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Abstract 

A foreseeable exhaust of fossil fuels and the economic development of emerging 

nations accelerates the transformation of forest lands into monocultures, e.g. for bio 

fuel production. On this account, cost efficient methods to enable the monitoring of 

land resources has become a vital ambition. The application of remote sensing 

techniques has become an integral part of forest attribute estimation and mapping. 

The aim of this study was to evaluate the potentials of the kNN method by combining 

terrestrial with remotely sensed data for the development of a pixel-based monitoring 

system for the small scaled mosaic of different land use types of the off-reserve 

forests of the Goaso forest district in Ghana, West Africa. For this reason, occurrence 

and distribution of land use types like cocoa and non-timber forest resources, such 

as raphia palms, were estimated, applying the kNN method to ASTER data. Overall 

accuracies, ranging from 79 % for plantain, to 83 % for oil palms, were found for 

single-attribute classifications, whereas a multi-attribute approach showed overall 

accuracies of up to 70 %. Values of k between 3 and 6 seem appropriate for mapping 

bamboo and others. Optimisation of spectral bands improves results considerably.  

 

 

Key Words: k nearest neighbour, combination, terrestrial, remote sensing, estimation, 

distribution, non-timber forest product 
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1 Introduction 

Like most tropical countries, the forest resources of Ghana are decreasing at 

alarming figures. Agricultural expansion has been identified as the common factor in 

deforestation (FAO, 2003).  Farming is the predominant occupation in the forest zone 

of Ghana (Abagale et al., 2003). In many respects, degradation of Ghanaian’s off-

reserve forests indirectly increases pressure on forest reserves. About one third to 

two-thirds of the timber harvested annually in Ghana comes from off-reserve forests 

(Mayers et al., 1996).  

 

About twenty per cent of Ghana’s high forest zone is under reservation and now 

represents the only permanent forest estate. It is mainly under the control of the 

Forest Services Division (FSD) and in parts under the Wildlife Division (WD). The 

remaining 80 per cent – the so-called off-reserve forests – have been chiefly 

converted to farmland over the past few decades (Mayers et al., 1996; Kotey et al., 

1998). Nowadays these lands outside forest reserves exhibit a mosaic of agricultural 

field, fallow lands, secondary forest patches, and settlements. However, the farm and 

fallow areas host extensive forest resources. Despite the ruling farming activities in 

the high forest zone, trees on farms are very common. Utilizable tree species on 

farmland belong to communities, not to the landowner. Nevertheless, it is an offence 

for an individual or a community to cut or sell merchantable tree species without 

permission from the Forest Department. Loggers are required by law to compensate 

farmers for damage to food and cash crops resulting from logging operations on their 

land. Tragically, they rarely comply. Amongst other reasons, this frustration leads 

some farmers to illegally destroying valuable tree species (Owubah et al., 2001). 

 

FAO is convinced that it is fundamental for forestry and agriculture to work hand in 

hand. The management of forests and trees, including the use of agroforestry and 

watershed management, is an integral part of the effort to reduce food insecurity, 

minimize poverty and improve environmental quality for the rural poor  (FAO, 2003).  

 

It is of great significance if the condition of forest land is able to provide the variety of 

goods and services required from them. However, wise and prospective planning and 

management decisions on the level of stakeholders, local authorities and policy-
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makers can only be undertaken when adequate information on land resources are 

available. 

 

Within the forest reserves, the Forest Services Division of The Forestry Commission 

has acquired information such as botanical composition and quality, as well as the 

extent of these resources (Hawthorn et al., 1993). Among frequent local forest 

inventories, a comprehensive national forest inventory was conducted between 1986 

to 1992 and provided sufficient information to resource managers to utilise both, 

timber and non-timber forest products (Affum-Baffoe, 2001). Nevertheless, the 

inventory did not cover the off-reserve forests. While forest reserves are repeatedly 

inventoried and monitored, the only forest-/ tree-inventory in the off-reserve forests 

was carried out in 1995, simply for timber trees (Van Leeuwen, 2006). More 

supportive policy-making and adequate management of natural resources needs 

pertinent, timely and precisely quantitative and qualitative data on the condition of 

land and forest resources and their dynamics. One of the basic prerequisites for 

better use and sustainable development of land is information on existing land use 

patterns and changes in land use through time (Anderson et al., 1976).  

 

 

1.1 Background 

Forest inventories, particularly in the tropics, are a time and cost-intensive source of 

information for the management of natural resources. The expenses for the 

generation of detailed forest stand maps, simply by the use of terrestrial methods, is 

likely to exceed the budget of forest planning. The capabilities of remote sensing 

(RS) and geographic information science (GIS) for planning, mapping, and 

monitoring of land changes, are rising. Particularly with regard to extensive areas, the 

application of remote sensing for forest inventories will result in the reduction of 

costs. This technology has been used increasingly as a tool to measure spatial and 

temporal patterns of land cover in many regions of the world (e.g. Alo & Pontius, 

2006; Ngamabou, 2006; Ratanopad & Kainz, 2006). Practical application of remote 

sensing in the last few decades is presented by Sohlberg & Sokolov (1986). 
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It is this point that this study is particularly focused upon. It is the intention to develop 

and adopt and assess a methodology to generate distribution maps of selected land 

use types by combining terrestrial with spectral data. The k-nearest neighbour 

algorithm (kNN) is a method for classifying objects based on closest training 

examples in the feature space. With the combination of terrestrial samples and 

satellite data through the application of the k-nearest neighbour method, forest 

inventories, detailed stand maps and image classifications have already been 

supported (Holmgren et al., 2000; Holmström, 2001; Holmström et al., 2001; 

Gustafsson, 2002; Stümer, 2004; Tomppo, 2005). Rajaniemi et al. (2003) studied the 

variation of rain forest vegetation by means of satellite images and field data. 

 

 

1.2 Objectives 

The general objective of the study is to evaluate the potential of the kNN method 

applied as regards the combination of terrestrial sampling and remote sensing to 

estimate non-timber forest products and land resources, to inventory off-reserve tree 

and forest resources, and to generate resource distribution maps.  

 

The specific objective is to assess different parameters and their contribution to 

estimation accuracy. The desired results of this study are guidelines and 

recommendations for the development of a monitoring system for specific non-timber 

forest products, tree and forest resources, and other typical land uses in the off-

reserve areas. Major land use types (e.g. cocoa & oil palm plantations), and locally 

important non-timber forest resources (e.g. bamboo & raphia palms) will be selected 

and their ability to be identified with the methodology will be verified and quantified. 

To achieve this target, a field data collection procedure has to be adjusted and the 

small-sized mosaic of different land use types must thus be registered and defined.  

 

In this study, the kNN method is used for categorical data. For this purpose, the kNN 

programme developed by Stümer (2004) is applied. Data collection and sampling 

procedure will be conducted in collaboration with Tropenbos International-Ghana 

(TBI). The following results are expected: 
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• Assessment of non-timber forest resources and land use types that can be  

estimated with the methodology 

• Assessment of the sampling design and procedure 

• Assessment of band number versus band selection  

• Identification of parameter values of high significance  

• Benchmarks in respect to accuracy and overall agreement  

• Guidelines and recommendations for the development of a monitoring design 

 

With respect to the specific characteristics for conducing forest inventories in 

developing countries in the tropics, some conditions have to be met (FAO, 1976) and 

should enter into the inventory design. Thus particular attention as regards 

infrastructure, funding, facilities, labour, etc. to enable practicability, has to be taken 

into consideration. 

 

 

1.3 Framework of the study 

This study arose in connection with the Ghana Programme of Tropenbos 

International (cp. http://www.tropenbos.nl/sites/site_ghana.php). The mission of TBI-

Ghana is to generate scientific input for the sustainable management of natural 

resources of Ghana’s high forest zone. The Department of Forest Biometry of the 

Albert-Ludwigs-University Freiburg, is one of TBI-Ghana’s partners, where this study 

together with a study dealing with assessment methods of non-timber forest products 

(NTFP) in off-reserve forests (Bih, 2006), was accompanied.  

 

In the project section, geo-information applications of off-reserve tree management in 

the Goaso district, the main research objective is to improve forest management of 

off-reserve land resources in Goaso. Therefore new methodologies will be developed 

or existing ones will be adapted to assess availability and potential of off-reserve 

resources.  
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The expected outputs are: 

 

To extend the existing forest management planning information system for Goaso 

district, by including currently missing, but essential, data on:  a. Off-reserve 

tree resources.  b. Off-reserve NTFPs.  c. Off-reserve tree resource use and 

management by local communities and logging companies.  

To develop several – alternative – scenarios for improved off-reserve tree 

resource management through:  a. Matching of land/tree resource uses that 

are relevant to local stakeholders with the bio-physical potential of land/tree 

resources.  b. Identification of incentive mechanisms to facilitate 

implementation of selected scenarios.  

To increase the capacity of relevant institutions in Ghana in the application of 

geo-information for forest/tree resources management.  
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2 State of the Art 

2.1 Remote Sensing and Survey Instruments 

Remote sensing is the small or large-scale acquisition of information of an object or 

phenomenon, which is not in physical contact with the object (Campbell, 2002). The 

term was introduced in the United States of America, when the first images of the 

earth were taken from space in the 60ies of the 20th century (Kraus & Schneider, 

1988). Multispectral remote sensing is defined as the collection of reflected, emitted, 

or backscattered energy from an object or area of interest in multiple bands of the 

electromagnetic spectrum (Jensen, 2000). It includes data collection in hundreds of 

bands (Logicon, 1997). 

 

With the launch of Landsat 1 in 1972, the civil use of satellite based remote sensing 

began (Kellenberger, 1996; Jensen, 2000). However, remote sensing had already 

been involved in military and civilian organisations before 1972. The broad interest of 

scientists, politicians and planners to survey, map and monitor the earth surface has 

led to the launch of a variety of satellites carrying different sensors. Besides cameras 

as the traditional aerial photographic survey system, digital line by line scanners have 

been developed. They are differentiated into passive systems, which survey reflected 

or emitted radiation in specific wavelengths from the earth surface, and active remote 

sensing systems, e. g. spaceborne radar systems, which illuminate or radiate objects 

artificially while their reflex reflection is detected (cp. Albertz, 1991; Löffler, 1994; 

Hildebrand 1996; Kraus & Schneider, 1998; Richards & Xiuping, 2005). There is a 

tremendous variety of digital multispectral and hyperspectral remote sensing 

systems. An overview of selected operational available satellites und the 

corresponding passive and active sensors, which are used for remote sensing of  the 

earth surface, are summarised in table 2-1. 
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Table 2-1 Earth Observation Satellites. The following table includes those   satellites 
which are currently operational. It is limited to sensors which are primarily 
intended for remote sensing of the Earth surface. (Source: after 
Environmental Remote Sensing Center, University of Wisconsin-
Madison1) 

 

Satellite  
Name Source Launch Sensors Types 

No. of  
Bands 

Resolution  
[meters] 

MSS Multispectral 4 82 

6 30 Landsat-5 US 1984 
TM Multispectral 

1 120 

Multispectral 3 20 
SPOT-1 France 1986 HRV 

Panchromatic 1 10 

Multispectral 3 20 
SPOT-2 France 1990 HRV 

Panchromatic 1 10 

LISS-I Multispectral 4 72.5 
IRS-1B India 1991 

LISS-II Multispectral 4 36.25 

AMI Radar 1 26 
ERS-1 ESA 1991 

ATSR Multispectral 4 1000 

4 170 
RESURS-O1-3 Russia 1994 MSU-SK Multispectral 

1 600 

NOAA-14 US 1994 AVHRR Multispectral 5 1100 

WiFS Multispectral 2 188 

3 23 
LISS-III Multispectral 

1 70 
IRS-1C India 1995 

Pan Panchromatic 1 5.8 

AMI Radar 1 26 
ERS-2 ESA 1995 

ATSR Multispectral 4 1000 

RADARSAT 1  Canada 1995 SAR Radar 1 9-100 

OrbView-2  
(SeaStar) US/Orbimage 1997 SeaWiFS Multispectral 8 1130 

WiFS Multispectral 2 188 

3 23 
LISS-III Multispectral 

1 70 
IRS-1D India 1997 

Pan Panchromatic 1 5.8 

VI Multispectral 4 1150 

Multispectral 4 20 SPOT-4 France 1998 
HRV 

Panchromatic 1 10 

NOAA-15  
(NOAA-K) US 1998 AVHRR Multispectral 5 1100 

Landsat-7  US 1999 ETM+ Multispectral 6 30 
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 1 60     

Panchromatic 1 15 

Panchromatic n/a 2 
ROCSAT-1 Taiwan 1999 n/a 

Multispectral n/a 8 

IRS-P4  
(Oceansat) 

India 1999 OCM Multispectral 8 360 

Multispectral 4 4 
IKONOS Space Imaging 1999 IKONOS 

Panchromatic 1 1 

ASTER Multispectral 14 15,30,90 

MISR Multispectral 4 275 
Terra  
(EOS AM-1)  

US 1999 

MODIS Multispectral 36 250,500,1000 

NOAA-L US 2000 AVHRR Multispectral 5 1100 

Panchromatic 1 10 
ALI 

Multispectral 9 30 

Hyperion Hyperspectral 220 30 
EO-1 US 2000 

LAC Hyperspectral 256 250 

EROS-A1 ImageSat 
International 

2000 Panchromatic Panchromatic 1 1.5 

Multispectral Multispectral 4 2.44 
QuickBird DigitalGlobe 2001 

Panchromatic Panchromatic 1 0.61 

MTI US 2001 MTI Multispectral 15 5 

ASAR Radar 1 30, 150 
Envisat-1 ESA 2002 

MERIS Multispectral 15 300 

Aqua (EOS PM-
1) US 2002 MODIS Multispectral 36 300, 1200 

3 10 
Multispectral 

1 20 SPOT-5 France 2002 HRV 

Panchromatic 1 2.5, 5 

NOAA-M US 2002 AVHRR Multispectral 5 1100 

ICESat US 2003 GLAS Lidar 2 70 

Multispectral 4 20 
HRCC 

Panchromatic 1 20 

Panchromatic 1 80 

SWIR 2 80 

CBERS 2  China/Brazil 2003 

IRMSS 

TIR 1 160 
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WFI 

Wide Field 
Imager 

2 260 

Multispectral 4 4 
OrbView-3 Orbimage 2003 OrbView 

Panchromatic 1 1 

PAN Panchromatic 1 2 
ROCSAT-2 Taiwan 2004 

MS Multispectral 4 8 

LISS 3/4  Multispectral 7 5.8, 23.5  IRS-P6 
(ResourceSat-1) India  2004  

AWiFS Multispectral 3 80 

 

1http://www.ersc.wisc.edu/resources/EOSC.php, updated: 02/18/2005 

 

While three-band multispectral data from aerial photography are sufficient for many 

applications, more spectral bands postitioned at optimum locations throughout the 

electromagnetic spectrum might be much better for specific applications. The 

enhancement of the survey systems tends to result in a continuous increase of the 

spectral resolution and spectral coverage up to hyperspectral remote sensing. 

Systems, which show a high spectral resolution with scores of channels, as well as 

an almost continuous spectral coverage in the optical spectral range, are called 

hyperspectral sensors (cp. Goetz et al., 1985; Goetz, 1992; Ball, 1995; Clark, 1999). 

Image sequences with a higher number of spectral bands than number of spectral 

distinctive classes are called hyperspectral images. 

  

Digital remote sensor data are usually stored as a matrix of numbers. Each digital 

value is located at a specific row and column in a matrix. The smallest non-divisional 

element of a digital image is called pixel. The pixel features a brightness value bound 

with each row and column in the image. The dataset consists of a defined number of 

individual multispectral bands. These bands are all geometrically registered to one 

another. Remote sensor data quantized to 8 bits have brightness values that range 

from 0 to 255.  

 

Landsat 1 to 3 were launched into circular orbits around Earth at a nominal altitude of 

919 km. The satellites’ orbital inclination was 99° and made them nearly polar. They 

orbited the Earth once every 103 minutes, resulting in 14 orbits per day. The Landsat 
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Multispectral Scanner (MSS) was placed on Landsat satellites 1 through 5. Sensors 

such as the Landsat MSS and TM are optical-mechanical systems in which a mirror 

scans the terrain perpendicular to the flight direction. Six parallel detectors sensitive 

to four spectral channels (bands) in the electromagnetic spectrum viewed the ground 

simultaneously: 0.5 to 0.6 µm (green), 0.6 to 0.7 µm (red), 0.7 to 0.8 µm (reflective 

infrared), and 0.8 to 1.1 µm (reflective infrared). These bands were originally 

numbered 4, 5, 6, and 7. The instantaneous field of view (IFOV) of each detector was 

square and resulted in a ground resolution element of approximately 79 x 79 m 

(Jensen, 2000). 

 

The Landsat Thematic Mapper (TM) is a scanning optical-mechanical sensor that 

records energy in visible, reflective-infrared, middle infrared, and thermal infrared 

regions of the electromagnetic spectrum. It collects multispectral imagery that has 

higher spatial, spectral, temporal, and radiometric resolution than Landsat MSS 

(SBRC, 1994). 

 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) was officially integrated into 

NASA’s Earth Observing System (EOS) and was designed to work in harmony with 

NASA´s EOS Terra satellite which uses – except for ASTER – a suite of relatively 

coarse spatial resolution. The ETM+ bands 1-5 and 7 are identical to those found on 

Landsat 4 and 5 and have the same 30 x 30 m spatial resolution. The thermal 

infrared band 6 now has 60 x 60 m spatial resolution instead of 120 x 120 m. 

Perhaps most notable is the new 15 x 15 m panchromatic band (0.52-0.90 µm).  

 

The first SPOT satellite was developed by the French Centre National d´Etudes 

Spatiales (CNES) in cooperation with Belgium and Sweden. It was launched in 1986 

and has a spatial resolution of 10 x 10 m (panchromatic mode) and 20 x 20 m 

(multispectral mode).  

 

The survey systems MODIS and ASTER were launched with the American Terra-

satellite EOS AM-1 in 1999. MODIS-data possess 36 spectral channels and a 

maximum resolution of 250 m, while ASTER-data achieve a resolution of 15 m with 

14 channels (NASA, 2007). The ASTER satellite is a cooperative effort between 
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NASA and Japan’s Ministry of International Trade and Industry. It obtains detailed 

information on surface temperature, emissivity, reflectance, and elevation, and is the 

only high-spatial resolution instrument on the Terra satellite. Further specifications of 

the Terra Spacecraft are shown in table 2-2. 

 

Table 2-2 Specifications of the Terra Spacecraft (NASA, 2004). 

Launch date: December 1999 

Orbit: 705 km altitude, sun-synchronous, so that at any given latitude it 

crosses directly overhead at the same time each day. 

Orbit inclination: 98.3 degrees from the Equator 

Orbit period: 98.88 minutes 

Equator crossing: 10.30 a.m. (north to south) 

Ground track repeat cycle: 16 days, i.e. every 16 days (or 233 orbits) the pattern of orbits repeats 

itself 

Builder: Lockheed Martin 

 

 

The ASTER sensor consists of three separate instrument subsystems. Individual 

bandwidths and subsystem characteristics are summarized in table 2-3. ASTER's 

three subsystems are: the Visible and Near Infrared (VNIR), the Shortwave Infrared 

(SWIR), and the Thermal Infrared (TIR).  

 

Table 2-3 ASTER Instrument Characteristics (NASA, 2004). 

Characteristic VNIR SWIR TIR 
Spectral Range Band 1: 0.52-0.60 µm 

Nadir looking 
Band 4: 1.600-1.700 µm Band 10: 8.125-8.475 µm 

 Band 2: 0.63-0.69 µm 
Nadir looking 

Band 5: 2.145-2.185 µm Band 11: 8.475-8.825 µm 

 Band 3: 0.76-0.86 µm 
Nadir looking 

Band 6: 2.185-2.225 µm Band 12: 8.925-9.275 µm 

 Band 3: 0.76-0.86 µm 
Backward looking 

Band 7: 2.235-2.285 µm Band 13: 10.25-10.95 µm 

  Band 8: 2.295-2.365 µm Band 14: 10.95-11.65 µm 
  Band 9: 2.360-2.430 µm  
Ground Resolution 15 m 30 m 90 m 
Swath Width [km] 60 60 60 

Detector Type Si PtSi-Si HgCdTe 

Quantization (bits) 8 8 12 
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The VNIR subsystem operates in three spectral bands at visible and near-IR 

wavelengths, with a resolution of 15 m (figure 2-1). It consists of two telescopes, one 

nadir-looking with a three-spectral-band detector, and the other backward-looking 

with a single-band detector. The backward-looking telescope provides a second view 

of the target area in band 3 for stereo observations. Thermal control of the charge-

coupled device (CCD) detectors is provided by a platform-provided cold plate. Cross-

track pointing to 24 degrees on either side of the track is accomplished by rotating 

the entire telescope assembly. Band separation is through a combination of 

dichromic elements and interference filters that allow all three bands to view the 

same ground area simultaneously. The data rate is 62 Mbps when all four bands are 

operating. Two on-board halogen lamps are used for calibration of the nadir-looking 

detectors. This calibration source is always in the optical path. 

 

 

Figure 2-1 ASTER VNIR Chart (NASA, 2004). 
 

The SWIR subsystem operates in six spectral bands in the near-IR region through a 

single, nadir-pointing telescope that provides 30 m resolution (figure 2-2). Cross-track 

pointing (± 8.550) is accomplished by a pointing mirror. Because of the size of the 

detector/filter combination, the detectors must be widely spaced, causing a parallax 

error of about 0.5 pixels per 900 m of elevation. This error is correctable if elevation 

data, such as a Digital Elevation Model (DEM), are available. Two on-board halogen 

lamps are used for calibration in a manner similar to that used for the VNIR 
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subsystem, however, the pointing mirror must turn to see the calibration source. The 

maximum data rate is 23 Mbps. 

 

 

Figure 2-2 ASTER SWIR Chart (NASA, 2004). 
 

The TIR subsystem operates in five bands in the thermal infrared region using a 

single, fixed-position, nadir-looking telescope with a resolution of 90 m. Unlike the 

other instrument subsystems, it has a "whiskbroom" scanning mirror. Each band uses 

10 detectors in a staggered array with optical bandpass filters over each detector 

element. The maximum data rate is 4.2 Mbps. The scanning mirror functions both for 

scanning and cross-track pointing (to ± 8.55 degrees). In the scanning mode, the 

mirror oscillates at about 7 Hz and, during oscillation, data are collected in one 

direction only. During calibration, the scanning mirror rotates 90 degrees from the 

nadir position to view an internal black body. Because of the instrument's high data 

rate, restrictions have been imposed so that the average data rate is manageable by 

the spacecraft data management system. This restriction is a one-orbit maximum 

average rate of 16.6 Mbps and a two-orbit maximum average rate of 8.3 Mbps, which 

results in an approximately 9.3 % duty cycle.  

 

ASTER products alone, or in combination with products of other sensors on the EOS-

AM1 satellite, make a wide variety of research and applications possible (figure 2-3). 

Some examples of research and applications using ASTER products are vegetation 
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monitoring in tropical rain forests, classification of trees and pastures, measurement 

of planting and forest areas, monitoring of forest growth, investigation of damages 

caused by forest fire, making and updating maps, classification of land usage, 

investigation of human influence on the environment, et cetera (ASTER GDS, 2007). 

 

 

Figure 2-3 ASTER and its contribution to profound understanding of local and 
regional scale phenomena on and around the land surface.  

   (Source: ASTER GDS, accessed on 08/22/2007 at 
http://www.gds.aster.ersdac.or.jp/gds_www2002/index_e.html) 

 
 
 

2.2 Overview of the kNN Method 

2.2.1 History of the kNN Method  

The k-nearest neighbour method is a non-parametric classification algorithm and one 

of the oldest and simplest methods of pattern recognition in machine learning 

(Niemann, 1983; Altmann, 1992). It is described as an operation of the non-

parametric discriminant analysis (Atkeson et al., 1997). K-nearest neighbour 

classification developed from the need to perform discriminant analysis when reliable 

parametric estimates of Bayes probabilities densities are unknown or difficult to 

determine for a given classification problem. It was Fix & Hodges (1951) who 

introduced a non-parametric method for pattern classification that has since become 
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known the k-nearest neighbour rule. The formal properties of the kNN rule were 

worked out by Cover & Hart (1967). Investigations on distance weighted approaches 

(Dudani, 1976; Bailey & Jain, 1978), and fuzzy methods (Jozwik, 1983; Keller et al., 

1985) followed.  

 

The kNN algorithm is a method for classifying objects based on the closest or most 

similar training samples in the feature space. It is a form of instance-based learning, 

also called lazy learning. An object is classified by a majority vote of its neighbours. 

This so-called nearest neighbour is determined by the use of distance functions, 

normally the Euclidian distance, though other distance measures, such as the 

Manhattan distance or Mahalanobis distance could, in principle, be used instead.  

Eventually, the unknown object is assigned to the class most similar amongst its k-

nearest neighbours (figure 2-4).   

 

 

Figure 2-4 Example of kNN classification. The test sample (green circle) should be 
classified either to the first class of blue squares or to the second class of 
red triangles. If k = 3, it is classified to the second class, because there 
are 2 triangles and only 1 square inside the inner circle. If k = 5, it is 
classified to the first class (3 squares vs. 2 triangles inside the outer 
circle).  

 

By simply assigning the property value for the object to be the average of the values 

of its k-nearest neighbours, the method can be used for regression. The neighbours 

are taken from a set of objects for which the correct classification (or property value) 

is known. This set can be defined as the training collective for the algorithm. 
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For the appraisal of the satellite data by means of the kNN method, reference pixel 

will be selected which correspond geographically to the terrestrial samples. For 

unknown pixel, i.e. pixel with no corresponding terrestrial sample information, the k-

nearest neighbours in the spectral feature space will be identified by means of the 

Euclidian distance. For the selected k reference pixel, the corresponding values of 

the terrestrially recorded attributes are weighted with distance to the spectral feature 

space and assigned to the pixel. This procedure will be repeated for every pixel, till 

every pixel of the satellite image is designated by a value of the attribute. 

 

The classification of image data in remote sensing serves only as one example of the 

application of the kNN method. In medical science, for example, kNN classifications 

are used for the analysis of MRI-data (magnetic resonance imaging data) and 

biochemical agents (Warfield, 1996; Qi, 2002). In chemical science, chemical 

compounds are analysed by means of the kNN method (Downs & Bernard, 2001) 

and in computer science, database queries, such as the search of photos, videos, 

and documents are realised (cf. de Vries et al., 2002, Tuncel & Rose, 2002). A rather 

new field of application represents artificial intelligence, where instance-based 

learning is put into effect with the kNN method (cf. Duch & Grudzinski, 1999). 

Furthermore, text classification, as it is used for spam filtering, author identification, 

or topic identification has to be mentioned (Nakov & Dobrikov, 2004; Kerwin, 2006).  

 

The advantages of the kNN algorithm are its easy understandable basic concept, 

which has an excellent capacity to be generalized for several real problems. 

Available sample information are all directly taken into account for the estimations of 

the missing feature, and the learning process is carried out quickly. Adverse is the 

extremely high effort for computing and capacious disc space requirements. The 

resulting models are not easily interpreted by users and a strong sensitivity 

respective irrelevant or noise-induced input parameters and a lack of extrapolation 

capacity have to be mentioned (Hessenmöller & Elsenhans, 2002; Haendel, 2003). 
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2.2.2 Applications of the kNN Method in Forestry 

Forest applications, basically estimation of specific forest stand parameters, can be 

found in several studies. K-nearest neighbour estimations on basal area and 

diameter distribution were examined by Haara et al. (1997), Maltamo & Kangas 

(1998), Niggemeyer (1999), and Niggemeyer & Schmitd (1999). Tommola et al. (1999) 

developed the kNN method as a wood procurement planning tool. A comparison of 

parametric methods and kNN was undertaken by Hessenmöller & Elsenhans (2002). 

Further examples of kNN estimations of stand parameters or alternatives for 

parametric growth models are described by Malinen (2003a, 2003b) or Nieschulze et 

al. (2005).  

 

Sironen et al. (2001) estimated individual tree growth with the k-nearest neighbour 

and k-most similar neighbour methods. Other valuations on the approximation of 

single tree variables were realised by Holm et al. (1997) or Korhonen & Kangas 

(1997). A comparison of different non-parametric approaches for singles tree 

variables estimation can be found by Malinen et al. (2003). Among another non-

parametric method, the kNN estimation is used to predict the internal quality and 

value of Norway spruce trees. Lemm et al. (2005) thought about basic principles and 

investigated the kNN method for estimating the productivity of timber harvest. 

 

The Pteridophyte and Melastomataceae species richness were estimated by 

Rajaniemi et al. (2003) in the Amazonian rainforests. Alternative methods for the 

estimation of biomass on tree level through consideration of the kNN method were 

investigated by Fehrmann (2006). Beyond this, a wide range of applications can be 

observed in the classification of raster data of digital aerial photographs or satellite 

images, with respect to multi-source inventory sampling procedures. Examples are 

the Finnish multi-source National Forest Inventory (MS-NFI) (e.g. Kilkki & Päivinen, 

1987; Moer, 1987; Tomppo, 1991;  Moer & Stage, 1995; Moer & Hershey, 1999; 

Anttila, 2002; Temesgen, 2003; LeMay & Temesgen, 2004) or the US-American 

National Forest Inventory (q.v. McRoberts et. al., 2002). In this connection, the kNN 

method is used to enable the integration of remotely sensed data and field reference 

plots via the alignment of the spectral signatures of remote sensing sensors and the 
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terrestrial data (Holmström et al., 2001; Stümer, 2004). Furthermore, the kNN 

method was tested in line with the state forest inventory of North Rhine-Westphalia in 

1997 (Tomppo & Pekkarinen, 1997). An application of remote sensing with kNN for 

communal forest inventory was described by Muinonen & Tokola (1990).  

 

Originally, the method was developed for the derivation of maps for metrical data. 

Due to the fact that categorical data disallow average determination, the kNN method 

was extended to the application of categorical data (Köhl et al., 2000). The 

application of the kNN method for categorical data in the form of estimation of 

deadwood occurrence was studied by Stümer (2004). Point accuracy of a non-

parametric method in the estimation of forest characteristics was described by Tokola 

et al. (1996). Instructions for kNN applications in forest resources description and 

estimation were given by Haapanen & Ek (2001). Further studies on adapting kNN 

methods for forest attribute estimation, image classification, and mapping were 

undertaken by Hapaanen et al. (2002) and Haapanen et al. (2004). Cabaravdic 

(2007) studied the efficient estimation of forest attributes with kNN. 
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3 The Study Area 

3.1 Geography, Topography, Climate 

The West African country, Ghana, adjoins the Gulf of Guinea in the south and is 

surrounded by the republics Ivory Coast in the west, Togo in the east and Burkina 

Faso in the north. The study area comprises the off-reserve forests of the forest 

district Goaso in Ghana, excluding all forest reserves and shelterbelts, and was pre-

selected by the Tropenbos Ghana Project, into which this study is incorporated into 

(Tropenbos, 2007). The study area includes forest and agricultural sites of the 

Asunafo Administrative District of the Brong Ahafo Region of Ghana. It covers a total 

area of 2187.5 km2, including 6 forest reserves with a total area of 779.4 km2 

(Tropenbos, 2007). The geographical position lies between latitudes 6° 27’ North and 

7° 00’ North and longitudes 20° 23’ West and 2° 52’ West (figure 3-1).  

 

  

Figure 3-1 The research site are the off-reserve forests of the Goaso forest district in 
the southwest of Ghana. 
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The topography is generally low-lying, ranging from 150 m to 300 m above sea level. 

The research site is located in an ecological zone described as Moist Semi-

deciduous Forest. The rainfall pattern is bimodal, with a major rainy season lasting 

from April to July and a short dry period in August. The minor rainy season begins in 

September and ends in October, followed by a long dry season. Temperatures 

normally vary between 26°C and 29°C, with a mean annual rainfall of about 1500 mm 

to 1750 mm (A.D.A., 2002).  

 

 

3.2 Soil and Vegetation 

The soils of the study area are dominated by the soil type locally classified as forest 

ochrosols, which are very common within the forest zone of Ghana. In the upper 

horizons, they are usually red and well-drained, whereas the middle horizons turn 

into brown, being only moderately well-drained. Food and tree crops like cocoa are 

supported by these slightly acid to neutral forest soils. Unlike ochrosols, which tend 

to be fertile and supportive for food and tree crops like cocoa, the yellowish forest 

oxysols are very acid, leached, and nutrient poor.  

 

However, most nutrients of the ochrosols are concentrated within the upper 30 - 40 

cm, where organic matter has built up over years through decomposition of plant 

biomass. Direct exposure to wind, rain, and sun leads to erosion and leaching, and, 

therefore, to degradation of soil fertility (Hall & Swaine, 1981; Benneh & Agyapong, 

1990).   

 

The vegetation of the research area falls within the category of tropical semi-

deciduous forest with a more or less uneven tree canopy of 10 to 40 m, but also 

emergent trees of more than 60 m total height. In the dry season, some tree species 

are deciduous, though shrubs and tree species of the understorey are evergreen 

(Hall, 1976). Goaso Forest District is divided into off-forest reserve and, alongside, 6 

permanent forest reserves and their corresponding shelter belts. The forest reserves 

are managed by district forest managers of the Forestry Services Division of Ghana 

and are officially not accessible to local people. Large proportions of the forest 



 The Study Area  21 
  

  

reserves feature a dense continuous canopy, hosting a large number of timber tree 

species, such as Ceiba pentandra, Milicia excelsa, Triplochiton scleroxylon, 

Terminalia superba, Entandrophragma species, and others (A.D.A, 2002). Outside 

the forest reserves, farming activities have formed a polymorphic mosaic of different 

land use types, such as cocoa farms as the major cash crop, arable land, and 

patches of secondary forest or fallow land, dominated by the so called “Siam Weed” 

Chromolaena odorata (Rouw, 1991).  

 

 

3.3 Land Use  

In general, land use “refers to management activities, conduced by man directed at a 

tract of land” with the intention to obtain products and/or benefits through using land 

resources (de Bie, 2000).  On the other hand, land cover refers to the vegetation, 

structures, or other features that cover the land.  Satellites give a physical description 

of the earth's surface, while most maps describe the area functionally. Both 

descriptions are referred to as land cover and land use, respectively, and are often 

confused (Barnsley et al., 2001; Fisher et al., 2005).  

 

The major occupation in the off-forest reserves is farming, consisting of cash 

cropping and subsistence cropping (Dias, 2003). Besides mono cropping, 

monoculture and land rotation, the traditional systems of farming are still practiced 

(Asamoah-Boaten, 2003). They have been referred to as shifting cultivation or 

rotational bush fallowing system. Cultivated land is abandoned for a few years in 

order that exhausted soils can recover and nutrients are able to accumulate again. 

These land parcels are termed fallow and shape the typical patch mosaic of the off-

reserve forests with its different succession stages and occurrence. The minimum 

forest fallow period for full recovery of soil fertility lasts 15 years; however, population 

pressure and resultant demand for more farming land, has reduced this period to an 

alarming 4-6 years (Wills, 1962). Land rotation is a modified form of shifting 

cultivation and means that a farmer clears and cultivates a piece of land until it 

becomes infertile (QWOD, 2001). Afterwards, he leaves it for another piece, only to 

return to the original site after some years.  
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Mixed cropping is usually practised. However, cash crops like cocoa and oil palm, 

are cultivated on a larger scale in the form of monocropping. However, they mostly 

start as mixed cropping, then being interplanted with staple crops like plantain 

cocoyam, cassava or maize, in the first few years. Food crops have shorter growth 

cycles, mature faster and may be harvested several times per year. With the passing 

of time and when replacing food crops are not substituted, additional space is 

provided for the remaining and long-lasting cocoa trees or oil palms, meaning that 

food crops will gradually disappear. This results in all imaginable proportions of 

intercropping between cash and food crops. 

 

As regards observations made, several authors (Affum-Baffore, 2001; Asamoa-

Boateng, 2003; Dias, 2003; Voado, 2004; Alo & Pontius, 2006; Bih, 2006) allude to 

different land uses in the off-reserve areas of the Goaso forest district. The following 

list summarises the major land uses, adopting the term land use systems (LUS): 

 

 

3.3.1 Annual Cropping System 

These lands are basically under the cultivation of non-woody crops, which are 

harvestable within a one-year period. However, crops like cassava (Manihot 

esculenta) or plantain (Musa paradisiaca) can remain on the land for further years, so 

crops are not strictly annual. Other crops comprise vegetables, maize (Zea mays), 

cocoyam (Xanthosoma sagittifolium), and wild yam (Dioscorea spp.). Mixed cropping 

is quite common here, but they can also be grown as mono crops and are mostly 

planted for subsistence use and not sold externally. As the cultivated crops do not 

cope well with shade, trees are undesirable and only odd tree individuals, which have 

a particular value for the farmers, are tolerated (Amanor, 1996). 

 

 

3.3.2 Perennial Cropping System 

This land cover is characterised by woody species like cocoa (Theobroma cacao), oil 

palm (Elaeis guineensis), and occasionally teak (Tectona spp.), which take several 
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years to reach maturity for harvesting. During seedlings stage, oil palm and, in 

particular, cocoa require shade from excessive sun. Fruit trees, such as Citrus 

sinensis, Persia americana, and Magnifera indica, are often found in cocoa farms, 

forming a minimum of two storeys: cocoa and fruit tree at the lower level and big 

shade trees in the upper storey. The products are the typical cash crops of the region 

and are cultivated on a large scale in the form of monocultural plantations.   

 

 

3.3.3 Young Fallowing System 

Young fallows may also be labelled shrub or bush fallows. They are the first 

successive stages after agricultural activities have been halted. Farmers leave their 

agricultural fields when soils are exhausted and they intend to come back when 

fertility has been regained. Their absence usually lasts for about 4 years, with a 

rotation cycle of two years (Abbiw et al., 2002). The abandoned land is usually taken 

over by grassy, herbaceous and shrubby vegetation, and, occasionally, some trees. 

With the presence of Chromolaena odorata, it is quickly covered by this weed, which 

dominates and suppresses the herbal layer and even climbs and overgrows shrubs 

and bushes.  

 

 

3.3.4 Old Fallowing System 

Another term for this land use system is tree fallow. It develops from former young 

fallows, which have not been transformed into agricultural fields, or it emerges from 

lands that were intensively logged. These lands are untended for 5 or more years 

(Abbiw et al., 2002). Often these lands are left to collect forest and wood products or 

may become forestland in transition. These areas consist of a dense vegetation of 

young regenerated trees and, perhaps, older trees, but could also refer to secondary 

forest of patches of forest lands. 
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3.3.5 Grass Fallowing System 

Grass fallows normally refer to areas densely covered by tall growing grasses like 

elephant grass (Pennisetum purpureum). The vegetation reaches 3 to 4 meters and 

shows scarcely any trees. These lands are usually found in very low-lying areas 

which are seasonally flooded. The cultivation of rice has caused high levels of 

degradation on these sites. 

 

 

3.4 Land Use Types  

For this study, ten land uses were identified and described. They are basically 

adopted and deduced from the major land use types described before, but do also 

include land cover to some extent, where clear functional aspects were ambiguous. 

With respect to appearance and growth pattern or proportions and composition, 

which would affect the feasibility of a further classification with the methods of this 

study, a selection was made and adjusted. To distinguish the land uses defined in 

similar studies and described above, the term land use type will, therefore, be 

adopted for this study. They are:  

 

 

3.4.1 Bamboo 

The bamboo species Bambusa vulgaris, as a major non-timber forest resource, is 

widely spread in the study area, though it does not contribute high proportions of 

overall surface cover. Bamboo clumps can be found individually dispersed, 

consisting of less than hundred canes, covering about 100 m2. More frequently 

observable are clusters of several clumps, mostly along or close to streams. 

Oftentimes, they aggregate to vast numbers of clusters, covering an area of more 

than one hectare, with individual clumps consisting of several hundred canes. Where 

bamboo clusters emerge, they are the dominant species, hardly hosting any sort of 

vegetation underneath. Nevertheless, single overshadowing trees may happen to 

appear. The use of bamboo is manifold and ranges from articles of daily use and in 
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the household, over furniture up to construction. Examples of bamboo occurrences in 

the study area are shown in figure 3-2. 

 

  

Figure 3-2 The NTFP bamboo is basically found along small streams (left) or in 
areas with good water supply. Clumps may heavily be exploited (right), 
which causes drastic changes in reflection. 

 
 
 

3.4.2 Banana/Plantain Plantation 

Banana and plantain are of the genus Musa. In the tropical regions of the world, 

plantain (Musa paradisiaca) is a staple consistent crop used as a basic food, in 

contrast to the soft sweet banana, which grows wild and is used as fruit in the area. 

In this study, both expressions are used synonymously and refer to the plantain. 

Land use types in this category have a diverse appearance, depending on whether 

they are young or mature plantations. Older plantations (figure 3-3) consist of more 

biomass and tend to cover more portions of bare soil, while young plantations host 

smaller individuals, display more portions of bare soil and happen to be intercropped 

by annual crops. For sampling, a proportion of maximal 20 % surface covered with 

trees or scrubs is tolerated. 
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Figure 3-3 Mature banana plantations are likely to reach a surface cover of almost 
100 per cent, but shade trees within these lands influence reflection (left). 
Young plantings of plantain are often intercropped with vegetables, 
exposed to seasonal weeding activities (right).  

 

 

3.4.3 Bush Fallow 

For this study, bush fallows are defined by a vegetation height of 3 to 15 metres total 

height and a minimum surface cover of 20 % of bush, shrub or tree species (figure 3-

4).  

 

  

Figure 3-4 Young bush fallow with considerable proportions of herbaceous plants 
(left) and old, dense stands (right). 
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3.4.4 Cocoa Plantation 

Usually, cocoa plantations (Theobroma cacao), are intensively maintained. They 

have developed with a closed canopy of shading trees, dispersed tree individuals or 

even without any cover beyond it (figure 3-5).  

 

  

Figure 3-5 Widely homogeneous cocoa plantation in the form of a monoculture (left). 
In contrast, cocoa trees occur planted to a considerable proportion 
underneath an open canopy of shade trees, in the form of a multi land use 
mixture, e.g. with plantains (right). 

 

 

3.4.5 Elephant Grass 

Elephant grass (Pennisetum purpureum) usually populates former rice fields when 

they are poor of nutrients and abandoned by farmers (figure 3-6). The areas are very 

low-lying and seasonally flooded. This land use type is equivalent to the formerly 

described land use “grass fallowing system”. Tree and shrub species are very rare in 

these areas, but appear to cumulate in dryer zones. The total height may reach up to 

4 metres. 
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Figure 3-6 Abandoned rice fields on lowlands are likely to turn into densely 
vegetated areas of elephant grass (background). Lush growth of cocoyam 
(foreground) and raphia palms (centre) point to a stream.   

 
 

3.4.6 Grassy Vegetation 

The grassy vegetation type is defined as exhibiting a vegetation height of 0 to 3 

metres total height, with the limitation that the vegetation is dominated by grasses, 

including pastures and grass species like Panicum maximum, Cynodon nlemfuensis, 

Chloris gayana, Andropogon gayanus, Bracharia ruziziensis, Tripsacum luxum, 

Setaria sphacelata, and Cenchrus ciliaris. Often, these areas are seasonally flooded, 

which has reduced the propagation of competitive herbaceous vegetation (figures 3-7 

& 3-10). 

 

  

Figure 3-7 Small patch of grassy vegetation surrounded by bush fallow (left). A large 
area covered with grassy vegetation is shown in the right photo, with off-
reserve forest in the background.  
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3.4.7 Herbaceous vegetation 

Similar to that previously mentioned, this vegetation type covers all areas with a 

vegetation height of 0 to 3 metres total height. In contrast to the grassy vegetation 

type, this land use type consists mainly of herbs and herbaceous vegetation. In this 

category, most annual crops and some perennials are included, i.e. cassava 

(Manihot esculenta), maize (Zea Mays), cocoyam (Xanthosoma Sagittifolium), wild 

yam (Dioscorea spp.), or vegetables (figure 3-8). Recently abandoned agricultural 

fields, successively covered by herbaceous vegetation, particularly areas overgrown 

with Chromolaena odorata, also fall to this category. 

 

  

Figure 3-8 Herbaceous vegetation in this study includes areas planted with annual 
crops like maize and perennials like cassava and cocoyam (left), or  
abandoned cropland, successively populated by weedy herbaceous 
vegetation (right). 

   
 

3.4.8 Oil Palm Plantation 

These areas exhibit regular lines, planted with oil palm (Elaeis guineensis). Similar to 

the cash crop cocoa, these plantations are intensively maintained. However, mature 

oil palm plantations do not go together with any tall competitive vegetation or even 

trees. A photo of the oil palm compared with the raphia palm is shown in figure 3-9. 
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Figure 3-9 Besides cocoa, oil palms (left) are an important cash crop in the region, 
not to be mistaken with the raphia palm (right), which is a non-timber 
forest product, used for bindings or housing.  

 

 

3.4.9 Raphia Palm 

Normally, raphia palms (Raphia hookeri) occur sporadically or in loose groups along 

slow-moving streams or in swampy areas. Nevertheless, they can also be found in 

dense “raphia palm forests”, if the required wet conditions are found in large areas 

(figures 3-9 & 3-10).  

  

Figure 3-10 Raphia palms (left) require wet conditions for germination and growth. In 
marshy site conditions, large proportions of raphia palms may occur, 
whereas grassy vegetation only colonises the marsh margins, with the 
ability to resist only seasonal flooding (right).   
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3.4.10 Trees/Forest  

This land use type refers to all areas with a vegetation type of more than 15 metres 

of total height. Small forest patches or groups of trees are included in this land use 

type, if they cover at least 20 % of the surface, except for apparent cocoa plantations. 

Single tree giants, like Ceiba pentandra (figure 3-11), are also included in this 

category.  

 

  

Figure 3-11 Single giant trees (left) and loose stands of forest (right) are found all  
over the study area. Even though standing on a farmer’s property, 
timber belongs to the community, not the landowner.  
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4 Remote Sensing Data 

ASTER is the sensor mounted on EOS- (Earth Observing System) AM1 (renamed 

TERRA), the first platform of the Earth observation programme from space (EOS 

programme) which the NASA promotes. TERRA is launched in a sun-synchronous 

orbit, and passes the equator from north to south at 10:30 in the morning, local time 

(ASTER GDS, 2007). The data are available by searching and ordering those data 

from the Earth Observing System Data Gateway (EDG).  

 

The ASTER products cover the spectral range of 0.52 to 11.65 microns with 14 

bands. 15 m, 30 m, and 90 m spatial resolutions are offered in the visible and near 

infrared spectral region, the shortwave infrared spectral region, and the thermal 

infrared spectral region, respectively. For band 3 (0.76 microns to 0.86 microns), both 

the usual nadir-looking telescope and a backward-looking telescope are used to 

produce stereoscopic images acquired in the same orbit. 

 

 

4.1 ASTER Image 

In this study an ungeoreferenced ASTER standard product level 1B was used (figure 

4-1). The image was taken on the 26th February, 2003. Out of 14 bands of the 

ASTER image, bands 1, 2, 3N, and 3B with a resolution of 15 m, and bands 4, 5, 6, 

7, 8, and 9 with a resolution of 30 m were taken.   

 

 

4.1.1 Image Geometric Correction 

For the geo-referencing of the satellite image, existing models based on precise 

topographic maps were not applicable and official basing points were not available. 

Present maps were more than 30 years old, suffering from constantly moving rivers, 

settlements and lines of communication. Therefore, separate basing points were 

collected and applied to the image geometric correction function “Rubber Sheeting 

Model” of the software ERDAS IMAGINE.  



 Remote Sensing Data  33 
  

  

 

Figure 4-1 The ungeoreferenced ASTER 1B image of the study area taken on the 
26th February, 2003. The well-defined dark polygon area middle left 
shows the protected forest reserves and shelter belts of the Goaso forest 
district.  

   

 

4.1.1.1 Selection of Basing Points 

On the satellite image of the area, small-scaled, well-defined topographic features, 

such as crossroads and intersections, artificial water bodies and reservoirs, isolated 

farmhouses and roofs of schools are excellent in serving as basing points to geo-

reference the satellite image (figure 4-2). Such basing points were identified on the 

image and in the field, and their geographic coordinates were recorded. 
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Figure 4-2 Topographic features which were used to create basing points for the 
geometric image correction. From the left: road intersection, artificial 
drinking water reservoirs, isolated farm surrounded by dense vegetation, 
single house with brand-new aluminium roof. 

 
 

4.1.1.2 Error of the Geometric Image Correction 

A total of 300 points were taken to identify and describe several locations to serve as 

potential basing points, or ground control points for the determination of the expected 

errors of the image geometric correction. This high number of points was ispositional 

in that various locations (e.g. intersections, houses, etc.) were defined by more than 

one point (figure 4-3). This enabled a clear identification of a recorded feature in the 

image and visualized obvious GPS errors and deviations. It turned out that the best 

results for the geometric correction were achieved by only using four basing points at 

the corners of the study area.  

 

 

Figure 4-3 The expected error of the image geometric correction was determined via 
control points. These control points were overlaid with the satellite image, 
making deviations visible. 

 

Within this tetragon, 33 locations remained to serve as ground control points (figure 

4-4). After the image geometric correction process, the control points served to 

evaluate the accuracy of the geo-referenced image.  
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The evaluation resulted from a visible comparison of control points of a specific 

location (e.g. farmhouse, intersection, etc.) and their corresponding location on the 

satellite image. Due to the image resampling procedure “nearest neighbour”, which 

was chosen to avoid spatial averaging of pixel reflection values, the deviations of the 

corrected image can only be estimated with respect to the image resolution of 15 

metres.  

 

 

Figure 4-4 Distribution of the basing and control points in the study area of the 
Goaso forest district. 

 
The four categories of deviation were defined as: ‘below 5 m’, ‘5 - 10 m’, ’10 - 15 m’, 

and ‘above 15 m’. Out of the 33 test points, 26 points showed a deviation below 5 m, 

5 points had a deviation of 5 to 10 m, and two points were found with a deviation of 

10 to 15 m (table 4-1). There were no points found with a deviation of more than 15 
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metres (pixel size). All points with a deviation of more than 5 metres were found very 

marginally on the satellite image. This leads to the conclusion that the geometrically 

corrected image features a deviation error of up to 5 metres in most parts and slightly 

higher in a minor proportion. 

 

Table 4-1 Deviation errors of control points after the geometric image correction. 

Deviation  Number Proportions 

      < 5 m 26     79 % 

  5 - 10 m 5     15 % 

10 - 15 m  2       6 % 

    > 15 m 0       0 % 

total 33   100 % 

 

 

4.1.2 Generation of Extra Bands 

The ASTER image used in this study possesses the 10 original bands 1, 2, 3N, 3B, 

4, 5, 6, 7, 8, and 9. Preliminary tests indicated that the classification accuracy of the 

kNN estimations increases with a higher number of applied bands, or, at least, by 

specific selection of band combinations. Stümer (2004) maintained that to acquire the 

highest number of correct classified pixel it was necessary to use all available bands, 

including different scenes, and bands which were generated by mathematical 

combination of the original bands (e.g. NDVI). For this study only one satellite image 

was available, featuring heavy cloud cover in the southern parts of the image, but at 

acceptable intensity in the areas of interest. Therefore, several spectral enhancement 

functions – offered by the software ERDAS IMAGINE – were applied and added to 

the original bands.  

 

The Principal Component Analysis (PCA) is a procedure used to reduce 

multidimensional data sets to lower dimensions for analysis. It compresses 

redundant data values into fewer bands, which are often more interpretable than the 

source data. PCA is mathematically defined as an orthogonal linear transformation 

that transforms the data to a new coordinate system, such that the greatest variance 
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by any projection of the data comes to lie on the first coordinate (called the first 

principal component), the second greatest variance on the second coordinate, and so 

on. 

 

PCA can be used for dimensionality reduction in a data set by retaining those 

characteristics of the data set that contribute most to its variance, by keeping lower-

order principal components and ignoring higher-order ones. Such low-order 

components often contain the "most important" aspects of the data. But this is not 

necessarily the case, depending on the application. Further information on PCA can 

be found with Köhl & Lautner (2001) and Lautner (2001). 

 

Indices are used to generate images by mathematical combination of the pixel values 

of several bands. Often they are used for vegetation analysis and to minimize shade 

effects of satellite images. A traditional index to characterize vegetation in remote 

sensing data is the Normalized Difference Vegetation Index (NDVI) (Hildebrandt 

1996; Richards & Xiuping, 1999). The NDVI is a simple numerical indicator that can 

be used to analyze remote sensing measurements, and assess whether the target 

being observed contains live green vegetation or not. The NDVI uses characteristic 

reflection differences between visible light and near infrared (Equation 4.1). 

 

REDNIR

REDNIR
NDVI

+

−
=         (4.1) 

      

RED and NIR stand for the spectral reflectance measurements acquired in the red 

and near-infrared regions, respectively. The spectral reflectance measurements are 

themselves ratios of the reflected over the incoming radiation in each spectral band 

individually, hence they take on values between 0.0 and 1.0. By design, the NDVI 

itself thus varies between -1.0 and +1.0. Subsequent work has shown that the NDVI 

is directly related to the photosynthetic capacity and hence energy absorption of plant 

canopies (Sellers, 1985; Myneni et al., 1995). 

 

Further image enhancements offered by the software ERDAS IMAGINE (version 

8.5), were applied to generate further bands. In some cases, the functions were 
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optimized for application on Landsat images. As it was the aim to only generate 

additional bands by mathematical functions, they were applied and modified for the 

use on the present ASTER image. A complete list of all bands and their origin is 

shown in table 4-2. 
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Table 4-2 List of all used bands and their origin. The band numbers in the first 
column refer to the newly generated image file; the names in the fourth 
column refer to the original ASTER file.   

 

Band 

No.  

Spectral 

Enhancement 

Band 

Name/Function 

Prior  

Appl. of 

Haze/ 

Noise 

Red. Name of Output file 

1 original band 1 no nac_123n3b456789_i_iz.img   
2 original band 2 no nac_123n3b456789_i_iz.img   
3 original band 3n no nac_123n3b456789_i_iz.img   
4 original band 3b no nac_123n3b456789_i_iz.img   
5 original band 4 no nac_123n3b456789_i_iz.img   
6 original band 5 no nac_123n3b456789_i_iz.img   
7 original band 6 no nac_123n3b456789_i_iz.img   
8 original band 7 no nac_123n3b456789_i_iz.img   
9 original band 8 no nac_123n3b456789_i_iz.img   
10 original band 9 no nac_123n3b456789_i_iz.img   
11 IR/R 2/1 no irr_2d1.img 
12 IR/R 3n/2 no irr_3d2.img 
13 IR/R 3b/2 no irr_4d2.img 
14 IR/R 3b/3n no irr_4d3.img 
15 NDVI 2-1/2+1 no ndvi_2-1d2+1.img 
16 NDVI 3n-2/3n+2 no ndvi_3-2d3+2.img 
17 NDVI 3b-2/3b+2 no ndvi_4-2d4+2.img 
18 NDVI 3b-3n/3b+3n no ndvi_4-3d4+3.img 
19 SQRT(IR/R) sqrt(2/1) no sqrt_2d1.img 
20 SQRT(IR/R) sqrt(3n/2) no sqrt_3d2.img 
21 SQRT(IR/R) sqrt(3b/2) no sqrt_4d2.img 
22 SQRT(IR/R) sqrt(3b/3n) no sqrt_4d3.img 
23 TNDVI sqrt(2-1/2+1)+0.5 no tndvi_sqrt2-1d2+1+05.img 
24 TNDVI sqrt(3n-1/3n+1)+0.5 no tndvi_sqrt3.2d3+2+05.img 
25 TNDVI sqrt(3b-1/3b+1)+0.5 no tndvi_sqrt4-2d4+2+05.img 
26 TNDVI sqrt(3b- no tndvi_sqrt4-3d4+3+05.img 
27 Veg.Index 2-1 no veg_2-1.img 
28 Veg.Index 3n-2 no veg_3-2.img 
29 Veg.Index 3b-2 no veg_4-2.img 
30 Veg.Index 3b-3n no veg_4-3.img 
31 clay 5/7 no clay_5d7.img 
32 ferro 5/4 no fer_5d4.img 
33 hyd 5/7,3n/1,3b/3n no hyd_5d7_3d1_4d3.img 
34 hyd 5/7,3n/1,3b/3n no hyd_5d7_3d1_4d3.img 
35 hyd 5/7,3n/1,3b/3n no hyd_5d7_3d1_4d3.img 
36 iron 3n/1 no iro_3d1.img 
37 min 3/7,5/3b,3n/1 no min_5d7_5d4_3d1.img 
38 min 3/7,5/3b,3n/2 no min_5d7_5d4_3d1.img 
39 min 3/7,5/3b,3n/3 no min_5d7_5d4_3d1.img 
40 r31 3n/1 no r31_3d1.img 
41 Principal 1 no prn_cmp_iz_10_01.img 
42 Principal 2 no prn_cmp_iz_10_01.img 
43 Principal 3n no prn_cmp_iz_10_01.img 
44 Principal 3b no prn_cmp_iz_10_01.img 
45 Principal 4 no prn_cmp_iz_10_01.img 
46 Principal 5 no prn_cmp_iz_10_01.img 
47 Principal 6 no prn_cmp_iz_10_01.img 
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48 Principal 7 no prn_cmp_iz_10_01.img 
49 Principal 8 no prn_cmp_iz_10_01.img 
50 Principal 9 no prn_cmp_iz_10_01.img 
51 Tasseled Cap 1 no tas_cap_123n3b_iz.img  
52 Tasseled Cap 2 no tas_cap_123n3b_iz.img  
53 Tasseled Cap 3 no tas_cap_123n3b_iz.img  
54 Tasseled Cap 4 no tas_cap_456789_iz.img    
55 Tasseled Cap 5 no tas_cap_456789_iz.img    
56 Tasseled Cap 6 no tas_cap_456789_iz.img    
57 Tasseled Cap 7 no tas_cap_456789_iz.img    
58 Tasseled Cap 8 no tas_cap_456789_iz.img    
59 Tasseled Cap 9 no tas_cap_456789_iz.img    
60 Destripe  1 no des_tm_r_iz.img    
61 Destripe  2 no des_tm_r_iz.img    
62 Destripe  3n no des_tm_r_iz.img    
63 Destripe  3b no des_tm_r_iz.img    
64 Destripe  4 no des_tm_r_iz.img    
65 Destripe  5 no des_tm_r_iz.img    
66 Destripe  6 no des_tm_r_iz.img    
67 Destripe  7 no des_tm_r_iz.img    
68 Destripe  8 no des_tm_r_iz.img    
69 Destripe  9 no des_tm_r_iz.img    
70 Haze Reduction 1 no haz_red_h_iz.img   
71 Haze Reduction 2 no haz_red_h_iz.img   
72 Haze Reduction 3n no haz_red_h_iz.img   
73 Haze Reduction 3b no haz_red_h_iz.img   
74 Haze Reduction 4 no haz_red_h_iz.img   
75 Haze Reduction 5 no haz_red_h_iz.img   
76 Haze Reduction 6 no haz_red_h_iz.img   
77 Haze Reduction 7 no haz_red_h_iz.img   
78 Haze Reduction 8 no haz_red_h_iz.img   
79 Haze Reduction 9 no haz_red_h_iz.img   
80 Noise Reduction 1 no nos_red.img  
81 Noise Reduction 2 no nos_red.img  
82 Noise Reduction 3n no nos_red.img  
83 Noise Reduction 3b no nos_red.img  
84 Noise Reduction 4 no nos_red.img  
85 Noise Reduction 5 no nos_red.img  
86 Noise Reduction 6 no nos_red.img  
87 Noise Reduction 7 no nos_red.img  
88 Noise Reduction 8 no nos_red.img  
89 Noise Reduction 9 no nos_red.img  
90 ori geo 1 yes hze_nse_red_123n3b456789_iz.img  
91 ori geo 2 yes hze_nse_red_123n3b456789_iz.img  
92 ori geo 3n yes hze_nse_red_123n3b456789_iz.img  
93 ori geo 3b yes hze_nse_red_123n3b456789_iz.img  
94 ori geo 4 yes hze_nse_red_123n3b456789_iz.img  
95 ori geo 5 yes hze_nse_red_123n3b456789_iz.img  
96 ori geo 6 yes hze_nse_red_123n3b456789_iz.img  
97 ori geo 7 yes hze_nse_red_123n3b456789_iz.img  
98 ori geo 8 yes hze_nse_red_123n3b456789_iz.img  
99 ori geo 9 yes hze_nse_red_123n3b456789_iz.img  
100 IR/R 2/1 yes atc_irr_2d1.img 
101 IR/R 3n/2 yes atc_irr_3d2.img 
102 IR/R 3b/2 yes atc_irr_4d2.img 
103 IR/R 3b/3n yes atc_irr_4d3.img 
104 NDVI 2-1/2+1 yes atc_ndvi_2-1d2+1.img 
105 NDVI 3n-2/3n+2 yes atc_ndvi_3-2d3+2.img 
106 NDVI 3b-2/3b+2 yes atc_ndvi_4-2d4+2.img 

107 NDVI 3b-3n/3b+3n yes atc_ndvi_4-3d4+3.img 



 Remote Sensing Data  41 
  

  

108 SQRT(IR/R) sqrt(2/1) yes atc_sqrt_2d1.img 
109 SQRT(IR/R) sqrt(3n/2) yes atc_sqrt_3d2.img 
110 SQRT(IR/R) sqrt(3b/2) yes atc_sqrt_4d2.img 
111 SQRT(IR/R) sqrt(3b/3n) yes atc_sqrt_4d3.img 
112 TNDVI sqrt(2-1/2+1)+0.5 yes atc_tndvi_2-1d2+1+05.img 
113 TNDVI sqrt(3n-1/3n+1)+0.5 yes atc_tndvi_3-2d3+2+05.img 
114 TNDVI sqrt(3b-1/3b+1)+0.5 yes atc_tndvi_4-2d4+2+05.img 
115 TNDVI sqrt(3b- yes atc_tndvi_4-3d4+3+05.img 
116 Veg.Index 2-1 yes atc_vi_2-1.img 
117 Veg.Index 3n-2 yes atc_vi_3-2.img 
118 Veg.Index 3b-2 yes atc_vi_4-2.img 
119 Veg.Index 3b-3n yes atc_vi_4-3.img 
120 clay 5/7 yes atc__cm_5d7.img 
121 ferro 5/4 yes atc__fm_5d4.img  
122 hyd 5/7,3n/1,3b/3n yes atc__hc_5d7_3d1_4d3.img 
123 hyd 5/7,3n/1,3b/3n yes atc__hc_5d7_3d1_4d3.img 
124 hyd 5/7,3n/1,3b/3n yes atc__hc_5d7_3d1_4d3.img 
125 iron 3n/1 yes atc__io_3d1.img   
126 min 3/7,5/3b,3n/1 yes atc__mc_5d7_5d4_3d1.img 
127 min 3/7,5/3b,3n/2 yes atc__mc_5d7_5d4_3d1.img 
128 min 3/7,5/3b,3n/3 yes atc__mc_5d7_5d4_3d1.img 
129 r31 3n/1 yes atc__r31_3d1.img   
130 Principal 1 yes atc_prn_cmp_1-10_iz.img  
131 Principal 2 yes atc_prn_cmp_1-10_iz.img  
132 Principal 3n yes atc_prn_cmp_1-10_iz.img  
133 Principal 3b yes atc_prn_cmp_1-10_iz.img  
134 Principal 4 yes atc_prn_cmp_1-10_iz.img  
135 Principal 5 yes atc_prn_cmp_1-10_iz.img  
136 Principal 6 yes atc_prn_cmp_1-10_iz.img  
137 Principal 7 yes atc_prn_cmp_1-10_iz.img  
138 Principal 8 yes atc_prn_cmp_1-10_iz.img  
139 Principal 9 yes atc_prn_cmp_1-10_iz.img  
140 Tasseled Cap 1 yes atc_tas_cap_1-10_r_iz.img  
141 Tasseled Cap 2 yes atc_tas_cap_1-10_r_iz.img  
142 Tasseled Cap 3 yes atc_tas_cap_1-10_r_iz.img  
143 Tasseled Cap 4 yes atc_tas_cap_1-10_r_iz.img  
144 Tasseled Cap 5 yes atc_tas_cap_1-10_r_iz.img  
145 Tasseled Cap 6 yes atc_tas_cap_1-10_r_iz.img  
146 Tasseled Cap 7 yes atc_tas_cap_1-10_r_iz.img  
147 Tasseled Cap 8 yes atc_tas_cap_1-10_r_iz.img  
148 Tasseled Cap 9 yes atc_tas_cap_1-10_r_iz.img  
149 Destripe  1 yes dst_1-10_r_iz.img 
150 Destripe  2 yes dst_1-10_r_iz.img 
151 Destripe  3n yes dst_1-10_r_iz.img 
152 Destripe  3b yes dst_1-10_r_iz.img 
153 Destripe  4 yes dst_1-10_r_iz.img 
154 Destripe  5 yes dst_1-10_r_iz.img 
155 Destripe  6 yes dst_1-10_r_iz.img 
156 Destripe  7 yes dst_1-10_r_iz.img 
157 Destripe  8 yes dst_1-10_r_iz.img 
158 Destripe  9 yes dst_1-10_r_iz.img 
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5 Methods 

5.1 Inventory Design/Data Acquisition 

The collection of terrestrial data was predominantly limited by the sampling design of 

the study of Bih (2006), as the terrestrial data collections of the two studies were 

executed cooperatively. Bih was using two types of sampling designs. The first was 

named “adaptive cluster sampling with a systematic base”, which was carried out 

with random starting points along two per cent randomly selected rivers and streams 

of the study area. The second was called “systematic cluster sampling design” based 

on a systematic grid of 7 by 7 km. Plots in each category described a square of 50 

metres. 

 

For some reasons, the corners of these systematic square plots were not sufficient to 

function as the only coordinates for an adequate sample design for this study. On the 

one hand, the study area consisted of an inhomogeneous mosaic of different land 

uses, randomly covered by trees, and strongly varying in size and shape. This made 

it necessary to locate the defined land use types selectively, to enable minimum plot 

size for definite identification on the satellite image, to ensure adequate sample size 

for each land use type and to avoid negative reflection influences of shading trees or 

land use boundaries. On the other hand, some land use types occur rarely or solitary 

(e.g. raphia palm), while others (e.g. oil palm, cocoa) happen to appear excessively 

and frequently.  

 

 

 

 

 

 

 

 

 

 



 Methods  43 
  

  

In the surroundings of the 50 m sample squares, either along rivers, or based on the 

7 by 7 km grid, typical samples of the described and demanded land use types were 

selectively located, the geographic coordinates of the variable sample circle centres 

were acquired using a GPS receiver (description chapter 5.2), and further information 

and characteristics on the vegetation were recorded:   

• main land use type 

• proportions of other land use types, including shade trees 

• average vegetation height 

• radius of the variable circle plot (respectively crown diameter for individual 

giant trees) 

• date of record 

• extent of exploitation (only for bamboo) 

 

Only sample plots with a circle radius of at least 15 m were selected. With the 

software Arc View, a buffer around each plot was generated dependent on the circle 

radius (figures 5-1 & 5-2). Afterwards, each encircled pixel was exported with its 

geographic coordinates and the code for the registered main land use type (table 5-

1).  

 

 

Figure 5-1 ‘Bamboo’ and ’non-bamboo’ plots are shown along a stream (invisible). 
The circles correspond with the recorded circular plots of the recorded 
land use types. Completely encircled pixels were identified, labelled, and 
entered the kNN data base.  
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Table 5-1 Cypher code of the land use types and sample size for each category.  
 

Land Use Type Code Sample Size 

Bamboo 1 309 

Banana/Plantain 2 325 

Bush Fallow 3 600 

Cocoa Plantation 4 573 

Elephant Grass 5 111 

Grassy Vegetation 6 171 

Herbaceous vegetation 7 319 

Oil Palm Plantation 8 317 

Raphia Palms 9 118 

Trees/Forest 10 517 

total  3360 

 
 

 
 
Figure 5-2 Distribution of the terrestrial sample plots in the study area. 
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5.2 GPS Receiver Specifications and Position Accuracy 

The acquisition of geographic coordinates were conducted using the GPS receiver 

‘Garmin GPS II plus’ (Garmin, 1997). The settings of the receiver offer a variety of 

position formats and map dates. For this study, the position format UTM (Universal 

Transverse Mercator), zone 30N, and the map datum World Geodetic System 1984 

(WGS 84) were chosen. 

  The receiver’s position accuracy is indicated to be within 15 metres (Garmin, 1997). 

Position accuracies can be improved with the receiver’s average function, which 

acquires the current position every few seconds and calculates an average of the 

accumulated position values. For position acquisition, this function was applied for a 

few minutes during site assessment. It was desired that the estimated position error 

(EPE) of the receiver was lower than five metres before registering, though this level 

was not reached in dense forest patches. EPEs below five metres imply a fairly good 

position accuracy, whereas an independent verification of one hundred records of a 

specific location over several days showed, that even with the EPE-average function, 

the receiver’s position accuracy exhibits errors of up to 9 metres (table 5-2), even 

though this occurred only in 1 % of the records. An actual error below five metres 

was found for 95 % of the records. The geographical spread is illustrated in figure    

5-3. 

 

Table 5-2 Distribution of the receiver’s geographic error on the several accuracy 
classes. 

 

Error [m] 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 ∑ 

No.  29 38 16 6 6 3 1 0 1 100 
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Figure 5-3 Geographical spread of the receiver´s position error of a hundred records 
on a specific location. The individual records are uncovered by random 
disarrangement of 0.1 to 0.5 metres, as the minimum unit measurement 
of the GPS receiver is one metre. The marked point defines the averaged 
position.  

 
 

5.3 kNN Method 

This study analyses the capacity to classify and produce distribution maps through 

the combination of terrestrial samples and remote sensing data with the application 

of the kNN method. Based on pixels, whose geographic position corresponds with 

sample points of the field surveys, all pixels are classified. Even pixels, which do not 

match with a terrestrial sample, are estimated to belong to a specific class. 

 

 

5.3.1 The kNN Method for Metric Data 

With the kNN method, stand variables (e.g. stand volume, stem number or biomass) 

result from the average value of the k neighbour samples. These neighbours are 

weighted by the distance value, which describes the spectral similarity (figure 5-4). 
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Figure 5-4 The kNN method – With the already known characteristics of pixels (x1 to 
x6), the unknown pixel is classified through an estimator. 

 

Each pixel contains spectral information for each channel in the form of a digital 

value. The spectral difference between two pixels is defined with the use of a metrics. 

A common distance value is the Euclidean distance, d(i)p, which has to be calculated 

from the target pixel p, to every sample pixel i, for which a terrestrial observation is 

available. If x1 and x2 are the characteristic vectors of two pixels whose similarity 

have to be tested, the Euclidean distance d(x1, x2) between them is 
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where N is the number of the spectral components (e.g. used channels). 

 

A Euclidean distance value, where the correlative relation between characteristics 

remains unconsidered, is the Mahalanobis distance (Bortz, 1993). 
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with ),( 21 xx
c = element (x1,x2) from the inverses of the variance-covariance-matrix. 

 

A generalised Euclidean distance is described as the Minkowski-r-distance (Bortz, 

1993). By replacing the exponent 2 (respectively ½) with r (respectively 1/r), a 

generalisation  of the Euclidean distance equation (5.1) is the result: 
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From r = 1, the City-Block-Metric results (Bortz, 1993), of which the distance of two 

points results from the sum of the attribute differences. 

 

By variation of the metric coefficient, attribute differences become weighted 

differently. With r = 1, all attribute differences are weighted equally, irrespectively of 

their term. With r = 2, bigger differences get a stronger loading compared to smaller 

differences. With r = ∞, the biggest attribute difference is weighted 1, all others 

become weighted 0. 

 

Objects exhibit a different influence on the intensity, spatial variability, and the 

spectral range of the reflection. The spectral range with a wide variability in the reflex 

reflection is often more practical for the differentiation of attribute classes of an 

attribute. The variability of the spectral information varies within the channels. To 

consider channels with a wide variability in the reflex reflection and to weight their 

influence on the differentiation of attribute classes of an attribute, the parameter aj for 

the weighting of the channels has been introduced (Franco-Lopez et al., 2001). 
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If the parameter aj for j = 1,…N is chosen equal to 1, all channels have the same 

weight when calculating the distance. However, each channel can adequately be 

linked by a weighting aj.  
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The k = 1 to k = 50 nearest spectral neighbours, i.e. pixel with corresponding 

terrestrial observations are used for the following analyses. Pixel which meet the 

stipulation  

 

d(1),p ≤ d(2),p ≤…≤ d(k),p ≤…≤ d(n),p      (5.5) 

 

in the spectral feature space, where d(k),p is the distance of the k-nearest neighbours 

and n is the number of available pixels with corresponding terrestrial data. All pixels 

with distances in the spectral feature space greater than d(k),p of the observed pixel p 

are ignored. With k = 1, only the pixel with the lowest spectral difference is been used 

for the further calculations. The higher the values for k that are used, the more pixels 

with corresponding terrestrial records affect the estimation of the target value, which 

contains no terrestrial records. The use of k samples means that the random scatter, 

caused by signal errors, may be narrowed.  

 

The distance values do only represent the differences between the spectral 

information of two pixels. To integrate the attribute values from the terrestrial 

observations, which are allocated to the k-nearest pixels, for further calculations, they 

have to be weighted according to their spectral distance. Hence a weighting w(i),p is 

calculated for each extracted pixel. 
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The more similar the spectral information is, the higher is the weighting and, 

therefore, the influence on the attribute value, which has to be calculated. 
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Maltamo & Kangas (1998) have modified (5.5) to determine the pixel weighting  
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where k describes the number of nearest neighbours and t influences the weighting 

of the distance. The bigger t is chosen, the bigger is the weighting of a pixel with a 

narrow spectral distance. The sum of all weightings piw ),('  
is always 1. 

 

The attribute value of a pixel sought-after is calculated with help of the attribute 

values, derived from terrestrial sampling, brought into correlation with the 

corresponding weighted spectral data of the k-nearest pixels. 

 

m̂ p  = ∑
=

k

i

pipi mw
1

),(),(         (5.8)  

 

where pim ),( are the terrestrially recorded values of i = 1,…k pixels, which are located 

nearest to pixel p in the spectral space. The process is repeated for every pixel and 

results in intensive computations, depending on the resolution of the sensor and the 

size of the inventory area (Stümer, 2004).  

 

By variation of the variables k, r, t, and aj, influence on the estimator may be exerted. 

Calculations with varying values for the parameters k, r, and t are made. For an 

easier comparability, the value 1 was chosen for the variables a1, a2, …, aj. To 

determine the optimal settings for the variables, the overall accuracies of the kNN 

estimations were calculated and alternatives with higher accuracies were identified. 
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5.3.2 The kNN method for Categorical Data 

The estimation procedures shown above are only defined for interval- and absolutely 

scaled data. Under the assumption of the permutation variance, they can not be 

transfused on rank- or scaled data. An approach to the solution of the problem is to 

forego a weighted averaging to derive the referable attribute class through the 

probability of the observed pixel. 

 

Initially, as in the metric model, the distance from the k-nearest neighbours in the 

spectral feature space to pixel p is defined and the weightings piw ),(  are derived 

(equation 5.1 to 5.6). An attribute j with t attribute classes is dedicated to each of the 

k reference pixel. For each of the t attribute classes of j, the sum of the weights piw ),( , 

jpw , ,  are calculated.  
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From the set of the t weights jpw , , the maximum is defined and the corresponding 

attribute j with the corresponding attribute class t is allocated to pixel p (Stümer, 

2004).  

 

 

5.3.3 Operation of the kNN Method 

For the application of the kNN programme of Stümer (2004), two input files are 

necessary, an ‘image file’ and a ‘field sample file’. The required aerial data (‘image 

file’), which are necessary for the kNN calculations, are converted from the geo-

referenced ASTER image into an ASCII-file. For this purpose, the utility “pixel to 

if pixel p is dedicated to attribute j 

in all other cases 
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ASCII” of the software ERDAS IMAGINE (ERDAS Inc.), which reads and exports the 

“*.img” image file, was applied. Since only small portions of the image are of interest, 

only pixels with corresponding terrestrial records were selected by defining an AOI-

layer (Area of Interest). This fraction enabled an efficient computation, by discarding 

dispensable data. The resulting file comprised the geographical coordinates (x, y) 

and the grey scale values of all bands of each pixel.  

 

The compilation of the “Field Sample File” results analogue to the preparation of the 

“Image File”. Firstly, the geographical coordinates of all samples are saved in an 

ASCII data file. With the utility “Pixel to ASCII” of the software ERDAS IMAGINE, the 

grey scale values of the particular sample coordinates are exported. The last column 

of the ASCII data file is complemented with the cypher code of the particular land use 

types. For nominal scaled attributes, the kNN programme additionally outputs the 

occurrence probability ‘p’. 

 

The output file of the kNN programme  comprises the x and y coordinates and the 

cypher code of the calculated land use type. The format is an ASCII data file and was 

easily imported into GIS software, like ERDAS IMAGINE or ARC VIEW. 

 

Besides the visualisation of the results, the accuracy of the classification was 

calculated. To determine the overall accuracy of the kNN estimations and to identify 

the optimal input settings, band selection, and parameter adjustments and 

combinations, the pool of sample pixels for each land use type was divided into two  

collectives with the use of random numbers. The first collective served as input or 

training sample (ground truth) for the kNN programme, the second collective served 

as control or test unit (verification) and was only used to compare the congruence of 

the kNN estimation with the terrestrial surveyed reference points. Thus the best 

version with the highest accuracy was determined.  
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5.4 Error Analysis 

For the evaluation of the reliability of the results, two types of exactness can be 

distinguished: 

 

• accuracy 

• precision 

 

 

The results of calculations or a measurement can be accurate but not precise; 

precise but not accurate; neither; or both (figure 5-5). A result is called valid if it is 

both accurate and precise. The related terms in surveying are error (random 

variability in research) and bias (non-random or directed effects caused by a factor or 

factors unrelated by the independent variable). 

 

 

 

5.4.1 Precision 

Precision is also called reproducibility or repeatability, the degree to which further 

measurements or calculations show the same or similar results. It refers to the 

degree of deviation of an estimated mean, µ̂ , from the actual population mean, µ, if 

the sample was repeated. In contrast to the accuracy, the selection of the sample 

size affects the precision (Cochran, 1977). Precision is usually characterised in terms 

of the standard deviation of the measurements.                          

 

In probability and statistics, the standard deviation of a probability distribution, 

random variable, or population is a measure of the spread of its values. It is defined 

as the square root of the variance. The standard deviation is the most common 

measure of statistical dispersion, measuring how widely spread the values in a data 

set is. 
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The variance of a random variable, probability distribution, or sample is a measure of 

statistical dispersion, averaging the squared distance of its possible values from the 

expected value. The variance is a way to capture the scale or degree of  a 

distribution being spread out.  It is the average of the squared differences between 

data points and the mean.  

 

 

 

5.4.2 Accuracy Assessment 

Accuracy is the degree of conformity of a measured or calculated quantity to its true 

value. It refers to the deviation of the actual mean, µ. The accuracy is not affected by 

the sample size.  

 

Accuracy is the degree of veracity while precision is the degree of reproducibility. The 

analogy used here to explain the difference between accuracy and precision is the 

target comparison (figure 5-5). Repeated measurements are compared to arrows 

fired at a target. Accuracy describes the closeness of arrows to the bullseye at the 

target centre. Arrows that strike closer to the bullseye are considered more accurate. 

The closer a system's measurements to the accepted value, the more accurate the 

system is considered to be. 

To continue the analogy, if a large number of arrows are fired, precision would be the 

size of the arrow cluster. (When only one arrow is fired, precision is the size of the 

cluster one would expect, if this were repeated many times under the same 

conditions.) When all arrows are grouped tightly together, the cluster is considered 

precise since they all struck close to the same spot, if not necessarily near the 

bullseye. The measurements are precise, though not necessarily accurate. 

 

Ideally, a measurement device is both accurate and precise, with measurements all 

close to and tightly clustered around the known value. The accuracy and precision of 

a measurement process is usually established by repeatedly measuring some 

traceable reference standard.  
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Figure 5-5 Accuracy and precision. (Source: modified after Häussler et al., 2000) 
 

 

 

5.4.2.1 Confusion Matrix 

For users, it is important to know how accurately classified maps represent reality. 

The accuracy is calculated for the determination of the error of the kNN estimations. 

Nevertheless, specification of only an overall accuracy is problematic, because 

misclassification might have different importance for several users. 

 

Basic prerequisite for any kind of quantitative accuracy assessment is the availability 

of areas with a known class affiliation of a hundred per cent. These areas are called 

control areas. For computer based classifications, the unit of pixels is used for 

ground truthing, as satellite images are already  sectioned into this unit.  

 

For this study, control pixels are extracted from the pool of sample pixels, collected 

during the terrestrial fieldwork. Control pixels should not be identical to training pixels, 

because they affect the results and give the false impression of higher accuracy 

estimations. Therefore, two separate collectives were defined for the kNN 

 

  a) high precision, low accuracy 

 

  b) high precision, high accuracy 

 

  c) low precision, high accuracy 

 

  d) low precision, low accuracy 
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estimations and the subsequent accuracy assessment. For each individual kNN 

estimation run, a pixel serves either as training pixel, or as control pixel. For testing 

the stability as regards varying sample data, reapplications of the kNN calculations 

with varying collectives of training (input) and control pixels were made.  

 

A common method for the accuracy assessment is the display of the classification 

results in the form of a confusion matrix, also known as error matrix (Kohavi & 

Provost, 1998). It is a visualization tool typically used in supervised learning.  A 

confusion matrix lists the values of known cover types of the reference data in the 

columns and of the classified data in the rows. The main diagonal of the matrix lists 

the correctly classified pixels. One benefit of a confusion matrix is that it is easy to 

see if the system is confusing two classes (i.e. commonly mislabelling one as 

another).  

 

A confusion matrix contains information about actual and predicted classifications 

done by a classification system. Performance of such systems is commonly 

evaluated using the data in the matrix. The following table shows the confusion 

matrix for a two class classifier. 

The entries in the confusion matrix (see table 5-3) have the following meaning in the 

context of the study: 

 

a is the number of correct predictions that a case is bamboo, 

b is the number of incorrect predictions that an instance is non-bamboo, 

c is the number of incorrect predictions that an instance is bamboo, and 

d is the number of correct predictions that an instance is non-bamboo. 
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Table 5-3 Example of a confusion matrix with the classes ‘bamboo’ and ‘non-
bamboo’. 

 

reference data   

bamboo non-bamboo ∑Line
 user accuracy 

bamboo a b a+b 

ba

a

+
 

 

classified  

data non-

bamboo 

c d c+d 

dc

d

+
 

∑Column
 a+c b+d a+b+c+d   

producer 

accuracy ca

a

+
 

db

b

+
 

 

overall acc. dcba

da

+++

+
 

 

 

 

The attained accuracy of a classification is characterized by the confusion matrix. 

Different measures and statistics can be derived from the values in this error matrix. 

where the following accuracy aspects and standard terms can be calculated: 

 

The overall accuracy (OA) is the proportion of the total number of predictions that 

were correct and is calculated by dividing the correctly classified pixels (sum of the 

values in the main diagonal) by the total number of pixels checked. 

 

 

Besides the overall accuracy, classification accuracy of individual classes is 

calculated in a similar manner. Two approaches are possible (Congalton, 1991):  

 

• user’s accuracy 

• producer’s accuracy 

 

The producer’s accuracy is calculated by dividing the number of correct pixels in one 

class, divided by the total number of pixels as derived from the reference data in this 

class. The producer’s accuracy measures how well a certain area has been 
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classified. It includes the error of omission, which refers to the proportion of observed 

features on the ground that is not classified in the map. The more errors of omission 

exist, the lower the producer’s accuracy (Banko, 1998).  

 

producer’s accuracy [%] = 100 % - error of omission [%]  (5.11) 

 

 

The user’s accuracy is defined by the measure of the correct classified pixels in a 

class divided by the total number of pixels that were classified in that class. The 

user’s accuracy is, therefore, a measure of the reliability of the map. It informs the 

user how well the map represents what is really on the ground. It includes the error of 

commission, which refers to the proportion of the predicted features of the 

classification on the map that are not observed on the ground. The more errors of 

commission exist, the lower the user’s accuracy. 

 

user’s accuracy [%] = 100 % - error of commission [%]   (5.12) 

 

 

 

5.4.2.2 Kappa Coefficient 

The kappa coefficient (К) is a measure of overall agreement of a matrix. In contrast to 

the overall accuracy, the kappa coefficient takes non-diagonal elements into account 

(Rosenfield & Fitzpatrick-Lins, 1986).  

 

Cohen's kappa coefficient is a statistical measure of inter-rater reliability (Cohen, 

1960). It measures the proportion of agreement after chance agreements have been 

removed from considerations.  It is generally thought to be a more reliable measure 

than simple per cent agreement calculation, since К takes into account the 

agreement occurring by chance. Cohen's kappa measures the agreement between 

two raters that each classify N items into C mutually exclusive categories. A kappa of 

zero occurs when the agreement between classified data and verification data equals 

chance agreement (Fenstermaker, 1991). In 1983, the kappa coefficient was 
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introduced to remote sensing (Congalton & Mea, 1983; Congalton et al., 1983). The 

equation for К is given (Bishop et al., 1975): 
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where  

r  =  number of rows and columns in error matrix, 

N  =  total number of observations, 

Xii  = observation in row i and column i, 

Xi+ = marginal total of row i, and 

X+i = marginal total of column i. 

 

To interpret the formula of the kappa coefficient, the following formula is given: 
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where 

 po = accuracy of observed agreement, 
N

X ii∑ , 

  

pe = estimate of chance agreement, 
2

N

XX ii∑ ++ . 

 

A table for interpreting К values is given by Landis & Koch (1977). Although it is 

based on personal opinion and by no means universally accepted, it is presented 

here (table 5-4), as many studies refer to it (Altmann, 1991; Kulbach, 1997; Ortiz et 

al., 1997; Komagata, 2002; Oehmichen, 2007). 
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Table 5-4 Table for the interpretation of kappa values after Landis & Koch (1977). 
 
Kappa value [%]            Interpretation 

< 0 poor agreement 

0 to 20     slight agreement 

20 to 40   fair agreement 

40 to 60   moderate agreement 

60 to 80   substantial agreement 

80 to 100  almost perfect agreement 

 

 

 

5.4.3 Bias 

In estimation, the bias refers to the value of a parameter of a probability distribution, 

the difference between the expected value of the estimator and the true value of the 

parameter. Bias is a term which refers to how far the average statistic lies from the 

parameter it is estimating, that is, the error which arises when estimating a quantity. 

Errors from chance will cancel each other out in the long run, those from bias will not. 

Bias occurs if those estimates for the statistic are systematically lower or 

systematically higher than the parameter value.  

 

A biased sample is a statistical sample of a population where some members of the 

population are less likely to be included than others. Bias, B, is directly associated 

with the accuracy, since 

 

B= µ̂ -µ         (5.15) 
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6 Analyses and Results 

6.1 Sample Size of the Terrestrial Plots 

As is mentioned in chapter 5.1, a total of 3360 sample pixels distributed over ten 

different land use types encroached upon the kNN estimations. For the accuracy 

analyses, the samples are divided into two collectives. The training pixels are used 

as input data (ground truth) for the kNN programme, whereas the accuracy of the 

kNN estimations is assessed with the control pixels and do have no influence on the 

current kNN estimation. Conspicuous is the varying number of sample pixels 

amongst the different land use types (table 6-1). The resources bamboo (309), oil 

palm (317) herbaceous vegetation (319), and bananas (325) occupy a medium 

position, concerning the number of sample pixels, whereas fallow lands (600), cocoa 

plantations (573), and trees/forest (517) exhibit almost twice as many sample pixels. 

A comparatively low sample size is indicated for grassy vegetation (171), raphia 

palms (118), and elephant grass (111). 

 

Table 6-1 For the verification of the particular kNN estimations, the terrestrial 
samples are divided into two collectives, the input or training pixels and 
the test or control pixels. The two collectives comprise ‘existent’ and ‘non-
existent’ pixels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land Use Type No. Training Pixels No. Control Pixels 

Bamboo 209 + 209 (418) 100 

Banana/Plantain 225 + 225 (450) 100 

Bush Fallow 500 + 499 (999) 100 

Cocoa Plantation 473 + 473 (946) 100 

Elephant Grass 86 + 86 (172) 50 

Grassy Vegetation 146 + 146 (292) 50 

Herbaceous vegetation 219 + 219 (438) 100 

Oil Palm Plantation 217 + 217 (434) 100 

Raphia Palm 93 + 93 (186) 50 

Trees/Forest 417 + 417 (834) 100 
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The number of pixels found for each category does not generally represent the 

allocation of the land uses, as the sample sites were recorded subjectively. It was the 

objective to sample an equal number of plots for each kind of resource. It turned out 

that bamboo clusters and groups of raphia palms were only found infrequently and 

almost only along streams. This fact led to the situation that every adequate bamboo 

and raphia source which emerged during fieldwork was sampled. Hence bamboo and 

raphia defined the minimum sample size for all resources. In this connection, it 

should be mentioned that the original plan was also to sample rattan – as an 

important non-timber forest product. Due to only marginal appearances during the 

whole fieldwork, and consequently inadequate sample quantities and qualities, the 

survey of this resource had to be neglected.  

 

The low number of samples of elephant grass is due to its growth and characteristic 

occurrence. In the study area, elephant grass was only found extensively scaled in 

the wet lowland areas, covering almost 100 % of this habitat’s surface. So the 

variability within this land use type, respectively, mixture with other resources, was 

very low.  

 

The relatively high number of sample pixels for bush fallows, cocoa plantations, and 

trees/forest is due to the fact that these land resources are supposed to cover the 

highest proportions of the study area and thus are most likely to be sampled by a 

random sampling technique. Besides that, the number of approximately 500 sample 

pixels for an estimation run serves as the optimal number for the kNN field input. This 

is because the used kNN programme (Stümer, 2004) does only handle 999 input 

pixels for the calculations, which enables the kNN simulation of one attribute with two 

attribute classes, e.g. 499 pixels ‘bush fallow’ and 499 pixels ‘non-bush fallow’. 

 

However, the sample sizes are rated to be sufficient to cover the variability of the 

existing characteristics of each land use type, as well as balancing the disadvantages 

of selective sampling through a random sampling technique. 
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6.2 Analyses of Optimization Options  

The generation of maps with help of the kNN method requires information concerning 

the minimum requirements of the output results. The requirements  depend on the 

particular problem. However, overall accuracy plays a decisive role for the usability 

for specific applications. 

 

To calculate an overall accuracy, a specific number of control pixels are randomly 

selected out of the pool of the registered sample pixels. These control pixels are not 

used for the kNN estimation of this particular run. They are compared with the kNN 

output pixels and give the degree of corresponding pixels, the overall accuracy. 

 

The optimisation of several parameters to increase the overall accuracy of the kNN 

estimations is demonstrated in the subsequent observations.  

 

 

6.2.1 Band Number 

For the response to the question how the number of bands affect the accuracy of the 

kNN method, the overall accuracy versus the number of applied bands is illustrated 

in figure 6-1 for bamboo. For the calculations, the standard settings of the kNN 

programme were used (k = 5, r = 2, t = 2) and the bands were added in the order as 

they were listed in chapter 4.1.2 (table 4-2). Two test runs with randomly chosen 

pixels were shown. The strongest increase and the highest overall accuracy with 

81,0 % was obtained with 8 and 10 bands, respectively. Additional bands lead to a 

dramatic decrease up to the use of 42 bands, whence the curve climbed again, but 

did not reach the previous peak. The two curves partly take course parallel as well as 

in the opposite direction. The highest divergence was found with 7 %, which leads to 

the presumption, that pixel selection for specific band combinations has a decisive 

influence on the expected results.  
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Overall Accuracy for Bamboo
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Figure 6-1 Overall accuracy vs. number of bands for two test runs with different 
selections of input pixels for bamboo (k = 5, r = 2, t = 2). 

 

To minimize the stochastic influence of a low number of reruns, an average of the 

overall accuracy of the ten land use types with four test runs for each type is shown 

in figure 6-2. With respect to calculating time and effort, the number of bands 

accumulates in steps of ten additional bands at once, starting from the use of ten 

bands. Similar to bamboo alone, the overall accuracy starts from 66.3 % for the use 

of bands 1-3 and climaxes at the use of bands 1-10 with an accuracy of 74.5 %. 

Subsequently, the accuracy drops until the use of band class 1-40, from this point 

onwards, it climbs again, to an accuracy of 73.5 % at the use of bands 1-158 applied 

all together.  
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Overall Accuracy of all Land Use Types
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Figure 6-2 Averaged overall accuracy vs. number of bands of the ten land use types. 
Basis are four test runs for each different selections of input pixels per 
land use type (k = 5, r = 2, t = 2). 

 

The slope of the curve, with a quick rise until the use of ten bands, which are the 

original bands after the geo-referencing process, and a peak at this band 

combination, indicates an already satisfactorily band combination for the kNN 

calculations. However, the collapse with the use of about thirty to forty bands and the 

steady rise in accuracy with increasing band numbers afterwards, suggests a 

negative influence on accuracy for application of specific bands or band 

combinations, while others are more likely to help increase accuracy.  

 

 

6.2.2 Band Combination 

For the accuracy assessment, varying channel combinations are considered. 

Particulars concerning the generation of extra bands are described in chapter 4.1.2. 

For the optimization of the best band combinations, bands and band combinations 

which do already point at a low accuracy or a negative trend, were avoided. 

Predominantly, these were the bands number 11 to 40. The 158 bands which are 

used in this study derive from the original ASTER channels 1 to 9 (including 3B). 

Except for these ten channels, band number 11 to 158 result from spectral 
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enhancements (e.g. atmospheric correction, vegetation indices) and form groups of a 

specific enhancement procedure in each case. Figure 6-3 shows the overall accuracy 

for bamboo, allotted to specific groups of band combinations. In similar manner to 

band group 1-10, an accuracy value of 81 % was found in band group 130-139 

(principal components). An even higher overall accuracy with 83 % was found for 

bands 80-89, which is the group of channels that did undergo the noise reduction 

enhancement.  

 

Overall Accuracy of Specific Band Combinations
for Bamboo
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Figure 6-3 Overall accuracy of bamboo calculated for specific groups of band 
combinations (k = 5, r = 2, t = 2). 

 

The overall accuracy for the average of four runs of all land use types is shown in 

figure 6-3. The band group combination 1-10 & 80-89 & 130-139 and the combination 

80-84 & 117 show the highest accuracy with 79.3 %, whereas the combination 1-10 

& 80-89 has an accuracy of 78.7 %, followed by 78.6 % each, by bands 80-84, and 

band group combination 1-10 & 51-59 & 80-89 & 130-139. In comparison with bands 

1-10, which exhibited an accuracy of 74.5 % for all land use types, the accuracy 

could be increased with application of specific band combinations. These figures 

demonstrate that higher accuracies do not necessarily require a maximum number of 

bands. The selection and combination of significant bands plays a major role.  
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Overall Accuracy vs Band Combination 
an Average of the ten Land Use Types
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Figure 6-4 Averaged overall accuracy of the ten land use types, based on four test 
runs for each different selection of input pixels per land use type 
calculated for specific groups of band combinations (k = 5, r = 2, t = 2). 

 

 

6.2.3 Land Use Type vs. Band Combination 

Compared to the average of all land use types, the results for bamboo alone indicate 

lower accuracies. A closer look at the accuracy performance of the single land use 

types for selected band combinations in relation to each other is presented in figure 

6-5. The accuracy differences amongst the land use systems remain largely over the 

different band combination. The accuracy of the oil palm plantations exhibit the 

highest accuracies of up to 87.5 % for band combination 80-84 and an average of 

79.3 % for all band combinations, while the bush fallows (average: 67.0 %), banana 

plantations (average, 67.7 %), and grassy areas (average, 67.8 %) define the lower 

end. On the average, the accuracy differences amongst the land use systems for a 

specific band group are 14.7 %, varying from 9.5 % to 23.5 %. A visual appraisal of 

the curves indicates a parallel related curve progression for both, “poor” and “good” 

band combinations, hence an optimal band combination is valid for all land use 

classes. Simply band group 80-84, as one of the “good” band combinations, is 

evidently out of line. The reason for this could be due to the low number of only four 

bands, which makes it more vulnerable to the randomly selected input pixels. 
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Overall Accuracy of the ten 
Land Use Types
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Figure 6-5 Overall accuracy of the ten land use types based on four test runs for 
each different selection of input pixels per land use type, calculated for 
specific groups of band combinations (k = 5, r = 2, t = 2). 

 

 

6.2.4 Precision of the Classification Accuracies 

As the results of the kNN calculations depend highly on the coincidence, which of the 

pixels becomes an input pixel, or, respectively, a control pixel, the progression of the 

standard deviation for 19 reruns (=20 runs) for the band combinations 1-10 & 80-89 & 

130-139 and 80-84 & 117 is shown in figure 6-6 for bamboo. With the number of 8 

reruns, the curves of the standard deviation of the two band combinations coincide, 

with a standard deviation of 8.8 % and show a standard deviation of 6.2 % and 6.3 % 

for 19 reruns, respectively. The averaging curves of the overall accuracy for both 

band combinations shows 3.3 % better values for the band combination  1-10 & 80-

89 & 130-139, with a highest accuracy of 82.7 % and an accuracy of 79.5 % for band 

combination 80-84 & 117 for an average of 20 sample runs. 
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Trend of the Variance 
for Bamboo
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Figure 6-6 Trend of the standard deviation for bamboo. The averaged overall 
   accuracy (OA) and the standard deviation (SD) is shown for up to 19  
  averaged reruns (20 runs) for the two band groups  
  1-10 & 80-89 & 130-139 and 80-84 & 117 (k = 5, r = 2, t = 2). 
 

A comparison of the variance amongst the land use types, bamboo, banana, and oil 

palm is shown in figure 6-7. These three land use types were selected as examples 

and, for a small number of sample runs (<4), show that the standard deviation differs 

amongst the land use types. With four reruns applied, the curves of banana and oil 

palm – as the positive and negative extremes as regards accuracy –  

converge, respectively, with a standard deviation of 6.2 %  for oil palm, and 5.4 % for 

banana, and coincide after eleven sample runs and a standard deviation of 5 %, 

which, additionally also defines almost the average for all three land use types at 20 

applied sample runs, varying from 4.1 % (oil palm), 5.2 % (banana), and 6.3 % 

(bamboo).   
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Comparison of the Variance of 
Bamboo, Banana, & Oil Palm
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Figure 6-7 Progression of the standard deviation of bamboo, banana, and oil palm 
for averaged runs. The standard deviation is shown for up to 19 averaged 
reruns for the band group 1-10 & 80-89 & 130-139  

   (k = 5, r = 2, t = 2). 
 

The look at the averaged accuracy for these land use types, versus the number of 

sample runs, exhibits no unique optimum for the number of sample runs (see figure 

6-8). The averaged accuracy for oil palm levels off at a value of 83 % and six reruns, 

whereas the banana levels off at about 75 % with the same number of reruns, but 

bamboo requires more than 15 runs to reach a level of almost 83 %. 
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Comparison of Averaged Accuracy of 
Bamboo, Banana, & Oil Palm
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Figure 6-8 Progression of the variance of the averaged overall accuracy of bamboo, 
banana, and oil palm (k = 5, r = 2, t = 2; band combination 1-10 & 80-89 & 
130-139). 

 

 

The statistical straggling of the overall accuracy for ten sample runs of each land use 

type is presented in figure 6-9. The highest standard deviation of the overall accuracy 

was found for the grassy vegetation with a value of 15.3 %, more than twice the 

average of 6.7 % for all land use types. This exception is due to the extreme values 

of the minimum (40 %) and maximum (96 %) accuracies. The cause might be the 

relatively low number of 292 input pixels (see table 6-1), although raphia palms with 

186, and elephant grass with 172 input pixels have an even lower number of input 

samples. However, the overall accuracy for grassy vegetation lies with 81.2 % above 

the average of 79.2 %, and varies between an accuracy of 82.7 % for oil palm 

plantations to 75.3 % for banana plantations.  
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Figure 6-9 Comparison of the variability of the accuracy values within the different 
land use types. The standard deviation, averaged overall accuracy, 
minimum, and maximum values, are calculated on a basis of 10 sample 
runs for each land use type (k = 5, r = 2, t = 2; band combination 1-10 & 
80-89 & 130-139). 

 

The lowest standard deviations were found for bush fallow (3.2 %) and herbaceous 

vegetation (3.7 %), in which connection the former achieves 79.7 % overall accuracy, 

and  the latter 80.7 %. A trend that the expected accuracy corresponds clearly with 

the number of input pixels was not found. Merely a tendency of lower numbers of 

input and control pixels, respectively, leads to higher standard deviations.  

 

 

6.2.5 Distribution of Sample Plots 

For the assessment of the influence of the terrestrial sample plot distribution on the 

accuracy of the kNN estimations, four categories of sample distributions, 

respectively, distribution of training pixel versus control pixel are defined: separately 

far-, separately close-, randomly-, and equally distributed. These four categories 

simulate a gradient of a very low to very high sample intensity, as the geographical 

distance between training and control group declines from the separately far 
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distribution, over a randomly to an equally distributed allocation (see figure 6-10). 

The chance of a training pixel located directly adjacent to a control pixel and, 

therefore, showing similar reflection values, is highest in the category of an equal 

distribution of training and control pixels, and most unlikely in the group of the 

separately far distribution. 

 

 

Figure 6-10 Allocation of training (dark) pixels and control (light) pixels to simulate a 
gradient of very low (A)to a very high (D) sample intensity:  

    A-separate far, B-separate close, C-random, and D-equal  distribution.  
 
 
The averaged overall accuracy for bamboo steadily rises from 67 % to 85 % from the 

separate far to the equal distribution of training and control pixel (figure 6-11). 

Furthermore, the least difference of the minimum and maximum value for the four 

runs was found in the equally distributed collective. The highest standard deviation of 

12.2 % was found for the randomly distributed sample collectives, more than three 

times higher than the equally distributed collectives. 
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Overall Accuracy & Standard Deviation vs. Distribution Pattern of 
Taining and Control Pixel 

for Bamboo
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Figure 6-11 Averaged overall accuracy and standard deviation for bamboo vs. 
distribution pattern of the terrestrial samples. The basis for each 
distribution category was four runs (k = 5, r = 2, t = 2; band combination 
1-10 & 80-89 & 130-139). 

 
 

In contrast to bamboo alone, a comparison of overall land use types shows an 

averaged overall accuracy of 79.6 % for a random distribution of training and control 

pixel, 78.5 % for an equal distribution and the lowest overall accuracy of 76.4 % in 

the separately distributed collective (figure 6-12). The separately far and wide version 

of this category was merged. The standard deviation for a separate distribution with 

15.7 % lies almost tree times higher than 5.3 % for the equally distributed samples.  
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Accuracy & Standard Deviation vs. Distribution Pattern of 
Training and Control Pixel 

of all Land Use Types

0%

5%

10%

15%

20%

25%

30%

separate random equal

Sample Distribution

S
ta

nd
ar

d 
D

ev
ia

tio
n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
cc

ur
ac

y

st-dev average
max min

 

Figure 6-12 Averaged overall accuracy and standard deviation for an average of the 
ten land use types, depending on the distribution of the terrestrial 
samples. The basis for each distribution category was four runs  

   (k = 5, r = 2, t = 2; band combination 1-10 & 80-89 & 130-139). 
 
 

6.2.6 Sample Size 

For the dependence assessment of sample size and accuracy of the kNN 

estimations with the software of Stümer (2004), the cocoa plantations were selected 

as an example. This land use type was chosen, as it permitted running a series of 

varying training pixels, up to the kNN programme’s maximum extent of 999 pixels, 

including 499 pixels labelled ‘cocoa’, or, respectively, 499 pixels ‘non-cocoa’. Figure 

6-13 shows the averaged accuracy of five runs for the cocoa plantations for different 

numbers of training pixels. Although the highest maximum accuracy of 83% was 

found for the number of 650 training pixels, an increasing number of training pixels 

correlates with increasing values of the averaged overall accuracy. An averaged 

accuracy of 77.4 % was found for 998 sample pixels, whereas a sample unit of 50 

shows an averaged overall accuracy of 69 %. Sample sizes of 800 and more exhibit 
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a lower standard deviation of the accuracies, approximately below 3 %, whereas 

lower sample sizes show a higher variation, with a standard deviation of about 4.5 %. 

 

Accuracy vs. Sample Size 
for Cocoa
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Figure 6-13 Accuracy versus sample size of training pixels. The overall accuracy is 
based on an average of five runs of the land use type cocoa plantation  

   (k = 5, r = 2, t = 2; band combination 1-10 & 80-89 & 130-139). 
 
 

6.2.7 Parameters k, r, t of the kNN Programme 

The kNN programme of Stümer (2004) supports the input of variable values for the 

parameters k, representing the number of neighbours, the parameter r and t, 

influencing the Euclidean distance and distance weight. Varying the numbers of 

considered nearest neighbours, k is defined as the key variable of the kNN 

programme, whereas the variable r stands for the exponent of the Euclidean distance 

and enables the weighting of the spectral differences of the several bands. The 

variable t allows manipulating the weighting of the distance. 

 

Below, the results for bamboo of three series of varying the number of one of the 

parameters each time, whilst retaining the other two parameters at the standard 

settings of the kNN programme, are presented.  
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In figure 6-14, the averaged (6 runs) overall accuracy for the different k-nearest 

neighbour value series is shown. A peak of the averaged overall accuracy is reached 

with 81.5 % for k = 4, whereas k = 5 estimates the presence or absence of bamboo 

with an accuracy that is still 81.3 % (r = 2, t = 2).  With increasing numbers for k, the 

accuracy decreases continuously to 75 % for k = 40. An exception can be seen for 

eight nearest neighbours, with an abrupt rise to 80.8 %.  

 

Overall Accuracy vs. Number of k 
for Bamboo
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Figure 6-14 Overall accuracy of the kNN estimations for bamboo and varying values 
for the parameter k. The accuracy is based on six runs  

    (r = 2, t = 2; band combination 1-10 & 80-89 & 130-139). 
 

By replacing the constant exponent of the Euclidean distance with the variable r, a 

metric-coefficient, the individual bands can be weighted. With r = 1 all attribute 

differences are weighted equally, irrespective of their amplitude. For r = 2, bigger 

differences have a stronger weight compared to smaller amplitudes. With r = ∞, the 

maximum attribute difference is weighted with 1, all others are allocated weight 0. For 

the calculations, varying r-values are assessed for bamboo (figure 6-15). The highest 

averaged (4 runs) overall accuracy of 80 % was found for r = 2 and r = 3. Higher r-

values decrease the accuracy to a value of 75 % for r = 15 (k = 5, t = 2). 
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Overall Accuracy vs. Parameter r
for Bamboo 
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Figure 6-15 Overall accuracy of the kNN estimations for bamboo and varying values 
for the parameter r. The accuracy is based on four test runs  

    (k = 5, t = 2; band combination 1-10 & 80-89 & 130-139). 
 

The distance values actually only reflect the differences between the spectral 

information of two pixels. Once a pixel with its terrestrially sampled attributes is 

allocated to the k-nearest neighbours, these attributes are weighted according to 

their spectral distance. A higher similarity leads to a higher weighting of the estimated 

attribute. With the variable t, an exertion of influence on the weighting of the distance 

is possible. With the setting of higher values for t, higher weightings of pixels result in 

a lower spectral distance. 

 

Accuracy calculations with t-value series are shown in figure 6-16. The overall 

accuracy of four runs was averaged, whereas the value for k = 5 and r = 2 remained 

constant. In figure 6-15, the results are displayed. Only the weighting of the selected 

neighbours to each other is influenced by the parameter t. The highest accuracies 

with 81 % were found for t = 5, whereas higher as well as lower values for t result in 

lessening a decreasing overall accuracy.  
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Figure 6-16 Overall accuracy of the kNN estimations for bamboo and varying values 
for the parameter t. The accuracy is based on four test runs  

    (k = 5, r  = 2; band combination 1-10 & 80-89 & 130-139). 
 

The replication of the above kNN estimations with a combination of the optimised 

parameters k, r, and t of the kNN programme, with k = 4, r = 2, and t = 5 (respectively 

k = 4, r = 3, t =5), show an averaged overall accuracy of 80.5 % (79.8 %), hence 

similar values compared to the standard setting of the programme, and an accuracy 

of 80 per cent.  

 

 

6.3 Types of Classification Accuracies  

Comparison of overall accuracy, user accuracy, and producer accuracy for the kNN 

estimations for the land use type bamboo demonstrates that the values vary between 

83.9 % for the producer accuracy of the attribute ‘no bamboo’ to 81.5 % for the 

producer accuracy of the attribute ‘bamboo’. Hence, the error of omission is slightly 

higher for bamboo compared to non-bamboo. The user accuracy describes an 

inverse situation, were the attribute bamboo shows a slightly lower error of 
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commission with a user accuracy of 83.5 %, compared to 81.9 % for non-bamboo 

(table 6-2). The calculations are based on the average of 20 runs with varying 

collectives of training and control pixels.  

 

Table 6-2 Confusion matrix of the land use type bamboo, based on the average of 
20 runs with different collectives of control and training pixels.  

 

 

 

 

 

 

 

 

 

As an illustration, the confusion matrix of the land use types banana and oil palm 

plantations are presented in table 6-3 and 6-4. In comparison to bamboo, the banana 

plantations show greater differences between the presence and absence of the 

attribute, amounting to a difference of 29.6 %  for the producer, and 16.3 % for the 

user accuracy, whereas the differences for bamboo are 2.4 %, and 1.6 %, 

respectively. The estimated map is much more reliable for the classified non-

bananas than it is for the bananas. On the other hand, the situation on the ground 

can be much better mapped for the attribute characteristic banana compared to non-

banana. 

 

  bamboo 

non- 

bamboo ∑line 

user 

accuracy 

bamboo 40.75 8.05 48.8 83.5% 

non-bamboo 9.25 41.95 51.2 81.9% 

∑column 50 50 100   

producer 

accuracy 81.5% 83.9% 

overall 

accuracy 82.7% 
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Table 6-3 Confusion matrix of the land use type banana plantation, based on the 
  average of 20 runs with different collectives of control and training  
  pixels. 
 

 

 

 

 

 

 

 

 

Within the oil palm plantations, the producer accuracy of 88.5 % for the presence, 

and 78.4 %, respectively, for the absence of the attribute exhibits quite a difference in 

the errors of omission. The user accuracy of 80.4 % for the presence and 87.2 % for 

the absence of oil palm plantations shows a higher reliability of the estimated non-oil 

palm pixels, compared to pixels which are classified as oil palm plantations.  

 

Table 6-4 Confusion matrix of the land use type oil palm plantation, based on the 
average of 20 runs with different collectives of control and training pixels.  

 

 

 

 

 

 

 

 

 

 

6.4 Kappa Coefficient  

The overall agreement of a classification is given by the kappa coefficient. The 

averaged kappa values of ten runs for the several land use types are presented in 

table 6-5. The kappa values vary between 0.669 for oil palm plantations and 0.654 

for bamboo, to a minimum of 0.502 for banana/plantain plantations, thus showing a 

 banana 

non- 

banana ∑ line 

user 

accuracy 

banana 44.95 19.85 64.8 69.4% 

non-banana 5.05 30.15 35.2 85.7% 

∑ column 50 50 100   

producer 

accuracy 89.9% 60.3% 

overall 

accuracy 75.1% 

  

oil 

palm 

non-oil 

palm ∑ line 

user 

accuracy 

oil palm 44.25 10.8 55.05 80.4% 

non-oil palm 5.75 39.2 44.95 87.2% 

∑ column 50 50 100   

producer 

accuracy 88.5% 78.4% 

overall 

accuracy 83.5% 
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substantial (e.g. oil palm, bamboo) to moderate (banana) agreement with the 

classification according to Landis & Koch (1977). An average over all land use types 

results in a kappa value of 0.583, which is defined as moderate agreement.  

 

Table 6-5 Kappa coefficient of the land use types.  

 

 

6.5 Classification Procedure including all Land Use Types at once 

The optimization analysis of the kNN method was conducted with the selection of a 

single land use type, attributed with the presence or absence of this land resource.  

For map generation of single resource distribution maps, this procedure is valid. For 

making multi-attribute maps, such as land cover maps and land use classifications, 

these single land resource maps can be combined, the layer of each land use type of 

interest can be overlaid, respectively. Another possibility is to include all land use 

types of interest at once, in the form of a multi-attribute classification. Below, the kNN 

procedure is applied to all the ten land use types, defining ten different classes, 

attributes for the kNN programme, respectively. The results of the overall accuracy 

for an occurrence probability p > 0.2 and p > 0.5, as they are calculated and output 

by the kNN programme of Stümer (2004), are shown in figure 6-17.  The calculation 

of overall accuracy and standard deviation are averaged, based on ten runs with 

different collectives of training and test pixels.  

 

The overall accuracy is increased from 55 % to 70 %, if only output pixels with an 

occurrence probability p > 0.5 are included in the accuracy calculations, compared to 

the standard value of p > 0.2 for a ten-attribute classification. Compared with the 

single attribute classifications above, lower accuracies are found for multi-resource 

estimations. However, the standard deviation of the several test runs show a lower 

value of 4.2 % for p > 0.2, compared to 5.9 % for an occurrence probability of p > 0.5. 

LUT bamboo banana bush cocoa elephant grass herb 

oil 

palm raphia 

trees 

forest average  

Kappa 

Coefficient 0.654 0.502 0.534 0.604 0.548 0.624 0.614 0.669 0.517 0.564 0.583 



 Analyses and Results  83 
  

  

Accuracy & Standard Deviation vs. 
Occurence Probability p of the Classification

0%

2%

4%

6%

8%

10%

12%

14%

> 0.2 > 0.5
Occurence Probability

S
ta

nd
ar

d 
D

ev
ia

tio
n

25%

35%

45%

55%

65%

75%

A
cc

ur
ac

y

st-dev average

max min

 

Figure 6-17 Overall accuracy & standard deviation of the classification of the ten 
land use types with different occurrence probabilities p. 

 
The confusion matrix (table 6-6 & 6-7) of the multi-resource classification exhibits in 

which way individual pixels are misclassified. It permits the detection of potential 

similarities of reflection for specific land use types. In this study, bush fallow and 

banana plantation stand out in that high proportions of up to 23 % are found to be 

misclassified and confused with each other. Similar values are found for the raphia 

palms, where 19 % are wrongly classified as cocoa plantations, whereas 12 % of 

cocoa were wrongly classified as banana plantations.    

 

By comparing the producer accuracy of the different land use types, it can be seen 

that the land use for elephant grass and grassy vegetation can be mapped best of all, 

an occurrence probability p > 0.2, and p > 0.5. The producer accuracy of these land 

use types is 68 % for p > 0.2, whereas elephant grass reaches a producer accuracy 

of 89.4 % for p > 0.5. The lowest producer accuracy was found for bush fallows, 

ranging from 37 to 37.5 %. The highest reliability of the estimations was also found 

for the grassy vegetation with a user accuracy of 71.6 % (p > 0.2). For p > 0.5, the 

highest user accuracy was calculated for bamboo (84.6 %). The lowest map 
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reliabilities were found for banana (40.9 %, p > 0.2) and bush fallow (44.1 %, p > 

0.5).  

 

By restricting classified pixels to an occurrence probability p of at least 0.5 instead of 

0.2, 42.1 % of the pixels are rejected and will not distribute to the resulting 

classification. Output pixels below the minimum occurrence probability have to be 

labelled as “unclassified” on the map. However, the remaining pixels show an 

increase in overall accuracy from 54.6 % (p > 0.2) to 69.8 % (p > 0.5) and an 

increase of the kappa value from 0.496 to 0.663, as is shown in table 6-6 and 6-7. 

 

Table 6-6 Confusion matrix of the land use classification with the standard 
occurrence probability p > 0.2. The results of ten runs with varying 
collectives of training and test pixels are summed up. 

 

p > 0.2 bamboo banana bush cocoa 
eleph. 
Grass grass herb 

oil 
palm raphia trees ∑L 

user a. 
[%] 

bamboo 49 2 2 8 4 2 1 1 6 3 78 62.8 

banana 4 54 23 12 1 6 10 10 4 8 132 40.9 

bush 1 12 37 8 3 6 4 3 4 8 86 43.0 

cocoa 12 4 5 47 1 3 3 2 19 10 106 44.3 

eleph. 4 9 7 2 68 5 4 4 0 7 110 61.8 

grass 2 3 3 2 5 68 2 9 1 0 95 71.6 

herb 9 5 7 6 7 3 60 8 0 2 107 56.1 

oil palm 5 6 3 0 4 7 6 56 2 2 91 61.5 

raphia 7 1 2 6 2 0 1 0 57 10 86 66.3 

trees 7 4 11 9 5 0 9 7 7 50 109 45.9 

∑C 100 100 100 100 100 100 100 100 100 100 1000  
producer 
acc. [%] 49 54 37 47 68 68 60 56 57 50 OA: 54.6  

 К: 0.496 
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Table 6-7 Confusion matrix of the land use classification with an occurrence 

probability p > 0.5. The results of ten runs with varying collectives of 
training and test pixels are summed up. 

 
 

p > 0.5 bamboo banana bush cocoa eleph. grass herb 

oil 

palm raphia trees ∑L 

user a. 

[%] 

bamboo 33 1 1 1 1 0 0 1 0 1 39 84.6 

banana 0 37 11 3 0 4 3 3 1 1 63 58.7 

bush 0 6 15 1 0 4 3 0 1 4 34 44.1 

cocoa 6 2 3 33 0 0 1 1 10 6 62 53.2 

eleph.  1 8 3 0 59 4 1 1 0 5 82 72.0 

grass 1 2 2 1 2 59 1 6 0 0 74 79.7 

herb 1 1 3 1 1 0 50 3 0 1 61 82.0 

oil palm 2 1 0 0 2 2 2 43 2 1 55 78.2 

raphia 4 0 0 4 0 0 1 0 50 6 65 76.9 

trees 1 1 2 3 1 0 5 2 4 25 44 56.8 

∑C 49 59 40 47 66 73 67 60 68 50 579  

producer 

acc. [%] 67.3 62.7 37.5 70.2 89.4 80.8 74.6 71.7 73.5 50.0 

ov. 

acc.: 69.8  

  К: 0.663 

 

 

6.6 The kNN Classification Maps 

For the compilation of land resource distribution or land use maps, the kNN method 

was applied for ordinal numbers in this study. Besides the geographic coordinates, 

the output file of the kNN programme comprises the probability of the occurrence of 

the relevant land resource and thus, the derived class, each pixel is allocated to. For 

a one-attribute classification, an output pixel is classified as ‘existing’ or ‘non-

existing’; for the land use type bamboo, for instance, a pixel is, therefore, either 

estimated to represent ‘bamboo’ or ‘non-bamboo’. The probability threshold of such a 

one-attribute classification with two parameter values constitutes 0.5.  A pixel is 

attributed to the characteristic feature ‘bamboo’ with a probability threshold above 50 

per cent. At a probability below 50 %, the pixel is estimated to represent ‘non-

bamboo’ for that specific location.  

 

In figure 6-18, a detail of the estimated bamboo distribution map is shown for three 

different allocations of training pixels. The number of bamboo input pixels remained 

at 254, only the number of non-bamboo pixels varied from 254, 508, and 745, 
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respectively. This was to display the difference of the classified maps in respect to 

the influence of varying ratios of bamboo and non-bamboo training samples. In 

general, a similar distribution pattern of bamboo can be recognised for the three 

images, though higher proportions of bamboo output pixels, as well as higher 

occurrence probabilities are found with increasing proportions of bamboo input 

pixels.  

 

   

Figure 6-18 Extraction of the bamboo distribution maps and the occurrence 
probability of each resulting pixel. The three maps represent different 
ratios of bamboo and non-bamboo input pixels: 254:254 (I), 254:508 (II), 
and 254:745 (III). 

 

To quantify the influence of the sample distribution of bamboo to non-bamboo 

training pixels, the number and proportion of bamboo and non-bamboo output pixels 

of the classified image is listed in table 6-8. Additionally the values of a multi-attribute 

classification, with a ratio of 97 to 899 pixels per land use type, are listed. With an 

equal proportion of bamboo and non-bamboo training pixels, bamboo is estimated to 

cover 22 % of the surface of the study area. With increasing proportions of non-

bamboo training samples, the estimated bamboo cover drops to 6 % of the area, at a 

ratio of 1:10 bamboo to non-bamboo training pixels.  
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Table 6-8 Distribution of bamboo and non-bamboo pixels within the collective of  
  training pixels and the classified resource map of the study area. 
 

Origin: Bamboo I  Bamboo II  Bamboo III  Multi-Attr. 

Class. 

 

Attribute 

Feature 

Bamboo Non-

bamboo 

Bamboo Non-

bamboo 

Bamboo Non-

bamboo 

Bamboo Non-

bamboo 

No. Training 

Pixels 

 

254 

 

254 

 

254 

 

508 

 

254 

 

745 

 

97 

 

902 

Proportions 50 % 50 % 33 % 67 % 25 % 75 % 10 % 90 % 

No. Output 

Pixels 1677313 5970761 985394 6662680 691430 6956644 

 

439293 

 

7208782 

Proportions 22 % 78 % 13 % 87 % 9 % 91 % 6 % 94 % 

 

The corresponding results for banana and oil palm plantations are similar (see tables 

6-9 & 6-10). The estimated banana surface cover of 41 % at a ratio of 1 to 1 for 

banana and non-banana input pixels, drops to 12 % surface cover for a proportion of 

only 10 % of the input pixels, registered as banana. With a proportion of 50 % of the 

input pixels being oil palms, the surface of the study area is estimated to cover 28 %. 

This value drops to 6 % surface cover, for a proportion of 10 % of the input pixels 

describing oil palm plantations. Hence, the partitioning of training samples has a 

clear effect on the estimation results of all three land use types; this effect is non-

linear however. 

 
Table 6-9 Distribution of banana and non-banana pixels within the collective of  
  training pixels and the classified resource map of the study area. 
 

Origin: Banana I Banana II Multi-Attribute Classification 

Attribute 

Feature 

Banana Non-banana Banana Non-banana Banana Non-banana 

No. Input 

Pixels 

325 325 325 674 97 902 

Proportions 50 % 50 % 33 % 67 % 10 % 90 % 

No. Output 

Pixels 

 

3099156 

 

4548918 

 

2021388 

 

5582626 

 

959982 

 

6688092 

Proportions 41 % 59 % 27 % 73 % 12 % 87 % 
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Table 6-10  Distribution of oil palm and non-oil palm pixels within the collective of  
    training pixels and the classified resource map of the study area. 
 
Origin Oil Palm I Oil Palm II Multi-Attribute Classif. 

Attribute 

Feature 

Oil Palm Non-oil 

palm 

Oil Palm Non-oil 

palm 

Oil Palm Non-oil 

palm 

No. Training 

Pixels 

 

317 

 

317 

 

317 

 

682 

 

97 

 

902 

Proportions 50 % 50 % 32 % 68 % 10 % 90 % 

No. Output 

Pixels 

 

2126330 

 

5521744 

 

1340343 

 

6307731 

 

459203 

 

7188871 

Proportions 28 % 72 % 18 % 82 % 6 % 94 % 

 

 

The resource distribution maps for banana (figure 6-19) and oil palm plantations 

(figure 6-20) show the distribution estimations of banana, respectively, oil palm 

plantations and the corresponding occurrence probabilities. For a greater clarity, 

detailed extracts of the study area were chosen. Two map versions, based on 

different allocations of input pixels, are displayed. Analogous to bamboo, for each 

land use type, individual spatial distribution patterns can be recognised for banana 

and oil palm plantations. 
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Figure 6-19 Extraction of the occurrence probability map of banana with different  
    ratios of banana and non-banana input pixels: 325:325 (I) & 325:674  
    (II). 
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Figure 6-20 Extraction of the occurrence probability map of oil palm with different 
ratios of oil palm and non-oil palm input pixels: 317:317 (I) & 317:682 
(II).  

 

To compare the result variability of multi-attribute classifications, two kNN estimation 

runs with randomly selected training samples (999 out of 3360) are shown for the ten 

land use types in figure 6-21. The maps show a detail of the classified study area and 

correspond to the bamboo, banana, and oil palm distribution maps above. The 

double s-curve of bamboo occurrence (light green) along an invisible stream in the 

centre of the image, similar to the bamboo maps above, can be identified, but at a 

significantly lower occurrence. At first glance, the distribution pattern of the ten land 

use types looks similar for the two images. Nevertheless, differences can be visibly 

recognised.  
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Figure 6-21 Extraction of the classified map of the study area with an occurrence 
probability p > 0.2.  

 

The detailed land cover proportions for each land use type of the whole study area 

are listed in table 6-11. Within the study area, the highest proportions (averaged) of 

land are covered by grassy vegetation (15 %), forest (15 %), and bush fallows (14 

%). A medium cover is observed for banana plantations (12 %), elephant grass (11 

%), and cocoa plantations (9 %). Lower covers are shown by herbaceous vegetation 

(8 %), oil palm plantations (7 %), bamboo (6 %), and raphia palms (5 %). Slight 

differences of land cover, smaller than two percentage points, are observed for the 

two classification runs, although a general trend can be concluded. The classification 

image of the complete study area is shown in figure 6-22. 
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Table 6-11   Surface cover of the land use types estimated with the kNN method.   
   The results of two runs with different selections of training plots are 

listed. 
 

classification 1 classification 2 average 

Land use type no. pixels proportion no. pixel proportion  

 bamboo 411045 5.4% 439572 5.7% 6 % 

 banana/plantain 914138 12.0% 857517 11.2% 12 % 

 bush fallow 1091525 14.3% 987070 12.9% 14 % 

 cocoa plantation 643241 8.4% 702813 9.2% 9 % 

 elephant grass 843221 11.0% 892218 11.7% 11 % 

 grassy vegetation 1076893 14.1% 1229268 16.1% 15 % 

 herbaceous veg. 629813 8.2% 591246 7.7% 8 % 

 oil palm 518546 6.8% 506479 6.6% 7 % 

 raphia palm 375300 4.9% 335255 4.4% 5 % 

 trees/forest 1144352 15.0% 1106636 14.5% 15 % 

    total  7648074 100%  7648074 100% 

 

100 % 
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Figure 6-22 Land use type classification of the study area with the kNN method. The 

white areas are unclassified pixels and represent forest reserves,   built 
up areas, clouds, and shade of clouds. The occurrence probability for a 
pixel was p > 0.2.  
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7 Discussion and Conclusions 

7.1 Discussion of Sample Size and Design  

The reasons for the chosen inventory design have already been mentioned in 

chapter 5.1, nevertheless further aspects can be described as follows. The study 

area stretches across an area of more than 3,500 km2. A 15 by 15 m pixel based 

classification of such a large area, is necessarily at the cost of the sample size 

intensity. General stratification failed due to the lack of reliable and sufficient data 

and information concerning the area, though at least for bamboo and raphia palms, 

stratification in the form of a defined buffer along streams and rivers would be 

conceivable, as these land use types mostly occur along streams. The problem here 

was the small number of sample units, inadequate stream maps, and partially dry 

riverbeds during fieldwork and satellite image taking.  For the sampling of abandoned 

rice fields, successionally vegetated by elephant grass, a stratification on the basis of 

their close connection with lowland conditions is conceivable. 

 

Beyond this, the coarsely meshed 7 by 7 km grid entailed the disadvantage of 

missing out formative landscape patterns or even complete and rare land use types, 

such as rice fields or teak plantations. Nevertheless, half a dozen teak plantations 

were recorded and being aware of the fact that in some parts of the study area, large 

proportions of rice fields are present, they have been completely omitted from the 

accuracy analyses and are not represented in the training collectives. Hence, despite 

their existence, they do not occur in the classified maps, but are represented instead 

by the remaining land use types. Teak plantations, depending on their age, might be 

covered by the land use type forest, rice fields by their subsequent successional 

stage after they were abandoned, the elephant grass or grassy vegetation. 

 

Another issue is the procedure of, at least partially, selectively seeking examples of 

each land use type and not completely sampling them randomly, a procedure which 

entails bias. This structural weakness is mildened by a maximised sample size for 

each land use type. It is assumed that the most typical characteristics of each land 

use type were sampled, consequently the variety of reflection values for each land 

use type were likely to be sufficiently covered with a sample size of 111 to 600 pixels 
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for each type. Merely mosaics of altering land uses, smaller than pixel size, could not 

be recognised.   

 

The overall agreement of an image classification strongly depends on the degree of 

conformance between the measured position of a GPS receiver and its true 

geographic position, respectively, the applied satellite image. If training pixels, 

collected during fieldwork, have already been recorded with wrong geographic 

coordinates, or errors are unknown, the results of the classification lack validity. 

Analyses with regard to accuracy of the geometric image correction, as well as the 

expected position errors during terrestrial data collection, were made. The geo-

referenced satellite image already features errors of up to five metres in 79 %, 5-10 

metres in 15 %, and 10-15 metres in 6 % of the evaluation points. The geographic 

spread of the GPS receiver during field sampling brings in another uncertainty of up 

to nine metres (1 %) to the geographic data. Hence, deviations of 20 metres between 

satellite image and corresponding sample pixel are possible. For the terrestrial 

sampling, only sample plots with a minimum radius of at least 15 metres were 

collected to reduce the problem of position errors. However, particularly underneath 

tall bamboo clusters, in densely vegetated stands of forest and bush fallow, GPS 

position errors tend to increase. For some land use types, such as banana or grassy 

vegetation, the small scaled mosaic of alternating vegetation, intercropping and 

mixtures of land uses precludes increasing the minimum sample area. Consequently, 

an unknown number of falsely classified sample pixels went into the database and 

might have a considerable influence on classification accuracies. 

 

After exclusion of the forest reserves, the remaining off-reserve forests still covers an 

area of 1720 km2, featuring a sampling intensity of about 0.02 plots per ha. Similar 

studies show sampling intensities of 0.015 to 0.1 plots per hectare (Wallerman, 2003; 

Stümer, 2004; Gagliano et al., 2007). For the classification of forest/non-forest/water, 

the study area of Haapanen et al. (2004) encompasses approximately 29,748 km2 

and features a sampling intensity of 0.03 samples per square kilometre.  Here it has 

to be considered that the selected land covers feature defined reflection values. 
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However, for the achievement of references and guide values for the development of 

a monitoring system and to extract recommendations for the classification of these 

areas, the present sampling intensity and design is presumed to be sufficient.   

 

 

7.2 Band combination 

In comparison with similar studies (Holmström, 2001; Stümer, 1994; Cabaravdic, 

2007), where combinations of several optical satellite data, radar data, or other 

additional information like Digital Elevation Model (DEM) increased the results of kNN 

estimations, for this study only one scene of the ASTER sensor was available. In the 

present study, a general increase of the bands used does not necessarily improve 

the classification accuracy. Indeed, gradually adding up the original ASTER bands 1 

to 9 (including 3b) lead to an accuracy increase. In order to obtain a further 

improvement, particular band combinations or indices have to be added. Whereas 

some particular band combinations lead to an accuracy increase, the same bands 

may have a negative effect on another land use type. This effect was also noticed 

within one land use type when training and test collective were interchanged. It is 

likely that, in these cases, a stronger interconnection between pixel selection, 

compared to band selection exists. Altogether the band combinations 1-10 & 80-89 & 

130-139 and 80-84 & 117 showed the best results as regards all land use types. With 

reference to band combination 80-84 & 117, all bands belong to the visible-NIR 

wavelength region, complemented by the vegetation index (band 117). Surveying 

vegetative cover basically relies on VNIR spectral bands, but also includes 

vegetation indices (Lacaze, 1996; Becker et al. 2005; Khunrattanasiri, 2006). Band 

combination 1-10 & 80-89 & 130-139 also comprises bands in the SWIR wavelength 

region. The ´Tasselled Cap´ transformation, which was represented by bands 130-

139, also showed a positive effect, whereas the NDVI did not contribute so clearly. 

For estimations of the leaf area index (Lee et al. 2006), NIR reflectance showed 

positive correlations, although the correlation strength is weaker than in SWIR and 

visible regions and no significant correlation was found for NDVI.  
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Despite a higher number of applied bands, thirty bands compared to only six bands, 

hence longer computation time, band combination 1-10 & 80-89 & 130-139 was 

chosen for most of the adjacent analyses. The reason here was a slightly lower 

variability in accuracy values amongst the different land use types. The higher 

number of bands applied might also help to adjust extreme results, as the risk of 

chance is reduced, compared to band combination 80-84 & 117. For large image files 

though, priority could be given to a lower number of bands, if computer restrictions 

and efficient computing time plays the decisive role. In contrast to the accuracy 

analyses in chapter 6, band combination 80-84 & 117 was used for the generation of 

land resource distribution maps. This was done with respect to the large image file, 

covering more than 7.5 million pixels. The computation of a single image with the 

kNN programme and an Intel Pentium M processor, 1.73 GHz, 6 bands (80-84 & 

117), k = 5, and a sample size of 999 training pixels took about 36 hours. With band 

combination 1-10 & 80-89 & 130-139 it would have been a multiple period of time.  

 

This study is not meant to identify the only and optimal band combination for the 

estimations. On this account, detailed analyses on the ideal band combination were 

set aside or done only cursory and when apparently justified. However, it became 

obvious that the selection of spectral bands is of high significance. Particularly in the 

case of large investigation areas, the number of selected bands should be minimized 

and optimised. If major canopy trees (shading timber species) are ignored, the 

different land use types exhibit typical maximum vegetation heights. Radar data and 

aerial images might be of vital help to mark-off the boundaries of the land use types, 

thus significantly increasing the classification results. Haapanen et al. (2002) found 

that using multiple image dates for an area typically considerably improves results. 

 

 

7.3 Accuracy, Precision and Overall Agreement  

For some land use types (e.g. grassy vegetation), higher variances in overall 

accuracy for repeated test runs with various, random selections of training and test 

pixels were found, compared to others (e.g. bush fallow, herbaceous vegetation). 

This offers the assumption that some land use types show a more characteristic 
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pattern of reflection values than others. The high precision of bush fallow and 

herbaceous vegetation is most likely caused by the fact that these lands have been 

abandoned and define a specific successional stage with dense vegetation. These 

land use types are not exposed to any human activities or treatment until they have 

been transformed into another land use type. Comparison of different locations 

shows a similar variety of growth patterns and species composition. Therefore, 

sample location, hence pixel selection for training and test collective, might not play 

such an important role. On the other hand, the grassy vegetation showed a 

comparatively low precision, which could result from the intensive use as pasture and 

frequent or seasonal changes in treatment, for example, burning or weeding. At one 

location, appearance is quite similar and homogeneity is quite high. Compared to 

another location, the situation might have changed completely, as grazing intensity is 

lower or soil humidity differs if one location is rather situated at the top of a hill and 

the other one in a flat, plain area. Additionally the low number of sample units, hence 

insufficient cover of variety for the grassy vegetation, might contribute to the low 

precision. 

 

Other examples of a lower precision of the repeated estimations are bamboo and 

elephant grass. As bamboo is a land use type that hosts almost no shade trees or 

additional vegetation layer and the bamboo clusters permanently remain in one 

location, the reason must lie somewhere else. Probably the different density of the 

clumps and the extent of the exploitation (up to 90 % was recorded) of the shoots 

and canes mean the bare soil on the ground of the area has some influence on the 

reflection values at one location of bamboo clusters. Elephant grass appears to grow 

fairly homogenously and, like bamboo and oil palm plantations, it is quite unusual 

that shading trees, which influence reflection, are found on these sites. On the other 

hand, it was found that ground conditions as regards soil dampness may vary 

dramatically within and amongst the different sites. The low number of samples might 

contribute to this result as well. 

 

The different number of sample pixels used for each land use type is very likely to be 

another important factor for the different estimation precision, as well as the 

accuracies of the results. As the only reason it must be rejected, because highest 
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and lowest accuracy was found for oil palm and banana plantation, whereas both had 

a middle position as regard to sample size. Nevertheless, the two land use types with 

the lowest number of sample size, elephant grass and raphia palms, respectively, 

exhibited accuracies below average. This tendency was also proven with the varying 

sample sizes for the cocoa plantations versus accuracy. Higher sample sizes showed 

a trend to higher accuracies. Similar results were observed for the precision; a higher 

sample size showed the tendency to lower standard deviation of repeated runs with 

varying selections of training and test pixels. When the several land use types are 

taken into consideration, this rule could also be applied in the reverse direction. 

 

By comparison of the averaged accuracy with several runs of randomly selected 

training and test pixels, it was found that the curves for the three selected land use 

types bamboo, oil palm plantation, and banana plantation flattened, or at least the 

volatility dramatically declined, after about six reruns. It is certainly true that the 

selected examples show some differences among one another, but this has to be 

considered for a monitoring design and for practical applications, respectively. 

Particularly when considering the remaining seven land use types, it must be 

presumed that every land use type itself has different minimum requirements as 

regards variance of the expected results.   

 

Observing the accuracy for the particular land use types, it was found that some land 

uses tend to have higher estimation accuracies compared to others for both aspects, 

that is in comparison with different band combinations as well as for replications with 

varying sample collectives. Classification accuracies above average were found for 

oil palm plantations, followed by grassy vegetation, herbaceous vegetation, and 

cocoa plantations. The oil palms are a long-lasting cash crop, with well defined 

boundaries, intensively maintained and not inter-planted with any other crops. The 

ground is generally covered with low growing grasses and herbs. Merely plantation 

age, hence spacing, differs to a great extent, particularly in the case of younger 

plantations. These facts might be the reason for the relatively high estimation 

accuracy. The grassy vegetation, mainly used as grazing land for cattle, is subject to 

high maintenance as well. Connected with that is the fact that this land use type 

basically involves grasses and has a homogenous appearance within one pixel. With 
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higher proportions of herbaceous species, the land use type is defined as 

herbaceous vegetation, then supporting less homogeneity per pixel, with respect to 

species richness and vegetation height. Together with the bamboo clusters, these 

land use types lack shade trees and occur relatively homogenously within one pixel.  

 

The cocoa plantations, the major cash crop in the region, experienced the highest 

maintenance and treatment over time. Intercropping is rather unlikely, except for fruit 

trees at times and homogeneity of this land use type is very high. However, a 

shading canopy of timber trees, or at least scattered tree individuals dispersed within 

a coca farm, influence the reflection values to a high proportion. 

 

In contrast, banana plantations are very heterogeneous. They occur densely packed 

with tall plants, intercropped with all types of seasonal vegetables, show high 

proportions of bare soil, particularly at a young stage. As they function as a 

subsistence crop as well as a cash crop, sold at local markets, they are planted in a 

vast variety of shapes, sizes and intermixtures with other crops. They might cover 

areas of several hectares with only few giant trees above, as well as on a patch, 

smaller than pixel size, surrounded by dense cocoa plantations or adjacent scattered 

tall trees. The sample size of the bush fallows was the highest of all land use types 

and might have contributed positively as regards, precision of the estimations. The 

last but one position with respect to overall accuracy was surprising though. This land 

use type was found at almost every location, the reason for the high number of 

sample units, and, consequently, meaning that it was not very specific as regards 

topography, moisture conditions, etc. Just this fact might lead to a vast variety of all 

kinds of reflection values, as this land use type appears to be densely packed with 

overgrowing herbs and only scattered small shrubs, or, contrary to that, with a dense 

stand of tall shrubs and only small proportions of ground vegetation. In-between, all 

types of successional stages might appear, sometimes interrupted by slash and burn 

activities and intercropping with seasonal vegetables, or abandoned for many years, 

almost representing a forest patch.  

 

Not all land use types are explicitly analysed here. The recorded sample size and 

observed occurrences of raphia palms, for example, were considered to be 



 Discussion and Conclusions  101 
  

  

substantially insufficient. The tree and forest patches involved the problem that most 

land use types do host tree individuals, or more or less scattered timber trees already 

form a canopy layer above a specific land use type. Another issue is that isolated 

giant trees are sampled as individuals, with any kind of other land use type 

underneath.  

 

The problem of all interpretations in this connection is that assumptions are based on 

the accuracy and precision of the classification results. Quantitative analyses of 

actual reflection values and the differences in reflection for individual sample pixels 

are lacking. With the kNN software used in this study, this is not applicable 

immediately. Though the arrangement of such analyses is possible with the present 

data, they are very time-consuming if no adequate software is available. 

 

The classification accuracies obtained in the study vary dramatically, depending on 

the observed land use type and particularly with regard to the number of classes 

applied. Averaged overall accuracies of up to 83 % are acquired for oil palm 

plantations, whereas banana plantations were located at 75 %. Far beneath these 

figures are the results when classifying all ten land use types at once. The 

classification accuracy then lay at 55 %. With a mark up of the occurrence probability  

from > 0.2 to > 0.5, this value could be improved to 70 %, with the limitation of about 

40 % of the pixels rated as being unknown or unclassified, respectively. For the 

evaluation of the results, it has to be considered that each sample plot might 

comprise several land uses. The dominant land use type with a surface cover of at 

least 50 % defined a pixel’s land use type. For single class estimations (e.g. 

bamboo), output pixels included another uncertainty of up to 50 %, given by the 

occurrence probability for each pixel.        

 

For a classification of 14 forest cover types with the kNN method and a 10-point 

cluster plot design, Haapanen et al. (2002) defines the best estimation accuracies at 

pixel level, at 45 % to 55 % correctly classified. The application to forest/non-forest 

classification showed an accuracy of 86 % and corresponds in the main with the 

findings of this study. The kNN classification of forest/non-forest/water achieved 

overall accuracies ranging from 87% to 91% (Haapanen et al., 2004). 
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Holmgren & Thuresson (1998) reviewed several studies focusing on land 

classification. For a dozen or more forest classes ranging from regeneration areas to 

mature stands, classification accuracy was consistently in the range of 65-85%, 

regardless of the sensor used or local climatic conditions. Accuracy increased to 

above 90 %, if water bodies and land uses other than forestry were included. 

Comparing the results with other studies using the kNN method, Stümer (2004) 

calculated accuracies of 60 % to 73 % for the attribute deadwood.  

 

The land cover classification of Dias (2003), featuring similar land conditions as the 

present study, with the seven land cover types, villages, forest, bush, fallow, cocoa, 

oil palm, and annual crops (including plantain, cassava, maize), showed an overall 

classification accuracy of about 72 %. This result is slightly better than the multi-

classification of the present study, presumably due to the lower number and a more 

distinct selection of classes. Voado (2004) presented an assessment for a nine class 

land use map of the Goaso forest district and described the overall accuracy as being 

about 82 %. Using the software eCognition, Hailemariam (2004) classified similar 

areas of the Goaso forest district, defining seven land cover classes. They were 

annuals, cocoa with trees, fallow, grass, build-up, bare, and perennial without trees. 

The overall accuracy was estimated to be about 93 %. Compared to this study, the 

overall accuracy of the classifications of the Goaso forest district mentioned above 

seem to be significantly higher. This could be caused by the different selection of 

classes. Built-up areas, with a much defined reflection pattern, were not included in 

this work besides the fact that marshland, for instance, was subdivided into raphia 

patches, elephant grass, and bamboo. The different classification methodology might 

also cause the differences in the results.   

 

The overall agreement of the classifications of this study, defined by the kappa 

coefficient, may be considered to show a moderate to substantial agreement.  Kappa 

values of single land use type estimations ranged from 0.502 (banana) to 0.669 (oil 

palm). The overall agreement of the multi-attribute classification of the ten land use 

types showed a kappa coefficient of 0.496 and was improved to 0.663 when limiting 

the estimations to an occurrence probability of p > 0.5, instead of p > 0.2 per pixel. In 

comparison with other studies, using the kNN method for map making of forest cover 
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types, Gagliano et al. (2007) showed similar values with kappa values between 0.523 

and 0.531. 

 

 

7.4 Plot Distribution 

With the defined spatial arrangement between training and test pixels in the 

categories separate (far, close), random, and equal distribution of the two collectives, 

different sampling designs, respectively, sample intensities are simulated. 

Theoretically, sample pixels of immediate vicinity tend to feature similar conditions in 

terms of soil conditions, topographic characteristics, treatment, etc. Whereas a 

further spatial distance from training pixel to test pixel (respectively, pixel that has to 

be estimated), tend to show greater site differences, that is reflections. With a 

gradient from far to close spatial distance of training and test pixels, the influence on 

the classification results is quantified.  

 

For bamboo the classification accuracy correlates significantly with spatial distance of 

training and test collective. This leads to the assumption that the closeness of 

training and test pixel improves the accuracies in general. Similar results are shown 

for the precision of several test runs. A more equal distribution exhibits higher 

classification precision, compared to a higher spatial distance of training and test 

collective. However, lowest precision was found for a random distribution, which, on 

the contrary, is supposed to occupy a medium position. The majority of bamboo 

pixels came from sites that covered a multitude of bamboo clusters at one location, 

hence featuring very similar site conditions. The number of different bamboo 

locations was very limited, thus reflection values might show a low variability, which 

leads to a relatively low standard deviation of the repetitions and a high averaged 

classification accuracy of 85 % for the equal distribution, compared to 67 % for the 

separate far distribution. 

 

In comparison, this substantial increase in classification accuracy for a more equal 

distribution was not observed for the average of all land use types. An increase of 

about three per cent points from separate to random distribution, but a decrease of 
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one per cent point to an equal distribution was observed. The number of only four 

runs for each land use type might not suffice. An earlier test run with a random 

distribution and ten sample runs showed a slightly lower classification accuracy, but 

still higher than the average of four runs and an equal distribution. The classification 

again exhibits a definite tendency: classification precision correlates with reduction of 

spatial distance of training and test pixels. 

 

For an optimal sampling design, the crucial factor is not merely the equal or random 

distribution of sample plots over the area. Additionally, it is important that typical 

examples of the participating land use types are recorded to cover the variety of 

reflection values within the classes. Some land us types are distributed more or less 

equally over the whole area (e.g. cocoa plantation) and are easily encompassed by a 

random or systematic sampling design. Other land use types feature very large 

areas, but are limited to specific site conditions (e.g. rice field in lowlands). Such land 

use types can be located selectively, for example by using aerial photographs, where 

they can easily be identified, because of the large dimensions. Samples within such 

an area can then be distributed randomly. Other examples are the bamboos and 

raphia palms. In very rare cases, the raphia palms grow plentifully within marshes, 

whereas the bamboos prefer small meandering streams. Both types are also found 

widely distributed over the area, limited to only small numbers or even individuals at 

one location. The sampling design then has to be adapted to the particular land use 

type of interest.  

 

Haapanen et al. (2002) described the effect on overall accuracy of forest cover type 

estimation by limiting the inclusion of subplots, comparing the tree categories using 

all subplots (59 - 71 %), excluding subplots closer than 40 metres (approx. 50 %), 

and excluding subplots from same cluster (33 - 44 %). These categories define a 

similar gradient, as the allocation in far, random, and equal distribution of this study.  

The findings of Haapanen et al. (2002) correspond to the results of this study: Since 

the subplots are located very close to each other, the reflection values for nearby 

pixels tend to be very similar within a cluster. In cover type classification, the entire 

subplot cluster was often of the same cover type and thus the nearest neighbours 

were usually found within the cluster. This impact  has to be taken into consideration 
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for inventory-wide calculations and interpretations of overall accuracies in 

classifications. 

 

 

7.5 Sample Size of Training Pixels 

The software used for the kNN estimations of this study was limited to 999 training 

samples in one procedure. The number of input pixels per class – equal distribution 

assumed – correlates with the number of classes estimated in one procedure. By 

using only one attribute (e.g. bamboo) with two characteristic features (bamboo & 

non-bamboo), one characteristic feature can be supported by 499 input/training 

pixels. For a classification of ten land use types at one and the same time, only 100 

training pixels per land use type, minus one all in all, can be handled. Therefore, the 

number of sample plots per land use type strictly depends on the number of 

attributes (classes) to be classified. Generally, for this study, training pixels are 

distributed equally over the involved attributes/classes. 

 

A clear correlation of sample size and classification accuracy was found 

representatively for the attribute cocoa. Higher numbers of training pixels caused 

higher accuracies with an increasing flattening of the curve for higher sample sizes. 

Surprisingly, even the very low number of 50 sample plots (25 pixels cocoa, 25 non-

cocoa) showed an averaged estimation accuracy of 69 % compared to 77.4 % with 

998 sample pixels. The best precision were found for sample sizes above 750 pixels, 

whereas the lowest precision for the five runs for each category were found for the 

medium values of 400, 450, and 650 sample plots. 

 

The pure maximisation of sample size is not sensible. Of greater importance is the 

representative distribution within the feature space. It has to be considered, 

depending on the selected k-nearest neighbours, that there is a sufficient number of 

samples available for the particular classes. Land uses with a very homogeneous 

feature, such as the cocoa plantations, require a lower sample size compared to 

banana plantations, which happen to appear in all kinds of mixtures with other land 
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uses. An optimisation of the sample design and sample size per class also reduces 

expenses for terrestrial data collection. 

  

To obtain reliable estimates with the kNN estimation method, Nilsson (1997) claims 

that at least 500 sample plots are needed for Nordic forest conditions, which is 

applicable for Minnesota (Haapanen et al., 2002). 

 

 

7.6 Parameters k, r, t 

K is a parameter representing how many samples are considered to classify one 

object, whereas r and t enable the weighting of the spectral differences of the several 

bands. The kNN programme applied for this study already suggests values in the 

presetting (k = 5, r = 2, t = 2). Every land use type is most likely to respond differently 

to adjustments of these variables. Yu et al. (2006) found different classes achieved 

the highest classification accuracy at different k values. Precise specifications for 

each land use type are not given. This study appraised the constellation for bamboo, 

as a representative example, observing the parameter adjustments in a test series, 

with the two remaining parameters fixed at presetting. 

 

The variable k, as the key parameter, is of particular interest. It is also particularly 

dependent on the sample size. Larger k values tend to favour larger sample sizes 

(Yu et al., 2006), whereas r and t tend to be more influenced by the reflection 

patterns of the specific land use type. A maximum classification accuracy was found 

for k = 4 (81.5 %), whereas lower, and particularly higher values, result in a 

decrease. The sample size was 408, which is the possible maximum for this land use 

type. Therefore, the optimum of this study is very close to the presetting of the 

software. With analyses as regards kNN methods for forest mapping, Haapanen et 

al. (2002) affirm that a value of k between 1 and 3 seems appropriate for mapping; 

larger number of neighbours reduces the overall estimation error, but it also leads to 

a reduction in the producer’s accuracy. Stümer (2004) found that for the attribute 

dead wood, the best accordance between kNN estimations and reference samples 

were found for k-values between 1 and 7, which is consistent with the findings of this 
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study. One should note that when k = 2, the mode estimate is identical to that for k = 

1. For a sample size of about 400 pixels, the best classification accuracy was 

approximated for k-values of about 7 to 9 (Yu et al., 2006). Tomppo (1996; 1997) has 

typically used k = 5. 

 

The r-values enable a different weighting of individual bands. For bamboo, r-values 

of 1 to 3 showed the highest classification accuracies. With an increase of r, high 

spectral differences of individual channels get a higher weighting in the overall 

distance, which leads to a decrease in quality of the overall distance. In other words, 

pixels with relatively homogeneous spectral differences of the individual bands are 

favoured. 

 

With the introduction of the variable t, control of the weighting of the selected k-

nearest neighbour pixels and their allocated characteristic feature is enabled. With 

bigger values for t, higher weight is given to pixels with low spectral distance. The 

optimum for the t-values of bamboo is five. 

 

With the weighting of spectral bands (k = 1), Haapanen et al. (2002) improved the 

cover type classification accuracy, whereas the volume RMSEs dropped with similar 

parameters. Determination of weights was not straightforward. Varying the distance 

decay parameter t had little influence (87.3 – 89.2 %) on overall accuracy (Haapanen 

et al., 2004) and showed a similar variability to that observed in this study. 

 

The parameter findings for k, r, and t observed in this study can only serve as a first 

preliminary for applications of the kNN method of bamboo with a very limited number 

of spectral data. For other vegetation types, investigation areas and available remote 

sensing data, individual and more detailed sample calculations are absolutely 

recommended.  
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7.7 Assessment of the Classification Results 

Image Classification  

By comparison of multi-attribute classifications of the whole study area with randomly 

selected input pixels (999 out of 3360), the two resulting images displayed very 

similar distribution patterns for the ten land use types. The proportions of land cover 

showed a maximum deviation of 2 percentage points for the grassy vegetation,  

between the two images. The average deviation of all land covers was 0.76 %. 

 

The classifications of single land resources with variable ratios of  ‘presence’ and 

‘absence’ input pixels had an impact on the estimated land cover proportion of these 

resources. Therefore, precise estimations of land use covers are not valid at this 

point. However, distribution patterns of specific land resources can be visualized at 

the present stage. For a monitoring system of specific land resources, prior 

assessment with respect to optimum input sample ratios between ‘presence’ and 

‘absence’ of a land use type has to be undertaken. The same procedure is necessary 

for a multi-attribute classification. In all cases, it is recommended that the same 

attribute input ratios be applied for a monitoring with repeated classifications over 

time. 

 

The land cover proportions estimated by the multi- and single-attribute classifications 

cannot be used as an indicator for the real proportions in the area at this moment. 

Indeed, the land cover proportions within a classification do not vary intensely in the 

case of a repeated investigation with another, randomly selected collective of training 

pixels. On the other hand, the chance of being selected as input pixel was 

determined by the proportion of samples for each land use type within the pool of the 

3360 sample plots, which had been previously determined with a specific ratio. A 

detailed assessment with respect to adequate partitioning of samples for each land 

use type, or proportion for each class, has been omitted. Therefore, it is most likely 

that the estimated cover proportions of land use types, like bamboo and raphia 

palms, have been rather overestimated, particularly as these land uses could hardly 

be found with a random sampling design. 
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Confusion Matrix 

The confusion matrix of the classification assessment means that an assessment of 

accuracy differences and relations amongst the attributes within a classification is 

possible. High proportions (10 to 28 %) of registered (ground truth) banana and bush 

fallow samples, for instance, were confused with each other and thus misclassified, 

hence similarities in reflection patterns are assumed. Similar proportions in 

misclassification (7 to 19 %) occurred between cocoa plantations and raphia palms.  

 

 

7.8 Inventory of NTFPs and Tree/Forest Resources  

The estimation and inventory of non-timber forest products with help of remotely 

sensed data strictly depend on the growth characteristics and distribution patterns of 

the particular resource. For this study, the kNN method has been applied to bamboo 

and raphia palms, whereas rattan had to be neglected due to inadequate size of the 

sample units. The assessment results exhibit that the distribution of bamboo and 

raphia palms can be estimated at a similar level of correctness as other land 

resources. However, bamboo clusters and particularly raphia palms also appear to 

occur as individual plants, not only in the form of clusters and groups. In these cases, 

estimation is rather inaccurate, and for individual raphia palms, almost impossible. 

Because mature raphia palms exhibit a relatively unique size and growth pattern, the 

number of palms correlates most likely with the covered area. Thus, inventory of 

raphia occurrences of a specific minimum size, indicates positive results for the 

application of the kNN method and quantities may be estimated based on the land 

cover. However, previous assessment of the correlation of surface cover and quantity 

have to be carried out for raphia, as well as bamboo. Similar results are indicated for 

forest patches and even individual giant trees. For a quantitative and more precise 

inventory of tree and forest resources outside the reserves, further studies are 

suggested. A separation of scattered trees within other land use types, and, on the 

other hand, forest patches, are advisable.   
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7.9  Recommendations for the Development of a Monitoring Design  

The dramatic land use changes in tropical countries are becoming more and more of 

vital interest with increasing prices of crude oil and the adherent transformation from 

mixed farm and forest lands into treeless monocultures of oil palm plantations. 

Another big problem is the rapid deforestation caused by the continuing illegal and 

unsustainable practices of chainsaw operators (Kufuor, 2004). It is reported that pure 

terrestrial inventories and forest registers of Ghanaian off-reserve forest areas are 

already failing due to lack of funding. The development of an efficient remotely 

sensed monitoring system is recommended to detect and record land use changes 

over time.  

 

The results of this study proved the applicability of the kNN method for a monitoring 

system of the land resources in the off-reserve forests in Ghana. The analyses give 

an overview of the potential estimation accuracies and overall classification 

agreement of several land use types. Observation made during terrestrial sampling 

and the analyses of the results provide preliminary indications and thus general 

guidelines and recommendations for the development of a monitoring system for the 

different land resources of the region. Optimisation of parameters and design of a 

monitoring system has to be developed individually with respect to objectives and 

land resources of interest. 

 

In a first step, it has to be defined which land resources are actually of interest and 

what quality level is expected from the estimation. A basic rule is that an increasing 

number of classes leads to lower classification accuracies. Some land uses are more 

likely to have better accuracy results than others. Particularly land resources that 

show manifold mixtures of intercropping and a tendency to smaller units are less 

likely to be monitored and require higher sampling intensities. Individual optimum 

parameters have to be determined for the resources of interest and the objectives of 

the monitoring, respectively. 

 

With respect to the small-scale mosaic of the different land uses, a pixel based 

classification with variable sample plots is advisable. Object based classification is 
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confronted with the problem of indistinct land use boundaries and intercropping. It is 

suggested that the minimum radius of the sample plots be 15 metres to increase the 

chance of geographically correct sampling.  Indeed, most land use types, except 

fallow lands, show an average unit size of 0.3 ha (Hailemariam, 2004). The problem 

here is that scattered canopy trees are dispersed within most land use types and 

might have stronger influence on reflection, than the vegetation underneath. So it is 

advisable that one distinguishes between locations with and without shading timber 

trees. When intercropping cannot be registered by the image resolution, it should be 

defined and proportions recorded. Depending on the type of land use, proportions of 

other site conditions (swamp, proportion of bare soil, proportion of other vegetation, 

etc.) should be recorded. 

  

The number of sample plots strongly depends on the homogeneity of the land use 

type, as well as upon cover proportion of the specific land resource. Particularly for 

multiple land resource monitoring, preliminary studies are essential. However, a 

minimum of 800 sample plots for an area of the Goaso forest district is advisable to 

increase precision of the estimation. If local information on resource distribution is 

available, stratification might help to reduce costs and to optimize sample size for 

specific land resources. Otherwise, a systematic, preferably equal spread of plots 

over the area, with fragmentation into subplots, is recommended. To enable a 

representativeness of the typical reflection conditions within one land use type, parts 

of the subplot locations could be selectively chosen. It is suggested that optimum 

ratios of sample units distributed over the different attributes/classes be determined. 

If only general distribution patterns of several land uses are of interest and precise 

proportions of land cover are of minor interest, an equal distribution of the samples 

distributed amongst the different classes is acceptable. However, for repeated 

estimations, it is strongly recommended that these ratios be kept. Depending on the 

objective of monitoring, a stabilisation of the estimation results could be achieved by 

resampling the distribution map into a 2 by 2 or 3 by 3 pixel matrix. Bamboo clusters, 

for example, happen to appear clumped. Single bamboo output pixels, correct or 

misclassified, could be ignored with this technique. Only agglomerations of bamboo 

output pixels would then be recognised.   
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GPS position accuracy plays a fundamental role. Correction signals to determine the 

GPS signal errors are not available in many regions. In tropical conditions of 

developing countries, using a small, cheap and user-friendly GPS receiver with 

medium position accuracy should be preferred to heavy equipment, assuming higher 

position accuracy. The advantages of an average function provided by the receiver 

should be fully utilised if possible. Within dense stands, facing poor GPS signals, it is 

worth recording and interpolating peripheral positions. Bigger circle plots reduce the 

uncertainty of position errors and reduce wrong registrations. The remotely sensed 

images applied should already be professionally geo-referenced when purchasing to 

reduce the accumulation of position errors. It is advisable to use cloud free satellite 

images of different dates, preferably complemented by radar data and a digital 

elevation model. Application of indices might help to considerably improve the 

classification results. The selection of specific band combination as well as the 

optimum values for the parameters k, r, and t should be determined by preliminary 

analyses.  
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8 Summary 

Continuously increasing population and concomitant demand for food have been 

devastating forests by exploitation and shifting cultivation at an alarming rate. With 

the awareness the exhaustion of fossil fuels and recent price peaks for crude oil, the 

tendency towards forest destruction has been accelerated with the transformation of 

forest lands into oil palm plantations. In the same way, non-timber forest products like 

rattan, bamboo or raphia palms are disappearing. Local populations are more and 

more dependent on the illegal gathering of rattan from protected forest reserves and 

chainsaw lumbering practices in Ghana’s off-reserve forests – prohibited since 1997 

– serve as a source of livelihood for a good number of Ghanaians. The monitoring of 

forest lands is vital to enable the sustainable management and development of the 

area. The mission of the internationally acting organisation Tropenbos, where this 

study is imbedded, is to generate scientific input for sustainable management of 

natural resources of tropical countries. 

 

The application of the k nearest neighbour (kNN) method in the combination of 

terrestrial data with remotely sensed data for forest attribute estimation and mapping 

has become an integral part of forest inventory methods. The object of this study is to 

assess the potential of the kNN method for the development of a cost efficient 

monitoring system of specific non-timber forest products, forest resources, and 

different land use types, in the off-reserve forests of the Goaso forest district in  

Ghana. For this purpose ten land use types and land resources, were identified, 

these being the following; bamboo, banana plantations, bush fallow, cocoa 

plantations, elephant grass, grassy vegetation, herbaceous vegetation, oil palm 

plantations, raphia palms, and forests. Based on selectively chosen sample circles 

with variable diameters, 3360 pixels were distributed within the off-reserve forests, 

covering an area of about 1710 km2. For the classification assessment, the 

registrations were each divided respectively into a collective of training and test 

pixels. The method was applied to ASTER data and out of it mathematically 

generated indices were deduced to identify how various spectral band combinations, 

sample sizes, and sample distributions contribute to the overall accuracy of the 

various land use types. 
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The kNN classification achieved overall accuracies ranging from 75 % for plantain, 

78 % for tree resources and raphia palms, 81 % for cocoa plantations and bamboo, 

up to 83 % for oil palm plantations. With increasing sample sizes or simulation of a 

particular sample plot distributions, the results could be improved. Likewise, selection 

of optimal parameters for the kNN programme settings were found. K-values 

between 3 and 6 showed the highest values for the land resource bamboo. For a 

multi-attribute classification of the ten land use types, overall accuracy and overall 

agreement in the classification could be increased by limiting the occurrence 

probability from the results of the kNN programme to at least 0.5. This, however, 

caused a waste of 42 % of the estimated pixels, which had to be labelled as 

unclassified. The partly broad differences of the kNN estimations, as regards  

accuracy and precision within the several land uses show, that optimisation of 

parameters ought to be identified individually, depending on the specific selection of 

resources which are to be monitored.  

 

Finally, the results of the study demonstrate a high potential for the application of the 

kNN method for a monitoring system of the land resources of Ghana’s off-reserve 

forests. Adaptation of individual parameters, for instance the value for k, optimisation 

of spectral data, sample size and design applied to specific land resources, will 

further increase the expected estimation results and classification accuracies of this 

study. At this point, the estimation and inventory of non-timber forest products, in 

particular raphia palms, is limited to habitats bearing a specific minimum ground 

cover and exhibiting an agglomeration of individuals to be captured by the satellite 

sensor. For detailed estimation and inventory of bamboo and raphia, the proportions 

of land cover can be used to estimate quantities of NTFP resources. However, 

further studies on the correlation of stock quantities versus habitat cover are highly 

suggested. 
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9 Zusammenfassung 

Der ungebrochene Bevölkerungszuwachs und der damit verbundene Bedarf an 

Nahrung trägt, etwa durch Wanderfeldbau, unvermindert zur Waldzerstörung bei. Mit 

der zunehmenden Bewusstwerdung der Endlichkeit fossiler Energieträger und damit 

einhergehender Höchstpreise für Erdöl, nimmt der Trend der zunehmenden 

Entwaldung durch Abholzung und anschließender Umwandlung in Ölpalmplantagen 

noch zu. Zugleich verschwinden natürliche Vorkommen von Nicht-Holz 

Waldressourcen wie Rattan, Bambus oder Raphiapalmen. Die einheimische 

Bevölkerung sieht sich damit mehr und mehr dazu gezwungen, Rattan illegal aus 

Ghanas geschützten Waldreservaten zu entnehmen oder weiterhin eigenmächtig – 

und seit 1997 verboten – Holzeinschlag mit der Motorsäge in den Waldflächen 

außerhalb der Reservate vorzunehmen, was einer Großzahl von Ghanaern 

ermöglicht, ihren täglichen Lebensunterhalt zu bestreiten. Ein Monitoring dieser 

bewaldeten Flächen ist somit unabdingbar, um eine nachhaltige Nutzung und 

Landentwicklung dieser Gebiete zu ermöglichen. Die vornehmliche Aufgabe der 

international agierenden Organisation Tropenbos, in die diese Studie eingebunden 

ist, ist es, wissenschaftliche Forschung zu unterstützen, um damit 

Handlungsempfehlungen und Managementstrategien für die nachhaltige Nutzung 

natürlicher Ressourcen in tropischen Ländern bereitzustellen.  

 

Die Anwendung der k-nächsten Nachbarn (kNN) Methode, in Kombination von 

terrestrisch erhobenen Daten mit Fernerkundungsdaten, zur Schätzung von 

forstlichen Kennwerten und zur Kartenerstellung ist mittlerweile ein integraler 

Bestandteil von Forstinventurmethoden. Das Ziel dieser Studie ist es, das Potential 

der kNN Methode für die Entwicklung eines kostengünstigen Monitoring Systems für 

bestimmte Nicht-Holz Waldprodukte, Waldressourcen und verschiedenen 

Landnutzungstypen, in nicht ausgewiesenen Reservaten des Forstdistrikts Goaso in 

Ghana, zu beurteilen. Dazu wurden die zehn Landnutzungstypen bzw. 

Landressourcen Bambus, Kochbanane, Buschbrache, Kakaoplantage, 

Elefantengras, Grasvegetation, Krautige Vegetation,  Ölpalmplantage, Raphiapalme 

und Waldflächen identifiziert. Basierend auf selektiv ausgewählten Probekreisen mit 

variablem Durchmesser wurden 3360 Pixel außerhalb der Waldreservate im Goaso 

Forstdistrikt verteilt. Damit wurde eine Fläche von etwa 1710 km2  abgedeckt. Für die 
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Genauigkeitsanalyse wurden die Aufnahmen in jeweils zwei verschiedene Kollektive 

aufgeteilt, in Trainings- und Testpixel. Die Methode wurde auf ASTER Satellitendaten 

und den daraus erzeugten Indizes angewandt, um dadurch den Einfluss einzelner 

spektraler Bänderkombinationen, des Stichprobenumfangs und der 

Probenverteilung,  in Hinsicht auf die Gesamtgenauigkeit der Klassifizierung 

einzelner Landnutzungstypen, zu bestimmen.  

 

Die kNN Klassifizierung erreichte Gesamtgenauigkeiten von 75 % für Plantagen von 

Kochbanane, 78 % für Baumressourcen und Raphiapalmen, 81 % für 

Kakaoplantagen und Bambusvorkommen und bis zu 83 % für Ölpalmplantagen. Mit 

zunehmendem Stichprobenumfang oder der Simulation von speziellen 

Probenverteilungen konnte die Genauigkeit der Schätzungen noch erhöht werden. 

Ebenso konnten die einstellbaren Parameter des kNN Programms optimiert werden. 

Für Bambus wurden die besten Ergebnisse für k-Werte zwischen 3 und 6 ermittelt. 

Für die Multi-Attribut-Klassifizierung der zehn Landnutzungstypen, konnte die 

Gesamtgenauigkeit und die Gesamtgültigkeit der Klassifizierung erhöht werden, 

wenn die Eintrittswahrscheinlichkeit von den Ergebnissen des kNN Programms auf 

mindestens 0,5 erhöht wurden. Dies führte jedoch gleichzeitig zu einer Verwerfung 

von 42 % der ausgegebenen Pixel, die dann als unklassifiziert angegeben werden 

mussten. Die teilweise beträchtlichen Unterschiede der Schätzungen in Bezug auf 

Genauigkeit und Präzision der kNN Schätzungen zeigen, dass eine Optimierung der 

einzelnen Parameter individuell ermittelt werden sollte, je nachdem für welche 

Ressourcen ein Monitoring erfolgen soll.  

 

Abschließend läßt sich ein hohes Potential der kNN Methode für die Anwendung in 

einem Monitoring System der Landressourcen Ghanas außerhalb der Waldreservate 

prognostizieren. Unter anderem kann durch individuelle Anpassung der Parameter 

etwa von k und Optimierung spektraler Daten, des Stichprobenumfangs und 

Aufnahmedesigns für individuelle Landressourcen, die Schätz- und 

Klassifizierungsgenauigkeiten aus dieser Studie noch weiter erhöht werden.  Zum 

gegenwärtigen Zeitpunkt ist eine Inventur und Schätzung von Nicht-Holz 

Waldprodukten, insbesondere von Raphiapalmen, auf  eine Mindestgröße des 

Habitats und einer Anhäufung von Einzelindividuen begrenzt, um vom 
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Satellitensensor erfasst werden zu können. Für eine detaillierte Schätzung und 

Inventur von Bambus und Raphiapalmen sind weitere Studien bezüglich des 

Zusammenhangs der eingenommenen Fläche und der Vorratsmenge 

empfehlenswert, um damit vom Flächenanteil auf die Quantität einzelner Ressourcen 

schließen zu können.  
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