
Sonderdrucke aus der Albert-Ludwigs-Universität Freiburg

PETER THIEMANN

Avoiding Repeated Tests in Pattern Matching

Originalbeitrag erschienen in:
Patrick Cousot (Hrsg.): Static analysis : third international workshop; proceedings.
Berlin [u.a.]: Springer, 1993, S. 141 - 152

Avoiding Repeated Tests in Pattern Matching

Peter Thiemann*

Wilhelm-Schickard-Institut, Universitit TUbingen, Sand 13, D42076 TUbingen, Germany

1 Introduction

When programming in functional languages with pattern matching there are often
situations where nested patterns are used to look ahead into the argument data
structure. What we want is information about the structure below the top level
data constructor in order to take the appropriate action. ML has the alias pattern
var as pattern as a special syntax for cases where we also need values from the inside
of a pattern.

The kind of nested patterns as just mentioned often leads to inefficiencies that
are not obvious to the programmer. Consider the function last taken literally from
Wikstrom's SML library [11].

(* last : 'a list -> 'a *)
fun last 0	 = raise Last

1 last [xl	 = x
1 last (x::xs) = last xs

Compilation of pattern matching transforms the definition to

fun last L = . case L of
nil	 => raise Last

I x	 L3 => case L' of
nil	 => x

I x 3 ::L" => last L'

Now we can make the following observation. Only the very first invocation of last
can ever enter the nil branch of the first case and raise the exception. For all
recursive invocations of last it is known that the argUment is a non-empty list. An
implementation of last that avoids repeating the test whether the argument list is
empty can be given as follows.

fun last' x nil = x
I last'	 (x::xs) = last' x xs

fun last nil = raise Last
1 last (x::xs) = last' x xs

The specialized function last' could be declared locally to last, but it is more
advantageous to have last' declared globally since it can be used whenever it is
known that the argument to last is a non-empty list.

* Email address: thiemannfOinformatik.uni-tuebingen.de

142

It is the purpose of this paper to give a simple and cheap approximate struc-
ture analysis (by abstract interpretation) that uncovers cases of repeated testing
and generates specialized versions of the functions involved like last' above. Out
intention is to use the analysis in a compiler. The techniques employed are connected
to sharing analysis and partial evaluation. The analysis is applicable to a first order
subset of ML.

It might be argued that such an analysis is applicable only to sloppy program-
ming. However we feel that this is not the case. Consider the following fragment of
an ML program to compute the next generation for Conway's game of life.

fun next_generation
(x1::(xs as (x2::x3::_)))
(y1::(ys as (y2::y3::_)))
(z1::(zs as (z2::z3::_)))

= fate y2 xi x2 x3 yi y3 zi z2 z3:: next_generation xs ys zs
I next_generation = [0]

Out of the nine constructor tests performed per recursive call, the outcome of six
tests is known in advance since they have already been performed by the calling
function. To expand the code by hand is tedious, error prone, and bad programming
style since code for the same task is repeated in several places of the program.
Our analysis identifies all of the repeated tests and produces specialized versions of
next...generation without repeated tests.

The structure of the presentation is as follows. In Section 2 the syntax of a first
order ML subset is defined along with an instrumented semantics that can express
sharing properties. The next Section 3 defines a special environment structure for
use in the abstract semantics. Section 4 introduces an analysis to find candidates for
specialization by discovering argument patterns to function calls. The specialization
process itself is detailed in Section 5 using arity raising. Finally we discuss related
work in Section 6 and conclude in Section 7.

2 Syntax and semantics

We consider a first order ML subset with the syntax given by the grammar in Fig. 1.
The language is given an instrumented strict semantics. The instrumentation is

chosen to provide enough detail to express sharing of structured values. Values are
considered structured if an implementation allocates them on the heap (eg. con-
structed data, tuples,) so that they can be shared. Basic values like integers
and nullary constructors are not considered structured. Each node of an object of a
constructed data type carries a unique identification in the form of a non-empty se-
quence of numbers mo .mi , n > O. When sharing occurs the object is formally
copied but in a manner that shared nodes have a common (non-empty) prefix. Thus,
we have unique nodes with unique access paths but are able to express sharing. A
strict semantics with a store may be obtained by truncating all identifications to
length 1 and considering mo as a store address. The strict standard semantics is
recovered by projecting out the allocation information of the Mark component. The
semantic domains are defined in Figure 2 where ED, e, and denote coalesced
sum, smash product and strict function space construction. Con (lc) is the flat partial

143

prg —4 dec exp

dec —4 fun f vi	 = exp dec

exp —4 case exp of pat i : exp i j ... !pain, : exp in

let v = exp in expi
c(exp i , expk)

f(ezlii, • • -,exPn)

pat —4 c(vi, . • • , vk)
where
v E Var denumerable set of variables
c E Con data constructors with arities k(c)
f E Fun finite set of function symbols

Fig. 1. Syntax of the first-order language.

Int	 = {..., —2, —1, 0,1, 2, _}I.
Mark = (1N*)

Val() = Int e Con (f) ConS..k) 0 Mark 0 Val0 ... Val0
S..ammuirmirmorporry,,,r■is.wariemmom,

structured values
Val =IN1ØVaIO
Env = Var Val()

FVal =	 0 Vat° o-+ Val) ED	 e 	 Vali) ... Val0 o-+ Val)
FEnv = Fun —+ FVal

Fig. 2. Semantic domains.

order constructed from the constructor symbols of arity k. The instrumentation con-
sists of supplying each structured value with a Mark component as discussed above
and threading a generator of unique identifications (a natural number) through the
whole execution. All functions take an unused identification as an additional argu-
ment and return an unused identification as part of the value. The semantic functions
ensure that every identification is used at most once in an evaluation. The semantic
functions are defined in Figure 3.

3 Representing environments

In our analyses we need a special environment structure which is able to transmit
bindings. For example, if we match a list L against the pattern x xs during the
analysis the environment must keep track of the information that L is no longer a

144

e: Exp Mark —+ FEnv --+ Env —+ Val

SE v Imtb p	 = share(m, p(v))
E[c(ei, • , k)]moOP

	 = let (mi,	 =	 el Imotkp in
•

let (mk,wk) = SE ek jmk P
fresh (rnk	 - • - wk))

£[let v = ei in e2 imoOP	 = let (rni, wi) = e[ei]notkP

	

e2 177210P[v	 wi]
el f(ei, • - en) imotfiP

	 = let (rni, tvi) =	 ei imot,bp in
• • •
let (7n, wn) = en imn-ilkp in
11)(f)(mn,	 wn)

E[case CO of ... cj(vi,	 , vk) : e-	 jrnotibp =
let (rni, w) = eo jmoOp in
if w =	 wk)
then SE ei jrnitIT[vi 	wij
elseif to =	 •) then ...
else I.

.7.: Dec —+ FEnv

vni) = ef I f E Fun} =
fix7/).1P[f	 strict A(m, yr, . • • YThi)-E[el lintgvi	 Yin f E Fun]

P: Prg —+ Val

2[d
	

= SE ell(nd1)-1-Env

where 7n, rni,m' E IN, M E Mark, 7,b E FEnv, p E Env. The semantic let has a
strict interpretation: let v = I in e is equal to I even if v does not occur in e.
The projection strict is defined for domains Di and D2 by

strict: (Di --+ D2) --+ (Di 0-+ D2)
11 if x =

1. f x otherwise

and the auxiliary functions share and fresh are defined by

fresh E Val o-+ Val	 share: Val o-4 Val
fresh (m, x) = (m ± 1, x) share(rn, x) = fresh (n, copy x)

where copy i = i	 i E Int
copy c = c	 c E Con (°)
copy (c, M,wi, • • • ,wk) =

	M.m, copy	 , copy wk)

Fig. 3. Instrumented semantic functions.

strict f x =

145

totally unknown value, but that it is known to be a non-empty list with head x and
tail zs. To achieve the transmission of bindings we represent an environment by

1. an equivalence relation on variables,
2. a mapping from equivalence classes of variables to right hand sides.

Right hand sides are defined by the grammar

	

Rhs 1	 the completely unknown value

	

I 0	 the contradictory value
c(vi ,	 vk) some constructor c applied to 'representatives of

equivalence classes of variables.

Formally we define analysis environments by

Env' = (Var –+ Rhs) x P(Var x Var).

Each p = (pi, p2) E Env' is subject to the conditions

1. if (v, v') E p2 then piv = ply',
2. if ply = c(vi,..., vk) then {vi,	 vk} C dom pi ,
3. p2 is an equivalence relation on dom pi, the domain of pi.

We denote equivalence classes of p2 by [t]p2.
An environment stores annotated values. An annotated value d E AVal is a tree

whose nodes are decorated with a set of variables and a constructor symbol. If two
variables appear at the same node, the variables are considered equivalent or — in
other words — they are aliases for each other. Thus we take AVal as the greatest
solution (wrt. set inclusion) of the equation

AVal = PVar x ({0, 1} + Con x AVar)

where PVar denotes the powerset of Var, * is formation of finite sequences, and + is
disjoint union.

Define an ordering < on AVal by

(S1,0) (52, x) 44* Si J S2
(S1, < (S2,1)4* Si D S2

C(di,)dk)) < (S2,	 CIO) 4#'' S1 D S2 A V1 < < k :d <

Proposition 1. (AVal, �) forms a lattice.

The least element of AVal is (Var, 0), the top element is (0, 1). For example, the
greatest lower bound operation n on AVal is defined as

(S,0) n (s2 , x)
x) n (s2 , 1)

n (s2 , cf(...))
(s1 , c(ch, ., di)) n 	 cro)

= (S1 U S2, 0)
= (Si U S2, X)
= (Si U S2, 0) if c c'
= (Si U S2, c(di n 	 dk n crk))

There are two functions that manipulate environments namely lookup and en-
ter to lookup and enter bindings in an environment. Both functions preserve the
conditions 1.-3. above.

An enquiry to the environment yields an annotated value.

146

lookup: Var	 Env'	 AVal
lookup v p = ([v] p2 ,w)

where (pi , p2) = p
= 1	 if piv = 1

w = c(lookup vi p, ..., lookup vk p) if piv = cevi,	 ; Vk

Entering an annotated value into an environment does not cause aliasing of
previously not aliased variables. Existing equivalence classes are enlarged as well as
-- possibly — some new classes are added.

enter: Var —+ AVal 	 Env' —* Env'
enter v d p = let (vs, x) = ({v}, 1) n d

(Pi, P2) = p
= (p2 U {(v	 v' E vs))*

in if x E {0, 1} then
(Pi[v, 	x vf E vs])

else	 x =	 . • • , dk)
let	 = pi [vi	 c(n l ,	 nk) I v' E vs}

where the ni are fresh variables
in enter ni d1 ... (enter 72k dk (pC,A))-

In the second case for enter the variables n i ,	 nk are fresh variables, i.e., they
do not appear anywhere else in the environment.

Symbolic evaluation of an expression to an annotated value is defined by the
non-standard semantics ef. Its type is

S': Exp	 FEnv'	 Env'	 AVal

so that it takes an expression e, a function environment if. E FEnvi , an environment
p E Env', and yields an annotated value AVat that describes the shape of the result
of evaluating e with values bound to the variables whose shapes are as described by
p. A function environment FEnv i is a mapping from function names Fun to functions
over annotated values, i.e., FEnvI = Fun AValn AVal. The greatest function
environment 00 E FEnv' is iko(f)(di, - • - , dn) = (0, 1) for all functions.

v kbp	 = lookup v p
c(ei,...,ek)	 = (Ø, 01 el 10,	 ek

elf(e3., , en) itkP	 = ik(i)(el ei 10P, • • • ,	 en i0P)
v = ei in e2 "Op.	 e2 N(enter v	 ei NP)

el case eo of	 • -, vk) ei • • - PPP =
case el eo hp of
(vs, cj(di , ...,dk)) :	 ei 10(enter vi d1 ... (enter vk dk
Kvs, I)	 ei 11,b(enter no cj(...({vi}, 1) ...))p)1--

Explanation: variables are looked up in the environment. Constructor applica-
tions create a new value which is completely unshared at the top, hence the 0 at
the top node. Function application is handled by a lookup through the function

147

environment tk. The let expression opens a possibility for sharing in the variable
v. There are two possibilities at a case expression. If the branch which is taken
can be predicted by means of ei the value of the case expression is the value of
ei . Otherwise all branches are entered with the environment changed to reflect the
supposed structure of eo I and the least upper bound of the result is taken.
Another possiblity at this place would be to safely approximate the outcome of the
case expression by (0, 1).

e is an abstract interpretation in the sense of Cousot and Cousot [4]. It is an
abstraction of a concrete semantics that reveals sharing properties of the graph
representation of the values. As outlined in previous work the standard semantics
can be constructed as an abstraction thereof [9].

4 Finding specializable calls

The analysis function C finds specializable calls by employing the annotated value
semantics of the preceding section to predict the branch taken in a case expression
and in order to find approximations to the set of concrete values that are passed as
parameters. The type of C is

C. Exp —> FEnv` —4 Env' —+ P(Fun x AVan

i.e., C takes an expression e E Exp to analyze for calls with partially known argu-
ments, a function environment itk E FEnv i , and an environment p E Env' the analyzed
expression e. Its result is a set of function calls coded as tuples consisting of the name
of the called function (Fun) and a list of argument shapes as annotated values AVar.

C xJJbp	 = 0
C[c(ei, ••• , ek)
	

= ULi CE ei 1 1PP
, en) 110P
	

= ULi C[ei 110 L.) {(f,	 ei 110P) -))}
CI let v = e i ine2Jjibp = CE e l JJt,bp u Ci e2 Igenier v	 ei	 P)
Ci case eo of	 . • , v k) ei	 Np=

CE eo Npu
case E'[eo JJibp of

(vs, ci(di, • • • , dk)) Cl ei 10(enter vi 	 (enter vk dk P) •
(vs, 1) LI31 1 C[ei Menter no ci(... ({vj}, 1) . .)p)

Explanation: the equations for variables, constructor applications, and let-ex-
pressions only serve to collect call patterns from their subexpressions. At a function
application the call patterns of the subexpressions are collected and a new call pat--
tern is constructed from the results of the symbolic evaluation of the function argu-
ments. In order to be independant from the variables that are visible at a specific
call site, we strip them from the annotated value with the function strip described
below. At a case-expression symbolic evaluation E' is again used to predict the
branch which is taken. If it is possible to predict the branch only the call patterns
from that branch are extracted. Otherwise the call patterns are collected from all
branches.

148

strip: AVal —+ AVal
strip (v4,1)	 = (0,1)
strip (vs, c(di, . - • ,dk)) = (0,c(strip 	 ., strip dk))

The outcome of the call analysis is usable even if we take tko, the greatest function
environment, for tb. So there is no need to do a fixpoint computation at all. However,
information may be extracted from comparing the results of adjacent iteration steps.
The information can be used to guide an unfolding mechanism [2], which in turn
can uncover more specializable calls. Such a procedure can lead to non-termination
of the analyzer, a well known phenomenon from partial evaluation.

4.1 Examples

As an example we analyze the set of calls and their associated argument shapes in
the body of the function last. Initially nothing is known about the parameter L.
Thus the initial environment is po = F.--* 1], {(L, I')}) and tfi = tfio-

CE case L of	 po

C[L Jji,b po U	 (4, d =	 L "Op° = 1 *)

C[raise ...]J'ç(enter P1 (fib	 po) U

C[case L I of ... bb(enter 3/2 ({L}, cons(({z}, 1), ({L'},1))) po)
(* pi = enter.. Po = [L = y2 = cons(z, L'),z =1, L I = 1] *)

= 0 U0 UC[case L i of...

= C[L I]frs,b p i U

let d =	 L' pp pi in	 0, d =({L'} ,1) *)
CI x 10 [y2 =.• L = cons(z, L'), z = 1, L I =
UCE last L' 1111) [y2 = L = cons(z, Li), z = 1, y3 = L I = cons(z 1 , L''), z = 1, 13 = 1]

=OuOu L l ...0 {(f , strip(el L'	 p2)))

= f(f, (0, cons((0, 1), (0, 1))))}

With this information a specialized version of the function last can be generated.
We apply a technique from partial evaluation called arity raising where one param-
eter is replaced by many parameters. In the literature arity raising is applied to
replacing an argument pair by two single arguments (cf. [8]) whereas we employ a
conditional arity raising. Only if it is known that some argument is a constructor
term with a certain top constructor we supply the arguments of the constructor in
place of the term as arguments to the function.

In our example we have two choices. The argument Li = cons(e, L") can either
be replaced by the constructor arguments x' and L" or by Li and L" . The first
choice is the one shown in the introduction, which is generated almost verbatim
by the specializer presented in the next section. The other choice could be even
more advantageous, since the corresponding function even avoids accessing the list
elements unless it is forced to do so. But more information is required to make that
choice.

We are grateful to one of the referees for the following interesting example. Con-
sider a function that merges two ascending lists of numbers.

149

fun merge (xs as xh::xt) (ye as yh::yt) =
if xh < yli then xh::merge xt ye else ph: merge xs yt

1 merge

At either recursive invocation of merge that ys or xs, respectively, are non-empty.
Our analysis detects this fact and generates two mutually recursive auxiliary func-
tions which completely avoid the redundant tests. The stripped output of the call
analysis C on the body of merge is

{(merge, 1 :: (1, 1)), (merge, 	 (1,1) 1)}

and one of the generated functions is (transcribed in pattern matching notation)

fun zerge_i_11 Us as xh::xt) ph yt =
if xh <= yh then xh:merge_l_llst yh yt

else ph:merge_11_1 xh xt yt
1 merge_1_11 nil ph yt = ph::pt

5 Arity raising and specialization

Suppose we are given a set of function definitions and the outcome of the call analysis
Cf 	 CE e1	 on all definitions in C	 Uf E Fun Cf. We will then select a set
C' C C with the requirement that for each (f, p. E C' there is some pi # 1.
The selection for C' must ensure that the specialized functions do not exhibit new
call patterns, since new call patterns would cause another specialization phase, which
could lead to a non-terminating process. Also if arbitrary call patterns are allowed
we will end up in delaying unavoidable data constructions while only creating long
argument lists. Only the construction of those poarts of a structure that are certainly
decomposed or tested should be avoided or at least delayed. The analyses T and R.
below give information on the tested part of the arguments when given information
on the shape of the arguments (a call pattern found by the C-analysis above).

The definitions of Exp FEnv' --+ Env' AValn are as
follows with 7 = (x 1 , , xn) and the operations on AVal pointwise extended to
AVa .

2-7[e jitkp	 = (. , lookup z p, . . fiRq e itk p

v lt,bp	 —	 , 1) , . . , (0,1))
ei •	 = nikEE ei ikbP

f (.- ei	 = Flani ei
1?.7[let v = e l in e2	 =	 ei 'Op n T71 e2 lik(enter v	 e2	 P
lel case eo of..	 vk) ei — • NT =

case el co it/p of
(vs, ci(di, • . • , dk)) TYE ej jtk(enter v1 di ... (enter v 4 P)-
Kvs, 1) U1 	ej iji,b(enter no (vs, c1(... ({vi}, 1) .))p)

Explanation: the function le only provides the control structure for the analysis.
The function Tx is called at every update of the environment. It keeps track of

150

bindings of the variables X and merges their current values with the recursive result
from /Z.

It remains to extract the tested part of the patterns from the result of T. We
define the closure operator close to yield an upper approximation to the tested part.

close: PVar AVal AVal
close V (vs,1)	 = (V n vs, i)
close V (c(cli, . , di)) = let	 = (vs ' , xi) = close V di for 1 <i < k in

if U vsi = 0 then (V n vs, 1)
else (V n vs, c(ciii ,	 di))

We only create specialized versions for tested part of the call patterns, i.e.

= {(LP 12. • -	 I (API ...pn) EC,
	p'„) = (strip o close var(ef) 7(si	 et ltfi)

(enter x i pi ... (enter zn pn -L- Envi)) u (P 1 7 • , Pn)}

For the call patterns mentioned in C' we generate specialized functions as follows.
First the function body, say ef , is transformed in such a way that each intermediate
value is bound to a variable. This is called transformation to sequential form in [5]
and can be combined with common subexpression elimination Pi Sequential form
SExp is defined by the grammar

s —+ v
I let v = c(vi,...,vk) in s

	I let v =	 s
	I case v of	 Si

where v, vi E Var, c,ci E Con, f E Fun, and s,si E SExp. We will also assume that
all variables have unique names.

S: SExp	 FEnv' --+ Env'	 Env'	 P(Fun x AVal*) —+ SExp is the specialization
function. It is applied to the sequentialized expression (S is described below). In the
last step we remove unused variables from the resulting expression.

The arguments of S[e NperP have the following meaning. The (sequentialized)
expression e is the right hand side of a function definition. The function environment
ib E FEnvi is needed to predict the outcome of case expressions. p E Env' is the usual
environment. a E Env' is another environment that keeps track of the arity raising
process. If cr is defined on v it means that or(v) is the known part of the value bound
to v. Because of our special environment structure we can deduce the variables that
are bound to substructures of v's value from the entry for v. The functions that will
have specialized versions are described by P as a set of function symbols with (a list
of) call patterns.

Since the output of S is an expression we need to carefully distinguish our meta
notation from generated program text. We make the distinction by underlining the
generated program text.

build ({v, . .} , 1) 	 = v
build (vs, c((vs 1, 21), • • • , (vs, zk)))

	
= let vi E vsi v E vs in

build ({vi } , x i) . . . build ({vk} , :4) let v =	 in

MATCH ((bg , 1) d)
MATCH ((S, c(Pi,
MATCH (p, d)

extract((S, 1), (fv,.
extract((S, c(pi,
extra ct(p, d)

= true
• - , 	 ..., di)) = A jic=i MAT CH (pi , di)

= false

. .} d))	 = v
, Pk)), (S'	 dkj) = extract(14,4),...,extract(pk, dk)

= abort

151

S[v F,bpoP =
{ build p if p lookup v a.

otherwise
S[let v = c(vi , , vk) in s 110 pa P =

let v = c(vi, 	vk) in SE s Menter v (0, 4(1%1,1), • • • , ({vk} , 1))) P)o-P
S[let v =	 , vn) in s po-P =

choose (f, pi • • .Pr) E P minimal where MATCH (pi , lookup vi p) in
let v = f(extract(pl, ch),	 ,extract(pn , dn)) in S[s j/k(enter v (0,1) p) o-P

SE case v	 — vk) : si	 hbperP
case lookup v p of
(vs, ci(di,	 dk)) S[Si jt,b(enter v i di (enter	 P

1 (vs ,	 : case v of ...
:SE sj tib(enter v (vs, c j(. ({vi} , 1) . .))p)crP

We have used the auxiliary functions build: AVal SExp to build concrete values
from annotated values, MATCH": AVal x AVal --+ Boolean to dispatch case branches
and extract: AVal x AVal --+ Var* to flatten argument expressions. They are defined
as follows.

Notice that extract(p, d) is only called if MATCH (p , d) is true. But that means that
the abort case will not occur in the evaluation of extract.

6 Related work

Wadler (and others subsequently) worked on deforestation [10, 3, 6]. Deforestation
is an algorithm to eliminate intermediate trees by symbolic composition. Although
a different goal is pursued deforestation also avoids some tests by delaying the con.-
struction of results. In contrast, specialization with arity raising delays the construc-
tion of values that are passed as parameters.

Romanenko deals with arity raising in the context of partial evaluation and
program specialization [8]. He discusses the structure and principles of operation
of an arity raiser in the context of a subset of pure Lisp. His arity raiser replaces
a pair-valued argument by two single arguments. Here arity raising is conditional,
since the top constructor of the argument which has to be decomposed must be
known.

152

7 Conclusion and future work

We have presented an analysis that uncovers redundant tests caused by function dec-
larations with pattern matching. Abstract interpretation yields function calls with
pattern arguments and methods known from partial evaluation are employed to gen-
erate specialized functions that avoid the redundant tests. The analysis is simple and
cheap 'enough to be incorporated into a compiler. It is shown with several examples
that many interesting functions can be improved by the proposed technique.

Although demonstrated here in the context of strict functional languages, avoid-
ing redundant test might prove even more beneficial for non-strict functional lan-
guages with lazy evaluation. In fact, all evaluation is driven by pattern matching in
implementations like the the STG-machine [7] and avoiding a single constructor test
really spares two tests: the test whether the argument closure is evaluated and the
dispatch according to the constructor number.

Further directions of work include measurements with an implementation, the
extension of the analysis to higher-order programs and the exploration of the con-
nections to fusion and deforestation algorithms.

Acknowledgements The comments of the anonymous referees helped to improve the
presentation of the paper. Special thanks to one of the referees for the merge example.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and Tools.
Addison-Wesley, 1986.

2. R. M. Bursts11 and J. Darlington. A transformation system for developing recursive
programs. J. ACM, 24(1):44-67, 1977.

3. W.-N. Chin. Safe fusion of functional expressions. In Proceedings Conference on Lisp
and Functional Programming, pages 11-20, San Francisco, June 1992.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proc. 4th ACM
POPL. ACM, 1977.

5. C. K. Gomard and P. Sestoft. Globalization and live variables. In Proc. PEPM '92,
pages 166-177, New Haven, June 1991. ACM. SIGPLAN Notices v26,9.

6. G. W. Hamilton and S. B. Jones. Extending deforestation for first order functional
programs. In R. Heldal, C. K. Hoist, and P. Wadler, editors, Proceedings of the 1991
Glasgow Workshop on Functional Programming, pages 134-145, Portree, Isle of Skye,
Aug. 1992. Springer-Verlag, Berlin.

7. S. L. Peyton Jones. Implementing lazy functional languages on stock hardware: the
spineless tagless G-machine. Journal of Functional Programming, 2(4127-202, Apr.
1992.

8. S. A. Romanenko. Arity raiser and its use in program specialization. In N. D. Jones,
editor, ESOP 1990, pages 341-360. Springer Verlag, 1990. LNCS 432.

9. P. Thiemann. A safety analysis for functional programs. In D. Schmidt, editor, Proc.
PEPM '93, pages 133-144, Copenhagen, Denmark, June 1993. ACM.

10. P. L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Cornput. Sci., 73(2):231-248, 1990.

11. A. WikstrOm. Functional Programming Using Standard ML. Prentice Hall, 1987.

	Thiemann_Avoiding_Repeated_Tests_in_Pattern_Matching.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

