–746, 1999.

[112] P.C. Maxwell and R.C. Aitken. Biased voting: A method for simulating CMOS
bridging faults in the presence of variable gate logic thresholds. In Int’l Test Conf.,
pages 63–72, 1993.

[113] P.C. Maxwell and J.R. Rearick. Estimation of defect-free Iddq in submicron circuits
using switch level simulation. In Int’l Test Conf., pages 882–889, 1998.

[114] E.J. McCluskey. Built-in self-test techniques. IEEE Design & Test of Comp.,
2(2):21–28, April 1985.

[115] K.C.Y. Mei. Bridging and stuck-at faults. IEEE Trans. on Comp., C-23(7):720–727,
July 1974.

[116] S.M. Menon, A.P. Jayasumana, Y.K. Malaiya, and D.R. Clinkinbeard. Modelling
and analysis of bridging faults in emitter-coupled logic (ECL) circuits. IEE Proc.
Computers and Digital Techniques, 140(4):220–226, 1993.

[117] N. Metropolis and S. Ulam. The Monte Carlo method. Jour. of the Amer. Stat. Ass.,
44(247):335–341, Sept. 1949.

207

Bibliography

[118] S.F. Midkiff and S.W. Bollinger. Classification of bridging faults in CMOS circuits:
experimental results and implications for test. In VLSI Test Symp., pages 112–115,
1993.

[119] A.C. Miller. Iddq testing in deep submicron integrated circuits. In Int’l Test Conf.,
pages 724–729, 1999.

[120] S.D. Millman and J.M. Acken. Special applications of the voting model for bridging
faults. IEEE Jour. of Solid-State Circ., 29(3):263–270, March 1994.

[121] S.D. Millman and Sir J.P. Garvey. An accurate bridging fault test pattern generator.
In Int’l Test Conf., pages 411–418, 1991.

[122] S. Mitra and K.S. Kim. X-Compact: An efficient response compaction technique for
test cost reduction. In Int’l Test Conf., pages 311–320, 2002.

[123] Y. Miura and S. Seno. Internal feedback bridging faults in combinational CMOS
circuits: Analysis and testing. In European Test Workshop, pages 9–16, 2001.

[124] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engeneering
an efficient SAT solver. In Design Automation Conf., 2001.

[125] P.K. Nag and W. Maly. Hierarchical extraction of critical area for shorts in very large
ICs. In IEEE Int’l Workshop on Current and Defect-Based Testing, pages 19–27,
1995.

[126] M. Naruse, I. Pomeranz, S.M. Reddy, and S. Kundu. On-chip compression of output
responses with unknown values using LFSR reseeding. In Int’l Test Conf., pages
1060–1068, 2003.

[127] S.R. Nassif. Modeling and analysis of manufacturing variations. In Custom Integrated
Circuits Conference, pages 11.1.1–11.1.6, 2001.

[128] W. Needham, C. Prunty, and E.H. Yeoh. High volume microprocessor test escapes,
an analysis of defects our tests are missing. In Int’l Test Conf., pages 25–34, 1998.

[129] P. Nigh and W. Maly. Layout-driven test generation. In Int’l Conf. on CAD, pages
154–157, 1989.

[130] E. Papadopoulou and D.T. Lee. Critical area computation via Voronoi diagrams.
IEEE Trans. on CAD, 18(4):463–474, April 1999.

[131] J. Park, M. Naivar, R. Kapur, M.R. Mercer, and T.W. Williams. Limitations in
predicting defect level based on stuck-at fault coverage. In VLSI Test Symp., pages
186–191, 1994.

[132] R. Paul. Elektrotechnik: Grundlagenlehrbuch, Bd. 1. Felder und einfache Stromkreise.
Springer-Verlag, 3rd edition, 1993.

[133] M.G. Pecht, R. Radojic, and G. Rao. Managing Silicon Chip Reliability. CRC Press,
1998.

[134] F. Peters and S. Oostdijk. Realistic defect coverages of voltage and current tests. In
Int’l Workshop on Iddq Testing, pages 4–8, 1996.

208

Bibliography

[135] S. Pilarski and A. Perzyńska. BIST and delay fault detection. In Int’l Test Conf.,
pages 236–242, 1993.

[136] I. Polian. On Non-standard Fault Models for Logic Digital Circuits: Simulation,
Design for Testability, Industrial Applications. VDI-Verlag, Düsseldorf, vdi fortschritt-
berichte edition, March 2004.

[137] I. Polian and B. Becker. Scalable delay fault BIST for use with low-cost ATE. Jour.
of Electronic Testing: Theory and Applications, 20(2):181–197, 4 2004.

[138] I. Pomeranz, S. Kundu, and S.M. Reddy. On output response compression in
the presence compression in the response of unknown output values. In Design
Automation Conf., pages 255–258, 2002.

[139] T.J. Powell, J. Pair, M. St. John, and D. Counce. Delta Iddq for testing reliability.
In VLSI Test Symp., pages 439–443, 2000.

[140] J. Rajski and J. Tyszer. Synthesis of X-tolerant convolutional compactors. In VLSI
Test Symp., pages 114–119, 2005.

[141] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee. Embedded deterministic test.
IEEE Trans. on CAD, 23(5):776–792, 5 2004.

[142] J. Rajski, C. Wang, J. Tyszer, and S.M. Reddy. Convolutional compaction of test
responses. In Int’l Test Conf., pages 745–754, 2003.

[143] R. Rajsuman. An analysis of feedback bridging faults in MOS VLSI. In VLSI Test
Symp., pages 53–58, 1991.

[144] R. Rajsuman. Iddq testing for CMOS VLSI. Proc. of the IEEE, 88(4):544–568,
April 2000.

[145] R. Rajsuman, Y.K. Malaiya, and A.P. Jayasumana. On accuracy of switch-level
modeling of bridging faults in complex gates. In Design Automation Conf., pages
244–250, 1987.

[146] J. Rearick and J.H. Patel. Fast and Accurate CMOS Bridging Fault Simulation. In
Int’l Test Conf., pages 54–62, 1993.

[147] S.M. Reddy, I. Pomeranz, and S. Kajihara. Compact test sets for high defect coverage.
IEEE Trans. on CAD, 16(8):923–930, Aug. 1997.

[148] S.M. Reddy, I. Pomeranz, H. Tang, S. Kajihara, and K. Kinoshita. On testing of
interconnect open defects in combinational logic circuits with stems of large fanout.
In Int’l Test Conf., pages 83–89, 2002.

[149] M. Renovell, F. Azaïs, and Y. Bertrand. Detection of defects using fault model
oriented test sequences. Jour. of Electronic Testing: Theory and Applications,
14:13–22, 1999.

[150] M. Renovell, F. Azaïs, and Y. Bertrand. Improving defect detection in static-voltage
testing. IEEE Design & Test of Comp., 19(6):32–38, Nov./Dec. 2002.

[151] M. Renovell and Y. Bertrand. Test strategy sensitivity to defect parameters. In Int’l
Test Conf., pages 607–616, 1997.

209

Bibliography

[152] M. Renovell, P. Huc, and Y. Bertrand. CMOS bridge fault modeling. In VLSI Test
Symp., pages 392–397, 1994.

[153] M. Renovell, P. Huc, and Y. Bertrand. A unified model for inter-gate and intra-gate
CMOS bridging fault: the configuration ratio. In Asian Test Symp., pages 170–175,
1994.

[154] M. Renovell, P. Huc, and Y. Bertrand. The concept of resistance interval: A new
parametric model for resistive bridging fault. In VLSI Test Symp., pages 184–189,
1995.

[155] M. Renovell, P. Huc, and Y. Bertrand. Serial transistor network modeling for bridging
fault simulation. In Asian Test Symp., pages 100–106, 1995.

[156] M. Renovell, P. Huc, and Y. Bertrand. Bridging fault coverage improvement by
power supply control. In VLSI Test Symp., pages 338–343, 1996.

[157] M.L. Rieger, J.P. Mayhew, and S. Panchapakesan. Layout design methodologies for
sub-wavelength manufacturing. In Design Automation Conf., pages 85–88, 2001.

[158] R. Rodríguez-Montañés, E.M.J.G. Bruls, and J. Figueras. Bridging defects resistance
measurements in a CMOS process. In Int’l Test Conf., pages 892–899, 1992.

[159] R. Rodríguez-Montañés and J. Figueras. Analysis of bridging defects in sequential
CMOS circuits and their current testability. In European Design & Test Conf., pages
356–360, 1994.

[160] R. Rodríguez-Montañés, J. Figueras, and A. Rubio. Current vs. logic testability of
bridges in scan chains. In European Test Conference, pages 392–396, 1993.

[161] J.P. Roth. Diagnosis of automata failures: A calculus and a method. IBM J. Res.
Dev., 10:278–281, 1966.

[162] A. Rubio, J. Figueras, V. Champac, R. Rodríguez, and J. Segura. Iddq secondary
components in CMOS logic circuits preceded by defective stages affected by analogue
type faults. IEE Electronics Letters, 27(18):1656–1658, Aug. 1991.

[163] M. Sachdev and J.P. de Gyvez. Defect-Oriented Testing for Nano-Metric CMOS
VLSI Circuits. Springer, Dordrecht, 2nd edition, 2007.

[164] T. Sakurai and A.R. Newton. Alpha-power law MOSFET model and its applications
to CMOS inverter delay and other formulas. IEEE Jour. of Solid-State Circ.,
25(2):584–594, 4 1990.

[165] V. Sar-Dessai and D.M.H. Walker. Accurate fault modeling and fault simulation of
resistive bridges. In Int. Symp. Defect and Fault Tolerance in VLSI Systems, pages
102–107, 1998.

[166] V. Sar-Dessai and D.M.H. Walker. Resistive Bridge Fault Modeling, Simulation and
Test Generation. In Int’l Test Conf., pages 596–605, 1999.

[167] M.H. Schulz and D. Pellkofer. A Three-Valued Fast Fault Simulator for Scan-Based
VLSI-Logic. In European Test Conference, pages 41–48, Apr. 1989.

[168] M.H. Schulz, E. Trischler, and T.M. Sarfert. SOCRATES: A highly efficient automatic
test pattern generation system. IEEE Trans. on CAD, 7(1):126–137, Jan. 1988.

210

Bibliography

[169] S. Sengupta, S. Kundu, S. Chakravarty, P. Paravathala, R. Galivanche, G. Kosonocky,
M. Rodgers, and TM Mak. Defect-based test: A key enabler for successful migration
to structural test. Intel Technology Journal, 1, 1999.

[170] B. Seshadri, I. Pomeranz, S.M. Reddy, and S. Kundu. On path selection for delay
fault testing considering operating conditions. In European Test Workshop, pages
141–146, 2003.

[171] S. Seshu. On an improved diagnosis program. IEEE Trans. on Electronic Comp.,
12(2):76–79, 1965.

[172] J.P. Shen, W. Maly, and F.J. Ferguson. Inductive Fault Analysis of MOS integrated
circuits. IEEE Design & Test of Comp., 2(6):13–26, Dec. 1985.

[173] H.-C. Shih and J.A. Abraham. Transistor-level test generation for physical failures
in CMOS circuits. In Design Automation Conf., pages 243–249, 1986.

[174] T. Shinogi, T. Kanbayashi, T. Yoshikawa, S. Tsuruoka, and T. Hayashi. Faulty
resistance sectioning technique for resistive bridging fault ATPG systems. In Asian
Test Symp., pages 76–81, 2001.

[175] W. Shockley and G.L. Pearson. Modulation of conductance of thin films of semicon-
ductors by surface charges. Physical Review, 74:232, 1948.

[176] J.P. Marques Silva and K.A. Sakallah. Robust search algorithms for test pattern
generation. In Int’l Symp. on Fault-Tolerant Comp., pages 152–161, 1997.

[177] J.J.T. Sousa, F.M. Gonçalves, and J.P. Teixeira. IC defects-based testability analysis.
In Int’l Test Conf., pages 500–509, 1991.

[178] M. Spica, M. Tripp, and R. Roeder. A new understanding of bridge defect resistances
and process interactions from correlating inductive fault analysis predictions to
empirical test results. In IEEE Int’l Workshop on Current and Defect-Based Testing,
pages 11–16, 2001.

[179] Z. Stanojevic and D.M.H. Walker. FedEx – a fast bridging fault extractor. In Int’l
Test Conf., pages 696–703, 2001.

[180] C. Stapper. Modeling of integrated circuit defect sensitivities. IBM J. Res. and
Develop., 27(6):549–557, Nov. 1983.

[181] P. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Combinational test
generation using satisfiability. IEEE Trans. on CAD, 15(9):1167–1176, Sept. 1996.

[182] C.E. Stroud, J.M. Emmert, J.R. Bailey, K.S. Chhor, and D. Nikolic. Bridging fault
extraction from physical design data for manufacturing test development. In Int’l
Test Conf., pages 688–695, 2000.

[183] P. Thadikaran, S. Chakravarty, and J. Patel. Fault simulation of IDDQ tests for
bridging faults in sequential circuits. In Int’l Symp. on Fault-Tolerant Comp., pages
340–349, 1995.

[184] C. Thibeault. A novel probabilistic approach for IC diagnosis based on differential
quiescent current signatures. In VLSI Test Symp., pages 80–85, 1997.

211

Bibliography

[185] C. Thibeault. On the comparison of Delta Iddq and Iddq testing. In VLSI Test
Symp., pages 143–150, 1999.

[186] N.A. Touba and E.J. McCluskey. Transformed pseudo-random patterns for BIST. In
VLSI Test Symp., pages 410–416, 1995.

[187] N.A. Touba and E.J. McCluskey. Altering a pseudo-random bit sequence for scan
based bist. In Int’l Test Conf., pages 649–658, 1996.

[188] C.-W. Tseng, R. Chen, P. Nigh, and E.J. McCluskey. MINVDD testing for weak
CMOS ICs. In Asian Test Symp., pages 339–344, 2001.

[189] C.W. Tseng, E.J. McCluskey, X. Shao, J. Wu, and D.M. Wu. Cold delay defect
screening. In VLSI Test Symp., pages 183–188, 2000.

[190] H. Vierhaus, W. Meyer, and U. Glaser. CMOS bridges and resistive transistor faults:
IDDQ versus delay effects. In Int’l Test Conf., pages 83–91, 1993.

[191] E.H. Volkerink and S. Mitra. Response compaction with any number of unknowns
using a new LFSR architecture. In Design Automation Conf., pages 117–122, 2005.

[192] K.D. Wagner and E.J. McCluskey. Effect of supply voltage on circuit propagation
delay and test applications. In Int’l Conf. on CAD, pages 42–44, 1985.

[193] J.A. Waicukauski, E.B. Eichelberger, D.O. Forlenza, E. Lindbloom, and T. McCarthy.
Fault simulation for structured VLSI. VLSI Systems Design, 6(12):20–32, Dec. 1985.

[194] J.A. Waicukauski, P.A. Shupe, D.J. Giramma, and A. Matin. ATPG for Ultra-Large
Structured Designs. In Int’l. Test Conference, pages 44–51, 1990.

[195] D.M.H. Walker and S.W. Director. VLASIC: A catastrophic fault yield simulator for
integrated circuits. IEEE Trans. on CAD, CAD-5(4):541–556, Oct. 1986.

[196] R.A. Walker and D.E. Thomas. A model of design representation and synthesis. In
Design Automation Conf., pages 453–459, 1985.

[197] L. Wang, S.K. Gupta, and M.A. Breuer. Modeling and simulation for crosstalk
aggravated by weak-bridge defects between on-chip interconnects. In Asian Test
Symp., pages 440–447, 2004.

[198] S. Wang, W. Wei, and S.T. Chakradhar. Unknown blocking scheme for low control
data volume and high observability. In Design, Automation and Test in Europe,
pages 33–38, 2007.

[199] W. Wang and S.K. Gupta. Weighted random robust path delay testing of synthesized
multilevel circuits. In VLSI Test Symp., pages 291–297, 1994.

[200] F. Wanlass and C. Sah. Nanowatt logic using field-effect metal-oxide semiconductor
triodes. In ISSCC Digest of Technical Papers, pages 32–33, 1963.

[201] N.H.E. Weste and K. Eshraghian. Principles of CMOS VLSI Design : a systems
perspective. Addison-Wesley, 2nd edition, 1994.

[202] M.J.Y. Williams and J.B. Angell. Enhancing testability of large-scale integrated
circuits via test points and additional logic. IEEE Trans. on Comp., C-22(1):46–60,
Jan. 1973.

212

Bibliography

[203] T.W. Williams, R.H. Dennard, R. Kapur, M.R. Mercer, and M. Maly. Iddq test:
Sensitivity analysis of scaling. In Int’l Test Conf., pages 786–792, 1996.

[204] M.H. Woods. MOS VLSI reliability and yield trends. Proc. of the IEEE, 74(12):1715–
1729, 1986.

[205] H.-J. Wunderlich. On computing optimized input probabilities for random tests. In
Design Automation Conf., pages 392–398, Oct. 1987.

[206] H.-J. Wunderlich and G. Kiefer. Bit-flipping BIST. In Int’l Conf. on CAD, pages
337–343, 1996.

[207] B. Wurth and K. Fuchs. A BIST Approach to Delay Fault Testing with Reduced
Test Length. In European Design & Test Conf., pages 418–423, 1995.

[208] X. Xi, M. Dunga, J. He, W. Liu, K.M. Cao, X. Jin, J.J. Ou, M. Chan, A.M. Niknejad,
C. Hu, and Ali Niknejad. BSIM4.4.0 MOSFET Model – User s Manual. Dept. of
Electrical Engineering and Computer Sciences UC Berkeley, 2004.

[209] S. Xu and S.Y.H. Su. Testing feedback briging faults among internal, input and
output lines by two patterns. In Int’l Conf. on Circuits and Computers, pages
214–217, 1982.

[210] S. Xu and S.Y.H. Su. Detecting I/O and internal feedback bridging faults. IEEE
Trans. on Comp., C-34(6):553–557, June 1985.

[211] H. Xue, C. Di, and J.A.G. Jess. A net-oriented method for realistic fault analysis. In
Int’l Conf. on CAD, pages 78–83, 1993.

[212] N. Zacharia, J. Rajski, and J. Tyszer. Decompression of test data using using
variable-length seed LFSRs. In VLSI Test Symp., pages 426–433, 1995.

[213] S.T. Zachariah and S. Chakravarty. Extraction of two-node bridges from large
industrial circuits. IEEE Trans. on CAD, 23(3):433–439, March 2004.

[214] W. Zhao and Y. Cao. New generation of predictive technology model for sub-45nm
early design exploration. IEEE Trans. on Electron Devices, 53(11):2816–2823, Nov.
2006.

213

Bibliography

214

List of Algorithms

5.1 Computation of Vn0 = I−1
n (I0) for a single (or parallel) n-transistor(s). . . . 57

5.2 Computation of I0 = In(Vn0) for two n-transistor in series. 58

5.3 Computation of Vn0 = I−1
n (I0) for two n-transistors in series. 59

5.4 Generation of sorted list of critical resistances Rcrit for bridging fault f 69

7.1 PPSFP simulation of sections from S for test pattern set P 90

8.1 ATPG procedure for resistive bridging faults. 110

10.1 Monte Carlo estimation of non-target defect coverage. 184

215

List of Algorithms

216

List of Figures

2.1 Example of (a) combinational and (b) sequential circuit. 7
2.2 Model of a synchronous sequential circuit S. 8
2.3 Symbol of (a) p-channel and (b) n-channel MOS-FET. 9
2.4 Standard CMOS implementation of a NOT gate with input A and output Y . 10
2.5 Pull-up and pull-down network of a logic gate. 11
2.6 Time-frame expansion of a synchronous sequential circuit. 15
2.7 Basic built-in self test architecture. 18

3.1 Example circuit with a bridging fault. 23
3.2 Portion of the circuit relevant for bridging fault models. 24
3.3 Influence of adjacency region and lateral distance on capacitance. 26

4.1 Transistor level view of driving gates in CMOS technology. 34
4.2 Interpretation of voltage Vbr at the bridged nodes a and b by driven gates C

and D. 37
4.3 Example of circuit with a non-resistive bridging fault. 39
4.4 Primary outputs reachable from driven gates’ inputs. 40

5.1 Example of circuit with a resistive short affecting nodes a and b. 46
5.2 Characteristics of voltages at nodes a and b as a function of the short’s

resistance Rsh: (a) input assignment (0, 0, 1, 1), and (b) input assignments
(0, 0, 1, 1) and (0, 1, 1, 1). 47

5.3 Transistor level view of a resistive bridging fault shorting two inverters. . . 50
5.4 Transistor level view of a series network with (a) two n-transistors, and (b)

two p-transistors. 57
5.5 Probability density function ρ for short resistance r as proposed by Renovell

et al. [154]. 61
5.6 Example of interval-based simulation. 67
5.7 Prototype of a two successor bridge affecting nodes a and b. 76
5.8 Possible voltage characteristics and critical resistances for activating assign-

ments: (a) a = 1, b = 0, and (b) a = 0, b = 1. 77

7.1 Resistive bridging fault simulation flow. 86
7.2 Data structure for a single bridging fault. 88
7.3 Simulation time per resistive bridging fault as function of circuit size. . . . 94
7.4 Simulation time for resistive bridging faults vs. single-stuck-at faults. . . . 94
7.5 Run-time of SUPERB vs. interval-based approach from [J3]. 95

217

List of Figures

8.1 Example of circuit with a resistive short affecting nodes a and b. 107
8.2 Characteristics of voltages at nodes a and b as a function of short resistance

Rsh: (a) input assignment (1, 0) and (b) input assignment (0, 1). 108
8.3 Performance of resistive bridging fault test vectors in comparison with

combination of stuck-at and top-up vectors. 114
8.4 Number of test vectors (bar graph) and share of test vectors effective in

detection of resistive bridging faults (line graph) for n-detection and 4-way
test sets. 118

8.5 Resistive bridging fault coverage of n-detection and 4-way test sets. 119
8.6 Number of test vectors for different technology models. Horizontal line

indicates average over all circuits/technology models considered in Table 8.8.120

9.1 Example of circuit with a resistive short affecting nodes a and b. 130
9.2 Voltage characteristic at node a as a function of Rsh for nominal (“nom”)

and non-nominal (“nn”) operating conditions and two test vectors. 131
9.3 Venn diagram for non-nominal fault coverage FCnn (Equation (9.1.1)). Di-

agonal lines indicate the numerator, vertical lines show the denominator. . 133
9.4 Venn diagram for combined fault coverage FCnn

comb (Equation (9.1.2)). Diag-
onal lines indicate the numerator, vertical lines show the denominator. . . 133

9.5 Venn diagram for flaw coverage FCnn
flaw (Equation (9.1.3)). Diagonal lines

indicate the numerator, vertical lines show the denominator. 134
9.6 Performance degradation due to low-voltage testing. 135
9.7 FCnn for c2670 and different values of Vdd as function of test time for time

units 0 through 100. 139
9.8 FCnn for c2670 and different values of Vdd as function of test time for time

units 100 through 1,000. 139
9.9 Average flaw coverage FCnn

flaw from Tables 9.8 – 9.11. 142
9.10 Example circuit with a resistive short affecting nodes a and b. 143
9.11 Voltage characteristics at nodes a and b as a function of Rsh for nominal

(“nom”) and non-nominal (“nn”) operating conditions. 144
9.12 Venn diagram for coverage loss FCnn

loss (Equation (9.1.5)). Diagonal lines
indicate the numerator, vertical lines show the denominator. 145

9.13 Example of a sequential circuit with a resistive short affecting nodes a and b.148
9.14 Current flowing through the defect (upper diagram) and voltage charac-

teristic at nodes a and b (lower diagram) as a function of Rsh for two test
vectors. 149

9.15 Venn diagram for (a) combined fault coverage FCIddq
comb (Equation (9.2.4))

and (b) flaw coverage FCIddq
flaw (Equation (9.2.5)). Diagonal lines indicate the

numerator, vertical lines show the denominator. 152
9.16 Two-frame time-frame expansion of the circuit from Figure 9.13 (I-ADIs

are marked by “IDDQ”). 153
9.17 Detection conditions for the second time-frame. Resistance ranges high-

lighted in (light) gray are detected by Delta-Iddq testing. 154
9.18 Iddq fault coverage FCIddq (bar graph) and number of AA faults (line

graph) for 10, 100, and 1,000 Delta-Iddq measurements. 156

218

List of Figures

9.19 Iddq fault coverage FCIddq for Delta-Iddq and Iddq testing (10 Iddq
measurements). 157

10.1 Schematic of circuit under test with bit-flipping logic. 174
10.2 Average fault coverage G-FE and average logic size from Table 10.2. 178
10.3 Deterministic logic BIST with X-masking logic. 181
10.4 Results for c1355, pattern-based relevant bit selection and 1% Xs: Number

of masked bits and logic size as function of n (a); RBF coverage and logic
size as function of n (b). 186

10.5 Results for c1355, bit-based relevant bit selection and 1% Xs: Number of
masked bits and logic size as function of n (a); RBF coverage and logic size
as function of n (b). 186

10.6 Results for c1355, bit-based relevant bit selection and 3% Xs: Number of
masked bits and logic size as function of n (a); RBF coverage and logic size
as function of n (b). 187

219

List of Figures

220

List of Tables

2.1 Symbols of different types of logic gates. 6

4.1 Aggressor and victim nodes for wired-logic and dominance-behavior models,
“X” marks combination of aggressor,victim, and stuck-at fault used by the
model. 31

4.2 Aggressor and victim nodes for 4-way model. 33
4.3 Instances of unified fault model. 41

5.1 Naming conventions for the difference in the voltage potentials between the
transistor terminals. 51

5.2 Technological parameters for Shockley and Fitted model (n- and p-channel
MOS-FET). 52

5.3 Results of Shockley and Fitted models compared to HSPICE; Lp = Ln =
0.35µm, Vdd = 3.3 V, logic threshold Vlt = Vdd/2. 56

5.4 Resistance intervals reconverging at XOR gate. 65
5.5 Section-based propagation in circuit from Figure 5.6. 71
5.6 Conditional multiple-stuck-at faults corresponding to resistive bridging faults. 72

7.1 Comparison with the parallel-pattern resistive bridging fault simulator from
Cheung et al. [30]. 96

7.2 Experimental results for SUPERB, ISCAS 85 circuits, and 10,000 test vectors. 98
7.3 Experimental results for SUPERB, combinational cores of ISCAS 89 circuits,

and 10,000 test vectors. 99
7.4 Experimental results for SUPERB, combinational cores of ITC 99 circuits,

and 10,000 test vectors. 100
7.5 Experimental results for SUPERB, combinational cores of NXP circuits,

and 10,000 test vectors. 101
7.6 Comparison of SUPERB with other simulation tools for resistive bridging

faults. 102

8.1 Section data for resistive bridging fault shorting a two-input NAND and a
two-input NOR gate. Symbol “X” indicates that any driven gate interprets
a faulty logical value. 106

8.2 Efficiency of RBF-ATPG compared with BART and ATPG by Sar-Dessai
et al. 115

8.3 Efficiency of RBF-ATPG compared with unified model (instance ISFN_TH).116
8.4 Experimental results for RBF-ATPG. 122
8.5 Performance of single-stuck-at test sets. 123

221

List of Tables

8.6 Efficiency comparison with Resistive Bridging Fault Test Generator RBFTG
[107] and single-stuck-at ATPGs ATOM [62] and SPIRIT [54]. 124

8.7 Test vector sets for n-detection and 4-way model and their resistive bridging
fault coverage. 125

8.8 Comparison of ATPG results for different technology models. 126

9.1 Average FCnn
comb for different values of Vdd, T nom, and T 141

9.2 Coverage loss FCnn
loss (circuits with FCnn

loss = 0% for all Vdd settings excluded).145
9.3 Non-nominal fault coverage FCnn for 10 time units and V nom

dd = 3.3 V. . . . 159
9.4 Non-nominal fault coverage FCnn for 100 time units and V nom

dd = 3.3 V. . . 160
9.5 Non-nominal fault coverage FCnn for 1,000 time units and V nom

dd = 3.3 V. . 161
9.6 Flaw coverage FCnn

flaw for 1,000 time units. 162
9.7 Combined fault coverage FCnn

comb for T nom = 370 K, T = 300 K, V nom
dd = 3.3 V

and different values of Vdd. 163
9.8 Flaw coverage FCnn

flaw for V nom
dd = 3.3 V, T nom = T = 370 K and different

values of Vdd. 164
9.9 Flaw coverage FCnn

flaw for V nom
dd = 3.3 V, T nom = 370 K, T = 300 K and

different values of Vdd. 165
9.10 Flaw coverage FCnn

flaw for V nom
dd = 3.3 V, T nom = 370 K, T = 196 K and

different values of Vdd. 166
9.11 Flaw coverage FCnn

flaw for V nom
dd = 3.3 V, T nom = 300 K, T = 196 K and

different values of Vdd. 167
9.12 Fault coverages for Delta-Iddq testing with 1,000 test vectors for voltage

testing, current threshold ∆Ilimit = 100µA and 10 Iddq measurements. . . 168
9.13 Fault coverages for Delta-Iddq testing with 1,000 test vectors for voltage

testing, current threshold ∆Ilimit = 100µA and 100 Iddq measurements. . 169
9.14 Fault coverages for Delta-Iddq testing with 1,000 test vectors for voltage

testing, current threshold ∆Ilimit = 100µA and 1,000 Iddq measurements. 170

10.1 Stuck-at coverage of pseudo-random sequences before deterministic pattern
embedding. 176

10.2 Fault coverage G-FE and logic size in GE for sequences of 1,000, 5,000, and
10,000 patterns. 177

10.3 Experimental results, pattern-based relevant bit selection (1% X values at
the inputs). 189

10.4 Experimental results, bit-based relevant bit selection (1% X values at the
inputs). 190

10.5 Experimental results, bit-based relevant bit selection (3% X values at the
inputs). 191

222

	Zusammenfassung
	Acknowledgements
	Contents
	Preface
	Contributions
	Structure of the Thesis

	Preliminaries
	Digital Circuits
	Combinational and Sequential Circuits
	Implementation of Digital Circuits
	Levels of Abstraction

	Testing of Digital Circuits
	General Terminology
	Testing of Sequential Circuits
	Stuck-At Faults
	Built-In Self Test

	Bridging Fault Models
	Fundamentals of Bridging Faults
	Basic Properties and Terminology
	Bridging Fault Model Classification
	Bridging Fault Extraction

	Non-Resistive Bridging Fault Models
	Simple Logic Models
	Wired-Logic And Dominance-Behavior Models
	The 4-way Model

	Technology-Based Models
	The Voting Model
	The Biased Voting Model

	Generalized Logic Models
	The Unified Model
	The Precise Test Generation Model

	The Resistive Bridging Fault Model
	Introduction of the Resistive Bridging Fault Model
	Calculating Critical Resistances
	General Framework
	Technology-Specific Models

	Analogue Detectability Intervals
	Fault Coverage Metrics
	Fault Effect Propagation
	Interval-Based Technique
	Sectioning Technique
	Feedback-Bridging Faults
	Occurrence of Double Errors
	Double Observation of Two Successor Bridging Faults

	Summary and Discussion of Part I

	Applications of the Resistive Bridging Fault Model
	SUPERB - A Resistive Bridging Fault Simulator
	Efficient Simulation of Resistive Bridging Faults
	Fault List Preprocessing and Data Storage
	Fault Simulation Procedure

	Experimental Results
	Conclusions
	Experimental Data

	RBF-ATPG - A Test Pattern Generator For Resistive Bridging Faults
	ATPG for Resistive Bridging Faults
	Example: Deriving Test Patterns for Circuit
	ATPG Algorithm in Detail

	Experimental Results
	Evaluation of n-Detection and 4-way Test Vectors
	Test Pattern Generation for Different Technology Models

	Conclusions
	Experimental Data

	Advanced Testing Methods
	Low-Voltage and Low-Temperature Testing
	Extensions of the Resistive Bridging Fault Model
	Experimental Results
	Coverage Loss by Low-Voltage Testing

	Delta-IDDQ Testing
	Extensions of the Resistive Bridging Fault Model
	Delta-IDDQ Testing of Sequential Circuits
	Experimental Results

	Conclusions
	Experimental Data

	Benchmarking BIST Techniques
	Detection of Non-Target Defects by Deterministic Logic BIST
	Deterministic Logic BIST with Bit-Flipping
	Experimental Results

	Non-Target Defect Coverage Impact of X-Masking
	The X-Masking Logic
	Experimental Results

	Conclusions
	Experimental Data

	Summary and Discussion of Part II

	Concluding Remarks
	Author's Publications
	Bibliography
	List of Algorithms
	List of Figures
	List of Tables

