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Zusammenfassung

S
eit einigen Jahren nimmt der Einsatz von Robotern im täglichen Leben mehr
und mehr zu. Um Roboter sicher und effizient in der echten Welt einsetzen zu
können, müssen diese in der Lage sein, die Unsicherheit in ihren Wahrneh-
mungen und Handlungen zu berücksichtigen. Beim Navigieren mit mobilen

Robotern entstehen diese Unsicherheiten immer dann, wenn ein Roboter Steuerungs-
kommandos ausführen soll und mit ungenauen oder störanfälligen Sensoren ausgestat-
tet ist, um Informationen aus der Umgebung wahrnehmen zu können. Der Schlüssel,
um mit diesen Unsicherheiten umgehen zu können, ist in der Verwendung von proba-
bilistischen Modellen zu sehen. Die Modellierung der Wahrnehmungen und ausführ-
baren Aktionen sind essentiell, wenn autonome Systeme Aufgaben wie beispielsweise
das Kartieren von Umgebungen, Lokalisierung oder Pfadplanung erfüllen sollen.

Der Beitrag dieser Arbeit besteht aus neuartigen probabilistischen Sensormodellen
zum Lokalisieren von autonomen Systemen und zum Erstellen von Umgebungskar-
ten. Die Modelle, die im Zusammenhang mit der probabilistischen Lokalisierung ent-
wickelt wurden, stellen einen allgemeineren Ansatz als existierende Techniken dar und
ermöglichen deshalb eine sicherere und effizientere Lokalisierung. Diese Eigenschaft
liegt darin begründet, dass die Modelle, die wir in dieser Arbeit präsentieren, von der
aktuellen Position des Roboters abhängen und deshalb die statistischen Abhängigkei-
ten zwischen den Sensormessungen, der aktuellen Positionsschätzung und der Umge-
bungskarte berücksichtigen. Aufgrund dieser fundamentalen Herangehensweise, ist es
nicht notwendig, wie in früheren Ansätzen häufig vorgeschlagen, diese Modelle künst-
lich anzupassen und zusätzliche Umgebungs- und Datenabhängige Heuristiken einzu-
führen. Darüber hinaus betrachten wir die statistischen Abhängigkeiten zwischen ein-
zelnen Messungen einer Laser-Entfernungsmessung. Als Folge dessen erreichen wir
eine effizientere und genauere Lokalisierung, da uns diese Techniken ermöglichen,
mehr Sensormessungen als bisherige Ansätze gleichzeitig zur Positionsschätzung aus-
zuwerten. Als weiteren Vorteil ziehen unsere neuartigen Modelle mögliche Diskonti-
nuitäten, wie sie im allgemeinen Fall existieren, in Betracht. Diese Diskontinuitäten
verursachen ernsthafte Probleme da entfernungs Sensoren direkt Distanzmessungen
liefern und treten beispielsweise auf, wenn ein Roboter nahe an Ecken oder Hinder-



nissen vorbeifährt oder wenn ein Roboter in einer sehr unstrukturierten Umgebung
operiert. In diesen Situation führen geringe Änderungen in der Roboterposition zu
sprunghaften Veränderungen in der Wahrnehmung des Roboters. Deshalb ist es not-
wendig, diese Fälle zu modellieren, um einen substantiellen Abfall der Performanz der
Lokalisierung zu verhindern. In dieser Arbeit wenden wir deshalb Gauss’sche Misch-
modelle an, um sowohl einzelne Entfernungsmessungen als auch komplette Scans, die
aus mehreren Entfernungsmessungen bestehen, zu modellieren. In praktischen Expe-
rimenten und unter Verwendung von echten Daten, die von mobilen Robotern aufge-
nommen wurden, vergleichen wir unsere Ansätze mit existierenden Methoden. Dabei
demonstrieren wir den substantiellen Gewinn, der erreicht wird, wenn sowohl die Ab-
hängigkeiten zwischen einzelnen Messungen als auch die möglichen Fluktuationen in
den Sensormessungen des Roboters in Betracht gezogen wird.

Der Beitrag dieser Arbeit im Bereich der Kartierung liegt im Bereich neuartiger
dreidimensionaler Modelle für die Navigation im Innen- und Außenbereich. Wir stel-
len sowohl das Konzept von erweiterten Höhenkarten (Extended Elevation Maps) als
auch das Konzept einer Erweiterung dieser Idee auf mehrere Ebenen (Multi-Level Sur-
face Maps) vor. Die Multi-Level Surface Map ermöglicht, zur gleichen Zeit vertikale
Objekte und mehr als eine befahrbare Ebene der Welt zu modellieren. In praktischen
Experimenten haben wir diese Datenstruktur angewendet, um weitläufige Gebiete im
Aussenbereich zu Kartieren, autonome Roboter aufgrund dieser Karten zu lokalisieren
und unbekannte Gebiete mit autonomen Fahrzeugen zu explorieren.



Abstract

W
henever robots are supposed to robustly and efficiently operate in real
world environments, they need to consider the uncertainty in their per-
ception and actuation. In mobile robot navigation, these uncertainties
arise, for example, when a robot has to fulfill steering commands or is

equipped with noisy sensors to perceive information regarding the environment. Prob-
abilistic models for sensory data as well as for actuators are a key concept to deal with
these uncertainties while addressing navigation problems such as mapping, localiza-

tion, or path planning.
The main contribution of this thesis are novel probabilistic observation models for

localization and mapping using range sensors. The models we developed constitute
more fundamental approaches than state of the art models and yield a more robust
and efficient localization. The key idea in our models is to consider the errors caused
by the sample-based approximation of the probability distribution of potential robot
poses. Since the number of samples from this distribution is limited, pose hypothesis
should be considered as regions covering the configuration space which introduce sta-
tistical dependencies between the individual sensor measurements. In contrast to the
Models proposed frequently in the literature which try to overcome this problem with
an artificial smoothing of the likelihood function or with additional data dependent
heuristics we present models which directly incorporate the dependencies between in-
dividual laser beams and which are location-dependent. Exploiting the dependencies
between the individual laser beams leads to a more efficient and accurate localization
since this allows us to integrate more sensor measurements than in state of the art ap-
proaches. Another advantage of the models proposed in this thesis is that they consider
that the world, in general, cannot be regarded as continuous. These discontinuities
cause serious problems since range finders directly measure distance. For example, in
situations in which the robot operates close to edges of obstacles or in highly cluttered
environments, small changes in the pose of the robot can lead to large variations in the
acquired range information. If the sensor model does not appropriately characterize
the resulting fluctuations, the performance of probabilistic approaches may substan-
tially degrade. In this thesis, we therefore also present approaches which use mixtures



of Gaussians to model the likelihood function for single range measurements as well
as for entire range scans. In practical experiments, we compare our approaches against
previous methods and demonstrate the substantial improvements when the dependen-
cies between sensor perceptions are considered, as well as the gain achieved by models
which allow to model strong fluctuations in the perceptions of the robot.

The contribution of this thesis in the context of mapping are three-dimensional
environment models for in-and outdoor navigation. We introduce the concept of the
extended elevation maps as well as a further extension of elevation maps towards mul-
tiple surfaces. These so-called multi-level surface maps (MLS maps) offer the oppor-
tunity to model environments with more than one traversable level and vertical objects
at the same time. Additionally, both data structures provide a classification based on
the corresponding environment which leads to a more efficient and robust data associ-
ation when actual three-dimensional sensor data has to be integrated into an existing
map. As a result we are able to build highly accurate maps of large-scale outdoor
environments even without a global pose estimation system such as GPS. In practical
experiments, we applied the MLS map approach to mapping of large outdoor environ-
ments, localization using laser range finders, and exploration in combined indoor and
outdoor environments.
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Chapter 1

Introduction

A
fundamental problem in the field of mobile robot perception is data associ-
ation. This problem arises whenever a mobile robot has to compare its cur-
rent sensor measurements to data acquired earlier. In robotics, two crucial
tasks in which the data association problem has to be solved are mapping

and localization. Mapping is the problem of integrating the information gathered with
the robot’s sensors into a given representation and can be described by the question
“What does the world look like?” The key aspects in mapping are the representation
of the environment and the interpretation of sensor data. In contrast to this, localization
is the problem of estimating the pose of the robot relative to a map. In other words,
the robot has to answer the question, “Where am I?” Certainly many people ask them-
selves this question every day. In cities, for example, humans are able to answer this
question without any problem since they have a correct city map. This is due to the
humans ability to read street names on road signs. This ability solves the problem of
associating the perceived data (road sign) to an existing data structure (map) directly
because humans only have to compare the names on the road signs to the names they
find in the map. Therefore, the data association problem which has to be solved to
determine the own position in a city degenerates to an unique search problem which
can be solved easily.

In contrast to this, autonomous systems which only use range sensors do not ma-
nipulate the environment by installing landmarks like road signs that allow to solve
the data association directly. The only thing they are able to do, is to sense the envi-
ronment first for building a map and afterwards localize themselves using the current
sensor data. Figure 1.1 shows an example of such a scenario where a robot has to solve
the localization task using the data of a range sensor. In this example, the world model
of the robot is represented by a grid map that can be seen as a floor-plan. The fig-
ure shows that the range measurements can be associated in multiple ways to the map
structure due to similarities in the shapes of the environment. Note that in general every
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Figure 1.1: Data association problem for a localization task when a range sensor with
limited range is used. The acquired range measurements allow multiple associations
to the map structure due to similarities in the shapes of the environment.

unoccupied cell represents a potential position of the robot and has to be evaluated if
the robot has to be localized without any prior knowledge. Assuming that the best data
association minimizes the error between the actual sensor readings and the existing
features of the map, we can formulate the problem of finding the optimal data associ-
ation as an error minimization problem. Unfortunately, the complexity of seeking for
the best data association grows with the size of the already known environment in the
mapping as well as in the localization scenario. This fact makes finding the correct
data association difficult and motivates approaches where the data association is cal-
culated iteratively on raw sensor data [Besl and McKay, 1992] as well as on extracted
features [Rusinkiewicz and M.Levoy, 2001]. Another possibility is to find a solution
to the data association problem by using the most likely data association given prob-
abilistic likelihood models [Fox et al., 1999a; Choset et al., 2005; Thrun et al., 2005;
Sridharan et al., 2005; Dellaert et al., 1998b; Gross et al., 2003; Menegatti et al., 2004;
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Wolf et al., 2005; Thrun, 2001a]. In this case the likelihood models are applied in the
correction step of a Monte-Carlo Localization implementation to determine the most
likely pose of the robot over time. This method enables the robot to track multiple
hypotheses until a decision for the most likely data association can be made. As can
be seen from Figure 1.1, it is a really hard problem to decide for one data association
at a certain point in time, since various pose hypotheses seem to yield a comparable
data association.

In this thesis, the data association problem first occurs in the context of robot local-
ization using particle filters as an implementation of Monte-Carlo Localization. There,
we will have to associate the sensor readings zt of a laser range finder at time t with an
existing map m of the environment using a probabilistic likelihood model p(zt | xt,m).
This model calculates the probability of the range measurements zt assumed that the
robot is located at position x in map m. This seems to solve the the data association
problem easily but the use of a likelihood model introduces various other problems.
The difficulty of fashioning such a likelihood model is caused by the fact that it has
to represent the sensor physically, depends on the the robot’s position in the existing
map, and is influenced by the pose uncertainty of the sample-based state representa-
tion of the particle filter. Modeling this likelihood function properly is a big challenge
and seriously influences the performance of the localization algorithm. An incorrect
likelihood model leads directly to a wrong and overly peaked maximum likelihood
estimation and thus to a wrong data association. In this thesis, we will see how to
deal with these problems. A commonly proposed solution is for example to artifically
smooth the likelihood model or to introduce additional data dependent heuristics [Aru-
lampalam et al., 2002]. In the first part of this thesis, we will introduce novel and more
general ways of modeling an appropriate likelihood function, which allow a more ro-
bust and accurate data association in the context of Monte-Carlo localization.

The second time the data association problem occurs in this thesis is in the context
of three-dimensional outdoor mapping. Here, the challenge is to integrate actual three-
dimensional sensor data into an existing data structure. The difficulty of this task is to
achieve a correct and unique representation of the environment. This means, that the
data structure should be able to represent every possible structure of the environment
accurately. Additionally, all these structures such as walls or trees, should appear only
once even when they are sensed several times from different positions in the environ-
ment. To achieve this, a correct data association is crucial. Due to the high complexity
of the problem, we will determine the data association step by step using the itera-
tive closest point algorithm (ICP) [Besl and McKay, 1992]. Instead of comparing all
possible data associations this algorithm associates iteratively the actual acquired set
of feature points to the set of the closest feature points of the already existing data.
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The main idea of the algorithm is to iteratively calculate the transformation which
minimizes a cost function that consists of the sum over the errors introduced by each
individual point-to-point correspondence. The critical point of the ICP algorithm is to
determine the correct associations between points or features extracted from different
measurements. In this thesis, we will show how this problem can be solved by a data
classification procedure based on a data structure called multi-level surface maps.

This thesis is organized as follows. In the following chapter we will introduce the
principle of Monte-Carlo localization. Then in Chapter 3, we will give an introduction
to state-of-the-art sensor models for Monte-Carlo localization. Furthermore, we will
introduce and motivate the novel types of likelihood models presented in this thesis. In
the following this thesis is divided in three parts. In Part I and Part II we focus on data
association in the case of Monte-Carlo localization using laser range finders whereas
Part III demonstrates our contributions in the field of three-dimensional mapping. In
the context of localization, we will show how the sensor model influences the localiza-
tion process and how we achieve a more robust and accurate localization result using
novel more general sensor models.

In Part I, Chapter 4 addresses the problem of integrating the pose uncertainty of
each sampled pose hypotheses into the likelihood model. In Chapter 5, we introduce
a novel place dependent likelihood model that additionally takes the dependences be-
tween the single beams of a laser range scan into account. In Chapter 6, we present a
method to approximate this sensor model using a Gaussian process model.

In Part II of this thesis, we propose sensor models based on a mixture of Gaussians
which are able to model situations in which due to the pose uncertainty of the robot’s
pose estimate the likelihood of a laser beam has to be modeled by a multi-modal dis-
tribution. In Chapter 7 and Chapter 8, we consider a beam-based and a scan-based
likelihood model.

In Part III, after a short introduction to basic techniques for three-dimensional map-
ping in Chapter 9, we introduce two novel types of surface maps, namely the extended
elevation maps and the multi-level surface maps in Chapter 10. These maps will be
used to represent large outdoor terrains. We also describe how we utilize these maps
to classify the three-dimensional environment and in this way improve the data asso-
ciation in the mapping algorithm. In Chapter 11, we present different applications of
multi-level surface maps to substantiate the contribution of the thesis. These appli-
cations are city mapping, localization without any global localization device such as
GPS, and autonomous exploration. Finally, in Chapter 12 we discuss the conclusions
of this thesis and present ideas for future work.
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1.1 Contributions of this Thesis

The work presented in this thesis is based on several publications in major conferences
and journals. In the following, we group these by subjects and name the corresponding
chapters in the thesis.

• A novel adaptive beam-based sensor model that takes the pose uncertainty of
each particle into account (Chapter 4).

P. Pfaff, W. Burgard, and D. Fox. Robust Monte-Carlo Localization using Adaptive Likelihood
Models. In Proc. of the European Robotics Symposium (EUROS), Palermo, Italy, 2006.

• Novel scan-based sensor models which additionally model the dependencies be-
tween single measurements (Chapters 5 and 6).

P. Pfaff, C. Plagemann, and W. Burgard. Improved Likelihood Models for Probabilistic Local-
ization based on Range Scans. In Proc. of the IEEE International Conference on Intelligent

Robots and Systems (IROS), San Diego, CA, USA, 2007.

C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard. Gaussian Beam Processes: A Nonpara-
metric Baysian Measurement Model for Range Finders. In Proc. of the 2007 Robotics: Science

and Systems Conference (RSS), Atlanta, GA, USA, 2007

K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most Likely Heteroscedastic Gaussian
Process Regression. In Proc. of the International Conference on Machine Learning (ICML),
Corvallis, OR, USA, 2007.

C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard. Heteroscedastic Gaussian Process Regres-
sion for Modeling Range Sensors in Mobile Robotics. In Learning Workshop (SNOWBIRD),
San Juan, Puerto Rico, 2007.

• A novel multi-modal beam-based sensor model based on mixtures of Gaussians
(Chapter 7).

P. Pfaff, C. Plagemann, and W. Burgard. Gaussian Mixture Models for Probabilistic Local-
ization. Im Proc. of the IEEE International Conference on Robotics and Automation (ICRA),
Pasadena, CA, USA, 2008.

• A novel multi-modal scan-based sensor model based on mixtures of Gaussians
(Chapter 8).

P. Pfaff, C. Stachniss, C. Plagemann, and W. Burgard. Efficiently Learning High-dimensional
Observation Models for Monte-Carlo Localization using Gaussian Mixtures. Under Review in
IEEE International Conference on Intelligent Robots and Systems (IROS), Nice, France, 2008.

• Novel environment models for three-dimensional mapping (Chapter 10).

P. Pfaff and W. Burgard. An Efficient Extension of Elevation Maps for Outdoor Terrain Mapping.
In Proc. of the 5th International Conference on Field and Service Robotics (FSR 2005), Port
Douglas, QLD, Australia, 2005.
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P. Pfaff, R. Triebel, and W. Burgard. An Efficient Extension of Elevation Maps for Outdoor
Terrain Mapping and Loop Closing.In The International Journal of Robotics Research (IJRR),
2007.

R. Triebel, P. Pfaff, and W. Burgard. Multi-Level Surface Maps for Outdoor Terrain Mapping
and Loop Closing. In Proc of the IEEE International Conference on Intelligent Robots and

Systems (IROS), Beijing, China, 2006.

• Applications of multi-level surface maps (Chapter 11).

P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, W. Burgard, and R. Siegwart. Towards Mapping of
Citites. Im Proc. of the IEEE International Conference on Robotics and Automation (ICRA),
Rome, Italy, 2007.

G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard. Efficient Estimation of Accurate
Maximum Likelihood Maps in 3D. In Proc. of the IEEE International Conference on Intelligent

Robots and Systems (IROS), San Diego, CA, USA, 2007.

P. Pfaff, R. Kümmerle, D. Joho, C. Stachniss, R. Triebel, and W. Burgard. Navigation in Com-
bined Outdoor and Indoor Environments using Multi-Level Surface Maps. In Proc of the Work-
shop on Safe Navigation in Open and Dynamic Environments, Proc. of the IEEE International

Conference on Intelligent Robots and Systems (IROS), San Diego, CA, USA, 2007.

R. Kümmerle, R. Triebel, P. Pfaff and W. Burgard. Monte-Carlo Localization in Outdoor Ter-
rains using Multi-Level Surface Maps. In Proc. of the 6th International Conference on Field

and Service Robotics (FSR), Chamonix, France, 2007.

R. Kümmerle, P. Pfaff, R. Triebel, and W. Burgard. Active Monte Carlo Localization in Outdoor
Terrains using Multi-Level Surface Maps. In Fachgespräche Autonome Mobile Systeme (AMS),
Kaiserslautern, Germany, 2007.

D. Joho, C. Stachniss, P. Pfaff, and W. Burgard. Autonomous Exploration for 3D Map Learning.
In Fachgespräche Autonome Mobile Systeme (AMS), Kaiserslautern, Germany, 2007.

P. Lamon, C. Stachniss, R. Triebel, P. Pfaff, C. Plagemann, G. Grisetti, S. Kolski, W. Burgard,
and R. Siegwart. Mapping with an Autonomous Car. In Proc of the Workshop on Safe Nav-
igation in Open and Dynamic Environments, Proc. of the IEEE International Conference on

Intelligent Robots and Systems (IROS), Beijing, China, 2006.

1.2 Related Work

In the following, we name the most relevant publications that are related to the context
of this thesis. We will order them roughly by the topics of the major contributions that
have been mentioned in the previous section.

1.2.1 Probabilistic Sensor Models

In the literature, various techniques for computing the likelihood function for prob-
abilistic localization methods such as Monte-Carlo localization with proximity sen-
sors have been introduced [Choset et al., 2005; Fox et al., 1999a; Thrun, 2001a;
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Thrun et al., 2005]. These approaches either directly approximate the physical charac-
teristics of the sensor or try to provide smooth likelihood models to increase the robust-
ness of the localization process. Additionally, several likelihood models for Monte-
Carlo localization with proximity sensors have been introduced [Choset et al., 2005;
Thrun et al., 2005]. These approaches either approximate the physical behavior of the
sensor [Fox et al., 1999a] or try to provide smooth likelihood models to increase the
robustness of the localization process [Thrun, 2001a]. Whereas these likelihood func-
tions allow to reliably localize a mobile robot in its environment, they have the major
disadvantage that they are static and basically independent of the state the localization
process has.

In the past, is has been observed that the likelihood function can have a major
influence on the performance of Monte-Carlo Localization. For example, Pitt and
Shephard [1999] as well as Thrun et al. [2001] observed that more particles are re-
quired if the likelihood function is peaked. In the limit, i.e., for a perfect sensor, the
number of required particles becomes infinite. To deal with this problem, Lenser and
Veloso [2000] as well as Thrun et al. [2001] introduced techniques to directly sam-
ple from the observation model and in this way ensure that there is a critical mass of
samples at the important parts of the state space. Unfortunately, this approach depends
on the ability to sample from observations, which can often only be done in an ap-
proximate, inaccurate way. Alternatively, Pitt and Shephard [1999] apply a Kalman
filter lookahead step for each particle in order to generate a better proposal distribu-
tion. While this technique yields superior results for highly accurate sensors, it is still
limited in that the particles are updated independently of each other. Hence, the likeli-
hood function does not consider the number and density of particles. Another way of
dealing with the limitations of the sample-based representation is to dynamically adapt
the number of particles, as done in KLD sampling [Fox, 2003]. However, for highly
accurate sensors, even such an adaptive technique might require a huge number of sam-
ples in order to achieve a sufficiently high particle density during global localization.
Alternatively, one can artificially inflate the measurement uncertainty to achieve a reg-
ularization of the likelihood function, e.g., see the Scaling Series approach presented
by Petrovskaya et al. [2006].

Also Kalman filters have limitations in highly non-linear systems and in the case of
multi-modal likelihood functions. To overcome this problem several researchers used
Gaussian mixture models. Duckett and Nehmzow [2001] for example introduced
a multi-modal generalization of the Kalman filter where the robot’s location model
consists of mixtures of Gaussians, each updated by a separate filter. Recently, Upcroft
et al. [2004] introduced a fast re-parameterization of Gaussian mixture models to use
them as probability distribution of the pose estimate during a Baysian filtering process.
Koshizen et al. [1999] use Gaussian mixture models to fuse odometry and sonar to
reduce the error of the robot localization in the case of noisy sensors.
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The contribution of this thesis are new beam-based as well as scan-based sensor
models which allow a more robust and accurate localization. We introduce novel
location-dependent sensor models which implicitely take the pose uncertainty of the
sample based representation into account. From Chapter 4 to Chapter 8 we present
various new sensor models. We will focus on uni-modal likelihood models as well
as on models to take possible multi-modalities in likelihood functions for laser range
measurements into account. In extensive sets of experiments, we show that these ap-
proaches significantly outperform others that are based on point estimates of the like-
lihood function only.

1.2.2 Environment Models for Three-Dimensional Mapping

The problem of learning three-dimensional representations has been studied inten-
sively in the past. Recently, several techniques for acquiring three-dimensional data
with 2d range scanners installed on a mobile robot have been developed. A popular
approach is to use multiple scanners that point towards different directions [Thrun et

al., 2000; Hähnel et al., 2003; Thrun et al., 2003a]. An alternative is to use pan/tilt
devices that sweep the range scanner in an oscillating way [Pervölz et al., 2004;
Montemerlo and Thrun, 2004]. More recently, techniques for rotating 2d range scan-
ners have been developed [Kohlhepp et al., 2003; Wulf et al., 2004].

Many authors have studied the acquisition of three-dimensional maps from vehi-
cles that are assumed to operate on a flat surface. For example, Thrun et al. [2000]
present an approach that employs two 2d range scanners for constructing volumetric
maps. Whereas the first is oriented horizontally and is used for localization, the sec-
ond points towards the ceiling and is applied for acquiring 3d point clouds. Früh
and Zakhor [2004] apply a similar idea to the problem of learning large-scale mod-
els of outdoor environments. Their approach combines laser, vision, and aerial im-
ages. Furthermore, several authors have considered the problem of simultaneous map-
ping and localization (SLAM) in an outdoor environment [Dissanayake et al., 2001;
Guivant and Nebot, 2001; Thrun et al., 2004]. These techniques extract landmarks
from range data and calculate the map as well as the pose of the vehicles based on
these landmarks. Our approach described does not rely on the assumption that the
surface is flat. It uses MLS maps to capture the three-dimensional structure of the
environment and is able to estimate the pose of the robot in all six degrees of freedom.

One of the most popular representations are raw data points or triangle meshes [Allen
et al., 2001; Levoy et al., 2000; Pervölz et al., 2004; Thrun et al., 2003b]. Whereas
these models are highly accurate and can easily be textured, their disadvantage lies
in the huge memory requirement, which grows linearly in the number of scans taken.
Accordingly, several authors have studied techniques for simplifying point clouds by
piecewise linear approximations. For example, Hähnel et al. [2003] use a region grow-
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ing technique to identify planes. Liu et al. [2001] as well Martin and Thrun [2002]
apply the EM algorithm to cluster range scans into planes. Recently, Triebel et

al. [2005] proposed a hierarchical version that takes into account the parallelism of
the planes during the clustering procedure. An alternative is to use three-dimensional
grids [Moravec, 1996] or tree-based representations [Samet, 1989], which only grow
linearly in the size of the environment. According to the non-planar structure of nat-
ural outdoor environments and the space requirements for large-scale environments,
the applicability of these representations and approximations in such environments is
limited.

In order to avoid the complexity of full three-dimensional maps, several researchers
have considered elevation maps as an attractive alternative. The key idea underlying
elevation maps is to store the 2 1

2-dimensional height information of the terrain in a
two-dimensional grid. Bares et al. [1989] as well as Hebert et al. [1989] use ele-
vation maps to represent the environment of a legged robot. They extract points with
high surface curvatures and match these features to align maps constructed from con-
secutive range scans. Parra et al. [1999] represent the ground floor by elevation maps
and use stereo vision to detect and track objects on the floor. Singh and Kelly [1996]
extract elevation maps from laser range data and use these maps for navigating an all-
terrain vehicle. Ye and Borenstein [1994] propose an algorithm to acquire elevation
maps with a moving vehicle carrying a tilted laser range scanner. They propose spe-
cial filtering algorithms to eliminate measurement errors or noise resulting from the
scanner and the motions of the vehicle. Lacroix et al. [2002] extract elevation maps
from stereo images. Hygounenc et al. [2004] construct elevation maps with an au-
tonomous blimp using 3d stereo vision. They propose an algorithm to track landmarks
and to match local elevation maps using these landmarks. Olson [2000] describes a
probabilistic localization algorithm for a planetary rover that uses elevation maps for
terrain modeling. Recently, several authors have studied the problem of simultaneous
localization and mapping in the context of mobile robots operating on a non-flat sur-
face. For example, Davison et al. [2004] presented an approach to vision based SLAM
with a single camera moving freely through the environment. This approach uses an
extended Kalman Filter to simultaneously update the pose of the camera and the 3d
feature points extracted from the camera images. More recently, Nüchter et al. [2005]
developed a mobile robot that builds accurate three-dimensional models with a mobile
robot and the loop closing is achieved by uniformly distributing the estimated odome-
try error over the poses in a loop.

The contribution of the work presented in Chapter 10, is a novel data structure,
the so-called MLS maps, which can be regarded as an extension to elevation maps
and also include a classification of the environment for more robust and efficient data
association. Our approach allows to compactly represent multiple surfaces in the en-
vironment as well as vertical structures. This allows a mobile robot to correctly deal
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with multiple traversable surfaces in the environment as they, for example, occur in
the context of bridges. Our mapping approaches also represent an extension of our
previous work [Pfaff and Burgard, 2005]. Whereas this former approach allows to
deal with vertical and overhanging objects in elevation maps, it lacks the ability to
represent multiple surfaces. In contrast to other approaches [Nüchter et al., 2005;
Davison et al., 2004; Olson, 2000], the work described here employs MLS maps and
optimizes the pose estimates globally for calculating consistent maps. To achieve this,
we efficiently solve the data association problem that occurs, when two maps with
different estimates about the surface levels have to be matched or combined.

1.2.3 Applications of Multi-Level Surface Maps

In the following, we cite the most relevant publications that are related to the scenarios
in which we applied the multi-level surface maps.

Application 1: City Mapping

In the context of autonomous cars, a series of successful systems [Cremean et al., 2006;
Thrun et al., 2006; Urmson, 2005] have been developed due to DARPA Grand Chal-
lenge 2005 and 2007. As a result of these competitions, there exist autonomous cars
that reliably avoid obstacles and navigate at comparably high speeds. The focus of the
first Grand Challenge was to finish the race as quickly as possible whereas certain is-
sues like building consistent large-scale maps of the environment have been neglected
since they where not needed for the race. The second Grand Challenge was to finish as
quickly as possible and to fullfill different missions in urban environment. Even so the
car we used applied similar techniques than the winning vehicle Stanley [Thrun et al.,
2006] and the second place vehicle of 2007 Junior for following a specified trajectory,
we have a different aim compared to the teams participating in the Grand Challenge.
Our goal is to learn consistent and accurate three-dimensional models of large-scale
environments.

Application 2: Localization

The problem of localizing a mobile robot in indoor and outdoor environments with
range sensors or cameras has been studied intensively in the past. In indoor environ-
ments, Monte-Carlo localization (MCL) [Dellaert et al., 1998a] is one of the current
state-of-the-art approaches. Outdoors, Adams et al. [2004] extract predefined fea-
tures from range scanners and apply a particle filter for localization. Davison and
Kita [2001] utilize a Kalman filter for vision-based localization with point features on
non-flat surfaces. Recently, Agrawal and Konolige [2006] presented an approach to
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robot localization in outdoor terrains based on feature points that are tracked across
frames in stereo images. Lingemann et al. [2005] recently described a method for fast
localization in indoor and outdoor environments. Their system operates on raw data
sets, which results in huge memory requirements. Additionally, they apply a scan-
matching routine for localization, which does not facilitate global localization. To re-
duce the memory requirements of outdoor terrain representations, several researchers
applied elevation maps [Bares et al., 1989; Hebert et al., 1989; Lacroix et al., 2002;
Parra et al., 1999]. A probabilistic approach to localize a planetary rover in such el-
evation maps has been described by Olson [2000]. In this system, elevation maps
were sufficient to robustly localize the vehicle, mainly because the number of vertical
and overhanging objects is negligible in environments like on Mars. However, envi-
ronments on earth contain many objects like buildings or trees which have vertical or
even overhanging surfaces. To address this issue, we use the multi-level surface (MLS)
maps to represent the environment. MLS maps discretize the environment into cells
and store for each cell a list of patches representing the individual layer in the envi-
ronment as well as vertical structures. The goal of the work presented in this thesis
is to develop a probabilistic localization method based on MLS maps and to demon-
strate that the more accurate representation of the environment results in improved
localization capabilities.

Application 3: Autonomous Exploration

So far, most approaches to mobile robot exploration assume that the robot operates on
a plane surface. They typically focus on generating motion commands that minimize
the time needed to cover the whole terrain [Koenig and Tovey, 2003; Yamauchi, 1998].
A frequently used technique is to build an occupancy grid map since it can model un-
known locations efficiently. The robot seeks to reduce the number of unobserved cells
or the uncertainty in the grid map [Yamauchi, 1998; Stachniss and Burgard, 2003].
In the three-dimensional space, however, such approaches are not directly applicable.
The size of occupancy grid maps in 3D, for example, prevents the robot from exploring
an environment larger than a few hundred square meters.

Whaite and Ferrie [1997] presented an exploration approach in 3D that uses the en-
tropy to measure the uncertainty in the geometric structure of objects that are scanned
with a laser range sensor. In contrast to the work described here, they use a fully para-
metric representation of the objects and the size of the object to model is bounded by
the range of the manipulator. Surmann et al. [2003] extract horizontal planes from a
3D point cloud and construct a polygon with detected lines (obstacles) and unseen lines
(free space connecting detected lines). They sample candidate viewpoints within this
polygon and use 2D ray-casting to estimate the expected information gain. In contrast
to this, our approach uses MLS maps and 3D ray-casting to select the next viewpoint.
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González-Baños and Latombe [2002] also build a polygonal map by merging safe re-
gions. Similar to our approach, they sample candidate poses in the visibility range of
frontiers to unknown area. But unlike in our approach, they build 2D maps and do
not consider the uncertainty reduction in the known parts of the map. Fournier et

al. [2007] present an 3D exploration approach utilizing an octree structure to represent
the environment. However, it is unclear if the presented approach is able to explore on
multiple levels.

The contribution in this context are techniques for autonomously learning multi-
level surface maps with a mobile robot based on laser range finder and odometry only.
Furthermore, our approach does not rely on GPS information and thus allows a robot
to operate in combined indoor and outdoor scenarios.

1.3 Collaborations

Parts of this thesis have been done in collaboration with other people. The approach to
apply Gaussian Processes as a probabilistic sensor model for Monte-Carlo localization
was done toghether with Christian Plagemann and Kristian Kersting. The approach
to multi-level surface maps was done togheter with Rudolph Triebel and the approach
to globally optimize these maps was done toghether with Giorgio Grisetti. The tech-
niques for localization and exploration using MLS maps were originally addressed in
the two co-supervised master’s thesis of Kümmerle [2007] and Joho [2007].



Chapter 2

Monte-Carlo Localization using

Range Scanners

L
ocalization is a method to determine the pose of a robot in a given map
using the sensors of the robot and the given control commands. This chapter
gives an introduction to Monte-Carlo Localization which is frequently used
throughout this thesis. Especially in the first part in which we analyze var-

ious sensor models for laser range finders, a good understanding of this technique is
crucial. First, in the following section we will introduce the idea of the Bayes filter.
Then, in Section 2.2 we will introduce the concept of particle filters which can be seen
as a nonparametric implementation of the Bayes filter. Finally in Section 2.3, we will
introduce Monte-Carlo Localization as an application of particle filters in the context
of mobile robot localization.

2.1 Bayes Filter

In robotics the Bayes filter is the general method to estimate the belief bel(xt) of a state
x at time t recursively via the belief bel(xt−1) at time t − 1, the actual measurement
zt, and the actual control input ut. Due to this, we have to initialize the method in
the beginning with a belief bel(x0) at time t = 0. The value of bel(x0) represents our
knowledge about the initial state.

Algorithm 2.1 shows a single iteration step of the Bayes filter. Line 2 shows the
integration of the control input ut and the resulting state prediction bel(xt). In the
next line, we can see the correction step where the state prediction bel(xt) is corrected
by the actual sensor measurement zt. The variable η denotes a normalization factor
that ensures that the sum over all beliefs sums up to 1. This cycle, which is also
depicted in Figure 2.1, allows us to continuously integrate new control inputs and
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Algorithm 2.1 The bayes filter algorithm
Input: belief bel(xt−1), control action ut, sensor reading zt.

1: for all xt do

2: bel(xt) =
∫

p(xt | ut, xt−1)bel(xt−1)dxt−1

3: bel(xt) = η p(zt | xt)bel(xt) // where η is a normalizer
4: end

5: return bel(xt)

Prediction

Correction

bel(x) bel(x)

Figure 2.1: Prediction-correction cycle of the Bayes filter

sensor measurements.

2.2 Introduction to Particle Filters

In this section we present the concept of particle filters which can be seen as a non-
parametric implementation of the Bayes filter and is frequently used to estimate the
state of dynamic systems. The key idea of this technique is to represent a posterior by
a set of hypotheses, the so-called particles. Each particle represents one potential state
the system might be in. The particles are represented by a set S of N weighted random
samples

S =
{〈

s[i],w[i]
〉

| i = 1, . . . ,N
}

, (2.1)

where s[i] is the state vector of the i-th sample and w[i] the corresponding importance
weight. The weight is a non-zero value and the sum over all weights is 1. The sample
set represents the distribution

p(x) =
N∑

i=1

wi · δs[i](x), (2.2)
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Figure 2.2: Two functions and their approximations by samples with uniform weights.
The samples are illustrated by the vertical bars below the two functions (image cour-
tesy of Cyrill Stachniss).

where δs[i] is the Dirac function in the state s[i] of the i-th sample. Such set S of
samples can be used to approximate arbitrary distributions. The samples are drawn
from the distribution they should approximate. To illustrate such an approximation,
Figure 2.2 depicts two distributions and their corresponding sample sets. In general,
more samples can be used to achieve a better approximation. However, in this thesis we
will investigate situations where this strategy does not lead to better results during the
localization process without using a more complex and general model in the correction
step of the filter. In the following, we explain how the particle filter algorithm allows
us to recursive estimate the particle/sample set S t based on the estimate S t−1 of the
previous time step. The particle filter can be summarized with the following three
steps:

1. Sampling: Create the next generation S ′t of particles based on the previous set
S t−1 of samples. This step is also called sampling or drawing from the proposal
distribution.

2. Importance Weighting: Compute an importance weight for each sample in the
set S ′t .

3. Resampling: Draw N samples form the set S ′t . Thereby, the likelihood to draw
a particle is proportional to its weight. The new set S t is given by the drawn
particles.

During the the first of the three steps, we draw samples in order to obtain the next
generation of particles for the next time step. In general, the true probability distribu-
tion to sample particles from is not known or not in a suitable form for sampling. We
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show that it is possible to draw samples from a different distribution than the one we
want to approximate. This technique is known as importance sampling.

We are faced with the problem of computing the expectation that x ∈ A, where A

is a region. In general, the expectation Ep[ f (x)] of a function f is defined as

Ep[ f (x)] =

∫

p(x) · f (x) dx. (2.3)

Let B be a function which returns 1 if its argument is true and 0 otherwise. We can
express the expectation that x ∈ A by

Ep[B(x ∈ A)] =

∫

p(x) · B(x ∈ A) dx (2.4)

=

∫

p(x)

π(x)
· π(x) · B(x ∈ A) dx, (2.5)

where π is a distribution for which we require that

p(x) > 0 ⇒ π(x) > 0. (2.6)

Thus, we can define a weight w(x) as

w(x) =
p(x)

π(x)
. (2.7)

This weight w is used to account for the differences between p and the π. This leads to

Ep[B(x ∈ A)] =

∫

π(x) · w(x) · B(x ∈ A) dx (2.8)

= Eπ[w(x) · B(x ∈ A)]. (2.9)

Let us consider again the sample-based representations and suppose the sample are
drawn from π. By counting all the particles that fall into the region A, we can compute
the integral of π over A by the sum over samples

∫

A

π(x) dx ≈ 1

N
·

N∑

i=1

B(s[i] ∈ A). (2.10)

If we consider the weights in this computation, we can compute the integral over p as

∫

A

p(x) dx ≈
N∑

i=1

w[i] · B(s[i] ∈ A). (2.11)
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Figure 2.3: The goal is to approximate the target distribution by samples. The sam-
ples are drawn from the proposal distribution and weighted according to Eq. (2.13).
After weighting, the resulting sample set is an approximation of the target distribution
(image courtesy of Cyrill Stachniss).

It can be shown, that the quality of the approximation improves the more samples that
are used. For an infinite set of samples, the sum over the samples converges to the
integral

lim
N→∞

N∑

i=1

w[i] · B(s[i] ∈ A) =

∫

A

p(x) dx. (2.12)

Let p be the probability distribution which is not in a suitable form for sampling and π
the one we actually sample from. In the context of importance sampling, p is typically
called the target distribution and π the proposal distribution.

This derivation tells us that we can sample from an arbitrary distribution π which
fulfills Eq. (2.6) to approximate the distribution p by assigning an importance weight
to each sample according to Eq. (2.7). This condition is needed to ensure that a state
which might be sampled from p does not have zero probability under π. An exam-
ple that depicts a weighted set of samples in case the proposal is different from the
target distribution is shown in Figure 2.3. Note that the importance sampling prin-
ciple requires that we can point-wise evaluate the target distribution. Otherwise, the
computation of the weights would be impossible.



34 C 2: M-C L  R S

Let p(s1:t | d) be the posterior to estimate, where d stands for all the data or back-
ground information. The importance weighting performed in Step 2 of the particle
filter implementation (see Page 31) accounts for the fact one draws from the proposal
π by setting the weight of each particle to

w
[i]
t = η ·

p(s
[i]
1:t | d)

π(s
[i]
1:t | d)

, (2.13)

where η is the normalizer that ensures that the sum over all weights is 1.
The resampling step within a particle filter removes particles with a low impor-

tance weight and replaces them by particles with a high weight. After resampling, the
weights are set to 1/N because by drawing according to the importance weight, one
replaces “likelihoods” by “frequencies”.

Resampling is needed since we use only a finite number of samples to approximate
the target distribution. Without resampling, typically most particles would represent
states with a low likelihood after some time and the filter would loose track of the
“good” hypotheses. On the one hand, this fact makes resampling important, on the
other hand removing samples from the filter can also be problematic. In practice, it can
happen that samples are replaced even if they are close to the correct state. This can
lead to the so-called particle depletion or particle deprivation problem [Doucet, 1998;
Doucet et al., 2001; van der Merwe et al., 2000].

Algorithm 2.2 The particle filter algorithm
Input: Sample set S t−1 and the data d.

1: S ′t = ∅
2: for i=1 to N do

3: draw ŝ ∼ π(st | s[i]
t−1, d)

4: ŵ = η ·
[

p(ŝ | s[i]
t−1, d)

]

·
[

π(ŝ | s[i]
t−1, d)

]−1
// where η is a normalizer

5: S ′t = S ′t + 〈ŝ, ŵ〉
6: end

7: S t = ∅
8: for j=1 to N do

9: draw a sample s
[i]
t from S ′t . Thereby, s

[i]
t is drawn with probability w

[i]
t

10: S t = S t +
〈

s
[i]
t , 1/N

〉

11: end

12: return S t

To reduce the risk of particle depletion, one can apply low-variance resampling.
This technique does not draw the particles independently of each other in the resam-
pling step. Instead of generating N random numbers to select N samples, the approach
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Figure 2.4: Monte-Carlo localization represented by a Bayes network to illustrate the
Markov assumption which assumes that every state xt only depends on the predecessor
state xt−1, the actual sensor measurement zt, and the actual control input ut.

uses only a single random number to choose the first particle. The others are drawn
depended on the first draw but still with a probability proportional to the individual
weights. As a result, the particle set does not change during a resampling in case the
weights are uniformly distributed. A detailed explanation on low-variance resampling
as well as on particle filters in general can be found in [Thrun et al., 2005]. The com-
plete particle filter algorithm is listed in Algorithm 2.2.

2.3 Monte-Carlo Localization

Particle filters are often used to track the position of the robot or to localize the robot
globally, when no prior pose information is given. Due to the fact that one of the main
contributions of this thesis are novel likelihood models to improve the robustness and
efficiency of this technique, we briefly illustrate the most important facts of Monte-
Carlo localization [Dellaert et al., 1998a]. In this scenario, the state vector x = (x, y, θ)
is the pose of the vehicle. Mostly, the motion estimate of the robot resulting from
odometry is used to compute the proposal distribution in Step 1. The so-called motion

or prediction model p(xt | ut−1, xt−1) is used to draw the next generation of particles. In
this case, the importance weight w

[i]
t of the i-th sample has to be computed based on the

so-called likelihood or sensor model p(zt | xt) of the most recent sensor observation zt
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at time t given a map m of the environment and the corresponding pose of the particle.
This becomes clear by considering the following derivations. We can transform the
full posterior p(x1:t | m, z1:t,u1:t−1) and obtain a recursive formula

p(x1:t | m, z1:t,u1:t−1)
Bayes’ rule
= η · p(zt | m, x1:t, z1:t−1,u1:t−1)

·p(x1:t | m, z1:t−1,u1:t−1) (2.14)
Markov
= η · p(zt | m, xt)

·p(x1:t | m, z1:t−1,u1:t−1) (2.15)
product rule
= η · p(zt | m, xt)

·p(xt | m, x1:t−1, z1:t−1,u1:t−1)

·p(x1:t−1 | m, z1:t−1,u1:t−1) (2.16)
Markov
= η · p(zt | m, xt) · p(xt | xt−1,ut−1)

·p(x1:t−1 | m, z1:t−1,u1:t−2), (2.17)

where η is the normalizer resulting from Bayes’ rule. Under the Markov assumption
which is illustrated in Figure 2.4, we can transform the proposal as

π(x1:t | m, z1:t,u1:t) = π(xt | m, xt−1, zt,ut−1)

·π(x1:t−1 | m, z1:t−1,u1:t−2). (2.18)

The computation of the weights needs to be done according to Eq. (2.13). In the sequel,
we drop the normalizer that ensures that all weights sum up to 1. This leads to

wt =
p(x1:t | m, z1:t,u1:t−1)

π(x1:t | m, z1:t,u1:t−1)
(2.19)

=
η · p(zt | m, xt) · p(xt | xt−1,ut−1)

π(x1:t | m, z1:t,u1:t−1)
· p(x1:t−1 | m, z1:t−1,u1:t−2) (2.20)

=
η · p(zt | m, xt) · p(xt | xt−1,ut−1)

π(xt | m, xt−1, zt,ut−1)
· p(x1:t−1 | m, z1:t−1,u1:t−2)

π(x1:t−1 | m, z1:t−1,u1:t−2)
︸                          ︷︷                          ︸

wt−1

(2.21)

=
η · p(zt | m, xt) · p(xt | xt−1,ut−1)

π(xt | m, xt−1, zt,ut−1)
· wt−1. (2.22)

If we choose the motion model as the proposal, we obtain for the i-the sample

w
[i]
t =

η · p(zt | m, x[i]
t ) · p(xt | x[i]

t−1,ut−1)

p(xt | x[i]
t−1,ut−1)

· w[i]
t−1 (2.23)

= η · p(zt | m, x[i]
t ) · w[i]

t−1 (2.24)

∝ p(zt | m, x[i]
t ) · w[i]

t−1. (2.25)
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Since the resampling step resets the weights of the whole set by 1/N, we can ignore
the weight of the previous time step and obtain

w
[i]
t ∝ p(zt | m, x[i]

t ). (2.26)

This derivation shows that by choosing the motion model to draw the next generation
of particles, we have to use the observation likelihood p(zt | m, xt) to compute the
individual weights.

Throughout this thesis, we apply particle filters to analyze various sensor models
for laser range finder in the context of mobile robot localization. Furthermore, we will
apply them in the context of multi-level surface maps for localization and autonomous
exploration in outdoor environments.

2.4 Summary

To summarize this chapter, particle filters are a nonparametric implementation of the
recursive Bayes filter. They use a set of weighted samples and can represent arbitrary
distributions. The samples are drawn from a proposal distribution. After determining
the importance weights which account for the fact that the target distribution is differ-
ent from the proposal distribution, the resampling step replaces particles with a low
weight by particles with a high importance weight.
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Chapter 3

Likelihood Models for Monte-Carlo

Localization

T
he particle filter describes a framework for sequentially estimating the state
of a dynamic system. However, it leaves open how to choose the motion
model as well as the observation likelihood model. In this chapter, we ex-
plain the general role of the sensor model in the context of a particle filter

framework and propose a novel view on likelihood evaluation in sampling-based filters
to address the regularization problem in a more fundamental way. Regularization of
the likelihood function is crucial due to the following reasons. Generally, the likeli-
hood model p(z | x) plays a deciding role in the correction step of the particle filter.
Typically, very peaked models require a huge number of particles. This is because even
when the particles populate the state space densely, the observation likelihood might
differ by several orders of magnitude. As the particles are drawn in the proportion to
the importance weights, which themselves are calculated as the likelihood of zt given
the pose xt of the corresponding particle, a minor difference in xt will result in a large
difference of the likelihoods and thus will result in a depletion of such particles in the
re-sampling step. Accordingly, an extremely high density of particles is needed when
the sensor is highly accurate. Additionally, the sheer size of the state space prevents
us from using a sufficiently large number of particles during global localization in the
case that the sensor is highly accurate. To alleviate these problems the sensor model
needs to be less peaked when the particles are distributed sparsely over the state space.

This chapter is organized as follows. In Section 3.1, we introduce the standard
methods to model the likelihood function applied frequently in the past which in the
following will be denoted as beam-based models. Then in Section 3.2, we introduce
our novel idea to represent the error in the sample-based particle representation and the
idea of place-dependent likelihood models. In Section 3.2.1 and 3.2.2, we derive two
novel types of sensor models based on this idea. Finally in Section 3.3 we summarize
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Figure 3.1: The four components to compose the mixture model depicted in Figure 3.2
from upper left to lower right: phit(zi | zi

exp) to model the likelihood in situations in
which the beam hits the next object in the direction of the measurement, a uniform
distribution prand(zi | zi

exp) to represent random measurements, exponential distribution
pshort(zi | zi

exp), and a uniform distribution pmax(zi | zi
exp) to model erroneous measure-

ments caused by the limited range of the sensor.

zi
maxzi

exp zi
t0

p(zi
t|xt,m)

Figure 3.2: Sensor model given by a mixture of different distributions depicted in
Figure 3.1.

the contents of this chapter.

3.1 Beam-Based Likelihood Models

In general, a measurement or scan zt acquired by a laser range finder at time t consists
of N single beams. A laser scan can be denoted as a vector of beams zt = (z1

t , ..., z
N
t )T .

Beam-based models, originally introduced by Fox et al. [1999b], consider each value
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Figure 3.3: Occupancy grid map (left) and likelihood field (right) of the ground floor
of building 079 at the University of Freiburg.

zi
t of the measurement vector z as a separate range measurement which can be treated

independently. Based on this independence assumption the likelihood p(zt|xt,m) of
the scan zt given the position xt and the map m can be calculated as:

p(zt|xt,m) =
N∏

i=1

p(zi
t|xt,m). (3.1)

A popular method of calculating the likelihood p(zi
t|xt,m) of a single beam is to rep-

resent its one-dimensional distribution by a parametric function depending on the ex-
pected range measurement. This model is closely linked to geometry and physics
involved in the measurement process and is sometimes called ray cast model because
it relies on ray casting operations within an environmental model, e.g., an occupancy
grid map, to calculate the expected beam lengths. Based on this, we denote:

p(zi | x,m) = p(zi | zi
exp), (3.2)

where zi
exp denotes the expected length of th i-th beam given the map and the robot’s

position.

The likelihood model can be composed of four different components where each
of the components represents a different property of a single laser beam [Thrun et

al., 2005]. It uses a Gaussian phit(zi | zi
exp) to model the likelihood in situations in

which the beam hits the next object in the direction of the measurement. Additionally,
it applies a uniform distribution prand(zi | zi

exp) to represent random measurements. It
furthermore models objects not contained in the map as well as the effects of cross-talk
between different sensors by an exponential distribution pshort(zi | zi

exp). Finally, it deals
with detection errors, in which the sensor reports a maximum range measurement,
using a uniform distribution pmax(zi | zi

exp). Figure 3.1 shows illustrations of these four
components. Figure 3.2 depicts the resulting model when the four distributions are
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mixed by a weighted average, defined by the parameters αhit, αshort, αmax, and αrand:

p(zi | zi
exp) = (αhit, αshort, αmax, αrand) ·





phit(zi | zi
exp)

pshort(zi | zi
exp)

pmax(zi | zi
exp)

prand(zi | zi
exp)





. (3.3)

A problem of this model is that the four α-parameters strongly depend on the environ-
ment and cannot be estimated in a general way but must be learned from data.

Another popular measurement model for range sensors is termed likelihood fields

model (aka endpoint model) [Thrun, 2001a]. In the past, this model often was referred
as a scan-based model because instead of following the beams this method just checks
the endpoints. More precisely, this correlation-based method measures the correlation
between the measurement and the map in the way that the likelihood of a range mea-
surement is a function of the distance of the respective beam’s endpoint to the closest
obstacle in the environment. This model lacks physical explanation as it can basically
“see through walls”, but it is efficient and works well in practice in the case of position
tracking. However, similar to beam-based approaches, the individual endpoints are
treated independently which leads to overly peaked likelihood models when too many
measurements are used. Due to that, we do not consider the likelihood field method as
a scan-based likelihood model.

However, comparable to beam-based approaches, also the likelihoods of the indi-
vidual endpoints are treated independently. Given that usual laser range finders provide
between 181 and 540 measurements with a resolution from 0.25 to 1.0 degrees, this in-
dependence assumption leads to overly peaked likelihoods in the beam-based model as
well as in the endpoint model. In practice, this problem is dealt with by sub-sampling
of measurements [Thrun et al., 2005], by introducing minimal likelihoods for beams,
or by other means of regularization of the resulting likelihoods, see e.g. [Arulampalam
et al., 2002]. A particle filter based localization using these in such a way artificially
smoothed likelihood models looses a lot of accuracy and efficiency though the robot is
equipped with a highly accurate sensor.

3.2 Place-Dependent Likelihood Models

In this section, we propose a novel view on likelihood evaluation for Monte-Carlo
localization. Consider that laser range finders are extremely accurate sensors with a
low level of measurement noise. If one learns p(z | x) directly for exact sensor poses
x, e.g., with a mobile robot that is not moved during training, one gets an extremely
peaked model, with p(z | x + δ) ≪ p(z | x) already for small pose perturbations δ.
In particle filter based approaches, this precision can lead to serious problems, since
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Figure 3.4: Place-dependent likelihood models estimate the observation likelihood
of the robot’s pose hypotheses (dots) based on their local environment (visualized by
circles). The extend of this region has been determined using Equation 3.7 and depends
on the local sampling density of the particle filter and also takes the orientation of the
sampled poses into account.

the number of pose hypotheses (particles) and thus also the pose sampling density is
limited. To overcome this problem we propose to estimate p(z | x) based on the local
environmentU(x) of the exact pose x:

p(z | x) ≈
∫

U(x)

pU(x)(x̃) p(z | x̃) d x̃ , (3.4)

where

pU(x)(x̃) =
1

|U(x)| (3.5)

in the case of an uniform distribution for pose hypotheses x̃ within the regionU(x), or

pU(x)(x̃) = N(x, σU(x)) (3.6)

in case the region is modeled as a Gaussian parameterized by a locally adapted stan-
dard deviation σU(x). Note, that for infinitesimal regionsU(x), the right term of Equa-
tion 3.4 degenerates to the standard likelihood model p(z | x). Considering the idea
represented by Equation 3.4 raises two questions.

1. How large should the region considered for a sample be and how can we effi-
ciently determine it?

2. How can we efficiently integrate the observation likelihood over this region?

While our idea can be applied to arbitrary particle filter approaches, this section fo-
cuses on how to address these questions in the context of mobile robot localization. To
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Figure 3.5: Scan obtained in an office environment (left) and corresponding correlation
matrix R (right) calculated for 181 laser beams in an 180◦ field of view.

approximatively calculate the size of the region U(x) for each particle to achieve an
appropriate regularization of the likelihood function for the entire range scans as well
as for single beams, we adopt the measure used in k-nearest neighbor density estima-
tion [Duda et al., 2001]. For efficiency reasons we rely on the case of k = 1, in which
the spatial region covered by a particle is given by the minimum circle that is centered
at the particle and contains at least one neighboring particle in the current set. To cal-
culate the radius rU(x) of this circle, we have to take both, the Euclidean distance of
the positions and the angular difference in orientation into account. In our current im-
plementation we calculate rU(x) based on a weighted mixture of the Euclidean distance
and the angular difference

d(x, x′) =
√

(1 − ξ)((x1 − x′1)2 + (x2 − x′2)2) + ξ δ(x3 − x′3)2, (3.7)

where x1 and x′1 are the x-coordinates, x2 and x′2 are the y-coordinates, and δ(x3 − x′3)
is the differences in the orientation of the two particles at position x and x′. Figure 3.4
shows the fraction of a map and a particle distribution. The circle around each particle
at position x with radius rU(x) =

1
2d(x, x′) represents U(x), where x′ represents the

position of the closest particle.
In contrast to the first question about how to determineU(x) it is much more diffi-

cult to find solutions for the second question caused by Equation (3.4). Our solutions
to that question about how to integrate observation likelihood over this region the will
be presented as one of the main contributions of this thesis. In the Sections 3.2.1
and 3.2.2, we will motivate two novel types of sensor models: the scan-based likeli-
hood models and the multi-modal likelihood models.

3.2.1 Scan-Based Likelihood Models

If we considerU(x) as a circular region around x, which can be represented by Equa-
tion (3.4), it can easily be seen, that the individual components zi of a measurement
vector z = (z1, . . . , zN)T are in general not independent, since the sensor location is
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Figure 3.6: In mobile robot localization, small variations in the robot pose can cause
large variations of the range measurements. This leads to multi-modal distributions of
beam-lengths even in small areas around a potential pose.

marginalized overU(x). Depending on the geometry of the environment as well as on
the size and location ofU(x), the individual range measurements can become statisti-
cally dependent. As a motivating example, the left image of Figure 3.5 shows a laser
range scan obtained by a laser range finder in our office environment. The right image
of this figure shows a visualized correlation matrix R for 181 laser beams in an 180◦

field of view which can be derived as follows from the covariance matrix Σ:

ri j =

∣
∣
∣
∣
∣
∣
∣

Σi j
√

ΣiiΣ j j

∣
∣
∣
∣
∣
∣
∣

. (3.8)

The sample scans used to calculate the covariance matrix Σ have been sampled from
the regionU(x) which is visualized by the circle in the map in the left image. The grey
scale indicates the value of each correlation coefficient ri j between the i-th and the j-th
laser beam. Whereas white corresponds to a value of 1, black corresponds to 0. The
images show that beams around doorways, for example, are less correlated than neigh-
boring beams which hit the wall in the corridor. They also show, that beams which hit
the walls on the opposite site of the corridor are also correlated. Additionally the left
image shows the deviation of the individual laser beams. The blue parts of the orange
beams illustrate the standard deviation σi of the i-th beam which is characterized by
σi =

√
Σii.

In this thesis likelihood models which do not assume independence between indi-
vidual beams are termed as scan-based likelihood models. In Chapter 5, Chapter 6,
and Chapter 8 we will introduce these type of likelihood model and we also will show
that the scan-based likelihood models do not require any sub-sampling of measure-
ments [Thrun et al., 2005]. This leads to higher accuracy and robustness and also to a
faster convergence of the particle filter process for the task of global localization.

3.2.2 Multi-Modal Likelihood Models

Given that the sensor model considers the particle as a circular region U(x) around
x, additionally to the dependencies between individual laser beams, a second problem
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Figure 3.7: Properties of the likelihood models presented in this thesis.

arises. In situations in which the robot operates close to obstacles or in highly cluttered
environments small changes in the pose of the robot can lead to completely different
geometries measured by the range sensor. Figure 3.6 illustrates a typical situation in
which the robot traverses a doorway. The resulting enormous variances in the likeli-
hood of observations can lead to major problems in probabilistic approaches such as
Monte Carlo localization as important hypotheses or particles might get lost. This loss
of hypothesis substantially decreases the robustness of such approaches, when the like-
lihood function is modeled by a uni-modal distribution. As already mentioned several
times in this chapter a common solution is to artificially smooth the likelihood function
or to only integrate a small fraction of the measurements. In contrast to the uni-modal
likelihood models, the multi-modal likelihood models do not need this heuristic likeli-
hood smoothing due to the ability of modeling these situations explicitely. In Chapter 7
and Chapter 8 we will introduce multi-modal likelihood models which enable a robot
to localize also in situations where other likelihood models fail. These models con-
stitute more fundamental and robust approaches which model the likelihood function
for single range measurements as well as for entire range scans as a mixture of Gaus-
sians. In practical experiments, we compare these approaches to previous methods and
demonstrate that they provide a substantially more robust localization.

3.3 Summary

To summarize this chapter, we explained the influence of the likelihood model on the
localization process using particle filters and review the most common sensor mod-
els. Furthermore, we proposed to determine p(z | x) based on a marginalization (see
Equation 3.4) over the local environment U(x) of the exact pose x which is crucial
when the particle distribution has to be modeled by a finite number of samples. Given
this new view, we can divide the novel models we will present in this thesis in two
groups, the uni-modal (Part I) and the multi-modal (Part II) likelihood models. We
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made this division based on the arising effects we mentioned in Section 3.2.1 and in
Section 3.2.2. As illustrated in Figure 3.7, in the following two parts of this thesis we
will present novel models of both groups. Additionally, we will compare the properties
of beam-based and scan-based likelihood models within each of the two groups. In
extensive experiments on data acquired using a real robot as well as in simulation we
will outperform state-of-the-art models and demonstrate the superior performance of
the likelihood model presented in Chapter 8 which incorporates the properties of the
scan-based models as well as the multi-modal models.



48 C 3: LM M-C L



Part I

Uni-Modal Likelihood Models for

Monte-Carlo Localization



50



Chapter 4

Adaptive Beam-Based Likelihood

Models

I
n this chapter, we introduce a novel, adaptive sensor model that explicitly takes
the local sample densities of the particle filter into account. In the fashion of the
place-dependent likelihood models as described in Chapter 3 we develop a new
model based on the ray casting model [Thrun et al., 2005] which already has

been introduced in Section 3.1. In particular, we estimate the region associated to a
particle using a measure applied in k-nearest neighbor density estimation, in which the
region of a point grows until a sufficient number of particles lies within it. We show
that by considering the simple case of k = 1 and learning the appropriate smoothness
of the likelihood function, we can effectively improve the speed required for global
localization and at the same time achieve high accuracy during position tracking.

This chapter is organized as follows. After a short review of the ray casting model
where our novel adaptive model is based on in Section 4.1, Section 4.2 describes how
we adapt the sensor model with respect to the region represented by each sample.
Finally, Section 4.3 contains experimental results carried out on real robots.

4.1 Ray Casting Sensor Model

Throughout this chapter, we present an extention of the beam based likelihood model
as described in Section 3.1. This likelihood model, which is the base for our extension,
calculates p(zi | x,m) for the i-th beam of the range scanner based on the expected dis-
tance zi

exp to the closest obstacle in the direction of the measurement given the robot’s
position x and the map m. Accordingly, p(zi | x) is calculated as

p(zi | x,m) = p(zi | zi
exp). (4.1)
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zi
maxzi

exp zi
t0

p(zi
t|xt,m)

σ(rU(x))

σ2

σ1

rU(x)

Figure 4.1: Sensor model given by a mixture of different distributions (left image) and
piecewise linear function used to calculate the standard deviation based on the distance
d = 2rU(x) to the closest particle.

To determine this quantity, we follow the approach described in Thrun et al. [2005]
and Choset et al. [2005]. The key idea of this sensor model is to use a mixture of
four distributions to capture the noise and error characteristics of range sensors. It
uses a Gaussian phit(zi | zi

exp) to model the likelihood in situations in which the beam
hits the next object in the direction of the measurement. Additionally, it uses a uniform
distribution prand(zi | zi

exp) , an exponential distribution pshort(zi | zi
exp), and an additional

uniform distribution pmax(zi | zi
exp) to deal with max range measurements (see Thrun et

al. [2005] and Section 3.1 for details). These four different distributions are mixed by
computing the weighted average defined by the parameters αhit, αshort, αmax, and αrand,

p(zi | zi
exp) = (αhit, αshort, αmax, αrand) ·





phit(zi | zi
exp)

pshort(zi | zi
exp)

pmax(zi | zi
exp)

prand(zi | zi
exp)





. (4.2)

Note that these parameters need to satisfy the constraints that none of them should be
smaller than zero and that p(zi | zi

exp) integrates to 1 over all z for a fixed d. A plot of
this sensor model for a given set of parameters is shown in Figure 4.1. Also note that
the exponential distribution is only used to model measurements that are shorter than
expected, i.e., for measurements zi with zi < zi

exp. Therefore, there is a discontinuity at
zi = zi

exp (see Thrun et al. [2005] for details).

4.2 Adaptive Sensor Model

As already mentioned, the particle set should approximate the true posterior as closely
as possible. Since we only have a limited number of particles, which in practice is
often chosen as small as possible to minimize the computational costs, we need to take
into account potential approximation errors.
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The key idea of our approach is to adjust the variance of the Gaussian governing
phit(zi | zi

exp), which models the likelihood of measuring zi given that the sensor detects
the closest obstacle in the map, such that the particle set yields an accurate approxi-
mation of the true posterior. To achieve this, we approximatively calculate for each
particle j the space it covers by adopting the measure used in k-nearest neighbor den-
sity estimation [Duda et al., 2001]. For efficiency reasons we rely on the case of k = 1,
in which the spatial region U(x) covered by a particle at position x is given by the
minimum circle that is centered at the particle and contains at least one neighboring
particle in the current set. In Section 3.2, we explain in detail how to calculate the
radius rU(x) of this circle.

The next step is to adjust for each particle the standard deviation σ of the Gaussian
in phit(zi | zi

exp) based on the distance rU(x) =
1
2d(x, x′)), where x′ is the particle closest

to x with respect to Equation 3.7. In our current implementation we use a piecewise
linear function

σ(rU(x)) =






σ1 if αrU(x) < σ1

σ2 if αrU(x) > σ2

αrU(x) otherwise
(4.3)

to compute the standard deviation of phit(zi | zi
exp). To learn the values of the parameters

σ1, σ2, and α of this function, we performed a series of localization experiments on
recorded data, in which we determined the optimal values by minimizing the average
distance of the obtained distributions from the true posterior. Since the true posterior
is unknown, we determined a close approximation of it by increasing the number of
particles until the entropy of a three-dimensional histogram calculated from the parti-
cles did not change anymore. In our experiment this state was reached with 1,000,000
particles. Here, the sensor model was initialized with the error values provided in the
specifications of the laser range finder. In the remainder of this section, we will denote
the particle set representing the true posterior by S ∗. Figure 4.2 shows the set S ∗ at
different points in time for the data set considered in this chapter.

To calculate the deviation of the current particle set S from the true posterior rep-
resented by S ∗, we evaluate the KL-distance between the distributions obtained by
computing a histogram from S and S ∗. We set the spatial resolution of this histogram
to 40 cm and the angular resolution is 5 degrees. For discrete probability distributions,
p = 〈p1, . . . , pn〉 and q = 〈q1, . . . , qn〉, the KL-distance is defined as

KL(p, q) =
∑

j

p j log2

p j

q j

. (4.4)
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Figure 4.2: Distribution of 1,000,000 particles after 0, 1 and 2 integrations of mea-
surements with the sensor model according to the specifications of the SICK LMS
sensor.

4.3 Experiments

The sensor model described above has been implemented and evaluated using real
data acquired with a Pioneer PII DX8+ robot equipped with a laser range scanner in a
typical office environment. The experiments described in this section are designed to
investigate if our dynamic sensor model outperforms static models. To reduce poten-
tial effects of the dependency between the individual beams of a scan, we only used
10 beams at angular displacements of 18 degrees from each scan. Throughout the
experiments, we compared our dynamic sensor model to various other sensor model.
Concretely, we compared the performance of the following sensor models:

1. dynamic sensor model. Our novel sensor model presented in Section 4.1.

2. Best static sensor model. This model has been obtained by evaluating a series of
global localization experiments, in which we determined the optimal variance of
the Gaussian by maximizing the utility function

U(L,N) =
L∑

l=1

(L − l + 1)
Pl

N
, (4.5)

where L is the number of integrations of measurements into the belief during
the individual experiment, N is the number of particles, and Pl is the number of
particles lying in a 1 m range around the true position of the robot.

3. Best tracking model. We determined this model in the same way as the best static
sensor model. The only difference is that we have learned it from situations in
which the filter was tracking the pose of the vehicle.

4. SICK LMS model. This model has been obtained from the hardware specifica-
tions of the laser range scanner.
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5. Uniform dynamic model. In our dynamic sensor model the standard deviation
of the likelihood function is computed on a per-particle basis. We also analyzed
the performance of a model in which a uniform standard deviation is used for
all particles. The corresponding value is computed by taking the average of the
individual standard deviations.

4.3.1 Global Localization Experiments

Figure 4.3: Distribution of 10,000 particles after 1, 3, and 5 integrations of measure-
ments with our dynamic sensor model (left column) and with the best static sensor
model (right column).

The first set of experiments is designed to evaluate the performance of our dynamic
sensor model in the context of a global localization task. In the particular data set used
to carry out the experiment, the robot started in the kitchen of our laboratory environ-
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Figure 4.4: Evolution of the distance d(x, x′) introduced in Equation (3.7). Distribution
of 10,000 particles after 1, 2, 3, and 5 integrations of measurements with our dynamic
sensor model.

ment (lower left room in the maps depicted in Figure 4.2). The evolution of a set of
10,000 particles during a typical global localization run with our dynamically adapted
likelihood model and with the best static sensor model is depicted in Figure 4.3. As
can be seen, our dynamic model improves the convergence rate as the particles quickly
focus on the true pose of the robot. Due to the dynamic adaptation of the variance, the
likelihood function becomes more peaked such that unlikely particles are discarded
earlier.

Figure 4.4 shows the evolution of the distance d(x, x′) introduced in Equation (3.7)
over time. The individual images illustrate the distribution of 10,000 particles after 1,
2, 3, and 5 integrations of measurements with our dynamic sensor model. The circle
around each particle represents the distance r = 1

2d(x, x′) to the next particle at pose
x′ in the map m.

Figure 4.5 shows the convergence of the particles to the true position of the robot.
Whereas the x-axis corresponds to the time step, the y-axis shows the number of
particles in percent that are closer than 1m to the true position. We plot the evolu-
tions of these numbers for our dynamic sensor model, a uniform dynamic model, and
the best fixed model for 10,000 and 2,500 particles. Note that the best static model
does not reach 100%. This is due to the fact that the static sensor model relies on a
highly smoothed likelihood function, which is good for global localization but does not
achieve maximal accuracy during tracking. In the case of 10,000 particles, the vari-
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Figure 4.5: Percentage of particles within a 1m circle around the true position of the
robot with our dynamic sensor model, the uniform dynamic model, and the best static
model. From the upper left to the lower right image the diagrams show the evolution
depending on the number of iterations for 10000, 7500, 5000, and 2500 particles.

ances in the distance between the individual particles are typically so small, that the
uniform model achieves a similar performance. Still, a t-test showed that both models
are significantly better than the best fixed model. In the case of 2,500 particles, how-
ever, the model that adjusts the variance on a per-particle basis performs better than
the uniform model. Here, the differences are significant whenever they exceed 20.

The left diagram of Figure 4.6 shows the number of successful localizations after
35 integrations of measurements for a variety of sensor models and for different num-
bers of particles. Here, we assumed that the localization was achieved when the mean
of the particles differed by at most 30 cm from the true location of the robot. First, it
shows that our dynamic model achieves the same robustness as the best static model
for global localization. Second, the figure shows that the static model that yields the
best tracking performance has a substantially smaller success rate. Additionally, we
evaluated a model, denoted as the SICK LMS model, in which the standard deviation
was chosen according to the specifications of the SICK LMS sensor, i.e., under the
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Figure 4.6: Success rates for different types of sensor models and sizes of particle sets
(left) and the evolution of the average standard deviation during global localization
with different numbers of particles for our dynamic sensor model (right).

assumption that the particles in fact represent the true position of the vehicle. As can
be seen, this model yields the worst performance. Furthermore, we evaluated, how the
models perform when only one beam is used per range scan. With this experiment, we
wanted to analyze whether the dynamic model also yields better results in situations in
which there is no dependency between the individual beams of a scan. Again, the plots
show that our sensor model outperforms the model, for which the standard deviation
corresponds to the measuring accuracy of the SICK LMS scanner.

Finally, the right diagram of Figure 4.6 plots the evolution of the average standard
deviations of several global localization experiments with different numbers of parti-
cles. As can be seen from the figure, our approach uses more smoothed likelihood
functions when operating with few particles (2,500). The more particles are used in
the filter, the faster the standard deviation converges to the minimum value.

4.3.2 Tracking Performance

We also carried out experiments to analyze the accuracy of our model when the system
tracks the pose of the vehicle. We compared our dynamic sensor model to the best
tracking model and evaluated the average localization error of the individual particles.
Figure 5.7 depicts the average localization error for two tracking experiments with
10,000 and 2,500 particles. As can be seen from the figure, our dynamic model shows
the same performance as the tracking model whose parameters have been optimized
for minimum localization error. This shows, that our dynamic sensor model yields
faster convergence rates in the context of global localization and at the same time
achieves the best possible tracking performance without changing the parameters of
the likelihood function.
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Figure 4.7: Average localization error of 10000, 7500, 5000, and 2500 (from upper
left to lower right) particles during a position tracking task. Our dynamic sensor model
shows a similar performance as the best tracking model in all settings.
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Figure 4.8: Properties of the likelihood models presented in this thesis. Our new
adaptive beam-based likelihood model is marked by yellow. In the following Chapter,
we present a scan-based likelihood model which allows us to use entire scans instead
of a limited number of beams, since it relaxes the limiting independence assumption
between the individual laser beams of a range scanner

4.4 Conclusions

In this chapter, we presented a new approach for dynamically adapting the sensor
model for particle filter based implementations of probabilistic localization. Our ap-
proach learns a function that outputs the appropriate variance for each particle based
on the estimated area in the state space represented by this particle. To estimate the
size of this area, we adopt a measure developed for density estimation as described in
Section 3.2. Figure 4.8 shows the properties of our adaptive model, which is marked by
the yellow color, compared to the other models presented in this thesis. The approach
has been implemented and evaluated in extensive experiments using laser range data
acquired with a real robot in a typical office environment. The results demonstrate that
our sensor model significantly outperforms static and optimized sensor models with
respect to robustness and efficiency of the global localization process. In the follow-
ing Chapter, we present a scan-based likelihood model which allows us to use entire
scans instead of a limited number of beams, since it relaxes the limiting independence
assumption between the individual laser beams of a range scanner.



Chapter 5

Scan-Based Likelihood Models

I
n this chapter, we relax a limiting assumption of previous models including the
adaptive likelihood model presented in Chapter 4, i.e., the independence assump-
tion between the individual beams of a complete laser range scan. In principle, if
one assumes a static environment and a fixed sensor pose x the individual beam

measurements zi contained in each scan z can safely be assumed as independent. If,
however, the local environment of x is taken into account for estimating p(z | x) in a
more advanced sensor model as demonstrated in the previous Chapter, the assumption
of beam independence is clearly violated.

This chapter is organized as follows. Section 5.1 describes our location-dependent
likelihood models for complete laser range scans. Subsequently, Section 5.2 contains
experimental results carried out on real robots.

5.1 Scan-Based Place-Dependent Likelihood Models

To achieve the appropriate regularization of the likelihood function for the entire range
scans, we introduce a novel model that has two distinct advantages over existing ones.
First, we explicitly include the sampling density of the particle filter to find the op-
timal level of regularization. Thus, the observation likelihood for each particle is
estimated for a local region U(x) around its pose x (see also Section 3.2 for a de-
tailed description). Second, given this region U(x) we learn the distribution of pos-
sible range measurements also taking correlations between the individual beams into
account. Compared to the adaptive model presented in Chapter 4 which considers
individual measurements instead of entire scans we capture the arising dependencies
between individual laser beams. As mentioned already in Section 3.2.1 these depen-
dencies arise since we estimate p(z | x) based on the local environment U(x) of the
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exact pose x:

p(z | x) ≈
∫

U(x)

pU(x)(x̃) p(z | x̃) d x̃ . (5.1)

In this Chapter, we capture the dependencies between individual range measurements
by estimating the joint distribution of measurements zi, i.e.,

p(z | x) ∼ N(µ,Σ) , (5.2)

with µ ∈ RN and Σ ∈ RN×N . Note that this is a generalized version of existing beam-
based models that assume independent, normally distributed zi, which corresponds to
setting Σ = diag(σ2

z ) with a constant, real-valued measurement noise parameter σ2
z in

Equation (5.2). By also taking the covariances outside the diagonal into account and
by estimating these parameters depending on the actual locations x, we achieve a more
robust likelihood model for a given sampling density of locations x.

5.1.1 Place-Dependent Covariance Estimation

The mean beam lengths µ and the covariance matrix Σ are estimated online for each
pose hypothesis xt by simulating L complete range scansD = {d1, . . . , dL} at locations
drawn uniformly fromU(xt) using the given map m of the environment:

µ =
1

L

L∑

i=1

di (5.3)

Σ =
1

L

L∑

i=1

(di − µ) (di − µ)T . (5.4)

The simulation of the laser range scans D = {d1, ..., dL} takes into account the
geometry and the physics involved in the measurement process. It relies on ray casting
operations within an occupancy grid map to calculate the expected beam lengths.

5.1.2 Likelihood Evaluation

Given the estimated model parameters µ and Σ for a specific robot pose hypothesis
xt, the observation likelihood p(zt | xt,m) for an observed scan zt at time t can be
calculated using the standard multivariate Gaussian density function

p(zt | xt,m) =
1

(2π)
N
2 |Σ| 12

e−
1
2 (zt−µ)TΣ−1(zt−µ) , (5.5)
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Figure 5.1: Typical laser range scan at a position where subsets of the 181 beams
partially are highly correlated.

Figure 5.2: Visualization of the correlation matrixes R calculated for different beam
numbers in an 180◦ field of view and corresponding to the robot position depicted in
Figure 5.1: 181 beams (upper left), 91 beams (upper right), 61 beams (lower left), and
31 beams (lower right).
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Figure 5.3: Scan obtained in an office of our environment (left) and corresponding
correlation matrix (right).

where |Σ| denotes the determinant of the covariance matrix. The main diagonal d =

{Σ11, ...,ΣNN} of Σ characterizes the uncertainty of the N beams in this model. The val-
ues besides the main diagonal describe the correlations between the individual beams.
The Algorithm 5.1 summarizes the MCL measurement update step for the whole filter
using our scan-based model.

Algorithm 5.1 (EC)-model-based Measurement Update for MCL
for all particles xt do

GenerateD using ray casting in the given map at robot locations drawn uniformly
fromU(xt) using the given map m of the environment.
Estimate µ and Σ usingD.
Compute all p(zt | xt,m) and weight the particles.

end for

To illustrate the dependencies between the laser beams we calculated the matrix R

of the correlation coefficients. This matrix can be derived as follows from the covari-
ance matrix Σ:

ri j =

∣
∣
∣
∣
∣
∣
∣

Σi j
√

ΣiiΣ j j

∣
∣
∣
∣
∣
∣
∣

. (5.6)

Figure 5.1 shows an example of a robot position where 181 of the laser beams partially
are highly correlated. The sample scans to calculate the correlation matrix R have been
sampled from the space which is visualized by the circle in the map. The blue parts
of the orange beams illustrate the standard deviation. The standard deviation σi of the
i-th beam is characterized by σi =

√
Σii. Figure 5.2 shows the correlation matrixes R

obtained for different beam numbers. The upper left image shows a visualization of R

for 181 laser beams in an 180◦ field of view. The upper right image visualizes R for 91



5.2 E 65

laser beams, the lower left for 61 laser beams, and the lower right image for 31 laser
beams. The grey scale indicates the value of each correlation coefficient ri j between
the i-th and the j-th laser beam. Whereas white corresponds to a value of 1, black
corresponds to 0. The images show that beams around doorways, for example, are less
correlated than neighboring beams which hit the wall in the corridor. They also show,
that beams which hit the walls on the opposite side of the corridor are also correlated.
Figure 5.3 shows an example in a room of our office environment. While the center
beams in front of the robot are more or less uncorrelated because of clutter, the beams
on the side show high correlations due to the nearby walls.

5.2 Experiments

To evaluate our approach we performed extensive experiments and compared our scan-
based sensor model to various other sensor models. Concretely, we compared the
performance of the following sensor models:

IB: The standard beam-based sensor model that assumes independent beams with an
additive white noise component as described in Section 3.1

EP: The end-point sensor model [Thrun, 2001a] that calculates the likelihood of a
range measurement as a function of the distance of the end point of the respective
beam to the closest obstacle in the environment.

EC: Our enhanced model with learned covariance matrix as detailed in Section 5.1.

DC: Our model with cross-correlation components ignored. That is, only the diagonal
entries of the covariance matrix are learned.

We optimized the free parameters of all models empirically to ensure fair compar-
ison. The computational complexity of (EC) and (DC) is dominated by the number
L of simulated robot locations to estimate Σ as well as the dimension of Σ, i.e. the
number N of measured laser beams per scan. Concretely, we have to simulate LN

beams, with L ≈ 150, and invert the N × N covariance matrix Σ, which is an opera-
tion in O(N3). The experiments show that in contrast to the optimized sensor models
our sensor model performs better with 31 of 181 beams and that it also allows us to
scale the number of used beams up to 181. To analyze this, we first compare the like-
lihood depending on the distance to the true position using our proposed model (EC)
and the standard beam-based model (IB) for different locations in our environment. In
Subsection 5.2.2 we compare our approach to optimized sensor models which do not
model the dependencies between the laser beams. Additionally in Subsection 5.2.3 we
evaluate how our sensor model performs in the task of position tracking.
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Figure 5.4: Likelihood function for a varying deviation from the true robot pose (x-
axis) at a corridor pose (left) and in an office room containing clutter (right).

5.2.1 Likelihood Evaluation

To evaluate the properties of our likelihood function we analyzed the evolution of the
likelihood depending on the deviation from the true robot pose. Figure 5.4 shows a
plot of the likelihood function for a varying deviation (x-axis) at the position depicted
in Figure 5.2 (left) and in an office room containing clutter depicted in Figure 5.3
(right). Note that the likelihood function of our proposed model (EC) has the same
shape (or peakedness) in both environments. The standard beam-based model (IB),
in contrast, is significantly more peaked in the corridor environment, although the
same noise parameters have been used. This demonstrates that our model successfully
adapts to the local characteristics of the environment. Additionally, the variance of our
proposed model is relatively low.

5.2.2 Global Localization

The second set of experiments has been designed to evaluate the performance of our
scan-based sensor model (EC) in the context of a global localization task. In these
experiments, we assumed that the localization was achieved when the mean of the par-
ticles differed by at most 50 cm from the true location of the robot. Figure 5.5 shows
the number of successful localizations after eight integrations of 31 measurements of
each scan for different models. Figure 5.6 shows the localization performance depend-
ing on different numbers of particles for the EC model (left) and the DC model (right)
and for different numbers of beams. As can be seen from the left image, our scan-
based model (EC), which also addresses the correlation between beams achieves the
best performance for the task of global localization. The two images illustrate that our
sensor model (EC) outperforms the beam-based place specific sensor model (DC) also



5.2 E 67

 0

 20

 40

 60

 80

 100

 120

 140

 10000  15000  20000  25000  30000

s
u
c
c
e
s
s
 r

a
te

 [
%

]

number of particles 

EC Model
DC Model
IB Model

EP Model

Figure 5.5: Number of successful localizations after 8 integrations of measurements
for a variety of sensor models and for different numbers of particles. In these experi-
ments we used 31 of 181 beams.

 0

 20

 40

 60

 80

 100

 120

 140

 5000  10000  15000  20000  25000  30000

s
u

c
c
e

s
s
 r

a
te

 [
%

]

number of particles 

181 beams
91 beams
61 beams
31 beams

 0

 20

 40

 60

 80

 100

 120

 140

 5000  10000  15000  20000  25000  30000

s
u

c
c
e

s
s
 r

a
te

 [
%

]

number of particles 

181 beams
91 beams
61 beams
31 beams

Figure 5.6: Number of successful localizations after 8 integrations of measurements
for our (EC) model (left) and for the (DC) model (right) for different numbers of par-
ticles. In this experiments we used 31, 61, 91, and 181 beams to evaluate the scan
likelihood.



68 C 5: S-B LM

 0

 0.5

 1

 1.5

 2

 2.5

 30  60

tr
a
n
s
la

ti
o
n
 e

rr
o
r

number of beams 

EC Model
DC Model
IB Model

EP Model

 0

 0.5

 1

 1.5

 2

 2.5

 0  200  400  600  800

a
v
e
ra

g
e
 t
ra

n
s
la

ti
o
n
 e

rr
o
r

iteration step

EC Model
DC Model
IB Model

EP Model

Figure 5.7: Average translational errors for the different sensor models and for 31 and
61 beams over a tracked trajectory driven in our office environment (left) and average
localization error for the tracking experiment with 61 laser beams (right).

for different numbers of beams. Note that Figure 5.6 also shows that the performance
decreases as the number of beams integrated increases for the EC model. Also note that
in these experiments we used only 31 of 181 beams, because the beam-based sensor
models become too peaked if more beams are used. To substantiate this statement, we
present the tracking experiment in the following section during which the beam-based
sensor model (IB) diverged for higher numbers of beams. We further analyzed this and
found that it is due to the fact that the independence assumption leads to extremely
small scan likelihoods and therefore to an extremely peaked likelihood function in the
case of the DC model.

5.2.3 Tracking

We also carried out experiments, in which we analyzed the accuracy of our model (EC)
when the system is tracking the pose of the vehicle. We compared our sensor model
to various other models and evaluated the average localization error of the individual
particles. The left part of Figure 5.7 shows the mean of the translational errors for the
different sensor models and for 31 and 61 beams over a tracked trajectory driven in our
office environment. As can be seen from the figure, our likelihood model (EC)and the
end point model (EP) show a similar, good localization performance and outperform
the two beam-based approaches (IB) and (DC) adapted from ray-casting operations.
The right part of Figure 5.7 depicts the average localization error for this experiment
with 61 laser beams. It can be seen that the two beam-based ray cast sensor models
(IB) and (DC) diverge. Since (IB) and (DC) are unable to deal with dependencies
between beams, the risk of filter divergence increases with the number of beams used.
In another experiment, in which we used all 181 beams, the two beam-based models
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Figure 5.8: Properties of the likelihood models presented in this thesis. Our new
scan-based model (EC) is marked by yellow. In the following chapter we present
a sensor model (GP) of the same type where covariance matrix is represented by a
parameterized covariance function.

and the end point model showed a similar behavior as before. The classical ray cast
model (IB) and the beam-based place specific model (DC), however, diverged even
earlier than with 61 beams.

5.3 Conclusions

In this chapter, we presented a novel location-dependent scan-based sensor model for
Monte Carlo localization. This new sensor model takes the approximation error of the
sample-based representation into account and explicitely models the dependencies of
the individual beams introduced by the pose uncertainty. Figure 5.8 shows the proper-
ties of our scan-based model (EC), which is marked by the yellow color, to the other
models presented in this thesis. The approach has been implemented and evaluated in
extensive experiments using laser range data acquired with a real robot in a typical of-
fice environment. The results demonstrate that our sensor model outperforms popular
beam-based models especially, when the entire scan is used. In the following Chap-
ter we present a sensor model (GP) of the same type as presented in this chapter. In
contrast to the model presented in this chapter in the (GP) model approach the covari-
ance matrix is represented by a parameterized covariance function. The parameters of
this function are learned from data and allow us to reduce the number of samples for
estimating the covariance function dramatically.



70 C 5: S-B LM



Chapter 6

Scan-Based Likelihood Models Using

Gaussian Processes

I
n the previous chapter, we learned the covariance matrix to model the beam-
dependencies directly using simulated laser range scans. In this chapter, we ex-
change this direct estimation by optimizing a parameterized covariance function.
This results in the popular Gaussian process model (GP) for regression applied

to the space of range measurements. While the new model also achieves a comparably
high modeling accuracy, it requires order of magnitudes less simulated range scans to
learn a dense covariance matrix. As the scan-based likelihood model presented in the
previous chapter, this model allows to directly calculate the likelihood of entire scans.

This chapter is organized as follows. Section 6.1 the principles of Gaussian beam
processes. Then Section 6.2 contains experimental results carried out on data acquired
with real robots.

6.1 Gaussian Beam Processes

Range sensors measure distances ri to nearby objects along certain directions αi rela-
tive to the sensor. Hence, for a vector r = (r1, . . . , rm) of distance measurements with
corresponding bearing angles A = (α1, . . . ,αm), the likelihood function p(z|x) can be
rewritten as p(r|A, x). Then, we pose the task of estimating p(r|A, x) as a regression
problem and model the function that maps beam angles α to range measurements r as
a stochastic process. In other words, we regard the individual measurements ri as a
collection of random variables indexed by the respective beam angles αi. By placing
a Gaussian process prior over this function, we get a simple yet powerful model for
likelihood estimation of range measurements as well as for prediction. Concretely, for
mobile robot localization, we propose to build GBP models online for all robot pose
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hypotheses x. The training set D = {(αi, ri)}ni=1 for learning such a model is simulated
using ray casting operations relative to x using a metric map of the environment. For
certain applications, one needs to estimate p(r|A,X), i.e. the distribution of range
measurements for a region X in pose space. In this case, the training set D is simply
built by sampling poses x from X and simulating the corresponding range scans. In
the following, we will derive the general model for d-dimensional angular indices αi

(e.g., d = 1 for planar sensing devices, d = 2 for 3D sensors).
Given a training set D of range and bearing samples, we want to learn a model

for the non-linear and noisy functional dependency ri = f (αi) + ǫi with independent,
normally distributed error terms ǫi. The idea of Gaussian processes is to view all target
values ri as jointly Gaussian distributed p(r1, . . . , rn|α1, . . . ,αn) ∼ N(µ,K) with a mean
µ and covariance matrix K.

The mean µ is typically assumed 0 and K is defined by ki j := k(αi,α j) + σ2
nδi j,

depending on a covariance function k and the global noise variance parameter σn.
The covariance function represents the prior knowledge about the underlying function
f and does not depend on the target values r of D. Common choices, that we also
employ throughout this work, are the squared exponential covariance function

kS E(αi,α j) = σ
2
f exp



−
∆2

i j

2ℓ2



 , (6.1)

with ∆i j = ‖αi − α j‖, which has a relatively strong smoothing effect, and a variant of
the Matern type of covariance function kM(αi,α j) =

σ2
f




1 +

√
5∆i j

ℓ
+

√
5∆2

i j

3ℓ2




· exp



−
√

5∆i j

ℓ



 . (6.2)

These two covariance functions are called stationary, since they only depend on the
distance ∆i j between input locations αi and α j. In the definitions above, σ f denotes the
amplitude (or signal variance) and ℓ is the characteristic length-scale, see [Rasmussen
and Williams, 2006] for a detailed discussion. These parameters plus the global noise
variance σn are called hyper-parameters of the process. They are typically denoted
as Θ = (σ f , ℓ, σn). Since any set of samples from the process are jointly Gaussian
distributed, predictions of m new range values r∗ = (r∗1, . . . , r

∗
m), at given angles A∗ =

(α∗1, . . . ,α
∗
m) can be performed by conditioning the n+m-dimensional joint Gaussian on

the known target values of the training setD. This yields an m-dimensional predictive
normal distribution r∗ ∼ N(µ∗,Σ∗)

µ∗ = E(r∗) = K∗
(

K + σ2
nI

)−1
r (6.3)

Σ∗ = V(r∗) = K∗∗ + σ2
nI − K∗

(

K + σ2
nI

)−1
K∗T (6.4)
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Figure 6.1: The effect of modeling non-constant noise on a data set of range mea-
surements simulated for the case of an uncertain sensor orientation (±5◦). Standard
Gaussian process regression (left) assumes constant noise for all bearing angles. Mod-
eling heteroscedasticity (our model, on the right) yields lower predictive uncertainties
at places with low expected noise levels such as the wall in front. The straight, red
lines depict one possible range scan in this setting.

with the covariance matrices K ∈ Rn×n, Ki j = k(αi,α j), K∗ ∈ Rm×n, K∗i j = k(α∗i ,α j), and
K∗∗ ∈ Rm×m, K∗∗i j = k(α∗i ,α

∗
j), and the training targets r ∈ Rn. The hyper-parameters of

the Gaussian process can either be learned by maximizing the likelihood of the given
data points or, for fully Bayesian treatment, can be integrated over using parameter-
specific prior distributions. In this work, we adapt the hyper-parameters by maximiz-
ing the marginal likelihood of D using the hybrid Monte-Carle approach described
in [Williams and Rasmussen, 1995].

So far, we have introduced the standard Gaussian processes framework for regres-
sion problems. In the following, we describe a novel way of treating input-dependent
noise, which leads to more accurate models in our application domain.

6.1.1 Modeling Non-Constant Noise

Gaussian processes as introduced above assume a constant noise term, i.e., identically
distributed error terms ǫi over the domain. For modeling range sensor measurements,
however, the variance of range values in each beam direction is, along with its mean
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value, an important feature of the sought-after distribution of range measurements. To
overcome this, we extended the standard Gaussian process framework to deal with
heteroscedasticity, i.e., non-constant noise. Figure 6.1 illustrates the effect of this
treatment on the predictive distribution for range values. The left diagram depicts
the standard procedure that assumes a constant noise term for all bearings α. Our het-
eroscedastic treatment, depicted in the right diagram, achieves a significantly better fit
to the data set while still not over-fitting to the individual samples.

To deal with the heteroscedasticity inherent in our problem domain, we basically
follow the approach of Goldberg et al. [1998], who condition a standard Gaussian
processes Gc on latent noise variables sampled from a separate noise process Gn. Let
v ∈ Rn be such noise variances at the n given data points and v∗ ∈ Rm those for the m

locations to be predicted, then the predictive distribution changes to

µ∗ = K∗ (K + Kv)
−1 r , (6.5)

Σ∗ = K∗∗ + K∗v − K∗ (K + Kv)
−1 K∗T , (6.6)

where Kv = diag(v) and K∗v = diag(v∗). Now, as the noise variances v and v∗ cannot be
known a-priori, they have to be integrated over for predicting r∗

p(r∗|A∗,D) (6.7)

=

∫

p(r∗|A∗, v, v∗,D)
︸               ︷︷               ︸

pr

· p(v, v∗|A∗,D)
︸           ︷︷           ︸

pv

dvdv∗ .

Given the variances v and v∗, the prediction pr in Equation (6.7) is a Gaussian with
mean and variance as discussed above. The problematic term is indeed pv as it makes
the integral difficult to handle analytically. Therefore, Goldberg et al. [1998] proposed
a Monte Carlo approximation that alternately samples from pr and pv to fit both curve
and noise rates. The sampling is quite time consuming and the expectation can be
approximated by the most likely noise levels ṽ and ṽ∗. That is, we approximate the
predictive distribution as

p(r∗|A∗,D) ≈ p(r∗|A∗, ṽ, ṽ∗,D) , (6.8)

where (ṽ, ṽ∗) = arg max(ṽ,ṽ∗) p(ṽ, ṽ∗|A∗,D). This will be a good approximation, if most
of the probability mass of p(ṽ, ṽ∗|A∗,D) is concentrated around (ṽ, ṽ∗). Moreover, the
noise levels can be modeled using a standard Gaussian process. Thus, we have two
interacting processes: Gn predicts the noise levels and Gc uses the predicted noise
levels in (6.5) and (6.6). To learn the hyper parameters of both processes, we basically
follow an alternating learning scheme in the spirit of the Expectation-Maximization
algorithm: (1) fix the noise levels and learn Gc using a standard maximum likelihood
estimator; (2) fix Gc, estimate the empirical noise levels of Gc on the training data and
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estimatedGn using them as target data. Initially, the noise levels are set to the empirical
noise levels of a constant-noise Gaussian process induced on the training data.

As covariance functions, we use the Matern type as stated in Equation 6.2 for the
range process and the squared exponential one for the noise process. This matches
the intuition that the noise process should exhibit more smoothness than the range
process, which was also supported by our experiments. This, however, is not a manda-
tory choice. With properly learned hyper parameters, using the squared exponential
function for both processes yields a nearly as high performance in our application.

6.1.2 Evaluating the Joint Data Likelihood of Observations

For m new range measurements z = {(αi, ri)}mi=1 indexed by the beam orientations
αi, the model has to estimate the data likelihood p(z|D,Θ) given the training data D
and the learned covariance parameters Θ. We solve this by considering the predictive
distribution for range measurements r∗ at the very same beam orientations α∗1, . . . ,α

∗
m,

which is an m-dimensional Gaussian distribution as defined by (6.5) and (6.6). As
this predictive distribution is a multivariate Gaussian, we can directly calculate the
observation likelihood for the data vector z by evaluating the density function

p(z|µ∗,Σ∗) =
[

(2π)
m
2 |Σ∗| 12

]−1
· (6.9)

exp

(

−1

2
(z − µ∗)TΣ∗−1(z − µ∗)

)

or, in a more convenient form

log p(z|µ∗,Σ∗) = −1

2
(z − µ∗)TΣ∗−1(z − µ∗)

−1

2
log |Σ∗| − m

2
log(2π) . (6.10)

6.1.3 Regression over Periodic Spaces

In our application, we have to account for the fact that our input vectors αi are angular
quantities rather than unconstrained real valued vectors. This means that an angular
distance metric has to be incorporated into the covariance function to avoid disconti-
nuities at ±π. For the one dimensional case (for planar sensing devices), we use

‖α, β‖a :=






|α − β| if |α − β| ≤ π
2π − |α − β| otherwise .

(6.11)
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Figure 6.2: The gain in speed due to sparse matrix calculations without a loss of pre-
cision. Exploiting sparsity reduces the iteration times drastically, especially for larger
problem sizes.

Indeed, we also have to adapt the covariance functions themselves to the periodic

structure of the input space. For example, a periodic variant of the squared exponential
covariance function on the unit circle is

k(αi, α j) = σ
2
f

∞∑

p=−∞
exp

(

−
|(αi + 2πp) − α j|2

2ℓ2

)

, (6.12)

which takes infinitively many influences of a data point on itself into account. The
squared exponential covariance function, however, has a strong locality for relevant
values of σ2

f
and ℓ. All summands with |αi −α j| >= 2π in Equation (6.12) cannot even

be represented using double precision, because their value is too close to zero. We can
therefore safely ignore the periodicity in practice and only use the standard covariance
function with the modified distance metric of Equation (6.11).

6.1.4 Efficient Inference by Exploiting Locality

The covariance functions employed in this work are stationary, i.e., they assign small
covariance values to those pairs of input points which lie far apart. With the given ma-
chine precision, this implies that the resulting covariance matrices are effectively band
limited and only have non-zero entries close to the diagonal. This property can be ex-
ploited to speed up the computations by using optimized algorithms for sparse matrix
operations. In this work, we used the UMFPACK package [Davis, 2004], an optimized
solver for un-symmetric sparse linear systems, which resulted in significantly reduced
computation times as shown in Figure 6.2. The run-times are given in seconds for a
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full iteration of simulating the scan, building the heteroscedastic model, and evaluating
the observation likelihood for a given scan with 31 beams. The gain in speed depicted
in this figure is due to the sparsity induced by the limitations of machine precision
only. In addition to this, the covariances could be truncated actively to much tighter
bounds before a notable loss of precision occurs.

Finally, the Algorithm 6.1 summarizes the MCL measurement update step for
the whole filter. For the experiments reported below, we deterministically sampled
N(x,σx) using sigma points, which additionally results in a lower variance of Ac-
cordingly, an extremely high density of particles is needed for overly peaked models.

Algorithm 6.1 (GP)-model-based Measurement Update for MCL
for all particles x do

Generate D using ray casting in the given map at robot locations sampled from
N(x,σx).
Build local GBPs usingD and the global covariance C.
Compute all log p(z|µ∗,Σ∗) and weight the particles.

end for
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Figure 6.3: Number of simulated beams required to achieve a dense covariance matrix
in our experiments for the (GP) model presented in this chapter and the (EC) model
presented in the previous chapter.

6.2 Experiments

To evaluate our approach we performed extensive experiments and compared our GP
sensor model to various other sensor models. Concretely, we compared the perfor-
mance of the following sensor models:

IB: The standard beam-based sensor model that assumes independent beams with an
additive white noise component as described in Section 3.1

EP: The end-point sensor model [Thrun, 2001a] that calculates the likelihood of a
range measurement as a function of the distance of the end point of the respective
beam to the closest obstacle in the environment.

EC: Our enhanced model presented in Chapter 5 with learned covariance matrix.

DC: The EC model with cross-correlation components ignored. That is, only the
diagonal entries of the covariance matrix are learned.

GP: Our GBP model presented in Section 6.1.

As mentioned in Section 6.1, we estimate p(z|x) by building a GBP model for the
robot pose x online and evaluating the data likelihood of z according to Section 6.1.2.
For building the GBP model, we construct a training set D of simulated range mea-
surements relative to x ∼ N(x,σx) using an occupancy grid map of the environment.
The random perturbations added to x account for the desired smoothness of the model
as motivated above. Indeed, the pose variance parameter σx introduced here, more
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Figure 6.4: Pose tracking results with a real robot in an office environment using a
180 degrees field of view. The diagrams depict the average localization error for this
experiment with 31 (left) and 61 (right) laser beams and give the tracking displacement
error (y-axis) in meters for an increasing number of iterations. The errors are averaged
over 25 runs on the same trajectory. Due to the inability to deal with dependencies
between beams, the risk of filter divergence increases with a growing number of beams
for the (IB) and (DC) model.

naturally quantifies the level of regularization of GBPs compared to other models, as
it is directly specified in the space of robot locations. Note that no sensory informa-
tion is discarded at this point. For sufficiently high sampling densities, one could set
σx = 0 to get the fully peaked model. Figure 6.3 shows the number of simulated beams
required to learn a dense covariance matrix in our experiments for the (GP) model pre-
sented in this chapter and the (EC) model presented in the previous chapter. As can
be seen from the figure, the (GP) model yields a strong reduction of required beam
simulations, since we use a parameterized covariance function instead of learning the
full covariance matrix with the squared dimensionality of the laser range scans.

6.2.1 Tracking

In the first set of experiments, we assess the position tracking performance of the MCL
filter using the different measurement models. The robot started in the corridor of an
office environment and traversed a path through all adjacent rooms. The left diagram
of Figure 6.4 depicts the average localization error for this experiment with 31 laser
beams. As can be seen, the GBP model (GP) as well as the end point model (EP) and
the models (EC,DC) presented in the previous section show similar, good localization
performance and all outperform the ray cast model (IB). When using more beams for
the same task, the difference to the ray cast model (IB) gets even more pronounced,
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Figure 6.5: Number of successful localizations after 8 integrations of measurements
for the five measurement models and for different numbers of particles when 31 of 181
beams are used..

see Figure 6.4. Due to the ray cast model’s (IB) inability to deal with dependencies
between beams, the risk of filter divergence increases with a growing number of beams
used. The same happens also to the place dependent model which ignores the cross
correlations between the laser beams (DC). This model can be seen as place depen-
dent standard ray cast model. Due to the inability to deal with dependencies between
beams, the risk of filter divergence increases with a growing number of beams used
also for this model. In another experiment with 181 beams, different models showed
a similar behavior as before. The two ray cast models (IB,DC) using the indepen-
dence assumption between the laser beams, however, diverged even earlier then with
61 beams.

6.2.2 Global Localization

In a second set of experiments we investigated the robustness of our GBP approach
for global localization. The environment used consists of a long corridor and 8 rooms
containing chairs, tables and other pieces of furniture. In total, the map is 20 me-
ters long and 14 meters wide. The results are summarized in Figure 6.5 which shows
the number of successful localizations after 8 integrations of measurements for the
five measurement models and for different numbers of particles used. In the experi-
ment, we assumed that the localization was achieved when more than 95 percent of
the particles differed in average at most 50 cm from the true location of the robot. As
can be seen from the diagram, the GBP model (GP) performs slightly better than the
ray cast model (IB) and both outperform the end point model (EP). The two other
place-dependent models (EC,DC) perform slightly better for 31 beams whereas the
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Figure 6.6: Number of successful localizations after 8 integrations of measurements
our (EC) model (left)for our (GP) model (center), and for the (DC) model (right) for
different numbers of particles. In this experiments we used 31, 61, 91, and 181 beams
to evaluate the scan likelihood.

performance of the (DC) model decreases while the number of used beams increases.
Figure 6.6 illustrates the robustness of the three models (EC) (left), (GP) (center), and
(DC) (right) for 31, 61, 91, and 181 laser beams. The diagrams show that the compact
gp-based approximation of the covariance matrix (GP) yields a much higher robust-
ness than the ray cast model (DC) while the number of beams increases and performs
only slightly worse than the place dependent model (EC) where the full covariance
matrix is used.
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Part I Part II
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Beam-Based

Scan-Based

Adaptive Model
Chapter 4
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Chapter 7

(EC) and (GP) Model
Chapters 5, 6

(HDGM) Model
Chapter 8

Figure 6.7: Properties of the likelihood models presented in this thesis. Our new
Gaussian process model (GP) is marked by yellow. In the subsequent part of this
thesis we will focus on multi-modal likelihood models.

6.3 Conclusions

In this chapter, we presented Gaussian beam processes as a novel probabilistic mea-
surement model for range sensors. The key idea of our approach is to view the mea-
surement modeling task as a Bayesian regression problem and to solve it using Gaus-
sian processes. Figure 6.7 shows the properties of our Gaussian process model (GP),
which is marked by the yellow color, compared to the other models presented in this
thesis. As our experiments with real data demonstrate, Gaussian beam processes pro-
vide superior robustness compared to the ray cast model and only a slight loss of
robustness compared to the place-dependent scan-based model (EC) of the previous
chapter where the full covariance matrix has to be learned for every particle which
requires order of magnitudes more simulated range scans to learn a dense covariance
matrix. In this part of the thesis we analyzed several uni-modal likelihood models
and demonstrated superior performance in robustness and accuracy of the scan-based
likelihood models. In the subsequent part of this thesis we will focus on multi-modal
likelihood models. This novel type of sensor models is able to correctly capture the
effects of clutter or corners onto the measurements and therefore even outperforms the
models presented in the first part of this thesis.
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Multi-Modal Likelihood Models for
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Chapter 7

Beam-Based Gaussian Mixture Models

I
n Part I of this thesis, we presented likelihood models for Monte-Carlo localiza-
tion that show superior performance, since they are location dependent and take
the dependencies between the individual laser beams into account. However, in
the proximity of clutter and corners, for example, they possibly fail due to the in-

ability to model the expected beam length as a multi-modal distribution. In this chapter,
we present a novel sensor model that applies mixtures of Gaussians to better represent
the likelihood function at each individual place. We therefore apply the simulated laser
beams at each particular location to approximate the obtained likelihood function by
a mixture of Gaussians using the Expectation Maximization (EM) algorithm. The ad-
vantage of this approach is that the resulting likelihood function is location-dependent
and correctly captures the effects of clutter or corners onto the measurements. This
can be required in situations where small deviations in the robot’s pose lead to strong
deviations in the acquired range data. These deviations cause multi-modalities in the
likelihood densities of the laser beams which cannot be captured by an unimodal dis-
tribution. As a result, the localization process becomes more robust when the Gaussian
mixture approach is used. In practical experiments carried out with data obtained with
a real robot, we demonstrate that our new model substantially outperforms existing
sensor models.

This chapter is organized as follows. In Section 7.1, we introduce our novel like-
lihood model based on mixtures of Gaussians. Subsequently Section 7.2 contains ex-
perimental results carried out on real robots as well as in simulation

7.1 Gaussian Mixture Models

In contrast to the models presented in Part I of this thesis which modeled the likelihood
functions as unimodal distributions for single beams or entire scans we now consider
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Figure 7.1: In mobile robot localization, small deviations in the robot pose can cause
large jumps in the distance measurements. This leads to multi-modal distributions of
beam-lengths in the local neighborhood of a pose hypothesis.

to model each beam independently as a mixture of K Gaussian distributions [Redner
and Walker, 1984]. In such a mixture model, the likelihood of the i-th beam of zt

becomes

p(zi
t | xt,m) =

K∑

j=1

p(zi
t | j) P( j), (7.1)

where

p(zi
t | j) =

1
√

2πσi
j

· exp




−

(

zi
t − µi

j

)2

2σi
j

2




. (7.2)

Here, the individual mixture components are indexed by j and their relative mix-
ing weights are denoted – with a slight abuse of notation for better readability – as
P( j) =: αi

j
. To determine these weights αi

j
with

∑K
j=1 α

i
j
= 1, 0 ≤ αi

j
≤ 1, as

well as the parameters µi
j

and σi
j

of the individual Gaussians, we cluster the simu-

lated ranges Di using the expectation-maximization (EM) algorithm [Dempster et al.,
1977]. Concretely, for each pose hypothesis xt, we simulate L complete range scans
D = {d1, . . . , dL} at locations drawn uniformly from U(xt) using the given map m of
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the environment. The simulation of the laser range scans D = {d1, . . . , dL} takes into
account the geometry and the physics involved in the measurement process. It relies
on ray casting operations within an occupancy grid map to calculate the expected beam
lengths. The set of ranges simulated in direction of the i-th laser beam is denoted as
Di = {di

1, . . . , d
i
L
}. The EM algorithm iteratively assigns these distances to the mixture

components and optimizes their parameters in the following manner. Consider that θ′

denotes the current estimate of parameters µi
j
, σi

j
, and αi

j
. In the E-Step, we calculate

the expected value of the complete log-likelihood

Q(θ, θ′) =E
[

log{p(Di,Y i | θ)} | Di, θ′
]

(7.3)

=

∫

yi

log{p(Di, yi | θ)}p(yi | Di, θ′) dyi, (7.4)

where Y i denotes data associations of the simulated data pointsDi to one of the Gaus-
sian mixture components. Visually speaking, we estimate the assignment likelihoods
of the individual samples to the clusters while keeping the other model parameters
fixed. Then, in the M-Step, we fix the data associations and optimize the expected
value of the complete log-likelihood

θ′′ = argmax
θ

Q(θ, θ′) (7.5)

by updating the cluster parameters according to

αi
j =

1

L

L∑

l=1

P( j | di
l, θ
′), (7.6)

µi
j =

∑L
l=1 P( j | di

l
, θ′) di

l
∑L

l=1 P( j | di
l
, θ′)

, (7.7)

(

σi
j

)2
=

∑L
l=1 P( j | di

l
, θ′)(di

l
− µi

j
)

∑L
l=1 P( j | di

l
, θ′)

. (7.8)

We now set θ′ ← θ′′ and iterate this procedure until the amount of improvement
per iteration falls below a specified threshold. Algorithm 7.1 summarizes the MCL
measurement update step for the whole filter using our beam-based Gaussian mixture
model.

Figure 7.2 shows the resulting Gaussian mixture sensor model for a single beam
i when the position of the robot is close to a doorway. The three map fractions show
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Figure 7.2: Resulting Gaussian mixture sensor model for a single i beam when the
pose of the robot is close to a doorway (rightmost diagram). The three map fractions
show the beam and the length of the beam represents the different means µi

j
of the

Gaussian mixture components.
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Figure 7.3: Resulting Gaussian mixture sensor model for a single beam when the
robot is located in a room containing highly cluttered regions (rightmost diagram).
As can be seen from the diagram clutter leads to a higher standard deviation in the
single Gaussian mixture component whereas walls perpendicular to the laser beam
and contiguous obstacles lead to highly peaked Gaussian components.
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Figure 7.4: Example using a sensor with a maximum range of 5 meters. The resulting
mixture model (right) then contains a Gaussian component which models the prob-
ability to hit the close obstacle (red) and a Gaussian component which models the
probability of a maximum range measurement (blue).
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Algorithm 7.1 (GM)-model-based Measurement Update for MCL
for all particles xt do

GenerateD using ray casting in the given map at robot locations drawn uniformly
fromU(xt) using the given map m of the environment.
Estimate θ′i of the Gaussian mixture for each beam i usingDi.
Compute p(zi

t | xt,m) for each beam i.
Compute all p(zt | xt,m) and weight the particles.

end for

the beam and the color represents the corresponding Gaussian in the diagram and the
length of the beam represents the mean µi

j
of the Gaussian. Figure 7.3 shows the same

for a potential robot pose in a highly cluttered part of the environment. As can be
seen from the right diagram, clutter leads to a higher standard deviation in the sin-
gle Gaussian mixture component whereas walls perpendicular to the laser beam and
contiguous obstacles lead to highly peaked Gaussian components. Figure 7.4 addition-
ally shows the ability of the Gaussian mixture model to handle sensors with a limited
range. In this example the sensor has a maximum range of 5 m. Then, the resulting
mixture model (right) contains a Gaussian component which models the probability to
hit the close obstacle (red) and a Gaussian Component which models the probability
of a maximum range measurement (blue).
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7.2 Experiments

The approach described above has been implemented and tested on data obtained with
a mobile robot and by simulation. To evaluate our approach we performed several
experiments. We first show that the pose uncertainty of the robot can result in seri-
ous problems during a localization process, especially when the multi-modality of the
beams is not considered. Then we analyze our Gaussian mixture model in a global
localization task in which multi-modal situations frequently occur and compare it to
alternative models that do not take into account the multi-modality. In particular, we
compared the performance of the following sensor models:

GM: Our place-dependent beam-based Gaussian mixture sensor model as detailed in
Section 7.1.

IB: The standard beam-based sensor model that assumes independent beams with an
additive white noise component.

EP: The end-point sensor model [Thrun, 2001a] that calculates the likelihood of a
range measurement as a function of the distance of the end point of the respective
beam to the closest obstacle in the environment.

EC: The scan-based place-dependent model with learned covariance matrix as de-
tailed in Chapter 5.

DC: The same model as EC with cross-correlation components ignored, which means
that only the diagonal entries of the covariance matrix are learned (see also Chap-
ter 5).

7.2.1 Likelihood Evaluation

In the first set of experiments, we evaluated the likelihood of the true position of the
robot in different data sets. We therefore compared our Gaussian mixture model (GM)
to other likelihood models which are also based on ray casting operations (IB, EC,
and DC). This set of experiments is designed to investigate the case that the robot is
not able to localize itself at different locations with the same robustness. Figures 7.5
and 7.7 show two experiments using maps built from a real data. Figure 7.8 shows
an artificial data set with strong discontinuities in the right part of the map. During
these experiments, we simulated laser range scans with an opening angle of 180◦ on
a simulated robot trajectory. Then we calculated for different sensor models (GM, IB,
EC, and DC) the likelihood of the simulated range scan given the true position of the
robot. The left part of Figure 7.5, 7.7, and 7.8 depict the trajectories of the robot. The
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Starting
Position

Figure 7.5: The six positions with the highest probability that the global localization
in the office environment fails (right). The positions marked in this image directly
correspond to the orange positions in the left image. At these positions the likelihoods
of the true poses are extremely low due to the multi-modality of the measurements.
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Figure 7.6: Evaluated likelihood for 61, and 181 laser beams (from left to right) and
different sensor models at 847 robot poses in our office environment depicted in Fig-
ure 7.5. The figures show that the likelihood of our Gaussian mixture model (GM)
yields much less variance in the estimated likelihood of the true pose of the robot than
the other sensor models. The right most diagram depicts the standard deviations of the
different sensor models for 31, 61, and 181 laser beams.

likelihoods of the scans at the true robot poses calculated using the (IB model are rep-
resented by the different colors between orange and black. While orange marks regions
where the scans at the true robot location are assigned low likelihoods, high likelihood
areas are printed in black. The figures show that whenever the robot traverses regions
close to obstacles, doorways, or clutter the likelihood of the true position decreases.
In the case of global localization using a particle filter this leads to serious problems
because the particles at these positions have a high risk of being depleted. Figure 7.6
shows the mean likelihoods for 61, and 181 laser beams and different sensor models.
We evaluated the likelihood at 847 robot poses in our office environment depicted in
Figure 7.5 and averaged over 50 runs. As can be seen from the figures, our Gaussian
mixture model (GM) yields much less variance in the estimated likelihood of the true
pose compared to the other sensor models. The rightmost diagram shows the standard



92 C 7: B-B GMM

Position
Starting

-800

-600

-400

-200

 0

 200

 400

 0  200

a
v
e

ra
g

e
 t

ru
e

p
o

s
e

 l
o

g
 l
ik

e
lih

o
o

d

iteration step

IB
EC
DC
GM

 0

 100

 200

 300

 400

 500

 30  60  90  120 150 180

s
td

 d
e
v
ia

ti
o
n
 o

f 
tr

u
e
 p

o
s
e
 l
o
g
 l
ik

e
lih

o
o
d

number of beams 

IB
EC
DC
GM

Figure 7.7: Experiment using 61 beams of laser range data collected in the Heinz-
Nixdorf-Forum in Paderborn. The experiment shows that the standard ray cast
model (IB) performs sub-optimally in regions close to corners and that it produces
highly fluctuating likelihood estimates. Our Gaussian mixture model (GM) outper-
forms the other sensor models and produces much less variance in the evaluated like-
lihoods.
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Figure 7.8: Experiment carried out to evaluate the likelihood of 348 simulated robot
poses using an artificial data set including strong discontinuities like corners and door-
ways. The center diagram depicts the average likelihoods for 61 laser beams and
different sensor models. The figures show that the likelihood of our Gaussian mixture
model (GM) yields much less variance in the likelihood of the true pose of the robot
than the other sensor models. The right diagram shows the standard deviations of the
different sensor models for 31, 61, and 181 laser beams.

deviation of the different sensor models for 31, 61, and 181 laser beams. Figure 7.7
shows the same experiment using data collected in the Heinz-Nixdorf-Forum in Pader-
born for 61 laser beams. The experiment shows that the standard ray cast model (IB)
performs sub-optimally in regions close to corners and that it produces highly fluctu-
ating likelihood estimates. Our Gaussian mixture model (GM) outperforms the other
sensor models and has much lower variance in the estimated likelihoods. In a final
experiment documented in Figure 7.8 we observed a similar behavior of the different
sensor models in an artificial data set which produces strong discontinuities because
of corners and doorways.
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Figure 7.9: Three different situations in our office environment where the robot tra-
verses a doorway (left, center) and a situation in the proximity of clutter (right). The
colors of the laser beams correspond to the number of Gaussians of the used sensor
model for each beam. The orange beams represent sensor models using a single Gaus-
sian, red beams indicate a mixture of two Gaussians and blue beams represent mixtures
consisting of three or more Gaussians.
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Figure 7.10: Number of successful localizations after ten integrations of 61 measure-
ments (left) at the locations depicted in the right image of Figure 7.5. The right diagram
also depicts the success rate but now plotted over the product of the corresponding
numbers of particles and average computation time per particle for the different sensor
models in these situations.

In Figure 7.9 we show an additional example to legitimate our sensor model. The
images show three different situations in our office environment in which the robot
traverses a doorway (left, center) and a situation in the proximity clutter (right). The
colors of the illustrated laser beams correspond to the number of Gaussians of the
used sensor model for each beam. The orange beams represent sensor models using
a single Gaussian, red beams indicate a mixture of two Gaussians and blue beams
represent mixtures consisting of three or more Gaussians.
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Figure 7.11: Average localization error for a position tracking experiment with 61 laser
beams.

7.2.2 Localization

The second set of experiments is designed to illustrate that our new sensor model (GM)
which takes the multi-modality of measurements into account achieves more robust
and accurate localization than the other sensor models. The left part of Figure 7.10
shows the six positions in a real environment where we obtained the highest proba-
bility that the global localization fails. These probabilities have been determined by
random restarts of the localization procedure during 50 complete runs on the data set.
The marked positions directly correspond to orange marked regions in the right im-
age of Figure 7.5 where the likelihoods of the true poses are extremely low due to the
multi-modality of the measurements. To evaluate the properties of the different sen-
sor models we performed 20 global localization runs at each position and compared
the average success rates. In these experiments, we assumed that the localization was
achieved when the mean of the particles differed by at most 50 cm from the true loca-
tion of the robot. The central diagram of Figure 7.10 shows the number of successful
localizations after ten integrations of 61 measurements of each scan for different mod-
els. The experiments show that our Gaussian mixture model (GM) allows us to more
robustly localize the robot in situations in which the other models frequently fail. It
also illustrates that the endpoint model (EP) which shows good performance for posi-
tion tracking in cluttered environments is not able to solve the global localization task
in the marked regions of our environment. Additionally, we analyzed the robustness of
the different sensor models with respect to the computation time (see the right diagram
of Figure 7.10). The x-axis of this diagram represents the product of the number of
particles used and the average computation time per particle for the different sensor
models. As can be seen from this diagram, our Gaussian mixture model (GM) outper-
forms the other models also with respect to the computational complexity. Whereas the
time per iteration is higher compared to the other approaches, it requires considerably
less particles for a successful localization run and thus achieves a higher robustness
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Figure 7.12: Properties of the likelihood models presented in this thesis. Our new
beam-based Gaussian mixture model (GM) is marked by yellow. In the next chapter,
we will present a likelihood model (HDGM) which takes the beam-dependencies as
well as the multi-modalities in the expected range measurements into account

relative to the required computational resources. We also carried out experiments, in
which we analyzed the accuracy of our model (GM) when the system is tracking the
pose of the vehicle. We compared our sensor model to various other models and eval-
uated the average localization error of the individual particles. Figure 7.11 depicts the
average localization error for a position tracking experiment with 61 laser beams. It
can be seen that the two beam-based ray cast sensor models (IB) and (DC) diverge
while our beam based Gaussian mixture model(GM) performs as well as the endpoint
model (EP) and the scan-based place-dependent model (EC).

7.3 Conclusions

In this chapter, we presented a novel beam-based sensor model (GM) for probabilis-
tic localization techniques that explicitly takes, in contrast to the models presented in
Part I of this thesis, multi-modalities in the distribution of beam lengths into account.
In contrast to location-independent models and also the location dependent models we
presented in Part I of this thesis the (GM) model approach adapts the likelihood evalu-
ation according to the local environment of each evaluated pose hypothesis to achieve
a natural and accurate form of regularization to be able to handle multi-modalities. In
the case of the location-independent models this regularization is achieved by an artifi-
cial smoothing of the the likelihood function to be able to handle multi-modalities and
in the case of the place-dependent models (EC) and (GP) the smoothing is achieved
naturally by the marginalizing over the region U(xt) . By learning a Gaussian mix-
ture model for the resulting distribution of possible range measurements using the EM
algorithm, our approach is able to outperform the state-of-the-art approaches in terms
of localization accuracy and robustness also relative to the required computational re-
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sources. Figure 7.12 shows the properties our beam-based Gaussian mixture model
(GM), which is marked by the yellow color. In the next chapter, we will present a
likelihood model (HDGM) which takes the beam-dependencies as well as the multi-
modalities in the expected range measurements into account.



Chapter 8

Scan-Based Gaussian Mixture Models

I
n the previous chapter, we presented a beam-based likelihood model based on
mixtures of Gaussians, that is able to take the multi-modalities in the laser mea-
surements into account. Additionally, in Part I, we introduced likelihood mod-
els for entire range scans. In this chapter, we present an approach that learns

place-dependent sensor models for entire range scans using Gaussian mixture models.
Therefore this novel model has two advantages over previous approaches. First, it ex-
plicitely considers the dependencies between the individual beams of a range scan, and
second, it takes the multi-modal nature of the observation function into account. Due
to that, this new model can be considered as a combination of the models described
in the Chapters 5 and 7. This is achieved by considering place-dependent and scan-
based measurement models and utilizing a Gaussian mixture model together with a
dimensionality reduction technique. In practical experiments carried out with data ob-
tained with a real robot we demonstrate that our new model substantially outperforms
existing sensor models.

This chapter is organized as follows. In Section 8.1, we first introduce our novel
likelihood model based on high-dimensional mixtures of Gaussians and finally, in Sec-
tion 8.2, we present experimental results illustrating that our sensor model outperforms
other popular likelihood models.

8.1 Learning High Dimensional Gaussian Mixture Ob-

servation Models

The Figures 7.1 and 3.6 illustrates the drastic effects that small changes of the pose
of the robot can have on the measured range scans. The distribution of measured
distances that arises when the robot pose is varied locally as described in the previous
section is only unimodal in a perfectly convex world. In general, however, there can
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Figure 8.1: Obtained dimensionality reduction over a full robot trajectory in a real
world experiment using Principal component analysis (PCA).

be large jumps in perceived range measurements when the sensor pose is changed only
slightly. Typically, such multi-modalities arise in the proximity of doorways, corners,
and cluttered areas of the environment.

One possibility to model the modes in the distribution of expected range observa-
tion for each laser beam is one solution to explicitly consider the multi-modal nature as
introduced in Chapter 7. This technique yields appropriate, multi-modal distributions
for individual beams but is unable to model the dependencies between these individual
beams. The straight-forward extension that considers also the dependency between
the individual beams is to learn a Gaussian mixture model based on full laser scans
and not individual beams. Most clustering techniques based on the Gaussian mixture
model, however, show a disappointing performance if the size of the training dataset
is too small compared to the number its dimensionality (the parameters to estimate).
Typically, this leads to serious over-fitting. It is therefore necessary to find a good
balance between the number of parameters to estimate and the generality of the model.

A way to overcome this problem is to apply k-means clustering since it does not es-
timate the covariance matrix and thus less parameters need to be estimated. However,
the dependencies between beams then are neglected when estimating the clusters. Al-
ternatively, the high dimensional data clustering (HDDC) approach recently proposed
by Bouveyron et al. [2007] can be applied. This technique combines dimension-
ality reduction with the expectation-maximization (EM) algorithm [Dempster et al.,
1977] to learn a Gaussian mixture model. By assuming certain dependencies in the
covariance matrix, the learned clusters can be easily re-projected in the original space
yielding robust clusters with a significantly reduced risk of over-fitting.

Our approach can be seen as a reduced version of the Bouveyron et al.’s method.
We perform an EM-based Gaussian mixture clustering in a reduced space and then use
the obtained class coefficient to compute the mixture model in the high dimensional
space.
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8.1.1 Dimensionality Reduction

In dimensionality reduction techniques, one is interested in finding a mapping from
the original, n-dimensional inputs space to a new space with k < n-dimensions with a
minimal loss of information. Principal component analysis (PCA) is an un-supervised
technique that maximizes the variance in the data in the new space.

Let Σ be the covariance matrix of the input data D. PCA computes the eigenvalues
λi and eigenvectors of Σ. Let Q be the matrix of the eigenvectors sorted according to
the eigenvalues. We can then compute a matrix ∆ = QTΣQ so that ∆ is a diagonal
matrix with the eigenvalues on the diagonal in descending order. Let λi ≥ λ j for all
i < j. We consider only the first k dimensions for clustering that cover 95% of the
variance

∑k
i=1 λi

∑n
i=1 λi

≥ 0.95. (8.1)

By considering only the first k dimensions, we obtain an approximative but com-
pact representation for laser range scans. Figure 8.1 depicts the obtained dimensional-
ity reduction in real world settings.

Concretely, for each pose hypothesis xt, we simulate L complete range scans D =
{d1, . . . , dL} at locations drawn uniformly from U(xt) using the given map m of the
environment. The simulation of the laser range scans D takes into account the ge-
ometry and the physics involved in the measurement process. It relies on ray casting
operations within an occupancy grid map to calculate the expected beam lengths. The
elements of the set D of laser range scans are used to compute the PCA and thus lead
to a projection into a reduced, k-dimensional space.

8.1.2 Clustering in the Reduced Space

Let ·̃ refer to quantities computed in the reduced, k-dimensional space. Thus, D̃ =
{d̃1, . . . , d̃L} are the elements of the setD projected to the low-dimensional space given
the transformation matrices described in the previous section. In the reduced space, we
are now able to efficiently cluster the range scans while reducing the risk of over-fitting
(compare [Bouveyron et al., 2007]).

To estimate the clusters in the low-dimensional space, we apply the EM algorithm
to efficiently learn the mixture distribution. The EM algorithm iteratively assigns the
reduced data scans in D̃ to the mixture components and optimizes their parameters
in the following manner. Consider that θ′ denotes the current estimate of parameters
µ̃ j , Σ̃ j, and α j. In the E-Step, we calculate the expected value of the complete log-
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likelihood

Q(θ, θ′) =E
[

log{p(D̃,Y | θ)} | D̃, θ′
]

(8.2)

=

∫

y

log{p(D̃, y | θ)}p(y | D̃, θ′) dy, (8.3)

where Y denotes data associations of the projected simulated data points D̃ to one
of the Gaussian mixture components. Visually speaking, we estimate the assignment
likelihoods of the individual samples to the clusters while keeping the other model
parameters fixed. Then, in the M-Step, we fix the data associations and optimize the
expected value of the complete log-likelihood

θ′′ = argmax
θ

Q(θ, θ′) (8.4)

by updating the cluster parameters according to

α j =
1

L

L∑

l=1

P( j | d̃l, θ
′), (8.5)

µ̃ j =

∑L
l=1 P( j | d̃l, θ

′) d̃l
∑L

l=1 P( j | d̃l, θ′)
, (8.6)

Σ̃ j =

∑L
l=1 P( j | d̃l, θ

′)(d̃l − µ̃ j)(d̃l − µ̃ j)T

∑L
l=1 P( j | d̃l, θ′)

. (8.7)

We now set θ′ ← θ′′ and iterate this procedure until the amount of improvement per
iteration falls below a specified threshold. To determine the actual number of clusters
in the resulting model, we apply the Bayesian information criterion and choose the
model with the best score.

8.1.3 Transferring the Mixture Components to the Measurement

Space

After identifying the individual clusters and the corresponding probabilities P( j |
d̃l, θ

′) , we can compute our mixture model in the high dimensional space. This can
be easily achieved by assuming the corresponding probabilities are identical in the
reduced space as well as in the measurements space. Thus, the mixture in the high-
dimensional space is given by
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p(zt | xt,m) =
J∑

j=1

α jN(xt, µ j,Σ j), (8.8)

where J is the number of clusters, N(x,µ,Σ) refers to the n-dimensional Gaussian
evaluated at x having a mean µ and covariance Σ given by

µ j =

∑L
l=1 P( j | d̃l, θ

′) dl
∑L

l=1 P( j | d̃l, θ′)
, (8.9)

and

Σ j =

∑L
l=1 P( j | d̃l, θ

′)(dl − µ j)(dl − µ j)T

∑L
l=1 P( j | d̃l, θ′)

. (8.10)

In contrast to former approaches which modeled the likelihood functions as uni-
modal distributions for single beams such as proposed by Fox et al. [1999b] as well as
in Chapter 4 or entire scans (Chapter 5 and Chapter 6), or as a multi-modal distributions
for single beams (Chapter 7), we now consider high-dimensional, multi-model mixture
models. This allows us to take the dependency between the individual beams as well
as the multi-modal nature of the distribution into account. As we will demonstrate in
the experiments, this more sophisticated model significantly improves the ability of
a mobile robot to localize itself. Algorithm 8.1 summarizes the MCL measurement
update step for the whole filter using our scan-based Gaussian mixture model.

Algorithm 8.1 (HDGM)-model-based Measurement Update for MCL
for all particles xt do

GenerateD using ray casting in the given map at robot locations drawn uniformly
fromU(xt) using the given map m of the environment.
Compute PCA usingD.
TransformD to D̃ in reduced space using PCA.
Estimate θ′ of the Gaussian mixture in reduced space using D̃.
Transfer mixture components to measurement space and calculate θ.
Compute all p(zt | xt,m) and weight the particles.

end for
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Figure 8.2: Evaluated likelihood for 31, 61, and 181 laser beams (from left to right)
for different sensor models (upper diagrams) and the two sensor models (HDGM,GM)
which take the multi-modalities in the laser measurements into account (lower dia-
grams) at 847 robot poses in our office environment depicted in Figure 8.4.
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Figure 8.3: Standard deviations of the different sensor models for 31, 61, and 181
laser beams (left). Comparison of the standard deviation of the two sensor models
(HDGM,GM) which take the multi-modalities in the expected laser measurements into
account.

8.2 Experiments

The approach described above has been implemented and tested on data obtained with
a mobile robot. To evaluate our approach we performed several experiments. We first
show that the pose uncertainty of the robot can result in serious problems during a lo-
calization process, especially when the multi-modality of the beams is not considered.
Additionally, we show the improvements achieved by also considering the dependen-
cies between the individual laser beams. Then in the second set of experiments, we
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analyze our high-dimensional Gaussian mixture model in a global localization task in
which multi-modal situations frequently occur. We therefore compare it to alterna-
tive models, which do not take into account the multi-modality and the dependencies
between the individual laser beams at the same time. In particular, we compared the
performance of the following sensor models:

HDGM: Our high-dimensional Gaussian Mixture model as detailed in Section 8.1.

GM: The place-dependent beam-based Gaussian mixture sensor model as detailed in
Chapter 7.

IB: The standard beam-based sensor model that assumes independent beams with an
additive white noise component.

EC: The scan-based place-dependent model with learned covariance matrix as de-
tailed in Chapter 5.

8.2.1 Likelihood Evaluation

In the first set of experiments we evaluated the likelihood of the true position of the
robot in a data set acquired using a real robot. We therefore compared our high-
dimensional Gaussian mixture model (HDGM) to other likelihood models which are
also based on ray casting operations (GM,IB, and EC). This set of experiments is de-
signed to investigate the case that the robot is not able to localize itself at different
locations with the same robustness. In the work presented in the previous chapter we
investigated that whenever the robot traverses regions close to obstacles, doorways,
or clutter the likelihood of the true position decreases. In the case of global local-
ization using a particle filter this leads to serious problems because the particles at
these positions have a high risk of being depleted. Then we calculated for differ-
ent sensor models (GM, IB, EC, and DC) the likelihood of the simulated range scan
given the true position of the robot. The two upper diagrams of Figure 8.2 show the
evaluated likelihood for 61, and 181 laser beams (from left to right) for different sen-
sor models at 847 robot poses in our office environment depicted in Figure 8.4. The
lower diagrams show the same for the two sensor models (HDGM,GM) which take
the multi-modalities in the expected laser measurements into account. As can be seen
from Figure 8.3, our high-dimensional Gaussian mixture model (HDGM) yields much
less variance in the estimated likelihood of the true pose compared to the other sensor
models. Additionally we can investigate from the right diagram of this Figure, that our
novel high-dimensional model (HDGM) yields even less variance in the estimated like-
lihood compared to the beam-based Gaussian mixture model (GM) especially when the
number of integrated laser beams is increased. This higher variance in the estimated
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likelihoods, which is caused by the independence assumption of the beam-based sen-
sor model might lead to a divergence of the probabilistic localization even in the case
of position tracking.

8.2.2 Localization
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Figure 8.4: The six positions with the highest probability that the global localization
in the office environment fails (upper left). The upper right diagram shows the number
of successful localizations after ten integrations of 61 measurements at these locations.
The lower diagrams show the same experiment for the two multi-modal sensor models
(HDGM,GM) for different beam numbers.

The second set of experiments is designed to illustrate that our new high-dimensional
sensor model (HDGM) which takes the multi-modality as well as the dependencies of
measurements into account achieves a more robust and accurate localization than the
other sensor models. The upper left image in Figure 8.4 shows the six positions in a
real environment where we obtained the highest probability that the global localization
fails. These probabilities have been determined by random restarts of the localization
procedure during 50 complete runs on the data set. At these positions typically the
likelihoods of the true poses are extremely low due to the multi-modality of the mea-
surements. To evaluate the properties of the different sensor models we performed
20 global localization runs at each position and compared the average success rates.
In these experiments, we assumed that the localization was achieved when the mean
of the particles differed by at most 50 cm from the true location of the robot. The
upper diagram of Figure 8.4 shows the number of successful localizations after ten in-
tegrations of 61 measurements at these locations. The lower diagrams show the same
experiment for the two sensor models (HDGM,GM) which take the multi-modalities
in the expected laser measurements into account for different beam numbers. The ex-
periments show that our high-dimensional Gaussian mixture model (GM) allows us to
more robustly localize the robot in situations in which the other models frequently fail.
Additionally it shows, that we are able to integrate a higher number of measurements
to achieve a higher accuracy of the filtering process without losing robustness.
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Figure 8.5: Properties of the likelihood models presented in this thesis. Our new scan-
based Gaussian mixture model (HDGM) is marked by yellow.

8.3 Conclusions

In this chapter, we presented a novel place-dependent sensor model (HDGM) for range
scans that considers entire scans instead of individual beams and in this way over-
comes the independence assumption underlying popular alternative models. At the
same time, it utilizes Gaussian mixture models to represent potential multi-modalities
of the likelihood function. To reduce the dimensionality of the measurement space it
applies the principal component analysis. Figure 8.5 shows the properties of our novel
scan-based Gaussian mixture model (HDGM), which is marked by the yellow color.
Our approach has been implemented and extensively tested on data obtained from mo-
bile robots equipped with laser range finders. In our experiments the (HDGM) model
showed superior performance over other popular models proposed in the past and in
this thesis.
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Chapter 9

Basic Techniques for 3D-Mapping

T
his chapter explains techniques which are frequently used throughout this
thesis in the context of 3D-mapping. In Section 9.1, we introduce the idea
of the Iterative Closest Point Algorithm(ICP) which is used for the scan-
matching and data association during the mapping process. Then in Sec-

tion 9.2, we give a short introduction to efficient variants of this frequently used algo-
rithm to get an impression of the features as well as of the problems of this method.
Finally in Section 9.3, we present the principles of state-of-the-art graph based global
optimization techniques which are applied in our 3D-mapping system.

9.1 Iterative Closest Point Algorithm (ICP)

In 1992, Besl and McKay [1992] proposed an algorithm to reduce the the non-linear
matching problem to an iterative point-matching-problem. Therefore, the ICP algo-
rithm calculates the parameters to transform a point set X = {x1, . . . , xn} to a given
point set P = {p1, . . . , pn}. The model set P can consist of points, line segments, para-
metric curves, implicit curves, triangles, parametric triangles, parametric surfaces, and
implicit surfaces. In every iteration step the algorithm computes a pair using nearest
neighbor search. Due to this the ICP algorithm has the advantage that it is not needed
to segment corresponding features from both point sets which often causes serious
problems. The main idea of the algorithm is trying to find a relative position of the
both point sets that minimizes the squared distance between the corresponding points.
This step is iterated until the reduction of the error between two steps falls under a
threshold. In essence, they consist of iteratively determining points in P closest to
points in X, computing a 3D-transform T = (R, t) and applying T to the data points
X. In the first step of the algorithm, we find a set of corresponding point pairs 〈xi pi〉.
In the simplest case, this step computes for each point p in the current point cloud Pk
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its closest point x in X. Later, we will see other possible computations for the corre-
sponding point pairs. In terms of run time, the correspondence computation is the most
demanding step in the ICP algorithm. The naïve implementation needs N comparisons
with M points where N is the size of P and M the size of X. This can be reduced
by using kD-trees [Bentley, 1975]. The computation time is then in O(N log M), but
in cases with large point sets the corresponding points computation is still slow. To
further reduce the computation time, other techniques such as sub-sampling of set P
can be applied.

Let us assume, that we have two sets of points X = {x1, ..xn} and P = {p1, ..., pn}
where xi and pi are considered as corresponding points. As described in the previ-
ous paragraph, our goal now is to find a rotation matrix R and a translation vector t

that minimizes the mean squared distance between points in X and its corresponding
transformed points in P. Thus, we minimize

e(R, t) :=
1

N

N∑

i=1

‖pi − (Rxi + t)‖2. (9.1)

Several possible ways to perform this minimization exist. The first approach to this
problem was presented by [Horn, 1987] and used quaternions to represent the 3D
rotation R. Later, there was an approach by [Umeyama, 1991] which uses the singular
value decomposition (SVD) to compute the rotation. This approach is more elegant
and easier to implement and therefore we will shortly sketch it here.

First, we switch to a matrix representation of Equation (9.1). This is done by
introducing 3 × n matrices X = [x1, . . . , xN] and P = [p1, . . . ,pN] in which each data
point is represented as a column. In addition, we define an N-dimensional vector h as
h = (1, 1, . . . , 1)T . Then we can reformulate Equation (9.1) as

e(R, t) :=
1

N
‖P − RX − thT ‖2. (9.2)

Next, we introduce a normalization matrix K = I − (1/N)hhT and substitute X by
XK + (1/N)XhhT and Y by YK + (1/N)YhhT . This yields

e(R, t) =
1

N
‖PK − RXK‖2 + ‖t′‖2 (9.3)

where

t′ = − 1

N
Ph +

1

N
RXh + t. (9.4)

This means, that for the minimization, t′ must be 0, i.e.

t =
1

N
Ph − 1

N
RXh

= µP − RµX.

(9.5)
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where µX and µP are the means of the point clouds X and P respectively. For the
computation of the optimal rotation matrix R we first define the cross covariance matrix
ΣXP as

ΣXP =
1

N

N∑

i=1

(pi − µP)(xi − µX)T , (9.6)

and the singular value decomposition of ΣXP as UDVT . Using the lemma given by [Umeyama,
1991], R is determined uniquely if the rank of ΣXP is at least 3. In this case, R is com-
puted as

R = US VT (9.7)

where

S =






I if det(ΣXP) > 0

or rank(ΣXP) = 2 ∧ det(U) det(V) = 1

diag(1, 1, . . . , 1,−1) if rank(ΣXP) = 2 ∧ det(U) det(V) = −1

or detΣXP < 0.

(9.8)

To summarize, the computation of the rotation and translation between point clouds X
and P is done as follows

1. Compute the means µX and µP

2. Compute the cross covariance ΣXP according to equation (9.6)

3. Compute the SVD of ΣXP

4. Compute R according to Equations (9.7) and (9.8)

5. Compute t according to Equation (9.5)

In [Besl and McKay, 1992], a formal proof is given for the convergence of the
ICP algorithm to a local optimum. Furthermore, it is mentioned that a good initial
estimate of the rotation and translation to be computed increases the probability that
the ICP algorithm converges to the global optimum. In our application, such an initial
estimate can be obtained from the robot’s odometry measurements that are taken while
the robot travels from the position where the first local map is acquired to the position
of the second local map.
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9.2 Variants of the ICP-Algorithm

Since the introduction of ICP by Besl and McKay [1992] many variants of this algo-
rithm to achieve more robustness and efficiency have been introduced. This is caused
to the fact, that the ICP Algorithm only converges to a global optimum if the nearest
neighbor search provides the optimal solution, without any false positive data associa-
tion. This means that every point pi in the point set P must have a real representative
xi in the point set X. In other words, this means that the ICP needs a full overlap
between the two data sets to perform a perfect matching. In general this is not the
case in robotic applications. Another problem of the algorithm is based on the high
computational demand for the nearest neighbor search, which makes it impossible
to use the ICP-Algorithm online for big point sets. For this reason, Rusinkiewicz
and M.Levoy [2001] described and compared different variants of the ICP-Algorithm.
They analyzed various approaches to improve this algorithm regarding run time, ro-
bustness and efficiency. The different approaches differ predominantly with respect to
the following six aspects:

• Point set selection: Some algorithms use the whole point sets from the data and
the model points, others apply different kinds of sampling strategies [Turk and
Levoy, 1994; Masuda et al., 1996; Weik, 1997; Godin et al., 1994] to reduce the
complexity of the input data.

• Point matching strategy: This refers to different ways of defining a pair of
corresponding points. Examples range from simply taking the point that is clos-
est [Besl and McKay, 1992; Greenspan et al., 2001] to each data point to pro-
jecting [Chen and Medioni, 1991; G. Blais, 1995; Neugebauer et al., 1997] each
data point (from P) into the mesh of the model point set X.

• Correspondence pair weighting: Some approaches additionally define weights
for each corresponding point pair [Godin et al., 1994]. These weights can for
example be dependent on the point-to-point distance or on the compatibility of
the normal vectors (defined by the dot product of the normals)

• Correspondence rejection: Similar to the weighting of correspondence pairs,
this is an attempt to classify into good and bad correspondences. For example,
pairs of points that are far away from each other might be rejected to obtain a
more accurate estimation of the 3D transform [Masuda et al., 1996]. Also, a
certain percentage of point pairs can be rejected. This is also referred to as the
trimmed ICP algorithm [Pulli, 1999].

• Error metric assignment: Different error metrics may be used instead of the
one defined in Equation (9.1). For example, the color information at each data
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point may be included in the metric. In addition to that, a point-to-plane metric
has been proposed where the distance of a data point from X to the plane con-
taining the corresponding point in P and oriented perpendicular to its normal is
computed [Chen and Medioni, 1991].

For the scope of this work,we will focus only on a combination of two ICP variants,
namely the data reduction by sub-sampling and the rejection of bad point correspon-
dences. These two strategies have shown to be most effective with respect to run time
reduction and reducing the risk of running into local optima of the error metric. For
a more detailed discussion we again refer to Rusinkiewicz and Levoy and also to the
trimmed ICP algorithm [Pulli, 1999].

9.3 Loop Closing

The ICP-based scan matching techniques described above are known to work well
for an incremental registration of single point clouds into one global reference frame.
However, the scan matching processes may result in small residual errors which quickly
accumulate over time and lead to globally inconsistent maps. In practice, this typically
becomes apparent when the robot used for collecting the three-dimensional range data
encounters a loop, i.e., when it returns to a previously visited place. Especially for large
loops, this error may result in inconsistencies that prevent the map from being useful
for navigation. Accordingly, techniques for calculating globally consistent maps are
necessary. In the system we describe during this thesis, we apply two network-based

or graph-based techniques to correct for the accumulated error when closing a loop.
The first technique, described in the Subsection 9.3.1 is similar to the one presented by
Lu and Milios [1997a]. The second technique presented in Subsection 9.3.2 describes
the most recent approach of Grisetti et al. [2007a].

9.3.1 Network-Based Pose Optimization

Suppose the robot recorded 3D scans at N different positions and then detects that the
first and the last position are so similar that a loop can be closed. Each 3D scan can
be denoted as partial view Vn where n = 1, . . . ,N. This means, a partial view Vn

consists of a set of 3D points. We denote the number of points in a viewVn as sn and
all its points as zn

1, . . . , z
n
sn

. Finally, we define a robot position as a vector p̂n ∈ R3 and
its orientation by the Euler angles (ϕn, ϑn, ψn). We refer to the robot pose pn as the
tuple (p̂n, ϕn, ϑn, ψn). The goal now is to find a set of robot poses that minimizes an
appropriate error function based on the observationsV1, . . . ,VN .

Following the approach described by Lu and Milios [1997a], we formulate the
pose estimation problem as a system of error equations that are to be minimized. We
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Figure 9.1: Two small example graphs and the trees used to determine the parameteri-
zations. The small grey connections are constraints introduced by observations where
black ones result from odometry (image courtesy of Giorgio Grisetti).

represent the set of robot poses as a constraint network, where each node corresponds
to a robot pose. A link l in the network is defined by a pair of nodes and represents
a constraint between the connected nodes. This framework is similar to graph based
approaches like the ones presented by Allen et al. [2003] or Huber and Hebert [2001]
with the distinction that in the constraint network all links are considered, while in a
pose graph only the most confident links are used, either using a Dijkstra-type algo-
rithm [Allen et al., 2003] or a spanning tree [Huber and Hebert, 2001]. This means, the
network based approach uses all the available information about links between robot
poses and not only a part of it.

A constraint between two robot poses pn and pm is derived from the corresponding
views Vn and Vm. Assuming that we are given a set of Cnm point correspondences
〈i1, j1〉, . . . , 〈iCnm

, jCnm
〉 between Vn and Vm as described above, we define the con-

straint between poses pn and pm as the sum of squared errors between corresponding
points in the global reference frame

l(pn,pm) :=
Cnm∑

c=1

‖(R̂nzn
ic
+ t̂n) − (R̂mzm

jc
+ t̂m)‖2. (9.9)

Here, the transformation between the local coordinates zn and the global coordinates
is represented as a global rotation matrix R̂n, which is computed from the Euler angles
(ϕn, ϑn, ψn), and the global translation vector t̂n, which is equal to the robot position
p̂n. These transforms (R̂n, t̂n) into the global reference frame are different from the
local transforms (R, t) from Equation (9.1). In fact, the local transforms obtained after
convergence of our modified ICP algorithm are not needed any more, because we only
need to consider the correspondences resulting from the last ICP step.

Let us assume that the network consists of L constraints l1, . . . , lL. Note that the
number of links is not necessarily equal to the number N of robot poses, because links
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can also exist between non-consecutive poses. The estimation of the pose of the robot
can then be formulated as a minimization problem of the overall error function

f (p1, . . . ,pN) :=
L∑

i=1

li(pν1(i),pν2(i)). (9.10)

Here, we introduced the indexing functions ν1 and ν2 to provide a general formulation
for any kind of network setting, in which links can exist between any pair of robot
poses. In the simplest case, in which we have only one loop and only links between
consecutive poses, we have ν1(i) = i and ν2(i) = (i + 1) mod N.

To solve this non-linear optimization problem we derive f analytically with respect
to all positions p1, . . . ,pN and apply the Fletcher-Reeves gradient descent algorithm to
find a minimum. In general, this minimum is local and there is no guarantee that the
global minimum is reached. However, in our experiments the minimization always
converged to a value that was at least very close to the global minimum. We also
found that the convergence can be improved by restarting the scan matching process
with the new, optimized robot poses as initial values. In this way, we obtain an iterative
algorithm that stops when the change in the robot poses drops under a given threshold
or no improvement can be achieved over several iterations.

It should be noted that in general the global minimum for the error function f is not
unique. This is because both local and global constraints are only defined with respect
to the relative displacements between the robot poses and the global minimum of f is
invariant with respect to affine transformations of the poses. In practice, this problem
can be solved by fixing one of the robot poses at its initial value. The other poses are
then optimized relative to this fixed pose.

9.3.2 Tree-Based Network Optimization

In general, the method described above works well for limited data sets. In the case
of mapping scenarios where the data is acquired using a car like vehicle the size of
such a network grows up to dimensions where the method explained before is not
able to optimize the network in a proper way. To overcome this problem, we apply
a recently published method of Grisetti et al. [2007a]. In this approach the network
is represented as a tree which can be motivated by the case that the network-based
formulation of the SLAM problem does not specify how the poses are presented in
the nodes of the network. In theory, one can choose an arbitrary parameterization.
This algorithm uses a tree based parameterization for describing the configuration of
the nodes in the network. To obtain such a tree from an arbitrary network, one can
compute a spanning tree. The root of the spanning tree is the node at the origin p0.
Another possibility is to construct a network based on the trajectory of the robot in
case this is available. In this setting, we build our parameterization tree as follows:
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Figure 9.2: The evolution of the average error per constraint of the network-based
approach and the tree-based approach for a dataset depicted recorded with the au-
tonomous car depicted in Figure 11.1 . The right image shows a magnified view to the
first 400 ms.

1. We assign a unique id to each node based on the timestamps and process the
nodes accordingly.

2. The first node is the root of the tree.

3. As the parent of a node, we choose the node with the smallest id for which a
constraint to the current node exists.

This tree can be easily constructed on the fly.
In the following, we describe how to use this tree to define the parameterization of

the nodes in the network. Each node i in the tree is related to a pose pi in the network
and maintains a parameter xi which is a 6D vector that describes its configuration. Note
that the parameter xi can be different from the pose pi. In our approach, the parameter
xi is chosen as the relative movement from the parent of the node i in the tree to the
node i itself

xi = pi ⊖ pparent(i), (9.11)

with x0 = p0. The operator ⊖ is the motion decomposition operator in 3D which is
analogous to the one defined in 2D (see Lu and Milios [1997b]). A detailed discussion
on tree parameterizations in combination with GD is out of the scope of this document
and we refer the reader to [Grisetti et al., 2007b].

Figure 9.1 shows two small graphs and the corresponding trees used to determine
the parameterizations. The small grey connections are constraints introduced by obser-
vations where black ones result from odometry. In our application to three-dimensional
outdoor mapping the black connections are determined by scan matching operations on
consecutive local maps whereas the grey connections are determined by scan match-
ing whenever the robot visits a place already visited before. Additionally, Figure 9.2
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shows the evolution of the average error per constraint of the network-based approach
and the tree-based approach for a dataset recorded with the autonomous car depicted
in Figure 11.1 . The right image shows a magnified view to the first 400 ms. As can
be seen from the diagrams, both approaches converge to more or less the same solu-
tion. The time needed to achieve this correction, however, is by orders of magnitudes
smaller when applying the tree-based approach of Grisetti et al. [2007a].

9.4 Summary

To summarize this chapter, the ICP algorithm represents a method which reduces the
the non-linear matching problem to an iterative point-matching-problem. We also in-
troduced several variants of this method to achieve a more robust and efficient solution
of the data association problem. The high number of approaches proposed to improve
the fundamental idea of the ICP algorithm gives an impression of the difficulties ap-
pearing in practical implementations. Additionally, we presented two approaches to
global pose optimization. These techniques are required to reduce the errors accumu-
lated over time whenever a robot returns to a formerly visited location. Therefore these
techniques are crucial for accurate mapping algorithms as we propose in the fourth part
of this thesis.
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Chapter 10

Surface Maps

T
he problem of learning maps with mobile robots has been intensively studied
in the past. Especially in situations, in which robots are deployed outdoors
or in environments with non-flat surfaces, specific areas of interest need to
be known accurately. In this context, geometric representations have be-

come popular. However, full three-dimensional models typically have high computa-
tional demands that prevent them from being directly applicable in large-scale envi-
ronments. One popular approach to overcome this problem are elevation maps [Bares
et al., 1989; Hebert et al., 1989; Lacroix et al., 2002; Parra et al., 1999], which apply
a 2 1

2 -dimensional representation. An elevation map consists of a two-dimensional grid
in which each cell stores the height of the territory. Whereas this approach leads to a
substantial reduction of the memory requirements, it can be problematic when a robot
has to utilize these maps for navigation or when it has to register two different maps in
order to integrate them. As a motivating example, consider the three-dimensional data
points shown in Figure 10.1. They have been acquired with a mobile robot standing

Figure 10.1: Scan (point set) of a bridge recorded with a mobile robot carrying a SICK
LMS laser range finder mounted on a pan/tilt unit.
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Figure 10.2: Standard elevation map computed for the outdoor environment depicted
in Figure 10.1. The passage under the bridge has been converted into a large un-
traversable object.

in front of a bridge. The resulting elevation map, which is computed from averaging
over all scan points that fall into a cell of a horizontal grid (given a vertical projec-
tion), is depicted in Figure 10.2. As can be seen from the figure, the underpass has
completely disappeared and the elevation map shows a non-traversable object. Addi-
tionally, when the environment contains vertical structures, we typically obtain varying
average height values depending on how much of this vertical structure is contained
in a scan. When two such elevation maps need to be aligned, such errors can lead to
imperfect registrations.

In this chapter, we first introduce the concept of the extended elevation maps in
the following section. This approach classifies locations in the environment into four
classes, namely locations sensed from above, vertical structures, vertical gaps, and
traversable cells. The advantage of this classification is twofold. First, the robot can
represent obstacles corresponding to vertical structures like walls of buildings. It also
can deal with overhanging structures such as branches of trees or bridges. Then in
Section 10.2 we propose a further extension of elevation maps towards multiple sur-
faces. These so-called multi-level surface maps (MLS maps) offer the opportunity
to model environments with more than one traversable level. Whereas the knowl-
edge about horizontal surfaces is well suited to support traversability analysis and path
planning, it provides only weak support for localization of the vehicle or registration
of different maps. Modeling only the surfaces means that vertical structures, which are
frequently perceived by ground based vehicles cannot be used to support localization
and registration. To avoid this problem, our MLS maps additionally represent inter-
vals corresponding to vertical objects in the environment. The advantage of these two
approaches is that they can be compactly stored and at the same time can be used as
features that support the data association problem during the alignment of maps. In
Section 10.3, we will describe how this classification can be applied to achieve a more
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robust data association in the ICP algorithm [Besl and McKay, 1992]. Subsequently
in Section 10.4, we explain the problem of closing loops. Finally in Section 10.5, we
present experimental results illustrating the advantages of both approaches regarding
the representation aspect as well as the robust matching in urban outdoor environments
also containing loops.

10.1 Extended Elevation Map

As already mentioned above, elevation maps are a 2 1
2-dimensional representation of

the environment. They maintain a two-dimensional grid and store in every cell of this
grid an estimate about the height of the terrain at the corresponding point of the envi-
ronment. To correctly reflect the actual steepness of the terrain, a common assumption
is that the initial tilt and roll of the vehicle are known. When updating a cell based
on sensory input, we have to take into account that the uncertainty in a measurement
increases with the measured distance due to errors in the tilting angle. In our current
system, we apply a Kalman filter to estimate the parameters µ1:t and σ1:t about the ele-
vation of points in a cell and their standard deviation. We apply the following equations
to incorporate a new measurement zt with standard deviation σt at time t [Maybeck,
1990]:

µ1:t =
σ2

t µ1:t−1 + σ
2
1:t−1zt

σ2
1:t−1 + σ

2
t

(10.1)

σ2
1:t =

σ2
1:t−1σ

2
t

σ2
1:t−1 + σ

2
t

(10.2)

Note, that the application of the Kalman filter allows us to take into account the un-
certainty of the measurement. In our current system, we apply a sensor model, in
which the variance of the height of a measurement increases linearly with the length
of the corresponding beam. This process is illustrated in Figure 10.3. Although this
approach is an approximation, we never found evidence in our practical experiments
that it causes any noticeable errors. In addition, we need to identify, which cells of
the elevation map correspond to vertical structures and which ones contain gaps. In
order to determine the class of a cell, we first consider the variance in the height of
all measurements falling into this cell. If this value exceeds a certain threshold, we
identify it as a point that has not been observed from above. We then check whether
the point set corresponding to a cell contains gaps exceeding the height of the robot.
This is achieved by maintaining a set of intervals per grid cell, which are computed
and updated upon incoming sensor data. During this process we join intervals with a
distance less than 10 cm. Accordingly, it may happen that the classification of a par-
ticular cell needs to be changed from the label ’vertical cell’ or ’cell that was sensed
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Figure 10.3: Variance of the height measurements depending on the length of the
beam.

Figure 10.4: Labeling of the data points depicted in Figure 10.1 according to their
classification. The four different classes are indicated by different colors.

from above’ to the label ’gap cell’. Additionally, in the case of occlusions, a cell may
change from the state ’gap cell’ to the state ’vertical cell’. When a gap has been iden-
tified, we determine the minimum traversable elevation in this point set. Figure 10.4
shows the data points already depicted in Figure 10.1. The classes of the individual
cells in the elevation map are indicated by the different colors. The blue points indicate
the data points which are above a gap. The red points indicate cells that are classified
as vertical. The green points, however, indicate traversable terrain. Note, that the non-
traversable cells are not shown in this figure. A major part of the resulting elevation
map computed from this data set is shown in Figure 10.5, in which we only plot the
height values for the lowest interval in each cell. As a result, the area under the bridge
now appears as a traversable surface. This allows the robot to plan a safe path through
the underpass.
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Figure 10.5: Extended elevation map for the scene depicted in Figure 10.1.

Figure 10.6: Multi-level surface map for the scene depicted in Figure 10.1 that cor-
rectly represents the height of the vertical objects.

10.2 Multi-Level Surface Map

As described in the previous section, the extension of elevation maps that allows to
handle vertical or overhanging objects can only be applied to environments with single
surfaces. For example, a robot that uses extended elevation maps cannot plan a path
under and at the same time over a bridge. In this section, we present a new data
structure for mapping outdoor environments, the so-called multi-level surface maps
(MLS maps). Figure 10.6 shows the resulting MLS map for the scene depicted in
Figure 10.1 that correctly represents the height of the vertical objects.

Suppose we are given a set of N three-dimensional scan points C = {p1, . . . ,pN}
with pi ∈ �3, and a set of variances {σ2

1, . . . , σ
2
N}. Here, the variance σ2

i expresses the
uncertainty in the range measurement from which point pi was computed. This uncer-
tainty grows with the measured distance. In the following, we assume that the uncer-
tainty is equal in all three dimensions, in particular the variance in height is assumed
to be identical to σ2

i . Although this assumption is often violated in real environments,
this approximation turned out to be viable for our applications. Regarding this, we
define a measurement z as a pair (p, σ2) of a 3D point and a variance.
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Figure 10.7: Example of different cells in an MLS Map. Cells can have many surface
patches (cell A), represented by the mean and the variance of the measured height.
Each surface patch can have a depth, like the patch in cell B. Flat objects are repre-
sented by patches with depth 0, as shown by the patch in cell C.

10.2.1 Map Representation

A multi-level surface map (MLS map) consists of a 2D grid of variable size where
each cell ci j, i, j ∈ � in the grid stores a list of surface patches P1

i j
, . . . , PK

i j
. A surface

patch in this context is represented as the mean µk
i j

and variance σk
i j

of the measured
heights at the position of the cell ci j in the map. Each surface patch in a cell reflects the
possibility of traversing the 3D environment at the height given by the mean µk

i j
, while

the uncertainty of this height is represented by the variance σk
i j

. Throughout this paper,
we assume that the error in the height underlies a Gaussian distribution, therefore we
will use the terms surface patch and Gaussian in a cell interchangeably.

In addition to the mean and variance of a surface patch, we also store a depth value

d for each patch. This depth value reflects the fact that a surface patch can be on top
of a vertical object like a building, bridge or ramp. In these cases, the depth is defined
by the difference of the height hk

i j
of the surface patch and the height h′i j

k of the lowest
measurement that is considered to belong to the vertical object. For flat objects like the
floor, the depth is 0. Figure 10.7 depicts some examples of the map cells in an MLS
map.
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Figure 10.8: Classification result for the MLS map depicted in Figure 10.6. The
three colors indicate the classification result for the individual surface patches into
traversable, non-traversable, and vertical ones.

10.2.2 Traversability Analysis and Feature Extraction

Similar to the extended elevation map approach we extract features from the MLS
map to seriously improve the data association. In addition to the vertical structures,
we therefore classify the horizontal surface patches according to their traversability.
To determine whether a surface patch is traversable, we find the nearest Gaussian in
each neighboring cell. In our approach, a surface patch can only be traversable if at
least 5 of the 8 neighboring cells exist and if the distance in height between the patch
and all its neighbors is less than 10 cm. Figure 10.8 shows the classification result for
the MLS map depicted in Figure 10.6. The yellow parts of the surfaces represent the
traversable surface patches. The blue areas are the non-traversable parts of the surfaces
and the red structures represent the vertical objects.

10.3 Surface Map Matching

To calculate the alignments between two local MLS maps as well as two local extended
elevation maps calculated from individual scans, we apply the ICP algorithm, which is
described in detail in Section 9.1. The goal of this process is to find a rotation matrix R

and a translation vector t that minimize an appropriate error function. Assuming that
the two maps are represented by a set of Gaussians, the algorithm first computes two
sets of feature points, X = {x1, . . . , xN1} and P = {p1, . . . ,pN2}. In a second step the
algorithm computes a set of C index pairs or correspondences 〈i1, j1〉, . . . , 〈iC, jC〉 such
that the point xic in X corresponds to the point p jc in P for c = 1, . . . ,C. Then, in a
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third step, the error function e, defined by

e(R, t) :=
1

C

C∑

c=1

(xic − (Rp jc + t))TΣ−1(xic − (Rp jc + t)), (10.3)

is minimized. Here, Σ denotes the covariance matrix of the Gaussian corresponding to
each pair 〈xi,pi〉. In other words, the error function e is defined by the sum of squared
Mahalanobis distances between the points xic and the transformed points p jc . In the
following, we denote this Mahalanobis distance as d(xic ,p jc).

In principle, one could define this function to directly operate on the Gaussians
when aligning two different MLS or extended elevation maps. One disadvantage of
this approach, however, is that both types of surface maps of one single scan typically
include a huge number of Gaussians. Accordingly, the nearest neighbor search in the
ICP algorithm requires a lot of computational resources. Additionally, we need to take
care of the problem that the intervals corresponding to vertical structures vary substan-
tially depending on the view-point. Moreover, the same vertical structure may lead
to varying heights in the surface map when sensed from different points. In practical
experiments, we observed that this introduces serious errors and often prevents the ICP
algorithm from convergence. To overcome this problem, we separate Equation (10.3)
into three components, each minimizing the error over the individual classes of points.
These three terms correspond to the three individual classes in the case of the MLS
map, namely surface patches corresponding to vertical objects, traversable surface
patches, and non-traversable surface patches. In the case of the extended elevation
map we would separate Equation (10.3) into four components which correspond to the
cell classification depicted in Figure 10.4. For better readability, we only specify the
resulting error function for the MLS map approach.

Let us assume, that uic and u′jc are corresponding points, extracted from vertical
objects. The number of points sampled from every interval classified as vertical de-
pends on the height of this structure. In our current implementation, we uniformly
sample four points per meter. The corresponding points vic and v′jc are extracted from
traversable surface patches, wic and w′jc are extracted from non-traversable surfaces.
The resulting error function then is

e(R, t) =
C1∑

c=1

dv(uic ,u
′
jc
)

︸           ︷︷           ︸

vertical cells

+

C2∑

c=1

d(vic , v
′
jc
)

︸          ︷︷          ︸

traversable

+

C3∑

c=1

d(wic ,w
′
jc
).

︸            ︷︷            ︸

non-traversable

(10.4)

In this equation, the distance function dv calculates the Mahalanobis distance between
the lowest points in the particular cells. To increase the efficiency of the matching
process, we only consider a subset of these features by sub-sampling.
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Figure 10.9: Incremental registration of two MLS maps. The four images depict the
original point clouds. The individual images show the initial relative pose (top left),
alignment after 2 iterations (top right), after 5 iterations (bottom left) and the final
alignment after 15 iterations (bottom right).

Figure 10.9 illustrates how two MLS maps are aligned over several iterations of the
minimization process, whereas the four images depict the original point clouds. The
individual images show the initial relative pose (top left), alignment after 2 iterations
(top right), after 5 iterations (bottom left) and the final alignment after 15 iterations
(bottom right).

10.4 Loop Closing

The ICP-based scan matching technique described in the previous section works well
for the registration of single robot poses into one global reference frame. However,
the individual scan matching processes result in small residual errors which quickly
accumulate over time and usually result in globally inconsistent maps. In practice,
this typically becomes apparent when the robot encounters a loop, i.e. when it returns
to a previously visited place. Especially in big loops this error grows so large that
the resulting inconsistencies make the map useless for navigation. Accordingly, tech-
niques for calculating globally consistent maps are necessary. In this thesis, we use
two different network-based or graph-based techniques to correct for the accumulated
error when closing a loop. For the experiments in this section we exclusively apply the
technique presented detailed in 9.3.1.
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Figure 10.10: Robot Herbert used for the experiments.

10.5 Experiments

Both approaches, the extended elevation map as well as the MLS map have been im-
plemented and tested on a real robot system and in simulation runs with real data. The
overall implementation is highly efficient. The scan matching process can be carried
out online, while the robot is moving. The loop closing algorithm typically requires
between 3 and 10 minutes for the data sets described below and on a standard laptop
computer. The robot used to acquire the data is our outdoor robot Herbert, which is
depicted in Figure 10.10. The robot is a Pioneer II AT system equipped with a SICK
LMS range scanner and an AMTEC wrist unit, which is used as a pan/tilt device for
the laser. The experiments described in this section have been designed to illustrate
that our approach yields highly accurate elevation maps as well as MLS maps even
containing large loops and that the consideration of the individual classes in the data
association leads to more accurate matchings.

10.5.1 Learning Large-scale Elevation Maps with Loops

To evaluate our approach on large-scale data sets, we steered our robot Herbert through
two loops on our university campus and acquired 135 scans consisting of 35,500,000
data points. The area scanned by the robot covers approximately 160 by 120 meters.
During the data acquisition, the robot traversed two nested loops. Throughout the eval-
uations described below, the inner loop, which has a length of 188 m and consists of 58
scans, is referred to as loop 1. The outer loop, which has a length of 284 m and consists
of 77 scans, is denoted as loop 2. The map has been computed according to the pose
estimates calculated with our SLAM algorithm. For a quantitative evaluation of the
results, we always let the robot return to its starting position after closing each loop.
Figure 10.11 shows top-views of three different elevation maps obtained from this data
set. Whereas the leftmost image shows the map obtained from raw odometry, the mid-
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Figure 10.11: Extended elevation maps of the Freiburg campus. The leftmost image
shows the map obtained from raw odometry, the middle image depicts the map ob-
tained from the pure scan matching technique described in Section 10.3. The rightmost
image shows the map obtained from our SLAM algorithm described in Section 10.4.
In these maps, the size of each cell of the elevation maps is 10 by 10 cm. The lines
show the estimated trajectory of the robot. The size of all the maps is approximately
160 by 120 meters.
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Figure 10.12: Triangulated mesh representation of the outer loop including data points
from 77 laser scans.

dle image depicts the map obtained from the pure scan matching technique described in
Section 10.3. The rightmost image shows the map obtained from our SLAM algorithm
described in Section 10.4 and Section 9.3.1. In these maps, the size of each cell of the
elevation maps is 10 by 10 cm. The lines show the estimated trajectory of the robot.
As can be seen from the figure, the scan matching process substantially decreases the
odometry error but fails to correctly close the loop. Using our SLAM algorithm, in
contrast, the loop has been closed correctly. Figure 10.12 shows a triangulated mesh
representation of the entire scan point data set of loop 2. To quantitatively evaluate
the accuracy of our loop closing procedure, we determined the estimated pose of the
vehicle, given that the initial position was set to zero. Table 10.1 shows the estimates
of the odometry after closing the loop. As can be seen, the translational error exceeds
several meters and the angular error is 13 and 60 degrees respectively. Table 10.2
shows the positions that were calculated by our incremental scan matching algorithm.
This procedure substantially reduces the error in the odometry, especially the angular
deviation. However, the pose error is still too large to correctly close the loop. Fi-
nally, Table 10.3 shows the pose estimates obtained with our loop closing procedure,
which uses the results of the scan-matching process to calculate the constraints of the
network. As can be seen, the angular error drops below one degree and also the pose
error is seriously reduced.
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loop length x y ψ

1 188m −7.968m 2.3676m 13.126◦

2 284m −6.919m 24.678m 59.583◦

Table 10.1: Poses estimated by odometry after closing the loops.

loop length x y z φ θ ψ

1 188m −1.767m 0.353m −0.231m 1.235◦ 0.235◦ 0.751◦

2 284m −1.375m −1.916m −0.464m 1.201◦ 0.435◦ 2.956◦

Table 10.2: Poses estimated by the incremental online scan matching algorithm after
closing the loops.

loop length x y z φ θ ψ

1 188m 0.006m 0.064m −0.010m 0.097◦ 0.008◦ 0.631◦

2 284m 0.007m −0.303m −0.006m 0.206◦ 0.057◦ 1.257◦

Table 10.3: Poses estimated by the loop closing algorithm.

Figure 10.13: Photograph of the area where the map depicted in Figure 10.14 has been
built.

10.5.2 Learning Elevation Maps of Non-Flat Environment

To further evaluate our method in non-flat environments, we steered the robot through
an underpass and then uphill on a ramp. Figure 10.13 shows a photograph of the cor-
responding area. The map obtained with our algorithm is depicted in Figure 10.14.
It has been obtained from 36 scans with an overall number of 9, 500, 000 data points.
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Figure 10.14: Elevation map generated from 36 local elevation maps. The size of the
map is approximately 70 by 30 meters.

The size of each cell in the elevation map is 10 by10 cm. The whole map spans approx-
imately 70 by 30 meters. As can be seen from the figure, the map clearly reflects the
details of the environment. Additionally, the matching of the elevation maps is quite
accurate. The figure also shows the individual positions of the robot where the scans
were taken.

10.5.3 Learning Large-scale MLS Maps with Loops

In the first experiment, we acquired 77 scans consisting of 20, 207, 000 data points.
The area scanned by the robot spans approximately 195 by 146 meters. During the data
acquisition, the robot traversed a loop with a length of 312 m in the environment, where
we also evaluated our extended elevation map approach. Figure 10.15 shows two views
of the resulting MLS map with a cell size of 10 × 10 cm. The yellow surface patches
are classified as traversable. It requires 57.96 MB to store the computed map, where
24% of 2, 847, 300 cells are occupied. Additionally, in a second experiment the robot
traversed over a bridge and through the corresponding underpass. Figure 10.13 shows
a photograph of the underpass. In this experiment, we acquired 172 scans consisting
of 45, 139, 000 data points. The area scanned by the robot spans approximately 299
by 147 meters. During the data acquisition, the robot traversed a loop which has
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Figure 10.15: Two views of the resulting MLS map of the first experiment with a cell
size of 10 × 10 cm. The area scanned by the robot spans approximately 195 by 146
meters. During the data acquisition, where the robot collected 77 scans consisting of
20, 207, 000 data points, the robot traversed a loop with a length of 312 m.
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Figure 10.16: Resulting MLS map of the second experiment with a cell size of
10 × 10 cm. The area scanned by the robot spans approximately 299 by 147 meters.
During the data acquisition, where the robot traversed a loop with a length of 560 m

and collected 172 scans consisting of 45, 139, 000 data points.

a length of 560 m. Figure 10.16 shows the resulting MLS map with a cell size of
10 × 10 cm. The yellow grey surface patches are classified as traversable. It requires
73.33 MB to store the whole map, where 20% of 4, 395, 300 cells are occupied. These
experiments demonstrate that our representation yields a significant reduction of the
memory requirements compared to a point cloud representation while still providing
sufficient accuracy. Additionally, they show that our representation is well-suited for
global pose estimation and loop closure.

10.5.4 Surface Map Comparison

Figure 10.17 depicts examples of an elevation map (left) and the corresponding MLS
map (right) of the campus at the University of Freiburg. As can be seen from the
images, the MLS map is able to represent the environment more accurately than the
elevation map. In the MLS map, objects such as trees and walls are represented prop-
erly. Another advantage of the MLS map approach is the ability to model multiple
levels. Figure 10.18 shows the MLS map of the underpass. Compared to the extended
elevation map of the same scene depicted in Figure 10.14, the MLS map enables the
robot to drive through as well as on the underpass.
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Figure 10.17: Elevation Map (left) and multi-level surface (MLS) map (right) of the
Freiburg campus. The MLS map represents vertical structures more accurately and
can deal with multiple surfaces that can be traversed by the robot.

Figure 10.18: Partial view of the MLS map depicted in Figure 10.16. Compared to
the extended elevation map of the same scene that is shown in Figure 10.14 the robot
now is able to traverse through as well as over the underpass using the same map
representation.

10.6 Conclusions

In this chapter, we presented two different types of surface maps as a novel repre-
sentation for outdoor environments, namely extended elevation maps and multi-level
surface maps (MLS maps). Compared to extended elevation maps, MLS maps store
a list of surfaces in each cell of a discrete grid. Additionally, they use intervals to
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represent vertical structures. We presented algorithms for updating multi-level surface
maps based on sensory input, for matching such maps and for solving the loop-closing
problem. Both approaches classify the individual cells respectively surface patches
into different classes. We also presented an extension of the ICP algorithm that takes
this classification into account when computing the registration. The consideration of
the individual classes during data association in the ICP algorithm provides more ro-
bust correspondences and more accurate alignments. Additionally, we use a technique
for constraint-based robot pose estimation to learn globally consistent elevation maps.

We also described an implementation of both types of surface maps on a Pioneer II
AT platform equipped with a laser range scanner mounted on a pan/tilt unit. We pre-
sented large-scale maps learned from the data acquired with this robot. The resulting
maps show a high accuracy and at the same time require one order of magnitude less
space than the original point data. Additionally, the results demonstrate that multi-level
surface maps allow mobile robots to operate in environments with multiple levels. In
one of our experiments the robot successfully traveled over a bridge and through the
corresponding underpass.



Chapter 11

Applications of Multi-Level Surface

Maps

I
n general, a proper representation of the environment should enable the robot to
fulfill different tasks. Whenever mobile robots are used in real world applica-
tions, the ability to learn an accurate model of the environment and to localize
itself based on such a model are important prerequisites for reliable operations.

Another important task for autonomous robots for example in areas which cannot be
reached by humans is autonomous exploration. Whereas these problems have been
successfully solved in the past for most indoor tasks, in which the robot is assumed
to operate on a flat surface, such approaches are likely to fail in combined indoor and
outdoor or pure outdoor environments in which the three-dimensional structure of the
world needs to be considered. In this chapter, we describe how we can apply the
multi-level surface (MLS) maps to these tasks. In practical experiments, we illustrate
the properties as well as advantages of our approach.

This chapter is organized as follows. Section 11.1 describes how we can apply the
MLS maps to represent large-scale environments with multiple levels. Section 11.2
contains a description of the localization algorithm based on MLS maps. Finally, in
Section 11.3 we present an approach for autonomous exploration using MLS maps.

11.1 City Mapping

Building models of the environment is a fundamental task of mobile robots, since
maps are needed for most high-level robotic applications. Especially in cities these
environment models become crucial since global positioning is not always possible
due to influences caused buy buildings. It also could be required for an autonomous
vehicle to enter a build. A car for example should be able to drive into a parking lot
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Figure 11.1: Two vertically mounted SICK LMS laser range finders (left) which are
rotated with constant speed by an electric step motor mounted under the lasers. The
right image shows our robot. The robot is a standard Smart car (right). The model is a
Smart fortwo coupé passion of the year 2005, which is equipped with a 45 kW engine.

Figure 11.2: Velodyne HDL-64E Laser Sensor used for 3D-mapping (left) which is
mounted on the robot car named Junior (right).

without loosing the ability to localize itself. In this Section, we demonstrate how the
MLS map approach of Chapter 10 can be applied for mapping in large-scale urban
environments using real cars equipped with range sensors.

11.1.1 Data Acquisition And Globally Consistent Map Building

For the first set of experiments we instrumented a SMART car with a series of sensors.
One group of sensors is used for the global pose estimation. It consists of a inertial
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measurement unit, a differential GPS, an optical gyro, and the wheel encoders of the
car. The second group of sensors is given by the laser range finders. Three of them
point to the front of the car and two are rotating on top of the roof of the car (see
Figure 11.1). For a detailed description of the hardware and the localization system
we refer to [Lamon et al., 2006; Pfaff et al., 2007]. The second set of experiments has
been performed on data provided by the Stanford University collected with a robotic
car named Junior. Figure 11.2 depicts the car during the Darpa Grand Challenge 2007

(right) and the Velodyne HDL-64E Laser Sensor used for 3D-mapping (left). This
64-element LIDAR sensor delivers a 360-degree HFOV and a 26.8-degree VFOV. It
features frame rates of 5-15 Hz and 1,000,000 data points per second. During the data
acquisition process, we collect three-dimensional points which correspond directly to
the sensed environment. The data is collected while our robot is moving continously
through the environment. In the case of the SMART we use two SICK LMS laser
range finders mounted vertically on a rotating plate on the top of the car. Figure 11.1
depicts the two lasers and the electric step motor. During data acquisition the step
motor rotates the two laser range finders with a constant frequence of 0.37 Hz. Due
to this configuration the rotating lasers provide data points which correspond to the
environment in all directions around the robot. To build a local MLS map, we use the
data points acquired during a complete 360 degree turn by the rotating lasers. This
setup is well-suited for building 3d maps of the environment. Furthermore, we add the
data points which are acquired with the three fixed lasers during this period of time.
In the case of Junior we build local MLS maps every four meters of the traversed path
and integrate all data collected by the velodyne within this time interval. Figure 11.3
depicts an example of a local point cloud (top) acquired by Junior and the correspond-
ing local MLS map (bottom). From now on, we discard the point clouds and perform
all computations based on the local MLS maps. The example shows a typical scene of
an urban environment with buildings and bushes.

As described in Chapter 10, we now perform our ICP-based scan matching al-
gorithm, which uses the classification of the surface patches, namely surface patches
corresponding to vertical objects, traversable surface patches, and non-traversable sur-
face patches. During the scan matching process ICP seeks to find a rotation matrix
R and a translation vector t that minimize an error function computed based on the
two maps we aim to match. We integrate the labels of the individual patches into the
ICP error function in order to improve the matching result. We only consider matches
between patches of the same label which leads to more robust and accurate map esti-
mates. Furthermore, the ICP algorithm converges faster due to the smaller number of
potential correspondences.

As already mentioned before, the ICP-based scan matching technique described
above works well for the registration of robot poses into one global reference frame.
However, the individual scan matching processes result in small residual errors which
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Figure 11.3: Example of a local point cloud (top) acquired by Junior and the corre-
sponding local MLS map (bottom). The example shows a typical scene of an urban
environment with buildings and bushes.
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accumulate over time and usually result in globally inconsistent maps. To avoid this,
we applied the most recent approach of Grisetti et al. [2007a] which is able to min-
imize the global error over huge data sets and also highly efficient with respect to
computational requirements.

11.1.2 Mapping Experiments

Figure 11.4: Trajectory with a length of 10.2 km traversed by the SMART during data
acquisition plotted on the aerial image of the EPFL campus in Lausanne, Switzerland
(left) and the corresponding MLS map (right).

To acquire the data for the first set of experiments, we steered our robotic SMART
car depicted in Figure 11.1 over streets of the EPFL campus. The goal of these exper-
iments is to demonstrate that our representation yields a significant reduction of the
memory requirements compared to a point cloud representation, while still providing
highly accurate maps. Additionally, they show that our representation is well-suited
for global pose estimation and loop closure. In this experiment, we acquired 816 lo-
cal point clouds consisting of 130,500,000 data points. The area scanned by the robot
spans approximately 1,000 by 1,000 meters. During the data acquisition, the robot
traversed five nested loops with a length of approximately 10.2 km. Figure 11.4 shows
a top view of the resulting MLS map (right) with a cell size of 50 cm x 50 cm and
an overlay of the aerial image of the EPFL campus in Lausanne and the trajectory of
the robot. The yellow gray surface patches are classified as traversable. It requires
63.14 MB to store the computed map. Compared to this the storage of the 130,500,000
data points requires 3,132 MB. The scan matching between the local MLS maps has
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Figure 11.5: Aerial image of the parking lot in Stanford, CA, USA, where the robot
collected the data (top) and a top view of the resulting MLS map including the tra-
jectory of the robot (bottom) with a cell size of 20 cm x 20 cm. The yellow surface
patches are classified as traversable.
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been computed online during the data acquisition on a 2GHz dual core laptop com-
puter. The loop closing step (see Section 9.3.2) of our mapping algorithm is computed
offline when the robot finished the data acquisition. In our current approach, the com-
putation time for the optimization of the shown data set is approximately 0.2 seconds.

To acquire the data for the second set of experiments, Junior was steered over the
campus of the Stanford University. The goal of these experiments is to demonstrate
that our representation not only yields a significant reduction of the required memory
but also is able to represent combined indoor and outdoor environments with multiple
levels at the same time. To demonstrate this we steered the robot into a parking lot
with four levels. In this experiment, we acquired 1,660 local point clouds consisting of
1,024,000,000 data points. The area scanned by the robot spans approximately 300 by
400 meters. During the data acquisition, the robot traversed multiple nested loops with
a length of approximately 7.0 km. Figure 11.5 shows an aerial image of the parking
lot where the robot collected the data (top) and a top view of the resulting MLS map
including the trajectory of the robot (bottom) with a cell size of 20 cm x 20 cm. The
yellow surface patches are classified as traversable. It requires 247.9 MB to store the
computed map. Compared to this the storage of the 1,024,000,000 data points requires
8 GB. Due to the high resolution of the sensor and the consequential huge number
of of data points the scan matching between the local MLS maps has been computed
offline on a 2 GHz dual core desktop PC. For the loop closing step of our mapping
algorithm we use the most recent approach of Grisetti et al. [2008] which is able
to close minimize the global error function incrementally whenever a loop closure is
detected.

11.2 Monte-Carlo Localization using MLS Maps

The problem of mobile robot localization with range sensors in outdoor environments
arises whenever GPS signals are missing because of occlusions caused by buildings,
bridges, or trees. In such situations, a mobile robot typically has to estimate its po-
sition in the environment using its other sensors and a map of the environment. In
this section, we consider the problem of localizing a mobile robot in outdoor en-
vironments by matching laser range measurements to a given map of the environ-
ment. In this Section we demonstrate how we apply the MLS maps described in
Chapter 10 in this context. The MLS maps can be regarded as an extension of the
classical elevation maps [Bares et al., 1989; Hebert et al., 1989; Lacroix et al., 2002;
Parra et al., 1999] as they additionally represent intervals corresponding to vertical ob-
jects in the environment. A further disadvantage of elevation maps is that they cannot
represent multiple levels. This, for example, is important when mobile robots are de-
ployed in environments with bridges or underpasses. Figure 11.6 shows a comparison
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Figure 11.6: Advantage of the MLS map approach in comparison to the standard eleva-
tion maps. In contrast to the MLS map (right) the elevation map (left) lacks the ability
to model vertical structures, because it averages over all measured height values. Since
the distance of the endpoint of a laser beam to the closest point in the elevation map
can deviate substantially from the true distance, localization becomes harder.

of a MLS map and an elevation map where the robot is located in front of a wall. In
the elevation map, the wall is not represented correctly, because the height values ob-
tained from beams reflected by the wall are averaged which is the typical approach in
elevation maps. This can lead to a poor estimate of the measurement likelihood at the
particular robot position. In contrast, when the MLS map is used, one obtains a better
value of the likelihood, because the wall is modeled correctly.

In this section, we present an approach to use the multi-level surface maps for lo-
calization. We present probabilistic motion and observation models and describe how
these models can be utilized in a probabilistic localization scheme. We furthermore
evaluate how the localization performance changes when standard elevation maps are
used instead of MLS maps.

11.2.1 Monte-Carlo Localization

To estimate the pose x = (x, y, z, ϕ, ϑ, ψ) of the robot in its environment, we consider
probabilistic localization, which follows the recursive Bayesian filtering scheme as
described in detail in Chapter 2. For the implementation, we use a sample-based ap-
proach which is commonly known as Monte-Carlo localization [Dellaert et al., 1998b].
Monte-Carlo localization is a variant of particle filtering [Doucet et al., 2001] where
each particle corresponds to a possible robot pose and has an assigned weight wi. The
belief update is performed by the following two alternating steps:

1. In the prediction step, we draw for each particle with weight wi a new particle
according to wi and to the prediction model p(xt | ut−1, xt−1).

2. In the correction step, a new observation zt is integrated. This is done by as-
signing a new weight wi to each particle according to the sensor model p(zt | xt).
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Figure 11.7: Application of our prediction model to a series of 2D motion vectors
(black). They are rotated to estimate the 3D motion vectors (red). The dashed line
indicates the tolerance interval for the z-coordinate.

Prediction Model for MLS Maps

The prediction model p(xt | ut−1, xt−1) we use can be seen as an extention of an ap-
proach introduced by Eliazar and Parr [2004] to the three-dimensional space. It re-
flects systematic errors such as drift, as well as the uncertainty in the execution of an
action u = (xu, yu, θu), where (xu, yu) is the translation and θu the rotation angle. To
incorporate this 2D motion into our 3D map we proceed as follows. First, we obtain a
possible outcome (xv, yv, θv) of the action by applying the probabilistic model. Then,
we adapt the motion vector v = (xv, yv) to the shape of the 3D surface traversed by
the robot. This surface is obtained from the given MLS map and consists of planar
square patches. To adapt the motion vector, we discretize it into segments of length
c, which is the cell size of the MLS map, in our case 0.1 m. For each segment, we
determine the corresponding surface patch S and rotate the segment according to the
orientation (ϕS , ϑS ) of the patch, where ϕS is the rotation about the x-axis and ϑS the
rotation about the y-axis. The patch orientation is computed from the normal vector
nS of the patch S, which in turn is obtained by fitting a plane into the local vicinity
of S. The normal vector computation is done beforehand and constitutes an extension
to the framework of MLS maps. In general, it is not robust against noise and small
errors in the MLS map, which results in an uncertainty of the patch orientation. In
our approach, we model this uncertainty by adding Gaussian noise to the orientation
parameters ϕS and ϑS . Thus, our prediction model expresses the uncertainty in 5 out
of 6 position parameters – x, y and ψ by the 2D motion model and ϕ and ϑ by our 3D
extension. For the last one – the height value z – we have the constraint that the robot
must stay on the ground. Therefore, we adjust the z-value manually whenever it is too
high or too low. This is illustrated in Figure 11.7. Finally, after concatenating all trans-
formed motion vector segments, we obtain a new 3D motion vector v̂ which is added



146 C 11: A M-L SM

to the current estimate of the robot position xt−1 to obtain a new position estimate xt.

Endpoint Sensor Model for MLS Maps

In our sensor model, we treat each beam independently and determine the likelihood
of a whole laser scan by factorizing over all beams. Thus, we have

p(z | x) =
N∏

i=1

p(zi | x) (11.1)

where N is the number of beams in each laser measurement z. In Equation (11.1) and
in the following, we drop the index t for convenience. Our sensor model p(zi | x) is
based on an approach that has been introduced by Thrun [2001b] as likelihood fields

(LF) or end point model. In particular, we formulate the sensor model p(zi | x) for each
particular beam as a mixture of three different distributions:

p(zi | x) = αhit phit(z
i | x) + αrand prand(zi | x) + αmax pmax(z

i | x), (11.2)

where phit is a normal distribution N(0, σ2) that models situations in which the sensor
detects an obstacle. Random measurements are modeled using a uniform distribution
prand(zi | x). Maximum range measurements are covered by a point mass distribution
pmax(zi | x). These three distributions are weighted by the non-negative parameters
αhit, αrand, and αmax, which sum up to one. The values for αhit, αrand, αmax, and σ2 used
in our current implementation have been determined empirically.

In the end point model, the probability phit(zi | x) only depends on the distance di

between the end point of the i-th laser beam and the closest obstacle in the map. Thus,
the physical property of the laser beam is ignored, because the model just uses the end
point and does not consider the beam characteristic of the laser. Therefore, we need
to calculate the global coordinates for a beam end point. If we denote the angle of the
k-th beam relative to the zero angle with ζ i, then the end point p̃i = (x̃i, ỹi, z̃i)T of that
beam in the robot’s own coordinate frame is calculated as





x̃i

ỹi

z̃i




=





x̂

ŷ

ẑ




+ Rzi





cos(ζ i)
sin(ζ i)

0




, (11.3)

where (x̂, ŷ, ẑ)T denotes the position of the sensor at time t and R is a rotation matrix
that expresses the 3D sensor orientation in the robot’s coordinate frame. For a given
robot pose x = (x, y, z, ϕ, ϑ, ψ) at time t we can compute the global coordinates pi =

(xi, yi, zi)T of the i-th beam end point pi as follows




xi

yi

zi




= R(ϕ, ϑ, ψ)





x̃i

ỹi

z̃i




+





x

y

z




, (11.4)
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where R(ϕ, ϑ, ψ) denotes the rotation matrix for the given Euler angles ϕ, ϑ, and ψ.
In MLS maps, obstacles are represented as vertical surface patches, which can be
seen as vertical segments of occupied space. Unfortunately, there is no efficient way
to find the closest of all vertical segments to a given beam end point. Therefore, we
use an approximation by uniformly sampling a set P of 3D points from all vertical
patches. The distance di of the i-th beam end point pi to the closest obstacle is then
approximated as the Euclidean distance d(pi,P) between pi and P. This distance can
be efficiently calculated by storing all points from P in a kD-tree.

Equations. (11.3) and (11.4) describe a 3D transform T (zi; x) of the measurement
zi at position x. Using this and the fact that phit is Gaussian, we can compute phit as

phit(z
i | x) ≈ 1

√
2πσ2

exp



−
1

2

(

d(pi,P)

σ

)2


 , (11.5)

where pi = T (zi; x). Plugging this into Equation (11.2) and the result into Equa-
tion (11.1), we obtain the entire sensor model.

11.2.2 Localization Experiments

The sensor and prediction models have been implemented in a particle filter algorithm
and are evaluated on real data acquired with a mobile robot. The robot is a Pioneer II
AT system equipped with a SICK LMS laser range scanner and an AMTEC wrist unit,
which is used as a pan/tilt device for the laser (see Figure 10.10). During the exper-
iments described in this section, the laser was directed horizontally. The same robot
also has been used for the mapping experiments described in Chapter 10. The exper-
iments are designed to investigate if the MLS map approach facilitates mobile robot
localization and whether it yields better localization performance than the elevation
maps.

Global Localization

The first set of experiments is designed to evaluate the performance of the MLS map
approach in the context of a global localization task. Figure 11.8 depicts the con-
vergence of the particles to the true position of the robot with 500, 000 (left) and
1, 000, 000 (right) particles. Whereas the x-axis corresponds to the resampling step,
the y-axis shows the number of particles in percent that are closer than 1m to the true
position, which has been computed by a tracking experiment with 100, 000 particles.
Shown are the evolutions of these numbers when the MCL is applied on standard el-
evation maps and on MLS maps. Note that the elevation map does not reach 100%.
This is due to the fact that the sensor model for the standard elevation map relies on a



148 C 11: A M-L SM

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14  16p
a

rt
ic

le
s
 c

lo
s
e

r 
th

a
n

 1
m

 t
o

 g
ro

u
n

d
 t

ru
th

 [
%

]

resampling step

MLS Map
Elevation Map

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14  16p
a

rt
ic

le
s
 c

lo
s
e

r 
th

a
n

 1
m

 t
o

 g
ro

u
n

d
 t

ru
th

 [
%

]

resampling step

MLS Map
Elevation Map

Figure 11.8: Convergence of the particles to the true position of the robot with 500,000
(left) and 1,000,000 particles (right). The x-axes depict the number of resampling
steps, while the y-axes show the percentage of particles that are closer than 1m to the
true position.
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Figure 11.9: The left image depicts the number of successful localizations after 15
resampling steps for the two different map representations for particle numbers from
250,000 up to 1,000,000. The right image shows the average localization error over all
particles for a tracking experiment with 1,000 particles. In average the use of the MLS
maps leads to smaller errors.

highly smoothed likelihood function, which is good for global localization but does not
achieve maximal accuracy during tracking. The application of a more peaked sensor
model in the case of the standard elevation map would lead to much higher divergence
rates. In both cases, a t-test showed that it is significantly better to apply the MLS
maps than the standard elevation maps for the global localization task. Experiments
with 250,000 and 750,000 particles showed the same behavior. Figure 11.9 shows the
number of successful localizations for the two different map representations and for
different numbers of particles. Here, we assumed that the localization was achieved
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Figure 11.10: Tracking experiments on the campus. MLS map used for the localiza-
tion experiments. The area represented by this map spans approximately 195 by 146
meters. The blue line shows the localized robot poses. The yellow line shows the pure
odometry. The traversed trajectory has a length of 284 meters.

when every particle deviated by at most 1 m from the true location of the robot. We
can see that the global localization performs more robust on the MLS map than on the
standard elevation map.

Tracking

We also carried out experiments, in which we analyzed the accuracy of the MLS map
approach in the context of a position tracking task. To obtain the corresponding data
set, we steered the robot along a loop in our campus environment. The traversed
trajectory has a length of 284 meters. Figure 11.10 depicts a top view of the MLS
map of our test environment. The blue line shows the localized robot poses. The
yellow shows the pure odometry. Figure 11.9 depicts the average localization error
for a tracking experiment with 1,000 particles. As can be seen from the figure, the
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MLS map approach outperforms the standard elevation map approach. The tracking
experiments have been computed online on a standard PC with an AMD Athlon 64
3200+ processor. In practical experiments we found that the use of the MLS maps
results in a computational overhead of no more than 10% compared to elevation maps.

11.3 Exploration of Combined Indoor and Outdoor En-

vironments

Robots that are able to acquire an accurate model of their environment and to local-
ize themselves based on such a model are regarded as fulfilling a major precondition
of truly autonomous mobile vehicles. In the previous section we described situations
where the localization task requires a given map of the environment. In case such a
model is not available, it has to be learned by the robot. This problem is also known
as autonomous exploration. So far, most approaches to mobile robot exploration as-
sume that the robot operates in a plane. The technique presented here extents existing
exploration approaches used in 2D to the three-dimensional space. It selects actions
that reduce the uncertainty of the robot about the world. It does so by reasoning about
potential measurements that can be obtained when selecting an action. Our approach
is able to deal with negative obstacles like, for example, abysms, which is a problem
of robots exploring a three-dimensional world. Experiments carried out in simulation
and on a real robot show the effectiveness of our techniques.

In order to autonomously explore the environment, we first need to perform a
traversability analysis, thereby avoiding positive and negative obstacles. Then we de-
termine candidate viewpoints in the vicinity of unexplored areas and evaluate those
candidate viewpoints by considering the travel costs to a particular viewpoint and the
expected information gain of a measurement at this viewpoint.

11.3.1 Traversability Analysis

A grid based 2D traversability analysis usually only takes into account the occupancy
probability of a grid cell – implicitly assuming an even environment with only positive
obstacles. In the 3D case, especially in outdoor environments, we additionally have
to take into account the slope and the roughness of the terrain, as well as negative
obstacles such as abysms which are usually ignored in 2D representations.

In our approach, each patch p will be assigned a traversability value τ(p) ∈ [0, 1].
A value of zero corresponds to a non-traversable patch, a value greater than zero to
a traversable patch, and a value of one to a perfectly traversable patch. In order to
determine τ(p), we fit a plane into its local 8-patch neighborhood by minimizing the
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z-distance of the plane to the elevation values of the neighboring patches. We then
compute the slope and the roughness of the local terrain and detect obstacles. The
slope is defined as the angle between the fitted plane and a horizontal plane and the
roughness is computed as the average squared z-distances of the height values of the
neighboring patches to the fitted plane. The slope and the roughness are transformed
into traversability values τs(p) and τr(p) by linear interpolation between zero and a
maximum slope and roughness value respectively. In order to detect obstacles we
set τo(p) ∈ {0, 1} to zero, if the maximum squared z-distance of a neighboring patch
exceeds a threshold, thereby accounting for positive and negative obstacles, or if the
patch has less than eight neighbors. The latter is important for avoiding abysms in the
early stage of an exploration process, as some neighboring patches are below the edge
of the abysm and therefore are not visible yet.

The combined traversability value is defined as τ(p) = τs(p) · τr(p) · τo(p). Next,
we iteratively propagate the values by convolving the traversability values of the patch
and its eight neighboring patches with a Gaussian kernel. For non-existent neighbors,
we assume a value of 0.5. The number of iterations depends on the used cell size,
the robot’s size and a safety margin. In order to enforce obstacle growing, we do not
perform a convolution if one of the neighboring patches is non-traversable (τ = 0), but
rather set the traversability value of the patch directly to zero in this case.

11.3.2 Viewpoint Generation

We follow the popular frontier-based approach to exploration [Yamauchi, 1998] and
adapt it to the needs of a 3D environment. In our approach, a patch is considered
as explored if it has eight neighbors and its uncertainty, measured by the entropy in
the patch, is below a threshold. Additionally, we track the entropy as well as the
number of neighbors of a patch. If the entropy or number of non-existing neighbors
cannot be reduced as expected over several observations, we consider it to be explored
nonetheless since further observations do not seem to change the state of the patch.

A frontier patch is defined as an unexplored patch with at least one explored neigh-
boring patch. Most of these patches have less than eight neighbors and therefore are
considered as non-traversable, since they might be at the edge of an abysm. There-
fore, we cannot drive directly to a frontier patch. Instead, we use a 3D ray-casting
technique to determine close-by candidate viewpoints. A patch is considered as a can-
didate viewpoint, if it is reachable and there is at least one frontier patch that is likely
to be observable from that viewpoint. Instead of using ray-casting to track emitted
beams from the sensor at every reachable position, we use a more efficient approach.
We emit virtual beams from the frontier patch instead and then select admissible sen-
sor locations along those beams (Figure 11.11). This will reduce the number of needed
ray-casting operations as the number of frontier patches is much smaller than the num-
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Figure 11.11: To generate viewpoints, we emit laser beams from viewpoints and de-
termine admissible sensor positions along those beams. The interval d f ree needs to be
free and the interval docc has to contain a reachable patch.

Figure 11.12: Outdoor map showing sampled candidate viewpoints as red (dark gray)
spheres.

ber of reachable patches.

In practice, we found out that it is useful to reject candidate viewpoints, from which
the expected information gain is below a threshold. We also cluster the frontier patches
by the neighboring relation, and prevent patches from very small frontier clusters to
generate candidate viewpoints. This leads to a more reliable termination of the explo-
ration process. Candidate viewpoints of an example map are shown in Figure 11.12.
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11.3.3 Viewpoint Evaluation

The utility u(v) of a candidate viewpoint v is computed using the expected information
gain E{I(v)} and the travel costs t(v). As the evaluation involves a costly 3D ray-
casting operation, we reduce the set of candidate viewpoints by uniformly sampling a
fixed number of viewpoints from that set.

In order to simultaneously determine the shortest paths to all candidate viewpoints,
we use a deterministic variant of the value iteration. The costs of moving from a patch
p to p′ can be defined as

c(p, p′) = d(p, p′) + w(1 − τ(p′)) (11.6)

where d(p, p′) describes the Euclidian distance and τ(p′) the traversability of p′. The
constant w is used to weight the penalization for traversing poorly traversable patches.
The travel costs t(v) of a viewpoint v is defined as the accumulated step costs of the
shortest path to that viewpoint.

The expected information gain considers the uncertainty reduction in the known
parts of the map as well as the information gain caused by new patches that are ex-
pected to be discovered.

To determine the patches that are likely to be hit by a laser measurement, we first
perform a ray-cast operation similar to [Stachniss et al., 2005]. We determine the
intersection points of the cell boundaries and the 3D ray projected onto the 2D grid.
In a second step, we determine for each cell the height interval covered by the ray and
check for collisions with patches contained in that cell by considering their elevation
and depth values.

Let the sequence L = 〈l1, . . . , lm〉 be an equidistant discretization of the maximum
laser range. If the simulated laser ray hits a patch in distance that falls into lh, we
can divide L into three subsequences L f , Lh, and Ln, whereas L f = 〈l1, . . . , lh−1〉 con-
tains the collision free traversed distances, Lh = 〈lh〉 contains the above mentioned
discretize distance to the patch that has been hit, and Ln = 〈lh+1, . . . , lm〉 contains the
non-traversed distances. Accordingly, if the simulated ray does not hit a patch, this
will result in three subsequences L f = L and Lh = Ln = 〈〉. For each traversed dis-
tance l ∈ L f ∪ Lh we expect the ray during a real measurement to end after distance
l with probability p(l). If l ∈ L f , this corresponds to the discovery of a new patch,
which implies an information gain I f (l). If l ∈ Lh, this corresponds to a measurement
of an already known patch, which implies an information gain Ih(l). The expected
information gain of ray r then is defined as

E{I(r)} =
∑

l∈L

p(l)I(l) =
∑

l∈L f

p(l)I f (l) +
∑

l∈Lh

p(l)Ih(l). (11.7)

Here we assume p(l) = 0 for l ∈ Ln, as we do not expect the ray to travel through a
known patch.
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To assess the probabilities p(l), we created statistics through simulated measure-
ments in a large outdoor map, which yielded a conditional probability distribution
ps(d | αv) denoting the probability of hitting an obstacle after distance d when the ele-
vation angle of the ray is αv. The intuition behind this is, that it is much more likely for
downward pointing rays to hit a patch than for upward pointing rays. Furthermore, the
probability to hit an obstacle is not equally distributed along the laser range, especially
not for downward pointing rays. Using this distribution, we can define

p(l) =






ps(l | αv) l ∈ L f

∑

li∈Lh∪Ln ps(li | αv) l ∈ Lh

0 l ∈ Ln

(11.8)

with αv being the elevation angle of the current ray r.
The information gain Ih is defined by the uncertainty reduction in the known map.

We therefore temporarily add a new measurement mh into the grid cell of the hit patch
ph with a corresponding mean and variance that depends on the distance lh of the
simulated ray. The mean and variance of the patch ph then is updated by using a
Kalman filter. Since a patch is represented by a Gaussian, we can compute the entropy
H(p) of a patch as

H(p) =
1

2
log

(

2eπσ2
)

. (11.9)

The information gain Ih(l) is then defined as the difference

Ih(l) = H(ph) − H(ph | mh) l ∈ Lh. (11.10)

between the entropy H(ph) of the patch ph before and the entropy H(ph | mh) after the
temporary incorporation of the simulated measurement mh.

For the information gain I f , we proceed similarly. As a newly discovered patch
p f will be inserted with an uncertainty σ proportional to the distance l ∈ L f of mea-
surement m f , we can thereby compute H(p f | m f ) as in Equation 11.9. We assume
that the uncertainty σb of the patch before it has been measured, is bounded by the
distance dp to the nearest patch in that cell, and heuristically choose an uncertainty so
that 3σb = dp. Using σb we can determine H(p f ) and finally compute

I f (l) = H(p f ) − H(p f | m f ) l ∈ L f . (11.11)

The expected information gain E{I(v)} of a viewpoint v is then defined as the sum
E{I(v)} = ∑

r∈R E{I(r)} of the expected information gains of all casted rays r ∈ R.
Finally, the utility u(v) of each candidate viewpoint is computed by a relative ex-

pected information gain and travel costs as

u(v) = α
E{I(v)}

maxx E{I(x)} + (1 − α)
maxx t(x) − t(v)

maxx t(x)
. (11.12)
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By varying the constant α ∈ [0, 1], one can alter the exploration behavior by trading
off the travel costs and the expected information gain.

11.3.4 Exploration Experiments

The first exploration experiment is designed to show the ability of our exploration
technique to take full advantage of the capabilities that MLS maps provide, e.g. rep-
resenting multiple surface layers on top of each other. In a simulation environment
with realistic rigid body physics, we constructed a two-story building (Figure 11.13).
It consists of two rooms located on top of each other, each 12 by 8 meters in size, and
an unsecured balcony, where the robot is initially located. The house is surrounded
by some trees and bushes, which are approximated by cuboids. We restricted the lo-
cation of possible viewpoints to a rectangular area around the house in order to focus
on the exploration of the house rather than the free space around the house. The robot
explored the balcony, traversed the upper room and proceeded down a ramp that con-
nects the upper room with the ground floor. The robot drove around the house and then
entered the entrance to the room in the first floor. During the exploration of the lower
room, several 3D loops with positions in the upper room have been closed. Then, the
robot visited a last viewpoint at the back of the house and then the exploration ended.
The robot visited 18 viewpoints, performed 29 3D scans and traveled a distance of
212 meters. The final map consists of 185,000 patches. We demonstrated with this
experiment, that we are able to deal with several challenges that simple mapping ap-
proaches are not able to deal with, e.g. negative obstacles and multiple surface layers.
In existing two-dimensional approaches the robot would simply have fallen down the
unsecured balcony, and simple 3D mapping approaches, for example, such as eleva-
tion maps, would not support the exploration of the two levels on top of each other.
Figure 11.14 shows the constructed map with a detailed view of the entrance to the
lower room.

To demonstrate the ability to explore real environments, we performed an exper-
iment on the campus of the University of Freiburg using the same robot as in Sec-
tion 11.2 (see also Figure 10.10). To give the exploration an initial direction, we re-
stricted the generation of viewpoints to the half-plane in front of the initial location
of the robot. The robot followed a path bordered by the wall of a house on the left
side and grassland on the right side (Figure 11.15). Then it entered a small court-
yard on the left, which was sufficiently explored after a few scans. Subsequently, the
robot proceeded to explore the rest of the campus until he reached the border of the
defined half-plane. The figure shows four snapshots of the exploration process. In the
last image, the robot traveled 186 meters, visited 18 viewpoints and performed 26 3D
scans.In both experiments, we set α = 0.5 in order to equally consider the travel costs
and the expected information gain.
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robot

Figure 11.13: Overview of the simulation environment and a detailed view of the
entrance to the first floor with the robot in front of it.

Figure 11.14: Detailed view of the final traversability map showing the robot’s trajec-
tory as a blue line.
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start

robot

next goal

Figure 11.15: Course of the exploration process on the university campus.
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11.4 Conclusions

In this Chapter we considered three different applications for MLS maps, namely city
mapping or mapping of large-scale environments, Monte-Carlo localization and ex-
ploration.

• First, we applied mapping system to two different robotic cars as an approach
to match sub-maps in order to correct the poses based on the proximity sensors.
As a result, we obtain high quality three-dimensional models. All techniques
have been implemented and tested using real cars equipped with different types
of sensors.

• We furthermore demonstrated how to localize a mobile vehicle based on such
a model without requiring GPS information. Our approach uses proximity data
from a laser range finder as well as odometry. Using our multi-level surface
maps, we obtain significantly better results compared to elevation maps.

• We also presented an algorithm to actively acquire such maps from an unknown
environment. This approach is decision-theoretic and trades off the cost of carry-
ing out an action with the expected information gain of future observations. The
approach also considers negative obstacles such as absyms which is an important
prerequisite for robots operating in 3D environments.



Chapter 12

Discussion

12.1 Conclusions

L
ocalization and mapping are two key problems in mobile robotics since many
applications require knowledge about their environment in form of a spa-
tial model and additionally about their actual pose relative to this world
model. In the field of mobile robot localization, we presented novel location-

dependent sensor models for Monte-Carlo localization. The models presented in this
thesis take the approximation error of the sample-based representation into account.
This is done by sampling from regions around the individual particles. In contrast to
previous approaches, our models adapt the likelihood evaluation according to the local
environment of each evaluated pose hypothesis to achieve a natural and accurate form
of regularization. We present novel beam-based as well as scan-based likelihood mod-
els which model the dependencies between individual laser beams and allow us to use
entire range scans instead of a limited number of measurements. We showed experi-
mental results to demonstrate that considering these dependencies in the sensor model
outperforms popular beam-based models especially, when the entire scan is used.

Additionally, we presented a new generation of likelihood models that explicitly
considers multi-modalities in the distribution of beam lengths. We achieved this by
learning a Gaussian mixture model for the resulting distribution of possible range mea-
surements using the EM algorithm. Our approaches outperform the state-of-the-art
approaches in terms of localization accuracy and robustness, and for the beam-based
model also relative to the required computational resources. We also presented an
approach in which we utilize Gaussian mixture models to represent potential multi-
modalities of the likelihood function for entire range scans. To achieve an efficient
clustering of entire range scans, we reduce the dimensionality of the measurement
space by applying the principal component analysis (PCA). In experimental evalua-
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tions, we found out that this new model, which combines the ideas of multi-modal and
scan-based likelihood models shows superior performance over popular models pro-
posed in the past. All likelihood models proposed in this thesis have been implemented
and thoroughly tested. The experiments have been carried out on real robots as well as
in simulation.

In the field of three-dimensional mapping, we presented two different types of
surface maps as a novel representation for outdoor environments, namely extended
elevation maps and multi-level surface maps (MLS maps). Both approaches improve
the data association when single maps have to be aligned since they divide the individ-
ual cells or surface patches into different classes. We also presented an extension of
the ICP algorithm that takes this classification into account when computing the reg-
istration. The consideration of the individual classes during the data association in the
ICP algorithm provides more robust correspondences and more accurate alignments.
Additionally, we use a technique for constraint-based robot pose estimation to learn
globally consistent maps. To fortify the contribution of the MLS map approach, we
presented several applications, which all have been implemented and tested for large-
scale real world environments. First, we applied our mapping system to two different
robotic cars, and demonstrated that our approach yields high quality three-dimensional
models. Second, we demonstrated how to localize a vehicle based on such a model
without requiring GPS information. Our approach uses proximity data from a laser
range finder as well as odometry to localize the robot in our three-dimensional envi-
ronment model. Finally, we presented an algorithm to actively acquire such maps from
an unknown environment. This approach is decision-theoretic and trades off the cost
for carrying out an action and the expected information gain of future observations.
In extensive experiments using real cars as well as robotic platforms equipped with
laser range finders, we emphasized the state-of-the-art-character of the MLS maps as
an efficient representation for three-dimensional environments.
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12.2 Future Work

Despite the encouraging results presented in this thesis, we envision several aspects for
future improvements. The main issues are pointed out in the following subsections.

12.2.1 Likelihood Models for Monte-Carlo Localization

A first extension of the likelihood models for Monte-Carlo localization presented in
this thesis would be an approach to approximate the scan-based multi-modal model
proposed in Chapter 8 efficiently by a beam-based multi-modal model based on our
approach proposed in Chapter 7. This would lead to a model with the efficiency of
the beam-based Gaussian mixture model combined with the ability to use entire range
scans.

Another possible extension is to combine our approaches using Gaussian mixture
models with approaches to detect dynamic objects. Then we could interpret the sen-
sor model as a probabilistic mixture of expected measurements given the map and
expected measurements given the dynamic objects in the proximity of the robot. An
interesting question arising in this scenario is what will happen when most or all mea-
surements are caused by dynamic objects. Furthermore, we could transfer the tech-
niques presented in this thesis to networks of multiple sensors instead of modeling
multiple measurements of one sensor. This means that the techniques of modeling
multi-modalities as well as dependencies between perceptions also should influence
approaches in which sensors different to lasers or a combination of them are used. A
potential sensor setting could consist of cameras, radars, sonars, or RFID readers.

12.2.2 3D-Mapping

Three-dimensional mapping is still a wide field of research and the approaches de-
scribed in this thesis offer many opportunities for applications and extentions. One
way to further demonstrate the potential of the MLS maps would be to apply them
to SLAM in indoor environments. This would allow mobile robots to store an entire
map of a building even when there are multiple floors. To achieve this it would be
necessary to extend the MLS map approach to avoid misalignments between different
levels of the building. This could be accomplished, for example, by an additional class
of surface patches which represents patches which correspond to the ceiling or patches
seen from below.

A second and more general extension would be to enable the MLS maps to deal
with dynamic objects. To achieve this, we could consider the information provided by
the physical character of the laser beams, for example, instead of considering only the
beams endpoint. This means, that comparable to occupancy grid maps, the information
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about free areas in the environment has to be stored. In large three-dimensional outdoor
scenarios it is still an open question how to realize this efficiently given the memory
and runtime limitations.



Appendix A

A.1 Probability Theory

A.1.1 Product Rule

The following equation is called the product rule

p(x, y) = p(x | y) · p(y) (A.1)

= p(y | x) · p(x). (A.2)

A.1.2 Independence

If x and y are independent, we have

p(x, y) = p(x) · p(y). (A.3)

A.1.3 Bayes’ Rule

The Bayes’ rule, which is frequently used in this thesis, is given by

p(x | y) =
p(y | x) · p(x)

p(y)
. (A.4)

The denominator is a normalizing constant that ensures that the posterior of the left
hand side adds up to 1 over all possible values. Thus, we often write

p(x | y) = η · p(y | x) · p(x). (A.5)

In case the background knowledge e is given, Bayes’ rule turns into

p(x | y, e) =
p(y | x, e) · p(x | e)

p(y | e)
. (A.6)
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A.1.4 Marginalization

The marginalization rule is the following equation

p(x) =

∫

y

p(x, y) dy. (A.7)

In the discrete case, the integral turns into a sum

p(x) =
∑

y

p(x, y). (A.8)

A.1.5 Law of Total Probability

The law of total probability is a variant of the marginalization rule, which can be
derived using the product rule

p(x) =

∫

y

p(x | y) · p(y) dy, (A.9)

and the corresponding sum for the discrete case

p(x) =
∑

y

p(x | y) · p(y). (A.10)

A.1.6 Markov Assumption

The Markov assumption (also called Markov property) characterizes the fact that a
variable xt depends only on its direct predecessor state xt−1 and not on xt′ with t′ < t−1

p(xt | x1:t−1) = p(xt | xt−1). (A.11)
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