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Chapter 1

Introduction

Tooth Cementum Annulation (TCA) images are microscopic images from the
root of human teeth. These digital images display annual incremental lines
which can be used for age estimation. Until now, the incremental lines (or
tooth rings) have been counted manually from under the microscope or on
the (digital) TCA image. Since research using the manual observations led
to contradictory results, algorithms to automatically evaluate TCA images
are considered a crucial step towards computer-assisted TCA age estimation.

TCA images can be evaluated based on measuring their features, but un-
til now no statistical model was developed. In this work, TCA images are
modeled as hidden Markov random fields, because these models can incor-
porate prior knowledge about tooth rings and are thereby able to imitate
human vision. In particular, the Markov random field is specified by the
FRAME model which incorporates filter responses to the label image into
the Gibbsian distribution and is thus able to take into account long-range
dependencies among the observed values and periodicity in the placement of
tooth rings. The estimation of model parameters is rendered possible via an
EM algorithm. This coherent approach is developed step-by-step and tested
extensively throughout this work.

The current chapter serves three purposes. It will first describe the TCA
method in Section 1.1, starting with the tooth in general, its cementum band
and a brief history as well as the aim of TCA analysis. Section 1.2 will then
describe the acquisition procedure and the selection procedure for the TCA
images, specifically for one sample set, the so-called series of spital-field St.
Johann Basel. The content of the remaining work will be introduced in
Section 1.3. This section will outline the important points of each chapter
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by briefly explaining the methods which will be studied to evaluate TCA
images, including the methods’ main advantages and drawbacks.

1.1 Tooth Cementum Annulation

Human teeth consist of three kinds of hard tissue: enamel, dentin and cemen-
tum. The cementum surrounds the dentin at the root of the teeth, anchors
teeth and undergoes appositional growth during the whole life span. Figure
1.1 displays a diagram of a vertical cross section of a tooth as well as an
image of a horizontal cross section of the root. As cementum is the tissue of
interest here, a short discription is given in this paragraph. (For details, see
Kagerer and Grupe [2001]). Cellular cementum surrounds the tip of the root
of teeth, and acellular cementum is thickest in the middle third and decreases
towards the tip and crown of teeth. Acellular cementum is approximately 20
to 250 pum thick and displays as layers of alternating dark and light bands.
A pair of dark and light bands is called an incremental line; a dark band
is simply called a tooth ring here, and the formation process is called tooth
cementum annulation.

The biological and biochemical basis for the appearance of the alternating
dark and light bands is not yet fully understood, but is suspected to stem
from the changes in living conditions caused by seasonal rhythms, which
trigger via complex mechanisms, for example, fluctuating calcium levels. It
is not known exactly when the formation process of incremental lines begins,
but it is usually set to the time of a tooth’s eruption. (Wittwer-Backofen
et al. [2004])

Since the 1950s, wildlife biologists have estimated the age of a wide range
of mammals from tooth ring structures. In the 1980s Stott, Sis and Levy
were the first to test the applicability of TCA for age estimation on human
teeth. In their study (Stott et al. [1982]), tooth rings in cross sections of ten
teeth from three individuals were counted, and the tooth-specific eruption
age was added in order to estimate age. Ever since, a variety of studies have
been undertaken that support or reject the TCA method for age estima-
tion on different samples. Because different samples, different sample sizes
as well as different preparation and evaluation techniques were used, these
studies are not comparable. See, for example, Stott et al. [1982|, Miller et al.
[1988|, Grofkopf [1990], Kagerer and Grupe [2001] and Wittwer-Backofen
et al. [2004].
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Figure 1.1: (a) Diagram of a vertical cross section of a tooth (Britannica
Concise Encyclopedia [2003]). (b) Image of a horizontal cross section of a
root of a tooth (TCA database of the MPIDR).

It is important to note that no standardized TCA method exists. Differ-
ent laboratories (and studies) use different preparation and evaluation tech-
niques, which likely influences results. Future research could aim at finding
the best standard, as well as identifying the biological mechanisms and in-
fluencing factors of TCA. These along with the help of advanced technology
(such as increased resolution of computer tomography), would surely improve
the TCA method. A semi-automatic procedure to evaluate TCA images will
further advance this research.

The Max Planck Institute for Demographic Research (MPIDR), among
other things, is interested in reconstructing mortality profiles of past popu-
lations. For this purpose it is desirable to apply an accurate age estimation
method that produces estimates with small variation even at the highest ages.
(Wittwer-Backofen et al. [2004]) Most morphological age estimation meth-
ods (Kemkes-Grottenthaler [2002]) produce age ranges of substantial length,
especially at old ages, because the individual variability of age-dependent
changes in the skeleton increases with age. (Grofskopf [1990]) Applying TCA
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for human age estimation to past populations could have at least two advan-
tages:

e The incremental lines are suspected to form with increasing chronolog-
ical age and are not remodeled during life. The number of tooth rings
therefore does not measure the biological age of a skeleton (depend-
ing on working and living conditions), as morphological age estimation
methods do. TCA measures the chronological age and is thus inde-
pendent from a reference population, except for the tooth eruption age
which needs to be added. (Kagerer and Grupe [2001])

e Teeth are usually better preserved over time than bones and are also
expected to be found in a larger number. This increases the probability
of being able to apply the TCA method when finding only skeletal
fragments. (Groftkopf [1990])

1.2 The Basel-Project

In the city of Basel, Switzerland, the spital-field St. Johann is located. Hotz
[2006] briefly describes this site as well as some past and future research on
it. In the graveyard 2,561 skeletons from the preindustrial period from 1845
to 1868 were buried. Of these, 1061 skeletons could be uncovered and for
a majority of them the name, origin, occupation as well as age and cause
of death are known from the public record office Basel-city. The identified
skeletons offer an invaluable source of information to evaluate, and more
importantly, to compare existing anthropological age estimation methods.
Ten of these methods were applied to 100 selected skeletons of the spital-
field St. Johann. Every other skeleton was studied twice. The skeletons and
the study, respectively, will here simply be referred to as the Basel series or
the Basel-Project.

Tooth cementum annulation is one of the age estimation methods; it
was applied by three different laboratories. The tooth laboratory of the
MPIDR co-organized the Basel-Project and prepared 495 cross sections (so-
called slices, see Figure 1.1 (b)) from 103 teeth which led to 2,120 digital
TCA images in total. Table 1.1 lists some of the preparation and evaluation
details; and Figure 1.2 displays a flowchart of the selection procedure for
this sample. The TCA images are 1016x1300 pixels in size, containing 2'6
gray values with the exposure time for the digital camera being the only
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tooth types: single-rooted

fixation of crowns for cutting: embedding in epoxy resin

location of slices: middle third of the root

microtome: annular saw Leica SP1600

grinding and polishing: by Lapping and Polishing Machine Logitech PM5j

grain size: 10pm for grinding and 1pm for polishing

thickness of slices: 90-110um

decalcified, etched, stained: no

slices cleaned /dehydrated with: distilled water, ultrasonic bath, alcohol-series, xylen

slices mounted: with Eukitt and coverglas

microscope: Leica DMRXA (bright field transmitted light)

magnification: 20 or 40 times

digital camera: Leica DC350F

TCA image: 1016x1300 pixels in size, 2'6 gray levels

manual counting procedure: mark on the monitor one point per tooth ring

age estimate: add the tooth eruption age (according to Adler [1967]) to the aggre-
gated counts per slice (observer-specific)

Table 1.1: Preparation and evaluation techniques applied at the MPIDR to
acquire TCA images from the Basel series of spital-field St. Johann. (Based
on an internal lab protocol. Details will be published in Fabig et al. [2007].)

‘90 skeletons‘ ‘10 skeletons‘

‘ 49 TCA images ‘

1-6 teeth per l skeleton l
deviance between manual
| 103 teeth | | 0 teeth | counts: < 3 and
horizontal tooth rings
2-6 slices lper tooth\‘ &
‘407 TCA images‘
2-27 images perl slice l T 3> 2 manual counts

‘2120 TCA images‘ ‘0 images‘ ‘1021 TCA images‘

. J
40x magnification

given 2x to eachl observer \

‘ 1280 TCA images ‘

|
|
|
|
|
|
|
|
|
‘ 312 slices ‘ ‘ 183 slices ‘ |
|
|
|
|
|
I
|
|
|

Figure 1.2: Flowchart of acquiring TCA images from 100 skeletons of the
Basel series of spital-field St. Johann (on the left) and of the sample selection
procedure to evaluate proposed semi-automatic algorithms (on the right).
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regulation automatically applied before storing the images. TCA images were
acquired, such that tooth rings run in approximately horizontal direction in
most images. The dark parts of the annual lines are empirically 1 to 3
pm thick and roughly result in thin lines of 5 to 20 pixels under 40-fold
magnification.

Figure 1.3 displays a typical TCA image at 40-fold magnification. It
is an image of intermediate quality and was acquired from an unpolished
slice which was extracted from a person aged 41. This individual belongs
to a pilot study, but not to the Basel-Project itself. Subtracting the tooth
eruption age, it is expected that 34 horizontal tooth rings will be found in
the marked cementum band. Additionally, the image contains diagonal saw
cuts and artifacts (for example, on the right). The TCA image in Figure 1.3
will be the standard exemplary TCA image used throughout this work to
illustrate various approaches to TCA image analysis. Some methods will be
tested on the whole cementum band, some on the marked square of 500x500
pixels in size. Other methods will be tested on the smaller, inner rectangle
of this TCA image or only on the one marked column.

TCA images acquired at the MPIDR were evaluated by two different ob-
servers and 1,280 out of the 2,120 TCA images were given twice to each
observer. The observers knew which TCA image belonged to each slice and
tooth, but did not know the true age of the individuals. The (up to four)
observations are independent. This study design allowed, for the first time,
an assessment of the inter- as well as intra-observer variance of TCA age
estimates; these were presented at the Paleodemography Workshop — Basel
Project [2006] and might be published in a monograph Fabig et al. [2007] to-
gether with results from the other age estimation methods. The study design
also permits an extended comparison of the number of tooth rings estimated
by a semi-automatic procedure to the theoretical number of lines (subtract-
ing the tooth eruption age from the known age), as well as to the number
of tooth rings from up to four manual observations. For this comparison the
estimated number of tooth rings for each TCA image were chosen (and not
the aggregated estimates of each slice).

Of the 2,120 TCA images which were acquired, 1,021 had a 40-fold magni-
fication, while the remaining images had a 20-fold magnification. This work
will focus on TCA images with 40-fold magnification, because potentially
more information on tooth rings is stored in them. Two subsets of these
1,021 TCA images will be selected in order to analyze methods proposed
in this work. (Compare to Figure 1.2.) For the first subset, the 407 TCA
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cementum band

Figure 1.3: A typical unpolished TCA image of intermediate quality (IS-
0000666 from the TCA database of the MPIDR). Marked areas highlight
regions used for testing.
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images were chosen where at least two observations from the observers of the
MPIDR resulted in estimates for the number of tooth rings. These are the
‘better’ TCA images from the observers’ perspective. In Chapter 6.1 more
details will be explained about the selection of this sample as well as the ref-
erence for evaluating a semi-automatic procedure. For an initial evaluation of
methods, a smaller subset containing 49 of the 407 TCA images was chosen.
For these TCA images, at least two independent manual observations exist
with a maximum difference of three years, and tooth rings run horizontally
(while tooth rings of the larger subset are allowed to fluctuate more). This
small subset will be the basis for comparing the different proposed methods.

1.3 Methods

The present work develops the first flexible model-based procedure for eval-
uating TCA images. A hidden Markov random field model with a large
dependency structure is successfully fitted to large images and evaluated on
a (relatively) large set of TCA images.

As an initial step in Chapter 2, one standard method from each of
the fields of statistics, calculus and algebra is tested for its applicability
to TCA image analysis. In particular, local regression, Fourier transform
and singular value decomposition are examined. These methods are able
to measure certain features of an image, but are unable to bridge missing
or falsified information, which frequently occurs in TCA images. They also
require the application of heuristics to estimate the number of lines and are
too stringent in many cases. Still, the feature measuring methods serve
to illustrate characteristics of TCA images and to accentuate the distinction
between two aspects of TCA image analysis: recognizing tooth rings and
estimating their number.

Chapters 3 to 5 develop statistical models tailored to TCA image analy-
sis. In model-based analysis one gains knowledge by describing the observed
image by a set of parameters and by generating synthetic images that are
similar in certain characteristics. For this purpose, the problem of evalu-
ating TCA images is restated as labeling problem: The observed image is
assumed to be a random field and will be defined through the probability
distribution of an underlying unknown random field — the label image. The
labeling problem is the task of estimating the unknown label image from the
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noise-corrupted observed image. Three different kinds of models attempt to
solve this problem, one in each of the next few chapters.

The first model in Chapter 3 is the mixture model. The idea behind
mixture modeling is that observations arise from separate groups (black and
white tooth rings), but neither the individual membership nor the propor-
tions are known. In order to fit a Gaussian mixture model with a known
number of groups, the EM algorithm is used to maximize the likelihood.
Then the RJ MCMC algorithm is applied to fit the Gaussian mixture model
for an unknown number of components in a fully Bayesian framework. Both
methods reveal a most likely labeling that does not resemble tooth rings.
One reason might have to do with problems of identifiability: There is not
necessarily a one-to-one correspondence between the fitted mixture compo-
nents and the desired groups in an application. Mixture modeling is thus not
a well-posed problem for TCA images: The gray value of each pixel alone
does not separate the mixtures in the required way. Mixture models are his-
togram based models, that is, they rely on the assumption of independent
observations and do not take into account the relationship between neigh-
boring pixels. But in images, the gray level of one pixel is highly dependent
on gray levels of pixels nearby.

Chapters 4 and 5 build the main focus of this work. Two statistical models
are introduced that are extensions of the mixture model. They incorporate
knowledge about the relation of spatially nearby pixels and thus attempt to
imitate the mechanism of bridging information the way manual observers do
by knowing that tooth rings all run roughly in the same direction.

The recommended approach to TCA image analysis is established in
Chapter 4. The independence assumption of mixture modeling is relaxed
by the concept of Hidden Markov Random Field (HMRF) models, in-
corporating two-dimensional correlations between gray values. An HMRF
consists of two levels, the observable field and the hidden field. These two
random fields are linked by the conditional probability of the observed image,
given the label image, that is specified by independent normal distributions.
The Markov Random Field (MRF) models the hidden field and involves the
application-driven contextual constraints. It is first specified by a simple
auto-logistic model (Chapter 4.2), involving only pairwise contextual con-
straints and serving as a starting point for the selection of a more complex
MRF model. Simulation results obtained by the Gibbs sampler show that
the auto-logistic model can only fit micro-textures, but it does not express
the prior convictions about TCA images. More regular textures can be sim-
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ulated by extending the dependency structure. Specifically, the FRAME
model (detailed in Chapter 4.3) incorporates macro-features of the TCA im-
age into the potential function with the help of filters, and thus accounts for
long-range dependence among the observed gray values. The FRAME out-
performs the computationally inefficient setting of the auto-logistic model
and explains its parameters (filters) more intuitively. Simulated images il-
lustrate the capacity of the FRAME approach and show that this model
can describe the periodic placement of tooth rings well by selecting the fil-
ter family from the Gaborcosine functions. An EM algorithm that exploits
the mean field approximation of the hidden field distribution coherently es-
timates the parameters of this Gaussian hidden FRAME model and thus
avoids time-intensive MCMC methods. Estimates for confidence intervals
of these parameters provide assistance in judging the quality of the fit of
the model to the TCA image. A good estimate and reasonable confidence
interval for the number of tooth rings are obtained by fitting the Gaussian
hidden FRAME model to the standard exemplary TCA image. Still, the re-
construction of tooth rings is not satisfactory due to the global assumptions
for the hidden field as well as the observable field. To circumvent this short-
coming, an alternative model is examined in Chapter 5. Several alternative
specifications of the FRAME model and the algorithmic set-up are examined
in Chapter 6.

Chapter 5 sets up a Coupled Hidden Markov Model (CHMM) to
take into account directed two-dimensional interactions. For one-dimensional
data, hidden Markov models may solve the labeling problem by assuming that
the hidden label vector has arisen from a Markov chain. Coupling neighboring
chains makes this approach suitable for two-dimensional data and leads to
the coupled Markov model. Specifying the hidden field of the CHMM by
a FRAME model using halved filters will be called FRAME chain. This
is a novel model to describe a past relevance structure for macro-textures,
while distinguishing between the two different dimensions. Because of the
affinity between the Gaussian hidden FRAME chain and the Gaussian hidden
FRAME model, the same EM algorithm and mean field approximation are
exploited for model fitting and for estimating the number of tooth rings.
Simulations for the FRAME chain give similar results as for the FRAME
model, and show that this model can also describe the periodic placement
of tooth rings well by selecting the filter family from the halved Gaborcosine
functions. Due to the thinner filter, the Gaussian hidden FRAME chain
produces a more flexible reconstruction along the direction of the tooth rings.
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But similar to in Chapter 4, the global assumptions, such as a constant ring
width and a fixed orientation throughout the whole label image, lead to a
bad detection of the actual tooth rings.

Chapter 6 mainly tests the Gaussian hidden FRAME model and its
estimation procedure. The model is successfully fitted to a set of 407 TCA
images for the Basel series of spital-field St. Johann and evaluated against the
theoretical number of lines as well as compared to the manual observations
(Chapter 6.1). Chapter 6.3 and 6.4 test and discuss different specifications
of the Gaussian hidden FRAME model and the EM algorithm. They will
demonstrate their flexibility and capabilities, as well as compare results to
the original model and algorithm. Attempts are made to localize the FRAME
model as well as the observable random field, and a diverse set of different
issues connected to the EM algorithm will also be discussed. In Chapter
6.2 the smaller subset of 49 TCA images from the Basel series will serve
to evaluate the Gaussian hidden FRAME chain model. Both models, the
Gaussian hidden FRAME chain as well as the Gaussian hidden FRAME
model, achieve competitive — partially even superior — results compared to
the estimates of the manual observers on the tested subsets. Chapter 6.5
shows that the Gaussian hidden FRAME model is also applicable to related
problems, especially to the yearly rings in cross sections of trees.

Chapter 7 will conclude this work. In general, Chapters 4 to 6 lead to
the statement that the hidden FRAME model and also its relative the hid-
den FRAME chain are flexible tools for TCA image evaluation. Both models
achieve age estimates that are (at least) comparable to the manual observa-
tions. The hidden FRAME model is also a powerful tool for similar layered
structures as well as for other large images containing large neighborhood
structures. Only the EM algorithm incorporating mean field approximation
enables fitting the model to these applications in a reasonable amount of
time.

Besides the statistical methodology, this work relies heavily on computer
programmed algorithms. Each of the introduced methods is implemented
in Matlab and was run on the compute server Hydra'! of MPIDR. Neither
the chosen programming language nor the computer is the fastest that exists
nowadays, but they are convenient choices for fast experimental programming
and for extended time-consuming tests respectively.

!Hydrais a HP ProLiant DL 580 computer with Windows 2000 Server operation system,
four Intel Xeon MP 1.60 GHz processors and 2 GB memory.
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Chapter 2

Feature Measuring Methods

Throughout this chapter, several well-known image processing methods will
be introduced and tested for their applicability to TCA image analysis. In
particular, local regression, Fourier transform and singular value decomposi-
tion will be examined in this order. These methods are called feature mea-
suring methods here because certain characteristics (features) of an image
can be assessed (measured). This chapter is designed to illustrate these and
other features of TCA images, and in the context of TCA image analysis
the shortcomings of the introduced methods. We will therefore refrain from
describing and testing every detail of any possible method. Instead, in the
Sections 2.1, 2.2 and 2.3 each method will first be defined and then applied
to a part of a TCA image. The Fourier transform and singular value decom-
position will in addition be tested on a set of TCA images. This chapter
will close with a discussion regarding the tested methods, feature measuring
methods in general and characteristics of TCA images.

2.1 Local Regression

Local regression is used to describe the relation between a predictor variable
and a response variable, whose functional form is not known in advance. It
is a smoothing method with a history of more than 100 years and is applied
in many branches of science today. Here, local regression will be applied to
TCA images to remove noise by approximating one data point by a weighted
average of its neighboring data points. The location’s coordinates will serve
as the predictor for the response variable TCA image. Section 2.1.1 describes

13
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the method of local regression formally. The details for an application to
TCA images will be specified in Section 2.1.2, followed by a discussion on
local regression for the analysis of TCA images.

2.1.1 Theory of Local Regression

Local regression is well-described in the literature. Let us follow Loader
[1999] closely as a means of providing a foundation of local regression in this
subsection.

Let Y be the response and x the predictor variable, consisting of N pairs
of observations (z1,Y7), (z2,Y3), ..., (xn,Yy). Then local regression assumes
the model

Yo = pu(2n) + €n;

where p(z) is an unknown function and €, an error term representing random
noise, that is here assumed to be independent, identically distributed with
zero mean F(e,) = 0 and finite variance E(e2) < oo.

Since the functional form of p(u) is unknown, let us approximate it by
the polynomial

1
P () :ag+a1(u—x)+§(u—x)2+...
for the fitting point x and within a smoothing window: u € |x—h(z), x+h(z)],

where h(z) defines the bandwidth. The observations within this window are
weighted according to a weight function W (u) by

Tp— T
wy(x) =W ,
o= (55)
and the coefficients ag, ay, ... of the polynomial can be estimated using least
squares.

Definition 2.1.1. The local regression estimate is the estimate of the first
component of the polynomial p at v = x:

fi(x) = ao.

The fitted curve fi(z) describes the data Y through the variable z.
For applying local regression, the following components need to be spec-
ified:
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(1) the bandwidth h(z)

The bandwidth has a critical effect on the local regression fit, known as
bias-variance trade-off. A large bandwidth may produce a bad fit within
the smoothing window and important features of the mean function
p(x) may be distorted (large bias). A small smoothing window, on the
other hand, may result in a noisy fit (large variance).

The choice might vary from a different bandwidth for each fitting point
to a constant bandwidth for all x.

(2) the degree of the polynomial p

Similar to the bandwidth, the polynomial degree used to approximate
the functional relationship between response and predictor variable also
affects the bias-variance trade-off: A high order polynomial will in gen-
eral lead to an estimate with less bias and more variability, while a
low polynomial degree provides a smoother regression curve with more
bias.

The most common choices for the polynomial degree are 1 or 2, result-
ing in local linear and local quadratic regression respectively.

(3) the weight function W

The weight function has less effect on the bias-variance trade-off. It is
usually chosen to be continuous, symmetric, peaked at 0 and supported
on [—1,1]. The most common choice is the tricube weight function

W) = (1—Juf)’.

A more detailed description, as well as extensions and diagnostic tools
for the local regression method, can be found, for example, in Loader [1999].

2.1.2 Application and Discussion

Let us now apply local regression smoothing to TCA images in order to
smooth gray values dependent on their location. In order to estimate the
number of lines in a TCA image, one can, for example, smooth perpendicu-
larly to tooth rings to obtain a fitted curve with clearly identifiable minima,
where minima correspond to points on a black tooth ring.
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For simplicity, let the responses be the columns of the TCA image Y (z, ¥, )
(m =1,..., M) and let the predictor variable be their rows z, (n = 1,..., N).
Now the components (1)-(3) of local regression (see page 15) need to be spec-
ified for the application to TCA images.

TCA images contain periodic wavelike structures that are approximately
vertical in direction. Let us therefore use a local quadratic regression with
the tricube weight function. During the introduction, it was mentioned that
tooth rings are approximately 5 to 20 pixels thick; let us therefore choose
the smoothing window to be of a similar size. In principle, the bandwidth
could be chosen flexibly depending on the data (according to some criterion).
But for illustration purposes, constant bandwidths h(x) = 6 and h(z) = 7
are used for now and depicted in Figure 2.1 for one column (y = 400) of the
standard TCA image from Figure 1.3.

The example clearly shows that the choice of bandwidth directly influ-
ences the number of recognized minima. A deviance of only one or two
pixels in the bandwidth has a fundamental impact on the estimated number
of lines, which causes two principal problems. In the first place, the opti-
mal bandwidth might not be an integer; but discrete images allow only for
integer bandwidths. So the critical decision of the bandwidth might always
lead to wrong estimates and therefore to an unstable procedure. Secondly,
the choice of the optimal bandwidth leads directly to the question of which
features of the TCA image are 'real’. This question is intrinsically related to
the problem that the best fit of the regression curve does not solely depend
on the data, but also on the question of interest. Since the quantity tooth
ring is not clearly defined, no diagnostic tool can provide an answer to the
question of the optimal bandwidth and whether a specific minimum belongs
to noise or to a tooth ring.

One could extend regression smoothing to the two dimensions of an image,
leading to a multivariate local regression. But the two principal problems
above will remain and are the reason why we refrain from local regression for
smoothing TCA images.

2.2 Discrete Fourier Transform

In the introduction it was indicated that TCA images contain periodic struc-
tures in a roughly vertical direction. In order to emphasize periodic struc-
tures belonging to tooth rings while neglecting the ones belonging to noise,
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(a) x10

gray value

50 100 150 200 250 300 350 400 450 500
row X

(b) «x 10* Local Quadratic Regression
' ' ' ' w(x) with h(x)=6

gray value

160 180 200 220 240
row X

Figure 2.1: Graph (a) shows one column of the standard exemplary TCA
image marked in Figure 1.3. The local quadratic regression estimate with
bandwidth A = 6 (in blue) and h = 7 (in green) for the rows 150 to 250 are
depicted in (b) simultaneously, showing a difference of two minima.



18 CHAPTER 2. FEATURE MEASURING METHODS

the Fourier transform can be used. The Fourier transform is equipped with
an elegant theory and is a widespread analytical tool. It maps functions
from time to frequency domain and therefore allows us to dismantle periodic
components of interest.

Because of the discreteness of digital images, one is forced to use the
discrete approximation of the Fourier transform, the DFT. Its theory in one
dimension will be described in Section 2.2.1, the generalization to two dimen-
sions in Section 2.2.2. Section 2.2.3 will illustrate the application of DF'T for
the enhancement of a TCA image and summarize results from applying DFT
for estimating the number of lines in a series of TCA images. A discussion
of these results will bring the section to an end.

2.2.1 Theory of the Discrete Fourier Transform

The discrete as well as the continuous Fourier transform are detailed in many
textbooks. To explain the theory of the one-dimensional Discrete Fourier
Transform (DFT), Jain [1989] will be followed.

Let Y be the sequence of interest, then one can define its Fourier transform
as follows:

Definition 2.2.1. The N-point DFT of a vector Y = (Y1,Ys,...,Yy) is

N-1
N
IFkJrl - § Yn+1 (6 N ) )
n=0

with frequencies k+1=1,2..., N and amplitudes %.

The DFT has the following central properties:

(1) Inversion: The transformation

for n = 0,1,...,N — 1 is called N-point inverse DFT of the vector
F = (]Fl,]FQ,...,IFN).

(2) Periodicity: Fy, = Fry for all integers k € N



2.2. DISCRETE FOURIER TRANSFORM 19

(3) Conjugate symmetry: if Y € RN then Fy_j,0 = Fy
The frequencies [5]+1,[3]+2,..., N are hence called negative fre-
quencies.

(4) Fast implementation: There exists an implementation of the DFT,
called Fast Fourier Transform (FFT), which requires only O(N log, N)
operations.

The DFT (and also the inverse DFT) can be expressed with the help of
sine and cosine functions

N—-1
—2mnk —2mnk
]Fk+1:nz:;Yn+1<COS< ;n>+isin< ;\rfn )),

by using Euler’s identity e = cos (%’rl) + 7sin (%’”) One can thus inter-
pret the DFT as a conversion of a vector depending on time into a set of
amplitudes belonging to different frequencies (of sine and cosine waves).

In order to enhance periodic components of interest in the vector Y, the
amplitudes of certain frequencies of F can be emphasized while others can be
dampened; followed by an inverse DF'T. This procedure will be detailed for
the two-dimensional DFT and the application to images in the subsequent

sections.

2.2.2 Theory of the 2-D Discrete Fourier Transform

The one-dimensional discrete Fourier transform is naturally ill-suited for two-
dimensional data such as images. But it can be elegantly generalized to two
dimensions by repeatedly applying it. The two-dimensional discrete Fourier
transform (2-D DFT) is well-known and in image processing especially used
for enhancement and fast convolutions. It can be found in many textbooks
and will be explained here, again drawing from Jain [1989].

Let Y be the matrix of interest, then one can define its 2-D Fourier
transform as follows:

Definition 2.2.2. The 2-D N-by-M DFT of a matric Y = (Y,,,,) with
n=1,...,Nandm=1,..., M is defined by

N-1M-1

—2omi(nk pml
Fit141 = E E Yoi1m+1 <€ (% +57) ;

n=0 m=0
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with wvertical and horizontal frequencies k + 1 = 1,2..., N respectively
l+1=1,2..., M and amplitudes %‘

The 2-D DFT has the following appealing properties:

e Separability: The 2-D N-by-M DFT can be rewritten as

M-1 /N-1

=271 nk =271 mi

]Fk—l—l,l—l—l = E <§ Yn—l—l,m—l—l (6 N ) ) (6 M ) .
m=0 n=0

One can therefore apply the one-dimensional DFT first on the columns
of Y, and then apply the one-dimensional DFT again on the resulting
rows of the Fourier transform, giving the 2-D DFT F.

e The properties (1) to (4) of the one-dimensional DFT above hold anal-
ogously for the 2-D DFT.

Using Euler’s identity, the 2-D DFT can be interpreted as a conversion of
a matrix depending on space into a set of amplitudes belonging to different
frequencies in the two dimensions.

In order to enhance periodic components of interest, one can apply a so-
called zonal mask z on the Fourier transform using pointwise multiplication;
followed by the inverse Fourier transform:

Pixelwise Multiplication
with Zonal Mask

| Enhanced
i Enhanced
I Fourier . )
ase ﬂ Transform| %% Tfai)r?srflﬁm inverse DFT | TImage
Y F y*
]F*

This procedure is called generalized linear filtering. An exemplary scheme
of a zonal mask for low-pass, band-pass and high-pass filtering is depicted
in Figure 2.2; while low-pass filtering selects low frequencies, high-pass fil-
tering selects high frequencies, and band-pass filtering selects a certain area
of frequencies. A specific zonal mask for application to TCA images will be
selected in the upcoming section.
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Figure 2.2: Exemplary scheme of a zonal mask z for Fourier transforms (from
Jain [1989)]).

2.2.3 Application

In this section, TCA images will be enhanced by emphasizing periodic struc-
tures belonging to tooth rings, while simultaneously neglecting structures
belonging to noise. This can be done, using generalized linear filtering based
on the two-dimensional Fourier transform, as described in the previous sec-
tion.

To apply generalized linear filtering, one needs to define a zonal mask z for
the Fourier transform. The selection of this mask is empirical and depends
on the application at hand. For TCA image analysis, a band-pass filter
will be chosen such that frequencies corresponding to the possible number of
rings are selected. In particular, during the introduction it was mentioned
that tooth rings are approximately 5 to 20 pixels thick. Let us therefore
assume that the vertical frequency % + (% — f—o) /2 = % is the likeliest,
where N is the width of the cementum band. The zonal mask z should select

similar frequencies in vertical direction as well as similar orientations. It will
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Figure 2.3: Shifted zonal mask for the Fourier transform of part of the stan-
dard exemplary TCA image from Figure 1.3.

thus be defined as a solid ellipse centered around the likeliest frequency with
diameters (& — &) and 3 (& — &):

g U-B) (R
1 if (=5 > + <1,
Z(k+1,l+1): %(%,%)Z %(%7%)2_

0 otherwise,

for the upper quarter k+1=1,2,..., %, [+1=1,2,..., % and analogously
for other frequencies using the conjugate symmetry property (3). The zonal
mask for the DFT of the square part of the standard exemplary TCA image
marked in Figure 1.3 is depicted in Figure 2.3. For better visualization, the
shifted version of this mask is shown, meaning that the zero frequency is
shifted to the center of the spectrum.

The log-amplitudes of the Fourier transform for the standard exemplary

TCA image are depicted in Figure 2.4. One can clearly see the very low
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Figure 2.4: Shifted Log-amplitudes of the Fourier transform of the square
marked in the standard exemplary TCA image of Figure 1.3. (a) indicates
very low frequencies, (b) diagonal frequencies of saw cuts and (c¢) low fre-
quencies belonging to tooth rings.

frequencies (a) corresponding to, for example, background illumination, the
diagonal frequencies (b) corresponding to the saw cuts and vaguely distin-
guish the frequencies of interest (¢) belonging to tooth rings (due to the low
resolution of this print). High frequencies are generally attributed to noise.

Multiplying the zonal mask z pointwise with the Fourier transform of
the squared part of the exemplary TCA image and inverse transforming the
result gives the enhanced (or smoothed) TCA image shown in Figure 2.5.

A natural method for evaluating this smoothed TCA image is the search
for the most frequent number of minima over the columns, where minima
correspond to points on a black ring. A histogram plot of the number of
minima for our example is shown in Figure 2.6, estimating 28 tooth rings.



24 CHAPTER 2. FEATURE MEASURING METHODS

300

400

500

600

300 400 500 600

Figure 2.5: Smoothed TCA image after applying the zonal mask z from Fig-
ure 2.3 pointwise to the Fourier transform of a square part of the exemplary
TCA image (see Figure 2.4) and inverse transforming the result.
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Figure 2.6: Histogram of the number of minima in the columns of the
smoothed exemplary TCA image from Figure 2.5. The maximum gives the
estimated number of tooth rings: 28.
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Figure 2.7: Box-and-whiskers plots of the difference between the estimated
and the theoretical number of lines (TNoL) for the Fourier-based procedure
(‘auto’) and for the first (of possibly two) observation(s) from the two obser-
vers (‘obsl’, ‘obs2’) on 49 TCA images of good quality from the Basel series.

A very similar approach for evaluating TCA images with the help of the
Fourier transform was suggested independently in Czermak et al. [2006].

This procedure of generalized linear filtering TCA images and estimating
the number of tooth rings by the most frequent number of minima over the
columns, was applied to a series of 49 TCA images from the Basel series.
For these TCA images, at least two independent manual observations exist
with a maximum difference of three years and the tooth rings run roughly
horizontal. The 49 TCA images therefore present a subset of the 407 TCA
images of good quality from the manual observers’ point of view. Figure
2.7 shows box-and-whiskers plots of the difference between the estimates for
the number of tooth rings of the first (of possibly two) observation(s) of
observer one, observer two and the Fourier-based procedure compared to the
theoretical number of lines (TNoL), as well as the difference between the
observers and the Fourier-based procedure.

On average the number of lines is underestimated by 3.8 years for the
Fourier-based procedure, while observer one overestimates by 2.5 and ob-
server two underestimates by 2.9 years for this sample. The Fourier-based
procedure also shows a larger variance in the difference between its estimates
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and the theoretical number of lines compared to the estimates of the manual
observers.

2.2.4 Discussion

The aim of enhancing TCA images using the discrete Fourier transform was
to emphasize frequencies corresponding to tooth rings. For this purpose,
the assumption that tooth rings are approximately 5 to 20 pixels thick was
used. Frequencies corresponding to these possible numbers of rings in ap-
proximately vertical direction were selected from the Fourier transformer and
back-transformed into the space domain. In order to estimate the number of
lines in a part of a Fourier smoothed TCA image, the most frequent number
of minima over all columns was selected.

This procedure seems to work for the selected TCA images from the Basel
series, but does not give results that are comparable to the manual TCA age
estimates. This might be due to several critical assumptions and steps in the
procedure:

e The selected part of the TCA image must be of optimal quality.

It must contain all tooth rings and no large disturbances like artifacts.
The shape of this part is limited to being a rectangle, and in the current
application it is even limited to being a square (due to the fixed ratio
between the radii of the ellipse in the zonal mask).

e The procedure heavily relies on the assumption that tooth rings are
approximately 5 to 20 pixels thick.

If the number of tooth rings is outside the range %i% (% — f—o) (where
N is the number of rows in the part of interest of the TCA image), the

estimate for the number of lines will be biased.

e The orientation of tooth rings must be horizontal.

The elliptical zonal mask covers frequencies deviating at most by 15-20
degrees from being perfectly horizontal. Tooth rings with a steeper
orientation will therefore be oversmoothed and valuable information
will be lost. Thin tooth rings are allowed to fluctuate even less. The
approach for a column-wise search of minima in the smoothed TCA
image will be correct only for strictly horizontal tooth rings.



2.2. DISCRETE FOURIER TRANSFORM 27

e For the histogram-based approach of searching the final estimate for the
number of lines among the minima in each column, the distribution of
the number of minima must be decent.

Theoretically, this approach works only if all tooth rings are present in
most of the columns in the smoothed TCA image. A counter-example
would be a multi-modal distribution resulting, for instance, from tooth
rings disappearing in a half of the part of the TCA image.

Generally it can be concluded that the method presented here suffers from
heuristics, such as the choice of the zonal mask or the final estimation of the
number of lines, whose specifications are essential for applying the Fourier
transform to TCA images. But even if one succeeds in circumventing these
heuristics (for example, by adaptively choosing the zonal mask and number
of lines), deficiencies that are intrinsic to the DFT will remain. These are:

e Fourier smoothing is a global technique.

Cutting out a frequency removes rings of a certain size from the whole
image. Locally sensible smoothing is not possible. Thin rings cannot
be kept in one part of the image while removed in another part. This is
most likely the reason for underestimating the number of tooth rings in
the above application, removing frequencies that are too high for some
parts of the image.

It is also impossible to Fourier smooth whole TCA images, including
parts where no rings exist like the dentin or widely disturbed parts like
large artifacts.

e Fourier transform is a directional method.
Because of the globality of Fourier smoothing, cutting out an orienta-
tion removes it from the whole image.

e Fourier frequencies cannot be translated to the age of a person.

Because of superposition of sine and cosine waves, one frequency of the
Fourier transform cannot be directly interpreted into one ring width or
a certain number of rings. Selected frequencies therefore do not have
meaning for TCA image analysis.

e A more sophisticated procedure is needed to evaluate the Fourier
smoothed image.



28 CHAPTER 2. FEATURE MEASURING METHODS

The Fourier transform can be used to smooth the image, but can not
directly be translated into an estimate for the number of tooth rings
(see above). It is not obvious how the smoothed image can be evaluated
without introducing additional heuristics.

e Fourier coefficients depend on the size of the image.

The size of the image translates frequencies into wavelengths. Be-
cause of the discreteness of the Fourier transform, rings that do not
correspond exactly to an integer-valued frequency might spread out
into neighboring frequencies (they “smear”). Especially for large wave-
lengths in high resolution images, portions of the rings might be re-
moved as noise. On the other hand, low resolution images do not con-
tain enough information for each of the rings. (This can be visualized
by quantizing a sine wave by three points.)

We therefore conclude that the discrete Fourier transform is not (directly)
suitable for the analysis of all types of TCA images. It could still be incorpo-
rated to quickly preprocess TCA images (for example, to remove large-scale
noise) or to quickly receive a rough first estimate of the number of rings.

2.3 Singular Value Decomposition

Singular Value Decomposition (SVD) is a fundamental algebraic transform
of matrices that is part of many different algorithms. A digital image is a
matrix of gray values; SVD can therefore easily be applied in digital image
processing. It usually utilizes image restoration or data compression.

The theory of singular value decomposition will be introduced in Section
2.3.1. Section 2.3.2 attempts to interpret the ingredients of the decompo-
sition in terms of TCA image features and illustrates an application of the
method to TCA images, as well as summarizes results from applying SVD
for estimating the number of lines in a series of TCA images. A discussion
of these results will conclude the section.

2.3.1 Theory of SVD

Singular value decomposition is detailed in many textbooks. For more theo-
retical aspects Trefethen and Bau [1997] will be used here, while Jain [1989|
provides an overview tailored to image processing.
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Let Y be the matrix of interest, then its singular value decomposition can
be defined and its existence proven:

Theorem 2.3.1. For integers N and M, and any matriz Y € RY*™ there
exists a factorization

Y =UDV"
called singular value decomposition, where

e UcRY*™N and V€ RM*M qre orthogonal matrices containing the unit
length left respectively right singular vectors of Y, and

e D c RV*M 45 q pseudo diagonal matriz containing the singular values
dj > 0 as entries for j =1,...,min{N, M}.

A proof of the above theorem and definitions for algebraic terms like orthogo-
nality can be found in any linear algebra textbook, for example, in Trefethen
and Bau [1997].

The SVD of matrix Y is a separable transform that diagonalizes the
matrix. Matrix Y can then be written as the linear combination

rank(

Y)
Y: Z dj’U/j’U]T,

J=1

where u; and v; are the columns of U respectively V.

For convenience, let the singular values d; of matrix ¥ (and its corre-
sponding singular vectors) be arranged in non-increasing order: d; > dy > ...
Then the SVD of Y has the following central property:

e The matrix Y) generated by the partial sum

k
Y = Z djujol, for some k < rank(Y) (2.1)
j=1

is the best least squares approximation of Y with rank &, making an
rank(Y)

error of g = Y d; (using the squared Frobenius norm).
j=k+1

This means, that among all linear combinations of rank-1 matrices,

k
§ : T
wjajbj
j=1
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Figure 2.8: Ideal TCA images of rank one. Image (a) shows perfectly hor-
izontal tooth rings, each line with its own intensity; (b) displays the same
ideal TCA image with vertical noise (each column with its own intensity).
The graphs show the first left and right singular vectors.

where a; and b; are sequences of unit length orthogonal vectors; the SVD in
(2.1) is the one maximizing the energy in the coefficients w; for j =1,... k.

This property can be exploited to approximate images, as will be illus-
trated for TCA image analysis in the next Section.

2.3.2 Interpretation and Application

Throughout this section, TCA images will be approximated by the best rank-
k matrix. First, it will be illustrated that the approximation of rank one the-
oretically carries a substantial amount of information on tooth rings. Then
additional ranks are considered.

Let us imagine the ideal TCA image of perfectly horizontal tooth rings,
each ring with its own intensity profile, as depicted in Figure 2.8 (a). This is
a rank-1 matrix, where every column is identical to any other column. The
rank-1 approximation

T
Yi = dlulvl
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obtained by SVD is thus identical to the original matrix. The assumption of
identical columns can even be relaxed, such that each column is a multiple of
any other column, as depicted in Figure 2.8 (b). This is still a rank-1 matrix
that is identical to the partial sum Y.

These ideal TCA images illustrate well the interpretation of the first left
and right singular vector, respectively, for TCA image analysis:

e The first left singular vector u; is a function of the rows where the ith
element approximates the sth row of Y best in the least squares sense
(up to the multiple djv;;1). In TCA images, this means that the first
left singular vector averages out the variance along the horizontal tooth
rings, and is thus a smoothed cross section, where minima correspond
to tooth rings.

e The first right singular vector v, is a function of the columns where the
jth element approximates the jth column of Y best in the least squares
sense (up to the multiple dyu;;). It averages vertically, such that the
first right singular vector of TCA images approximates the variance
within (horizontal) tooth rings. For example, vertical saw cuts can be
captured by this vector.

In general, it can be said that the partial sum of rank-1 Y; approximates
a matrix depending on the two dimensions of space by two independent
functions, depending on one dimension each. Horizontal structures result
in peaks in the first left, whereas vertical structures result in peaks in the
first right singular vector. The singular values indicate the relative error
committed by the rank-1 approximation:

The graphs in Figure 2.8 depict the first singular vectors of the ideal TCA
image from Figure 2.8 (b). The left singular vector captures the simulated
tooth rings while the right singular vector portrays the simulated saw cuts.

Figure 2.9 shows the rank-1 approximation of the squared part of the
standard exemplary TCA image marked in Figure 1.3 together with its de-
composition into first singular vectors. The number of minima of the first
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left singular vector is an estimate of the number of tooth rings; in this ex-
ample, the number of minima is 28. This rank-1 approximation commits a
relative error of 14% and therefore supports our hypothesis that the rank-1
approximation of TCA images captures a substantial amount of information
on tooth rings.

But the underestimation of the number of lines indicates that a rank-1
approximation smoothes too intensely in the horizontal direction and is there-
fore not sufficient. The selection of a higher rank to approximate Y is empir-
ical and depends on the application at hand. For illustration purposes, let
us limit ranks from two to ten. The frequencies of the number of minima in
each column for these rank-£ approximations are depicted in Figure 2.10 for
the squared part of the standard exemplary TCA image marked in Figure
1.3. The rank-2 approximation (in green) shows two clear maxima in the
distribution of the number of minima at 29 and 37. The higher rank ap-
proximations rather emphasize a peak at 30 in this application. The rank-k
approximations of the exemplary TCA image thus do not give a unified result
for the number of tooth rings. For robustness, the sum of the frequencies
over the rank-2 to rank-10 approximations could be used, as depicted in red
in Figure 2.10, estimating 30 lines.

This procedure of approximating parts of TCA images by rank-2 to rank-
10 matrices and estimating the number of tooth rings by the most frequent
number of minima over the columns in these approximations, was applied to
a series of 49 TCA images from the Basel series. For these TCA images at
least two independent manual observations exist with a maximum difference
of three years and the tooth rings run roughly horizontal. The 49 TCA images
therefore present a subset of the 407 TCA images of good quality from the
manual observers’ point of view. Figure 2.11 shows box-and-whiskers plots
of the difference between the estimates for the number of tooth rings of the
first (of possibly two) observation(s) of observer one, observer two and the
SVD-based procedure compared to the theoretical number of lines (TNoL),
as well as the difference between the observers and the SVD-based procedure.

On average, the number of lines is slightly underestimated by 0.6 years
for the SVD-based procedure, while observer one overestimates by 2.5 and
observer two underestimates by 2.9 years for this sample. But the SVD-based
procedure produces a larger variance and a larger range in the difference be-
tween its estimates and the theoretical number of lines compared to estimates
of the manual observers. This variance and range is even larger than for the
Fourier-based procedure.
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Figure 2.9: Rank-1 approximation of the squared part of the standard exem-
plary TCA image marked in Figure 1.3. The graphs show the first left and
right singular vectors.
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Figure 2.10: Histograms of the number of minima in the columns of the
smoothed exemplary TCA image of rank one (blue) to ten (yellow). The
maximum of the sum over the rank-2 to rank-10 approximations (in red)

gives the estimated number of tooth rings: 30.
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Figure 2.11: Box-and-whiskers plots of the difference between the estimated
and the theoretical number of lines (TNoL) for the SVD-based procedure
(‘auto’) and for the first (of possibly two) observation(s) from the two ob-
servers (‘obsl’, ‘obs2’) on a set of 49 TCA images of good quality from the

Basel series.
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2.3.3 Discussion

The aim of this section has been to approximate TCA images by one or sev-
eral matrices of low rank, and in turn to enhance tooth rings and estimate
their number. The rank-1 approximation of TCA images and its first left sin-
gular vector theoretically capture horizontal tooth rings. But the application
showed that it smoothes too intensely in this direction. Higher rank approx-
imations of TCA images have been evaluated by averaging the frequencies of
the number of minima in the columns over the approximations of ranks two
to ten.

One can certainly improve this final estimation of the number of min-
ima in TCA images. But similar to the Fourier transform for TCA images,
the method suffers from heuristics, such as the choice of the rank of the
approximation or final estimation of the number of lines, whose specifica-
tion is essential for applying SVD to TCA images. But even if one succeeds
in circumventing these heuristics (for example, by adaptively choosing the
rank and the number of lines), deficiencies that are intrinsic to the SVD will
remain. These are:

e Singular value decomposition is a global technique.

It smoothes globally over all columns and all rows. Locally sensible
smoothing is not possible. Thin rings cannot be kept in one part of the
image and removed in another part. This is most likely the reason for
the high variance in the estimated number of tooth rings in the above
application, i.e., erasing thin tooth rings that should be kept or keeping
thin rings that should be erased for some parts of the image.

e Singular value decomposition is a directional method.

Information contained in orientations other than strictly horizontal or
strictly vertical will be split into different ranks. Non-horizontal tooth
rings are therefore more difficult to recognize and the rank-1 approx-
imation even gives a wrong estimate. This could be regulated by the
width of Y, the part of interest in the TCA image. The more columns
Y contains, the higher is the possibility of non-horizontal tooth rings.
But on the other hand, the fewer columns Y contains, fewer tooth rings
are likely to be present because they may have disappeared in that very
part.

e The rank of a matrix cannot be translated to the age of a person.
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Despite the plastic interpretation of the rank-1 approximation and the
information about the committed error of the rank-%£ approximation to
a TCA image, the meaning of the rank in terms of number of lines or
of the error in terms of extinguished tooth rings of certain width is not
clear.

e A more sophisticated procedure is needed to evaluate the SVD smoothed
image.

The singular value decomposition method is used to smooth the im-
age, but (except for the rank-1 approximation) it cannot directly be
translated into an estimate for the number of tooth rings. For the
histogram-based approach of searching the final estimate for the num-
ber of lines among the minima in each column, tooth rings must be
strictly horizontal and the distribution of the number of minima must
be well-behaved. It is not obvious how one smoothed image, or even
several smoothed images of different ranks, could be evaluated with-
out introducing additional heuristics. (See also the discussion for the
Fourier smoothed TCA image on page 27.)

Because of these properties and because of the mixed results for esti-
mating the number of lines in TCA images, we conclude that singular value
decomposition is not (directly) suitable for the analysis of all types of TCA
images. Altogether, SVD is a very rigid approach that might not even be use-
ful for preprocessing TCA images (removing small scale noise) or for giving a
rough first estimate of the number of rings. Compared to the Fourier trans-
form, it cannot adapt sensitively enough to different kinds of TCA images
because of the rank methodology and SVD is considerably slower.

This section has also shown the distinction between two aspects of eval-
uating TCA images: recognizing tooth rings (by the rank-1 approximation)
and estimating their number (by summarizing estimates from approxima-
tions of different ranks). The problem of estimating the number of tooth
rings might be simpler and may serve as a starting point for the recognition
of tooth rings.

2.4 Discussion — Feature Measuring Methods

In the course of this chapter, one standard method from each of the areas
of statistics, calculus and algebra was selected and applied to TCA images.
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Hereby general problems of the applied methods, features of TCA images, as
well as of TCA image evaluation emerged.

First, local regression was applied to TCA images to remove noise by
approximating one data point by a weighted average of its neighboring data
points. The functional form of this relationship between gray values and
their location is unknown and was thus approximated. In the application
a principal problem of local regression smoothing appeared: One essential
specification of applying local regression, the width of the smoothing window,
directly influences the number of recognized tooth rings. The impact of
misspecifying the bandwidth by one pixel leads to an unstable procedure in
the first place. Furthermore, a question inherent to the application arises:
The best fit of a regression curve does not solely depend on the data, but
also on the question of interest and thus on a clear definition of the object
tooth ring, something that is not available.

Secondly, the two-dimensional Fourier transform was applied to enhance
TCA images by emphasizing periodic structures belonging to tooth rings
while neglecting structures belonging to noise. This was realized by gener-
alized linear filtering using an elliptical zonal mask around the heuristically
most-likely frequency. And thirdly, TCA images were enhanced by singular
value decomposition through approximation with matrices of low rank. The
TCA age estimates by the Fourier and the SVD smoothing of a series of
TCA images were not comparable to estimates by manual observers. Both
methods displayed similar deficiencies in the context of TCA image analysis:
They are global techniques, such that thin rings cannot be kept in one part
of the image while removed in another part. Fourier transform and especially
SVD are directional methods, and thus too inflexible. The Fourier frequen-
cies as well as the matrix ranks in SVD cannot be translated to the age of a
person. For this reason, a final evaluation procedure for the Fourier and the
SVD smoothed TCA images needs to be specified; and it would of course be
best not to introduce additional heuristics.

These first attempts to evaluate TCA images also emphasized the dis-
tinction between two aspects of it: recognizing tooth rings and estimating
their number. The latter problem may well be simpler and serve as a starting
point for the recognition of tooth rings. With the knowledge of the number
of tooth rings, other methods, for example, object recognition methods such
as the snake (Kass et al. [1988]), could reveal their virtue.

Throughout this section certain characteristics of TCA images emerged
that might interfere with general feature measuring methods. Theoretically,
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each tooth ring should be present throughout the whole width of the TCA
image. Practically speaking, however parts of tooth rings are often missing
due to biological, microscopical or imaging peculiarities. Although the ori-
entation of tooth rings is roughly horizontal, fluctuations that might cause
problems occur frequently. Disturbances in TCA images, for instance ar-
tifacts and large blurry regions, might distort the features measured by a
method.

Feature measuring methods cannot bridge this missing or falsified infor-
mation. They can only assess certain characteristics of the image. In the
course of the next three chapters, methods that are more tailored to TCA
image analysis will therefore be developed, and an attempt will be made to
imitate the mechanism of bridging information as the manual observers do,
because they know that tooth rings should appear in the whole TCA image
and that they should all run roughly parallel in the same direction.



Chapter 3

(zaussian Mixture Model

In the course of the next few chapters we will set up a model, i.e., a mathe-
matical process that is capable of producing and describing observations. In
image analysis, a statistical model generally serves two needs: It can describe
the observed image with a set of parameters, and it can generate synthetic im-
ages, which are similar in terms of certain characteristics, from these model
parameters (Cross and Jain [1983]). So far, methods like local regression,
FFT and SVD smoothing were applied to TCA images by measuring texture
features without incorporating them into a model. That is, we did not have
an ideal or representative in mind. But now the advantages of model-based
texture analysis will be exploited with its possibility of synthesizing texture
and, more importantly, of incorporating prior knowledge in order to gain a
deeper understanding by retrieving physically meaningful parameters.

For this purpose, the problem of evaluating TCA images has to be re-
stated as a labeling problem (see, for example, Li [2001]). The observed
image is assumed to be a random field and will be defined through the prob-
ability distribution of an underlying unknown random field, the label image:
Let S be the set of pixels forming a rectangular lattice of size N x M:

S={1,...,NM}.
For each pixel i gray value Y (i) is observed:
YV : S RV*M guch that i — Y ().

The whole observed image Y (S) will simply be denoted by Y.

39
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Definition 3.0.1. A labeling (or coloring) A is assigning an event A(i) to
site u:
A S+ GV*M such that i +— \(i)

where a discrete label set G = {0,1, ..., G} is assumed. The whole label image
A(S) will be abbreviated by .

The labeling problem is the task of estimating the unknown label image
from the noise-corrupted observed image. This problem will be solved for
three different kinds of models in the upcoming chapters. Chapter 3 will
define a plain Gaussian mixture model and fit it by the EM and by the
RJ MCMC algorithm to TCA images. Mixture models are histogram based
models, that is, they rely on the assumption of independent observations and
do not take into account the relationship between nearby pixels. Chapter 4
will relax this assumption to incorporate two-dimensional correlations be-
tween gray values by hidden Markov random field modeling. Chapter 5 will
take into account directed two-dimensional interactions by coupled hidden
Markov modeling.

3.1 Introduction to Finite Mixture Models

Mixture models are an important and frequently applied statistical approach
to model distributions in which observations arise from separate groups, but
individual membership is not known (Webb [1999]). In TCA images one
could assume that the observed gray values arise from one of two classes:
either black or white rings. But neither the proportions nor the classification
of each pixel are known. Figure 3.1 illustrates this assumption. It shows
the relative frequencies of gray values conditional on the membership of each
pixel in a white or a black ring. This membership arose from a rough manual
segmentation on a good quality TCA image.

More generally, mixture models can be applied to explore data for such
group structure (McLachlan and Peel [2000]). They have provided a flexi-
ble, mathematically simple, semiparametric method for modeling unknown
distributional shapes for more than a century (McLachlan and Peel [2000]).
Besides the references named above, there is a wide variety of literature on
theoretical issues, applications and new developments for mixture models.
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Figure 3.1: Relative frequency of gray values given the pixel belongs to a
white ring (in blue) or respectively to a black ring (in red). Frequency counts

were taken from a good quality TCA image, where the label of each pixel was
manually chosen to form a rough segmentation into black and white lines.

Under a finite mixture model, the marginal distribution f(Y;) of a random
variable ); is defined as

f(Y) = ngf(Y;'|eg);

where G + 1 is the number of mixture components and f(Y;|0,) is the con-
ditional density of component g = 0,1,...,G depending on parameters ,.
The probability distribution of the labels P()\; = g) is denoted by w, and
can be thought of as nonnegative mixing proportions or weights with the

G
property > w, = 1.
g=0

The joint distribution of NM observations Y = (Y7,...,Yy) can thus
be expressed by the distribution of the observed gray values conditioned on
the labels weighted by the mixing proportions:

f(Y]60,w) = szgf(yz'wg)-

€S g=0
Given the observations, the likelihood becomes a function of the parameters

(0, w):
LO,w|Y) = f(Y]0,w).
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Figure 3.2: Conditional independence graph of a mixture model. Boxes
represent observed or fixed quantities; circles show unknowns.

Figure 3.2 displays the conditional independence graph of a mixture model,
where the existence of an edge between two vertices expresses that the quan-
tities assigned to these vertices are conditionally dependent given all other
quantities. That is, for any pair of pixels ¢ and j

FYL YN Yavug) = fYil)f(Y5A)
P\, \j[As\ii1, Y) = P(N)P()))
TV Al As\figys Ysvgigy) # f(Y)P(N)

in the present model. This context-blind setting will be expanded in the
course of the next few chapters.

One of the most popular mixture models, which is also widely used in
image segmentation, is the normal mixture model (Zhang et al. [2001]). For
univariate normal mixture models, each component density has the form of
a normal distribution with parameters 8, = (i, 07):

1 (Yi—ng)®

- 2
209

e
V4 27rag

In order to fit a finite mixture model to observations, there are two sets
of parameters to estimate: the component parameters 6, and the mixing
proportions w, = P(\; = g). In this application, there is also the need to
estimate group membership (the label), which will be denoted by A. Follow-
ing the arguments in Titterington et al. [1985|, one can see that the set of
all finite univariate normal mixtures

{f(Yi) = w,f(Yi|0,)|G = 0,1,...}

9=0

f(Yz‘|09) =
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is identifiable, i.e., for any member there exists a unique solution for G, wy,
wi, ... and B¢, B4, ... (up to permutations). Several methods exist to solve
for these unknowns; the best known is maximum likelihood estimation. But
explicit formulas for estimates w, 0 and ) are typically not available, neither
for maximum likelihood nor for other approaches. But ever since the avail-
ability of modern computer technology, using iterative procedures has been
possible for parameter estimation (McLachlan and Peel [2000]). The EM
algorithm has been one of the favorite methods of maximizing a likelihood
in this setting since Dempster et al. [1977].

In the following section, the reader will therefore be introduced to the
EM algorithm in general (Section 3.2.1) and then specifically as it pertains
to image segmentation (Section 3.2.2). The results therein will demonstrate
that the choice of the number of components G + 1 is a central issue that
needs to be addressed during the fitting procedure. Since the number of com-
ponents changes the dimension of the parameter space, maximum likelihood
is unable to simultaneously infer the labels, the mixing proportions, the den-
sity parameters and the number of components from the data. We chose the
fully Bayesian framework, specifically the RJ MCMC algorithm, to resolve
this difficult problem in Section 3.3. Lastly, in Section 3.4, conclusions will
be drawn and problems of applying finite normal mixture models to TCA
images stated.

3.2 Parameter Estimation via EM

If the estimation of parameters (6, w) requires optimization of a function,
such as the likelihood L(6,w), one can use several methods. When direct
optimization is intractable, one needs to rely on numerical or statistical meth-
ods, such as Newton’s method or Fisher scoring. But both of these involve
drawbacks, especially for estimating a large number of parameters, since both
algorithms need to invert large matrices.

The EM algorithm is a simple and numerically stable algorithm which
replaces the complex optimization problem by a sequence of simpler ones. For
this purpose it assumes the existence of additional but missing parameters,
labels \; in our case; and iterates the maximization of a so-called complete
likelihood, instead of maximizing L(6,w).
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Articles by Becker et al. [1997| and Bilmes [1997| respectively provide the
foundation for the subsequent description of theory in Section 3.2.1 and for
application in Section 3.2.2.

3.2.1 Theory

The pair (Y, ) will be called complete data (opposed to the incomplete data
Y') and assumed to have the joint density

P(Y, N0, w) = f(Y|\ 0, w)P()6,w).

From this a new likelihood function called complete-data likelihood can be
specified
LM, w]Y, \) = P (Y, A6, w). (3.1)

The EM algorithm first calculates the expectation (E-step) of the complete-
data log-likelihood with respect to the unknown data A, given current pa-
rameter estimates (6, w)® ") and the observed data Y

E [logP(Y, A6, w)

= / log (P(Y, A0, w)) P ()\

AegNXM

Y, 001, w(t_l)} (3.2)

}/’ a(t—l)’ w(t—l)) d\

where Y and (@, w)*") are constant, P ()\|Y, ot w(t_l)) is the predictive

distribution of the unobserved data and GV*M is the space of values \ can
take on.

The second step (M-step) of the EM algorithm involves maximizing this
expectation to obtain a better estimate of (6, w):

(8, w)Y = argmax E |log P(Y, \|0,w) |Y, 8"V w1 (3.3)
(6.w)

Starting with preliminary estimates (8, w)(®), these two steps are iterated
until convergence. Since each iteration is guaranteed to increase the (incom-
plete) log-likelihood under mild assumptions, the EM algorithm will converge
to a local maximum (McLachlan and Krishnan [1997]).



3.2. PARAMETER ESTIMATION VIA EM 45

3.2.2 EM-Classification Using Normal Mixture Model-
ing

In the case of a normal mixture model, the maximization of the EM algorithm
in (3.3) is simplifying because the complete-data log-likelihood (3.1) resolves
into summands such that the parameters § and w separate. According to
Bilmes [1997| the EM algorithm is hereby reduced to the three updating
formulas

1
Wy = = %;P ()\1- = g|Yi, 0“*”) (3.4)
> ViP (2 = g|Y,, 6070
o = " (3.5)
> P ()\1‘ = g|Yi, 0“’”)
1€S
5P (A= gl 6070 ) (% - )
o2 =% — (3.6)
5> P\ = g1i,007)

1€S

which are then repeated. The posterior probability of component g given the
data can be computed as follows

9

P (Ai = g% e(t_l)) - Sl (Ylo(tq)) |
ilY%

9=0

wétfl)f (Y;|0(t71))

Reasonable guesses for starting values could be means, variances and pro-
portions of components obtained by equally partitioning the set of existing
gray values. Random starting values (most likely) give different results be-
cause of the non-concavity of the likelihood. When no other prior information
is available, experiments have shown that the above choice of deterministi-
cally partitioning the observations is sensible and certainly not the worst.
This is underscored by the application of an MCMC method in the next
section.

In order to apply the algorithm and for reasons of identifiability (see page
42), the number of components G+1 has to be inferred. As mentioned above,
the EM algorithm and ML estimation in general are unable to address this



46 CHAPTER 3. GAUSSIAN MIXTURE MODEL

Figure 3.3: A small 200x600-pixel part of the standard exemplary TCA image
IS 0000666 used as an example.

issue, because a varying number of components leads to varying dimensions
of the parameter space. The user therefore needs to guess the number of
components in our first application. A natural, suggested assumption would
be two components: black (¢ = 0) and white rings (¢ = 1). Section 3.3 will
demonstrate an approach for coherently assessing the number of components
G + 1, the labels A, the mixing proportions w and the component density
parameters 6.

Figure 3.3 shows an image which contains 200x600 pixels, a small part
of the standard exemplary TCA image in Figure 1.3. Figure 3.4 illustrates
the EM algorithm (mentioned above) as applied to this example image. The
estimated most likely labeling, as well as traces of the log-likelihood, the
mean and a histogram of the observed gray values, the initial and the fitted
distributions are shown there. The algorithm was executed on Hydra!, and
(a not-optimized version) needed about one hour depending on the number
of gray levels. A graph of the trace of one exemplary parameter and the
incomplete-data log-likelihood (depicted in Figure 3.4 (b) and (c)) leads one
to suppose that the algorithm has converged. The parameter estimates jiop =
29942, 1y = 32212, 69 = 3205 and 6, = 2782 suggest that the observations
are a mixture of two overlapping normal distributions, quite similar to the
initial normal distributions (see Figure 3.4 (d)). But the labels do not reveal
the expected results of a segmentation into white and black rings. Instead,
the labeling emphasizes the vertical direction of the saw cuts rather than the
horizontal one of tooth rings. This is a typical result that was reproduced
for other TCA images.

!Hydra is a HP ProLiant DL 580 computer with Windows 2000 Server operation system,
four Intel Xeon MP 1.60 GHz processors and 2 GB memory.
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Figure 3.4: Estimated most likely labeling of the part of a TCA image shown
in Figure 3.3 assuming a mixture of two normal distributions (a). Graphs
for traces of the log-likelihood (b) and the means (c). The bottom graph
(d) shows the fitted and initial normal distributions as well as the binned
observed frequencies.
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Figure 3.5: Estimated most likely labeling of image 3.3 assuming a mixture
of three (top) and four (bottom) normal distributions.

One reason for the failure of fitting a normal mixture model to parts
of TCA images might be the assumption of two components. To explore
this deficiency, the observer can see in Figure 3.5 the results of fitting a
mixture of three and four normal distributions to the same image (using
more iterations). The next section will examine the possibility of estimating
the number of components while fitting the mixture model.

3.3 Parameter Estimation via RJ MCMC

The issue of identifiability, stated on page 42 and the applications of the EM
algorithm to TCA images above, show that the choice of the number of com-
ponents is a key problem for fitting a finite mixture model to observations.
Most approaches to this difficult issue separate the problem of assessing
G, from fitting the mixture model with fixed G. Two examples are penalized
log-likelihood measures called information criteria (for example, Akaike’s In-
formation Criterion) and testing the hypothesis G = G, against G = G.
But simultaneous estimation of the number of components, the parameters
of the component densities, mixture proportions and the most likely classifi-
cation of each observation can be done in a fully Bayesian framework. The
Reversible Jump Markov Chain Monte Carlo (abbreviated by RJ MCMC)
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method, promoted by Richardson and Green [1997], is one of few choices
to fulfill this criterion. The current section will closely follow Richardson
and Green [1997] to introduce this method of mixing over the fixed G cases.
Section 3.3.1 will present the hierarchical Bayesian model, Section 3.3.2 will
derive the proper MCMC method and Section 3.3.3 will explain the results
of applying the RJ MCMC algorithm to TCA images.

3.3.1 Model Specification

The joint distribution of the number of components G + 1 and the labels A,
the mixing proportions w, the component density parameters 8 as well as
the observations Y can generally be rewritten as

P(G,w,),0,Y) = P(G)P(w|G)P(Aw, G) P(O]\, w, G) f(Y]0, A, w, G).

In the case of normal mixture models, the following (conditional) indepen-
dencies and distributions can be assumed:

PO w,G) = PO|G)
fY10. 0w, G) = f(Y]0,)) = Hf(sz|0/\za)‘z) = H
1€S 1€S

PA\w,G) = J[PNilw,G) =[] wx.

i€S €S

1
Vimoy,

(&

The Bayesian framework now considers G, w and € as unknowns and models
them according to prior distributions. These priors are dependent on hy-
perparameters G,q., 0 and 7, which in turn are drawn from independent
hyperpriors. The joint distribution of all variables (observations, labels, so-
called unknowns and hyperparameters) is then given by
P(Graz, 0,1, G,w, X\, 0,Y) =
P(Gunar) P(0)P(1) P (G| G P(w|G, 8) P\, G) P(8]G, 1) £ (Y16, A).
For univariate normal mixture models, the prior distributions can be spec-
ified by
N(é-’ Hil)’
~ T, B),
~ D(4,4,...,d) and
Uniform(1, Gmaz)

Q =
IS
2

Q=
2
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where G.,q, is a prespecified integer, n = (£, K, «, ) are hyperparameters,
I'(a, 3) is the Gamma distribution with mean § and variance 4 and D the
symmetric Dirichlet distribution. For complete specification of the model,
Richardson and Green [1997] chose the hyperparameters to be weakly infor-

mative and defined, for example,

Gmaz =30, a =2and § =1 to be constant,

Y; in(Y; 1
max(Y;) + min(Yi) and Kk = — to be range-dependent and

&= 9 R2

R2

where R = max(Y;) — min(Y;) is the range of the observations. See Richard-
son and Green [1997] for heuristic, and references therein for some theoretic
argumentation regarding these choices.

Figure 3.6 summarizes the hierarchy of the involved model variables. It
displays a directed acyclic graph for the joint distribution, as well as a con-
ditional independence graph of this model.

So far, the whole model described above is invariant to permutations of
the labels ¢ = 0,1,...,G. For reasons of identifiability we assume a unique
labeling with gy < py < ... < pg-.

10
B~T (0.2, —) to be random,

3.3.2 The Algorithm: Sampling and Jumping

The reversible jump MCMC algorithm is a random sweep Metropolis-Hastings
method and in the case of a hierarchical normal mixture model will repeat
the following six move types:

1) update the weights w

2) update the parameters (u, o)
3) update the labels A

5

split one mixture component into two or combine two into one

(1)
(2)
(3)
(4) update the hyperparameter (3
(5)
(6)

birth or death of an empty component
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Figure 3.6: Directed acyclic graph (left) representing the joint distribution of
the hierarchical normal mixtures model. Marrying parents and dropping ar-
rows gives the corresponding conditional independence graph (right). Boxes
show observed or fixed quantities, circles show unknowns. (from Richardson
and Green [1997])
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Move types 1 to 4 do not alter the dimension of the vector of unknowns
(8, u,0,G,w, ) and are drawn from the following full conditional distribu-
tions (also displayed in Figure 3.6):

P(w|\,0,G) =D (6 +ng,...,0 +ng)
0,2 Y Yi+ kg

A =g
—2
04 Ny + K

P(ulY, ), 0,G,& k) = N oy g +5)7

. 1 1
P(O—g2|K)‘7M:G705:/8):F <a+§ng7ﬁ+§ Z (Y;_:U’g)2>

A =g

G
P(Blo,G,a,R) =T <0.2 +Ga, R+ Z 0—92)
g=0

where n, = [{i € § | A\; = g¢}| is the number of pixels with label g. The
allocation variables are drawn from

w, _Yirg)”
P\ =glY,o,w,G) x e 73
Tg
Thus w can be updated by drawing independent random Gamma vari-
ables and scaling them to one; the drawn i, are just proposals and accepted
only when the ordering is unchanged.
Moves 5 and 6 can increment or decrement the number of components.
The vector (u, o, w, A) thus needs to be updated in a way that can be reversed.
Move 5 includes a random choice between trying to split or to combine

with probabilities bg1 and dgy1 = 1 — bgy1, where b = (1, %, %, e %,0)
and d = (0, %, %, ) ..,%, ). To combine a component, g < G is chosen at

random and G is decremented by merging components g and g + 1 into the
new component labeled ¢g*. For this purpose observations Y; with \; = ¢ or
Ai = g + 1 are reallocated by setting \; = ¢* and (wy», jug~, 0x+) are chosen
to satisfy

Wy = Wy + Wyq1 3.7)
W flg = Wghg + Wop1Hgt1 (3.8)
Wy (Mg +05.) = wylpg +07) + wer1(pg 4y + 0y 1y)- 3.9)
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For the reverse split proposal, a component ¢g* is chosen at random and
split into two components labeled g and g + 1. The new weights, means
and variances have to be chosen in correspondence to equations (3.7) to
(3.9). This results in three degrees of freedom generated by u; ~ be(2,2),
ug ~ be(2,2) and uz ~ be(1,1). Then

Wy =Wty 5 Wy = Wy (1 —wy),
_ Wy+1 _ Wy
Hg = Hg= — U204 » Hg+1 = Hgx + U0g= )
Wy Wg+1
W g* W g*
2 _ 2y 2 Wy 2 _ 2y 2 Wy
o) =uz (1 —u3) o , 0oy = (1—us) (1 —uj) o :
Wy Wg+1

After confirming a correctly ordered p (and rejecting the move otherwise),
the reallocation of those Y; with A\; = ¢* is performed analogously to the stan-
dard allocation. The proposal distributions for move 5 were chosen according
to Richardson and Green [1997|. Their aim was to create a reasonable prob-
ability of acceptance under the restriction of matching the dimension. The
acceptance probability for splitting component ¢* is then min(1, A) where

f(Yi|03") P(G +2) wd =TI 1

A4 = G+2 g
g F(vil65) P(G+1) ( )w;f*”““?be(d, (G +1)0)

P o= 5 (g =)+ (g +1=6)7 (g —£)?)
27

2 9 —a—1
["Ea) ((79029+1> efﬁ(g;%a;flfg;f)
(0%

[0
dgo

9

(be(u1|2a 2)be(u2|27 2)()6(’1},3“_, 1))_1
bG—I—lPalloc
Wy g — :“g+1|‘73‘7§+1
2
g*

ug(1 — ud)uz(1 — uz)o

with G 4+ 1 being the number of components before the split, /; and [, the
number of observations proposed to be assigned to component g respectively
g+ 1, and Py, is the probability that this particular allocation is made.
This lengthy product results from the generalized Metropolis-Hastings ratio
where lines ones through three form the ratio of the probability of being in
state &’ = (wy, fig, 03, Wyt1, Phg+15 O'§+1) from higher dimensional space, to the
probability of being in the lower dimensional state z = (wy-, ftg-, 03*), given
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all observations Y. The factor (G +2) results from the ratio (gﬁ;' of ordering

the components. The fourth line represents the ratio of the probability of
choosing this type of move being in state z’ to the probability of this move
in state x times the density of u. The last line forms the Jacobian of the
transformation from (z,u) to 2.

Analogously the acceptance probability of combining components g and
g+ 1is min(1, A™") with some obvious substitutions.

Move 6 is also very similar. Birth or death is randomly selected us-
ing bgy1 and dgyq. For the birth of a new empty component, we propose
wg- ~ be(1,G + 1), scale the weights to sum to one, p ~ N(&,£7") and
0;3 ~ I'(a, 3). For a death we randomly choose any existing empty com-
ponent which is deleted and the weights are scaled to one. The acceptance
probabilities for birth and death are then min(1, A) respectively min(1, A~!)
with the simplified

0=1(1 — qp.. )P H(G+1)I-G
4 = DGED) o gy (L)
P(G+1) be((G +1)6,0)
dG+2 (1 - wg*)g_l

bg+1 (GU + 2) be(wg* |1, G)

where GG +1 is the number of components and G+ 1 is the number of empty
components before the birth.

The moves 1 to 6 together are called a sweep and need to be repeated
sufficiently often in order to create a Markov chain.

The RJ MCMC algorithm as stated above was implemented in Matlab

with the help of Fortran procedures offered on Peter J. Green’s homepage:
Green [2004].

3.3.3 RJ MCMC-Classification Using Normal Mixture
Modeling

TCA images contain a large number of observations (5000 times more than
the sample data set Richardson and Green [1997] used). We therefore chose a
small portion of the standard exemplary TCA image, 200x600 pixels in size,
in order to test the RJ MCMC algorithm. Additionally the number of sweeps
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Figure 3.7: Bayes’ classification of the part of a TCA image shown in Figure
3.3, assuming a mixture of normal distributions (a) and graphs for traces of
the means (b), the variances (c¢) and the fitted normal distributions as well
as the binned observed frequency (d).

was set to 100,000 including an initial burn-in period of 10,000 sweeps. These
settings required a computation time of seven days on HydraZ.

Figure 3.7 shows the result of applying RJ MCMC to the part of a TCA
image shown in Figure 3.3 for fitting a normal mixture model. The most
frequent (among the 90,000) colorings contained three components (P(G =
2) = 0.78) and the most likely coloring among those is depicted in the top of
Figure 3.7. This coloring will be called a Bayes’ classification. Also visible
in Figure 3.7 are traces of the parameters @, where the entrance or exit of
one color indicates the birth or death, respectively, of a new component.

2Hydrais a HP ProLiant DL 580 computer with Windows 2000 Server operation system,
four Intel Xeon MP 1.60 GHz processors and 2 GB memory.
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The predicted most likely distribution of each component together with the
binned observed frequencies are depicted in the rightmost graph.

Comparing the results from fitting a mixture of three normal distributions
by the EM algorithm on one side, to fitting a mixture of normal distributions
by the RJ MCMC algorithm where the most likely number of components
is three, the reader will not note any difference between Figures 3.4 and 3.7.
The parameters as well as the labeling match very closely. A shorter run of
(for example) 10,000 iterations favored a mixture of two normal distributions
that was also very close to the result of the EM algorithm.

Figure 3.7 also demonstrates that the RJ MCMC algorithm recognizes
saw cuts instead of tooth rings, just as the EM algorithm did. Similar results
are obtained when applying this method to different TCA images.

Another (unexpected) drawback of the RJ MCMC is the computational
inefficiency. This method possibly requires many iterations and therefore
could not be applied to large data sets (like a complete TCA image) in
everyday practice.

3.4 Discussion — Mixture Modeling

Fitting a normal mixture model to TCA images reveals a most likely coloring
that does not resemble tooth rings. This problem appeared when using the
EM algorithm to fit the model for a fixed number of labels G + 1, as well as
when using the RJ MCMC algorithm to fit the model while mixing over G.
There might be several reasons for this problem.

The most probable reason is connected to the identifiability issue that
has heretofore been mentioned. For example McLachlan and Peel [2000]
note that any continuous distribution can be approximated arbitrarily well
by a finite number of normal densities. There is thus not necessarily a one-to-
one correspondence between the fitted mixture components and the desired
groups in an application. This problem occurs especially when data are
skewed or when an outlier exists. The applications in Figures 3.4, 3.7 and
Figure 3.8 highlight this issue and demonstrate that fitting a mixture model
to TCA images is not a well-posed problem. The gray value of each pixel
alone does not separate the mixture in the required way. For example, it is
unlikely to separate the distribution of gray values in a good quality TCA
image as shown in Figure 3.8 into the two displayed groups, solely based
on the histogram. In images the gray level of one pixel is highly dependent
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Figure 3.8: Relative unconditional frequency of gray values (green) in a man-
ually segmented good quality TCA image (from Figure 3.1). The blue respec-
tively red bars give the conditional frequencies multiplied by the proportion
of pixels belonging to a light or dark ring.

on gray levels of neighboring pixels (Cross and Jain [1983]|). And thus a
histogram based model (as a mixture model) that cannot include spatial
information, is intrinsically limited to well-defined images with low levels of
noise (Zhang et al. [2001]). This situation is obviously not present in most
TCA images.

Since each observation can influence the model fit, it might also be the
case that another, more carefully chosen part of TCA images may result in
a better segmentation. But smaller TCA image sections are not represen-
tative. Larger sections, like the squared one marked in Figure 1.3, have a
high chance of including artifacts and very dark or bright tooth rings (for
example, the outermost and innermost rings) that overlay the ‘true’ mixture
of distributions.

Another possible reason for the unsatisfactory results of fitting a normal
mixture model to TCA images might be the assumption of normality. The
EM as well as the RJ MCMC algorithm can also be applied to different
distributions, such as the Poisson. This latter possible source of failure of
mixture modeling due to the normality assumption, will not be addressed
here because the generalization of including spatial dependencies seems more
promising.

The next chapters will introduce statistical models to incorporate knowl-
edge about the relation of spatially nearby pixels.
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Chapter 4

Hidden Markov Random Field
Models

Hidden Markov Random Field (HMRF) models provide a natural framework
for the labeling problem of images. These kinds of models incorporate con-
textual constraints: While using the same framework as for mixture model-
ing, the distribution of the labels will be generalized to include dependencies
among the pixels. We will follow Zhang et al. [2001] to introduce HMRF
models.

HMRF models consist of two levels: a Markov random field A that cannot
be observed directly, and an observable random field ). These two random
fields are linked by the conditional probability of the observed image, given
the true one

FN) = rmi,
i€S
whose components Y; are assumed to be conditionally independent. The
distribution f(Y'|)) is often called cost function or emission probability.
The most popular choice for a cost function is the Gaussian distribution

fvixe) = J[rilr,e)

IES

M m
= e %9 4.1

i€S 27rag

centered at mean p, for label \; = g and with variance 03; or in other words

Y; = pi, + €(i) with €(i) ~ N(0,0%),

99
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Figure 4.1: Conditional independence graph of a generic hidden Markov
random field model. Boxes represent observed or fixed quantities, circles
show unknowns.

where the parameters @ = {1,,07 | g € G} and the labels \; are unknown.
This setting is the same as for the normal mixture model in Chapter 3.
But the former mixing proportions P(A) will during this chapter not be
independent and may hereby contain spatial information. Figure 4.1 shows
a conditional independence graph for a generic hidden Markov random field.
In this sense, HMRF models are extensions of mixture models.

After explaining the general concept of MRF models in Section 4.1 (fol-
lowing Li [2001] and Winkler [1995]), attention is directed toward specific
MREFs. Section 4.2 will describe the auto-logistic model and Section 4.3 the
FRAME model. The latter section will also outline how to fit the model, that
is, how to estimate the involved parameters together with their confidence
intervals, and how to estimate the underlying labels. Applications to TCA
images will be included as well.

4.1 General Markov Random Field Models

MRFs have a long history, beginning in physics with Ising’s thesis in 1925
(Ising [1925]). Besag extended the so-called Ising model (Besag [1974]) and
popularized the approach in image analysis (Besag [1986]). Ever since, MRF
models are popular choices to model contextual constraints, as they describe
the probability distribution of the whole image by means of local dependen-
cies on a neighborhood structure.
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Definition 4.1.1. The neighboring relationship is a binary relationship on
a lattice S, such that for any two pizels i and j from S, the following two
conditions hold:

(1) Pizel i is not a neighbor to itself (anti-reflexivity)
(2) If i is a neighbor of j, then j is also a neighbor of i (symmetry)

The neighboring relationship can also be represented by a simple undirected
graph (without loops) where S is the set of vertices, and edges display a
neighboring relation. Therefore two neighboring pixels are not necessarily
geographically close to each other, but in most applications they are.

Definition 4.1.2.

e The neighborhood N(i) of pizel i is defined as the set

N(i) = {j € S| j neighbor of i}.

e Let the neighborhood system N then be the set of all neighborhoods

N = {N()|ieS8).

o A subset of sites C is called a clique when each pair of distinct sites
are neighbors.

The graph-theoretical representative of the set of cliques of pixel 7 is the com-
plete subgraph containing vertex 7. Also in graph-theory this is sometimes
called a clique. By definition the empty set and the single site are cliques.

The simplest neighborhood system that is also used for mixture model-
ing is composed of N(i) = (). Only empty cliques exist and the sites are
independent. A simple (not degenerated) choice for a neighborhood sys-
tem on a regular lattice is the first order neighborhood system, also called
a four-neighborhood system. Each (interior) site has four nearest neighbors
as depicted in Figure 4.2. This neighborhood system has two clique types:
single site cliques containing pixel 7, and pair-site cliques containing ¢ and
one neighbor 7, as depicted also in Figure 4.2.

Definition 4.1.3. The random field A is said to be an MRF with respect to
the neighborhood system N, if for all A € GN>*M
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DD]H

Figure 4.2: A first order neighborhood showing pixel X and its four nearest
neighbors (in gray) on the left. The right-hand side displays the clique types:
a single-site, a horizontal and a vertical pair-site clique.

(1) P(X\) > 0 (positivity)
(2) P (Ni|As\i) = P(\i|Ang)) (Markovianity)

In an MRF only neighboring pixels may have direct interactions with each
other. The conditional probabilities P(A;|An()) of an MRF define these local
characteristics of the image. One example for the first order neighborhood
system will be described in the next section. First (or second) order neigh-
borhood systems are widely used because of their simple form and their
(relatively) low computational cost.

The Hammersley-Clifford theorem (Besag [1974]) establishes the equiva-
lence between the local definition by a Markov random field and the global
definition by a Gibbs random field. It provides a possibility for specifying the
joint probability of a random field by means of conditional probabilities. This

equivalence will be defined and proven subsequently by following Brémaud
[1999].

Definition 4.1.4. A random field A follows a Gibbs distribution if for all

instances \ € gNV>*M Ls e
Vo (r
P() = e de ¢ (4.2)

holds, where Z is a normalizing constant and for the collection of functions
Ve : A9V s RU oo two conditions are fulfilled:

(1) Ve =0 if C is not a clique
(2) for all \, N € GN*M and all C C S
if AM(C) = XN(C) = V(N = Ve(XN).
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According to the Hammersley-Clifford theorem, an MRF is equivalent to
a Gibbs Random Field (GRF):

Theorem 4.1.5 (Hammersley-Clifford). The random field A is a Gibbs
random field of the form (4.1.4) with potentials {Vc}ces relative to the neigh-
borhood system N if and only if A is a Markov random field with respect to
the same neighborhood system.

Proof. The proof of the Hammersley-Clifford theorem will largely follow Bré-
maud [1999]. First it will be shown that a Gibbs random field is always a
Markov random field. Then the proof will proceed in the opposite direction.
‘=" Let A be a Gibbs random field, then
> Vo)
PO Asy) PO eds
ilAs\i) = = 7
Egp()\’) 5 eoze:cVC(/\)

i Neg
> Ve > VeN)

e C€CicC e C€CigC

( Yoe CGCEJGCVC()\)) e Oecz,ieovo(/\)

N €G

Vo (M)
e Cetiiec

—~
—

Z e cecz,iecvco\)
X, eg

The local conditional probabilities P();|As\;) hereby only depend on cliques
that contain pixel i, and hence depend only on the neighborhood N (7).
‘=’ Let A be a Markov random field.

Additionally, let A be a configuration in G¥*M and A a subset of S. Let
A denote the configuration coinciding with A on A and with 0 outside of A.
Then we define for A and A

Va(\) == (=1)"\Pln %. (4.3)

From Mébius’ formula (see [Brémaud, 1999, p262]),

P(0) A=S
1nm = = V().

BCS
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that is SR
P(\) = P(0)edcs "

It remains to be shown that V) fulfills conditions (1) and (2).

(2) V4 depends only on the values in A:
Let A and ) be such that \(A) = XN(A), then for any B C A holds
AB = NB and by (4.3) Va(A) = Va(N).

(1) Va=0if A is not a clique of S:
Let j € A be an arbitrary site, then

P(0) P(0)
\) = — _1)ABl — —1)A\Bl, —
Va(d) 2, (UM paGy = 3 ()M
BCA,j¢B BCA,jeB
P(0) P(0)
= —1)M\Bl (] _ ]
2 D ey~ B
BCA\j
P()\B)
_ _1)lA\B| - )
= Z( 1) lnp()\BJrj)'
BCA\j
If j ¢ B, then
P()\B) Markoy P()‘jp‘ﬁ(j))P()‘g\j) B P()‘jp‘ﬁ(]’))
P(AF) PN PO POGIARG)
and therefore
P(M\|AE,
Vi) = ) (-ph ngf?).
BCA\j P()‘jp‘N(‘ )
J J)
Analogously
P(0)
Vi) = =D (=)"n ———
BcA P()‘jp‘N(j))
= () PO ) — S (- I P(0)
BCA BCA

= Z (=) PO AR )

BCA
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Let us assume A is not a clique. Since j € A, a site 1 € A exists, such
that i ¢ N(j). Fixing such an i, it follows

VaQ) = D (1) POG[AR )

BCA
= ) MM PR + Y (DM POGIARH)
B BEA]
£ MM POGRE) + YD ()M PO IRE)
BN BEA]

1\B (\Bitj
= Y~y P(Aj[ANG) Pl An ™)
B+i Bty
nE POV OGRS )
Since i ¢ N(]), we have P()\j|)\ﬁ(j)) = P(AAA%U‘)) and P()\j|)\ﬁ(j)) —
P()xﬂ)ﬁ%ﬂ) and therefore V4(\) = 0.

0

Two specific forms of Markov or alternatively Gibbs random field models
will be analyzed for TCA images during the next Sections, 4.2 and 4.3.

4.2 Auto-Logistic Model

Auto-models are a particular subclass of MRF models that involve only pair-
wise contextual constraints. If the labels take on one of two states: G = {0,1}
(or G = {—1,1}), they are termed auto-logistic models. A particular auto-
logistic model is one that involves only a first order neighborhood system.
This model is hereby a simple model among the MRF models and will be
introduced now to illustrate the idea of MRFs and to obtain a starting point
for the selection of a more complex MRF model.

After indicating the set-up of the auto-logistic model above, it will be
properly defined in the first part of this section. Section 4.2.2 will introduce
the Gibbs sampler and state the algorithm for the auto-logistic model. The
results of these simulations together with a specification of the parameters of
the auto-logistic model for TCA images can be found in Section 4.2.3. The
last part of this section will consist of a discussion on extensions of the auto-
logistic model and thereby lead us to the ensuing section on the FRAME
model.
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Figure 4.3: Conditional independence graph of the auto-logistic model. Boxes
represent observed or fixed quantities, circles show unknowns.

4.2.1 Model Definition

The auto-logistic model (or variants of it) is explained in many probabilistic
image analysis textbooks and articles. Following, it will be defined based on
the book Winkler [1995], from which an interested reader can find a more
embedded description.

The auto-logistic model assumes a first order neighborhood system with
clique types as described on page 61 and in Figure 4.2. The conditional
independence graph of the auto-logistic model is depicted in Figure 4.3.
In the current application, the label of each site may take on two states:
G = {0,1}. The simplest Gibbs potential (4.2) for the cost function is then

defined by
A =ad N+8d > A,

1€S 1€S jJEN(3)

The first term influences the proportions of the two labels, and the second
term the propensity of neighboring pixels to have the same label. This cost
function U represents a homogenous, isotropic field. An auto-logistic field
is called homogeneous when its parameters are independent of the pixel; i.e.
a=aq; B=0,..forallieS. An auto-logistic field is said to be isotropic
at order [, if there is a common parameter assigned to the cliques belonging
to the [-th neighborhood system (but not to smaller neighborhood systems).
(Cross and Jain [1983])

The cost function above can therefore be generalized to form a nonhomo-
geneous field by varying o and [ from site to site, or to model an anisotropic
(directional) image by varying [ between the horizontal and the vertical
clique type. Since TCA images are clearly directional, the anisotropic gen-
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eralization will be explored here. In the case of the auto-logistic model, it
takes the following form:

UN=ad X+8 D ANd+B8 D A (4.4)

€8 (ZJ)GC’U (17])€Ch

where C, and C}, comprise the set of all vertical and horizontal pair-site
cliques, respectively. Applying the Hammersley-Clifford Theorem (4.1.5) to
this cost function leads to the conditional probabilities:

(a)\iJrﬁv > AN+BE X )‘i)\j>
e j:(i,5)€Cy J:(i,5)ECH,

— <a+ﬁv PEEPVEY/ S Aj)
1 +e J:(i,5)€Cy J:(i,5)€ECY

of the random field X at sites 7.

The auto-logistic model above with label set G = {0,1} is equivalent to
the Ising model using the label set G = {—1,1}. The first model can be
transformed into the latter one by inserting

P(NilAn) =

1
i = 3 (A\; +1)  and (4.5)
0 =20 — 48, — 48, B =48, B, = 4f. (4.6)

(See, for example, Guyon [1995].) The traditional model is the Ising model.
In the literature, the auto-logistic model with first order neighborhood system
and label set G = {0, 1} is sometimes also termed an Ising model.

4.2.2 Gibbs Simulation

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm,
where a Markov chain A\ is simulated such that its stationary distribution
is the distribution of interest P()). (See Gilks et al. [1996] for an overview
and details on the Gibbs sampler.)

The single site Gibbs sampler, for example, initializes A(?) at time ¢ = 0
and then updates each pixel by repeatedly sampling a candidate )\EHI) from
the full conditional, which reduces to

PTG = P (NI
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under the Markov property. The transition probabilities P(A®|A\¢=1)) are
then guaranteed to converge to the stationary distribution P()\). (See Gilks
et al. [1996] and references therein.)

When choosing a random initial image and a random updating order of
the pixels, the Gibbs sampling algorithm can be stated as follows for the
auto-logistic model:

Gibbs sampling algorithm for the auto-logistic model

1. input

e initial white noise image \(¥
e parameters of the auto-logistic model: «, (3,, B

repeat sufficiently often
repeat NM times (NM = |S] size of the image)
randomly select site i € S
set )\gtﬂ) = )\gt) for all j #14
for each value g of component )\1(-
calculate the new potential

t+1)

N Gt W

U, ()\gtﬂ)) _ oMEt“)wLﬂMﬁt“) Z )\gt+1) +5h)\§t+1) Z A;tﬂ)

j:(4,5)€Ch j:(4,5)€Cy
8. for each value g of component )\EHU
calculate the conditional probability
(t41) (141) —u; (AlH)
9. P (A = ga)) = T
g'=1
13. set A\ = ¢ with probability P (Agt“) _ g|)\%—(|—i;))

For 1,000 iterations, 128 x 128 pixels and two gray values, the algorithm
above needs about one hour on Hydra!. An exemplary result of applying the
Gibbs sampler for simulating a typical (high probability) image using the
potential function (4.4) will be presented below.

!Hydra is a HP ProLiant DL 580 computer with Windows 2000 Server operation system,
four Intel Xeon MP 1.60 GHz processors and 2 GB memory.
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Figure 4.4: Example of an ideal TCA image

If the size of the image NM is large, it seems faster to use a coding
method instead of a random updating order as pursued above. Since the
academic examples in the following contain only NM = 128 x 128 pixels,
this possibility was not exploited in the current setting.

4.2.3 Application

In order to model tooth rings in TCA images, the auto-logistic model should
be capable of generating a stack of black and white lines as depicted in Figure
4.4. The Lemma below helps selecting the parameters «, 3, and (3, in order
to synthesize this ideal TCA image.

Lemma 4.2.1. Let \° be a random field of size N x M consisting of as many
black as white lines of the same height h > 3 (like depicted in Figure 4.4).
Then the joint probability P(A\°) using the cost function (4.4) can only be
mazimized among all random fields of the same size if

(1) By =0,
(2) B <0 and
(3) o= =B+ Bo)-

Proof. The parameters «, [, and (3, need to be chosen such that for any
image \ € gNV>M

P(\) < P(\°)
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holds. This is the case if and only if
VAEGYM Y N8 D> A4S Y AN

i€S j:(i5)€cy J:(i,3)€Ch
<o) N+B Y ANNAB D A
i€S 7:(4,9) ECh J:(4,4)E€Ch

1 1
& Ve gl M §M&+5“N—1M4+m—E—MN

S OZZ )\z + ﬁh Z )\Z)\j + ﬁv Z )‘z)\]
€S j:(iJ)GCh j:(iJ)GCh
In particular, P(\) < P()\°) should hold for the following instances of A

(1) Let A € GN*M be a random field consisting of as many black as white
lines with height A’ # h. (Image A contains thicker or thinner lines

than \%.)
1 h—1 1 h—1
= §Oz|8| + (N — 1)M + ﬁv—MN < §Oz|8| + Bn(N — 1)M+ﬂ1,TMN
h— 1 h'
= By < ﬂv for any h'

This is only true for 4, = 0. (With 8, < 0 thicker rings would be
favored (h > h').)

(2) Let us set A = \° and change one column in \: switch black and white
labels.

1 h—1 1 h—1
= §Oz|8| + (N —1)M + BWTMN < §Oz|8| + (N — 3)M+ﬂ1,TMN

= On(N —1) < Bu(N —3)
This is true for any 3, < 0.

(3) Let us consider the labeling G = {—1,1} now. Then the labels A and
the parameters «, (35, (3, can be transformed into the labels \" and the
parameters o/, (3, 3 according to Equations (4.5) and (4.6).

Set the new label image ' = A and add to X’ one white or respectively
one black row at a transition from a white to a black line.

h—1 h—1
= 20,(N — )M +26,~—MN < £a'N +26,(N ~ )M +20,~—MN
= 0< +d'N
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Figure 4.5: Typical images simulated by the Gibbs sampler using the
anisotropic auto-logistic potential function in Equation (4.4) with 3, = —10,
By, =0 and @ = 10 in image (a) and §, = —0.1 and o = 10.1 in image (b).

This is only true for o/ = 0 and hereby for a = — (5, + ).
U

For a 128x128-pixel image, the parameters 3, = —10, 5, = 0 and a = 10
were chosen to simulate an image close to the ideal TCA image in Figure
4.4. The typical (high probability) image generated by the Gibbs sampler
(see page 68) is depicted in Figure 4.5 (a).

The images in Figure 4.4 and 4.5 (a) do not resemble each other. There
might be two options to resolve this discrepancy within the setting of the
auto-logistic model: Choosing a smaller 3, or a negative 3,. The first ap-
proach of choosing a smaller horizontal clique potential would reinforce the
propensity to create all black or all white rows. The latter approach of
choosing a smaller vertical clique potential would strengthen the attachment
of pixels on top of each other. Practically, this would simulate thicker black
and white lines than in the image of Figure 4.5 (a). Theoretically, this will
converge to an all white or an all black image (see proof of Lemma 4.2.1, Point
(1); so results as depicted in Figure 4.5 (b) probably did not converge yet.
In any case, the anisotropic auto-logistic model keeps the blob-like structure
that seems to be intrinsic to this model, but is not characteristic to TCA
images.

4.2.4 Discussion — Auto-Logistic Models

The simulations presented above show that the auto-logistic model, the sim-
plest among the Markov random field models cannot express the prior con-
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Figure 4.6: Image (a) is a typical image simulated by the Gibbs sampler
using the anisotropic auto-logistic potential function in Equation (4.4) with
parameters as depicted in (b).

victions we have about TCA images. But the results also indicate that the
hidden Markov random field in general — if extended — might be an appro-
priate model for TCA images.

Two generalizations are of potential interest. The first generalization
concerns the incorporation of more than two gray levels. For an unordered
label set, this would result in a so-called Potts or multilevel logistic model.
For an ordered label set, this could be the auto-binomial model. But neither
approach will be able to express the prior conviction of (nearly) parallel
running lines, because the blob-like structure of the auto-logistic model will
remain.

The more promising extension regards the order of the neighborhood
system. As Cross and Jain [1983] mention, the auto-logistic model can only
fit micro-textures well. The local structure that is present in TCA images
though, is clearly larger than two pixels. The clique size therefore needs to
be increased in order to capture macro texture features and to model more
regular structures.

An example of a simulation for the auto-logistic model using a second
order neighborhood system is depicted in Figure 4.6 (a), with the parameter
specification in Figure 4.6 (b). The reader can clearly see the trend toward
a more regular structure, compared to the results of the auto-logistic model
using the first order neighborhood system. But generalizing the auto-logistic
model even further, to finally express the prior conviction depicted in the
ideal TCA image 4.4, will result in a vast number of parameters that need
to be estimated in order to fit the model to TCA images. Additionally the
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simulation of a typical image will slow down considerably, because each iter-
ation of the Gibbs sampler requires the computation of the full conditional
P (AEHU = g|)\%J(r$)) for all gray values g. Therefore, this approach of ex-
tending the neighborhood system in the framework of the auto-logistic model
will not be pursued further.

Instead, filters will be introduced subsequently to capture the local rela-
tionship between pixels of a clique.

4.3 FRAME Model

FRAME is the abbreviation for Filters, Random Fields and Maximum
Entropy. It is a Markov random field model whose energy potential incorpo-
rates filter features and thereby elegantly combines two important areas of
texture analysis: MRF modeling and filtering theory. The FRAME model
outperforms the computationally inefficient setting of the auto (-logistic) or
the Ising model and explains its parameters (filters) more intuitively. It can
model large-scale texture and can thus take into account long-range autocor-
relations between labels and the periodicity of the placement of tooth rings
in TCA images.

The FRAME model was mainly developed in Zhu et al. [1997], Zhu et al.
[1998] and Zhu and Mumford [1997]. In Section 4.3.1, the Gibbs poten-
tial of the FRAME model will be defined and its properties explained. An
EM-type procedure to coherently estimate the parameters of this prior dis-
tribution and the parameters of the observable random field as well as the
underlying labels will be given in Section 4.3.2. Section 4.3.3 describes how
to estimate confidence intervals of the parameters and hereby provides a mea-
sure of the goodness of fit of the model to TCA images. Section 4.3.4 will
give application-driven choices of the FRAME ingredients. A typical image
that illustrates the capacity of the FRAME approach is displayed in Section
4.3.5 together with the algorithm to generate it. One result of applying the
FRAME in the context of HMRFSs to a TCA image will be presented in Sec-
tion 4.3.6, while Chapter 6.1 gives more results. Chapter 6 will also explain
extensions and different specifications of the Gaussian hidden FRAME model
and the EM algorithm.

The notation in some parts of the current section will slightly differ from
the rest of this document. The reason is the intrinsic two-dimensional struc-
ture of image filtering that will be preserved. The site ¢ will therefore be
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Figure 4.7: Conditional independence graph of the FRAME model (simpli-
fied). Boxes represent observed or fixed quantities, circles show unknowns.

named (z,y) in Section 4.3.4 and some other parts of this section; where x
specifies the row and y the column.

4.3.1 Model Definition and Properties

It is assumed a priori that the underlying label image A is distributed ac-
cording to the Gibbs distribution
1 X al(Pren)(d)]

P(Y) = e s , (4.7)

where Z is the normalizing constant. Moreover, the energy function

= o[(Fr+A)(i)]

i€S
involves one filter Frr, that is known up to the parameter T" and whose filter
responses (Fpx A)(i) to A at pixels i are evaluated pixelwise by the potential

function ¢.
There are two appealing properties of the FRAME model:

(1) The FRAME model is a generalization of traditional MRF models such
as the auto-logistic model explained in Section 4.2. The Hammersley-
Clifford theorem, mentioned in Section 4.1, proves in general that P(\)
from equation (4.7) is distributed according to an MRF with

> Gl(Fran(C)]

P(AilAn) = > Sl(Pr(F=X)(C)]”
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For this purpose the neighborhood N(z,y) of pixel i = (x,y) in Defi-
nition 4.1.2 needs to be defined as

N(z,y) ={(",y") € S| [2' — x| < |Fr[ and |y’ —y| < |Fr[},

where |Fr| denotes the number of rows and columns respectively of
filter Fr. The clique C(z,y) of filter Fr containing pixel i = (z,y) is
defined similarly as the set

Clz,y) ={(=",y)) € S| Fr(z’' — =,y —y) # 0}.

For these cliques the Gibbs potential is defined by V(A )=¢ [(Fr*\) (C)],
where (Fp x \) (C) denotes the convolution positioned at clique C' and
all other potentials are set Vi (A) = 0.

(2) The filter Fr and the potential function ¢ completely determine P(\).
In order to fit the FRAME model (embedded in an HMRF) to a given
image, only the filter and the potential function need to be specified.

The (simplified) conditional independence graph of the FRAME model is
depicted in Figure 4.7.

According to Property (1), the FRAME model elegantly combines two
important areas of texture analysis: MRF modeling and filtering theory.
Furthermore, it can even be applied to large-scale texture. The interaction
of filters and potential functions may in general create a wide variety of
texture patterns.

The choice of the parametric family Fr and the function ¢ is driven by
the application. In Section 4.3.4, our choice will be explained. Section 4.3.5
will illustrate the interplay between filter and potential function. But before,
Section 4.3.2 will describe the compound estimation procedure for an HMRF,
comprising any FRAME model (4.7) for the unknown label field.

4.3.2 Parameter Estimation and Segmentation

The underlying label field A can be estimated by Bayes’ labeling when both of
the following are known: the hidden random field and the observed random
field generating a pattern (Li [2001]). This labeling A (often called maximum
a posterior [MAP]| solution) is the one maximizing the posterior probability
of the labels given the data

POY) x PO F(Y|A).
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In this setting P(A) is often called prior distribution.

Since the labeling A is Gibbs distributed according to the FRAME model
in (4.7) and the random variables ); are conditionally independent, this can
be rewritten as:

PN = PV]]F®IN

1€ES
Y;— _2
1 (z ¢[<FT*A)<i>}> 1 —<.§S (o) :) )
= —g\i€S —€ ‘ ‘ .
Z Z

If one defines

) = Y [(Fr = ) ()] and U]y =3 T

i€8 i€8 Ai

the MAP solution ) is the one maximizing U()\):

A = argmax{U(\) + U(Y'|\)}.

)\egNXM

However, the hidden random field and the observed random field are not
completely known; their parameters @ and T have to be estimated as well.

In order to estimate  and T, the maximum likelihood estimates (MLE) 6
and T can, in principle, be found by maximizing the likelihood function

LO.T|Y)= Y  P(\Y|0.T).

)\GQNXM

The maximization of this likelihood is intractable because of the size of the
label space GN*M,

The EM algorithm, introduced for mixture modeling in Chapter 3.2, is a
widely used technique for solving this kind of problem. We will mostly follow
Zhang et al. [2001] to describe this algorithm for Gaussian hidden Markov
random fields.
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In the case of a Gaussian random field, the EM algorithm is reduced to
the two updating formulas

YiP (N = glY; Angy, 00, T
(@)

M(t) _ i€S
? ZP (Az = g|1{i:)\N(i):0(t71):T(til))
i€S
2
> (Yi - uét)) P (Ai = glY;, Ay, 07V, T(H))
®\2 _ €S
(Jg ) -

P ()\Z- = g|V;, ANG)s O(t—l),T(t—l))

i€S

This was indicated in Chapter 3.2. Additionally T" has to be updated by

G
T = argmax » ) P(Ai = 9|V, An, 0471, T‘“’) log P(\i = glAn). T).

T} Ges g=o

For a nonhomogeneous random field, one can update T = (11, T, ..., Tnar)
for each pixel 1 € S by:

G
7Y = arg max P{)\i=gY, v L@t =1
i (4)

{Ti} g=0

log P ()\i = glAne, T, T](\f(_i)l)) . (4.8)

But the conditional probabilities P ()\i = glY, )\N(Z-),O,T) in the above
formulas are not available in closed form (as in Equations (3.8) and (3.9)).
They could be evaluated by simulation (i.e., the MCMC algorithm), but this
is again not practical computationally because of the size of the neighborhood
N (i) and the size of the images in the TCA application. The alternative
approach we suggest is based on the approximation

PO~ [P (M) (4.9)

1€S
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by some fixed configuration \ ~)- If (4.9) is a valid probability distribution,
the E-step in Equation (3.2) changes to

E [log PO\ Y|0,T)Y, 00D, T(t‘l)}

N (P (% = v, 0.7) F(Vi|. 0.7))

1€S ¢g=0

P (A = g%, Ay, 640, 70°D)

= ZXG: (logP ()\i = g|5\N(Z~),T) +log f (Vi|\i = gao))

€S g=0

P <)\i _ g|5\N(i),T(t71)> f (Y;'p\i _ o(tfl))

.giop ()\Z- = g|5‘N(i),T(t*1)) f <y1.|)\z_ — g, 0(%1))

The parameter estimates can therefore be updated by

5O ViP (A = gV, Awgy, 8070, T0D)

() _ €S
Foo = - (4.10)
9 Z P ()\Z- = g|Y;., )\N(z‘), o(t—l),T(t—l))
=
Y = N @D (t=1)
2 Z K Mg P )\1_g|}/;7)\]\7(z);0 ,T
(O’ét)) _ €S _ (411)
> P <)‘i = 1Y%, An i, 0!, T(t*1)>
€S

e,
7O = arg maxZZP ()\i = ¢|Y;, S\N(Z-), O(t’l),T(t_l)) .
{Th ies g=0

log P (,\i = g[Ane), T) (4.12)

In this application the configuration ) in Equation (4.9) is chosen accord-
ing to the mean field approximation theory (Celeux et al. [2003]). The mean
field approximation sets A to the expected values of the label image:

\; = E[)\j] forall j € N(i).
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The product [] P(A\i|E[An]) is then a valid probability distribution and
ics

minimizes the Kullback-Leibler divergence to the true prior distribution P(\)

among all products of this kind.

The expected values are computed iteratively to approximate P()) and
the resulting EM algorithm for a homogeneous field then takes the following
form:

EM algorithm using mean field approximation for fitting a hidden FRAME
model to TCA images

1. input TCA image Y

Initialization

initialize label configuration A(®) by thresholding:
2. for each site 7

3. AV —ygify <a,

i

for some values a = (ay,...,ag, o0)
initialize parameters by
4. for ? =0:G
5.4 = £ ¥V
g A(O):g
2 o 2
A R
A0
=g
with n, = |{i € S | AY = g}

Updating
7. fort =1 :1,u
update label image \(¥ by
8. (\) =AY
9. for each site i (randomly permuted)
10. forg=0:G
11. calculate the conditional probability

(Yifﬂg(yt_l))z

f (Vi = g, u0,00 D) e )
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12. approximate the prior energy and probability by
UNi=gdvi, TE) = Y 6 [(Fra-n = A) (4)]

Ji€C(j)

U()\i:g‘)‘N(i)aT(t_l))

P (N = g, TUV) = Ge
Z eU(/\iZQ\)\N(i)yT(t’l))
g=0

10. calculate the posterior probability
P ()\Z- = g|Y;, A, g(tfl)’T(tfl))
F(Vilhi = g, pD, 60D P (A = glAn@, TED)

G
> f(Yildi = g, pt=D, 0E=D) P (N = glAng), THY)
9=0

11.  calculate the expected label

G
> 9P <)‘i = 91Yi, ANy, a(tfl),T(t*1)>

<)\7«> - G
> P (A = gV gy, 807, 70-1)

9=0

12, set A = ())
update parameters
13. forg=0:G
14.  update y, according to Equation (4.10)
2
15.  update (O’ét)) according to Equation (4.11)

16. update T € {T¢=Y — 1, 7¢1 T¢1 11} according to Equation (4.12)

The initialization of A and the sequential updating of the labels were
chosen according to the recommendations in Celeux et al. [2003]. The number
of iterations t,,,; was selected such that the absolute value of the relative
change in the log-likelihood

L@, Ty = ZlogZP(A = g v, ,T<t—1))

i€S 9=0
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over the last five iterations is less than 107%. Segmentation can finally be
carried out by exploiting the posterior probability of the labels given the

data P ()\i = g|YZ~,)\N(Z~),9,T), or equivalently, the mean field E[A] of the
last iteration:

A\; = arg max P ()\i = g|Yi Ang, 9,T) , or
9€g

Ai = argmin |E[\;] — g|.
9€g

The EM algorithm generally converges to a local maximum likelihood es-
timate, as mentioned in Chapter 3.2. If the likelihood function is not concave,
this local maximum might not coincide with the global maximum, depending
on the starting values. As most applications do not involve concave maxi-
mization functions, this is a well-known problem of the EM algorithm that
can be circumvented by MCMC type steps or algorithms. As mentioned
previously, these methods are computationally too time-consuming in TCA
applications. But experiments performed in Chapters 6.1 and 6.4 indicate
that the chosen starting values lead to reasonable results. Chapter 6.4.1
discusses additional convergence issues connected to the EM algorithm and
TCA image analysis.

4.3.3 Standard Error Calculation

To statistically specify the uncertainty involved with estimates obtained from
an image, the distribution of parameter estimates could be assessed by assum-
ing that the experiment is repeated under identical conditions; i.e., repeat-
edly drawing the TCA image. Subsequently it will be shown how measures
of this hypothetical distribution can be derived theoretically and practically;
and the extended applications in Chapter 6.1 will show how applicable state-
ments can be derived.

An invaluable tool for assessing the distribution of estimates is the normal
approximation for the distribution of Maximum Likelihood Estimates (MLE).
This is detailed, for example, in Guyon [1995]. Under regularity conditions
it can be proven that the MLE (8, 7T) is asymptotically normal, saying that

the distribution of ((9, T) — (8, T)) /n weakly converges to a multivariate

normal distribution with mean zero as the sample size n increases. This
means that if the sample size is large enough, all information concerning
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the parameters (@, T) are summarized in the MLE (8, T) and the covariance
matrix, which indicates the precision with which the MLE can be determined.
The covariance matrix will therefore play a central role in this section and
McLachlan and Peel [2000] will be followed to approximate it.

The covariance matrix of maximum likelihood estimates is asymptotically
equal to the inverse of the Fisher expected information matrix

dlog L(0,T|Y) (dlogL(0,T|Y)\"
I(G’T):Ewm( 9.7 ( 50,1 >)

which in turn can be estimated by the observed information matrix

_ ’log L(6,T|Y)
2(0,T7)0(6,T)"

16,T,Y) = (4.13)

07

The observed information matrix is a consistent estimator of the Fisher ex-
pected information matrix and is also convenient computationally, because
the calculation of expected values is time-consuming. In the context of TCA
image analysis, the estimation of expected values is computationally pro-
hibitive, because of the size of the label space and the size of the neighbor-
hood.

The computation of the Hessian of the (incomplete-data) log-likelihood
for the observed information matrix in (4.13) involves the conditional prob-
abilities P ()\1- = g|Y, Ang, 0, T). As explained in Section 4.3.2, these proba-
bilities are not available in closed form, but can be approximated using mean
field theory (see Equation (4.9) and thereafter). For coherence, the same
approximations will be reused to realize the computation of the covariance
matrix.

In the case of the Gaussian hidden FRAME model

FY) = Y PY,M0.T)

/\EQNXM

AEGN XM 4 ices v 2mo,
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let us use two labels (say G = {0, 1}) and a common variance o2, such that the
parameter vector is (0, T) = (ug, pt1, 02, T). Then the observed information
matrix contains the following elements on the main diagonal:
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as well as the following mixed derivatives:

0 T P 2
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and

) _ PlogL(6,T]Y)
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analogously to [ (é, T, Y)

Details of the above dlérivations can be found in Appendix A, where
derivatives for the Gaborcosine filter family and the absolute valued potential
function are also given.

A central measure for the behavior of a single parameter estimate is the
standard deviation of its distribution. It is often referred to as standard error
(SE) and is derived from the covariance matrix as follows. The standard
error of the rth parameter estimate (0,7, is (asymptotically) equal to the
square root of the rth element on the main diagonal of the inverse observed
information matrix:

se((6.7),) = (mem)

Let ¢(0,T) now be a one-to-one transformation of the parameters (0, T), like
the number of lines in TCA images in the application in Section 4.3.6, which
is a multiple of % Then the standard error of the new parameter can be
approximated by the delta method:

58 (g (0.7)) ~ (L;(f%) ‘(%) 110, 7) (—dj((jg) \(%) .

See, for example, Kalbfleisch [1985] for the above and subsequent formulas.

A useful measure to give upper and lower bounds of estimates are con-
fidence intervals. The 100p% confidence interval of the estimate ¢(0,7) ex-
presses the following: if an image is drawn repeatedly with (8, T) fixed, then
the 100p% confidence interval would include the true parameter in 100p% of
the cases. Using the normal approximation and the approximations for SEs
above, the 100p% confidence interval of an estimate g(é, T) can be approxi-
mated by

g(8.7) 2,56 (g(8,7)).

where z denotes the normal quantile.
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Subsequently, the 95% confidence interval of the estimated number of
tooth tings of a TCA image will be used in order to express the randomness
within the image and to assess the goodness of fit of the model to this image.
In general, one can say that confidence intervals do not express the uncer-
tainty involved with the TCA method. In order to estimate this uncertainty,
one needs to assess the variance of estimates retrospectively for a specific
sample of TCA images. More detailed arguments and experiments will be
presented in the applications in Chapter 6.1.

4.3.4 Filter Family and Potential Function Specification

Filtering theory has been well recognized in texture analysis at least since
1991, when Jain and Farrokhnia [1991] was published. It is based on psy-
chophysical findings in human vision first proposed in Campbell and Robson
[1968]. Marcelja [1980] has shown that two-dimensional Gabor functions

12, .12
- (rm +y ) .
—i 2w '

Gro(z,y)=c e 217 e 'T (4.14)

closely conform to the receptive field profiles of simple cells in the striate
cortex.

We define the filter /77, on the basis of the real valued, even-symmetric
Gabor function:

() o
Gcosro(T,y) =1 - € 217 cos <?LE1> ; (4.15)
with ' = zcosa + ysina, y = —xsina + ycosa, r = 4 being the aspect

ratio and ¢; being a normalizing factor. The Gaborcosine function above is
an elongated Gaussian bell multiplied by a cosine wave, where parameter T’
changes the wavelength and « determines the orientation of the cosine wave.

The filter Fir, will be generated from the Gaborcosine function (4.15) by
sampling at discrete integer values z,y € {—%T, ceey %T} and choosing the
constant ¢; such that:

Z Geosrg(z,y) = 1.

(I,y)ZGCOST’G (ZL’,y) >0
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Figure 4.8: 3-D surface and image of a Gaborcosine function with parameters
T =16 and a = 0.

Because of the finite filter size and discrete sampling we additionally choose
a constant ¢y such that

Z (Geosrg(z,y) —c2) =0
(2y)
and for z,y € {—[3T1,...,[2T]} set
Fro(z,y) = Geosrg(z,y) — ca.

For example, Figure 4.8 shows the Gaborcosine filter for 7' = 16, = 0 and
in the range of z,y € [—13,13]. This filter can capture waves or lines of
width 16 and an orientation of 0°.

Definition 4.3.1. The discrete two-dimensional convolution of the input A
with a filter F at location (x,y) is defined by

(F*\)(x Z Z Mz +a',y+y)
Wi

where 2m + 1 and 2n + 1 are the width respectively height of the filter.

The convolution hereby expresses the amount of overlap between the two
functions F' and \. (Jain [1989)])

In the application for TCA images the orientation is fixed to a = 0
(unless stated otherwise), which is the main direction of tooth rings. In
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i 057}
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filter response
Figure 4.9: One choice for the potential function: ¢ = |.| in the range of

~1,1].

order to cover the range of possible tooth ring widths 7" € {2,3,4,...,20}
was chosen. We remark that our approach is different from that in Zhu et al.
[1997], because we are interested in reconstructing tooth rings that resemble
only one feature of interest. We do not want to synthesize perceptional
equivalent images, including noise, and therefore restrict the FRAME model
to incorporate just a single filter. Besides this simplification of the FRAME
model, the potential function ¢ that evaluates the filter response is assumed
to be known and chosen to be the simplest among the upright curves, namely
the absolute value ¢ = |.| as depicted in Figure 4.9.

Zhu et al. [1997], on the contrary, suggested selecting iteratively from
a bank one important filter after the other, with each one maximizing the
entropy decrease over the remaining filters. But this strategy seems highly
unstable, especially if the number of filters in the bank is large, the image
is noisy, and the form of the potential functions is unknown. Zhu et al.
[1997] also suggested a more general energy function allowing for a varying
evaluation of filter responses. They empirically divide the potential functions
into two classes:

e upright curves that propagate extreme filter responses (filter-like pat-
terns) and

e inverted curves that punish filter typical features and create noise-like
patterns.

The potential functions could be uniquely calculated by a stochastic gradient
algorithm, as suggested, once again, in Zhu et al. [1997|. But this approach
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is computationally expensive. Using the Gibbs sampler, the method coun-
teracts itself because of the need of a large image to find a good observed
statistic (and hereby a good potential function) and the time-consumption
for Gibbs sampling a large image with large neighborhoods.

Section 4.3.5 will illustrate the properties of the cost function (4.7) while
choosing Fr from the family of Gaborcosine filters and evaluating the filter
responses by the absolute valued potential function.

4.3.5 Gibbs Simulation

This part of the FRAME section will demonstrate the capacity of the FRAME
model (4.7) by a Gibbs simulation, using one Gaborcosine filter and the ab-
solute valued potential function.

In order to create a typical (high probability) image drawn from the prior
distribution P(\) in (4.7), the algorithm of choice for statisticians is the
Gibbs sampler, as introduced in Chapter 4.2. For the FRAME model the
algorithm consists of the following steps:

Gibbs sampling algorithm for the FRAME model

1. input
e initial white noise image A(©
o filter I
e potential function ¢

2. precompute the filter response F s \(©)
3. repeat sufficiently often
4. repeat N - M times (N - M = |S| size of the image)

5. randomly select site (z,y)
6. for all (2,y') # (x,y)
7. set )\E?f?) = )‘E?’,y’)
8. for each gray value g of label )\E?yl))
9. for all (2',y') € C(x,y)
10. calculate the new filter responses

(F * )\(H'U) (', y) = (F * )\(t)) (2", y")

1
+F(x—2,y—1v) (AEZZ,)) - )‘Etm),y))



92 CHAPTER 4. HIDDEN MARKOV RANDOM FIELD MODELS

11.  for each gray value g of label )\E;erl))
1)

12. set )\Ei ,) = g with (conditional) probability

( z |(F*A““>)<m”y’)|>
€

(2! ,y")eC(z,y)

o (5 jEaem)en))
e \@ y)HeC(z,y)

13.  update the filter response F' s \(+1)

If the computer precision is not sufficient to calculate the conditional
probability P ()\%1) = g|)\§é)(m’y)> in step 12, one can easily insert a nourish-
ing one.

To detect convergence, the Gelman-Rubin multivariate convergence statis-
tic R (Brooks and Gelman [1998]) is used on every (20x20)th pixel of the
image. The Gibbs sampler stops iterating when R < 1.2. The algorithm
above needs about O(|F|? - NM - G - S) operations where |F|* is the area
covered by the filter, NM the size of the image, G the number of gray values
and S is the number of sweeps of the Gibbs sampler. A typical number for
a small image would be 272 - 1282 -8 -1100 ~ 10'! in our calculations, which
is equivalent to 16.8 hours of computation on Hydra?.

Figure 4.10 presents a typical result using the Gaborcosine filter with
parameters 7' = 16 and o = 0 (see Figure 4.8), the absolute valued potential
function (see Figure 4.9) and 8 gray levels. Figure 4.11 depicts two more
examples for the parameter T'= 12, « = 0 and T' = 16, a = 30°, the absolute
valued potential function and two gray levels. These images come very close
to the ideal TCA image depicted in Figure 4.4. Orientation and width of
these lines are determined by both parameters of the Gaborcosine filter.

Figures 4.10 and 4.11 contain small images simulated with the help of
large neighborhood structures. The generated texture could therefore be
merely a result of label specifications outside the bounds of the image. In
the above application, the boundary values seem to have an effect only at
the upper and lower edges. For example, specifying zeros outside the bounds

2Hydra is a HP ProLiant DL 580 computer with Windows 2000 Server operation system,
four Intel Xeon MP 1.60 GHz processors and 2 GB memory.
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Figure 4.10: A typical image of 128x128 pixels in size simulated by the
Gibbs sampler using the FRAME model with filter and potential function
from Figures 4.8 and 4.9 with 8 gray levels.
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Figure 4.11: Two typical images of 128x128 pixels in size simulated by the
Gibbs sampler using the FRAME model with the potential function from
Figure 4.9, Gaborcosine filters with parameter "= 12, « = 0 and T = 16,
a = 30° and 2 gray levels.
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leads to a white first and last ring, as expected. Figures 4.10 and 4.11,
on the contrary, were generated with intermediate label values outside the
bounds (\; = 3.5). Experiments with halved filters and thinner filters in
Chapter 5 and simulations with larger images as well as smaller neighbor-
hoods indicate that the left and right boundaries do not have any effect on
the simulated image. In the literature (for example, Cross and Jain [1983]),
it is usually assumed that an image is wrapped around a torus. For large
neighborhood structures creating periodic structures (as in vertical direction
of the present case), this could force artificial patterns at the boundaries if
the image size is not a multiple of this period. Similar problems occur with
mirroring boundary values. Randomly generated values outside the bounds
(fixed over all Gibbs iterations) might also give rise to spurious results. To
the author’s knowledge, no other alternative exists that would circumvent
boundary problems generally.

Instead of using the Gibbs sampling algorithm, Zhu and Mumford [1997]
use a gradient ascent algorithm to generate typical patterns from the FRAME
model. They state:

“Tt seems that the leopard blobs and zebra stripes are among the
most canonical patterns which can be generated with easy choices
of filters and parameters.”

Watching the trace of images generated by the Gibbs sampler before conver-
gence indicates that zebra stripes (containing merging lines) are intermediate
states and therefore only local maxima of the Gibbs distribution. Only a
stack of lines like in Figure 4.10 can be a global maximum and therefore a
typical pattern of the FRAME.

4.3.6 Application

The aim of modeling TCA images, is to uncover the black and white labeling
(G ={0,1}), in order to estimate the number of tooth rings. For this purpose,
the cementum band in the standard TCA image example in Figure 1.3 is
marked manually by an experienced observer and in the current chapter, a
Gaussian hidden Markov random field is fitted to this cementum band. The
MRF is specified by the FRAME model (4.7). The parameters jq, p11 and a
common variance o2 as well as the filter parameter T are estimated by the
EM algorithm stated in Section 4.3.2. Label image A is obtained from the
mean field at the last iteration.
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Figure 4.12: The mean field approximation at the last iteration for the ce-
mentum band of TCA image 1.3.

Figure 4.12 shows the predictive probability P()\i|5\N(Z~), 0, T) of the pixels
in the cementum band of Figure 1.3, where 6 and T are the estimates of the
last iteration. The parameter estimates are the means jig = 28565(%19.8),
fn = 29519(420.2), the common variance 62 = 4.8 - 107(£0.009 - 107) and
the ring width 7' = 14(40.57), where the standard errors are given in paren-
theses. This compound estimation procedure took a total of eight hours on
Hydra? for this image.

For the purpose of illustration, a smaller part (marked in Figure 1.3) of the
mean field approximation is thresholded (\; = 0 ifP()\i|5\N(i), 6,7) < 0.5 and
A; = 1 otherwise). The middle lines of the black rings are then superimposed
on the original image (see Figure 4.13).

From the known age, we expect 33.61 tooth rings in the image presented
in Figure 1.3. Dividing the average width of the cementum band by the
estimated average ring width T equals 35 rings with a 95% confidence interval
of [32.26,37.88].

The results of this application, together with additional experiments on
a whole set of TCA images (see Chapter 6), will be discussed in the next
subsection.

3Hydrais a HP ProLiant DL 580 computer with Windows 2000 Server operation system,
four Intel Xeon MP 1.60 GHz processors and 2 GB memory.
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Figure 4.13: The black rings from the marked part of the mean field approx-
imation in Figure 4.12 overlaid onto the original TCA image from Figure
1.3.



4.3. FRAME MODEL 97

4.3.7 Conclusions — Hidden FRAME Modeling

For the evaluation of TCA images, a hidden Markov random field model
was set up that proved capable of describing large-scale texture in large im-
ages in general and periodic placement of tooth rings in TCA images in
particular. Namely, this is the Gaussian hidden FRAME model incorpo-
rating a wavelike Gaborcosine filter. It was fitted by exploiting the EM
algorithm, which required the approximation of the posterior probabilities
P ()\i = 9|Y, Angi), O,T) and the final segmentation A\. The Gibbs sampler
proved to be infeasible in both cases except for in small images. For exam-
ple, the simulation of the predictive distribution in Figure 4.10 took more
than 16 hours on Hydra and programmed in Matlab. Therefore, mean field
approximation was chosen to estimate the posterior probabilities of the la-
bels given the data. Mean field approximation was also applied to realize
the approximation of confidence intervals in order to assess the uncertainty
within an image and of the model fit. Depending on the size of the cemen-
tum band, the estimated average ring width 7" and the number of iterations,
this compound estimation procedure takes on average a total of 11 hours for
TCA images on Hydra.

The current chapter has shown that the proposed model and estimation
procedure gives a good estimate and a reasonable confidence interval for the
number of tooth rings in one exemplary TCA image. Chapter 6.1 will fit
the Gaussian hidden FRAME model to a set of 407 TCA images and will
show that competetive, and partially even better, estimates for the number
of tooth rings are achieved, compared to the observers’ estimates and on the
basis of the theoretical number of lines. The estimated confidence intervals
have to be interpreted with caution, though, as Chapter 6.1 will detail.

Despite the good estimates for the number of tooth rings in TCA images,
it is obvious to any reader that most rings are not well met in Figure 4.13,
which is due to the global assumptions that were made for the Gaussian
hidden FRAME model. These will be listed below, together with attempts
to resolve each assumption, which will be made in the following chapters:

e The proposed FRAME model represents a very rigid prior distribution;
especially the shape of the single filter heavily influences the reconstruc-
tion of TCA images. The model in this form can only take into account
strong local changes of tooth rings. Two possible solutions will be ex-
amined:
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— Chapter 5 will propose a different prior distribution, the coupled
Markov chains, which can be set up very similar to the FRAME
model. Only the filter will be halved, such that the size of the
neighborhood reduces, and hereby the flexibility of the prior model
increases.

— Chapter 6.3.1 will discuss a localization of the FRAME model
by estimating location-dependent filters. This nonhomogeneous
FRAME model estimates the filter parameter 7" depending on
each pixel.

e The proposed Gaussian conditional distribution relies on global as-
sumptions as well. Two of these will be relaxed:

— Chapter 6.3.2 will examine location-dependent Gaussian distribu-
tions by specifically exploring the estimation of pixel-dependent
variance parameters.

— Chapter 6.3.3 will evaluate the use of heteroscedastic Gaussian dis-
tributions, as theoretically introduced in Sections 4.3.1 and 4.3.2
(but not pursued in the applications). The label-dependent vari-
ance parameters will be estimated for the exemplary TCA image.

e A more direct approach to localizing the Gaussian hidden FRAME
model for the application to TCA images will be followed in Chap-
ter 6.4.3. Selected TCA images will be partitioned in order to better
realize the assumption of constant tooth ring widths and orientations
throughout the image.

Besides the above approaches, Chapters 6.4.1 and 6.4.2 also suggest two
algorithmic settings which could lead to improved results in the context of
TCA image analysis: In Chapter 6.4.1 motivations for a refined grid search
over the central filter parameter 1" are collected. Chapter 6.4.2 examines the
mode field method (instead of the mean field method) to realize the posterior
distribution approximation, which is necessary for the EM algorithm.

Most of the approaches discussed in Chapter 6 lead to theoretical or
algorithmic problems, or to inferior results compared to the Gaussian hidden
FRAME model and the EM algorithm proposed during this chapter. Few of
the approaches lead to similar results. The Coupled hidden Markov Model
that will be introduced in Chapter 5 leads to slightly superior results on the
tested subset of TCA images.
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We can thus conclude that the Gaussian hidden FRAME model fitted
by an EM algorithm is one of the most promising approaches for evaluating
TCA images that is examined in this work. The hidden FRAME model also
contains great potential for adapting to different problems and images. It
could be particularly useful for large images containing large neighborhood
structures.

4.4 Discussion — HMRF Modeling

In the current chapter we introduced the hidden Markov random field model
for the purpose of evaluating TCA images. This kind of mixture model incor-
porates spatial dependencies between nearby pixels, as opposed to assuming
their independence as in Chapter 3. The cost function of the HMRF, that
is, the conditional probability of the observed image given the label image,
was specified by conditionally independent Gaussian distributions. For the
unobserved label image, two kinds of MRF models were examined: the tra-
ditional auto-logistic model and the flexible FRAME model. Simulations for
the auto-logistic model have shown that this simple MRF model does not de-
scribe macro-textures well. It can therefore not express the prior convictions
we have about TCA images. At the same time it provided us with insights as
to how to extend the setting to the FRAME model. This second MRF model
allows for an increased size of neighborhoods by incorporating filter features
in its Gibbs potential, while avoiding computational difficulties, as in the
generalized setting of auto-logistic models with a vastly increasing number
of parameters. Simulations of the FRAME model showed that it can de-
scribe long-range autocorrelation and periodic placement of tooth rings well
by selecting the filter family from the wavelike Gaborcosine functions. The
Gaussian hidden FRAME model is thereby able to imitate human vision.
To fit a hidden Markov random field model with large neighborhoods to
large images, the EM algorithm can be exploited. This procedure requires the
approximation of the posterior probabilities P ()\1- = gY, Angay, 0, T) and the
final segmentation A\. The Gibbs sampler proved to be infeasible in both cases
except for in small images. We therefore chose mean field approximation
to estimate the posterior probabilities of the labels given the data. The
estimate of the average ring width T led to the total number of lines in TCA
images and confidence intervals of this measure were derived. This compound
estimation procedure is computationally feasible and yields reasonable results
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for the TCA application. An extended experiment on 407 TCA images will
show that comparable, and partially even better, estimates for the number of
tooth rings are achieved by the proposed model, compared to the observer’s
estimates and on the basis of the theoretical number of lines.

Despite the good estimates for the number of tooth rings in TCA im-
ages, the reconstruction of tooth rings leaves something to be desired. Many
different approaches for redesigning the model and the algorithm will be sug-
gested in Chapter 6, but the ones pursued will not lead to convincing results.
Experiments in this work did not pursue the suggestions of how to avoid sad-
dle points (as maximum likelihood estimates) and to refine the grid search
of the central filter parameter in order to improve the quality of confidence
intervals.

Another improvement may possibly be achieved with a second parameter
in the prior distribution that estimates the orientation of tooth rings. This is
only of academic interest now, but it may become practicable with continued
improvements in the speed of computers.

Instead of specifying an MRF model for the unobserved label image,
Chapter 5 will introduce the coupled Markov chain, which can be set up
very similar to the FRAME model. Chapter 6.2 shows that this so-called
Gaussian hidden FRAME chain may yield slightly better results; but more
extended experiments have yet to confirm this.

Many textures do not follow Gaussian distributions. Also the ‘noise’ in
TCA images (for example, saw cuts and artifacts) is known to be non-normal.
Since the application does not suggest an alternative, in the current work
the simple and convenient assumption of independent and identical normally
distributed gray values, given the label image, was made. This could be
relaxed to any distribution of the exponential family within the framework
of the EM algorithm and should be tested in future research.



Chapter 5

Coupled Hidden Markov Models

A natural framework for the labeling problem of one-dimensional data (for
example, signals depending on time), is provided by Hidden Markov Mod-
els (HMM). While using the same framework as for mixture modeling, in
HMDMs the distribution of labels incorporates directed contextual constraints,
as opposed to undirected constraints of hidden Markov random fields or no
constraints in classical mixture modeling. These directed constraints are ex-
pressed by the a priori assumption that the label vector is a Markov chain.
Interchangeably, one speaks about a Markov model for the labels.

Hidden Markov models were introduced in the 1960s at the latest, but
were popularized only in 1972 by Baum’s powerful learning rule (Rabiner
[1989]). Ever since, they have enjoyed a wide range of applications and are
sometimes quoted as the most favored model (presently) in speech and vision

(Brand et al. [1997]).

But hidden Markov models are ill-suited for data in space that contain
interactions in two directions (such as images do). One can extend the HMM
approach from 1-D to 2-D by imagining that the data arose from many cor-
related HMMs. By coupling neighboring Markov chains, the so-called Cou-
pled Hidden Markov Model (CHMM) is formed. Depending on the specific
form of the Markov chains, on directional versus nondirectional coupling and
also depending on the literature, this type of model is also termed: hid-
den causal 2-D Markov chain, hidden Markov mesh, hidden Nonsymmetric
Half-Plane (NSHP) Markov chain, correlated hidden Markov model, linked
hidden Markov model, unilateral hidden MRF, etc. (See, for example, Jeng
and Woods [1987|, Brand et al. [1997], Brémaud [1999].)
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Analogously to HMRF models, CHMMs consist of two levels: a collec-
tion of Markov chains to model the label distribution, which is not directly
observable, and an observable random field ). The components of the ob-
servable random field Y; are assumed to be conditionally independent such

that
rvy= S P TN,
AegNxM 1€8
Following the setting of HMRF models, a Gaussian distribution with
parameters 8 = {14, 02 |; g € G} is chosen again for TCA application, yielding
an emission probability

1 _ (Yr#g)Q
— € ;
V2mo,

209

In this chapter, the former MRF prior P()\) will be specified by a coupled
Markov model to describe a past relevance structure and to pursue the idea
of horizontally running tooth rings that depend on neighboring rings. The
reader will see how one can use the experience of hidden FRAME modeling
to achieve this, even for large-scale texture with long-range autocorrelations.

The notation in the current chapter will differ from that in the rest of this
document. The site i will be named (x,y); where z specifies the row and y
the column. The reason is the intrinsic two-dimensional structure of CMMs
and the different treatment of the horizontal versus vertical directions.

Section 5.1 explains the general theory for coupled Markov models and
then focuses on one group of CMMs: the (non)symmetric half-plane (|[N]SHP)
Markov chains. Section 5.2 shows how to slightly change the FRAME model
to obtain a SHP Markov chain with a FRAME distribution, which is what
we term a FRAME chain. Results from fitting the hidden FRAME chain to
TCA images will be shown in Section 5.3, followed by a discussion of these
results and a comparison with HMRF modeling in Section 5.4.

5.1 General Coupled Markov Models

To set up the theory of coupled Markov models we first define Markov chains
and then generalize them to pth-order Markov chains and coupled Markov
chains. Because the group of CMMs is complex (and not very structured
in the literature), we will quickly turn to defining one specific CMM and
deriving its important properties.
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Markov chains have a long history in mathematics and physics beginning
in 1906 with Andrey Markov. Its definition, as the one below, can be found
in standard textbooks (for example, in Brémaud [1999]):

Definition 5.1.1. A random sequence {A;}i>o with countable state space G
is called a Markov chain, if for all integers i and all instances {\;}i>o

P()\i|)\07---7)\i71) - P()\Z|)\271)

This is a simple and mathematically tractable relaxation of the indepen-
dence assumption of nearby labels. Markov chains assume that the present
depends only on the most recent past and herewith assumes a directional,
one-dimensional dependence structure in the data, as opposed to an undi-
rected, two-dimensional dependence structure with MRF.

For dependencies of longer range one can define the pth-order Markov
chain (see, for example, MacDonald and Zucchini [1997]):

Definition 5.1.2. A random sequence {A;}i>o with countable state space G
is called Markov-p (pth-order Markov), if for all integers i and all instances
{Aitizo

P()\Z|)\0, ey )\i—l) - P()‘i|)\i—17 ey )\i—p)-

Because of the diversity of different coupled (hidden) Markov models that
exist, there are also a variety of definitions. Therefore, a general definition
for coupled Markov models is not very precise and is chosen here roughly
following Preuf [1975] and Nefian [2002]. A more specific definition of one
kind of coupled Markov model will be given subsequently.

Definition 5.1.3. Let S be ordered in time such that for each site i, the
subset A; C S defines the ‘full past’ of i: A; = {i —1,i—2,...,1}. Let the
frontier of A; be the set of all pizels in A; adjacent to i. Then a random field
A are called coupled Markov chains, if for all instances A € GIS! and all sites
€S

P(AilAs) = P(Ai]AB,)
holds, for some subset B; C A; containing the frontier of A;.

Figure 5.1 displays exemplary subsets A; and B; of S for one site .

For applications of CMMs, there are two problems: First of all, no natural
order (or direction) exists in two dimensions. We therefore need to define
the ‘past’ of a coupled Markov model according to the application at hand.
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Figure 5.1: Exemplary dependence structure of coupled Markov chains. Set
A; defines the past and B; the most recent past of site 7 at the frontier of A;.

For TCA images it is assumed that tooth rings are oriented horizontally
and are directional (from left to right for a first assumption). Each tooth
ring will be made up of several Markov chains and each chain is correlated
nondirectionally to its neighboring chains. The kind of CMM we have in
mind is a direct relative of the NSHP Markov chains which were introduced
by Preufs [1975]. We will call our CMM, the SHP Markov chain and follow
Jeng and Woods [1987] to define it:

Definition 5.1.4. A random field A is called SHP Markov chain, if for all
instances A € GN*M and all sites i = (z,y) € S

P()\m,yp\x’,y’a (xla yl) € Sa y, < y) - P()\m,yp\x’,y’; (xla yl) € Cm,y)

holds, for the set Cy, = {(2',y') € S |0 <y—vy' < ¢, |v —2'| <p)} and
some integers p and q.

Figure 5.2 shows a simplified conditional independence graph for a generic
SHP Markov model. The regions of interest and dependence in the past for
this (N)SHP Markov models are depicted in Figure 5.3. This model arose
from the traditional NSHP Markov chain by ignoring the recent past of the
column of interest y (i.e. z’ < z) and thereby obtaining a nondirectional
(noncausal) coupling of neighboring chains. We prefer this model to the
NSHP Markov chains because TCA images do not have a natural vertical
direction, which is biologically motivated, for example.

The second problem is the intractability of an exact solution to CHMMs in
general. Since CHMMs do not fulfill the Markov property, there is no simple
decomposition of the prior probability that might lead to simple parameter
estimation procedures (Brand et al. [1997]). Exact solutions to CHMMs
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OO

Figure 5.2: Conditional independence graph of a symmetric half-plane
Markov model (simplified). Boxes represent observed or fixed quantities,
circles show unknowns, arrows display conditional dependence.

(b)

Figure 5.3: The regions of interest (gray and black) and dependence (black)
in the past for a generic symmetric half-plane Markov model in (a) and for
a nonsymmetric half-plane Markov model in (b).
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would therefore require the same time complexity as the Cartesian product
of its HMMs, leading to the same problems as in Chapter 4.3 with hidden
FRAME modeling of large neighborhoods and large images. But one can
also try to take advantage of the same algorithms as for hidden FRAME
modeling. In order to do so, one needs to transform the (N)SHP Markov
chains into Markov and Gibbs random fields (see Brémaud [1999)):

Theorem 5.1.5. If a random field A consists of (N)SHP Markov chains,
locally depending on Cy,; then A is a Gibbs random field with potentials

Vc()\) =In P()‘:v,yp\:c’,y’a (l‘l, y') € Cm’y)
on the collection of cliques

C={C={CyU(z,9)} | (z,9) € S},

and A a Markov random field on neighborhoods

N(l‘, y) = U {C:v’,y’ U (:E’, y’)}\(l‘, y) U Cfl?:y'

(@' y")(2.Y)EC1 4

Proof. We will first prove the Gibbs property and then turn to the Markov
property of SHP Markov chains. For NSHP Markov chains the same proof
holds by redefining C,,,.

From Definition 5.1.4, the joint probability P(\) for a SHP Markov chain
can be derived by applying Bayes’ rule and scanning the labels from left to
right:

P = Py [ POl ) €Sy <)
(z,y)€S,y>1
— H Pyl ey, (@) € Cuy)
(z,y)eS
> Ve

= ecCeC

where P() ;) denotes the probability of the first column and

Ve(A) =In P(Ayy| Ay, (2, y) € Cuy)
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clearly defines a Gibbs potential on the collection of cliques

C={C={CyU(x,9)} | (x,9) € S}.

Therefore A is a Gibbs random field with the potentials {Vo}coee defined
above.

From the Hammersley-Clifford Theorem 4.1.5, one can now easily derive
the local characteristics

Ve (N)
eCEC,(z,y)€C
P()‘l‘,yp‘s\(fﬂyy)) = > Ve (V)
Z eoec,(z,y)eo
N, €6
= Py Aney)
of the random field A, where
N(z,y) = U {Coryy U@y )N\ (2, 9) | Uiy

(@' y")(2.Y)EC1 4

is the neighborhood of site (z,y). Therefore A is a Markov random field on
the neighborhood system N = {N(x,y) | (z,y) € S}.

A generic clique and neighborhood of the (N)SHP Markov model from
Definition 5.1.4 (with p = ¢ = 3) is depicted in Figure 5.4. O

Theorem 5.1.5 provides us with the possibility of defining (N)SHP Markov
chains locally with the help of their past relevance. From this, the joint distri-
bution as well as the local Markov random field distribution can be derived.
One can therefore exploit the knowledge of the previous chapter on HMRFs
for coupled hidden Markov chain modeling. That is, the Gibbs sampler can
be used for drawing a typical image, the same EM algorithm for parameter
estimation, and a slightly altered FRAME model can be incorporated. The
results of HMRF and CHMM modeling will be easily comparable.

Within the EM framework, an alternative approximate procedure to MFA
for fitting CHMMs is the structured mean field approximation (Ghahraman
and Jordan [1997]). Instead of factoring the prior probability distribution
completely (as in MFA), it factors only the coupled HMMs, thereby preserv-
ing some structure of the CMM. Although structured mean field approxima-
tion should be tested for TCA image application in the future, we will focus

here on pure mean field approximation in order to obtain comparable results
for HMRF and CHMM modeling.
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(a) (b)

Figure 5.4: A generic clique C' (a) and its neighborhood N(z,y) (b) of a
symmetric half-plane Markov model in black and of a nonsymmetric half-
plane Markov model in black and gray.

5.2 FRAME Chain

After defining the general SHP Markov model and deriving its properties,
its specific probability distribution can now be defined, depending on the
application at hand. The aim of modeling remains: efficiently describing
large-scale texture and taking into account long-range dependencies between
labels and the periodic placement of tooth rings in TCA images. Borrowing
from the FRAME model, we will incorporate filter features into the CMM
in order to do so. The resulting model will be called a FRAME chain; its
ingredients will be specified and one of its typical images presented.

To refresh the FRAME methodology, the reader is referred to Chapter
4.3. Specifically, one can easily turn the FRAME model (4.7) into a CMM
by cutting the filter 7 into half:

Definition 5.2.1. For any site (x,y), let Fr be a filter of size (2p+1) x (¢+1)
supported on the area of the cligue C' = {(z,y) U (z',y') € S | 0 < y —
Yy < q,|r—2'| < p)} of site (x,y) and ‘centered’ in the middle right site
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(z,y). Then a SHP Markov model is called FRAME chain if for all instances
A € GVM gnd all sites (z,y) € S

Ol (Frn)(@.9)]

edl(Fr=X)(z.y)] "
)\’(z,y)eg

Py Az (0, 4) € Coy) =

Ezample (nonsymmetric filter): For illustration purposes, let

-1 0 0 00 0 -1 -1
F=|11 1)andA=1|1 1 1]. Then FxA=|1 2 2
-1 0 0 00 0 -1 -1

and F x )\ emphasized lines (ignoring the left border). O

For the FRAME chain model in Definition 5.2.1, it is assumed a priori
that the label image is Gibbs distributed according to

1 > ol(Fr=X)(z.y)]

P\ = Eeies (5.1)

(see Theorem 5.1.5). This is very similar to Definition 4.7 of the FRAME
model, with the only difference being the support of the filter. The local
characteristics of the Markov random field are given by

Pl(F=A)(C)]
€C€C,(z,y)60
Py AN@a)) = S eI
Z eC€C,($,y)€C

i
)‘(Ly)eg

The FRAME chain hereby elegantly combines filtering theory and Markov
modeling; and the EM algorithm using mean field approximation, as stated
on page 79, can be applied to estimate its parameters and compute the final
segmentation of labels. The FRAME chain is completely specified by the
filter family and the potential function, which will be given below.

Following the reasoning of the Gaussian hidden FRAME model in Chap-
ter 4.3.4, the filter Fr will be specified from the family of Gaborcosine func-
tions

_(,”012_1_?//2) 2
Geosro(x,y) =c1-€~ 227 cos (%x') :
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Figure 5.5: 3-D surface and image of a Gaborcosine function with 7" = 16
and o = 0, supported on x € [—13,13],y € [—13,0].

with 2/ = zcosa + ysina, ¥y = —xsina + ycosa, r = 4 being the aspect
ratio and ¢ a normalizing factor such that

Z Gcosrg(x,y) =1 and Z (Geostg(x,y) — o) = 0.

(z,9):Geos,9(w,y)>0 (z.y)

The main difference is the choice of the range

v e {— ET-‘ ET-‘} and y € {— ET-‘ ,...,_1} or (z,9) = (0,0).

The Gaborcosine function above is an elongated half-normal multiplied by a
cosine wave, where parameter 1" changes the wavelength and « determines the
orientation of the cosine wave. For example, Figure 5.5 shows the Gabor-
cosine function for 7= 16, & = 0 and in the range of z € [—13,13] and
y € [—13,0]. This filter can capture waves or lines of width 16 and orienta-
tion 0°.

In the application for TCA images, the main direction of tooth rings
a = 0 will be fixed. In order to cover the range of possible tooth ring widths,
T € {2,3,4,...,20} is chosen. The potential function ¢ that evaluates the
filter responses pixelwise is assumed to be known and chosen to be the sim-
plest among the upright curves, namely the absolute value ¢ = |.|. These are
the same choices as for hidden FRAME modeling in Chapter 4.3.4.

To demonstrate the capacity of the FRAME chain model and to compare
it to the FRAME model (4.7), one can run a Gibbs simulation using one
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Figure 5.6: A typical image simulated by the Gibbs sampler using the
FRAME chain model with the filter from Figure 5.5, potential function ¢ = |.|
and 8 gray levels.

Gaborcosine filter and the absolute valued potential function. A typical
(high probability) image is drawn from the prior distribution P(\) in (5.1),
using the Gibbs sampler as introduced in Section 4.3.5. Figure 5.6 displays
such an image for the filter parameters T = 16 and a = 0. Orientation and
width of these lines are determined by both parameters of the Gaborcosine
filter. This image comes very close to the ideal TCA image depicted in Figure
4.4 and the typical image drawn from the FRAME model (Figure 4.10). One
can see that the right hand border is fuzzier because the last column is not
relevant to the past of any pixel and is therefore drawn at random. The hope
that the FRAME chain is more flexible than the FRAME model (because it
is more local), is not supported by this simulation example.

5.3 Application

The aim of modeling TCA images is to uncover the black and white labeling
(G ={0,1}), in order to estimate the number of tooth rings. For this purpose,
the cementum band in the standard TCA image example in Figure 1.3 was
marked manually by an experienced observer and in the current chapter a
Gaussian coupled hidden Markov model is then fitted to this cementum band.
The CMM is specified by the FRAME chain as in (5.1). The parameters po,
p1 and a common variance o2 as well as the filter parameter T are estimated
by the EM algorithm stated in Chapter 4.3.2. Label image A is obtained from
the mean field at the last iteration, just as in hidden FRAME modeling.
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Figure 5.7: The mean field approximation at the last iteration for the ce-
mentum band of TCA image 1.3.

Figure 5.7 shows the predictive probability P()\i|5\N(Z~), 0,T) of the pix-
els in the cementum band of Figure 1.3, where 0 and T are the estimates
of the last iteration. The parameter estimates are the means g = 28395,
1 = 29692, the common variance 62> = 4.8 - 10" and the ring width
T = 14. This compound estimation procedure requires a total of five hours
on Hydra! for this image, which is faster than with the hidden FRAME model
because the size of the filter, and thereby the size of the neighborhood, is
approximately halved.

Comparing to the mean field approximation of HMRF modeling in Fig-
ure 4.12, one can see that the hidden FRAME chain model is more flexible
because more bifurcations occur. To emphasize this flexibility even more,
experiments with the hidden FRAME chain model and a thinner filter (a
horizontal past relevance structure of one pixel) were additionally carried
out. Figure 5.8 displays the mean field for such a model, clearly showing
more flexibility in the reconstruction of tooth rings.

For the purpose of illustration, a smaller part (marked in Figure 1.3)
of the mean field approximation in Figure 5.7 is thresholded (), = 0 if

!Hydra is a HP ProLiant DL 580 computer with Windows 2000 Server operation system,
four Intel Xeon MP 1.60 GHz processors and 2 GB memory.
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Figure 5.8: The mean field approximation at the last iteration for the ce-
mentum band of TCA image 1.3 generated by the hidden FRAME chain
implementing a thin filter consisting of one column plus one pixel.

P()\¢|5\N(i), 0, T) < 0.5 and A\; = 1 otherwise). The middle lines of the black
rings are then superimposed on the original image in Figure 5.9.

From the known age, 33.61 tooth rings are expected in the image pre-
sented in Figure 1.3. Dividing the average cementum band width by the
estimated average ring width T gives 35 rings for both filter widths.

The results of this application, together with additional experiments on
various TCA images (see Chapter 6), will be discussed in the next section.

5.4 Discussion — CHM Modeling

In the current chapter we introduced the coupled hidden Markov model for
evaluating TCA images. This kind of mixture model incorporates dependen-
cies between nearby pixels while distinguishing between different dimensions.
Following Chapters 3 and 4, the conditional probability of the observed im-
age, given the label image, was specified by conditionally independent Gaus-
sian distributions. For the unobserved label image, a symmetric half-plane
Markov model was assumed, describing directional horizontal and nondi-
rectional vertical interactions between neighboring pixels. Specifically, this
chapter developed the novel FRAME chain for the label distribution. The
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Figure 5.9: The black rings from the marked part of the mean field approxi-
mation in Figure 5.7 overlaid onto the original TCA image from Figure 1.3.
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FRAME chain is a close relative of the FRAME model in Chapter 4.3 and
because of this affinity, the same EM algorithm and mean field approximation
were exploited for model fitting and for segmenting the image. Simulations
for the FRAME chain gave similar results as for the FRAME model, and
showed that this model can also describe the long-range autocorrelation and
periodic placement of tooth rings well by selecting the filter family from the
halved Gaborcosine functions.

The results of Chapters 4.3.6 and 5.3 in general show analogies. Particu-
larly, overall similar results were produced for the parameter estimates as well
as the reconstructions of the exemplary TCA image from fitting the Gaussian
hidden FRAME model and the Gaussian hidden FRAME chain model with
two different filter widths (see Figures 4.12, 5.7 and 5.8). The experiments on
the selected 49 TCA images (of good quality) given in Chapter 6.1 also dis-
play similar estimates for the number of tooth rings in the Gaussian hidden
FRAME model and the Gaussian hidden FRAME chain implementing the
standard halved Gaborcosine filter. The difference becomes visible for the
Gaussian hidden FRAME chain implementing the thin filter, which leads to
slightly better results on the studied subset of TCA images. This is probably
due to the extra flexibility in horizontal direction caused by the reduced size
of the neighborhood. The thinner the filter in the model is, the more flexible
the label reconstruction is for tooth rings that deviate from the horizontal
direction. But the nearly constant ring width over the whole label image,
which leads to an imperfect detection of the actual tooth rings (as mentioned
in Chapter 4.3.7), also remained for the hidden FRAME chain models. In
general, it is even suspected that the more flexible a model is, the poorer
it will perform for bad quality TCA images; but this (or the improved esti-
mated number of tooth rings alternatively) has to be verified on an extended
set of TCA images.

The estimation procedure for fitting the Gaussian hidden FRAME chain
to TCA images takes on average about ten hours for the standard halved
filter and about seven hours for the thin filter. This is faster than for the
Gaussian hidden FRAME model and thus may be a reason to pursue this
approach in future research.

The current chapter assumed a coupled hidden Markov model with di-
rected contextual constraints in the horizontal direction but undirected con-
straints in the vertical direction. Since there is no application-driven reason
for this, future research should also examine the effect of the reverse assump-
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tion (i.e. undirected constraints in the horizontal direction and directed ones
in the vertical direction).



Chapter 6

HMRFs and CHMMs in Action

The Gaussian hidden FRAME model proposed in Chapter 4.3 seems to be
one of the most promising approaches for evaluating TCA images. This
chapter will mainly test this model and its estimation procedure.

Section 6.1 will evaluate the semi-automatic procedure based on the Gaus-
sian hidden FRAME model on a whole set of TCA images from the Basel
series of spital-field St. Johann (see Chapter 1.2). For this purpose, a proper
reference needs to be selected to judge the quality of the method. Also, it
will be described how the set of 407 TCA images was selected. Then the
estimated number of lines as well as confidence intervals can be assessed.

Section 6.2 will evaluate the Gaussian hidden FRAME chain model on
a smaller set of TCA images from the Basel series and compare it to the
Gaussian hidden FRAME model.

In Sections 6.3 and 6.4, different specifications of the Gaussian hidden
FRAME model and the EM algorithm will be tested and discussed. These
specifications will demonstrate the models flexibility and capabilities, and
their results will be compared with the original model and algorithm. Specif-
ically, Section 6.3 will be devoted to localizing the FRAME model as well as
the observable random field. Section 6.4 will discuss a diverse set of issues
connected to the EM algorithm for the Gaussian hidden FRAME model and
in the context of TCA image analysis. Convergence issues, prior probability
approximation and partitioning TCA images to fit the model separately to
each part are all matters that will be examined.

Section 6.5 will apply the Gaussian hidden FRAME model to cross sec-
tions of trees to recognize their rings. It will also list a divers set of layered

117
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structures to demonstrate the range of possible applications of the hidden
FRAME model.

6.1 Evaluating the HMRF on the Basel Series

The Gaussian hidden FRAME model was fitted to one exemplary TCA image
in Chapter 4.3.6 giving a very good estimate for the number of tooth rings.
This section will now evaluate the proposed semi-automatic procedure on a
whole set of TCA images. In Section 6.1.1, possible references for judging
the quality of this method will be examined. Section 6.1.2 describes the
procedure of selecting a set of 407 TCA images from the Basel series of spital-
field St. Johann. The estimated number of lines and confidence intervals for
this sample of TCA images will be assessed in Section 6.1.3, followed by a
discussion in Section 6.1.4.

6.1.1 Reference Selection

In order to evaluate the Gaussian hidden FRAME model for TCA age esti-
mation, a proper reference needs to be established. There are two possible
measures that can serve as references: the theoretical number of lines (the
known age subtracting the tooth eruption age) and the manual counts of the
number of tooth rings.

The reference for the quality of an age estimate is ideally the known age
at death. For the TCA method, the theoretical number of lines (TNoL) is
such a reference. But TCA images might contain only erroneous information
about the theoretical number of lines due to the following reasons:

e biological processes (for example, anomalies in ring formation or tooth
eruption age),

e the skeleton being buried,
e the preparation procedure (for example, the slicing position or angle),
e the microscopy (for example, the focus level) and

e the imaging procedure (for example, the brightness level).
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In short, TCA images are corrupted by shortcomings caused by the TCA
method. Since the basis of an image analysis procedure is the image, the
theoretical number of lines is not a perfect reference for a semi-automatic
counting procedure of TCA images.

The content of an image can be described by human perception. The
manual counts of the number of tooth rings are therefore a second possible
reference for a semi-automatic counting procedure of TCA images. But each
manual age estimate might be erroneous due to the following reasons:

e the observer (for example, their experience),
e the observation (for example, their motivation) and

e prior beliefs (for example, the knowledge that several samples belong
to the same individual)

Specifically for TCA age estimation on the Basel series, the manual observers
knew which TCA image belonged to each slice and tooth. Tooth ring counts
were thus not independent.

Let us therefore evaluate the semi-automatic counting procedure against
both (imperfect) reference measures: the theoretical number of lines and the
manual counts for the number of tooth rings. But let us in return exclude
TCA images where the second reference measure collapses: images for which
there exist less than two, of the possibly four, manual counts from the two
observers of the MPIDR. (See Chapter 1.2 or Section 6.1.2 below for the
sample design.) These are the TCA images of ‘very bad’ quality from the
observers’ perspective.

One additional confounding factor exists that has not yet been mentioned.
Due to the semi-automatic nature of the procedure, the cementum band of
each TCA image is marked by an observer and the orientation of tooth rings
— if not horizontal — is specified. This manual task is subject to similar
confounding factors as in each manual age estimate (see above). Although
errors arising from the manual part of a semi-automatic procedure should
not be attributed to the automatic part of the procedure, it is not obvious
how to separate these sources of errors in the current study.

6.1.2 Sample Selection

Let us choose TCA images from the Basel series described in the introduc-
tion to evaluate the semi-automatic counting procedure. The skeletons from
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the Basel series offer a unique possibility for evaluating anthropological age
estimation methods by comparing them with each other as well as with the
known age.

Also for the TCA method, an extended study was performed in which
the tooth laboratory of the Max Planck Institute for Demographic Research
participated with two experienced observers. From the 100 selected individ-
uals of the Basel series, the MPIDR acquired 2,120 TCA images. Of these
TCA images 1,021 were taken with 40-fold, while the other images were taken
with 20-fold magnification. Let us focus on TCA images with 40-fold mag-
nification because potentially more information on tooth rings is stored in
them. The 407 TCA images were selected based on the condition that at
least two (independent) observations from the MPIDR resulted in estimates
for the number of tooth rings. These are the ‘better’ TCA images from
the observers’ perspective, whereas for the remaining TCA images on the
other hand, one of our reference measures for evaluating the semi-automatic
counting procedure does not contain enough information. (See Section 6.1.1
above.)

6.1.3 Results

For each of the 407 selected TCA images from the Basel series, one of the
MPIDR observers marked the cementum band and the author specified the
main orientation of the tooth rings. Then the Gaussian hidden FRAME
model specified in Chapter 4.3 was fitted, and estimates for both the number
of tooth rings and confidence intervals were calculated.

Let us compare this semi-automatic counting procedure to the two proxi-
mate references that were studied in Section 6.1.1: the theoretical number of
lines (TNoL) and the manual observations. For simplicity, at most one of the
possibly two observations per observer is considered in this comparison: that
is, the first existing observation. Figure 6.1 shows box-and-whisker plots of
the difference between the estimates for the number of tooth rings of the first
(of possibly two) observations of observer one, observer two and the semi-
automatic procedure compared to the theoretical number of lines for the 407
selected TCA images. The summary statistics are listed in Table 6.1. The
average as well as the median deviance of the semi-automatic estimates to
the TNoL is smaller than the observers’ estimates to the TNoL. The variance
of this deviance is a little bit larger for the semi-automatic procedure.
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Figure 6.1: Box-and-whiskers plots of the difference between the estimated
and the theoretical number of lines for the semi-automatic procedure (right)
and for the first (of possibly two) observation(s) from the two observers (left

and middle) in 407 selected TCA images from the Basel series.

obsl — TNoL | obs2 — TNoL | auto — TNoL
Max 34.81 27.81 48.51
3rd Quart. 11.80 0.80 6.69
Mean 6.33 -3.95 0.05
Median 5.81 -3.19 0.90
1st Quart. 0.80 -8.64 -5.49
Min -38.20 -34.31 -31.65
St. Dev. 9.45 8.00 10.78

Table 6.1: Summary statistics of the difference between the estimated and
the theoretical number of lines for the semi-automatic procedure and for the
first (of possibly two) observation(s) from the two observers in 407 selected
TCA images from the Basel series.
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Figure 6.2: Box-and-whiskers plots of the difference between the estimated
number of tooth rings for the semi-automatic procedure (‘auto’) and the first
(of possibly two) observation(s) from the two observers (‘obsl’; ‘obs2’) in 407
selected TCA images from the Basel series.

Comparing the semi-automatic estimates directly to the observers’ esti-
mates produces the results shown in Figure 6.2. The box-and-whisker plots
show that the deviance between the semi-automatic procedure and the man-
ual observations is smaller than, and the distribution of it not as skewed as,
the deviance between the two observers. The variance of these deviances is
once again slightly larger for the semi-automatic procedure.

In Section 6.1.1, it was mentioned that the estimates of the observers are
not independent due to the observers’ knowledge about the membership of
TCA images to a particular slice and tooth. The results shown in Figures
6.1 and 6.2 are thus not a fair comparison between the observers’ age esti-
mate and the semi-automatic age estimates. Let us therefore compare the
results of the 407 TCA images from the Basel series at the level of 72 teeth
by displaying the mean (subtracting the TNoL) and the range of estimates
within each tooth. Figure 6.3 displays these measures, where each line indi-
cates one tooth: the black lines represent the difference of the semi-automatic
estimates to the TNoL, the green lines the difference of the estimates of ob-
server one to the TNoL and the blue lines the difference of the estimates of
observer two to the TNoL. The distribution of the intra tooth mean for the



6.1. EVALUATING THE HMRF ON THE BASEL SERIES 123

8\ .
% - | 1 O VM N A | —
[} —
-1 I TEED T I I AT A | — %
o~ . [e)
2 | | (AR Ny | —
[} —
— | 0 T Tl ennerrm 11| T o
o
o .
= ||| L LA At e o | —
| | | | | | |
-30 -20 -10 0 10 20 30
Intra tooth mean of estimates minus TNoL
N
D | -
© -
= LT | - 9
~ g
e R AR AR RN AR O R R T O |
© -
IR '
o o
=S I LN 1N A (O | A =

I I I I I I
0 10 20 30 40 50

Intra tooth range of estimates

Figure 6.3: The intra tooth mean subtracting the TNoL (top) and range of
estimates (bottom) by the semi-automatic counting procedure (in black) and
the two observers (green and blue respectively, two observations each) for 72
selected teeth of the Basel series. Each line represents one tooth; the stars
with bars indicate the overall means and standard deviations.
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semi-automatic procedure is more centered around the TNoL than those of
the manual observers (as their means, displayed with stars indicate). The
variances of these distributions (indicated by the bars around the mean) are
all very similar. It can therefore be concluded that the semi-automatic pro-
cedure is superior at the tooth level. The median as a measure of intra tooth
estimates gave very similar results. For the graph of the intra tooth ranges,
one must note that the manual observers estimate only integer values for the
number of lines. Many teeth therefore collapse into a single point and cannot
be distinguished in this graph. The intra tooth range is larger for the semi-
automatic procedure than for the observers, especially compared to observer
two. This was expected, because the estimates of the observers are not inde-
pendent. Figure 6.3 herewith indicates that, when evaluating age estimates
at the tooth level, the independent estimates of the semi-automatic proce-
dure give more variable, but less biased, results than the a priori dependent
estimates of manual observers.

Let us now turn to the calculated confidence intervals for the set of 407 se-
lected TCA images of the Basel series. For 16 of these images (less than 4%)
it was not possible to calculate confidence intervals for the estimated number
of tooth rings, because the EM algorithm converged to a saddle point of the
likelihood landscape. Section 6.4.1 explains details and a possible solution to
this problem. During further analysis these images will be omitted. It also
has to be mentioned, that one TCA image displayed an unusually large con-
fidence interval of 109 years. This behavior remains unable to be adequately
explained. Two halves of the respective TCA image were fitted separately,
but both led to estimates that are saddle points. The TCA image was thus
not included in the analysis of confidence intervals below. Many of the re-
maining 390 TCA images led to high first derivatives of the likelihood with
respect to the filter parameter 7', evaluated at the MLEs. This indicates that
the EM algorithm did not converge to a maximum and is probably due to
the discrete grid search for the parameter estimate of 7', as will be explained
in Section 6.4.1. Although there is the technical possibility of refining the
grid during the EM algorithm, this was not realized during this first test on
TCA images. In the affected TCA images, the estimates for the number of
tooth rings are not drastically wrong, but the approximations of confidence
intervals are meaningless. Let us therefore restrict the analysis to the 169
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TCA images (43% of the TCA images where confidence intervals exist) with
small derivatives of the log-likelihood with respect to the filter parameter 7'

OlogL(6,T]Y)

< 100.
oT é,T

For the analysis of confidence intervals of these 169 remaining TCA im-
ages, the same problem as for the evaluation of the estimated number of
tooth rings occurs: there is no perfect reference. The length of the confidence
intervals was correlated to the difference between the estimated and the the-
oretical number of lines, the difference between or within the observers and
the difference between the observers and the automatic or theoretical number
of lines. Even the best correlation of 0.48 for the length of confidence inter-
vals and the difference between observers is not convincing enough to draw
inferences from confidence intervals on the quality of the TCA age estimate.

One could be tempted to interpret the confidence intervals for the esti-
mated number of tooth rings in the following sense:

If 100 TCA images from the same tooth are acquired, then for 95
TCA images, the theoretical number of lines lies in the confidence
interval of the estimated number of lines.

But this statement turns out to be wrong in most TCA applications be-
cause the assumption of identical conditions when repeating the experiment
is obviously violated by:

e the intra tooth variance of tooth rings,
e the intra slice variance of tooth rings and

e even the intra image variance of tooth rings (as will be demonstrated
in Figure 6.17).

Additionally, the following issues may interfere with the desirable interpre-
tation of the quality of an age estimate:

e the bias due to the TCA method, which was mentioned on page 118

e the integer-valued estimate of the filter parameter T'

Even though TCA images were limited to those with relatively low
derivatives of the log-likelihood with respect to the parameter 7', the
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calculated confidence intervals might still be erroneous due to the re-
maining distance between the true, real-valued and the estimated, inte-
ger-valued T

e the assumption of a constant ring width within one TCA image

The confidence interval around the filter parameter estimate 7 may
thus express the variance of the tooth ring width within the TCA image.
It may represent the deviance of the image from the assumption, so to
speak.

Instead, the confidence intervals of the 169 TCA images have to be inter-
preted as a measure for the goodness of fit of the Gaussian hidden FRAME
model. Confidence intervals are therefore important to state the quality of
the estimate in a purely statistical sense. The statement about the quality
of the TCA age estimate has to be derived retrospectively from the variance
of the estimated, compared to the theoretical, number of lines in a sample
(see Table 6.1).

To enable a comparison with the methods introduced in Chapters 2 as
well as 5, Figure 6.4 displays the estimated number of lines compared to the
theoretical number of lines for the same subset of 49 TCA images for the
Gaussian hidden FRAME model. For this subset, at least two independent
manual observations exist with a maximum difference of three years and tooth
rings need to run roughly horizontally. They therefore present a subset of
good quality from the manual observers’ point of view.

6.1.4 Discussion — HMRF Modeling for TCA Images

For evaluating the fit of the Gaussian hidden FRAME model (as introduced
in Chapter 4.3) to a series of TCA images, two imperfect reference measures
were selected: the known age at death subtracting the tooth eruption age
(the theoretical number of lines), as well as the manual counts for the number
of tooth rings. These measures are corrupted by shortcomings due to the
TCA method and due to subjectivity respectively, but they are the only
available quantities. From the 2,120 TCA images acquired from 100 skeletons
of the Basel series by the Max Planck Institute, the 407 TCA images were
selected based on the criteria that a 40-fold magnification was used and
at least two manual estimates for the number of tooth rings exist. Only for
these TCA images the reference measure of manual counts contains adequate
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Figure 6.4: Box-and-whiskers plots of the difference between the estimated
and the theoretical number of lines (TNoL) for the semi-automatic proce-
dure (‘auto’) and for the first (of possibly two) observation(s) from the two
observers (‘obsl’, ‘obs2’) on a set of 49 TCA images of good quality from the
Basel series.

information. This subset represents the qualitatively top 40% of the Basel
TCA images with 40-fold magnification from the observers’ perspective.

The estimate for the number of tooth rings attained from the semi-
automatic procedure is on average closer to the theoretical number of lines
than the observers’ estimates. The variance of the difference between the
estimated and the theoretical number of lines is slightly larger for the semi-
automatic procedure than for the observers. The algorithm proposed in the
work is thus competitive with the manual estimates on the image level. Com-
paring results on the tooth level, because the manual observations of each
tooth are known to be dependent, even shows that the semi-automatic pro-
cedure is superior if the estimates of one tooth are summarized by the mean
or the median. The confidence intervals for the estimated number of tooth
rings of TCA images have to be interpreted with caution. They measure
the goodness of fit of the Gaussian hidden FRAME model to the image. A
statement about the quality of the TCA age estimates has to be derived ret-
rospectively from the variance of the estimated compared to the theoretical
number of lines in a sample.
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Figure 6.5: Comparing the Gaussian hidden FRAME chain with the Gaus-
sian hidden FRAME model for the set of 49 TCA images of good quality
from the Basel series. Each line depicts one of the seven TCA images result-
ing in a different estimate. Red lines represent images leading to a better
estimate, black ones to a worse estimate, for the Gaussian hidden FRAME
model compared to the theoretical number of lines (TNoL).

6.2 Evaluating the CHMM

Analogously to the previous section, where the Gaussian hidden FRAME
model was evaluated, this Section will evaluate the Gaussian hidden FRAME
chain model (as introduced in Chapter 5) on a subset of TCA images from
the Basel series. The same two (imperfect) references will be used: the theo-
retical number of lines (TNoL) and the observers’ estimates for the number
of tooth rings. Because of the tremendous additional amount of computing
time required to fit the Gaussian hidden FRAME chain to 407 TCA images,
this study will restrict its attention to a subset of 49 TCA images. This
subset of good quality TCA images (from the observers’ perspective) was
introduced in Chapter 1.1 and has already been used for evaluating the DF'T
and SVD based methods.

Only 7 of the 49 TCA images resulted in a different estimate for the
number of tooth rings for the Gaussian hidden FRAME chain compared to
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the Gaussian hidden FRAME model. Figure 6.5 depicts these seven TCA
images and their difference. Red lines represent TCA images that lead to
a better estimate for the Gaussian hidden FRAME model compared to the
theoretical number of lines; black lines represent images with a better esti-
mate for the Gaussian hidden FRAME chain. In general, one can say that
both models, the hidden Markov random field model and the coupled hidden
Markov model, lead to very similar results for this subset of 49 TCA images
of good quality.

Next, will be a discussion of experiments with a thin filter consisting of
one column plus one pixel, which were carried out in Chapter 5. This model
will be called thin CHMM here for convenience, and will also be compared to
the HMRF model for the subset of 49 TCA images. A substantial number of
28 TCA images led to different results. Figure 6.6 displays box-and-whisker
plots of the difference between the estimates for the number of tooth rings of
the first (of possibly two) observations of observer one, observer two and the
thin CHMM procedure compared to the theoretical number of lines, as well
as the difference between the observers and the thin CHMM procedure for
the 49 selected TCA images. This figure can be compared to Figure 6.4 (the
Gaussian hidden FRAME model) and also to Figures 2.7 (the DFT-based
method) and 2.11 (the SVD-based method). The estimated number of tooth
rings for the thin CHMM lead to slightly better results than the HRMF
model: the median deviance to the theoretical number of lines is smaller and
this deviance also has a smaller standard deviation, but it is slightly larger
for the mean compared to the HMRF model.

In general, one can say that the CHMM with a standard size halved
Gaborcosine filter and a thin filter lead to similar results compared to the
HMRF model. The CHMM using the thin filter yields slightly better results
for the tested subset of 49 TCA images of good quality. To ultimately judge
the difference in the estimated number of tooth rings between the methods,
a larger set of TCA images probably has to be examined. It is also possible
that implementing a thin filter in the CHMM leads to worse results for TCA
images of poorer quality because it is more flexible in horizontal direction
than the HMRF model.
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Figure 6.6: Box-and-whiskers plots of the difference between the estimated
and the theoretical number of lines (TNoL) for the thin CHMM procedure
(‘auto’) and for the first (of possibly two) observation(s) from the two obser-
vers (‘obsl’, ‘obs2’) on 49 TCA images of good quality from the Basel series.

6.3 Localization of the Hidden Markov Ran-
dom Field Model

Despite the good TCA age estimate when applying the Gaussian hidden
FRAME model stated in Chapter 4.3, the reader notices a bad reconstruction:
most tooth rings are not well met. (See especially Figure 4.13.) This is
due to the global assumptions that were made for the hidden field in the
FRAME model as well as for the observable field. The reconstruction of
TCA images is, on the one hand, heavily influenced by the shape of the
single filter estimated for the FRAME model. The FRAME model in this
form can only take into account strong local changes of tooth rings. On the
other hand, it is influenced by the homoscedastic Gaussian distributions for
the conditional distributions.

Chapter 5 attempted to resolve the global property of the hidden field by
using a thinner filter Fir in the FRAME model and thereby reducing the size
of the neighborhood in the horizontal direction. The hidden FRAME chain
was one particular case of doing so, leading to horizontally more flexible tooth
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rings. The reconstruction does not fit better to tooth rings than the hidden
FRAME model (see Chapter 5.3) and the number of estimated tooth rings is
generally similar (see Section 6.2). Section 6.3.1 will pursue another approach
to the same problem: location-dependent filters. Thus, a nonhomogeneous
FRAME model will be studied. Sections 6.3.2 and 6.3.3 will then try to
resolve the global assumptions of the observable random field by assuming
location-dependent, respectively heteroscedastic, variance parameters in the
Gaussian distributions.

6.3.1 Nonhomogeneous FRAME Model

In order to make the hidden FRAME model more flexible one can choose to
assume that the Markov random field parameter 7' is location-dependent. For
this purpose one would estimate the filter parameter pixelwise as indicated in
Equation (4.8). This could overcome the global property of the homogeneous
hidden field that was mentioned in the TCA application in Section 4.3.6.
For the hidden nonhomogeneous FRAME model, the same parameter

estimation procedure as stated in Chapter 4.3.2 can be employed, except
that T = (T}, T3, ..., Txu) should be updated by

G
1 = argmax_ P (A = gl¥i Awgy, 040,70 ¢
{Ti} g=0
Y (t-1)
instead of formula (4.12). But the following discussion shows the biased

nature of estimates under this model and for the purpose of tooth ring de-
tection:

Advice:  The parameter T of the ideal (noise free) TCA image cannot
be sensibly estimated under the assumption of a nonhomogeneous FRAME
model.

Discussion. Let us assume that one can estimate the true parameter 7" and
support the above advice by counter example.
Let © € S be an arbitrary site. Then the maximum likelihood estimate of
T at this site is
j} = arg max P()\z|>\N(z); T)

T;
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for any image \. Let A coincide with A except in i. Then the conditional
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needs to be maximized at this site for maximum likelihood estimation. Thus
jec() jec()

= Z (FT*/\ )I—I(FTj*A)(J')I)+|(FTi*i)(’i)|—I(FTi*A)(’i)I

P(Xi| ANy, Ti, Tegy) =

needs to be minimized over all T}, which is equivalent to minimizing
|(Fr, x A (0)| = | (Fr, % N (0)]. (6.1)

Let us now assume A is the ideal TCA image of Figure 4.4 with ring width
T = 12 everywhere. Then the difference of filter responses between A and
A in (6.1) can be calculated for each column and a finite set of filters Fi,
which was here chosen to be T' € {2,4,6,8,10,12,14,16,18}. The results
are depicted in Figure 6.7. For this particular image, the parameter T is
estimated incorrectly everywhere, i.e. T € {2,4,6}. This is confirmed by
an iterative maximum likelihood estimation 7" in the ideal TCA image A by
comparing the likelihood of the current 7" with the likelihood of 7' — 2 and
T + 2. The result 7' is shown in Figure 6.8. U

As indicated above, modeling TCA images by a hidden nonhomogeneous
FRAME model leads to biased results. We therefore refrain from pursuing
this approach and turn to localization of the observable random field in the
next two subsections.

6.3.2 Pixel-Dependent Normal Distributions

Instead of localizing the prior distribution as indicated in Section 6.3.1, one
can try to localize the conditional probabilities. In Chapter 4.3 the cost func-
tion was specified by a product over identical normal distributions. This sub-
section will explore the possibility of specifying normal distributions whose
parameters (specifically the variance parameter) differ for each pixel. This
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Figure 6.7: The difference between filter responses in each column of the ideal
TCA image and the ideal TCA image changed at pixel 7. This difference is

minimized for T € {2, 4, 6}.
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Figure 6.8: For an ideal TCA image with T = 12, the image shows the

pixelwise estimated maximum likelihood estimate 7.
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generalization of the model could be used to better separate regions of ‘blur’
and noise from regular areas. Here, this will be called a nonhomogeneous
Gaussian hidden FRAME model (not to be mistaken for the hidden nonho-
mogeneous FRAME model of the previous subsection).

The Gaussian hidden FRAME model with a conditional distribution (4.1)
and a prior distribution (4.7) will be changed to assume the following cost
function:

FYixe) = [[rmin, 6:)
€S

(Y ﬂ9)2

N Hmaz

where o7 specifies the variance at pixel 7. This changes the updating formula
for the variance in the EM algorithm to

2 ~
Vi ) P (A= gIYi Aoy, 6470, D)

oy =

P (A= gl¥i Ano, 80, T D)

(compare Equation (4.11)).

The nonhomogeneous Gaussian hidden FRAME model was applied to
the marked cementum band of the standard exemplary TCA image in Figure
1.3. Figure 6.9 depicts the variance estimate at each pixel, clearly showing
high levels of noise for saw cuts, blurry areas and parts of the large artifact.
While similar mean parameters of the normal distributions are estimated,
the central filter parameter of the prior distribution is underestimated: T=
11. This leads to a heavy overestimation of the TCA age as well as a bad
reconstruction of the tooth rings.

A possible explanation for this behavior lies in the algorithm: The nonho-
mogeneous model gathers more energy in the conditional probabilities com-
pared to the traditional Gaussian hidden FRAME model. Scanning only
integer values to maximize 7', there is not enough energy in the likelihood
left to make a long jump (of length 1) to change this parameter. The algo-
rithm therefore stops close to the starting value of 7' = 10 and underestimates
the prior parameter.

Despite the uselessness of the nonhomogeneous Gaussian hidden FRAME
model for age estimation, it could still be applied to model regions of high
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Figure 6.9: Pixelwise variance estimate 62 in a Gaussian hidden FRAME
model fitted to the cementum band of TCA image 1.3.

noise in TCA image analysis. But it is computationally time-consuming to
do so.

6.3.3 Label-Dependent Normal Distributions

Instead of localizing the Gaussian hidden FRAME model by choosing pixel-
dependent parameters as explored in the last subsections, one can try to
choose label-dependent parameters. In Chapter 4.3 the cost function was
specified by homoscedastic normal distributions for the application to TCA
images. This subsection will explore the possibility of specifying normal dis-
tributions with label-dependent variance parameters, as theoretically stated
previously in Chapter 4.3. Because of the heteroscedastic variance, this model
with prior distribution (4.7) and conditional distribution (4.1) will be called
a heteroscedastic Gaussian hidden FRAME model here.

Let us study the cementum band of the standard exemplary TCA image
in Figure 1.3 and apply the heteroscedastic Gaussian hidden FRAME model.
The reconstructed TCA image (the mean field at the last iteration) is de-
picted in Figure 6.10, indicating a misfit. The fitted normal distributions are
shown in Figure 6.11, illustrating the problem: One normal distribution is
fitted to the very dark parts of the TCA image (among others, to artifacts),
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Figure 6.10: Mean field approximation at the last iteration for the cementum
band of TCA image 1.3 under a heteroscedastic Gaussian hidden FRAME
model.

while the second normal distribution is fitted to the rest of the image, that
is, to dark as well as to bright tooth rings. This misfit is related to the iden-
tifiability problem mentioned for the traditional Gaussian mixture model in
Chapter 3: the fitted groups do not resemble the grouping desirable in the
application. This effect is probably amplified by the skewed distribution of
the gray values.

We therefore conclude, that the heteroscedastic Gaussian hidden FRAME
model is too flexible to be fitted to TCA images in the current context and
we recommend applying the homoscedastic Gaussian hidden FRAME model
as implemented for the experiments in Section 6.1.

6.3.4 Discussion — Localization of the HMRF Model

In the course of this section, the reader was introduced to small changes in
the Gaussian hidden FRAME model with the aim of designing a more flexible
(local) model, such that both the final reconstruction of the TCA image fits
better to the original TCA image and that tooth rings are recognized.

Two nonhomogeneous versions of the Gaussian hidden FRAME model
were introduced here. First the hidden field was allowed to incorporate a
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Figure 6.11: Fitted normal distributions for the cementum band of TCA
image 1.3 under the heteroscedastic Gaussian hidden FRAME model (in
green and blue) together with the binned observed frequency of gray values

(in gray).

location-dependent filter parameter. This model destroyed the neighborhood
relationship and is thus inherently not recommendable. Secondly, the observ-
able field was allowed to incorporate a location-dependent variance parame-
ter. Algorithmic problems appeared and thus the method was abandoned for
TCA age estimation. Last, but not least, a heteroscedastic Gaussian hidden
FRAME model was tested on a TCA image, resulting in a misfit. This model
seems too flexible and thus does not recognize tooth rings.

These model changes were without success; consequently the next section
will turn to more algorithmic and technical changes in order to improve the
TCA age estimate and the reconstruction of tooth rings.

6.4 Different Algorithmic Issues and Settings

This section will discuss a diverse set of issues connected to the EM algo-
rithm and TCA image analysis. Section 6.4.1 first discusses convergence
issues of the EM algorithm in the context of TCA image analysis, including
saddle points, local maxima as well as grid search problems. Then various
algorithmic settings will be tested to improve the TCA age estimate and
the reconstruction of tooth rings. Approximating the prior distribution with
the help of a mode field (instead of a mean field) will be studied in Sec-
tion 6.4.2. Partitioning the TCA image before fitting the Gaussian hidden
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FRAME model to each part separately will be examined in Section 6.4.3.
Finally, a discussion will close this section.

6.4.1 Convergence Issues of the EM Algorithm for TCA
Images

The EM algorithm is a maximization method that (under mild conditions)
converges monotonically to a stationary value of the incomplete-data log-
likelihood. (See McLachlan and Peel [2000]|.) This subsection will discuss
some of the convergence problems that occur theoretically and practically
when applying the EM algorithm to TCA images. The stationary value the
EM algorithm converges to does not need to be the desired global maximum,
but it could be a saddle point or a local maximum. Issues connected with
saddle points and local maxima will be discussed first. Then, this subsection
will examine convergence issues of the EM algorithm arising from the discrete
grid search for updating the estimate of the filter parameter 7" in the prior
distribution.

A stationary point is called a saddle point (or inflection point) if the
Hessian matrix of its function evaluated at the stationary point is indefinite.
That is, the Hessian contains positive as well as negative eigenvalues. If the
EM algorithm converges to a saddle point, a small perturbation in the direc-
tion of the eigenvector, belonging to the positive eigenvalue of the Hessian
matrix of the log-likelihood, will cause the algorithm to diverge from the
saddle point in the direction of a maximum. Experiments on TCA images
in Section 6.1 showed that in less than 4% of the studied images, confidence
intervals could not be calculated because one element on the main diagonal
of the inverse observed information matrix is negative. The Hessian is thus
indefinite, originating from a saddle point of the log-likelihood.

The second issue is the convergence of optimization algorithms to lo-
cal maxima: If the log-likelihood has several maxima, the starting value
will determine which local maximum the EM algorithm converges to. Lo-
cal maxima could be circumvented by MCMC type steps or methods. But
these algorithms are computationally too time-consuming in TCA applica-
tions, as mentioned before. It is therefore not obvious how local maxima can
be avoided generally. The four-dimensional parameter space and the time-
consuming fitting procedure also prohibit a grid study for the parameters of
one exemplary TCA image. Let us therefore restrict ourselves to a grid scan-
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Figure 6.12: Incomplete-data log-likelihood for fitting the model to the ce-
mentum band of the standard exemplary TCA image from Figure 1.3 for
fixed filter parameters 7.

ning over the important filter parameter 7 for values T € {10,11,...,20}.
For these fixed parameter values, Figure 6.12 shows the incomplete-data log-
likelihood after convergence of the EM algorithm for the cementum band of
the standard exemplary TCA image from Figure 1.3. The reader can iden-
tify at least three potential local maxima of the log-likelihood landscape. A
starting value of 7' = 10 allows the EM algorithm to converge to the local
maximum at T = 14, as mentioned in the application in Chapter 4.3.6. In
general, the small starting value of 7' = 10 leads to a smaller estimate for
the filter parameter and thus generally to an overestimation of the TCA age.
But the experiments in Chapter 6.1 do not show such a systematic tendency.
Ignoring problems of all other parameter dimensions, the TCA experiments
indicate that either the local maxima in the vicinity of 7' = 10 give the cor-
rect estimates for this application, or that in most cases, the EM algorithm
converges to a global maximum for TCA images. The small starting value
of T" = 10 is also computationally recommendable, because large starting
values for the filter parameter would involve large neighborhood structures
and thus slow down the EM algorithm.

Let us thirdly discuss problems involved with a discrete grid search for the
maximum likelihood estimate 7" of the filter parameter. On the one hand, the
true maximum likelihood estimate might not be an integer value. The EM
algorithm using a discrete grid (as stated in Chapters 4.3.2 and 4.3.6) will
converge to the integer close to the true estimate and the derivative of the
log-likelihood at the parameter estimates indicates the distance to the true
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estimate. Since the distance between the true MLE and the integer-valued
estimate is less than one pixel, the influence on the estimated number of tooth
rings is very limited. But the calculation of confidence intervals is pointless
for TCA images with a large distance between the true and the integer-valued
estimate. Future research should choose a finer grid for the filter parameter
T after a certain number of iterations in the EM algorithm in order to achieve
meaningful confidence intervals. But the study in Section 6.1 restricted the
analysis of confidence intervals to TCA images where derivatives of the log-
likelihood with respect to the filter parameter 7" are less than 100. On the
other hand, the grid of filter parameter values was limited to the range of 2 to
20 pixels for the average ring width in TCA images (see Chapter 4.3.4). This
decision was based on the increasing computational complexity for increasing
filter parameters and the empirical width of incremental lines, which ranges
roughly from 10 to 40 pixels. Out of the 407 TCA images, the parameter
estimate T = 20 lies at the border of this range in 69 of these images for the
experiments in Section 6.1. The EM algorithm might not have converged to
a maximum, but to a boundary value for these images. Experiments were
carried out with a maximum filter parameter of 7' = 35, which covers the
range of possible tooth ring widths better. The aforementioned 69 TCA
images with an estimate of T = 20 were refitted to the Gaussian hidden
FRAME model with the new bound. Most of these images overestimated
the average ring width and therefore underestimated the number of tooth
rings. Compared with using a maximum boundary value of T = 20, worse
results were produced with the new bound.

6.4.2 Mode Field Approximation

In order to be able to fit the Gaussian hidden FRAME model containing
large neighborhoods to large TCA images, the EM algorithm was suggested
and the prior probability was approximated using the mean field theory in
Chapter 4.3.2. The mean field approximation is not the only possibility for
realizing the approximation (4.9). Celeux et al. [2003] also mention mode
field approximation, which will be tested for quality and speed in the case of
TCA image analysis in this subsection.

For mode field approximation, the fixed configuration A N() in the approx-

imation )
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is set to the most frequent label value:

A; = argmax P ()\j = g|5\N(j),T) for all j € N(7).
9€g

The EM algorithm stated on page 79 can then be implemented analogously
using mode field approximation. The computational expenditure decreases
because the prior (and conditional) distribution in the neighborhood of each
site (see steps 11 and 12 in the EM algorithm on page 79) do not have to be
calculated for each label value g € G and the fixed label \;, but only for the
|G| — 1 = G new candidate label values. For two possible labels G = {0, 1},
the time expenditure should be limited to roughly half of the time required
for the mean field approximation.

At first the Gaussian hidden FRAME model using mode field approxima-
tion is fitted to the cementum band of the standard exemplary TCA image
from Figure 1.3. The mode field approximation of the final iteration is de-
picted in Figure 6.13 and can be compared to the mean field approximation
in Figure 4.12. The reconstruction using mode field approximation looks
very similar to the reconstruction using the mean field approximation and
thresholding subsequently. The positions of some bifurcations differ in the
two reconstructions, which can probably be attributed to the random updat-
ing order in the proposed EM algorithm. The parameter estimates for this
TCA image applying mean or mode field approximation are also very simi-
lar: the filter parameter estimate 7 (and thus the estimated number of tooth
rings) is the same, the variance 62 of the normal distributions is similar, while
the means of the normal distributions fi, are slightly further apart and the
log-likelihood value slightly increased for the mode field approximation. The
computational time required to fit the Gaussian hidden FRAME model using
mode field approximation to this exemplary TCA image is about 6.8 hours
on Hydra!, compared to about eight hours for the mean field approximation.

Secondly the Gaussian hidden FRAME model using mode field approx-
imation will be evaluated for a whole set of TCA images from the Basel
series. For this first study, let us restrict our attention again to the subset of
49 TCA images of good quality (from the observers’ perspective) which was
already used for the DF'T and SVD based methods as well as for the CHMM.
For 32 of these TCA images, the mode field based algorithm yields different

!Hydrais a HP ProLiant DL 580 computer with Windows 2000 Server operation system,
four Intel Xeon MP 1.60 GHz processors and 2 GB memory.
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Figure 6.13: The mode field approximation at the last iteration for the ce-
mentum band of TCA image 1.3.

results than the mean field based algorithm. Fifteen of these 32 TCA images
coincide with the images giving different results for the thin CHMM. Figure
6.14 displays box-and-whisker plots of the difference between the estimates
for the number of tooth rings of the first (of possibly two) observations of
observer one, observer two and the mode field based procedure compared
to the theoretical number of lines (TNoL), as well as the difference between
the observers and the mode field based procedure for these selected TCA
images. This figure can be compared to Figures 6.4 (the Gaussian hidden
FRAME model) and 6.6 (the thin Gaussian hidden FRAME chain), as well as
to Figures 2.7 (the DFT-based method) and 2.11 (the SVD-based method).
The estimated number of tooth rings for the mode field approximation lead
to slightly worse results than for the mean field approximation: the mean
deviance to the TNoL is larger and this deviance also has a slightly larger
standard deviation. The median deviance to the TNoL is slightly smaller
compared to the mean field approximation. But one ‘outlier’ heavily influ-
enced this comparison: the TCA image leading to a deviance of -38.5 years
to the theoretical number of lines. The average time required for the mode
field based procedure is 8.8 hours, compared to the 11 hours of the mean
field based procedure.
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Figure 6.14: Box-and-whiskers plots of the difference between the estimated
and the theoretical number of lines (TNoL) for the Gaussian hidden FRAME
model applying mode field approximation (‘auto’) and for the first (of pos-
sibly two) observation(s) from the two observers (‘obsl’, ‘obs2’) on 49 TCA
images of good quality from the Basel series.

In general, one can say that the Gaussian hidden FRAME model applying
mode field approximation lead to similar results compared to the mean field
based model suggested in Chapter 4.3. The mode field based procedure yields
slightly worse results for the tested subset of 49 TCA images of good quality
(from the observers’ perspective). But to ultimately judge the difference in
the estimated number of tooth rings between the methods, a larger set of
TCA images probably has to be examined. The benefits of the procedure
proposed in this section would clearly lie in the average time required to fit the
model to one TCA image. The Gaussian hidden FRAME model using mode
field approximation is about 20% faster than the procedure using mean field
approximation. This is not the time gain that was expected theoretically,
but it is still substantial.

6.4.3 Partitioning the Image

The Gaussian hidden FRAME model as introduced in Chapter 4.3 and ap-
plied to TCA images in Chapter 6.1, assumes a constant width as well as a
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constant and fixed orientation for tooth rings throughout a TCA image. The
orientation is expected to be horizontal or can be fixed manually otherwise.
This assumption of constant width and orientation is clearly not satisfied in
most TCA images and can be examined critically, for example, in the stan-
dard TCA image from Figure 1.3. Model-based approaches to circumvent
this problem by a non-homogeneous FRAME model or thinner filters in a
FRAME chain failed in Section 6.3.1 and Chapter 5 above. This subsec-
tion will now attempt to quantify the effect of the assumption of a constant
ring width and orientation by partitioning TCA images manually and fitting
separate Gaussian hidden FRAME models to each part.

Let us separate the problems by studying two exemplary TCA images:
one with a prevailing non-constant tooth ring width as depicted in Figure 6.15
and one TCA image with a non-constant orientation as depicted in Figure
6.16. Both figures also show the partition of each image as suggested by the
author. The Gaussian hidden FRAME model was fitted to each part of these
two images separately, assuming a horizontal orientation in Figure 6.15 and
three different orientations for the tooth rings in Figure 6.16. For both TCA
images, the filter parameter 7" was allowed to vary across the image. Figures
6.17 and 6.18 display the mean field approximation (clearly reflecting the
assumed partition), as well as the estimated filter parameters.

In Figure 6.17, a number of very different filter parameters 7" are esti-
mated, leading to very distinct reconstructions. For the middle left part,
T = 19 was estimated and a poor quality mean field was approximated. The
original TCA image contains very little information on tooth rings in this
part, such that the filter parameter is probably mainly inferred from ‘noise’.
The lower right as well as the upper left part of the original TCA image
contain artifacts which probably heavily influence the fitting procedure in
these parts. Averaging the estimates for the number of lines for each part
of the TCA image gives an estimate of 63.36 tooth rings, compared to 62.53
rings for fitting the whole TCA image and 57.2 for the theoretical number of
lines. In general, one can say that the difference between separate estimates
for several parts of the image to one estimate for the whole image is small for
this example. Estimating even smaller parts of the TCA image should give
theoretically better results because the width of tooth rings may vary quickly
over the image. But the fit of a small part is heavily influenced by its qual-
ity (for example, artifacts or ‘general noise’) and information is lost at the
boundaries. Partitioning TCA images into smaller parts is also impractical
due to the extra time for selecting meaningful partitions.



Figure 6.15: One TCA image with a non-constant tooth ring width (IS-
0003429 from the TCA database of the MPIDR).



Figure 6.16: One TCA image with a non-constant orientation of tooth rings
(IS-0002852 from the TCA database of the MPIDR).
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Figure 6.18: The mean field approximation at the last iteration for the par-
titioned TCA image from Figure 6.16 together with the estimated filter pa-
rameters 7.
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Figure 6.18 shows the mean field approximation using the orientations 0°,
-5° and -10°. It clearly fits the orientation of tooth rings better than a single
orientation of 0°. The estimated filter parameter differs only for the middle
part of the image, in which a relatively large artifact exists. The number of
tooth rings is estimated to be 14.93 for the partitioned image and 17 for the
whole image compared to 21.19 for the actual number of theoretical lines.
Although partitioning the image has only a small effect on the estimation of
the filter parameter T in the current example, the (negative) effect for the
estimated number of lines is noticeable due to the thin cementum band.

It can be concluded that partitioning TCA images raises the dilemma
of how to optimally select the parts while taking into account the behavior
of tooth rings as well as the existence of artifacts and noise. In addition
to showing little effect for the observed TCA image, partitioning images
because of varying ring widths is impracticable because of the quickly varying
tooth ring widths. Instead, partitioning images because of varying tooth ring
orientations seems more promising for achieving a better reconstruction of
the TCA image, and it should also result in better estimates for the number
of lines if the filter parameter T is held constant over the whole image. But
more extended tests should be performed in the future in order to verify this.

The increasing speed of new computers could also help to fit a Gaus-
sian hidden FRAME model with two filter parameters to TCA images. The
second filter parameter could estimate the optimal (constant) orientation of
tooth rings, instead of manually guessing at it.

6.4.4 Discussion — Algorithmic Issues and Settings

This section has been devoted to discussing a diverse set of issues connected
to the EM algorithm and TCA image analysis.

First, convergence issues of the EM algorithm in the context of TCA
image analysis were addressed. Attention was focused on saddle points that
the EM algorithm might converge to. A criterion for recognizing saddle points
and a possibility of diverging from them was pointed out. The existence of
local maxima, which the EM algorithm might converge to, was admitted, but
no solution could be found. Only experimental evidence that the proposed
compound procedure gives reasonable results for the current application can
be given. The discrete grid search for the maximum likelihood estimate T of
the filter parameter posed a third possible source of error. The effect on the
estimated number of tooth rings is limited. At the same time, calculating
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confidence intervals is pointless; but this can easily be reworked through
choosing a finer grid for the filter parameter 7' after a certain number of
iterations in the EM algorithm. Limiting the grid of filter parameter values
to the range of 2 to 20 pixels for the average ring width in TCA images is
computationally recommendable and also proved experimentally sensible for
TCA applications.

This section considered mode field approximation instead of fitting the
Gaussian hidden FRAME model to TCA images, with the help of approx-
imating the prior probability by applying mean field theory. The two pro-
cedures lead to similar results for the tested subset of 49 TCA images; but
to ultimately judge the difference in the estimated number of tooth rings,
a larger set of TCA images has to be examined. The benefits of the mode
field-based procedure would clearly be the decreased average time required
to fit the model to one TCA image (about 20% less compared with using
mean field approximation).

The Gaussian hidden FRAME model, as introduced in this work, assumes
a constant width as well as a constant and fixed orientation for tooth rings
throughout a TCA image. This assumption is clearly not satisfied in most
TCA images. Since model-based approaches (from Section 6.3.1 and Chap-
ter 5) to circumvent this problem failed, this subsection has attempted to
quantify the effect of the assumption of constant ring width and orientation
by partitioning TCA images manually and fitting separate Gaussian hidden
FRAME models to each part. In general, partitioning TCA images raises
the dilemma of how to optimally select the parts, taking into account the
behavior of tooth rings as well as the existence of artifacts and noise. Par-
titioning images because of varying ring widths proved to be impracticable,
while partitioning images because of varying tooth ring orientations seems
more promising for the reconstruction of TCA images. For the estimated
number of tooth rings, more extended tests should be performed in order to
quantify the effect of partitioning TCA images.

Finally, in general, it is worth stating that faster computers could avoid
or circumvent some of the problems discussed in this section.
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6.5 Application of the HMRF Model on Re-
lated Problems

This section will be a short digression into layered structures in nature, other
than in human tooth cementum. The examples that will be given demon-
strate the range of possible applications for the hidden FRAME model.

The first subsection will focus on tree-rings. It will illustrate how the
same model used for TCA image evaluation can be applied to cross sections
of trees by slightly altering the fitting procedure. Section 6.5.2 will give an
overview of other layered structures in nature.

6.5.1 Tree-Rings

Dendrochronology is the method of scientific dating and interpreting past
events based on the analysis of tree rings. During the annual growth season,
most trees produce growth rings, whose patters are mainly determined by
the amount of available precipitation or by prevailing temperatures (The
New Encyclopedia Britannica: Micropi;ia - Ready Reference [1998]). By
comparing, lining up and interlinking the patterns of tree-rings, so-called
tree-ring calendars can be reconstructed, which can date back wood as long
as 8,000 or more years ago. These tree-ring calendars are of particular interest
to archeologists and climatologists. (Brockhaus: Die Enzyklopadie [1996])

Tree rings extend from the bark to the pith at the center of trees and
can be examined by destructive or nondestructive methods. Nondestructive
methods such as computer tomography acquire reconstructions of cross sec-
tions of live trees, which can be used, for example, in lumber milling or on
wooden columns of existing buildings. Destructive methods include drilling
cores and cutting cross sections. (Onoe et al. [1984])

Because such cross sections from trees are fairly similar to cross sections
of human teeth, methods for TCA image analysis could also be applied to
photographs of cross sections of trees. Figure 6.19 displays an image of a
cross section of a Douglas-fir tree from the Zuni Mountains (New Mexico,
USA).

Cross sections of trees usually display tree-rings at all orientations. Meth-
ods from TCA image analysis thus need to be adapted for this application.
Specifically, the Gaussian hidden FRAME model, introduced in Chapter 4.3,
will be used to include different, but fixed, filter orientations. In order to
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Figure 6.19: Cross section of a Douglas-fir tree from the Zuni Mountains
(New Mexico, USA), divided into 12 sectors.
Source: Grissino-Mayer [2006]
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do so, the author manually marked the center as well as the outermost tree-
ring in cross sections of trees. This region of interest was then automatically
divided into 12 sectors. (See Figure 6.19 for an examplary cross section.)
Following, the estimation procedure stated on page 79 can be applied to co-
herently fit the Gaussian hidden FRAME model to the entire cross section,
assigning one fixed orientation to each pair of opposing sectors.

Figure 6.20 displays the reconstruction of the cross section from the
Douglas-fir tree of Figure 6.19. One can recognize the inner dark rings and
the outer light rings, as well as some disturbances in the tree-ring formation.
Some transitions from one to the neighboring sector of the cross section
(caused by applying different filter orientations) are also visible in the recon-
struction. These uneven transitions indicate that a finer division of the cross
section into sectors could give improved results. The more regular transitions,
which are not visible in the reconstruction, demonstrate that the Gaussian
hidden FRAME model tolerates deviations of up to 15° in the orientation
of clear ring structures. The parameters were estimated to be the means
flo = 169.7, fi; = 203.5, the common variance 62 = 243.8 and the average
tree-ring width T = 5. The number of tree-rings of this Douglas-fir tree was
thus estimated to be 51.4. Experts estimate the age of this tree to be 50.4,
excluding the most inner pith.

This exemplary application of the Gaussian hidden FRAME model to
estimate the age of trees from cross sections produced very good results. At
the same time, it demonstrated the flexibility and strengths of this model,
and proved that it is not solely applicable to TCA images. Remarkably, no
changes to the model had to be made, only the fitting procedure had to be
altered slightly in order to generalize from tooth rings to tree-rings.

For this particular application to tree-rings, there are certainly faster,
simpler and more direct methods for estimating the number of tree-rings and
their predominating patterns. The Gaussian hidden FRAME model probably
cannot compete with these methods; but similar applications become con-
ceivable where this model can confirm its value. Some of these applications
will be mentioned during the next subsection.

6.5.2 Further Layered Structures

Layered structures frequently appear in nature. If there is a possibility of
acquiring digital images of these structures, they could also be analyzed by
the Gaussian hidden FRAME model (or a modified version of this model).
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Figure 6.20: The mean field approximation of the cross section from the
Douglas-fir tree from Figure 6.19.
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This subsection will provide a list of examples of layered structures. Some
examples, express daily patterns, some seasonal patterns and some provide
other kinds of information. This list is by no means complete, but serves
to indicate the possible range of conceivable applications of the Gaussian
hidden FRAME model. Most of the layered structures mentioned below
can be researched in subject-specific encyclopedia or combined in the online
encyclopedia Wikipedia, The Free Encyclopedia [2006].

Human teeth do not only form rings in the cementum, but also in the
enamel of the crown. These incremental lines are known as cross-striations,
which form daily, and as Retzius lines, which display long-period structures.
Both structures are, among other things, used for evolutionary research.

One does not need to focus on humans. Tooth cementum annulation is
also found in a wide range of other mammals and applied for age estimation,
as mentioned in the introduction. But other parts of animals also show
annular patterns. For example, most whales grow earwax in layers each year,
birds display thin rings in their bones and stress bands in their feathers. Some
fish show seasonal rings in their otolith (an ear structure) and in their scales.
Annual banding can also be found in coral colonies and is used analogously
to dendrochronology there.

Not only in biology, but also in geology, similar layered structures can
be found. For example, ice cores and varves display annual layers of snow
or sediment, respectively. Information from both structures is of interest in
climatology.

More generally, one-dimensional wave-like patterns exist as well, and the
hidden FRAME model could be adapted to these applications. But this topic
extends into the research area of time series analysis and will thus not be
discussed here.
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Chapter 7

Conclusions

Tooth Cementum Annulation (TCA) images are microscopic images from the
root of human teeth. These digital images display annual incremental lines
which can be used for age estimation. Until now, the incremental lines were
counted manually under the microscope or from the (digital) TCA images.
This work has developed the first model-based method for evaluating TCA
images. It therefore provides an invaluable tool for further anthropological
research on the TCA method.

This final chapter will first summarize the work by briefly mentioning the
methods which where examined for TCA image evaluation. Subsequently,
results which were obtained through using these methods will be reported.
The last section will emphasize the value of this work and give an outlook
on the approaches in order to improve the recommended methods and to
improve the TCA age estimate with the help of a semi-automatic counting
procedure.

7.1 Summary on Methods

In order to develop a semi-automatic procedure for the evaluation of TCA
images, initially two approaches were examined that though not successful,
provided valuable insights. Three feature measuring methods were studied;
but they could not bridge missing or falsified information, which frequently
occur in TCA images. Still, these methods served to illustrate characteris-
tics of TCA images and to emphasize the distinction between two aspects of
TCA image analysis: recognizing tooth rings and estimating their number.

157
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The second approach relied on mixture models, which did not reveal recon-
structions that resemble tooth rings. The reason lies in the independence
assumption made about the observations. It is known that the gray level
of one pixel in an image is highly dependent on gray levels of neighboring
pixels. Mixture modeling therefore led to the conclusion that a useful model
for TCA images needs to take into account the relationship between nearby
pixels when estimating the unknown label image from the noise-corrupted
observed image.

For this purpose, two models were introduced: the hidden Markov ran-
dom field and the coupled hidden Markov model. Both models are capable
of taking into account knowledge about the relation of spatially nearby pix-
els; the HMREF' incorporates undirected two-dimensional interactions while
the CHMM distinguishes between the two dimensions. The HMRF and the
CHMM consist of two levels, the observable random field Y (with instances
Y') and the hidden random field A (with instances A):

FY)= Y PO

AegNXM

These two random fields are linked by the conditional probability f(Y'|\) of
the observed image, given the label image, which was specified by indepen-
dent normal distributions.

In the context of HMRF modeling, the hidden field is assumed to be
distributed as an MRF that has the central property

P (Mi]Asv) = PNl Avg),

where i is arbitrarily chosen among the set of pixels S and N(i) defines
the neighborhood of 7. Specifying the MRF by an auto-logistic model, it
became evident that a more complex MRF needs to be chosen, which in-
corporates macro-features of images. The FRAME model is such an MRF
which accounts for long-range dependence among the observed gray values
by including filter responses to the label image (Fr * A) into the potential
function:

1 2 ol(Fr=A)(d)]
P(NT) = e s T

Implementing a halved filter Fr, leads to a coupled Markov model (a
so-called FRAME chain model) — the hidden field of the CHMM. Similar
to the MRF, it provides a means to model macro-texture; but the CMM is
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suited for directed contextual constraints and seems more flexible along the
direction of tooth rings. The FRAME, as well as the FRAME chain, both
allow for an increased size in neighborhoods while avoiding computational
difficulties of a growing number of parameters. Furthermore, they explain
their parameters (the filters) more intuitively. The filter family was selected
from the Gaborcosine functions, such that the FRAME approach is capable
of describing the periodic placement of tooth rings.

Coherent, estimation of the parameters of the Gaussian hidden FRAME
model and the Gaussian hidden FRAME chain was rendered possible by
an EM algorithm, which exploits the mean field approximation of the label
distribution P(\). Also, mode field approximation is feasible. This means
that time-intensive MCMC methods could thus be avoided. The mean field
of the last iteration approximates the reconstruction of TCA images, and
the parameter T' of the MRF, which in our application determines the wave
length of the Gaborcosine filter, expresses the average tooth ring width in
TCA images. Estimation of this filter parameter therefore leads directly to
an estimate for the number of tooth rings. For one TCA image, the complete
estimation procedure requires on average about eleven hours for the Gaus-
sian hidden FRAME model, seven hours for the Gaussian hidden FRAME
chain using a one-column filter and about nine hours for the hidden FRAME
model using mode field approximation. Confidence intervals of parameters
are computable by again applying mean field approximation for the label
distribution.

7.2 Summary of Results

TCA images from the Basel series were used to evaluate the abovementioned
methods for estimating the number of tooth rings. The age of individu-
als from the Basel series is known and the TCA images were independently
counted twice by two observers from the MPIDR, such that up to four manual
observations exist. The manual counts as well as the theoretical number of
lines (the known age subtracting the tooth eruption age) are imperfect mea-
sures for evaluating a semi-automatic procedure for image analysis. These
measures are corrupted by shortcomings due to the TCA method and due to
subjectivity, but are nevertheless the only available quantities.

The Gaussian hidden FRAME model applying mode field approxima-
tion was tested on a subset of 407 TCA image from the Basel series, which
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Figure 7.1: Box-and-whiskers plots of the difference between the estimated
and the theoretical number of lines for the Gaussian hidden FRAME model
(right) and for the first (of possibly two) observation(s) from the two ob-
servers (left and middle) in 407 selected TCA images from the Basel series.

represent the qualitatively top 40% of the Basel TCA images with 40-fold
magnification (from the observers’ perspective). The estimate for the num-
ber of tooth rings attained from fitting this model is on average closer to the
theoretical number of lines than the observers’ estimates are. The variance
of the difference between the estimated and the theoretical number of lines
is slightly larger for the semi-automatic procedure than for the observers.
(Compare in Figure 7.1.) The Gaussian hidden FRAME model is thus com-
petitive with the manual estimates at the level of the image. Comparing
results on the tooth level, because the manual observations of each tooth
are known to be dependent, even shows that the Gaussian hidden FRAME
model is superior if the estimates of one tooth are summarized by the mean
or the median. The confidence intervals for the estimated number of tooth
rings in TCA images have to be interpreted with caution. They measure
the goodness of fit of the Gaussian hidden FRAME model to the image. A
statement about the quality of the TCA age estimates has to be derived ret-
rospectively from the variance of the estimated, compared to the theoretical,
number of lines in a sample.
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All other methods introduced in this work where tested against a smaller
subset of 49 TCA images, which represent a subset of ‘better’ quality from
the observers’ perspective. On this smaller subset, the singular value decom-
position and discrete Fourier transform-based procedures from the feature
measuring methods were ruled out because of their high variability. The
ranges of errors for the middle 50% as well as for most of the TCA images
are inappropriate, where errors represent the theoretical minus the estimated
number of tooth rings. On this smaller subset, the following models — the
Gaussian hidden FRAME model, the Gaussian hidden FRAME chain using
a halved and a one-column filter as well as the hidden FRAME model us-
ing mode field approximation — all performed very similarly. The Gaussian
hidden FRAME chain implementing a halved filter yielded almost the same
results as the Gaussian hidden FRAME model and will thus not be discussed
in further detail. For the remaining three methods, Figure 7.2 shows compar-
ative box-plots of the difference between the estimated and the theoretical
number of lines for the 49 TCA images. The mode field-based procedure is
slightly inferior to the other models concerning the average as well as the
variance and range of errors. The hidden FRAME model is superior with
respect to the mean and the range of errors, and the hidden FRAME chain
is superior concerning the range for the middle 50% and the variance of er-
rors. Again, error is defined here as the difference between the theoretical
and the estimated number of tooth rings. The computing time of the mode
field-based procedure and the hidden FRAME chain model is, respectively,
20% and 40% less than for the hidden FRAME model.

It should be mentioned that the above comparison of alternative methods
is based on a small subsample of TCA images that does not represent the
quality of the larger sample of 407 TCA images. The 49 TCA images contain
images of better quality, from the observers’ perspective. Besides, most of the
previously mentioned advantages for one or the other of the three methods,
are relatively small and probably not significant (as the notches in Figure 7.2
indicate). Conclusions regarding the overall performance of these methods
should therefore be treated with caution. The recommended method for
TCA image evaluation in this work is the Gaussian hidden FRAME model,
both because it produces very good results and because it was evaluated
extensively.

It was also proven that the Gaussian hidden FRAME model is not solely
applicable to TCA images, but also to other layered structures. Especially the
application to cross section of trees produced very good results and demon-
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Figure 7.2: Box-and-whiskers plots of the difference between the estimated
and the theoretical number of lines for three different methods: the Gaussian
hidden FRAME chain using a one-column filter (left), the Gaussian hidden
FRAME model using mode field approximation (middle) and the Gaussian
hidden FRAME model (right) in 49 selected TCA images from the Basel
series. Stars represent the mean for each method.
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strated the flexibility and strengths of this model as well as the range of
possible applications.

Altogether, it can be concluded that the hidden FRAME model and its
relative, the hidden FRAME chain, are flexible tools for TCA image eval-
uation. Both models achieved comparable, even partially superior, age es-
timates compared to those of the manual observers and are thus the most
promising approaches examined in this work.

The hidden FRAME model is also a powerful tool for similarly layered
structures as well as for other large images containing large neighborhood
structures. Only the EM algorithm incorporating mean field approximation
enables fitting the model to these applications in a reasonable timeframe.

7.3 Outlook

The hidden FRAME model led to a very good evaluation of TCA images.
The experiments performed on TCA images therefore provide a basis for fur-
ther research to enhance TCA age estimation. First of all, the independence
of estimates for the number of tooth rings for each TCA image provides the
possibility of ascertaining how to combine estimates to one sound age esti-
mate per individual (possibly including the range of estimates). Secondly,
further statistical and biological analysis of the independent estimates for
TCA images — for example, of one spot with different focus levels, of one slice,
one tooth or one individual — could provide valuable insights into the bio-
logical mechanisms of ring formation. This would certainly facilitate further
research. Thirdly, the semi-automatic evaluation of TCA images presents an
objective measure for evaluating and thereby improving the different prepa-
ration and evaluation techniques of the TCA method. This could lead to a
standardized TCA method. This work therefore provides a valuable tool for
further anthropological as well as paleodemographic research on and with
the TCA method.

The proposed Gaussian hidden FRAME model was evaluated on a large
set of 407 TCA images from the Basel series. Other methods were tested on
a subset — of 49 TCA images — that does not represent the whole range of
qualities of TCA images. On this smaller subset, the following methods all
yielded similar results: the Gaussian hidden FRAME model, the Gaussian
hidden FRAME chain using a halved and a one-column filter respectively, as
well as the hidden FRAME model using mode field approximation. Future
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research should therefore test the latter three methods on a larger subset
containing a wider range of TCA images in order to ultimately judge the
difference between the estimated number of tooth rings. It is suspected
that the more flexible a model is, the poorer it will perform for bad quality
TCA images; but this (or, alternatively, the improved estimated number of
tooth rings) has to be verified for the hidden FRAME chain models. The
hidden FRAME chain, as well as the hidden FRAME model using mode field
approximation could be more attractive because they are substantially faster
than the hidden FRAME model.

In general, future research should evaluate a semi-automatic counting
procedure on a different, even larger sample, than the 407 Basel series TCA
images that were tested here. The first reason for this is to reproduce good
(or even better) results for a different sample and secondly, to examine how
well the algorithm can deal with TCA images that humans were unable to
count.

Despite the good estimates for the number of tooth rings in TCA images,
the reconstruction of tooth rings leaves something to be desired for the Gaus-
sian hidden FRAME model and the Gaussian hidden FRAME chain models.
Various approaches for redesigning the model were suggested, but the ones
pursued led to theoretical or algorithmic problems, or to inferior results. The
focus of evaluation of the hidden FRAME and hidden FRAME chain models
was thus aimed solely at estimating the number of tooth rings; this can be
viewed as a first step towards recognizing tooth rings. With knowledge about
the number of tooth rings, different methods — for example, object recogni-
tion methods such as the snake (Kass et al. [1988]) — could reveal their virtue
for detecting tooth rings. These methods were abandoned at first because
without knowing the number of objects, the task seemed overwhelming, like
a “chicken-and-egg” conundrum. But caution is advised because no reference
is known for the position of tooth rings. The human observers marked only
a single point of each tooth ring. Marking whole tooth rings is considered
too time-consuming and impossible.

The current work assumed a coupled hidden Markov model with directed
contextual constraints in the horizontal direction and undirected constraints
in the vertical direction. Since no application-driven reason exists for this,
future research should also examine the effect of a reverse assumption.

Many textures do not follow Gaussian distributions; also the ‘noise’ in
TCA images (for example, saw cuts and artifacts) is known to be non-normal.
Since TCA application does not suggest an alternative distribution, the sim-
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ple and convenient assumption of independent, identical and normally dis-
tributed gray values, given the label image, was made for all models in the
work. This assumption can be relaxed for any distribution of the exponential
family within the framework of the EM algorithm and should be tested in
future research.

The algorithms suggested in this work were implemented in Matlab and
tested on the compute server Hydra of the MPIDR. Neither the chosen pro-
gramming language nor the computer is the fastest nowadays, but they were
convenient choices, respectively, for fast experimental programming and for
extended, time-consuming tests. For computing times on up-to-date personal
computers, the computing times given in this work could well be divided by
two, such that fitting the Gaussian hidden FRAME model to an average TCA
image costs only about 5.6 hours. Implementing vital parts of the Matlab
program in C-++, for example, could additionally speed up the computing
time.

Fitting the Gaussian hidden FRAME model to TCA images of 20-fold
magnification (instead of 40-fold magnification) may lead to faster results as
well, because of a thinner cementum band and the reduced neighborhood
size involved with thinner tooth ring sizes. Still, the quality of estimates has
to be evaluated critically.

Additional improvements to the proposed models and algorithm are pos-
sible. Saddle points are undesirable stationary points that the EM algorithm
converges to in part. A criterion to discover and diverge from these estimates
was discussed during the work, but not pursued for the first performed ex-
periments. Avoidance of saddle points could improve the estimated number
of tooth rings. A refined grid search for the central filter parameter in the
course of the EM algorithm was also not pursued. Both suggestions could
also improve the quality of confidence intervals.

It is possible that extra improvements could be achieved by adding an-
other parameter to the prior distribution, which estimates the orientation of
tooth rings. This is only of academic interest now, but with the continued
rapid development in the speed of computers, this may become practica-
ble. Also, a three-dimensional approach incorporating several horizontally
neighboring TCA images could lead to improvements in the future.

In the course of this work, the Gaussian hidden FRAME model was ex-
tensively tested. Also an application to tree rings was shown to be successful
and additional related problems were examined. Different variants of the
Gaussian hidden FRAME model that did not lead to success for TCA ap-
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plication, still demonstrated the flexibility and capabilities of the hidden
FRAME model. Some of these variants are conceivable for different applica-
tions.



Appendix A

Derivation of the Observed
Information Matrix

As indicated in Chapter 4.3.3, can standard errors be calculated from the in-
verse Fisher expected information matrix, which can be approximated by the

observed information matrix [ (9,T, Y). For a Gaussian hidden FRAME

model with two labels and a common variance, approximations for the ele-
ments of this observed information matrix were given on pages 83 to 86.

In this appendix the incomplete-data log-likelihood and its first deriva-
tives will be specified. Some elements of the observed information matrix
will follow readily from this as indicated in Chapter 4.3.3, while the other el-
ements will be detailed below. Also derivatives for the filter while specifying
it from the family of Gaborcosine functions, as well as simplifications of the
observed information matrix when specifying the potential function as the
absolute value will be given in this Appendix.

Let us first repeat the incomplete-data log-likelihood of a Gaussian hidden
FRAME model
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. 271, 2
The derivatives 83%, aaTF)TQ as well as af;(f) and aagg%) depend on the specifi-

cation of the filter and the potential family respectively. If the filter is chosen
from the family of Gaborcosine functions, such that
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where the size of the filter |Fp| = (2% [4L] + 1)2 (with [.] denoting the

nearest integer) is a step function and therefore not differentiable. But one

can approximate this function |Fr| =~ (ST;E’V in order to approximate its
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derivative by ‘3TT| ~ (25+ ),

The second derivative of Fr is
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where the second derivative of the filter size is approximated by a;'%@‘ = %.

In Chapter 4.3.4 the potential function ¢ was specified by the absolute
value ¢ = |.|. In order to differentiate this continuous but not everywhere
continuously differentiable function, we assume that filter responses are never

exactly equal to zeros

€ 1= (Fp+ \)(i) # 0.

With this assumption the derivatives become
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99§ _ . 9(¢)

o€ sign(&) an 9E0T :
such that the second derivatives of ¢ in the fourth element on the main
diagonal of the observed information matrix drop out and therefore further
simplify this matrix element (see pages 86 and 171 to 175).



Notation Index

Throughout this work an effort was made to use a unified notation. Because
of the various methods from different fields that were used, this was not
achieved everywhere. Some notation is used universally throughout this doc-
ument, like Y for the part of interest of the TCA image. While other symbols
may be allocated to different meanings that are bound to the chapter, like «
or R. The list below gives an overview of the most important symbols, their
exemplary instances and meanings in alphabetical order.

notation

instances

explanation

A Ty W20 R

a0
) >

(Ai)

/Bha ﬁv

estimated expected value

smallest integer > x

convolution (at pixel i or

positioned at clique C)

polynomial coefficients

gray values for thresholding

(sub) set in Ch. 4

acceptance probability in RJ MCMC in Ch. 3
filter orientation in the FRAME model in Ch. 4.3
parameter of the auto-logistic model in Ch. 4.2
parameter of a Gamma distribution in Ch. 3
probability of birth in RJ MCMC in Ch. 3

(sub) set in Ch. 4

beta distribution

parameter of a Gamma distribution in Ch. 3
parameter of the auto-logistic model (for
horizontal or vertical pair-site cliques) in Ch. 4.2
set of cliques

set of all horizontal pair-site cliques

set of all vertical pair-site cliques
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notation instances

NOTATION INDEX

explanation

TEE>N~FTJTQETNSS s oo

TSN+ Lo =2 =S

(67 Ii? a)/B)

FT: F(ZB, y)
]Fk+17 IFkJrl,lJrl

{0,...,G}, g

ll or 12

Ai O Agy
A
m
[Lg OT
()

probability of death in RJ MCMC in Ch. 3
Dirichlet distribution in Ch. 3

(pseudo) diagonal matrix of eigenvalues in Ch. 2
parameter of a Dirichlet distribution in Ch. 3
expectation

error

set of hyperparameters in Ch. 3

density distribution

filter (with parameter T', one element of a filter)
Fourier transform of a vector or matrix

label set (label)

Gamma distribution

parameter of a normal distribution in Ch. 3
number of observations (for label g or g + 1)
likelihood

label image

random label field

width of the lattice

mean (at label ¢g) in Ch.s 3 to 5 or

functional relation in local regression in Ch. 2
fi| X =g}

height of the lattice or length of a vector
normal distribution

neighborhood system (neighborhood of pixel )
polynomial

potential function

Gelman-Ruben convergence stat. in Ch.s 4 and 5
range of observations in RJ MCMC in Ch. 3
lattice of coordinates/pixel

variance (at label g or location i)

iteration

filter parameter

parameters of the cost function

beta distributed random variable in Ch. 3
Gibbs potential

matrix of left singular vectors in Ch. 2
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notation instances explanation
V Ve(N) function (on clique C') in Ch. 4
|4 v; matrix of right singular vectors in Ch. 2
w weight
Wy () for local regression estimate in Ch. 2

P(\;=g) =w, prob. distr. of labels in Ch. 3
weight function in local regression
state vector in RJ MCMC in Ch. 3
parameter of a normal distribution in Ch. 3
Y, Y., or Y(z,y) observed image (part of TCA image)
Y observed random field
zonal mask

v LM o8 =
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Zusammenfassung

Zahnzementannulation (TCA?) ist der Prozess der geschichteten Bildung von
Zahnzement an der Wurzel von Zahnen und kann bei Menschen zur Schét-
zung des Individualalters genutzt werden. Hierzu werden mikroskopische
Aufnahmen von diinnen Querschnitten der menschlichen Zahnwurzel ange-
fertigt (sogenannte TCA-Aufnahmen), in denen die vermutlich jahrlich ge-
bildeten Zuwachslinien als dunkle und helle Bénder erscheinen. (Kagerer
and Grupe [2001|) Bisher wurden die dunklen Zuwachslinien (Zahnringe)
optisch am Mikroskop oder am (digitalen) Bild ausgeziahlt, um eine Alters-
schdtzung abzuleiten. Ein Algorithmus zur automatischen Auswertung der
TCA-Aufnahmen ist von grofer Bedeutung, da Forschungsarbeiten, die ma-
nuelle Zdhlungen verwendeten, zu widerspriichlichen Resultaten fiihrten.

In der vorliegenden Arbeit wurde das erste Modell-basierte Verfahren
zur Auswertung von TCA-Aufnahmen entwickelt. Hierzu wurden TCA-
Aufnahmen als sogenanntes ,hidden Markov random field* modelliert, wel-
ches weitreichende Abhingigkeiten der beobachteten Grauwerte mithilfe ei-
nes Filter-basierten Modells einbezieht. Dieses Modell kann menschliches
Sehen nachahmen, indem es die periodische Platzierung der Zahnringe nach-
bildet. Die Anwendung auf TCA-Aufnahmen erzielte konkurrenzfihige, zum
Teil sogar bessere, Ergebnisse verglichen mit den manuellen Schitzungen.

Diese Arbeit stellt daher ein wertvolles Hilfsmittel dar fiir weitere an-
thropologische sowie paldodemografische Forschungsarbeiten an und mit der
TCA-Methode.

Diese Zusammenfassung soll einen kurzen Uberblick iiber den Inhalt so-
wie die Bedeutung dieser Arbeit geben. Dazu wird zuerst einleitend die
Themenstellung erortert. Anschliefsend werden die Verfahren zur Auswer-
tung von TCA-Aufnahmen, die im Verlauf dieser Arbeit entwickelt wurden,
gemeinsam mit ihren Vor- und Nachteilen zusammengefasst. Dann wird der

ITCA ist die Abkiirzung fiir tooth cementum annulation
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verwendete Datensatz erlautert und Resultate der Auswertung der TCA-
Aufnahmen werden présentiert. Abschliefend werden die Ergebnisse dieser
Arbeit diskutiert.

Ausfiihrliche Herleitungen und Erlduterungen befinden sich im englisch-
sprachigen Teil dieser Arbeit.

Einleitung

Diese Arbeit befasst sich mit der Auswertung von TCA-Aufnahmen fiir pa-
ldaodemografische Untersuchungen mithilfe eines halbautomatischen Verfah-
rens. Hierzu sollen einleitend die folgenden Begriffe mit Bezug zum Thema
erlautert werden: Paldodemografie, Auswertung, TCA-Aufnahme (und deren
Charakteristika) sowie halbautomatisches Verfahren.

Eine Anwendung der TCA-Methode liegt im Bereich der Paldodemo-
grafie. Mithilfe von Altersschitzungen an menschlichen Skelettfunden kon-
nen Mortalititsprofile (pra-)historischer Populationen rekonstruiert werden.
Diese stellen einen wesentlichen Schritt dar, um demografische Prozesse im
Laufe der menschlichen Geschichte zu verstehen und reprisentieren ein For-
schungsgebiet des Max-Planck-Instituts fiir demografische Forschung
(MPIDR).

Die Auswertung von TCA-Aufnahmen kann in zwei wesentliche Aspekte
untergliedert werden: die Erkennung von Zahnringen und die Schitzung ihrer
Anzahl. Der Schwerpunkt dieser Arbeit lag in der Schitzung der Anzahl der
Zahnringe, da diese Grofe entscheidend fiir die Altersbestimmung und damit
fiir die Rekonstruktion von Mortalitdtsprofilen ist.

TCA-Aufnahmen werden iiblicherweise mit 20- oder 40-facher Ver-
groferung am Durchlichtmikroskop aufgenommen, sind zweidimensional,
1016x1300 Pixel grof und enthalten 2'® Graustufen. Zahnringe sind em-
pirisch etwa 1 bis 3 pum breite Strukturen, welche in der digitalen Aufnahme
unter 40-facher Vergréferung und bei einer Pixelgrofe von 6.7 pm als un-
gefahr 5 bis 20 Pixel breite dunkle Béander erscheinen. Abbildung A.1 zeigt
eine typische TCA-Aufnahme, in der 34 Zahnringe erwartet werden. Diese
sogenannte theoretische Anzahl der Linien ergibt sich aus dem bekannten
Alter (41 Jahre fiir dieses Individuum), von dem das zahn- und geschlechts-
spezifische Durchbruchsalter (sieben Jahre in diesem Fall) subtrahiert wird.
Die TCA-Aufnahme in Abbildung A.1 wurde wihrend der gesamten Arbeit
als Standardbeispielbild zum Testen von Bildverarbeitungsmethoden benutzt
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und dient hier zur Illustration folgender allgemeiner Charakteristika der ver-
wendeten TCA-Aufnahmen:

(1) Zahnringe verlaufen annéhernd parallel und hauptséchlich horizontal.

(2) TCA-Aufnahmen enthalten einen hohen Anteil an Rauschen. Informa-
tionen zu Zahnringen sind hiufig verfilscht oder sogar nicht vorhanden.

(3) TCA-Aufnahmen enthalten weitreichende Abhéngigkeiten zwischen den
beobachteten Grauwerten. Im Allgemeinen ist der Grauwert eines Pi-
xels in strukturierten Bildern mit hoher Wahrscheinlichkeit &hnlich zu
den Grauwerten seiner benachbarten Pixel. Die hohe Reichweite dieser
Nachbarschaftsbeziehung zwischen Pixeln ist charakteristisch fiir TCA-
Aufnahmen und entspricht in vertikaler Richtung der Grofenordnung
der Zahnringbreite.

Ein halbautomatisches Verfahren zur Auswertung von TCA-Aufnahmen
beinhaltet die manuelle Markierung des Zahnzementes (sieche Abbildung A.1)
und anschlieffend einen vollautomatisierten Algorithmus, der eine Schitzung
fiir der Anzahl der Zahnringe ausgibt.

Dieses automatisierte Verfahren besteht aus einem EM-Algorithmus, der
die Schitzung eines ausgewihlten statistischen Modells, des sogenannten
,Gaufs’schen hidden FRAME-Modells‘, ermdéglicht. Die Entwicklung dieses
Modells und seines Schétzverfahrens werden im folgenden Abschnitt niher
erldutert. Der darauf folgende Abschnitt wird dann die Anwendung des halb-
automatischen Verfahrens auf 407 TCA-Aufnahmen illustrieren.

Methoden

Jedes der Kapitel 2 bis 5 dieser Arbeit untersuchte eine Methode — bezie-
hungsweise eine Art von Methoden — auf ihre Anwendbarkeit zur Auswertung
von TCA-Aufnahmen. Diese vier Methoden werden im Folgenden zusammen
mit ihren Vor- und Nachteilen beschrieben. Zuerst wurden zwei Ansétze
verfolgt, die nicht zum Erfolg fiihrten. Trotzdem lieferten sie wertvolle Ein-
sichten zur Entwicklung des entgiiltigen Verfahrens. Anschliefend wurden
zwei statistische Modelle untersucht, die methodisch unterschiedliche An-
sitze darstellen, jedoch dhnlich spezifiziert werden konnen und vergleichbar
gute Resultate liefern.



Zementband

Abbildung A.1: Eine typische TCA-Aufnahme mittlerer Qualitit
(IS-0000666 aus der TCA-Datenbank des MPIDR).
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Als erster Ansatz wurden Standardmethoden aus den drei Bereichen Sta-
tistik, Analysis und Algebra auf ihre Anwendbarkeit zur Auswertung von
TCA-Aufnahmen untersucht. Diese drei Verfahren zur Messung von
Bildmerkmalen basieren auf lokaler Regression, Fouriertransformation be-
ziehungsweise Singuldrwertzerlegung und konnten die verfilschten oder nicht-
vorhandenen Informationen in TCA-Aufnahmen nicht wiederherstellen (siehe
Punkt (2) der Charakteristika von TCA-Aufnahmen). Trotzdem illustrieren
diese Methoden Merkmale von TCA-Aufnahmen und betonen den Unter-
schied zwischen zwei Aspekten der Auswertung von TCA-Aufnahmen: die
Erkennung von Zahnringen und die Schétzung ihrer Anzahl.

Der zweite Ansatz beruhte auf der Annahme von Mischverteilungen?,
die voraussetzt, dass Beobachtungen aus verschiedenen Gruppen hervorge-
gangen sind (McLachlan and Peel [2000]). Die individuelle Gruppenzuge-
horigkeit (zum Beispiel zum hellen oder dunklen Zahnring) ist jedoch nicht
bekannt und wurde mithilfe des EM-Algorithmus (McLachlan and Krishnan
[1997])und des RJ MCMC (Richardson and Green [1997]) geschitzt. Beide
Algorithmen lieferten Rekonstruktionen der TCA-Aufnahmen, die keine Zahn-
ringe darstellten. Der Grund dafiir liegt in der vereinfachenden Annahme,
dass Beobachtungen unabhéngig sind. Diese Annahme ist fiir TCA-Aufnah-
men jedoch klar verletzt. (Siehe Punkt (3) der Charakteristika von TCA-
Aufnahmen.) Dieser Ansatz hat zu der Erkenntnis gefiihrt, dass Modelle
fiir TCA-Aufnahmen die Beziehungen zwischen rdumlich nahen Pixeln be-
riicksichtigen sollten, um das unbekannte ,wahre' Bild aus dem verrauschten
beobachteten Bild schidtzen zu kénnen.

Eine Moglichkeit, dies zu realisieren, ist das sogenannte ,hidden Mar-
kov random field' (HMRF)3. Dieses Modell besteht aus zwei Stufen — dem
beobachtbaren Zufallsfeld ) mit Instanzen Y und dem latenten Zufallsfeld
A mit den Instanzen A:

FOY) =" PFYIN).

Fiir Anwendungen in dieser Arbeit reprisentiert Y eine TCA-Aufnahme und
A deren Rekonstruktion (Labelbild).

Diese beiden Zufallsfelder ) und A sind verkniipft durch die bedingte
Wahrscheinlichkeit des beobachteten Bildes unter dem gegebenen Labelbild;

2sogenanntes ,mixture modeling’
3ein latentes Markoff-Zufallsfeld, zum Beispiel in Zhang et al. [2001] erklirt



194 GERMAN SUMMARY — ZUSAMMENFASSUNG

welche durch unabhéngige Normalverteilungen spezifiziert wurde. Desweite-
ren wird angenommen, dass das latente Zufallsfeld wie ein ,Markov random
field* (MRF) verteilt ist, das folgende zentrale Eigenschaft besitzt:

P (Nilds\i) = PAilAn),

wobei i aus der Menge der Pixel S beliebig gewéhlt ist und N (7) die Nachbar-
schaft von ¢ definiert. MRFs kdnnen mithilfe dieser Nachbarschaft rdumliche
Abhéngigkeiten modellieren.

Zunichst wurde das MRF durch das auto-logistische Modell spezifiziert
(Winkler [1995]), welches paarweise Beziehungen zwischen Pixeln beriicksich-
tigt. Dieses einfache MRF modelliert somit nur Mikrotexturen und konnte
nicht die parallelen Zahnringe der TCA-Aufnahmen nachbilden. Regulérere
Strukturen konnen durch die Erweiterung der Nachbarschaft NV realisiert wer-
den, beispielsweise mithilfe des FRAME*-Modells (Zhu et al. [1997]). Dieses
Modell kann durch eine Faltung (Fr*\) des Labelbildes innerhalb der Gibbs-
Potentialfunktion weitreichende Autokorrelationen erklaren:

1% dlEr))]
P(T) = e T

Durch Simulationen dieses MRFs wurden die Eigenschaften des Modells illu-
striert und gezeigt, dass die periodische Platzierung von Zahnringen mithilfe
der Familie der Gaborkosinusfilter beschrieben werden kann.

Eine koh#rente Schitzung der Parameter dieses Gauf’schen hidden
FRAME-Modells wurde durch einen EM-Algorithmus ermdglicht, der die
Mean-Field-Theorie nutzt, um die Verteilung des latenten Zufallsfeldes zu
approximieren (Celeux et al. [2003]). Auch eine Mode-Field-Approximation
ist moglich. Diese Algorithmen vermeiden rechenintensive Markov-chain-
Monte-Carlo-Methoden. Die Mean-Field-Approximation der letzten Itera-
tion des EM-Algorithmus’ nahert die Rekonstruktion der TCA-Aufnahme
an, und der Parameter T" des MRFs, der in unserer Anwendung die Wellen-
lange des Gaborkosinusfilters bestimmt, gibt die durchschnittliche Zahnring-
breite in TCA-Aufnahmen wieder. Aus der Schitzung dieses Parameters folgt
daher direkt ein Schitzwert fiir die Anzahl der Zahnringe. Konfidenzinter-
valle der Parameter bieten die Mdoglichkeit, die Anpassungsgiite des Modells
an TCA-Aufnahmen zu beurteilen, und sie konnten ebenfalls mithilfe der
Mean-Field-Approximation geschitzt werden.

4FRAME ist die Abkiirzung fiir Filters, Random Fields and Maximum Entropy
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Desweiteren wurde in dieser Arbeit ein Coupled Hidden Markov Mo-
del (CHMM)?® erforscht, mit dem Ziel, gerichtete zweidimensionale Abhéin-
gigkeiten zu beriicksichtigen. Im Gegensatz dazu stehen die ungerichteten
Abhéngigkeiten des HMRF, die weniger Flexibilitdt bieten. Der Ansatz des
CHMM beruht auf der Verbindung von benachbarten Markoff-Ketten (Preuf
[1975]) und wurde analog zum hidden FRAME-Modell spezifiziert: das beob-
achtbare Zufallsfeld ist verteilt wie ein Produkt aus Normalverteilungen und
das latente Zufallsfeld wie ein FRAME-Modell, wobei der Filter Fr halbiert
wird. Dieses Modell wurde hier Gaufs’sche hidden FRAME-Kette genannt
und ist eine neuartige Methode, Makrotexturen zu beschreiben und zwischen
den zwei Dimensionen des Raumes unterscheiden zu kénnen. Durch Simu-
lationen wurde gezeigt, dass auch dieses Modell die periodische Platzierung
von Zahnringen beschreiben kann, indem der halbierte Filter aus der Fami-
lie der Gaborkosinusfilter gewéhlt wird. Der selbe EM-Algorithmus wie fiir
das HMRF konnte zum Anpassen des Modells verwendet werden und lieferte
dhnliche Ergebnisse. Die Rekonstruktion von TCA-Aufnahmen ist flexibler
in der Richtung der Zahnringe fiir dieses Modell.

Die vorgestellten Modelle und Algorithmen zur Auswertung von TCA-
Aufnahmen wurden ausfiihrlich evaluiert. Dazu werden im n#chsten Ab-
schnitt die TCA-Aufnahmen der Baselserie vorgestellt, an denen diese Aus-
wertung vorgenommen wurde. Anschlieffend werden die Resultate prisen-
tiert.

Daten der Baselserie

In der Schweizer Stadt Basel befindet sich der Spitalfriedhof St. Johann,
dessen Skelette aus der frithindustriellen Zeit weitgehend altersbekannt sind.
Zehn Methoden zur Altersschitzung wurden an 100 ausgewahlten Skeletten
dieses Friedhofs angewendet. Dabei wurde die Hilfte der Skelette von je-
dem Beobachter (ohne deren Wissen) zweimal untersucht. (In Hotz [2006]
werden Details zu dieser sogenannten Serie Spitalfriedhof St. Johann Ba-
sel erkldrt.) Auch die TCA-Methode wurde von drei verschiedenen Laboren
auf diese Baselserie angewendet. Das Zahnlabor des Max-Planck-Institutes
fiir demografische Forschung fertigte 2120 digitale TCA-Aufnahmen an, die
verblindet von zwei unabhéngigen Beobachtern ausgewertet wurden. 1280
dieser Aufnahmen wurden jedem Zéhler zweimal gegeben, sodass bis zu vier

Sein gekoppeltes latentes Markoff-Modell



196 GERMAN SUMMARY — ZUSAMMENFASSUNG

Zéhlergebnisse pro Aufnahme existieren. Dieser Aufbau der Studie erlaubt
weitreichende Vergleiche der Zihlergebnissen eines halbautomatischen Ver-
fahrens sowohl zu der theoretischen Anzahl der Linien als auch zu den ma-
nuellen Zahlergebnissen.

Aus den TCA-Aufnahmen der Baselserie wurden diejenigen mit 40-facher
Vergrokerung ausgewdhlt, zu denen mindestens zwei (der moglichen vier)
manuelle Zdhlergebnisse existieren. Fiir diese 407 TCA-Aufnahmen kénnen
Zahlergebnisse einer halbautomatischen Prozedur gegen zwei unvollkommene
Referenzmafke evaluiert werden: die theoretische Anzahl der Linien (TNoL")
und die manuellen Z&hlergebnisse. Die TNoL ist kein ideales Maf fiir die
Anzahl der Zahnringe in TCA-Aufnahmen, da zum Beispiel Anomalien der
biologischen Prozesse, die Priaparationsbedingungen oder die Mikroskopie zu
Storungen fiihren. Die manuellen Zéhlergebnisse sind durch ihre Subjektivi-
tit gekennzeichnet. Diese beiden Mafe, TNoL und manuelle Ziahlergebnisse,
sind jedoch die einzigen zum Vergleich verfiigharen Grofen. Zusétzlich wurde
eine Teilmenge der 407 TCA-Aufnahmen ausgewihlt, bei der die manuellen
Zéhlergebnisse einer Aufnahme maximal drei Jahre voneinander abweichen.
Diese Teilmenge umfasst 49 TCA-Aufnahmen und wurde fiir erste Unter-
suchungen der vorgestellten Verfahren verwendet. Diese Aufnahmen repré-
sentieren eine Untermenge besserer Qualitit, gemessen an den manuellen
Zahlungen.

Resultate

An jede der 407 TCA-Aufnahmen der Baselserie wurde das Gaufs’sche hid-
den FRAME-Modell angepasst. Die Ergebnisse sind in der Abbildung A.2
in einem Boxplot zusammengefasst. Die geschétzte Anzahl der Zahnringe
ist im Mittel ndher an der theoretischen Anzahl der Linien als die manuel-
len Zahlwerte. Die Varianz der Differenz zwischen den geschétzten und der
theoretischen Anzahl der Linien ist etwas grofer fiir das Gaufs’sche hidden
FRAME-Modell als fiir die manuellen Zdhler. Das entwickelte halbautoma-
tische Verfahren ist daher konkurrenzfihig zu den manuellen Zihlern auf der
Ebene der TCA-Aufnahmen. Vergleicht man die Ergebnisse auf Zahnebene
(da den manuellen Zahlern die Zugehorigkeit der TCA-Aufnahmen zum Zahn
bekannt war), ist das hidden FRAME-Modell sogar etwas iiberlegen, wenn

STNoL ist die Abkiirzung fiir ,theoretical number of lines*



197

5 n= 404 n= 328 3
T8
O

o _ o

: — .
o & . :
L
2 4 o © n= 407

[

[ [
obs1-TNoL obs2-TNoL auto-TNoL

Abbildung A.2: Box-Whiskers-Plots der Differenz zwischen der geschétzten
und der theoretischen Anzahl (TNoL) der Linien fiir das Gauf’sche hidden
FRAME-Modell (rechts) und fiir die erste (von moglicherweise zwei) Z&h-
lung(en) der zwei Beobachter (links und Mitte) fiir 407 ausgewéhlte TCA-
Aufnahmen der Baselserie.

man die Schitzungen eines Zahnes mithilfe des Durchschnittes oder des Me-
dians zusammenfasst. Die berechneten Konfidenzintervalle fiir die Schét-
zungen der Anzahl der Zahnringe miissen mit Vorsicht interpretiert werden.
Sie messen die Anpassungsgiite des Gauf’sche hidden FRAME-Modells an
jede TCA-Aufnahme. Aussagen iiber die Qualitit der TCA-Altersschitzung
miissen jedoch retrospektiv aus der Varianz der geschitzten zur theoretischen
Anzahl der Linien einer Stichprobe berechnet werden.

Die verbleibenden vorgestellten Verfahren zur Auswertung von TCA-
Aufnahmen (sowie das oben diskutierte Verfahren) wurden an der Teilmenge
von 49 TCA-Aufnahmen getestet. Die Verfahren basierend auf Singulir-
wertzerlegungen und Fouriertransformationen wurden aufgrund der hohen
Variabilitdt der Schitzungen von vornherein ausgeschlossen. Auferdem wur-
den vier weitere Modelle an die TCA-Aufnahmen angepasst und fithrten zu
dhnlichen Resultaten: das Gauk’sche hidden FRAME-Modell, die Gaufs’sche
hidden FRAME-Kette mit einem halbierten Filter und einem einspaltigen
Filter, sowie das Gaufs’sche hidden FRAME-Modell basierend auf der Mode-
Field-Approximation. Speziell das Gaufs’sche hidden FRAME-Modell und
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Abbildung A.3: Box-Whiskers-Plots der Differenz zwischen der geschétzten
(auto) und der theoretischen Anzahl (TNoL) der Linien fiir drei verschiedene
Verfahren: die Gauf’sche hidden FRAME-Kette mit einem einspaltigen Fil-
ter (links), das Gauf’sche hidden FRAME-Modell basierend auf Mode-Field-
Approximation (Mitte) und das Gauft’sche hidden FRAME-Modell (rechts)
fiir 49 ausgewihlte TCA-Aufnahmen der Baselserie. Die Sternchen markie-
ren den Mittelwert jeder Methode.

die Gaufs’sche hidden FRAME-Kette mit einem halbierten Filter lieferten
fast identische Ergebnisse, sodass das letztere Modell nachfolgend nicht se-
parat diskutiert wird. Die Ergebnisse der anderen drei Modelle sind zusam-
menfassend in Abbildung A.3 dargestellt. Im Vergleich zu der theoretischen
Anzahl der Zahnringe liefert die geschitzte Anzahl der Zahnringe fiir den
Mode-Field-basierten Algorithmus etwas schlechtere Ergebnisse. Die verblei-
benden zwei Methoden liefern fiir das eine oder das andere aggregierte Maf
etwas bessere Resultate.

Diskussion

In dieser Arbeit wurde gezeigt, dass das Gauf’sche hidden FRAME-Modell
und die Gauf’sche hidden FRAME-Kette vielversprechende Verfahren zur
Auswertung von TCA-Aufnahmen sind. Beide Methoden erzielten vergleich-
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bare, teilweise sogar bessere, Schiatzwerte fiir die Anzahl der Zahnringe als
die manuellen Zahler. Das hidden FRAME-Modell ist zudem ein leistungs-
fahiger Ansatz fiir andere Schichtstrukturen, welches am Beispiel der Jah-
resringe von Biumen demonstriert wurde. Andere Anwendungen auf grofe
Bilder, die weitreichende Nachbarschaften erfordern, sind ebenfalls denkbar.
Erst der EM-Algorithmus zusammen mit der Mean-Field-Approximation er-
moglichte die Anpassung des Modells an solche Anwendungen innerhalb einer
angemessenen Zeit.

Trotz der guten Schéitzung der Anzahl der Zahnringe lasst die Rekon-
struktion der TCA-Aufnahmen noch Verbesserungen offen, sowohl fiir das
Gaufs’sche hidden FRAME-Modell als auch fiir die Gauf’sche hidden FRAME-
Kette. Durch das letztgenannte Modell wurde zwar ein Labelbild rekonstru-
iert, welches flexibler in horizontaler Richtung ist, aber die gleiche, weitge-
hend konstante Ringbreite im gesamten Labelbild aufweist. Das Gauf’sche
hidden FRAME-Modell und der EM-Algorithmus kénnen zusétzlich durch
folgende Ansitze umgestalten werden: durch ein nichthomogenes FRAME-
Modell, ein pixel- oder labelabhéngiges beobachtbares Zufallsfeld, auferdem
durch die Mode-Field-Approximation der Verteilung des latenten Zufallsfel-
des und durch eine Partitionierung von TCA-Aufnahmen. Diese Ansétze
ergaben theoretische oder algorithmische Probleme, beziehungsweise liefer-
ten schlechtere Resultate. Hauptaugenmerk der Evaluierung der Verfahren
lag deshalb auf der Schitzung der Anzahl der Zahnringe. Dieses kann als er-
ster Schritt hin zur Erkennung von Zahnringen angesehen werden, da mit der
Kenntnis der Anzahl der Ringe andere Methoden, zum Beispiel aus der Ob-
jekterkennung, zum Einsatz kommen kénnen. Vorsicht ist jedoch geboten,
da fiir die Position der Zahnringe keine Referenz existiert. Die manuellen
Zahler markieren lediglich einen Punkt jedes Zahnringes. Die Markierung
ganzer Zahnringe wird als zu aufwéindig und als unmdéglich eingeschétzt.

Der erforderliche Rechenaufwand fiir die Anpassung von Modellen mit
weitreichenden Nachbarschaften an die grofsen TCA-Aufnahmen war eine
wiederkehrende Thematik dieser Arbeit. Der Rechenaufwand fiir das
Gauk’sche hidden FRAME-Modell betragt im Durchschnitt ungefahr elf Stun-
den fiir eine TCA-Aufnahme, etwa sieben Stunden fiir die Gauf’sche hid-
den FRAME-Kette mit einem schmalen Filter und ungefihr neun Stunden
fiir das Gaufs’sche hidden FRAME-Modell basierend auf der Mode-Field-
Approximation. Diese Rechenzeiten beziehen sich auf den Computeserver
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Hydra” des MPIDR. Die Gauf’sche hidden FRAME-Kette und das Verfah-
ren basierend auf der Mode-Field-Approximation verkiirzten somit die Re-
chenzeit um etwa 40%, beziehungsweise um 20%, gegeniiber des Gauk’schen
hidden FRAME-Modells. Weitere Verbesserungen der Geschwindigkeit konn-
ten durch die Verwendung von TCA-Aufnahmen mit 20-facher Vergréferung
erzielt werden, da diese diinnere Zementbidnder enthalten und da zuséatzlich
diinnere Zahnringe zu kleineren Nachbarschaften fithren. Auch die Verwen-
dung schnellerer Computer ist denkbar. Dies wiirde schon heutzutage die
Rechenzeit halbieren.

Weitere mogliche algorithmische oder methodische Verbesserungsmog-
lichkeiten liegen in den folgenden Ansitzen:

e Ein verfeinertes Gitternetz zur Suche nach dem zentralen Filterpara-
meter 7" konnte insbesondere eine verbesserte Schitzung von Konfiden-
zintervallen fiir einige TCA-Aufnahmen erméglichen.

e Die Verwendung eines zusatzlichen Parameters in der Verteilung des la-
tenten Zufallsfeldes konnte die Orientierung von Zahnringen mitschét-
zen. Um den Rechenaufwand zu limitieren, wurde bisher angenommen,
dass Zahnringe horizontal verlaufen; anderenfalls wurde manuell deren
Orientierung geschétzt.

e Ein dreidimensionaler Ansatz konnte gleichzeitig auch benachbarte TCA-
Aufnahmen in die Analyse einbeziehen. Dies konnte zusétzliche Infor-
mationen in das Schétzverfahren einbringen, ist jedoch bisher zeitlich
nicht realisierbar gewesen.

Im Allgemeinen sollten halbautomatische Verfahren zur Auswertung von
TCA-Aufnahmen in kiinftigen Forschungsarbeiten an einer gréfleren, be-
ziehungsweise einer anderen, Stichprobe getestet werden als die 407 TCA-
Aufnahmen der Baselserie. Erstens, um die guten Resultate zu reprodu-
zieren und zweitens, um zu untersuchen, wie sich das Verfahren bei TCA-
Aufnahmen verhélt, die von den manuellen Zahlern abgelehnt wurden. Die
Teilmenge der 49 TCA-Aufnahmen, an denen die meisten der vorgestellten
Verfahren evaluiert wurden, reprisentiert nicht die volle Bandbreite der Qua-
litdt von TCA-Aufnahmen. Da zudem vermutet wird, dass die Gaufs’sche hid-
den FRAME-Kette wegen ihrer Flexibilitdt dem Gauf’schen hidden FRAME-

"Hydra ist ein HP ProLiant DL 580 Computer mit dem Server-Betriebssystem Windows
2000, vier Intel Xeon MP 1.60 GHz Prozessoren und zwei GB Speicher.
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Modell fiir TCA-Aufnahmen von schlechterer Qualitit unterlegen ist, sollte
diese Methode in Zukunft weitergehend getestet werden.

In der Fachliteratur existiert keine standardisierte TCA-Methode. Ver-
schiedene Labore verwenden unterschiedliche Priparations- und Evaluati-
onstechniken, die vermutlich die Forschungsergebnisse beeinflussen und zu
widerspriichlichen Resultaten fiithren. Mithilfe des vorgeschlagenen halb-
automatischen Verfahrens in dieser Arbeit eréffnen sich Forschungsansitze
zur Verbesserung der TCA-Altersschitzung. Die objektive Auswertung der
TCA-Aufnahmen erméglicht eine bessere Beurteilung der Priparations- und
Evaluationstechniken der TCA-Methode und kénnte somit zu deren Verein-
heitlichung beitragen. Zweitens liefern die unabhéngigen Z&hlergebnisse fiir
Zahnringe jeder TCA-Aufnahme die Méglichkeit nach einer Methode zu for-
schen, die Schitzwerte eines Individuums bestmoglich zu kombinieren. Als
Drittes konnte die statistische und biologische Analyse von unabhéngigen
Schitzwerten fiir TCA-Aufnahmen eines Areals, aufgenommen mit verschie-
denen Fokusebenen, oder eines Querschnittes, eines Zahnes oder sogar eines
Individuums neue Erkenntnisse zu den biologischen Mechanismen der Zahn-
ringbildung liefern und somit zukiinftige Forschung unterstiitzen.

Die vorliegende Arbeit stellt daher ein wertvolles Hilfsmittel dar fiir wei-
tere anthropologische sowie paldodemografische Forschungsarbeiten an und
mit der TCA-Methode.



