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Abstract

After realizing its frequency in the last decade, alternative splicing has attracted consid-

erable attention. Although several biological phenomena can be explained by alternative

splicing today, research has just started to uncover all of its aspects.

This thesis investigates three aspects of alternative splicing, mostly by means of

computational large-scale analyses. In the first part, we introduce a new approach to

predict alternative splicing without using expressed sequence information. Given that

our knowledge about the human transcriptome is still incomplete, ab initio prediction of

alternative splicing is a rather recent but important research area. In contrast to existing

methods, our approach is independent of orthologous sequences, thus it is applicable to

a single genome. By introducing an efficient dynamic programming algorithm, we reduce

the computational complexity during the search for new splice events compared to a naive

algorithm. The use of this algorithm is demonstrated in a genome-wide application, where

we predict and verify novel human splice events.

In the second part, we investigate the influence of mRNA secondary structures on

the regulation of the splicing process. We show that experimentally verified binding

sites of splicing regulatory proteins have a higher single-strandedness. As alternative and

constitutive splicing often depends on several such binding sites, this indicates a general

importance of mRNA secondary structures for splicing. Then, we develop a new motif

finding method that benefits from using an informative prior probability distribution,

which takes the single-strandedness of putative motif occurrences into account. We per-

form extensive tests with artificial and biological data sets and demonstrate that the

additional information about secondary structures help to discriminate real binding sites

from spurious ones.

In the third part, we analyze a group of splice events that have mostly escaped

attention in the past. These splice events occur at tandem acceptor splice sites and

result in minor changes of the mRNA and the protein. Genome-wide analyses provide

evidence for a non-random distribution of these splice events at the genome and protein

level, for tissue-specific regulation, and for evolutionary conservation. Moreover, we find

that SNPs affecting such acceptors have a highly predictive effect on splicing. Extending

our studies to tandem donors, we investigate differences between alternatively and not

alternatively spliced tandem donors. We conclude that these donor and acceptor splice

events represent one major mechanism to increase the proteome diversity and that some

of them have consequences for protein function and human disease. Finally, we develop

a relational database, which stores extensive information about tandem splice sites.

In summary, in this thesis, we introduce a new approach for ab initio splice event

prediction, uncover another detail about the regulation of splicing, develop a new de novo

motif finding method, perform the first detailed genome-wide analysis of tandem splice

sites, and develop a specific database of tandem donors and acceptors.
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Zusammenfassung

Nachdem die Häufigkeit von alternativ gespleißten Genen im letzten Jahrzehnt erkannt

wurde, hat das alternative Spleißen in der Wissenschaft große Aufmerksamkeit erfahren.

Mehrere biologische Phänomene können heute durch alternatives Spleißen erklärt werden.

Trotzdem hat die Forschung gerade erst begonnen alle Aspekte aufzudecken.

Diese Dissertation untersucht drei verschiedene Aspekte des alternativen Spleißens,

hauptsächlich durch Anwendung von computerbasierten Analysen. Im ersten Teil wird

eine neue Methode für die Vorhersage von alternativen Spleißformen ohne Verwendung

von exprimierten Sequenzen vorgestellt. Wenn man bedenkt, dass unser Wissen über

das humane Transkriptom noch unvollständig ist, stellt die ab initio Vorhersage von

Spleißformen ein neues, aber wichtiges Forschungsgebiet dar. Im Gegensatz zu anderen

Methoden ist unser Ansatz unabhängig von Informationen über orthologe Sequenzen und

daher auf einzelne Genome anwendbar. Die Komplexität der Suche nach neuen Spleiß-

formen kann durch die Entwicklung eines effizienten Algorithmus, der auf dem Prinzip

der dynamischen Programmierung basiert, deutlich reduziert werden. Wir zeigen den

Nutzen dieser Methode durch eine Anwendung auf das humane Genom, bei der wir neue

Spleißvarianten vorhersagen und nachweisen.

Der zweite Teil der Arbeit untersucht den Einfluss von mRNA Sekundärstrukturen auf

die Regulation des Spleißprozesses. Dabei zeigen wir, dass experimentell bestätigte Bin-

dungsstellen von regulatorischen Spleißfaktoren eine signifikant höhere Einzelsträngigkeit

aufweisen. Da alternatives und auch konstitutives Spleißen von mehreren solcher Bin-

dungsstellen abhängt, deutet dieses Ergebnis auf einen generellen Einfluss von mRNA

Sekundärstrukturen auf den Spleißprozess hin. Wir nutzen dieses Prinzip bei der Entwick-

lung eines neuen Algorithmus für die Erkennung von Motiven in biologischen Sequenzen.

Dieser Algorithmus berücksichtigt die Einzelsträngigkeit möglicher Bindungsstellen, was

durch eine sequenzspezifische a priori Wahrscheinlichkeitsverteilung modelliert wird. Um-

fassende Tests mit künstlichen und biologischen Datensätzen zeigen, dass diese zusätzliche

Information hilfreich ist, um zwischen echten und falsch-positiven Bindungsstellen zu un-

terscheiden, was genauere Motivbeschreibungen erlaubt.

Im dritten Teil analysieren wir eine Gruppe von alternativen Spleißereignissen, die

bisher wenig Beachtung gefunden haben. Diese Ereignisse geschehen an Tandemakzeptor-

Spleißstellen und führen zu subtilen Veränderungen der mRNA und des entsprechen-

den Proteins. In genomweiten Untersuchungen fanden wir Hinweise, dass diese Splei-

ßereignisse nicht zufällig im Genom und im Proteom verteilt sind; dass sie gewebespe-

zifisch reguliert werden können; und dass eine Teilmenge evolutionär konserviert ist.

Weiterhin konnten wir zeigen, dass SNPs in solchen Spleißstellen einen vorhersagbaren

Effekt auf Veränderungen im Spleißmuster haben. Wir erweitern die Untersuchungen

auf Tandemdonor-Spleißstellen und analysieren Unterschiede zwischen alternativen und

konstitutiven Tandemdonoren. Wir kommen zu dem Schluss, dass Tandem-Spleißstellen
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einen wichtigen Mechanismus zur Vergrößerung der Proteom Vielfalt darstellen. Außer-

dem haben einige dieser Spleißstellen Auswirkungen auf die Proteinfunktionalität so-

wie auf menschliche Erkrankungen. Um weitere Forschungen zu erleichtern, erstellen

wir eine spezifische Datenbank, die umfassende Informationen über Tandem-Spleißstellen

öffentlich zugänglich macht.

Zusammengefasst lässt sich sagen, wir entwickeln in dieser Dissertation einen neu-

en Ansatz für die ab initio Spleißformvorhersage; beschreiben ein weiteres Detail der

Regulation des Spleißprozesses; stellen einen neuen Algorithmus für die Erkennung von

unbekannten Sequenzmotiven vor; führen die erste umfassende Analyse von Tandem-

Spleißereignissen durch und erstellen eine spezifische Datenbank über Tandemdonoren

und -akzeptoren.
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Organization of the thesis

This thesis describes three studies that address open questions concerning alternative

splicing. These studies have in common that we mainly use algorithmic work and large-

scale computational analyses. However, from a biological viewpoint, these studies address

different aspects of alternative splicing. Specifically, these aspects are the ab initio pre-

diction of splice events, the regulation of splicing by secondary structures, and the novel

field of tandem splice sites. Therefore, I decided to describe the three studies in the

chapters 2, 3, and 4.

Each of these chapters starts with a brief summary and then gives a specific introduc-

tion, mentions related work, and motivates the following study. Each chapter ends with a

specific discussion of the findings. These three chapters are preceded by an introduction

chapter 1, which provides general background knowledge about alternative splicing. A

broader conclusion and an outlook are given in chapter 5.

Writing style

Current research is mostly team work and consequently rather ’we’ instead of ’I ’. Most

of this work was done in collaboration with other researchers who contributed with ideas,

wet-lab experiments, and biological expert knowledge. Therefore, I decided to write this

thesis in the ’we’ style. At this point, it should be mentioned that all wet-lab experiments

are not performed by myself. However, as they are important to verify and extend our

computational analysis, the results of these experiments are briefly described.
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Chapter 1

Introduction into constitutive and

alternative splicing

”Genes in pieces”

Soon after the discovery of exons and introns, Walter Gilbert 1978 asked ”Why genes

in pieces?” [1]. Gilbert speculated that differential usage of exons can lead to function-

ally different proteins. Contradicting the fundamental dogma ”one gene, one polypeptide

chain”, this would allow evolution to ”seek new solutions without destroying the old”.

Furthermore, he speculated that mutations at exon boundaries and at silent codon posi-

tions can affect the splicing process. In the last decade, genome projects and large-scale

studies have started to uncover the importance of alternative splicing and confirmed

many of the hypotheses suggested by Gilbert in 1978.

Alternative splicing is the main topic of this thesis. This chapter gives an introduc-

tion to the biology of the splicing mechanism and to important bioinformatics studies.

Because of the complexity of this field, we mainly focus on topics that are relevant for

the understanding of the work described in this thesis.

1.1 The splicing mechanism

A fundamental difference between the gene structures of prokaryotes and eukaryotes is the

existence of introns in the latter. Most genes of higher eukaryotes consist of several exons

and introns, with an average of ten exons (and nine introns) per human gene [2]. During

the splicing process, introns are removed from the pre-mRNA and only exons are retained

in the mature transcript. This process is carried out by one of the largest molecular

machines, the spliceosome, which consists of several small nuclear RNAs (snRNAs) and

more than 150 proteins. The snRNAs are bound to multiple proteins forming small

nuclear ribonucleoprotein particles (snRNPs). Five snRNPs (called U1, U2, U4, U5,

and U6) are involved in the splicing process. Noteworthy, despite the involvement of



4 Chapter 1: Introduction into constitutive and alternative splicing

branch
point

polypyrimidine
tract

GTRAGTexon intron YTRAY YY...YY exon

donor acceptor

YAG

Figure 1.1: Schematic illustration of an intron with its neighboring exons.
The basic splicing signals are depicted. The dashed line indicates the splicing pattern.
Y stands for C or T, R stands for A or G.

numerous proteins, the RNA components of the snRNPs seem to be mainly responsible

for the catalytic activity of the spliceosome.

The recognition of an intron in the pre-mRNA sequence requires three basic splicing

signals (Figure 1.1). The first two signals are the 5’ intron end, which is called the donor

splice site, and the 3’ intron end, which is called the acceptor splice site. In mammals,

the donor site has an extended intronic consensus sequence GTRAGT (R stands for A

or G), where the first intronic dinucleotide GT1 is nearly invariant. Apart from very

rare exceptions, the terminal acceptor dinucleotide is always AG. The third signal, the

branch point, is usually located about 40 nucleotides (nt) upstream of the acceptor site

and has the consensus YTRAY (Y stands for C or T, the branch point adenosine is

underlined) [3]. The acceptor is preceded by a stretch of pyrimidines, which is called the

polypyrimidine tract.

Simplified, the splicing of an intron occurs in the following order [4]:

• the U1 snRNP binds to the donor site by specific base pairings between the snRNA

and the mRNA,

• the protein heterodimer U2AF binds to the polypyrimidine tract and acceptor site,

• the U2 snRNP binds to the branch site by base pairings,

• the tri-snRNP consisting of U4, U5, and U6 enters the spliceosome,

• the U6 snRNP replaces U1 by binding to the donor site, and U1 and U4 are released

from the spliceosome,

• the mRNA is cleaved at the donor site and the 5’ intron end is attached to the

branch point adenosine forming a lariat structure,

• the mRNA is cleaved at the acceptor site, the upstream exon is ligated to the down-

stream exon, and the intron is released.

1Since we analyze alternative splicing mainly from a genomic viewpoint in the following, we write T

instead of U throughout this thesis, also when referring to an RNA sequence.
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1.2 Alternative splicing

As anticipated by Walter Gilbert [1], genes can produce more than one mature transcript

by allowing alternative splicing decisions. This process is called alternative splicing. Dif-

ferent transcripts from one gene are often translated into different proteins, thus violating

the classical ’one gene, one polypeptide chain’ rule. Although the earliest reports of al-

ternative splicing date back to 1980 [5], the frequency of alternative splicing was revealed

in the last decade. Surprisingly, the ’one gene, one polypeptide chain’ rule applies to

only a minority of eukaryotic genes.

Given the exon-intron structure of a gene, one distinguishes constitutive from alterna-

tive splice sites. A constitutive splice site is always used to produce a mature transcript,

while an alternative splice site can be omitted sometimes. Likewise, the terms constitutive

and alternative are applied to exons and to the splicing process in general.

Most alternative splice events can be classified into the following basic types:

• the inclusion or exclusion of one (or more) exons (denoted exon skipping, Fig-

ure 1.2A),

• the usage of alternative donor or acceptor sites (Figure 1.2B and C),

• the mutual exclusion of exons (Figure 1.2D),

• the retention of an intron (Figure 1.2E)

Apart from these basic events, genes sometimes produce rather complex splicing pat-

terns (Figure 1.2F). Furthermore, alternative splicing can be coupled to transcriptional

variation such as alternative promoter or polyadenylation site usage. Since these events

are not addressed in this thesis, we refer the types described in Figure 1.2 as alternative

splice events.

1.2.1 Frequency of alternative splicing

A common strategy to detect alternative splice events in a genome-wide manner is based

on available mRNAs and expressed sequence tags (ESTs). An EST is a partial sequence

of a transcribed DNA sequence. With an average length of about 500 nt, ESTs are often

shorter than the entire transcript and error-prone since their sequence is determined in

a single sequencing step. Nevertheless, the abundance of automatically sampled ESTs

(currently about eight million for human) allows the detection of alternative splice events

in a genome-wide manner. To this end, ESTs and mRNAs are often aligned to the human

genome sequence (Figure 1.3). Since ESTs represent parts of spliced transcripts, larger

gapped regions usually indicate the position of introns, while aligned parts generally

correspond to exons. To increase the specificity, one often demands that putative introns

have the typical GT-AG splice site dinucleotides. However, alignments at the exon-exon

junctions can be ambiguous (Figure 1.3C). Therefore, special computer programs such
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C F

E

DA

B

Figure 1.2: Types of alternative splicing.
(A) Exon skipping: the red exon is included in some transcripts and excluded in other
transcripts. Such exons are called alternative exons. (B) Alternative donor: the upstream
exon has an alternative donor site. (C) Alternative acceptor: the downstream exon has an
alternative acceptor site. (D) Mutually exclusive exons: either the red or the green exon is
included in the transcript. (E) Intron retention: the entire intron can be retained in some
transcripts. (F) Complex events: An example of a complex event is the simultaneous
skipping of an exon and usage of alternative donor and acceptor sites. Exons are shown
as boxes, introns as horizontal lines. Dashed lines indicate the splicing pattern.

as sim4 [6] have been developed to yield a spliced alignment with correct splice site

dinucleotides. Alternative splice events are then detected by searching exons (or parts

thereof) that are contained in some ESTs and excluded in others (Figure 1.3A). Likewise,

intron retention and other splice events can be identified from these alignments.

EST based studies found that between 35% and 59% of the human genes have al-

ternative splice forms [7, 8, 9, 10], thus providing the first evidences that alternative

splicing is widespread in the human as well as in other genomes. Furthermore, corrected

for the different number of ESTs for different species, it seems that alternative splicing

is equally frequent from human to worm [11], although this has been discussed contro-

versially [12]. ESTs were also used to predict tissue-specific [13, 14] and cancer-specific

splice variants [15].

Another way to monitor alternative splicing in a genome-wide manner is to use specific

DNA microarrays (reviewed in [16]). One common approach designs oligonucleotide

probes that are specific to the interior of exons and probes that are specific for certain

splice junctions (Figure 1.4). The intensity of the different probes is used to elucidate

which splice events are present and what the ratio between alternative splice events is.

Microarray based studies found 74% of the human genes to be alternatively spliced [17].

Furthermore, microarrays have been used to detect and analyze tissue-specific splice

events [18, 19], to study the regulation of alternative splicing [20], and to correlate splicing

with human disease [21].



1.2 Alternative splicing 7

alternative
donor skipping

exon alternative
acceptor retention

intron

genomic

EST

EST

C

genomic

A

ESTs

genomic

EST

EST

B

...AAGAAGGTAA...TTAGGTGTGG...

AAGAAGG−−−−−−−−−−−TGTGG
|||||||−−−−−−−−−−−|||||

AAGAAG−−−−−−−−−−−GTGTGG
||||||−−−−−−−−−−−||||||

||||||||||||||||||||−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−||||||||||||||||||
...ATCGGATTTGAGACCTGCAG−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−GTGTGGGCAGAAGAAAAAGC...

||||||||||||||||||||−−−−−−−−−−−−−−−||||||||||||||||||||||||||||−−−−−−−−−−−−−−−||||||||||||||||||
...ATCGGATTTGAGACCTGCAG−−−−−−−−−−−−−−−TTTGCATTGCAGTCAACAGTCGAAGAAG−−−−−−−−−−−−−−−GTGTGGGCAGAAGAAAAAGC...

...ATCGGATTTGAGACCTGCAGgtaaga...ttgcagTTTGCATTGCAGTCAACAGTCGAAGAAGgtaagg...tattagGTGTGGGCAGAAGAAAAAGC...

Figure 1.3: Illustration of EST to genome alignments.
(A) Several ESTs (horizontal lines) are aligned to genomic sequence of a gene with five
exons (grey boxes). ESTs that span multiple exons provide evidence for the respective
splicing pattern (dotted lines). Since ESTs are only fragments of the full-length tran-
scripts they often start and end within the gene. Nevertheless, they allow the detection
of diverse alternative splice events (illustrated here for exon skipping, alternative donor
and acceptor sites, and intron retention).
(B) The spliced alignment of two ESTs against the genome sequence reveals skipping of
exon 3 for the transcript NM 001001392. Exonic nucleotides are in upper case letters,
intronic ones in lower case letters. Exons are highlighted in grey.
(C) The given EST sequence can be aligned to the junction of exon 3 and 4 of
NM 001001392 in two ways. The incorrect alignment above results in an intron with
TA-GG boundaries, while the alignment below leads to the correct intron annotation
with canonical GT-AG splice sites.

structure
gene 

microarray probes

exon inclusion exon skipping

Figure 1.4: Design of microarrays to detect alternative splicing illustrated for an exon
skipping event.
Horizontal black lines indicate the location of probes that are specific for the constitutive
exons. Blue probes are specific for the exon inclusion event, while the green probes are
specific for the exon skipping event.
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1.2.2 Regulation of alternative splicing

The spliceosome recognizes introns with a high fidelity. In contrast to yeast, the basic

splicing signals (splice sites and branch point) of higher organisms do not contain all

the information that is required for an accurate intron recognition since these signals are

rather degenerate [22]. Moreover, pseudo splice sites (sequences that resemble real splice

sites but that are never used) outnumber real splice sites by an order of magnitude in

pre-mRNA transcripts [23]. Furthermore, alternative splicing can be specific for

• a tissue or cell-type,

• a developmental stage,

• or an external stimulus like heat shock or stress conditions [24].

Therefore, additional signals must be involved in the splicing process in general and in

the regulation of alternative splicing in particular.

A major contribution to the splicing fidelity comes from additional sequence motifs

that are located in exons and introns. Motifs that promote splicing are called enhancers,

while those that inhibit splicing are called silencers. According to their location, they

are classified as exonic and intronic splicing enhancers and silencers (abbreviated ESE,

ESS, ISE, ISS) [25, 26, 27]. Enhancer motifs are frequently bound by the group of ser-

ine/arginine rich (SR) proteins. Binding of SR proteins to enhancer motifs mostly exerts

a positive effect on splice site recognition and stimulates the spliceosome assembly [28].

These positive effects can be antagonized by heterogeneous nuclear ribonucleoproteins

(hnRNPs) that usually bind silencer elements [29]. However, it should be noted that

the same sequence motif can act as an enhancer or silencer, depending on its position

with respect to splice sites [30]. Additional splicing signals and splicing factors allow to

discriminate between real and pseudo splice sites [27]. Therefore, they are essential for

alternative as well as constitutive splicing [31]. Since splicing motifs are abundant in

exons [32], exon inclusion is often promoted by several splicing factors. Current research

indicates that the high fidelity and sometimes strict regulation of the splicing mechanism

is achieved by the combinatorial control of multiple splicing factors [33, 34] as well as

proofreading mechanisms [35].

The regulation of alternative splicing is highly dynamic and often controlled in a

tissue-specific or stimulus-specific manner. This can be achieved by a different concen-

tration of splicing factors in different environments. Since splicing factors have numerous

other mRNAs as potential targets, a change in the concentration of one factor influences

the splicing of many transcripts simultaneously. For example, neurons express a specific

splicing factor Nova-1 that regulates the splicing of several mRNAs in a neuron-specific

manner [36]. In addition to targeting many other mRNAs, most splicing factors use

alternative splicing of its own mRNA to autoregulate their own protein level. One such

example is the human tra2β splicing factor. In high concentrations, this protein binds
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to enhancer elements present in exon 2 of its pre-mRNA, which leads to the inclusion

of this exon and a mature mRNA that is not translated into functional proteins [37].

Furthermore, the activity of splicing factors depends on their phosphorylation status.

Phosphorylation or dephosphorylation of splicing factors can also lead to a movement

into a different subcellular localization (such as from the nucleus to the cytoplasm),

where they are unable to affect splicing [24]. These mechanisms also influence the global

splicing pattern in a cell. For example, the heat shock mediated dephosphorylation

of SRp38 results in a global shutdown of the splicing activity [38]. As splicing occurs

co-transcriptionally, the promoter architecture and the transcriptional speed affect the

regulation of alternative splicing by kinetic effects and differential recruitment of splicing

factors [39]. Finally, the secondary structure of mRNAs plays a role in alternative and

constitutive splicing as well [40]. A detailed introduction into the latter point is given in

section 3.1.

Extensive knowledge about splicing motifs and factors is the basis to understand how

alternative splicing is regulated. To this end, much biological research focuses on the

identification of splicing factor binding sites. Moreover, several computational analyses

have extended the current list of known splicing motifs.

Fairbrother et al. compared the counts of all 4,096 hexamers in exonic vs. intronic

sequences and in exons with weak vs. exons with strong splice sites [41]. Hexamers

that were significantly enriched in exons with weak splice sites are assumed to act as

enhancers, consistent with the view that exons with weak splice sites are not accurately

spliced without the aid of additional enhancer elements. They predicted a total of 238

hexamers as ESEs and demonstrated the enhancer function of representative motifs ex-

perimentally. Avoiding potential biases due to protein coding sequences, Zhang and

Chasin compared internal non-coding exons vs. pseudo exons and internal non-coding

exons vs. the untranslated regions (UTRs) of one-exon genes [42]. Here, pseudo exons

are intronic parts that are bounded by sequences resembling real splice sites but that

never become exonic. Pseudo exons and the UTRs of intronless genes should have only

few ESEs but frequently ESSs. Thus, motifs that are significantly enriched in real inter-

nal exons and rare in both control groups are assumed to be ESEs, while motifs that are

more frequent in pseudo exons and in UTRs of one-exon genes are assumed to be ESSs.

With this strategy, they identified 2,060 octamers as ESEs and 1,019 octamers as ESSs.

Other computational studies predicted ISE motifs [43] as well as motifs associated with

brain-specific alternative splicing [44] and exon skipping [45]. Very recently, comparative

genomics was used to identify splicing motifs [30].

1.2.3 Impact of alternative splicing

One of the most unexpected findings by the human genome project was the surprisingly

small number of protein-coding genes. It is estimated that the human genome harbors
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only 22,000 genes [2]. That means, humans have only slightly more genes than less com-

plex species like the nematode Caenorhabditis elegans with 20,000 genes. This indicates

that the gene number is not correlated with the complexity of an organism. The finding

that most genes in higher eukaryotes express several alternative splice forms partially

resolved this apparent discrepancy. Indeed, alternative splicing is currently considered

to be a major mechanism for producing a complex proteome from a limited number of

genes [46].

Protein isoforms, produced by alternative splicing, can differ in various physiological

aspects including ligand binding affinity, signaling activity, protein domain composition,

subcellular localization, and protein half-life [47, 48, 49, 50]. Often the protein function is

altered by inserting/deleting functional units like protein domains, transmembrane (TM)

helices, or signal peptides. Bioinformatics analysis have shown that alternative splicing

has a tendency to remove certain protein domains like protein-protein interaction or

DNA binding domains [51]. For example, alternative splicing frequently removes the

protein-protein interaction domain of Kruppel family transcription factors [51]. The

alternative protein isoforms will still bind to the target DNA site but do not initiate

transcription anymore, thus exerting a dominant negative effect by blocking the binding

site. Interestingly, alternative splicing tends to insert/delete complete functional units

instead of affecting parts of a unit [52]. Moreover, many proteins occur in a soluble

as well as in a membrane bound form. One way to produce soluble isoforms is to skip

exons that encode the TM helices. Indeed, computational analyses found that 40-50%

of the proteins with one TM helix have a splice form that specifically removes the single

TM domain [53, 54]. The regulation of alternative splice events plays a role in several

biological processes such as the formation and function of synapses [36], axon guidance

in the fruit fly Drosophila melanogaster [55], and T-cell activation [56]. Finally, it should

be noted that alternative splicing in the UTR regions can have an effect by influencing

mRNA stability or translation efficiency [57].

During gene expression it comes undoubtedly to a low rate of errors yielding erro-

neous transcripts. Such transcripts may be translated into truncated proteins that are

harmful. Therefore, cells have evolved a mechanism called nonsense-mediated mRNA

decay (NMD) to degrade these transcripts [58]. In humans, cells use a rule based on

the ’splicing history’ to determine which transcripts are degraded by NMD. According

to this rule, mature transcripts with a premature termination codon (PTC) more than

50 nt upstream of the last exon-exon junction are candidates for NMD. Usually these

transcripts are degraded rapidly, so that little or no protein is produced. Alternative

splicing can lead to a transcript with a PTC, for example by introducing a frameshift or

including an exon encoding an in-frame stop codon. Interestingly, computational studies

found that 35% of the alternative splice forms contain a PTC. Therefore, it was suggested

that alternative splicing together with NMD provides a mechanism for the regulation of
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the protein level independent of the transcription level [59, 60]. Indeed, this seems to be

exploited in the autoregulation of many splicing factors such as PTB [61]. However, it

should be noted that the extent of this mechanism is discussed controversially [62].

Defects in alternative and constitutive splicing are causative for a number of human

diseases [63, 64]. Noteworthy, splicing mutations have been suspected to be the most

frequent cause of hereditary diseases [65]. For example, a polymorphism in the PTPRC

gene that is associated with multiple sclerosis destroys an exonic splicing silencer and

abolishes the skipping of exon 4 [66]. Furthermore, changes in the normal splicing pattern

are thought to contribute to cancer development [67, 15]. Thus, alternative splicing is

also of therapeutic interest [68].

1.2.4 Evolution of alternative splicing

Since most genes and gene structures are conserved between human and mouse, the

question arises to which extent alternative splice events are conserved? Furthermore, it

is important to assess how many splice events are functionally important for an organism

and how many are due to aberrant splicing or noise in the splicing process [69]. Given

that human and mouse diverged from a common ancestor about 75 million years ago,

conservation of a splice event is a strong indication of functionality.

Focusing on exon skipping as the most frequent splice event, conservation of alter-

native splicing between human and mouse was investigated by several bioinformatics

studies. Although these studies are hampered by differences in EST coverage between

species, they found that only a small fraction (between 5 and 15%) of the human alterna-

tive splice events are conserved in mouse [70, 71, 72]. These percentages represent a lower

bound since, in addition to conservation of the exon at the sequence level, it was required

that the respective splice event is also confirmed by ESTs from both species. Therefore,

additional splice events that currently lack EST confirmation in one organism are likely

to be conserved. However, splice events are clearly species-specific if the alternative exon

is not conserved at the sequence level. Surprisingly, this is the case for about 50% of the

human and mouse alternative exons [72].

These studies found many characteristic differences between conserved and species-

specific alternative exons. The characteristic features of conserved alternative exons are

as follows:

• Most of these exons are ’peptide-cassettes’, which means their length is a multiple

of 3 nt and they do not encode an in-frame stop codon [69, 73, 74]. Therefore, exon

skipping simply results in the removal of a part of the protein without changing the

reading frame.

• Compared with constitutive exons, the alternative exon itself and its intronic flanking

regions exhibit a much higher sequence conservation between human and mouse [75,

76]. This can be used to predict alternative splice events (see section 2.2).
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• They are smaller with an average length of 87 nt compared to 116 nt for non-

conserved alternative exons [69].

• They have a high inclusion level as measured by the number of ESTs that show

inclusion vs. skipping [77, 69].

These features indicate that most of these alternative exons have a function that is

conserved during mammalian evolution.

The frequent species-specific exons are either the result of the deletion of ancestral

exons in one species or the creation of new exons. Genome-wide comparisons with the

genome of a third species (in this case rat) found that exon creation is much more frequent

than deletion [77]. The major source for new exons are mobile DNA elements like Alu

elements [78]. Alu elements are inserted into random positions in a genome and only

a few mutations are required to create a new alternatively spliced exon [79, 80]. Other

mobile DNA repeat elements have contributed to exon creation in human and mouse

as well. Furthermore, many mutually exclusive alternative splicing events have evolved

after the duplication of an exon [81, 82].

Alternatively spliced exons are subjected to a relaxed evolutionary selection pressure

to preserve the protein coding sequence and this relaxation is even more pronounced in

exons that are only rarely included [83]. The same even holds for entire genes that express

alternative splice forms [84]. Thus, alternative splicing is associated with a faster protein

evolution. While mutations that change the coding sequence accumulate in rarely in-

cluded alternative exons, it is remarkable that these exons are subjected to much stronger

constraints to preserve the RNA sequence at translationally silent positions [83]. A likely

explanation for these (at first glance) inconsistent findings is that these alternative ex-

ons are enriched in regulatory splicing motifs assuring that they are rarely and possibly

tissue-specifically included. This leads to the constraint to conserve certain exonic re-

gions that are required for their proper alternative splicing. On the other hand, other

regions are rather free to evolve to new functional protein sequences, which is reflected

by the reduced selection pressure at the coding sequence.

Based on these results, it was proposed that an alternative exon represents an ’internal

paralog’ of a gene [77]. A newly created exon is likely to be included in only a minority

of transcripts since this exon was previously not required for protein function, thus its

splice sites and splicing motif composition should not be selected for a high inclusion

level. Furthermore, such exons might only be recognized by the spliceosome in the

specific environment like in a certain tissue. Alternative splicing of the gene would still

produce much of the ancestral mRNA, yielding a sufficiently high level of the functional

protein. The minor splice form might be translated to a protein that currently has no

function. This protein is now free to evolve to a new function, which is indicated by the

increased rate of amino acid mutations in the alternative exon [78]. Thus, as proposed

by Gilbert 1978 [1], alternative splicing is a very important mechanism that allows a
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gene to evolve a new function without destroying its existing function. Apart from

alternative splicing, new functions arise by gene duplication (’external paralogs’) followed

by divergence of the gene copies. Consistent with the view that an alternative exon

represents an internal paralog, genes that exist in only a single copy have a significantly

higher level of alternative splicing than genes that exist in large families with several

genomic copies [85].
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Chapter 2

Non-EST based prediction of alternative

splice events using Pfam information

One major goal of research in the post-genomic area is the elucidation and characteri-

zation of the entire spectrum of alternative splice forms. Most of the known alternative

splice events have been detected by the comparison of ESTs and cDNAs. Although EST

based approaches are powerful, not all splice events are represented in EST databases

since ESTs have several biases. Furthermore, these methods are limited to genomes hav-

ing a sufficiently high EST coverage. Therefore, it is of great interest to apply non-EST

based methods to predict alternative splice events ab initio.

Despite the existence of many algorithms for a related problem - the prediction of gene

structures in genomic DNA - there are only few methods for the prediction of alternative

splice events. These methods mainly exploit information of conservation patterns.

In the first part of this thesis, we address the problem of the ab initio prediction of

alternative splice events with a novel strategy that is solely based on the annotation of

protein domains. As the Pfam (Protein domain families) database is one of the most

comprehensive collection of functional protein domains, we use Pfam domains for the

splice event prediction. In contrast to existing methods, our approach is independent

of the existence of orthologous sequences. To apply this approach in a genome-wide

manner, we develop an efficient algorithm to reduce the computational complexity. This

algorithm was designed to predict exon skipping as well as intron retention events.

We applied our approach to all human RefSeq transcripts and demonstrate that our

predictions are very reliable. Subsequent analysis of splice events within Pfam domains

revealed a significant preference of alternative exon junctions to be located at the protein

surface and to avoid secondary structure elements. Thus, splice events within Pfams are

likely to alter the structure and function of a domain, which makes them highly interest-

ing for detailed biological investigation. As Pfam domains are annotated in many other

species, our strategy to predict exon skipping and intron retention events might be impor-

tant for species with a lower number of ESTs. In summary, our algorithm complements

a growing list of bioinformatics tools for non-EST based splice event prediction.
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Plan of the chapter

We give an overview of approaches to detect alternative splicing on a genome-wide scale

in section 2.1. Then, we briefly discuss existing approaches for non-EST based alternative

splice event prediction in section 2.2. In section 2.3, we provide the fundamental principle

of our Pfam-based approach by searching for features that discriminate between alterna-

tive and constitutive exons. A naive prediction algorithm and a more efficient algorithmic

solution is given in section 2.4 and 2.5. We apply this algorithm in a genome-wide man-

ner and evaluate the results in section 2.6. Finally, we conclude with a discussion in

section 2.7.

2.1 Genome-wide detection of alternative splice events

Almost all large-scale bioinformatics studies of alternative splicing use the wealth of

information stored in EST databases and most alternative splice forms are detected by

the alignment of EST sequences to the genome and to other ESTs/cDNAs [11, 86, 7, 10].

Despite more than seven million human ESTs in dbEST (release July 2006), not all

existing splice variants are represented in this database due to several reasons.

1. The expression level of a transcript must be sufficiently high to be sampled as an

EST. Therefore, lowly expressed splice forms are underrepresented. However, minor

splice forms can be very important. For example, the RAC1 gene produces a minor

splice variant (Rac1b) that constitutes a large portion of activated Rac1 proteins in

a cell and might play a role in tumorgenesis [87].

2. Alternative splicing can be highly specific for a tissue or a cell type, a developmental

stage, or an external stimulus [24]. Such specific splice forms can only be detected

if ESTs are sampled from the right tissue, at the right time, and under the right

condition. Moreover, the tissue distribution of ESTs is strongly biased [13]. Cur-

rently, brain has the highest number of human ESTs, which presumably reflects

the research focus. Additionally, lowly expressed variants have a tendency to be

tissue-specific [77], which makes their detection even more difficult.

3. ESTs are biased towards the ends of transcripts, especially towards the 3’ end. For

example, the first exons of CFTR or NRXN2 are not covered by a single EST,

whereas their 3’ UTR is covered by 31 and 13 ESTs, respectively.

4. About 70% of the human ESTs are sampled from tumor libraries. In some cases,

this led to gene annotations based on tumor specific transcripts, although another

(possibly unknown) predominant splice form is expressed in normal tissue [15].

5. Due to the single read nature, ESTs are error-prone and false positive predictions

may be included in alternative splice databases [88].
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Apart from ESTs, microarrays with specific exon-exon junction probes have been

used to find alternative exons in a genome-wide scale [17]. Specific microarrays have

also been used to detect a variety of alternative splice events including exon skipping,

alternative donor/acceptor sites, and mutually exclusive exons by searching for tissue-

specific changes in the responses of certain microarray probes [18]. Despite the power

of microarrays, the main problem remains since it is very hard to test all combinations

of tissues, developmental stages, and external stimuli. Furthermore, events like intron

retention and alternative donor/acceptor sites or additional exons that are located in

introns (relative to the given exon structure of the gene for which probes are designed)

can only be detected if intronic probes are included in the microarray design.

Furthermore, a large number of algorithms for the prediction of gene structures based

on genomic DNA exists [89]. Except for a few methods [90, 91], these algorithms only

compute a single optimal gene structure. Since it is unknown to which extent suboptimal

gene structures correspond to alternative splice forms, their use for alternative splice

event prediction is limited. Consequently, our current view of alternative splicing is still

incomplete and non-EST based methods for the prediction of splice variants are needed

to complete our knowledge of the human transcriptome.

2.2 Related work

Recently, Sorek et al. described a non-EST based method that uses characteristic features

of alternative exons to discriminate between constitutive and alternative ones [92]. The

most discriminative single-feature is a high conservation of alternative exons and their

flanking intron regions in mouse [76]. Additional features are an exon size divisible by

three, differences in tri-mer counts, and the composition of the splice sites [93]. Compara-

tive genomics was also successfully used to predict exon skipping events in Drosophila [94].

Yeo et al. described an approach ACESCAN that is able to identify conserved exon skip-

ping events in both human and mouse [71]. This approach also uses exonic and intronic

conservation as well as splice site scores, exon and intron lengths, and oligonucleotide

composition. Ohler et al. demonstrated that even alternative exons that are completely

missed in current gene annotations can be discovered by applying a pair hidden Markov

model algorithm to orthologous human-mouse introns [95]. Finally, Raetsch et al. used a

support vector machine to predict alternative exons [96]. These studies demonstrate that

a classifier based on characteristic genomic features can reliably predict exon skipping

events ab initio.
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2.3 Finding discriminating features between alternative and

constitutive exons

Our new prediction algorithm is solely based on the annotation of Pfam domains. Since

we aim at a highly specific prediction approach, we first have to detect discriminating

features between alternative and constitutive exons. Although the boundaries of (alter-

native and constitutive) exons correlate with Pfam domain boundaries in general [97],

a considerable fraction of the alternative splice events (28%) occurs within protein do-

mains [52]. Therefore, we investigated the differences in the contribution of alternative

and constitutive exons to Pfam domains.

We constructed a set of 213 known alternative and 5,728 constitutive exons where

each exon encodes a complete Pfam domain or a part of it. Consistent with other

studies [76], we considered an exon as constitutive if it has at least six ESTs that show

inclusion and no EST that shows skipping. An alternative exon is skipped in at least

three ESTs. First, we only considered exons that do not introduce a frameshift or a

premature termination codon (PTC) when skipped (denoted ’peptide-cassette’ exon).

Then, we compared the Pfam score between the proteins with and without such an

exon and counted the number of cases where exon skipping results in an increase of the

Pfam score. We found that significantly fewer constitutive exons have this property

compared to alternative exons (Table 2.1). Furthermore, the average score increase

observed for alternative exons is significantly higher than the average increase for the

constitutive ones (Table 2.1). Therefore, we searched for a minimum score increase that

leads to an even better separation of constitutive and alternative exons. We decided to

use 10 as a threshold value, since only a tiny fraction (0.1%) of the constitutive exons

results in a Pfam score increase of at least 10 when skipped, in contrast to 9% of the

alternative exons (Table 2.1). This suggests that a genome-wide search for exons with this

characteristic property can be used to predict alternative exons with a high specificity.

How the skipping of a peptide-cassette can result in a score increase is illustrated by two

examples in section 2.6.1 Figure 2.9.

Up to now, we have only considered peptide-cassette exons. However, exons that are

not peptide-cassettes can also result in a Pfam score increase.

• The skipping of such an exon can lead to a frameshift and the new protein sequence

downstream can encode a longer C-terminus of a Pfam domain or a completely new

domain.

• The skipping of an exon that encodes PTCs can elongate the reading frame (respec-

tive examples are given in section 2.6.1 Figure 2.10).

Such exons most likely are alternative ones since Pfam domains have a high sequence

specificity. Consequently, it is very unlikely that the protein sequence in the other reading

frame or downstream of the PTC has a high similarity to a Pfam domain just by chance.
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constitutive alternative P-value
total number of exons 5,728 213 -

Pfam score increase when skipped a 99 (1.7%) 34 (16%) P<0.0001 b

average score increasec 2.9 13.4 P<0.0001 d

Pfam score increase of 10 when skipped e 6 (0.1%) 19 (9%) P<0.0001 b

Table 2.1: Different contribution of alternative and constitutive exons to Pfam domains.
a counting the number of exons for those skipping yield a higher Pfam score
b Fisher’s exact test was used to analyze a 2x2 contingency table
c average score increase was computed only for those exons for which skipping yield a higher score
d t-test was used to compare two means
e counting the number of exons for those skipping yield a Pfam score increase of at least 10

Apart from exon skipping, a retained intron can also encode a new part of a Pfam domain

or result in a frameshift, and thus increase the score (see section 2.6.3 Figure 2.12).

Therefore, we extend our strategy to include skipping of non-peptide-cassette exons and

retention of introns.

2.4 General approach

Our approach can be summarized as follows. Given the exon structure of a transcript

and its pre-mRNA sequence, we search for exon skipping and intron retention events that

increase the Pfam score for the respective protein of at least 10 (Figure 2.1). To make

sure that the Pfam annotation is highly reliable, we only considered domains with a score

above the ’gathering cut-off’ value that is given in the Pfam database. Without the input

of additional splice sites like (known or predicted) alternative donors or acceptors, only

the prediction of exon skipping and intron retention events is possible.

For the prediction, we want to consider all hypothetical splice variants and their

respective proteins. Given the pre-mRNA sequence and the exon-intron structure of a

transcript, a simple algorithm is as follows:

• generate all putative splice forms by allowing the skipping of exons as well as the

retention of introns,

• translate each splice form,

• search the Pfam database for domain hits for each translated sequence,

• compare the score of the Pfam domains for the hypothetical protein to the score for

the protein that corresponds to the given transcript,

• if a splice form leads to a score increase of at least 10, output the respective splice

event.

In principle, one has to correct for multiple testing since Pfam domains are scored many

times during this procedure. However, consistent with genome-wide Pfam domain anno-
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> 110exon skipping:  score > 110intron retention:  score 

Pfam score: 100Pfam domain exons

prediction

predict skipping of exon 2 predict retention of intron 3

Figure 2.1: Schema of the non-EST based prediction approach.
Four coding exons and the respective intron sequences are given. Assume a Pfam domain is
encoded by exons 1-4 and the respective Pfam score is 100. For the prediction, hypothetical novel
splice variants are checked to find those with a higher Pfam score of at least 10. Exons are shown
as boxes; dashed lines indicate the splicing patterns; open red box: skipped exon; filled red box:
retained intron.

tations (like in Ensembl [98]), we consider only Pfam hits that exceed the very stringent

gathering cut-off scores recommended in the Pfam database. Therefore, we do not at-

tempt to correct for multiple testing in the following.

2.5 An efficient prediction algorithm

Since most Pfam domains have a length that exceeds the length of a typical exon (in

amino acids), domains are often encoded by multiple exons. Consequently, we cannot

investigate each hypothetical splice event independently. For example, the skipping of

exon 3 and 5 together might result in a sufficiently high score increase but not the skipping

of only one of these exons. Therefore, we have to investigate entire splice forms as the

concatenation of exons and possibly introns.

The average human gene has about ten exons [2]. Considering only internal exons

as candidates for alternative exons, there are 28 = 256 possible combinations that arise

by skipping/including of these eight exons. Thus, for a typical human gene about 256

putative splice forms have to be checked. For the human TTN gene with 178 exons [9],

this would yield an astronomically high number of putative variants. Including intron

retention further increases this exponentially high number of variants. Thus, the simple

algorithm proposed in section 2.4 is computationally infeasible.

Furthermore, it is not sufficient to consider only those Pfam domains that are anno-

tated for the protein of the given transcript. This is important because new Pfam hits
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may arise from exon skipping and intron retention (section 2.6.1 Figure 2.9B). There-

fore, we have to consider a larger number of Pfams, which additionally increases the

computation time.

As our goal is to predict splice events in a genome-wide manner, we have to cope with

this computational problem. To this end, we reformulate the given problem: Instead of

searching for all splice forms yielding a higher Pfam score, we only search the splice

form yielding the highest score for a Pfam domain. If this splice form leads to

a score increase of at least 10, we will output the corresponding splice event. In the

following, we show that this problem can be solved in polynomial runtime by extending

the Viterbi algorithm.

2.5.1 Pfam architecture and the classical Viterbi algorithm

A Pfam domain is described as a profile hidden Markov model (HMM) [99, 100]. Profile

HMMs represent a special type of HMMs and are widely used in bioinformatics [100,

101, 102]. A profile HMM is a probabilistic model of a multiple sequence alignment and

contains match, insert, and delete states. While match and insert states emit characters

(emitting states), delete states do not (silent states). The profile HMMs in the Pfam

database allow a compact representation of the sequence information from many instances

of a protein domain. One major purpose is to determine whether a given sequence belongs

to a Pfam domain family or not. Profile HMMs can yield a more specific and sensitive

answer compared to the pairwise alignment of the given sequence to a member of the

domain family.

To find out if a given sequence belongs to the domain family, two algorithms are

commonly used: the forward algorithm and the Viterbi algorithm [103]. The forward

algorithm computes the sum of the scores for all paths through the HMM that output

the given sequence. The Viterbi algorithm computes the score of the best path that

outputs the given sequence. This best path corresponds to an alignment of a sequence

to an HMM. A membership to the Pfam domain is assumed if the score of the forward

or Viterbi algorithm exceeds a threshold value.

Since the software package HMMER [104] that is an inherent part of the Pfam

database uses the Viterbi algorithm as the standard method to annotated Pfam do-

mains in a sequence, we focus on the Viterbi algorithm in the following. The Viterbi (as

well as the forward) algorithm is an instance of the class of dynamic programming (DP)

algorithms. Common to DP algorithms is to compute partial solutions and to use these

partial results to compute the solution for a bigger problem until the complete task is

solved. In the Viterbi algorithm, the partial solution is the best path from the begin

state to another state in the HMM.

Let Vj(i) be the log-odds score of the best path through the HMM ending at state

j and at the sequence position i. We denote by Ex(y) the log-odds score that state x
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Figure 2.2: Architecture of a four match state plan7 profile HMM.
Match states are shown as squares, insert states as diamonds, and silent states as circles. The
dashed lines indicate direct entry and exit transitions. Note that the architecture demands that
at least one character is emitted in each iteration B → Mi → . . . → E → J → B.

emits character y and by Ax,y the log-odds score for the transition from state x to state

y. Let S be the input sequence with length L. We write P (x) for the set of predecessors

of state x, i.e. all states that have a direct transition to x. The Viterbi algorithm is:

• initialization:

Vj(0) =

{

0 if j = start
−∞ otherwise

• recursion (∀ states j and i = 1 . . . L):

Vj(i) = Ej(S[i]) + max
p∈P (j)

(Vp(i − 1) + Ap,j)

• termination:

Sc = max
j

(Vj(L) + Aj,end)

where start is the start-state, end is the end-state, and Sc is the final score for the best

path. Consistent with the Pfam-HMM architecture, we assume here that start and end

are just silent states representing the start and the end of the model. These two states

are not considered in the recursion equation.

The architecture of the profile HMMs in the Pfam database is called plan7 (Fig-

ure 2.2). Plan7 means that direct transitions between insert and delete states and vice

versa are not allowed. The main model is separated by two silent states (B- and E-state).

Furthermore, there are three special insert states: one before the main model (N -state),

one after the main model (C-state), and one allowing multiple iterations through the

main model (J-state). Note that the special insert states only emit characters on the

loop transition (the transition to itself). Moreover, there are direct entry transitions

from B-state to any match state as well as direct exit transitions from any match state

to E-state (dashed lines in Figure 2.2).
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2.5.2 Nucleotide-level HMM target

As our primary goal is to apply the extended Viterbi algorithm to Pfam profile HMMs, we

will specify the recursion equations for the plan7 architecture. Of course, the algorithm is

not restricted to plan7. The sophisticated part of the algorithm is the necessity to handle

frameshifts occurring during the skip process and to assure the existence of an open

reading frame (ORF). Thus, for ease of understanding, we first describe the algorithm

for a nucleotide-level HMM (i.e. an HMM that is built from a set of nucleotide sequences)

and give the description for a protein-level HMM in section 2.5.3. Furthermore, we first

consider only exon skipping events and show the extension to intron retention events in

section 2.5.4.

Let us formalize the problem. We are given a transcript Tr with n exons e1, . . . , en and

an HMM H. The binary vector s = (s1, . . . , sn) denotes a splice form with si = 1 if exon

i is included and 0 if exon i is skipped. Furthermore, splice = {s | s = (s1, . . . , sn), si ∈

{0, 1}, 1 ≤ i ≤ n} is the set of all possible splice forms. Let mRNA(s) be the concatenated

mRNA sequence of all exons that are included in s and Sc(H,mRNA(s)) the Viterbi

log-odds score of the sequence mRNA(s) and the HMM H. Our algorithm computes the

splice form that maximizes the Viterbi score Sc(H,mRNA(s)), that is

smax = argmax
s ∈ splice

{Sc(H,mRNA(s))}.

The basic idea is to include exon skipping during the calculation of the dynamic

programming matrix. Since an HMM can be divided into emitting and silent states, we

have to determine which states allow for exon skipping. Clearly, exon skipping has to

be handled for all emitting states. In contrast, a silent state always has an emitting

state as (indirect) predecessor where the current character is emitted. Hence, we can use

standard recursions for silent states and only extend the recursion equations for emitting

states.

We denote by S the concatenated nucleotide sequence of all exons of Tr. Let Bl =

{bl
2, ..., b

l
n} be the set of left boundaries for the exons 2 to n where bl

i is the position of the

first base of exon i in S. Let Br = {br
1, ..., b

r
n−1} be the set of right boundaries for exon

1 to n − 1 where br
i is the position of the last base of exon i in S. The sets of left and

right boundaries correspond exactly to the set of splice sites (Figure 2.3). Our algorithm

requires S, Bl and Br as input.

The recursion equation for the extended Viterbi algorithm is:

Vj(i) =



















Ej(S[i]) + back(j, i − 1) if i /∈ Bl and j emitting
Ej(S[i]) + max

r ∈ Br ,

r < i

back(j, r) if i ∈ Bl and j emitting

back(j, i) if j silent
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sequence
pre−mRNA

br

1 b b l bb3 b4
l

22

exons

l rr

3

Figure 2.3: Illustration of the left and right boundaries.
Exons are shown as boxes. The first (left boundary) and last position (right boundary) is high-
lighted in blue. Note that the beginning of the first exon and the end of the last exon are no
splice sites. Thus, they are not contained in the set of boundaries Bl and Br.

where back(j, i) = max
p∈P (j)

{Vp(i) + Ap,j}.

Note that the definition of Vj(i) implies only that sequence position i is reached, not

that the complete subsequence S[1 . . . i] is emitted. Thus, Vj(i) gives the score for the

best alignment, which ends at state j, of the best concatenation of upstream exons up

to sequence position i.

Since this algorithm guarantees that only disjoint sequence parts (bounded by ele-

ments from Bl and Br) are concatenated, it finds the best non-overlapping concatenation

of exons. This means that Bl and Br can be extended by alternative 5’ and 3’ ends of

exons, respectively, to allow for alternative donors and acceptors.

2.5.3 Protein-level HMM target

Now, we describe how the algorithm can be modified for an amino acid level HMM so

that frameshifts as well as correct open reading frames can be handled simultaneously.

Since not all exon lengths are multiples of three nucleotides, frameshifts occur during

exon skipping.

According to section 2.5.2, now the problem is the computation of

smax = argmax
s ∈ splice

{Sc(H,AA(s))}.

where AA(s) is the translated mRNA sequence mRNA(s). To switch to protein level,

we consider the current sequence position in S as the third codon position and translate

the codon consisting of the current and the two previous nucleotides. Then, the step

length is set to three, i.e. we access Vj(i − 3) when computing Vj(i). We extend the

Viterbi algorithm to include all three reading frames. It follows that exon skipping is

allowed if the current sequence position is not more than 2 nt away from a left exon

boundary. Furthermore, each exon skipping variant can lead to a different codon and

thus to a different amino acid (illustrated in Figure 2.4)

Let H be a plan7 profile HMM with m match states, m − 1 insert states, and m − 2

delete states. According to the notation in [105], V M
j (i) is the log-odds score of the best
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exon 2−3 skipped exon 3 skipped
Codon GCACodon GGA

no skipping
Codon TAA

current sequence
position

Codon AGC
exon 3 skippedexon 2−3 skipped

Codon AGC

exon 3 skipped
Codon CAG

exon 2−3 skipped
Codon GAG

current sequence
position

current sequence
position

Codon AGC
no skipping

no skipping
Codon AAG

exon 1 G G CGAT T T Aexon 2 exon 3 A G C

exon 1 G G CGAT T T Aexon 2 exon 3 A G C

exon 1 G G CGAT T T Aexon 2 exon 3 A G C exon 4

exon 4

exon 4

Figure 2.4: Handling of exon skipping and frameshifts in the recursion equation.
The figure illustrates how exon skipping and the three reading frames are handled for positions
with a maximal distance of 2 nt to the left exon boundary. Different codons arise from different
exon skipping events. While computing the DP matrix from left to right, we access already
precomputed entries (to the left). The arrows indicate the sequence position where the DP
matrix is accessed during the recursion.

path through the HMM ending at match state j at sequence position i. Similarly, V I
j (i)

and V D
j (i) are defined for insert and delete states, respectively, and V X(i) for the special

states where X ∈ {start,N,B, J,E,C, end}.

With Bl⊕1 (Bl⊕2) we denote the set {bl
2 +1, ..., bl

n +1} ({bl
2 +2, ..., bl

n +2}). Further-

more, we write codonS
i,j,k for the amino acid that corresponds to the codon S[i]S[j]S[k].

Hence, we get the following recursion equation for the M -states.

V M
j (i) =



























































max
r ∈ Br ,

r < i

{

EMj
(codonS

r−1,r,i) + backM (j, r − 2)

}

if i ∈ Bl

max
r ∈ Br ,

r < i − 1

{

EMj
(codonS

r,i−1,i) + backM (j, r − 1)

}

if i ∈ Bl ⊕ 1

max
r ∈ Br ,

r < i − 2

{

EMj
(codonS

i−2,i−1,i) + backM (j, r)

}

if i ∈ Bl ⊕ 2

EMj
(codonS

i−2,i−1,i) + backM (j, i − 3) otherwise
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where backM (j, r) = max















V M
j−1(r)+AMj−1,Mj

V I
j−1(r)+AIj−1,Mj

V D
j−1(r)+ADj−1,Mj

V B(r) +AB,Mj

The recursion equation for the I-states is

V I
j (i) =



























































max
r ∈ Br ,

r < i

{

EIj
(codonS

r−1,r,i) + backI(j, r − 2)

}

if i ∈ Bl

max
r ∈ Br,

r < i − 1

{

EIj
(codonS

r,i−1,i) + backI(j, r − 1)

}

if i ∈ Bl ⊕ 1

max
r ∈ Br,

r < i − 2

{

EIj
(codonS

i−2,i−1,i) + backI(j, r)

}

if i ∈ Bl ⊕ 2

EIj
(codonS

i−2,i−1,i) + backI(j, i − 3) otherwise

where backI(j, r) = max

{

V M
j (r)+AMj ,Ij

V I
j (r) +AIj ,Ij

The recursion equation for the special insert state C is a little tricky, since C acts as both

a silent and a non-silent state. Characters are only emitted via the loop transition, so

exon skipping will only be handled for the C → C transition. This yields the following

equation:

V C(i) = max





































































































































max
r ∈ Br ,

r < i

{

EC(codonS
r−1,r,i) + backC(r − 2)

}

if i ∈ Bl

max
r ∈ Br ,

r < i − 1

{

EC(codonS
r,i−1,i) + backC(r − 1)

}

if i ∈ Bl ⊕ 1

max
r ∈ Br ,

r < i − 2

{

EC(codonS
i−2,i−1,i) + backC(r)

}

if i ∈ Bl ⊕ 2

EC(codonS
i−2,i−1,i) + backC(i − 3) otherwise

V E(i) + AE,C

where backC(r) = V C(r) + AC,C

A graphical illustration of these extended recursion equations is given in Figure 2.5.
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Figure 2.5: Illustration of the extended recursion equations.
The figure shows a part of the DP matrix with the HMM states as lines and the nucleotides as
columns. Vertical blue lines represent exon-exon boundaries. The current sequence position is the
first position of exon 3 (highlighted in green). Red arrows indicate precomputed matrix entries
that are accessed.

The equations for the N -state and the J-state are similar to the C-state equation and
are not shown. For completeness, we show the recursions for the silent states:

V D
j (i) = max

{

V M
j−1(i) + AMj−1,Dj

V D
j−1(i) + ADj−1,Dj

V B(i) = max

{

V N (i)+AN,B

V J(i) +AJ,B

V E(i) = max
j=1,...,m

{V M
j (i) + AMj ,E}

V end(i) = V C(i) + AC,end

Of course, not all possible splice forms will form an ORF since some of them might lack
a start and/or stop codon. However, the start and stop codon condition can easily be
included in the algorithm. Since matrix entries for the start-state are not computed but
initialized, we set all of them to −∞ except for the positions where a start codon begins:

V start(i) =

{

0 if S[i + 1]S[i + 2]S[i + 3] = ATG
−∞ otherwise
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Per definition, an ORF ends at the first stop codon. To take this into account, we define

Ex(codonS
i,j,k) = −∞ if S[i]S[j]S[k] ∈ {TGA,TAA,TAG}

for all non-silent states x. The emission score for the 20 amino acids are taken from
the Pfam database. Furthermore, we have to compute the set of possible end positions,
taking into account that a stop codon can be assembled on exon boundaries. Therefore,
during the dynamic programming procedure, we compute all positions after which a stop
codon occurs and denote this set as EndPos

EndPos =















































r − 2 | S[r − 1]S[r]S[i] ∈ {TGA,TAA,TAG} :
r ∈ Br, r < i, i ∈ Bl

r − 1 | S[r]S[i − 1]S[i] ∈ {TGA,TAA,TAG} :
r ∈ Br, r < i − 1, i ∈ Bl ⊕ 1

r | S[i − 2]S[i − 1]S[i] ∈ {TGA,TAA,TAG} :
r ∈ Br, r < i − 2, i ∈ Bl ⊕ 2

i − 3 | S[i − 2]S[i − 1]S[i] ∈ {TGA,TAA,TAG} :
i /∈ Bl ∪ Bl ⊕ 1 ∪ Bl ⊕ 2















































Finally, the highest Viterbi score Sc (implicitly considering all possible splice forms) is
given by

Sc = max {V end(i) | i ∈ EndPos}.

A normal traceback determines smax. Backtracking from other positions in EndPos and
choosing suboptimal paths on a traceback can be used to find suboptimal splice form
predictions.

2.5.4 Including intron retention events

To allow for intron retention events, the sequence S is now the pre-mRNA sequence (i.e.

the sequence of all exons and introns). Given a position at the left boundary of exon i, the

recursion equations in section 2.5.3 allow only to access matrix columns that correspond

to the end of the upstream exons 1 . . . i − 1. To include intron retention, we extend the

equations by adding the possibility to access the position 3 nt upstream (Figure 2.6).

Thus, the equation for the M -states is
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exon 1 G G intron 1 exon 2 CGAT GA CATTintron 2A

Figure 2.6: Extending the equations to allow intron retention events.
The red arrow indicates the access of matrix columns that correspond to the end of the intron
immediately upstream. Please note that the beginning of the intron is not part of Bl, thus only
a position within the upstream exon is possible (green arrow).

V M
j (i) =







































































































max















max
r ∈ Br ,

r < i

{

EMj
(codonS

r−1,r,i) + backM (j, r − 2)

}

EMj
(codonS

i−2,i−1,i) + backM (j, i − 3)

if i ∈ Bl

max















max
r ∈ Br ,

r < i − 1

{

EMj
(codonS

r,i−1,i) + backM (j, r − 1)

}

EMj
(codonS

i−2,i−1,i) + backM (j, i − 3)

if i ∈ Bl ⊕ 1

max















max
r ∈ Br ,

r < i − 2

{

EMj
(codonS

i−2,i−1,i) + backM (j, r)

}

EMj
(codonS

i−2,i−1,i) + backM (j, i − 3)

if i ∈ Bl ⊕ 2

EMj
(codonS

i−2,i−1,i) + backM (j, i − 3) otherwise

Likewise, the equations for I-, C-, N -, and J-states are extended. The retention of an

intron always implies that both its upstream and its downstream exon are also included

in the mature mRNA. This condition is fulfilled since only left boundaries allow to skip

an upstream sequence part and the beginning of an intron is not included in the set of

left exon boundaries Bl. Thus, the retention of intron i always leads to the inclusion of

exon i − 1 and exon i (Figure 2.6).

2.5.5 Runtime analysis

The runtime of the algorithm is as follows. L is the length of S and n− 1 is the number

of boundaries. Let M = m + (m− 1) + (m− 2) + 7 be the number of states in the plan7

profile HMM.

If a sequence position is not in Bl, Bl ⊕ 1, or Bl ⊕ 2, the runtime for one matrix entry

is O(1) for all states except for the E-state with O(m). Thus, the total runtime for one

such column in the DP matrix is (M − 1) · O(1) + O(m) = O(M + m). Since n << L

there are L − 3(n − 1) ≈ L sequence positions that do not allow for skipping. Thus, the
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total runtime for all these position is approximately O((M + m) · L), which is also the

runtime of the standard Viterbi algorithm for a plan7 HMM.

If a sequence position allows exon skipping, one matrix entry can be computed in

O(n) for all emitting states (M , I, C, J , N), in O(m) for the E-state and in O(1) for

all silent states (D, B, end). One such matrix column is computed in (m + m − 1 +

3) · O(n) + O(m) + (m) · O(1) = O(m · n + m) = O(m · n). The overall runtime for the

3(n − 1) matrix columns is O(m · n · n) = O(m · n2).

The total runtime of the extended Viterbi algorithm is O((M + m) · L + m · n2).

Despite the number of 2n−2 hypothetical splice forms, the runtime of our algorithm is

only quadratic with respect to the number of exons.

Compared to the Viterbi algorithm for a Pfam HMM, our algorithm is about three-

times slower, since we are working at the nucleotide and not at the protein level. Fur-

thermore, we use the pre-mRNA sequence, which results in much larger input sequences,

since introns are on average 23-times longer than exons [9].

2.5.6 Validation of the algorithm

To test the ability of our algorithm to identify real alternative exons, we constructed

a test set of alternative exons that are skipped in a RefSeq transcript and retained

in other EST/cDNA sequences. This test set consists of 202 peptide-cassette and 195

non-peptide-cassette exons. Inclusion of these exons results in a Pfam score decrease of

at least 10. Then, given the exon structure of the transcript including the alternative

exon, we used the algorithm to find the splice form with the highest Pfam score. In 392

(99%) cases (200 peptide-cassette and 192 non-peptide-cassette exons), the predicted

splice form was equal to the RefSeq transcript. This includes 18 cases where more than

one exon was skipped in a RefSeq transcript (four cases with two consecutive exons and

14 cases with two non-consecutive ones). In the five remaining cases, other exons were

skipped in addition to the expected exon, which gives an even higher score. Thus, all

alternative exons in our test set can be found by this algorithm. This demonstrates that

the algorithm can be used to predict alternative splice events that result in a Pfam score

increase with a high sensitivity.

2.6 Genome-wide prediction of alternative splice events

To predict exon skipping and intron retention events in the entire human genome, we

applied this approach to all 18,572 RefSeq transcripts (August 2004). We only con-

sidered novel splice forms that are not candidates for nonsense-mediated mRNA decay

(NMD) [58], since the rationale behind our strategy is that the novel splice variant is

expressed to be translated into a functional protein. To get highly confident Pfam anno-

tations, we only considered predictions with a Pfam score above the ’gathering cut-off’
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number of
predictions

confirmeda different event
confirmedb

unconfirmed

single exon skipping 183 119 65% 25 14% 39 21%
multiple exon skipping 57 14 25% 16 28% 27 47%
intron retention 67 37 55% 28 42% 2 3%
hidden exon event 5 - - 5 100% - -
complex event 9 - - 6 67% 3 33%
sum 321 170 53% 80 25% 71 22%

Table 2.2: Summary of the genome-wide scan.
a exactly the predicted event is confirmed
b a different event is confirmed (alternative donor/acceptor, inclusion of an exon that is skipped
in the given transcript, alternative transcription start); most of these events involve frameshifts

value as given in the Pfam database.

Despite the efficient algorithm, the computational expense to consider all Pfam do-

mains for 18,572 transcripts is huge. Therefore, we reduced the total runtime by restrict-

ing the search for one transcript to those Pfams that match the RefSeq protein up to

a rather low significance level (E-value ≤ 10). All Pfams matching the protein with an

E-value above 10 were not considered. This procedure is based on the observation that

Pfams matching already the RefSeq protein with a moderate score are more likely to

yield a hit above the gathering cut-off value for a new splice form.

In this genome-wide scan, we predicted alternative exons and introns for 309 RefSeq

transcripts. For the purpose to simplify the following evaluation, we distinguish five

cases:

1. the skipping of a single exon,

2. the skipping of multiple consecutive exons,

3. the retention of an intron,

4. hidden exon events,

5. and complex events as any combination of 1-4.

These five cases are shown in Figure 2.7. The results are summarized in Table 2.2.

2.6.1 Single skipped exons

We predicted a total of 183 single RefSeq annotated exons to be alternative. To check

if known alternative exons are contained in this set, we used Blast with a 60 nt search

string from the flanking exons (30 nt from the upstream and 30 nt from the downstream

exon) to search dbEST (December 2004) and cDNAs from GenBank. We denote a

predicted alternative splice event as confirmed if there is EST/cDNA evidence for it

and unconfirmed if there is currently no EST/cDNA evidence. This notation takes into

account that current EST/cDNA data is incomplete.
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Figure 2.7: Classification of alternative splice events predicted by the algorithm.
(A) Skipping of a single exon. (B) Skipping of multiple consecutive exons (shown here for two
exons). (C) Intron retention (shown as red dashed box). (D) Hidden exon: the algorithm found
an open reading frame (start and stop codon are indicated) within an intron that encodes a
Pfam domain (blue box), which indicates the existence of a hidden exon (grey dashed box). (E)
Complex events involve any combination of A-D. Here, we show an example with two skipped
exons. Exons are shown as grey boxes and dashed lines indicate the splicing patterns.

We found exon skipping evidence for 119 (65%) of the 183 exons. Three further exons

are skipped in addition to alternative donor or acceptor usage of one neighboring exon.

As mentioned in section 2.3, a frameshift introduced by exon skipping leads to a new

protein sequence, which can encode a longer or a new Pfam domain. While there are

generally several possibilities to introduce the frameshift, our algorithm is only able to

handle frameshifts caused by exon skipping or intron retention, since no other splice sites

are given. However, the same frameshift might be introduced by the usage of alternative

donor/acceptor sites or the inclusion of exons that are skipped in the RefSeq transcript

(Figure 2.8, see also Figure 2.14). Therefore, we examined frameshift predictions in detail

and found that in 22 cases the EST confirmed frameshift is not caused by exon skipping

but by a different splice event. Remarkably, the target reading frame of the predicted

shift is always identical to the confirmed one. Thus, a frameshift prediction should be

taken as a strong hint that a frameshift event exists in the vicinity of the skipped exon.

These 22 predictions are not considered further. Altogether only 39 (21% of the 183)

predictions remain that cannot be confirmed by existing expressed sequences.

Then, we compared the number of ESTs that match the upstream and downstream

exon of confirmed and unconfirmed predictions to see whether the exon skipping events

in both groups have an equal chance to be detected. The downstream exon of the 119
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phase 0 phase 0

phase 0
predicted

observed
75 nt

phase 0 phase 2
71 ntRefSeq

Figure 2.8: Illustration of multiple possibilities to introduce a frameshift.
The annotated RefSeq transcript contains a 71 nt exon. Inclusion of this exon leads to phase 2
for the downstream intron. Our algorithm is only able to introduce a frameshift by exon skipping
(shown in blue), resulting in phase 0 for the downstream intron. However, ESTs indicate that
the same frameshift is introduced by using an alternative acceptor site 4 nt upstream (shown in
red). This alternative acceptor leads to a 75 nt exon and consequently also to phase 0 for the
downstream intron. In principle, the same frameshift can be introduced by any other splice event.
Likewise, our algorithm might introduce a frameshift by skipping multiple exons.

confirmed alternatives is covered on average by 81 ESTs, which is four-times higher than

the average coverage of 20 for the unconfirmed predictions (median 14 vs. 5). The up-

stream exon has similar EST counts in both groups (average 77 vs. 13). This suggests

that insufficient EST coverage may be the reason for the current lack of confirmation.

Furthermore, we found that the unconfirmed exons are on average 688 nt further up-

stream of the 3’ mRNA end. Given the average EST length of 530 nt and that most

ESTs are sampled from the 3’ end, this may contribute to their lower EST coverage.

To check which percentage of single exon skipping events can be expected by chance,

we randomly chose 2,828 Pfam domain exons. To exclude exons with an EST cover-

age too low for detection of skipping events, we only considered exons with at least 20

hits for the up- and downstream exon, giving a median coverage of 48 (note that this is

very conservative compared to 14 matches to the downstream exon of confirmed single

exon skipping events). We only found for 15% (424 of 2,828 exons) EST/cDNA evi-

dence for exon skipping. In contrast, 75% (119 of 158, excluding 25 with a different

confirmed event) of the predicted single exons are EST/cDNA confirmed. This indicates

that our predictions are significantly enriched in real alternative exons (Fisher’s exact

test: P<0.0001).

Then, we compared the number of ESTs/cDNAs that contain or miss a confirmed

single exon. On average, these exons are skipped in 39 cases and included in only eight

(5:1 skipping-inclusion ratio), which contributes to the high confirmation rate for pre-

dicted single exon events. However, the inclusion in several transcripts and at least one

RefSeq demonstrates that these exons are real. Alternative exons with a low inclusion

rate are often not conserved in mouse and such exons are the result of exon creation or
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loss [77]. Therefore, we searched for their existence in the mouse genome by inspecting

the exons as well as introns of the orthologous mouse loci. For 15 single exons we failed

to identify either an orthologous mouse gene or the exons that flank the single exon. For

the remaining 104 exons, we only found an orthologous mouse exon for 45 (43%), which

is in agreement with [77]. In recent studies, Sorek et al. and Yeo et al. predicted a total

of 952 and 2,092 exons to be alternative, respectively [92, 71]. Only 18% (21 of 119) of

the confirmed single exons predicted here are contained in this combined exon set, which

may be attributed to the fact that 42% (19 of 45) of the orthologous human-mouse exon

pairs have sequence identities of less than 95% (this cut-off was used in [92]). Moreover,

unlike our predictions, the exons predicted by Yeo et al. have a tendency not to overlap

InterPro domains. Thus, the exons addressed by our Pfam based approach and the com-

parative methods have different characteristics and both approaches complement each

other.

Finally, we analyzed how confirmed exon skipping events can lead to a Pfam score

increase. We found that most of the peptide-cassette exons are aligned to gaps in the

Pfam alignment. Thus, exon skipping results in a score increase by reducing the number

of gaps. Such an example is shown in Figure 2.9A. Strikingly, we also found that the

skipping of a peptide-cassette exon can result in the creation of a new Pfam domain. Such

an example is the RefSeq transcript NM 024565 where the skipping of exon 4 results in

the creation of a new ’Cyclin, N-terminal domain’ (PF00134) (Figure 2.9B). The Pfam

parts encoded by the individual exons 3 and 5 have scores (0.3 and 9.6) that are far below

the gathering cut-off score of 17. Thus, it is likely that the inclusion of this exon leads to

the destruction of this functional domain. Motivated by these examples, we performed

genome-wide searches (that are not described in this thesis) and found other functional

protein features such as transmembrane helices and post-translational modification sites

that can be destroyed by exon inclusion. Taken together, this represents a novel mech-

anism of alternative splicing to modulate protein function. This mechanism creates a

functional protein domain by putting together two non-consecutive exons and destroys it

by inserting an exon in its body (exon 4 in the above example). Such alternative exons

might only perform the function of a ’spacer’.

In contrast to peptide-cassette exons, the skipping of a non-peptide-cassette exon

leads to a longer protein sequence by removing a stop codon or a new protein sequence

by introducing a frameshift. This protein sequence can encode a new or a longer Pfam

domain. Two representative examples are shown in Figure 2.10A and B.

2.6.2 Multiple skipped consecutive exons

In the genome-wide scan, we predicted 57 multiple exon skipping events and found

EST/cDNA evidence for 14 of them. Similar to single exons, further 16 frameshift

predictions are confirmed by different splice events (see Figure 2.8). The remaining
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Figure 2.9: Effect of alternative peptide-cassette exons on Pfam domains.
(A) SLC4A5 (NM 033323): Exon 26 disrupts the Pfam domain PF00955 as shown by the gaps
in the alignment. Skipping of the exon increases the Pfam score from 1183 to 1208.
(B) FLJ14166 (NM 024565): Skipping exon 4 results in the creation of a new Pfam domain, since
the score of 52.9 for the exon skipping splice form exceeds the threshold of 17.
Alternative exons are depicted in red. Pfam alignments for the RefSeq protein are shown at the
top, for the alternative splice form at the bottom.
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Figure 2.10: Effect of skipping of non-peptide-cassette exons on Pfam domains.
(A) CASP2 (NM 001224): Inclusion of exon 9 results in a reading frame with a stop codon in
exon 10 and this transcript should induce NMD. The skipping of exon 9 leads to a frameshift and
a new C-terminal part of the Caspase domain PF00656 (score increase from 174 to 317).
(B) PIGF (NM 173074): Exon 6 encodes an in-frame stop codon 33 nt upstream of the last
exon-exon junction, which should not elicit NMD. Skipping of exon 6 results in a new C-terminus
encoded by exon 7 and a score increase for PF06699 from 299 to 362.
Alternative exons are depicted in red, exons that become coding in the alternative splice form are
depicted in blue. Pfam alignments for the RefSeq protein are shown at the top, for the alternative
splice form at the bottom.
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Figure 2.11: Percentage of confirmed multiple exon skipping events.
(A) Percentage of confirmed, confirmed by a different splice event, and unconfirmed predictions
with more than one skipped exon. (B) Percentage of confirmed, confirmed by a different splice
event, and unconfirmed predictions divided into the number of skipped exons.

27 predictions are unconfirmed (Figure 2.11A). Again EST coverage of the downstream

exon is higher for the confirmed predictions compared to unconfirmed ones (average 42

vs. 23, median 25 vs. 7). Of all 57 predictions 30 events have two skipped exons, 14

three skipped exons, and 13 more than three exons. We found that no prediction with

more than three exons is confirmed and that the percentage of unconfirmed predictions

increases with the number of skipped exons (Figure 2.11B). Thus, it is conceivable that

some predictions are false positives and that the Pfam score is increased just by chance.

This holds especially for predictions with many skipped exons since the number of pos-

sible exon-exon combinations goes up. Indeed, we found that the average Pfam score

increase for the unconfirmed predictions is lower than for the confirmed predictions (19

vs. 28), which suggests that an increase of the threshold value with the number of skipped

exons should eliminate many false positive predictions.

2.6.3 Retained introns

We predicted 67 intron retention events that increase the Pfam score by encoding a new

part of a domain or introducing a frameshift (an example is given in Figure 2.12). We

found EST/cDNA evidence for 65 (97%) of these events. Only ESTs with a spliced

intron up- or downstream were accepted to reduce the possibility of partially spliced

ESTs. We found that 36 (54% of 67) of these introns do not have consensus splice sites

(GT-AG or GC-AG). These introns can be the result of annotation or mapping errors

of the RefSeq transcripts or the consequence of allele-specific splicing [106], since some
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Figure 2.12: Effect of intron retention on Pfam domains.
RNF39 (NM 170769): Intron 4 encodes the middle part of the SPRY domain (PF00622). Intron
retention results in a score increase from 10 to 47.
Pfam alignments for the RefSeq protein are shown at the top, for the alternative splice form at
the bottom.

of those have splice sites that diverge from the consensus in only a single mutation (e.g.

an AA instead of an AG acceptor site). Therefore, some of the predicted events do

not involve real introns, which may contribute to this extremely high confirmation rate.

However, 25 (81%) retention events of the remaining 31 introns with consensus splice

sites are confirmed by other RefSeq transcripts, which indicates that they are real and

not artifacts.

We classified predicted intron retentions into three groups (Figure 2.13). In case of

’I-introns’ the internal region of a Pfam is encoded by the intron and both neighboring

exons also contribute to the domain. ’N-introns’ encode a novel N-terminal domain part

and thus, only the downstream exons add to the Pfam. Likewise, ’C-introns’ encode a

novel C-terminal Pfam part and only the upstream exons contribute to the domain. Of

the 67 predictions, 23 are I-introns and all are experimentally confirmed. Of the 15 N-

intron predictions, 13 are confirmed by at least partial EST matches to one intron-exon

boundary. Eleven of them do not have a continuous open reading frame (i.e. an in-frame

stop codon), which is a strong indication for the existence of alternative acceptor sites

further upstream of the Pfam encoding exons. Indeed, ten of those have a confirmed

alternative acceptor and we found one alternative transcription start. The remaining

two N-introns with a continuous reading frame are confirmed by EST matches. Finally,

all of the 29 predicted C-intron retention events are confirmed (twelve intron retentions

and 17 alternative donors).

Most predicted intron retention events involve the last intron in the transcript since

we excluded NMD candidate splice forms and a PTC due to the retention of the last

intron cannot trigger NMD. Consequently, these splice events result in protein isoforms

with an altered Pfam domain at their C-terminus.
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STOP

STOP

I−intron

N−intron

continuous reading frame non−continuous reading frame
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Figure 2.13: Classification of intron retention events.
I-introns have a continuous reading frame and both neighboring exons also encode the Pfam
domain. For N- and C-introns only the downstream and upstream exon encode the Pfam domain,
respectively, and they may not have a continuous reading frame (indicated by the stop codon).
Non-continuous reading frames are a strong indication of alternative donor/acceptor sites within
the intron.
Exons are shown as grey boxes with solid lines, introns as a line and a retained (partial) intron
as a red box with dashed lines. The position of the Pfam domain is shown as a blue box below
the gene structure. Stop codons and splicing patterns (dashed line) are indicated.

2.6.4 Hidden exon events

In the genome-wide scan, we also found seven predictions that involve introns containing

an open reading frame that encodes the complete or a part of a Pfam without the neigh-

boring exons. Thus, it is possible that an exon, which is skipped in the given transcript,

is ’hidden’ in the respective intron. Therefore, we examined these hits and found for five

of them EST confirmation of hidden exons. For example, intron 5 of the NM 013954

transcript of NOX1 contains seven alternative exons that encode parts of the ’Ferric

reductase like transmembrane component’ domain (PF01794). These exons are included

in another transcript of NOX1 (NM 007052). Manual inspection of the remaining two

unconfirmed predictions (NM 152476 intron 10, NM 206894 intron 5) with the Ensembl

genome browser revealed that these RefSeq transcripts falsely span two non-overlapping

genes and that the predicted intronic parts are exons of the downstream genes. Thus,

these two cases are likely due to annotation errors and were excluded. (It should be men-

tioned that a very recent study demonstrated that such ”transcription-induced chimerism

events” can really occur in human cells [107]).

2.6.5 Complex events

We also predicted nine complex events. In each case, the given transcript is a clear

NMD candidate and our prediction aims at maintaining a reading frame. For six of
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Figure 2.14: Example of a predicted complex splice event for the CPT1B gene.
The predicted splice event (skipping of two exons) is shown in (A), the observed event (alternative
donor and acceptor usage) in (B).

the nine cases, manual inspection revealed other splice events like the multiple usage of

alternative donor and acceptor sites. For example, our prediction for the NMD candidate

NM 152247 of CPT1B is to skip exon 22 and 26 to restore the reading frame. Instead

of skipping two exons, an alternative acceptor 5 nt upstream of the beginning of exon 22

and an alternative donor 169 nt downstream of exon 26 is used in another transcript of

CPT1B (NM 152246) to produce a non-NMD splice form (Figure 2.14).

2.6.6 Experimental verification of unconfirmed predictions

In collaboration with the genome analysis group of Matthias Platzer, we tested eleven

randomly chosen unconfirmed single exon skipping events in a pool of 16 human tissues.

In 27% (three of eleven) the predicted exon skipping was observed (DHRS exon 7, CDH2

exon 11, and MYO9 exon 6). Since multiple exon skipping events have a lower EST

confirmation rate compared to single exon events and no case of a four-exon skipping is

EST confirmed, we selected three two-exon, one three-exon, and two four-exon skipping

events for experimental verification. Furthermore, the two unconfirmed N-introns were

tested. We did not observe the expected splice variants for these eight predictions. In

general, our experiments may suffer from some of the problems mentioned above for

ESTs, since specific splice events can be restricted to narrow windows in space and time.

2.6.7 Location of alternative peptide-cassette exons within Pfam

domain structures

Alternative splicing has a tendency to coincide with domain boundaries and to avoid

the interior of functional and structural domains [108, 52]. Since our single exon events

might interfere with the Pfam domain structure as indicated by the low inclusion rate,

we were interested in finding out where confirmed peptide-cassette exons are located with

respect to the secondary structure and the protein surface. We computed the secondary

structures and the surface accessibility of residues from known three-dimensional struc-



2.7 Discussion 41

tures of Pfam domains using the pdb2pfam function of the Pfam web sites. Since in

each case the structure does not include the alternative exon, we consider the location

of the exon-exon junction of both neighboring exons in the following. We mapped 28

alternative exon junctions and, as a control group, 80 constitutive exon junctions to these

secondary structures. The residue at the exon junction was classified as being located

in an alpha-helix, in a beta-sheet, or in a non-regular element. We found a significant

difference between the alternative and constitutive junctions (χ2 test was used to analyze

a 2x3 contingency table, P=0.034) with a striking preference of alternative junctions for

non-regular elements and the avoidance of helices (Figure 2.15A).

To rule out that this result is biased by inaccuracies in the secondary structure assign-

ment, which is sometimes problematic at the end of structural elements, we considered

a broader context (± one residue) around the exon junction. We classified the context

to be ’inside a structural element ’ if all three residues are either in a helix or in a sheet.

If the three residues of the context are in two different structural elements or if all are

inside a non-regular element, the context is classified as ’outside a structural element ’.

Again we found a significant preference of the alternative exon junctions to be located

outside structural elements (Fisher’s exact test: P=0.043) (Figure 2.15B). An interesting

example is the BAR domain that consists of four long helices. While the constitutive

junctions of all exons of BIN1 that encode this domain are located within these helices,

the position of the alternative junction is in the loop between two helices (Figure 2.15C).

Furthermore, alternative junctions have a tendency to be located at the protein surface

(± one residue context, average 2.96 vs. 2.36, higher values indicate exposed residues).

This clearly shows that alternative exon junctions are non-randomly distributed within

Pfam domain structures. The preferred position at the surface and between secondary

structure elements argues against a destructive role of most of these splice events.

2.7 Discussion

We describe a novel approach that uses information about Pfam domains to predict exon

skipping and intron retention events ab initio. Only the genomic sequence and gene

structure annotation are required. Our approach is able to predict alternative exons

regardless whether their size is divisible by three and is independent of the existence of

orthologs in another species. We have shown that this approach can reliably identify

exon skipping and intron retention events ab initio and that it complements existing

comparative methods. Our approach has two limitations. Firstly, it is restricted to

the regions of a gene that encode Pfam domains. However, Pfam is one of the most

comprehensive descriptions of functional domains as Pfam domains match 75% of all

proteins in Swiss-Prot/TrEMBL and cover 53% of all residues [109]. Apart from Pfam

domains, the general approach can use other functional motif descriptions like those
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Figure 2.15: Location of alternative and constitutive exon junctions within Pfam domains.
(A) Analysis of residues at the exon junction with respect to location in a helix, in a sheet, or
in non-regular elements. (B) Analysis of the ± one amino acid context around exon junctions.
(C) BAR domain PF03114 as an example: The exon junctions of BIN1 (NM 19345) are mapped
to the secondary structure of the BAR domain using the known structure (PDB 1uru) of CG8604-
PA (Swiss-Prot Q9Y092) as a template. The three-dimensional structure is shown in the top-left
corner of (C), the secondary structure at the bottom. While all constitutive exon junctions are
located within helices, the alternative junction is in the loop. If the exon junction splits a codon,
only this amino acid is highlighted and otherwise, if the junction is between two codons, both
residues are highlighted. Red bars indicate the four helices. The positions of the exons are
indicated by boxes in alternating grey. The star indicates the position where the alternative exon
is inserted.
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contained in the InterPro database. Additionally the constant growth of these databases

will lead to a higher coverage and more predictions. Secondly, our approach is restricted

to cases where the Pfam score is increased because it is unlikely that this occurs just by

chance. Many splice events result in a deletion of functional domains, which decrease the

overall Pfam score. Such events cannot be predicted by this approach since a strategy

that arbitrarily predicts an exon to be alternative will also result in a lower Pfam score.

In this study, we considered a total of 18,572 human RefSeq transcripts and made a

prediction for 307 (1.7%) of them. We only predicted exon skipping and intron retention

events as no other putative alternative splice sites are given. However indirectly, for a

number of predictions that result in a frameshift, we found an alternative donor/acceptor

site or an exon that is skipped in the given transcript. These alternative splice events

cause the same frameshift that is predicted by our algorithm. As written in section 2.5.2,

our algorithm can also handle alternative donor/acceptor sites if they are given in Bl

and Br. To test this, we evaluated the prediction of the algorithm in five cases where

the positions of the additional splice sites were given. As expected, in each case the

algorithm uses the additional splice site and produces a splice form that equals the

known alternative splice form. Moreover, C-intron retentions and hidden exon predictions

were only found for the last intron in the transcript, since most of them do not have

a continuous reading frame and we excluded hypothetical splice forms that are NMD

candidates. Numerous of these events in other introns can be found by relaxing the

NMD criterion. Again, such events can be predicted if the corresponding alternative

splice sites are included. Consequently, it is promising to include other splice sites, for

example those derived from predicted suboptimal exons, which can be found by gene

prediction programs such as Genscan [90]. This will increase the number of predictions

with alternative donor/acceptor sites as well as exons that are hidden in introns and

whose inclusion is not seen in available expressed sequences.

We have shown that sequence inserts inside Pfam domains prefer to be located at the

protein surface and strongly avoid a position within secondary structure elements. This

is in line with their negative impact on a Pfam domain (based on the score), their low

inclusion level, and their low conservation in mouse. This suggests that most of these

inserts alter the domain structure and function, which is in contrast to other alternative

splice variants that delete an entire Pfam domain or an essential part of it [52]. A likely

evolutionary scenario is the exonization of a part of an intron followed by a selection

pressure assuring that the novel exon is rarely included to produce enough amount of the

functional protein. If the inclusion of this exon has no drastic consequences for the domain

structure, it might acquire a function. Indeed, we found examples in the literature where

such splice events have important functional consequences. For example, a splice form

of TRAF2 with a seven amino acid insert into a Ring finger domain acts as a dominant

negative inhibitor of TNFR2 -dependent NFκB activation [110]. Alternatively spliced
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inserts modulate the structure of loops at a protein interaction surface of neurexin Iβ,

which influences the binding of protein ligands [49]. However, even small inserts may

result in a change of the overall protein fold. For example, insertion of nine residues

into the C2 domain of Piccolo due to inclusion of exon 15 leads to a rearrangement

of the β-sheets, which explains the drastic differences in Ca2+ affinity for both splice

forms [48]. A 17 amino acid insert for UAP1 modifies the architecture of the active site

and alters substrate specificity [111]. We believe that many of the splice forms found in

this study are biologically interesting as they affect a protein domain and presumably

alter its structure and function.

Intron retention seems to be a rare splice event with an estimated frequency of

6% [112]. Furthermore, they are difficult to detect because of unspliced or partially

spliced ESTs. Most of the intron retentions predicted here contribute to Pfam domains

and the retention is confirmed by the existence of another RefSeq transcript. Therefore,

they are likely to represent important alternative splice forms [113]. Since nearly all

predicted intron retention and hidden exon events are EST confirmed, we conclude that

intronic open reading frames encoding Pfam domains are very likely to become exonic in

another transcript.

Due to a high number of human ESTs and intensive biomedical research, the human

transcriptome presumably is the best characterized one. In contrast, the number of ESTs

is much lower for other species, for example, chicken has less than 600,000 ESTs and

Drosophila less than 500,000 (release July 2006). Even in the well-annotated genome of

C. elegans, there are thousands of genes without EST/cDNA support [114]. As alternative

splicing is assumed to be equally frequent in other species [11], ab initio prediction

should be very useful for species with low EST numbers. Therefore, we believe that the

application of our approach to other organisms will lead to the discovery of numerous

novel alternative splice events.



Chapter 3

General influence of mRNA secondary

structure on splicing

The second part of this thesis deals with the influence of RNA secondary structure on

splicing. Although mRNA is often considered as a linear sequence of codons, its secondary

structure features are important for a number of maturation processes including splicing.

Furthermore, most proteins that affect splicing decisions are equipped with domains that

bind single-stranded RNA and the sequestration of a binding site into a double strand

was reported to prevent protein binding.

In this chapter, we analyze the secondary structure of an extensive set of experimen-

tally determined enhancer and silencer motifs in their natural context. We found that

the binding sites of splicing factors are significantly more single-stranded and tested this

principle experimentally. Since splicing is regulated by many splicing factors binding to

multiple sites, this finding argues for a general importance of mRNA secondary struc-

tures for splicing. Our results can have far reaching implications from the interpretation

of mutagenesis experiments to the in silico prediction of splicing motifs.

Another important implication is that secondary structures can help to discriminate

real from spurious protein binding sites in de novo motif finding. As knowledge about the

binding motif is a crucial step to understand the function of an RNA-binding protein,

secondary structures should not be neglected when searching for the binding motif of

proteins that bind single-stranded RNA. To this end, we developed and implemented

MEMERIS, a novel approach for searching sequence motifs in a set of RNA sequences

and simultaneously integrating information about secondary structures. To abstract from

specific structural elements, MEMERIS precomputes position-specific values measuring

the single-strandedness of all substrings of an RNA sequence. These values are used

as prior knowledge about the motif starts to guide the motif search. We performed

extensive tests with artificial and biological data and demonstrated that MEMERIS is

able to identify motifs in single-stranded regions even if a stronger motif located in double-

stranded parts exists. The general principle to use prior knowledge about putative motif

start positions can be extended to other applications.
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Plan of the chapter

An introduction about the influence of mRNA secondary structures on splicing is given

in section 3.1. In section 3.2, we investigate the single-strandedness of splicing factor

binding sites. The MEMERIS algorithm and its application to artificial and real data

are described in section 3.3. Finally, we discuss our results and potential implications in

section 3.4.

3.1 Functions of mRNA secondary structures

For a long time it has been thought that mRNAs contain only the linear information

of the codon sequence. In contrast, numerous other RNA species like transfer RNAs or

ribosomal RNAs have conserved secondary structures that are essential for their func-

tion. However, several studies demonstrated that mRNA is more than simply a carrier

for codons. Indeed, the secondary and tertiary structures of mRNAs play important roles

in a number of processes including editing, splicing, localization, stability, and transla-

tion [115, 116, 117]. For example, the formation of double-stranded parts is essential

for adenosine to inosine (A to I) editing by double-stranded RNA-specific editases [118].

Translation of ferritin mRNAs is controlled by a small hairpin structure (the iron respon-

sive element) [119] and some viral as well as cellular transcripts contain IRES (internal

ribosome entry site) elements in their 5’ UTR that enable a cap-independent translation

initiation [120]. The interpretation of a TGA codon as a codon for selenocysteine depends

on a downstream hairpin structure (the selenocysteine insertion sequence) [121].

There is emerging evidence that mRNA secondary structure plays a role in alternative

splicing as well [40]. For example, the skipping of exon 10 of the MAPT gene is correlated

with the stability of a stem structure that sequesters the donor site [122]. The splicing

of two mutually exclusive exons of FGFR2 is regulated by use of a conserved secondary

structure [123] and there is evidence that the tight regulation of a cluster of 48 mutually

exclusive exons in the Drosophila DSCAM gene is achieved by formation of secondary

structures [124]. Moreover, it has been proposed that sequences surrounding alternative

exons might form structures that loop out the exon and prevent its recognition [45, 125].

Interestingly, such loops can also be formed by hnRNP A1 or PTB dimers that bind

motifs up- and downstream of an exon [126, 127].

SR proteins and hnRNPs are equipped with single-stranded RNA binding domains [128].

Indeed, several of these proteins were shown to bind sequence motifs in a special struc-

tural context. For example, Nova-1 binds the sequence TCAT only when located in a

hairpin loop [129]. Furthermore, SRp55 and hnRNP A1 proteins bind specific single-

stranded sequences in hairpin loops [130, 131]. Thus, the sequestration of a binding

site into a double-stranded part can prevent the binding of single-stranded RNA binding
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proteins [132]. One such example is the mouse fibronectin EDA exon. The deletion of a

silencer in this exon results in a shift of a critical ESE from a position in a hairpin loop to

a position in a stem, which leads to complete exon skipping [133]. However, it is currently

unclear to which extent mRNA secondary structures form in natural environments since

studies have shown large differences between in vitro and in vivo experiments [134, 135].

These differences might be explained by co-transcriptional formation of secondary struc-

tures as well as a rapid binding of proteins to the nascent transcript. Moreover, it has

been reported that RNA helicases influence splicing [136, 137, 138, 139]. It is conceivable

that these enzymes rapidly resolve most of the existing secondary structures in vivo so

that in a nearly single-stranded mRNA only the sequence of the splicing motifs and not

their structural context is important. Thus, it is currently unknown if the structural

context of binding sites for splicing proteins is important in general.

3.2 Higher single-strandedness for experimentally verified

splicing motifs

3.2.1 Measurement of single-strandedness

The following analysis investigates the single-strandedness of substrings of an RNA se-

quence, therefore we first define how to measure the single-strandedness. In contrast

to the three-dimensional structure of a protein, RNAs often have a more flexible and

dynamic structure, which hampers the experimental structure determination. There-

fore, the secondary structure of an RNA, which is the set of all base pairings, is often

considered. RNA secondary structures can be efficiently predicted by energy minimiza-

tion [140]. Since the natural occurring secondary structure is not always the structure

with the predicted lowest free energy and a single RNA sequence can adopt more than

one structure and perform more than one function [141], a set of suboptimal structures

is usually computed. Structures with a similar free energy can differ greatly and it is

often arbitrary to set an energy threshold value up to which suboptimal structures are

considered. Therefore, we decided to use the equilibrium partition function and the base

pair probabilities for our purpose [142]. Base pair probabilities represent the likelihood

that two bases form hydrogen bonds in the ensemble of all possible secondary structures.

Since there is no standard method to compute the single-strandedness of a substring of

an RNA sequence, we introduce three different measurements:

• the Expected Fraction of bases in the substring that are unpaired (denoted EF),

• the Probability that all bases in the substring are Unpaired (denoted PU),

• and the Energy Difference between the ensemble of all structures and the ensemble

of those structures that do not have base pairs in the substring (denoted ED).

Note that PU values have also been used in other studies [143, 144].
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Let us consider the substring in a given RNA sequence between positions a and b.

EFa,b is defined as

EFa,b = 1 −

b
∑

i=a

L
∑

j=1
pi,j

b − a + 1

where L is the length of the RNA sequence and pi,j is the probability that bases i and j are

paired. The base pair probabilities pi,j are computed with the RNAfold program [145].

PUa,b is defined as

PUa,b = e

Eall − Eunpaired
a,b

RT

where Eall is the free energy of the ensemble of all structures, Eunpaired
a,b is the free energy

of the ensemble of all structures that have the complete substring unpaired, R is the

universal gas constant, and T is the temperature. We compute Eall and Eunpaired
a,b using

the partition function version of RNAfold. For Eunpaired
a,b , we assure that the region a

to b is unpaired by applying additional constraints (RNAfold parameter -C). Recently, a

more efficient computation of PU values was implemented in the RNAup program [143].

EDa,b is defined as

EDa,b = Eall − Eunpaired
a,b .

Higher values for PU and EF indicate a higher single-strandedness of the motif. In

contrast, the higher the ED value, the more stable structures have at least one base pair in

the substring, which contributes to a higher energy difference between the two ensembles.

Thus, lower ED values indicate a higher single-strandedness. These measurements have

the advantage that they account for all possible structures and that the values for two

motifs of equal length can be directly compared. Furthermore, the measurements are

based on the free energies, thus differentiating between stable (C-G) and less stable base

pairings (A-U, G-U). This is reasonable because the break of base pairs by helicases or

by protein binding should be more difficult for stable pairings. Finally, it is advantageous

that these measurements abstract from specific structural elements.

3.2.2 Data set of experimentally verified splicing motifs

To investigate the structural context of splicing motifs, we extracted a set of 165 experi-

mentally determined motifs with their natural mRNA sequence context from the AEDB

database [146]. This set comprises exonic and intronic enhancers and silencers from hu-

man, mouse, rat, chicken, Drosophila, and several viruses. To get a high-quality data

set, we checked the consistency of the listed genes, species, and motif sequences with the

respective publications. Only motifs that were demonstrated to influence splicing in their

natural context were considered. Three-dimensional structures of single-stranded RNA

binding proteins indicate that they usually contact only a few residues. Therefore, we
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CAACCACAAGCTACTTCAGA

TGCTACTTCAGA GGATGACTGGTA

GGATGACTGGT

GGATGACTGGTAATGGGTTCTGCATATTTAGCCATTCAAATCCGGAAGTGCTACTTCAGA

GCCATTCAAATCCGGAAGTGCTACTTCAGA GGATGACTGGTAATGGGTTCTGCATATTTA

...

11 nt

30 nt

12 nt

11 nt

12 nt

30 nt

compute EF

compute EF

compute EF

...

Figure 3.1: Scheme for computing the single-strandedness of a verified splicing motif.
The ESE CAACCACAA (red) of exon 8 of the CD44 gene is shown together with 30 nt of its
mRNA sequence context. We compute EF values of the splicing motif for all context lengths
from 11 nt up to 30 nt. To get a single value that measures the single-strandedness of this ESE,
we compute the average of these 20 values.

discarded 88 motifs with a length of more than 9 nt. These motifs are likely to contain a

core binding site at a location that was not experimentally determined. The remaining

77 motifs with a length equal or smaller than 9 nt were selected for further analysis. For

convenience, we denote these motifs also as ’verified motifs’.

3.2.3 Folding window

It is unclear to which extent mRNA is free to fold in natural environments, but sev-

eral lines of evidence argue that in vivo secondary structures can only be formed in a

rather narrow window. Firstly, mRNAs are bound by numerous proteins and protein

binding should influence their ability to fold freely. Secondly, the formation of secondary

structures occurs co-transcriptionally, therefore short range base pairs are favored com-

pared to long-range base pairs, which is consistent with the results of kinetic folding

algorithms [147]. Thirdly, the hybridization of the nascent mRNA with the DNA strand

should elicit RNAse H degradation, thus such a hybridization must be prevented either

by local mRNA secondary structures or protein binding. Fourthly, experiments suggested

that mRNA folding is limited to a region of about 50 nt downstream of the transcribing

polymerase [148]. Finally, for practical reasons, the accuracy of RNA folding programs

drops for long sequences.

In light of these uncertainties, we decided to consider all symmetrical context lengths

from 11 up to 30 nt up- and downstream of the motif. Thus, for a motif with length 6 nt,

we considered sequences with a total length from 28 nt (for context length of 11 nt) to

length 66 nt (for context length of 30 nt). A minimum context length of 11 nt was chosen

because a certain sequence length is necessary to allow the formation of energetically

stable structures (free energy less than 0 kcal/mol). We computed the EF value of the

splicing motif for all 20 context lengths. Then, we averaged these 20 values to get a single

EF value for each splicing motif (Figure 3.1). We assume that this procedure is more

unbiased compared to the simpler way of computing the single-strandedness from just one
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fixed context length. To get an overall measure for all splicing motifs, we computed the

average EF value for the 77 verified splicing motifs. Likewise, this procedure is repeated

with the PU and ED value. It should be mentioned that we use the same context lengths

for all following tests to assure the comparability of average EF, PU, and ED values. An

example of the base pair probability matrix and these three (EF, PU, ED) measurements

for a sequence containing two PTB binding sites is given in Figure 3.2.

3.2.4 Experimentally determined splicing motifs are preferably located

in single-strands

The average EF, PU, and ED values for the 77 verified splicing motifs are given in

Table 3.1. To assess whether verified splicing motifs have a preference for single strands,

we constructed several null models. As PU and to a lower extent EF and ED depend

on the length of the motif, it is necessary to use the length distribution of the verified

splicing motifs in all null models.

Firstly, we randomly chose a new motif of the same length in the 150 nt up- and

downstream flanks of the natural context for all 77 motifs. We repeated this 100 times to

obtain 100 sets, each with 77 randomly chosen motifs from the natural context (denoted

null model 1). This null model has the advantage to account for possible biases in the

selection of genes or exons since it uses the same sequences. The P-value was computed

as the fraction of sets having a higher average single-strandedness compared to the set

of verified motifs (for example, if all 100 random sets have a lower EF value than the

verified motifs, the P-value is less than 0.01 (1 of 101 total sets)). We obtained significant

P-values of 0.01 for EF and PU and a P-value of 0.04 for ED (Table 3.1).

Secondly, we repeated the procedure of null model 1 but replaced the randomly chosen

motif by the verified one and got essentially the same results (null model 2, Table 3.1).

This null model also accounts for the sequence bias of the motifs.

Thirdly, since the dinucleotide composition influences the stability of secondary struc-

tures, we used dinucleotide shuffling [150] to modify the up- and downstream flanks of

verified motifs, while preserving the motif sequence. Again, 100 different sets were con-

structed and the P-value was computed as described above (null model 3). For all

measurements, we got P-values of 0.01 (Table 3.1).

Fourthly, we randomly selected a new motif in a set of 10,000 randomly chosen internal

exons (null model 4) and introns (null model 5) using the length distribution of the verified

motifs. Since exons and introns have differences in their nucleotide composition [9], we

split the 77 verified motifs into 50 exonic and 27 intronic ones according to their location

in the exon-intron structure. Then, we compared the average EF, PU, and ED values

for the 10,000 random exonic (intronic) motifs and the verified exonic (intronic) motifs.

Using the t-test, we found significant differences between verified and random motifs

except for exonic ED values (Table 3.1).
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Figure 3.2: Example of the secondary structure context of two PTB binding sites in the intron
upstream of the mouse c-src exon N1 [149]. The base pair probability matrix for the sequence
comprising the two PTB motifs (CUCUCU and UCUCUCU) and the 30 nt context up- and
downstream is shown. Both binding sites are highlighted yellow. The base pair probabilities
for the complete structure ensemble are contained in the upper right part of the matrix (big
dots represent high probabilities). The optimal and the five best suboptimal structures and
their free energies in kcal/mol are shown above the matrix (computed with RNAsubopt [145],
parentheses represent base pairs, dots unpaired bases). It can be seen that both binding sites are
found in mostly single-stranded regions. Accordingly, the measurements of single-strandedness
are far below the average for all null models (average for context lengths 11-30 nt: CUCUCU:
EF=0.93, PU=0.71, ED=0.38; UCUCUCU: EF=0.95, PU=0.60, ED=0.32; compare with values
in Table 3.1).
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To exclude the possibility that the maximal context length of 30 nt is inappropriate,

we repeated the entire analysis with average EF, PU, and ED values for context lengths

11 to 20 nt as well as 11 to 50 nt. Since we assume that the existence of long range

but not short range base pairs in a cell is questionable, shorter context lengths were

always included. Basically, we observed the same results as for context lengths 11 to

30 nt (Table 3.1). These findings indicate that verified splicing motifs have a significant

trend to be located in single-stranded regions. Furthermore, the results from null models

2 and 3 that use the same motif sequences indicate that the higher single-strandedness

is attributed to the flanks of those motifs rather than to the motifs themselves.

3.2.5 Higher single-strandedness for splicing motifs cannot be explained

by lower GC content

The GC content of a sequence has an influence on the stability of secondary structures,

since C-G base pairs allow more stable base pairings. Indeed, we found that a higher GC

content leads to a lower single-strandedness in general. Therefore, we have to exclude

that the observed higher single-strandedness for verified motifs is attributed to a lower

GC content of the motifs and/or their flanks. The average GC content for the motif and

the 30 nt up- and downstream flanks is virtually identical for the verified motifs and null

models 1-3 (Table 3.1). Consistent with the observation that introns are less GC-rich

than exons [9], our null model 5 is very conservative with an average GC content that is

7% below that for intronic verified motifs (Table 3.1).

However, exon sequences from null model 4 have an about 2% higher GC content

compared to verified exonic motifs, which might contribute to the observed higher single-

strandedness for the latter group. To exclude this possibility, we generated a new set

of 10,000 exonic motifs with almost equal average GC contents and one with lower GC

contents. Again, we observed more single-strandedness for the exonic splicing motifs

(Table 3.1). Thus, even conservative controls with a lower GC content yield significant

differences. For completeness, we generated two sets with 10,000 exonic and intronic

motifs having a higher GC content (about 6% higher) and, as expected, the single-

strandedness decreased. To summarize, we observed a higher single-strandedness for

splicing motifs for EF, PU, and ED values in all null models. We conclude that the GC

content influences our measurements, but does not explain the observation that verified

splicing motifs are more single-stranded.
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EF PU ED
11...20 nt 11...30 nt 11...50 nt 11...20 nt 11...30 nt 11...50 nt 11...20 nt 11...30 nt 11...50 nt average GC content

number
of

motifs avea P<b ave P< ave P< ave P< ave P< ave P< ave P< ave P< ave P< motif

30 nt
up-

stream

30 nt
down-
stream

splicing motifs
all 77 0.69 0.65 0.62 0.29 0.25 0.21 2.17 2.49 2.77 0.49 0.48 0.49
exonic 50 0.67 0.62 0.59 0.23 0.19 0.16 2.41 2.77 3.02 0.49 0.47 0.48
intronic 27 0.73 0.71 0.67 0.40 0.35 0.29 1.72 1.96 2.32 0.50 0.51 0.49

null model 1 100c 0.63 0.01 0.59 0.01 0.55 0.01 0.18 0.01 0.15 0.01 0.13 0.01 2.59 0.03 2.86 0.04 3.16 0.02 0.48 0.48 0.49
null model 2 100c 0.64 0.02 0.60 0.01 0.57 0.01 0.21 0.01 0.18 0.01 0.15 0.01 2.60 0.04 2.91 0.05 3.19 0.04 0.49 0.49 0.49
null model 3 100c 0.63 0.01 0.59 0.01 0.55 0.01 0.18 0.01 0.15 0.01 0.12 0.01 2.61 0.01 2.91 0.01 3.22 0.02 0.49 0.48 0.48d

null model 4 10,000 0.60 0.008 0.57 0.029 0.53 0.013 0.14 0.008 0.12 0.007 0.09 0.004 2.83 0.131 3.12 0.228 3.40 0.183 0.50 0.50 0.50

lower GC content 10,000 0.61 0.023 0.58 0.075 0.54 0.039 0.15 0.019 0.12 0.020 0.10 0.014 2.67 0.327 2.95 0.520 3.22 0.450 0.47 0.46 0.47
equal GC content 10,000 0.61 0.017 0.57 0.057 0.53 0.025 0.15 0.019 0.12 0.018 0.10 0.012 2.73 0.241 3.02 0.381 3.31 0.304 0.49 0.47 0.48
higher GC content 10,000 0.59 0.001 0.55 0.005 0.51 0.002 0.12 0.001 0.10 0.001 0.08 0.001 3.07 0.020 3.37 0.036 3.68 0.021 0.57 0.53 0.53

null model 5 10,000 0.62 0.004 0.58 0.001 0.54 0.001 0.18 0.001 0.15 0.001 0.12 0.001 2.52 0.032 2.83 0.025 3.14 0.042 0.43 0.43 0.43
higher GC content 10,000 0.58 0.001 0.54 0.001 0.50 0.001 0.13 0.001 0.11 0.001 0.08 0.001 3.26 0.001 3.60 0.001 3.97 0.001 0.60 0.55 0.55

Table 3.1: EF, PU, ED values, P-values and GC content for verified splicing motifs and all null models.
The values for the different context lengths are indicated in the second line as ’11..20 nt’, ’11..30 nt’, and ’11..50 nt’. The P-values for null models 1-3 were computed
as the fraction of test sets with a higher average single-strandedness compared to the all 77 splicing motifs. The P-values for null models 4 and 5 were computed by the
t-test (null model 4 and 5 was compared to exonic and intronic splicing motifs, resp.). The GC content for null models 1-3 was computed by averaging over the 100 test
sets. P-values in italics are not significant at the 0.05 level. GC content values in italics are higher for the null model than for the verified splicing motifs.
a average values for the given context lengths
b means ’P value <’
c means 100 test sets with each 77 motifs
d The slight change in the GC content is due to shuffling of dinucleotides that are located at the ends of the 30 nt contexts.
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3.2.6 Testing the effect of single- and double-stranded splicing motifs

experimentally

In collaboration with the group of Stefan Stamm, we performed in vivo minigene ex-

periments to verify these computational results. We selected the SXN minigene con-

struct, which contains an artificial alternative exon between two constitutively spliced

exons. Then, we designed oligonucleotide sequences that contain an ESE or an ESS

sequence in single- or double-stranded conformation. We used the ESS TAGGGT, the

ESE CAACCACAA, and the ESS CAAGG (Figure 3.3A). TAGGGT is a strong binding

site for hnRNP A1, CAACCACAA was demonstrated to enhance splicing in the CD44

gene, and CAAGG acts as an exonic silencer in the fibronectin gene. Except for a shift of

1 nt in the CAACCACAA constructs, the single- and double-stranded motifs are located

exactly at the same position. Therefore, any effect due to a variation in the position of

the splicing motif can be excluded [30].

The oligonucleotides were inserted into the alternative exon of the minigene, the

minigene was transfected into cells, and the mRNA was amplified by RT-PCR. As shown

in Figure 3.3B, the inclusion level differs between the constructs having the motif in the

loop or in the stem of the designed secondary structure. According to our hypothesis,

the ESS TAGGGT should allow more efficient binding in single-stranded conformation,

which should result in a higher level of exon skipping. Indeed, the loop construct results

in only 15% exon inclusion, which is lower than 37% for the stem construct. Likewise, we

expect that the ESE CAACCACAA leads to a higher inclusion level when located in a

single-strand. Consistently, the loop construct results in 70% inclusion compared to only

7% for the stem construct. Unexpected, the sequence CAAGG leads to 75% inclusion

for the loop construct and to 34% inclusion for the stem construct. Thus, CAAGG

seems to act as an enhancer in our test system, although it was described as a silencer

in the fibronectin gene [133]. Interestingly, this pentamer occurs in 18 of the 2,042 ESE

octamers predicted in [42], but it occurs in none of the 1,019 predicted ESS octamers

(Fisher´s exact test: P=0.0015). Thus, it is conceivable that CAAGG can also act as an

enhancer.

It should be mentioned that these experiments cannot exclude that the observed

effects are influenced by other splicing motifs that are contained in the designed sequences,

since it was nearly impossible to avoid the occurrence of any other known splicing motif.

Furthermore, during the experiments with these constructs, another study described

numerous new splicing motifs [30] and it is likely that additional motifs remain to be

discovered. However, although the ESS TAGGGT and the ESE CAACCACAA loop

constructs have 98% identity, we observed a great difference in the exon inclusion level.

Therefore, we assume that the motif in the loop exerts a dominant role. Although

further studies and experiments are needed, we conclude that the secondary structure of

a splicing motif influences alternative splicing.
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Figure 3.3: Results of the minigene experiments.
(A) We designed three pairs of oligonucleotides containing the splicing motif in single-stranded or
double-stranded conformation. The splicing motif is highlighted yellow. The predicted optimal
secondary structure is shown below the sequences. (B) The experimentally determined exon
inclusion level for the six constructs is shown in the bar chart.
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3.3 RNA sequence motif finding in single-stranded regions

3.3.1 Motivation

In the previous section, we found that a location in single-stranded conformation is a char-

acteristic feature of known splicing factor binding sites. This indicates that information

about secondary structures might be utilized in an important computational problem:

the detection of unknown motifs in a given set of sequences. In the following, we assume

that the given sequences are bound by a protein and that the binding sites have a certain

sequence similarity. If the binding sites are known, one can build a model of the binding

motif.

A crucial step to understand the function of a splicing factor is to elucidate its binding

motif and to identify target mRNAs. One common experimental approach is the selection

of ligands by exponential enrichment (SELEX), which is routinely used to identify the

binding motif of splicing factors [151, 152, 153]. The result of a SELEX experiment is a set

of sequences that are bound by the specific protein at one (or more) yet unknown binding

sites. To identify these binding sites and the binding motif, motif finding programs are

usually applied to this set of sequences. These motif finders expect that these sequences

are enriched in a similar motif since all are bound by a specific protein. In light of our

findings, we suggest that including additional information about secondary structures

can be beneficial when searching for these binding sites.

However, currently existing motif finding programs like MEME [154, 155, 156] or

Gibbs sampler [157] only work at the sequence and not at the structure level. On

the other hand, several programs exist that search for sequence-structure motifs in

RNA sequences [158, 159, 160, 161] or that perform RNA sequence-structure align-

ments [162, 163, 164]. However, these methods expect that the motif consists of specific

sequence-structure elements such as a stem-loop structure possibly with additional se-

quence constraints. Hence, they would not be able to find a sequence motif with a general

structural property such as being located in single-stranded parts of arbitrary structure

elements. Such an example has been described for the hnRNP K protein, where the

sequence motif is found in the loop of a hairpin or in the single-stranded part between

two stems [165]. Consequently, existing methods cannot be used to find sequence motifs

with the general characteristic property of being single-stranded.

Apart from splicing factors, the binding affinity of other proteins such as the mouse

Prrp [166] or the αCP-2KL and hnRNP K proteins [165] is affected by the secondary

structure context of the binding sites. Another example is the HuR protein that influences

mRNA stability by binding to the motif NNTTNNTTT [132]. It has been demonstrated

that the HuR binding affinity correlates with the single-strandedness of its binding motif

and that the sequestration of its binding site in a double-strand abolishes protein binding.

Interestingly, small antisense oligonucleotides that are designed to bind outside the HuR
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motif can influence mRNA stability by modulating the secondary structure of the binding

site [132, 144]. These experimental findings agree with our results from the previous

section and further support the need for a motif finding method that includes knowledge

about RNA secondary structures.

3.3.2 Overview of MEMERIS

We introduce an approach for searching sequence motifs that are preferably located in

any single-stranded conformation. This approach is implemented as an extension of the

widely used MEME motif finder and is called MEMERIS - MEME in RNAs Including

secondary Structures. MEMERIS precomputes EF or PU values (defined in section 3.2.1)

to characterize the single-strandedness of all putative motif occurrences in all given input

sequences. Then, these values are used to guide the motif search towards single-stranded

regions. The fundamental idea behind MEMERIS is to replace the uniformly distributed

prior distribution for the motif starts used in MEME by a distribution that depends on

the EF or PU values. We proceed to introduce the MEME algorithm. Then, we describe

the MEMERIS algorithm in detail and emphasize the differences to MEME.

3.3.3 MEME

MEME is a program for finding motifs in a set of n unaligned nucleotide or protein

sequences (denoted X = X1,X2, . . . ,Xn). A motif is described as a position-specific

probability matrix Θ1 = (P1, P2, . . . , PW ), where W is the length of the motif and the

vector Pj is the probability distribution of the letters at position j. A given input sequence

Xi is modeled as consisting of different parts:

• zero, one, or more non-overlapping motif occurrences sampled from Θ1 and

• random samples from a background probability distribution Θ0 = P0 for the remain-

ing sequence positions.

We denote Θ = (Θ0,Θ1). The number of motif occurrences depends on a user-specified

model. MEME considers three different models:

• exactly one motif occurrence per sequence (OOPS model),

• zero or one motif occurrence per sequence (ZOOPS model),

• zero or more motif occurrences per sequence (two-component mixture (TCM) model).

To find a motif, MEME uses an expectation maximization (EM) algorithm to perform a

maximum likelihood (ML) estimation of the model given the data [167]. EM algorithms

have many applications in bioinformatics (for example, reconstructing full-length tran-

scripts from EST fragments [168]) and are commonly used for ML estimations where a

part of the complete data is not given or ’hidden’. The EM algorithm iteratively
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• computes the expectation of the hidden variables using the current model (E-step)

and

• performs a ML estimation of the model parameters on the joint probability of the

complete data (M-step).

In MEME, the complete data is the set of sequences (given data) and the start positions of

the motif occurrences (hidden data). The hidden data is described by indicator variables

Zi,j with Zi,j = 1 if a motif occurrence starts at position j in sequence Xi, and Zi,j = 0

otherwise.

3.3.4 The OOPS model in MEMERIS

MEME makes no assumption about the start position of a motif occurrence in a sequence.

Thus, MEME uses a uniform probability distribution

P (Zi,j = 1) =
1

m
∀j

where m = L − W + 1 is the number of possible start positions for a given motif length

W in a sequence of length L (just for convenience, we assume that all sequences have the

same length). Per definition
m

∑

j=1

P (Zi,j = 1) = 1

which is the assumption of the OOPS model that there is exactly one motif occurrence

per sequence.

The additional information about the single-strandedness of each substring of length

W can be considered as an informative prior about putative motif starts, since single-

stranded sequence parts are more likely to be real motif occurrences than parts that

are sequestered in a double-stranded region. We integrate the single-strandedness by

replacing the uniform probability distribution by a distribution that depends on the EF or

PU values. For convenience, we focus on PU values in the following, although everything

below holds for EF values too. Instead of 1
m

as in MEME, the prior probabilities for the

OOPS model in MEMERIS are

P (Zi,j = 1|PUi) =
PUi,j + π

m
∑

k=1

(PUi,k + π)

where PUi is the vector of PU values for sequence Xi and π is a user-given pseudocount

that is used to smooth the distribution (Figure 3.4). The PU values are precomputed

for all substrings (i.e. all putative motif occurrences) of a fixed length W of the input

sequences. The higher the PU value for position j, the higher is the prior probability

of being a motif start position P (Zi,j = 1|PUi). Despite Xi is used to compute the
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PU values, we assume that these values are given as prior knowledge. By definition
∑m

j=1 P (Zi,j = 1|PUi) = 1, thus the underlying model assumption (one motif occurrence

per sequence) remains unchanged.

E-step In iteration t of the EM algorithm, the expected values Zt
i,j of the hidden

variables Zi,j are computed given the parameters Θt and W . Here, Θt are the parameters

in iteration t. MEMERIS requires a fixed motif length W during one application of the

algorithm, thus the model parameters reduce to Θt (note that W is also fixed for one

run in MEME [156]). Using the definition of the expectation and Bayes law, the E-step

in MEMERIS is

Zt
i,j = EZ|X,Θt,PU [Zi,j]

= 0 · P (Zi,j = 0|Xi,Θ
t, PUi) + 1 · P (Zi,j = 1|Xi,Θ

t, PUi)

= P (Zi,j = 1|Xi,Θ
t, PUi)

=
P (Xi|Zi,j = 1,Θt, PUi)P (Zi,j = 1|Θt, PUi)

P (Xi|Θt, PUi)

=
P (Xi|Zi,j = 1,Θt, PUi)P (Zi,j = 1|Θt, PUi)

m
∑

k=1

P (Xi|Zi,k = 1,Θt, PUi)P (Zi,k = 1|Θt, PUi)

.

Since P (Zi,j = 1|Θ, PUi) does not depend on Θ, we can write P (Zi,j = 1|PUi). Further-

more, we write P (Xi|Zi,j = 1,Θ) instead of P (Xi|Zi,j = 1,Θ, PUi) since the probability

of a sequence does not depend on the PU values. Thus, the final E-step equation is

Zt
i,j =

P (Xi|Zi,j = 1,Θt)P (Zi,j = 1|PUi)
m
∑

k=1

P (Xi|Zi,k = 1,Θt)P (Zi,k = 1|PUi)

.

Both simplifications are also used in the equations given below.

Assuming that a sequence Xi contains at positions j1 and j2 the same substring, only

the prior probabilities constitute the difference for the expected values Zt
i,j1

and Zt
i,j2

in the E-step equation. Hence, it is an advantageous property of the prior probabilities

that the ratio of the PU values for j1 and j2 is preserved in P (Zi,j1 = 1|PUi) and

P (Zi,j2 = 1|PUi) if π = 0, since

P (Zi,j1 = 1|PUi)

P (Zi,j2 = 1|PUi)
=

PUi,j1
∑m

k=1 PUi,k

PUi,j2
∑m

k=1 PUi,k

=
PUi,j1

PUi,j2

.

The pseudocount π is used to reduce this ratio. The higher π, the more this distribution

equals the uniform distribution of MEME (Figure 3.4).
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Figure 3.4: Effect of the pseudocount π on the prior probability distribution.
The figure shows a randomly chosen sequence and its optimal secondary structure (A), the EF
and PU values for a motif length of 6 nt (B), and the prior probability distribution for the OOPS
and ZOOPS model using EF (C) and PU values (D) with different pseudocounts. Each data
point represents the value for the motif starting at the respective position. The uniform prior is
P (Zi,j = 1) = 1

31
(sequence length is 36 nt).
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M-step The M-step is not affected by the modified prior distribution, which is shown

in the following. In the M-step, the model parameters are determined that maximize

the joint log likelihood of the complete (given and hidden) data. Again, the motif length

W is fixed and therefore not considered in the maximization. For the OOPS model, the

joint log likelihood is defined as

log P (X,Z|Θ, PU)

= log
n

∏

i=1

P (Xi, Zi|Θ, PUi)

=

n
∑

i=1

log P (Xi, Zi|Θ, PUi)

=

n
∑

i=1

log
(

P (Xi|Zi,Θ, PUi)P (Zi|Θ, PUi)
)

=
n

∑

i=1

log
m
∏

j=1

(

P (Xi|Zi,j = 1,Θ, PUi)P (Zi,j = 1|Θ, PUi,j)
)Zi,j

=

n
∑

i=1

m
∑

j=1

Zi,j

(

log P (Xi|Zi,j = 1,Θ, PUi) + log P (Zi,j = 1|Θ, PUi,j)
)

=
n

∑

i=1

m
∑

j=1

(

Zi,j log P (Xi|Zi,j = 1,Θ, PUi) + Zi,j log P (Zi,j = 1|Θ, PUi)
)

=

n
∑

i=1

m
∑

j=1

(

Zi,j log P (Xi|Zi,j = 1,Θ) + Zi,j log P (Zi,j = 1|PUi)
)

.

Here, we used the basic assumption of the OOPS model that Zi,j = 1 for exactly one

position j in Xi and Zi,j = 0 for the remaining positions.

Since Zi,j are hidden, the expected values computed in the E-step are used instead

EZ|X,Θt,PU [log P (X,Z|Θ, PU)]

= EZ|X,Θt,PU





n
∑

i=1

m
∑

j=1

(

Zi,j log P (Xi|Zi,j = 1,Θ) + Zi,j log P (Zi,j = 1|PUi)
)





=
n

∑

i=1

m
∑

j=1

(

EZ|X,Θt,PU [Zi,j] log P (Xi|Zi,j = 1,Θ) + EZ|X,Θt,PU [Zi,j] log P (Zi,j = 1|PUi)
)

=

n
∑

i=1

m
∑

j=1

(

Zt
i,j log P (Xi|Zi,j = 1,Θ) + Zt

i,j log P (Zi,j = 1|PUi)
)

.

Since the prior probabilities for the motif start positions do not depend on Θ, we can

skip the second term (Zt
i,j log P (Zi,j = 1|PUi)). Thus, one has to solve

Θt+1 = argmax
Θ

n
∑

i=1

m
∑

j=1

Zt
i,j log P (Xi|Zi,j = 1,Θ)
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which is the same as for MEME [156].

3.3.5 The ZOOPS model in MEMERIS

The ZOOPS model takes into account that a sequence might have no motif occurrence.

To this end, a new hidden variable Qi is introduced for each sequence with

Qi =

m
∑

j=1

Zi,j.

Thus, Qi = 1 if sequence Xi contains one motif occurrence and Qi = 0 otherwise. The

probability P (Qi = 1) is denoted as γ, which is equal for all sequences.

E-step We use the same prior probabilities as for the OOPS model, thus the E-step

for the ZOOPS model in MEMERIS becomes to

Zt
i,j

= EZ|X,Θt,γt,PU [Zi,j]

= P (Zi,j = 1|Xi,Θ
t, γt, PUi)

=
P (Xi|Zi,j = 1,Θt, γt, PUi)P (Zi,j = 1|Θt, γt, PUi)

P (Xi|Θt, γt, PUi)

=
P (Xi|Zi,j = 1,Θt, γt, PUi)P (Zi,j = 1|Θt, γt, PUi)

P (Xi|Qi=0,Θt, γt, PUi)(1 − γt)+
m
∑

k=1

P (Xi|Zi,k =1,Θt, γt, PUi)P (Zi,k =1|Θt, γt, PUi)

=
P (Xi|Zi,j = 1,Θt)P (Zi,j = 1|Qi = 1, PUi) γt

P (Xi|Qi = 0,Θt)(1 − γt) +
m
∑

k=1

P (Xi|Zi,k = 1,Θt)P (Zi,k = 1|Qi = 1, PUi) γt

where γt denotes the respective parameter in iteration t. In the last step, we used that the

probability of a sequence with and without a motif does not depend on γ. Furthermore,

we used in the last step that

P (Zi,j = 1|γ, PUi) = P (Zi,j = 1|Qi = 0, γ, PUi)(1 − γ) + P (Zi,j = 1|Qi = 1, γ, PUi) γ

= 0(1 − γ) + P (Zi,j = 1|Qi = 1, γ, PUi) γ

= P (Zi,j = 1|Qi = 1, γ, PUi) γ

= P (Zi,j = 1|Qi = 1, PUi) γ.

M-step The M-step for the ZOOPS model in MEMERIS is the same as in MEME,

which is shown in the following. φ = (Θ, γ) is the complete parameter set for the ZOOPS
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model. The joint log likelihood is

logP (X,Z|φ, PU)

=

n
∑

i=1

log P (Xi, Zi|φ, PUi)

=

n
∑

i=1

log
(

P (Xi|Zi, φ, PUi)P (Zi|φ, PUi)
)

=
n

∑

i=1

log

[

[

P (Qi = 1)
m
∏

j=1

(

P (Xi|Zi,j = 1, φ, PUi)P (Zi,j = 1|Qi = 1, PUi)
)Zi,j

]Qi

·
[

P (Qi = 0)P (Xi|Qi = 0, φ, PUi)
]1−Qi

]

=

n
∑

i=1

[

Qi

[

log γ +

m
∑

j=1

Zi,j

(

log P (Xi|Zi,j = 1, φ, PUi) + log P (Zi,j = 1|Qi = 1, PUi)
)]

+ (1 − Qi)
[

log(1 − γ) + log P (Xi|Qi = 0, φ, PUi)
]

]

=

n
∑

i=1

[

Qi log γ +

m
∑

j=1

(

QiZi,j log P (Xi|Zi,j = 1, φ, PUi)
)

+
m

∑

j=1

(

QiZi,j log P (Zi,j = 1|Qi = 1, PUi)
)

+ (1 − Qi) log(1 − γ) + (1 − Qi) log P (Xi|Qi = 0, φ, PUi)

]

=

n
∑

i=1

[

Qi log γ +

m
∑

j=1

(

Zi,j log P (Xi|Zi,j = 1,Θ)
)

+
m

∑

j=1

(

Zi,j log P (Zi,j = 1|Qi = 1, PUi)
)

+ (1 − Qi) log(1 − γ) + (1 − Qi) log P (Xi|Qi = 0,Θ)

]

In the third step, we used the basic assumption of the ZOOPS model that a sequence

contains either zero or one motif occurrence. In the last step, we used Qi Zi,j = Zi,j,

which is easy to show

Zi,j Qi Zi,j Qi

0 0 0
0 1 0
1 1 1

and because Zi,j = 1 and Qi = 0 is not possible per definition.
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From the definition of Qi, it follows that

EZ|X,φt,PU [Qi] = EZ|X,φt,PU [

m
∑

j=1

Zi,j] =

m
∑

j=1

EZ|X,φt,PU [Zi,j] =

m
∑

j=1

Zt
i,j = Qt

i

which is used in the following equation. Since Zi,j are hidden, the expected values of the

hidden variables are used to compute the joint log likelihood

EZ|X,φt,PU [log P (X,Z|φ, PU)]

=

n
∑

i=1

[

EZ|X,φt,PU [Qi] log γ +

m
∑

j=1

EZ|X,φt,PU [Zi,j ] log P (Xi|Zi,j = 1,Θ)

+
m

∑

j=1

EZ|X,φt,PU [Zi,j ] log P (Zi,j = 1|Qi = 1, PUi)

+ (1 − EZ|X,φt,PU [Qi]) log(1 − γ) + (1 − EZ|X,φt,PU [Qi]) log P (Xi|Qi = 0,Θ)
]

=

n
∑

i=1

[

Qt
i log γ +

m
∑

j=1

(

Zt
i,j log P (Xi|Zi,j = 1,Θ)

)

+
m

∑

j=1

(

Zt
i,j log P (Zi,j = 1|Qi = 1, PUi)

)

+ (1 − Qt
i) log(1 − γ) + (1 − Qt

i) log P (Xi|Qi = 0,Θ)
]

.

This equation is reordered into two terms, where term1 is

n
∑

i=1

[

m
∑

j=1

(

Zt
i,j log P (Xi|Zi,j = 1,Θ)

)

+ (1 − Qt
i) log P (Xi|Qi = 0,Θ)

]

and term2 is

n
∑

i=1

[

Qt
i log γ +

m
∑

j=1

(

Zt
i,j log P (Zi,j = 1|Qi = 1, PUi)

)

+ (1 − Qt
i) log(1 − γ)

]

.

Now, term1 only depends on Θ, while term2 only depends on γ. Thus, the maximization

of the log likelihood can be done separately by maximizing term1 with respect to Θ

and term2 with respect to γ. Finding the Θ that maximizes term1 is the same as for

MEME [156]. The maximization of term2 with respect to γ is as follows. The first

derivative of term2 with respect to γ is

1

γ

n
∑

i=1

Qt
i −

1

1 − γ

n
∑

i=1

(1 − Qt
i).
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Setting the first derivative to 0 gives

1

γ

n
∑

i=1

Qt
i −

1

1 − γ

n
∑

i=1

(1 − Qt
i) = 0

(1 − γ)

n
∑

i=1

Qt
i = γ

n
∑

i=1

(1 − Qt
i)

n
∑

i=1

Qt
i − γ

n
∑

i=1

Qt
i = γn − γ

n
∑

i=1

Qt
i

n
∑

i=1

Qt
i = γn

γ =

n
∑

i=1

Qt
i

n
.

This is the same result as for MEME [156]. Thus, the M-step is not affected by using

the modified prior probability distribution.

3.3.6 The TCM model in MEMERIS

For a TCM model, there can be zero, one, or more than one motif occurrences per

sequence. In MEME, the probability of starting a motif at position j in sequence Xi is

P (Zi,j = 1) = λ

which is independent on the position. The expected number of start positions per se-

quence is
m

∑

j=1

λ = λm.

To integrate the single-strandedness, we have to project λm expected motif occurrences

onto the prior probability distribution derived from the PU values
PUi,j + π

∑m
k=1(PUi,k + π)

. To

this end, we convert λ into position-specific parameters λi,j with

λi,j = P (Zi,j = 1|λ, PUi) = λm
( PUi,j + π

m
∑

k=1

(PUi,k + π)

)

.

Naturally, this conversion is limited to cases where

λi,jmax = λm
( PUi,jmax + π

m
∑

k=1

(PUi,k + π)

)

≤ 1 (3.1)

with jmax = argmaxj PUi,j. If this condition is not fulfilled, one can either smooth the

probability distribution or reduce the expected number of motif starts. We decided to
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smooth the prior probability distribution by choosing a pseudocount π for sequence Xi

and the respective EM iteration, which fulfills equation 3.1. In the MEMERIS imple-

mentation, in cases where equation 3.1 is not fulfilled, we compute

π =

−PUi,jmaxλm +
m
∑

k=1

PUi,k

m(λ − 1)
.

Using this new pseudocount results in λi,jmax = 1. This assures that the expected number

of motif occurrences is not affected even though the ratio
λi,j1

λi,j2

might be changed in an

iteration-specific manner. However, during extensive MEMERIS tests on artificial and

biological data (see sections 3.3.7 and 3.3.8), we found π to be unaffected in the great

majority of tests and only slightly changed in the remaining cases.

E-step Since a sequence can have more than one motif, we consider in the TCM model

not the complete sequence Xi but the substring of length W that starts at position j

(denoted as Xi,j). The E-step in iteration t for the TCM model in MEMERIS is

Zt
i,j = EZ|X,Θt,λt,PU [Zi,j ]

= P (Zi,j = 1|Xi,j ,Θ
t, λt

i,j , PUi)

=
P (Xi,j |Zi,j = 1,Θt, λt

i,j , PUi)P (Zi,j = 1|λt
i,j , PUi)

P (Xi,j |Θt, λt
i,j, PUi)

=
P (Xi,j |Θ

t
1)λt

i,j

P (Xi,j |Θ
t
1)λt

i,j + P (Xi,j |Θ
t
0)(1 − λt

i,j)

where λt denotes the respective parameter in iteration t. Note that Zi,j = 1 implies that

Xi,j is sampled from Θ1 and Zi,j = 0 implies that Xi,j is sampled from Θ0. Again, the

substring Xi,j does not depend on λ and on the PU values.

M-step In contrast to the OOPS and ZOOPS model, the M-step in the TCM model is

different between MEME and MEMERIS. φ = (Θ, λ) is the complete parameter set for

the TCM model.
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The joint log likelihood of all sequences in MEMERIS is

log P (X,Z|φ, PU)

=

n
∑

i=1

m
∑

j=1

log P (Xi,j |Zi,j , φ, PUi)P (Zi,j |φ, PUi)

=

n
∑

i=1

m
∑

j=1

log

[

(

P (Xi,j |Zi,j = 0, φ, PUi)P (Zi,j = 0|φ, PUi)
)1−Zi,j

·
(

P (Xi,j |Zi,j = 1, φ, PUi)P (Zi,j = 1|φ, PUi)
)Zi,j

]

=

n
∑

i=1

m
∑

j=1

[

(1 − Zi,j)
(

log P (Xi,j |Zi,j = 0, φ, PUi) + log P (Zi,j = 0|φ, PUi)
)

+ Zi,j

(

log P (Xi,j |Zi,j = 1, φ, PUi) + log P (Zi,j = 1|φ, PUi)
)

]

=

n
∑

i=1

m
∑

j=1

[

(1 − Zi,j)
(

log P (Xi,j |Θ0) + log(1 − λi,j)
)

+ Zi,j

(

log P (Xi,j|Θ1) + log λi,j

)

]

.

Using the expected values of the hidden variables Zt
i,j

EZ|X,φt,PU [log P (X,Z|φ, PU)]

=

n
∑

i=1

m
∑

j=1

[

(1 − Zt
i,j)

(

log P (Xi,j |Θ0) + log(1 − λi,j)
)

+ Zt
i,j

(

log P (Xi,j|Θ1) + log λi,j

)

]

=

n
∑

i=1

m
∑

j=1

(1 − Zt
i,j) log P (Xi,j|Θ0) +

n
∑

i=1

m
∑

j=1

Zt
i,j log P (Xi,j |Θ1)

+

n
∑

i=1

m
∑

j=1

(1 − Zt
i,j) log(1 − λi,j) +

n
∑

i=1

m
∑

j=1

Zt
i,j log λi,j.

The first two terms only depend on Θ and finding the Θ that maximizes these terms is

the same as for MEME [156]. Writing λmσi,j for λi,j with σi,j =
PUi,j + π

∑m
k=1(PUi,k + π)

, the

last two terms become a function of λ

f(λ) =

n
∑

i=1

m
∑

j=1

(1 − Zt
i,j) log(1 − λmσi,j) +

n
∑

i=1

m
∑

j=1

Zt
i,j log(λmσi,j).

However, finding the λ that maximizes this function is different in MEMERIS. We set

the first derivative of f(λ) with respect to λ to zero

−
n

∑

i=1

m
∑

j=1

(1 − Zt
i,j)mσi,j

1 − λmσi,j

+
n

∑

i=1

m
∑

j=1

Zt
i,j

λ
= 0.
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This equation cannot be analytically solved for λ. Therefore, we apply the Newton-

Raphson method to find the approximation of the root of the first derivative. We itera-

tively compute

λk+1 = λk
f ′(λk)

f ′′(λk)

where f ′(λ) and f ′′(λ) are the first and second derivatives of f(λ), respectively. The

starting point is set to λ0 = λt. The second derivative of f(λ) is

f ′′(λ) = −

n
∑

i=1

m
∑

j=1

(1 − Zt
i,j)m

2σ2
i,j

(1 − λmσi,j)2
−

n
∑

i=1

m
∑

j=1

Zt
i,j

λ2
.

In practice, this method finds the root in a few iterations with a precision of 10−10.

Furthermore, using λt as the starting point contributes to the quick convergence since λ

is usually only slightly changed.

Runtime

Except for the offset due to the computation of the secondary structure values and the

Newton-Raphson method in the TCM model, MEMERIS has the same runtime like

MEME. In practice, MEMERIS is reasonable fast for typical and even large data sets.

For example, searching two motifs of length 6 nt in a set of 120 sequences of length 50 nt

takes less than a minute on a workstation with a 2 GHz CPU.

3.3.7 Testing MEMERIS on artifical data sets

To test whether the secondary structure information integrated into MEMERIS is able

to guide the motif search towards single-stranded regions, we started with tests using

artificial data sets.

Design of artificial test sets

The basic principle of the design of the artificial data sets is as follows. Each test

set consists of 20 sequences that contain motifs either as a fixed string or as a sample

from a position-specific probability matrix (PSPM) in single- and/or double-stranded

conformation. Each artificial test sequence consists of a random sequence part at the

5’ and 3’ end and a stem-loop structure that contains a single-stranded motif (called

ssMotif ) in the hairpin loop and a double-stranded motif (called dsMotif ) on either

side of the stem (Figure 3.5A). We generated random RNA sequences by sampling from

the uniform distribution (probability of 0.25 for A,C,G, and T). We allowed base pairs

between A and T, C and G, G and T. With a probability of 0.5, we changed one position

from the complementary part of the double-stranded motif so that it cannot form a base

pair anymore. This mutation and the possibility of base pairs between G and T assure
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that the complementary part of the dsMotif is not a fixed string, which might otherwise

interfere with the motif finding. The stem consisted of 12 base pairs, the total length of

the random sequence up- and downstream was set to 20 nt. We set the motif length to

6 nt, which is a typical motif length for an RNA binding protein. All test sets are also

described in Figure 3.5.

For the tests below, we set the pseudocount π to 0.1 for test sets 1-6 and 9 and π

to 0.01 for test sets 7 and 8. For MEME and MEMERIS, we set the background letter

probability distribution to a uniform distribution (parameter -bfile), since the sequences

are too small for an accurate frequency estimation and the artificial sequences were

sampled from a uniform distribution.

OOPS model

First, we tested the OOPS model by comparing MEME with MEMERIS. We asked

whether the EF or PU values influence which motif is found in the first pass, given that

one motif is rather single-stranded, while the other one is rather double-stranded. This

will be important if a user wants to discover only a single motif. We designed sequences

containing both a ssMotif and a dsMotif as a fixed string (test set 1, Figure 3.5B). We

found that MEME always detects the most upstream motif in the first sequence in the

first pass. Of course, this motif can be the dsMotif, depending on the order of the

sequences. In contrast, MEMERIS using EF or PU values always detects the ssMotif

first, independent of the order of the sequences.

Next, we sampled the motifs from two PSPMs (test set 2), where the second PSPM

was derived from the first one by randomly permutating the letter probabilities. This

procedure yields two PSPMs with an equal information content. The information content

of a PSPM measures the strength of the motif and is computed as

W
∑

i=1

∑

j

fi,j log2(
fi,j

qj
)

where fi,j is the probability of the jth letter in the alphabet at position i of the motif and

qj is the background probability of the jth letter. Again, MEMERIS but not MEME

detects the ssMotif in the first pass. Furthermore, these results are not affected by

increasing the total sequence length from 50 to 80 nt.

Next, we asked whether MEMERIS also detects the ssMotif in the first pass, even

if the ssMotif is weakened by introducing a single mutation in 25% of its occurrences

(test set 3) or by sampling from a PSPM with a lower information content (test set 4,

Figure 3.5B). While MEME detects the stronger dsMotif in the first pass, MEMERIS

identifies the weaker ssMotif first. To exclude that these findings are affected by some

unknown bias in the motif or in the sequences, we repeated all tests two times with
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A

B

C

D

E

F

test set

5

6

1−4
100%

100%

100%

50%

40%

20%

20%

20%

10%

10%

30% 8

7
...............((((((.(((((((......))))))).)))))).
AAAGTTGAGGTCACGCGGCACTGTGTATCAGGGTCGATACATTGTGCTGA

CTCTAAAGACCCTGATTGTAGGGTCTTTGGGTTTAGAAGAAAGCGCCCCC
..((((((((((((....))))))))))))((((......))))......

((.((.(((((((((((((......)))))))))))))...)).))....
CTTTCTAGAGCAAGAAGAAGAAGAATTCTTCTTGTTCTTCTGACGGTCGA

stemflank stem flankssMotifstemdsMotif

..((((((((((((......))))))))))))....((((.....)))).
TCATGACACATGCCACCGTAGGTATGTGTCGTAATGGCGGTGAATTTGTA

ATACGGAGCGCCAGATATAACCGTCATTCAGTAATCGAGGTTGTAATGGC
.........((((..(((((((.((...........))))))))).))))

...(((.((...)).)))(((((((((......)))))))))..

AGATGTTAATTCCCGCGGGACCCTACACTAGAGTCAGTGTAGCGTCTGCC
..............((((.((.(((((((......))))))).)))))).

((((((..((((((((.(((......))).))))))))..)).))))...
CAACATCCTCCGCCTAGATGAGAGTCCATGTAGGTGGGTAGTAGTTGGCA

((((((((((.((......)).))))))))))..................
TCGGCAGAAGAACAGGGTCGTATTTCTGCTGGTTAAGGGTCATAATGTGC

...((((....))))......(((((((((((......))))))))))).

........((((((((.(((......))).))))))))............
CCAACTCTGTACTAGTGTCTGCTCGAAGAGGCTGGTGCCTATCAACAAGA

.((((((((((((((....)))))))))))))).................
CTACAAGGGTCGTTGCCCTTAGCGATTCTTGTATATCGGAGTATGCTAGG

CTCGAAGTAGCCTTCTGACTTGAAGGACTTTGCAAACACAAAGTCTTTTG

AAGGGTACGTGTCGAGCCACCCCGAGCACCGTAGCTCGGGGTTT

Figure 3.5: Overview of the artificial test sets.
(A) The figure shows an artificial sequence with a single-stranded motif (ssMotif, highlighted
yellow) and a double-stranded motif (dsMotif, highlighted blue) together with its optimal sec-
ondary structure. The general scheme for constructing sequences is (i) to randomly sample an
up- and downstream flank with a total length of 20 nt, (ii) to generate a stem of 12 base pairs
that contains the dsMotif, and (iii) to insert the ssMotif as the hairpin loop. The dsMotif can
occur on either side of the stem. (B) The sequences in test sets 1-4 contain a ssMotif as well as a
dsMotif. For test sets 1 and 3, we used a fixed string as the ssMotif (ACCGTA in this example,
yellow) and a permutation of it as the dsMotif (TGACAC, blue). These motifs are sampled from
two PSPMs for test sets 2 and 4. In test set 3, a single mutation is introduced in 25% of the
ssMotifs. (C) Test set 5 contains only one motif in double-stranded conformation (sampled from
a PSPM). (D) Sequences in test set 6 contain a 12 nt motif as a fixed string, where only the 6 nt
in the middle of the motif (yellow) are single-stranded. (E) Sequences in test set 7 contain either
a ssMotif, a dsMotif, or no motif (sampled from a PSPM). (F) Test set 8 contains sequences with
a ssMotif and a dsMotif, with two ssMotifs, with one ssMotif, with one dsMotif, and without a
motif (sampled from a PSPM). The percentages indicate to which fraction sequences with the
respective features are contained in the data set.
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new random sequences and different motifs and found consistent results. In general, PU

values performed equally well or better than EF values in these tests.

To illustrate the effect of varying the pseudocount π, we designed a test set containing

only a dsMotif (test set 5, Figure 3.5C). MEMERIS using PU values detects the dsMotif,

if the pseudocount π is higher than 0.22 (Figure 3.6). Lower values for π lead to the

detection of other motifs with a higher average single-strandedness (defined as the average

of the PU values for all detected motif occurrences). These motifs differ from the dsMotif

and are therefore weaker and less significant (as indicated by a lower information content

of the resulting motif matrix in Figure 3.6). Thus, the pseudocount π provides an easy

means for the user to adjust the importance of the secondary structures. Naturally, PU

values (the probability that a complete substring is unpaired) are stricter than EF values

(the fraction of the substring that is not involved in base pairing). Thus, MEMERIS

using PU values will favor single-stranded regions stronger than MEMERIS using EF

values (Figure 3.4). Consistently, for test set 5, MEMERIS using EF values discovers the

dsMotif independently of the pseudocount.
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Figure 3.6: Effect of varying the pseudocount.
The figure shows the information content of the motif PSPM found by MEMERIS in bits (black
curve) and its average single-strandedness (average PU values of all motif occurrences, blue curve)
for pseudocounts from 0 to 0.5 in steps of 0.01. Test set 5 that contains sequences with only one
dsMotif (10.6 bits, average single-strandedness 0.003) was used. This motif is found by MEMERIS
for a pseudocount greater than 0.22. In general, the lower the pseudocount, the higher is the
average single-strandedness of the motif occurrences.

Next, we tested the ability of MEMERIS to identify the single-stranded part of a

longer sequence motif as the potential protein binding site. We designed a test set

containing a 12 nt motif, whose three positions at the beginning and at the end form

base pairs (test set 6, Figure 3.5D). Setting the motif length to 6 nt, MEME identifies

the first 6 nt of this 12 nt motif, while MEMERIS exactly finds the 6 nt that are not

involved in base pairing.
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We conclude that MEMERIS preferably selects single-stranded motif occurrences and

that it is able to identify a weaker over a stronger motif, if the average single-strandedness

is sufficiently higher.

ZOOPS and TCM model

In addition to identifying the motif locations, the ZOOPS and TCM model have to

solve a further question: How many motif occurrences are in the data set? We intended

to integrate the secondary structure information in a way that guides but not restricts

the motif search to single-stranded regions. Therefore, this additional question is only

marginally affected in MEMERIS. Up to which single-strandedness a motif occurrence is

believed to be a real protein binding site is hard to determine in an automatic manner

since this would necessitate statistical measures that take the motif sequence as well as its

structural properties into account. Furthermore, the requirement for single-strandedness

certainly depends on the dataset and on the binding protein. However, we propose a

simple procedure that requires the user to decide according to the motif sequence and

the EF or PU values how many occurrences are there in the given data set.

1. Run MEMERIS using a rather high pseudocount π, which mimics a MEME run and

leads to the detection of motif hits nearly independent of the single-strandedness.

2. Inspect the sequence and the single-strandedness of all detected motif hits and de-

termine the number of motif occurrences.

3. Run MEMERIS again with a low pseudocount π and a fixed number of motif occur-

rences (parameter -minsites and -maxsites).

The second MEMERIS run with a fixed number of motif occurrences should result in

the identification of single-stranded occurrences and thus a refinement of the final motif

matrix.

For the ZOOPS model, we tested this on a data set that contains sequences with either

(i) one ssMotif, (ii) one dsMotif, or (iii) without a motif (test set 7, Figure 3.5E). For the

TCM model, we applied this procedure to a data set consisting of sequences having either

(i) one ssMotif and one dsMotif, (ii) two ssMotifs, (iii) one ssMotif, (iv) one dsMotif, or (v)

no motif (test set 8, Figure 3.5F). Since point 2 above involves manual inspection, we have

to avoid any bias arising from our knowledge about the PSPM and the data set. Thus, we

assessed the number of motif occurrences in an automatic manner by simply counting the

number of motif hits having an EF or PU value greater than 0.5. Comparing MEME and

MEMERIS with a given number of motif hits, MEMERIS identifies the single-stranded

motif occurrences, even if this leads to a lower information content of the motif. One

example for the TCM model is shown in Figure 3.7. Again, PU values often led to better

results than EF values.
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AAAATTTAAGAGAGGACGTTCTTGGATTTTACACACCATCCCTCTGGGTC
((((((((((((......)))))))))))).....(((......)))...

seq10

CTTGGAGCCACCGTCCACAACTAGGATTGTGGGCGGTGACATGGTGAGTT
......(.((((((((((((......)))))))))))).)..........

seq09

..((((((....))).)))((((((((((((......)))))))))))).
seq08

GGGTGTTTTGGAGATCTTGGAATCTTCAAAAAATGCCGTTCGTATGGGTT
.(((.((((((((((......))))))))))...))).............

seq07

CGAAACATCATCCCCTCAATACGTTTGGTCTAGGAGCCAAACGTATTGCT
................(((((((((((((......)))))))))))))..

seq06

(((((((((((((......)))))))))))))..................
seq05

TGTAATGCCCCTACTTTTTTAGCTAGGACTAGAAAGGTAGGTTAACTGGT
......((((((((((((((((......)))))))))))))......)))

seq04

CGTCACGGTTTACATCCTAGGACCCGTGTGTCCTAGGATGTTTAGAAAGA
.....(..(((((((((((((((......))))))))))))..)))..).

seq03

..((((.......))))..((((((((.(((......))).)))))))).
seq02

....(((((((((.((......)).)))))))))................
GACATCCGAGGCGGACCTAGGAGTGTGCCTCGGACTAGAACTCGCAACCCseq01 seq11 ACTTCGTACGCCCCTCTTAGGTCTTGGAACCTAGGAGGGGCAGATCCGTC

.........(((((((((((((......))))))))))))).........

seq12 TGCCTGGGGCGCACCCGCTTGGAACCTAGGAGTTCTAAGTGGGTTAACCG
......((....(((((((((((((......)))))))))))))...)).

seq13 GCGAGACTAGGAATCTCGTTCAGGGGTGTGGTCTTGGAATCACATCCCTG
((((((.......)))))).((((((((((((......))))))))))))

seq14 AACTTGTATTGCCTGAGGCTAGGATGTGAAGCCGGTCGTGTTCTAGCGTC
..............((.(((((((..(((......)))..))))))).))

seq15 ACACCTCGGGTATCCCTCTTGGCTAGAACTAGGAGGGGTAGAACATTTGT
..........((((((((((((......))))))))))))..........

seq16 TGAAAGGGGGCCGCACTTAAGCGGCCCTCTTTGGCTGGTGGCGGTCAGGG
..((((((((((((......))))))))))))(((((....)))))....

seq17 ACCTGTAATGTTGATGTTTACTAGAATAAACATCGATATCTCCGTCTGAC
....(..(((((((((((((......)))))))))))))..)........

seq18
...................((((((((((((......)))))))))))).

seq19
..((((.(((((((......))))))).))))..(((.......)))...

seq20 AGACTTGGACATCTTAGCGTATTAAGTTCTTGGAAATTTAATGCGTTTGA
...........((..(((((((((((((......))))))))))))).))

GAGCGAGAACTTATTGCAGAATCTTTTGAGGCTTGGACTTGAAAGGGTTG

ATAATATTTTAAGCTTGGACTTGGAGTATTATCAAGTAGGGAGATAAAGC

GATCACCCTGCCGGGCTGATCCTAGAGGCGGCTTGGACTGTCTCTAGGAA AACCTAGGACAGTAATCACATCTAAGTGACGCTAGGATGTTACTTAGATC

CGCCTTGGAACGTGCTAGGACACGTTCGAAGGATCTCTGCTATCGAGTGA

Figure 3.7: Comparison of MEME and MEMERIS for test set 8 (testing the TCM model).
The figure shows 20 sequences that contain ssMotifs (highlighted yellow) and/or dsMotifs (high-
lighted light blue). The optimal structure is shown below each sequence. Red and blue bars
indicate the position of the motif occurrences found by MEMERIS and MEME, respectively.
While MEMERIS detects all ssMotifs and no dsMotif leading to an information content of the
motif matrix of 10.4 bits, MEME identifies a stronger motif (11.1 bits) but detects eight dsMotif
occurrences. MEMERIS results are shown for PU values and a pseudocount of 0.01. The number
of motif hits was set to 21 for MEME and MEMERIS.

Motifs in single-strands of arbitrary structures

By design, the above test sets contain the ssMotif in the loop of a hairpin and the

dsMotif in the stem. In contrast to programs that search for RNA sequence-structure

elements, MEMERIS should be able to identify a single-stranded motif independent of

the structural element in which it is contained. To test this, we designed a test set where

the motif is located either (i) in a hairpin loop, (ii) in an internal loop, (iii) in a single-

stranded part of a multiple loop, or (iv) between two stems (test set 9). While MEMERIS

(and MEME too) clearly detects the motif, two RNA motif finders, RSMatch [160] and

CMfinder [161] (that are not designed for this task) are not able to discover any motif in

this test set.



74 Chapter 3: General influence of mRNA secondary structure on splicing

3.3.8 Testing MEMERIS on biological data sets

To evaluate MEMERIS in a more realistic way, we applied it to real biological data sets,

like SELEX data.

SELEX data

We tested MEMERIS on SELEX data that are found to contain sequence motifs in

single-stranded conformations. Buckanovich et al. identified 33 TCAT or ACAT repeats

in the hairpin loops of the SELEX winner sequences of the neuron-specific splicing factor

Nova-1 [129]. Searching for 33 motif occurrences with a TCM model and a motif length

of 4 nt, MEMERIS exactly identifies those 33 TCAT and ACAT hits that are described

in [129] (Figure 3.8). MEME also detects the correct motif, but at least two of its motif

hits are located outside the hairpin loop and are presumably no Nova-1 binding sites

(SB2 and SB4 in Figure 3.8).

Next, we tested MEMERIS on the SELEX data of the splicing factors SF2/ASF and

SC35 [151, 152]. Comparing MEMERIS results with the results given in the respective

publications, we found similar motifs although the positions of the motif hits differ in

several sequences. However, a detailed evaluation turned out to be difficult due to the

following reasons. Firstly, these splicing factors bind to degenerate sequence motifs,

thus motif occurrences at different positions can result in highly similar motif matrices.

Secondly, the location of the binding sites in all SELEX winner sequences have not

been determined experimentally. Thus, the real binding sites in these sequences remain

unknown and we do not know whether the MEMERIS motif hits are correct or not.

Therefore, we further evaluate MEMERIS on other biological sequences with known

binding sites.

Protein binding sites in cis-acting RNA elements

Cis-acting elements in the UTR regions of mRNAs can be important for mRNA stabil-

ity and translation efficiency by providing binding sites for regulatory proteins. These

elements are often conserved at the sequence and secondary structure level. Thus, they

are fundamentally different compared to the randomly generated SELEX sequences. To

test the ability of MEMERIS to identify protein binding sites in the larger context of

conserved sequence-structure elements, we selected the sequences of cis-acting RNA ele-

ments having a defined secondary structure and a known protein binding site from the

Rfam database [169]. Redundant sequences with complete identity were taken only once.

The iron responsive element (IRE, Rfam entry RF00037) located in the 5’ UTR of

mRNAs is essential for the expression of proteins that are involved in the iron metabo-

lism [170]. The IRE consists of a stem-loop structure and the nucleotides in the hairpin

loop are bound by iron-regulatory proteins. MEMERIS detects the hairpin loop as the



3.3 RNA sequence motif finding in single-stranded regions 75

SB6

SB37

SB31

SB28

SB20

SB14

SB12

SB10

SB9

SB7

SB4

SB2

GGGAGAATTCCGACCAGAAG
.((......))..(((((..((((((((....)))).))))..)))))((.(((....)))))....(((((((((((....)))))))..)))).

CTAGTTGGGCAACCGAGTTAGAGTCTGGCCATGCATCAGTAGGTTGCGAGGCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((...(((.(((.((((..((((((((.(..................).))))))))..)))).).)).)))...))))..))).

CCTTATCATGCTGACTCACGTCATTTCATCTCATCAAGGGAGTCAGTGGGATATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...(((..((((((((((((((.......(((......)))......)))))))..)))))))((((.....))))......)))..))).

CGTGACACACTATTCATTCATTCATGTTGATTTGTCATGGTCTTCTGGGCGCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
((..(.....)..))....(((.((.((((..((((((..(((((((...............))))))).....))).)))..)))).)).))).

AGCGTGCATGGGGGCCATTACATGTATCATTTCATTTCACTCGTGCATGGCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((((((.(.((((((.(((((((........................)))).)))))))))...).)).))).....)))..))).

CGTATACTGCCGCATCATCACATTCATAAGACATTCAGCGGACGGATACGCCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...(((.(((....))).))).((((((.(((((((..(((.....................))).....))))))).)).)))).))).

GTGGGATATCCTGAGGACGCGTCGCCATCATTCATCGTCATTTTATCGGCCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
.((......))..(((...((((((((((.(((((..(((((..................)))))..))))).))))))))))...))).......

GATGCACGTTACGAGTTGCGCACTTCATCGCATTTCATAATGCGCTCCTCGTTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((...(((....(((..(((((((...(((....................)))...)))))))...))).)))...))))..))).

TGGCGAAACTGAGGACGAGCACTCATAAGTCATAAACATCGCTAAGCCTCAGTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
(((((((((((..((((....((.....))...))))..)))...)))).............(((((...((.....))....)))))..))))..

AGCAATGGGCGTGCTGGGGGGACACATTCATTCATTCATACACGTGTCAAGCTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((.........((.((....))))..(((((...(((..(((.((((.............)))).)))))))))))..))))..))).

GAGAGCGAGAGCCTAATAGACCCAGCGTTCATTAACATTCATCTTACAGCTGTTTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((...(((..(((((((((((((..((((.................))))..))))))))).))))...)))...))))..))).

GCATCACGCAAGTCTGCCGTCATCATTCATTCATACCGGTGAATTTGCGTGTATGTGCGTCTACATGGATCCTCA

GGGAGAATTCCGACCAGAAG
..(((...((((...(((...((((((.(.(((((.((........................))))))).).)))))).)))...))))..))).

TGCGCATTTGCCGACACCCTCATTTCATCTACATATCATTACGGGTTGGGGTATGTGCGTCTACATGGATCCTCA

Figure 3.8: Comparison of MEME and MEMERIS for the SELEX sequences of Nova-1.
The figure shows the sequences and labels of the individual clones described in [129]. The random
oligonucleotides are in blue letters. The primer binding sites (black letters) were included in
the RNA secondary structure prediction but not in the motif search. The optimal secondary
structure is shown below each sequence. The TCAT and ACAT motifs identified in [129] are
highlighted yellow. Blue and green bars indicate the positions of the motif hits found by MEME
and MEMERIS, respectively. The motif matrix found by MEME has an information content of
7.6 bits, the MEMERIS motif matrix has 7.4 bits. MEME and MEMERIS were run with the
TCM model and the number of motif hits was set to 33. MEMERIS results are shown for PU
values and a pseudocount of 0.01.
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C CCCCC CCCCA AAAA
C CCCC
A AAAAC CCCCA AAAAG GGGGC CCCCA AAAAT TTTTT TTTT

G GGGG
T TTTT

A AAAAC CCCCC CCCC
C CCCC

A AAAA
G GGGG

A AAAA
G GGGGT TTTTC CCCCT TTTTG GGGGT TTTT

C CCCC
C CCCCC CCCC
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Figure 3.9: Results of MEME and MEMERIS for the PIE Rfam (RF00460) data set.
The figure shows the consensus sequence and consensus structure of the PIE RNA. The U1A
protein binds the single-stranded sequences in the two asymmetrical internal loops in a cooperative
manner (A). Using the OOPS model, MEME finds two motifs (14 and 13.3 bits, resp.) that do
not overlap the real binding sites (B), while MEMERIS finds the real upstream binding site
exactly (11.8 bits) and the downstream site (10.5 bits) with a shift of one position (C). Since
both individual binding sites are very similar, we used the TCM model to search for a motif with
two occurrences in each sequence. Again MEME finds a different motif (11.6 bits) (D), while
MEMERIS detects the correct protein binding sites (10.7 bits) (E). The known binding sites and
the predicted motifs are highlighted in blue. The motif length was set to 7 nt. For MEMERIS,
the PU values were used with a pseudocount of 0.01.

motif hit in all sequences, leading to a motif matrix with an information content of 10

bits, while MEME discovers a stronger motif (10.8 bits) that is moved to one position

upstream. In addition, MEME identifies a different motif occurrence in the upstream

stem in two sequences.

The polyadenylation inhibition element (PIE) contains two binding sites for U1A pro-

teins [171]. U1A binding leads to an inhibition of the poly(A) polymerase and a reduced

mRNA stability and translation efficiency due to a shortened poly(A) tail. Interestingly,

U1A autoregulates itself by binding to a PIE in its own 3’ UTR. PIE consists of a stem

structure with two asymmetric internal loops that represent U1A binding sites. Both

internal loops are identified by MEMERIS using the TCM model or searching for two

distinct motifs with the OOPS model (Figure 3.9). MEME detects stronger motifs in

both models that are different from the known binding sites.

The trans-activation response (TAR) element of the HIV-1 virus is required for effi-

cient transcription [172, 173]. The hairpin loop of this element is bound by a heterodimer

consisting of Tat and CycT1 proteins. MEMERIS clearly identifies the motif in the hair-

pin loop, while MEME detects a stronger motif located in the stem (Figure 3.10). The

Tat protein also binds the pyrimidine-rich 3 nt bulge loop of the TAR element. However,

neither MEMERIS nor MEME is able to identify this binding site because this motif is

too degenerate and in several TAR elements this bulge consists of only two nucleotides.

The stem-loop destabilizing element (SLDE) consists of three stems located in the

3’ UTR of CSF3 mRNAs and is used to regulate the stability of the mRNA [174]. The
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Figure 3.10: Results of MEME and MEMERIS for the TAR Rfam (RF00250) data set.
The figure shows the consensus sequence and structure of the TAR element. The hairpin loop is
bound by the Tat protein (A). We searched for one binding site in each sequence (OOPS model)
with MEME (B) and MEMERIS (C). MEME detects a motif (12 bits) that does not overlap the
known binding site, while MEMERIS identifies the binding site, although the respective motif is
noticeably weaker (10 bits). The known binding sites and the predicted motifs are highlighted
in blue. The motif length was set to 6 nt. For MEMERIS, the PU values were used with a
pseudocount of 0.01.

hairpin loop sequence of the third stem is essential for the function of this element and

assumed to be bound by an unknown protein. Again, MEMERIS detects this loop as the

motif, while MEME finds a different motif (Figure 3.11).

3.4 Discussion

We analyzed the secondary structure of an extensive set of 77 experimentally veri-

fied splicing motifs in their natural context and found that they have a higher single-

strandedness. These results were also confirmed by minigene experiments demonstrating

that single-stranded splicing motifs exert a stronger effect on the splicing pattern. Al-

though long time thought to contain only the codon sequence, it has become clear that

the coding sequence of an mRNA is superposed with additional signals that determine its

fate during the numerous processing steps. These signals comprise editing sites, binding

sites for proteins regulating constitutive and alternative splicing, and additionally (if not

located in UTR regions) sites that determine mRNA localization, export, stability, and

translation. Since splicing motifs are abundant in exons [32], we argue that a typical

exon is subjected to at least three different selection pressures:

• preserving the coding sequence,

• preserving the splicing motifs,

• and preserving an appropriate structural context for these splicing motifs.

We observed a lower single-strandedness for exonic motifs compared to intronic ones.

This might be due to the strong selection pressure to preserve the coding sequence that
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Figure 3.11: Results of MEME and MEMERIS for the SLDE Rfam (RF00183) data set.
The figure shows the consensus sequence and structure of the SLDE element. The hairpin loop
of the essential third stem is bound by an unknown protein factor (A). MEME detects a CAG
motif, which does not overlap the binding site (B). In contrast, MEMERIS identifies the TAT
sequence of the hairpin loop as the motif (C). Both motif matrices have an information content
of 6 bits. The known binding sites and the predicted motifs are highlighted in blue. The motif
length was set to 3 nt. For MEMERIS, the PU values were used with a pseudocount of 0.01.

prevents an extensive selection for a high single-strandedness for exonic motifs. If more

splicing motifs are experimentally determined, it would be interesting to compare the

structural context of exonic motifs in the UTR with intronic ones.

Our study indicates that the structural context can play a role in mutagenesis experi-

ments. Usually, single or multiple residues were mutated or deleted and the observed vari-

ation in the splicing pattern is directly interpreted as a function of the affected residues.

However, the mutation or deletion of residues might also change the secondary structure

context of an adjacent motif and, as in case of the fibronectin EDA exon [133], this would

provide another explanation for the observed effects. Moreover, the again and again ob-

served ’context effects’ in such experiments might be partially explained by structural

changes. We propose that secondary structures should be taken into consideration for

such experiments, especially if the exact location of a binding site or the interplay of

two binding sites in close proximity is the subject of investigation. Our measurements of

single-strandedness can easily be used to plot the values for all motifs of a fixed length

over the complete sequence. The comparison between the wild-type and the mutated

sequence can give a hint if the introduced mutations result in drastic structural changes.

The secondary structure should also be taken into consideration when interpreting the

results of mutagenesis studies. For example, the exon 8 of the rat beta-tropomyosin gene

contains three purine rich ESE candidates, but only the second and the third candidate

were shown to act as an enhancer [175]. These experimental results correlate well with
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Figure 3.12: Plot of EF values for exon 8 of the rat beta-tropomyosin gene.
Each point in this plot gives the EF value for the 9-mer sequence starting at this position. RNA
folding was done using a 30 nt genomic context upstream and downstream. The three purine rich
ESE candidates are shown in red. While the first motif is more double-stranded, the second and
third one are found in a rather single-stranded context (as indicated by a higher EF value). This
agrees well with experimental results as the mutation of the second and third but not the first
motif affects splicing [175].

the predicted structural context of these three candidates (Figure 3.12).

In light of our results, it might also be interesting to re-evaluate the effect of single

nucleotide polymorphisms (SNPs) on splicing. If a SNP (especially a translationally silent

SNP) leads to a change in the splicing pattern, this SNP is often assumed to destroy or

create a splice site or a splicing motif [176, 63]. However, SNPs are also reported to

change the mRNA secondary structure [177]. Thus, it is tempting to speculate that the

influence on splicing for some SNPs is not due to the direct impact on a splicing motif,

but due to a change in secondary structure that sequesters a previously single-stranded

binding site (or vice versa).

As secondary structures are one aspect for discriminating real from false-positive

binding sites, it might be beneficial to consider secondary structure contexts in computa-

tional approaches to predict splicing motifs. Likewise, using this information in splicing

simulation and gene prediction algorithms may result in a higher accuracy [178].

Despite the significant preference of verified splicing motifs for single-strands, indi-

vidual motifs are located in a rather double-stranded context. It would be interesting

to find out how these motifs are bound by trans-acting factors. In this situation, the

predicted secondary structure might be wrong due to protein binding in the proximity

of the motif, which can result in a disruption of a hindering structure. Alternatively,

the computed structures might be incorrect since the considered context lengths are too
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short or too long for the respective motif loci. As another hypothesis, RNA dependent

helicases might be responsible for a resolution of hindering structures [136, 138, 139].

As a misregulation of alternative splicing is the basis for many human diseases, alter-

native splicing is an important therapeutic target [63, 179]. Antisense oligonucleotides

that target splice sites can correct the splicing pattern of a gene [68]. Recently, small

antisense oligonucleotides were shown to influence mRNA stability by modulating the

binding affinity of the regulatory protein HuR [132, 144]. These oligonucleotides hy-

bridize outside the HuR binding site and exert their effect by altering the secondary

structure of the binding site. Such designed antisense oligonucleotides may also change

the secondary structure of splicing enhancers or silencers, thus providing an alternative

way to correct the splicing pattern. Interestingly, by increasing or decreasing the single-

strandedness of a splicing motif, this mechanism would allow a positive as well as a

negative regulation [132, 144].

The basic splicing signals (splice sites, branch point) do not contain sufficient infor-

mation to allow accurate intron and exon definition [22]. Further information comes from

enhancer and silencer motifs, but there is still a noticeable gap to the information that is

needed to achieve the accuracy of the spliceosome machinery (Figure 4 in [22]). This gap

might be narrowed by additional information coming from the secondary structures. We

believe that our findings provide another piece for the decoding of the mRNA splicing

code [178].

Using the defined measurements of single-strandedness, we developed a new motif

finding approach MEMERIS that simultaneously searches a sequence motif and integrates

information about secondary structures. In contrast to other algorithms, MEMERIS ab-

stracts from specific structural elements by using EF or PU values. Performing tests

with artificial and biological data, we have shown that MEMERIS is able to identify

single-stranded sequence motifs, which often represent the known protein binding mo-

tif. Compared to MEME, MEMERIS achieves a higher accuracy in our tests, which

demonstrates that the additional information about the single-strandedness of putative

motif occurrences is useful. To maintain a secondary structure, a mutation in a base pair

often requires a compensatory mutation. This may result in a stronger selection pres-

sure for double-stranded compared to single-stranded sequence regions. Consistently,

RNA-binding proteins may bind degenerate sequences [151]. Therefore, it is a valuable

property that MEMERIS is able to select a weaker over a stronger motif, if this motif has

a higher average single-strandedness (exemplified in Figures 3.9 and 3.10). We believe

that the application of MEMERIS to SELEX data of splicing factors and other RNA

binding proteins can help to identify the real binding motif. To summarize, RNA sec-

ondary structure properties are important for distinguishing real from spurious protein

binding sites and should be considered when searching for the binding motif of a protein.
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The general principle of MEMERIS to include prior knowledge about the motif start

sites can be extended to other applications. It is straightforward to search for sequence

motifs in double-stranded structure parts, for example by computing the expected frac-

tion of bases that are paired (1-EF) or the probability that the complete motif occurrence

is paired. A further application can be the search for transcription factor binding sites

in DNA promoter sequences. If information is available that a DNA motif is preferably

located in proximity to the transcription start site, the prior start site distribution can

be adjusted to have higher probabilities for the 3’ sequence ends of promoter sequences.

Since highly condensed DNA regions are inaccessible to transcription factors [180], prior

knowledge about chromatin condensation and higher-order chromosomal structures can

be used to prevent the detection of motifs in inaccessible regions. Interestingly, an in-

formative prior was applied to a related idea recently. Narlikar et al. used information

about the structural class of a transcription factor to identify DNA regions that are more

likely bound by this protein [181].

In future, it would be desirable to automatically determine the number of single-

stranded motifs in a ZOOPS or TCM model. This is challenging because the degree to

which a real binding site has to be single-stranded certainly depends on the respective

protein. Furthermore, this requirement for single-strandedness may be affected by the

presence of RNA helicases that are involved in several important processes like splicing

and translation. Finally, the statistical models, which currently only evaluate the motif

sequence, need to be extended to account for the sequence and the secondary structure

context of a motif.
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Chapter 4

Genome-wide bioinformatics analysis of

alternative splicing at tandem splice sites

Much research about alternative splicing focused on larger alternative splice events that

often result in noticeable effects on the function of a protein. On the other hand, there

are incidental reports of alternative splice events that lead to the production of very

similar protein isoforms. However, these events received little attention in the past.

In the third part of this thesis, we performed a genome-wide analysis of splice events

that result in only minor changes of the mRNA and the respective protein. We show that

most of these subtle events are produced by alternative splicing at so called NAGNAG or

tandem acceptors. We found several significant biases indicating that NAGNAG accep-

tors are non-randomly distributed at the genome and protein level, suggesting that these

splice events are subjected to selection pressures during evolution. This view is supported

by our finding that a subset of NAGNAG acceptors is conserved in mouse and that these

splice events can be regulated in a tissue-specific manner. To study the NAGNAG splice

mechanism and to check a potential disease relevance of the splice events, we also in-

vestigated human polymorphic NAGNAGs. Given that thousands of human genes have

NAGNAG acceptors, these splice events represent one major mechanism to increase the

diversity of the human proteome.

Then, we extended our analysis to alternative splicing at so called GYNGYN or tan-

dem donors. Investigating what distinguishes alternatively from not alternatively spliced

GYNGYN donors, we found differences in the binding to U1 snRNA, overrepresented

sequence motifs, and a higher conservation of the exonic and intronic flanks between

human and mouse.

Apart from human, we found alternative GYNGYNs and NAGNAGs in many other

eukaryotic species. We continued to develop a relational database, TassDB, which stores

the wealth of data we had collected about alternative tandem splice sites. This database

facilitates further experimental studies and large-scale bioinformatics analyses that are

required to address important open questions concerning these subtle splice events.
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Plan of the chapter

An introduction into subtle alternative splice events and the motivation for the following

bioinformatics analysis is given in section 4.1. The genome-wide study of NAGNAG

acceptors is described in section 4.2. In section 4.3, we investigate polymorphic NAGNAG

acceptors. We extend our tandem acceptor analysis to the special type of U12 introns

in section 4.4. The genome-wide analysis of tandem donors is described in section 4.5.

Section 4.6 contains a description of the TassDB database. Finally, we summarize our

findings and discuss implications and open questions in section 4.7.

4.1 The impact of subtle alternative splice events?

Exon skipping is one of the most frequent types of alternative splicing [182]. As the

average length of an alternative exon is 137 nt [182], its inclusion or skipping affects

a larger region of the protein (about 45 amino acids). Studies have shown that such

alternative splice events often result in functionally different protein isoforms. These

isoforms can differ in various aspects including ligand binding affinity, signaling activity,

protein domain composition, subcellular localization, and protein half-life [47, 51, 52,

53]. Furthermore, the introduction of a frameshift by skipping an exon with a length

that is not divisible by three can lead to non-functional proteins or to a degradation of

the transcript [59]. The effect of larger splice events on the proteins, their regulation,

and their frequency has been the subject of numerous experimental and computational

studies [183, 51, 74, 184, 185].

On the other hand, there are incidental experimental reports of a special alternative

splicing event, which inserts or deletes a single NAG triplet (N stands for A,C,G, or

T) in mRNAs [186, 187, 188, 189]. Furthermore, during transcript analysis of human

disease genes, additional cases were observed by the genome analysis group of Matthias

Platzer and one cDNA based study [190] suggested that these events are not rare. Such

splice events happen when one of the two splice acceptor AGs contained in the sequence

NAGNAG is chosen by the spliceosome. In the following, we term these sequence motifs

NAGNAG or tandem acceptors.

The insertion/deletion (indel) of a NAG triplet in the coding sequence (CDS) proba-

bly has only a subtle effect since the reading frame is not changed and both the transcript

and protein isoforms are highly similar. It seems that only few studies have thoroughly

investigated such splice events. The fact that such small splice events are difficult to ob-

serve experimentally (for example, a 3 nt difference between two bands is barely visible

on an agarose gel) contributes to this. Furthermore, most bioinformatics studies per-

forming EST-to-genome or EST-to-EST alignments apply threshold values that do not

allow to detect these splice events. Consequently, little is known about their frequency in
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eukaryotic genomes, their regulation, and their splice mechanism. Furthermore, it is of

interest to find out if these events can have functional consequences for the proteins and

what these consequences are. However, as indicated by the question mark in the section

heading, this is particularly difficult to answer in a larger scale since the putative effect

of a triplet indel in the coding sequence is by far not as obvious as the impact of most

larger splice events.

Here, we address these open points and try to shed light on this largely unstudied re-

search area. Of course, the elucidation of functional effects of subtle splice events requires

detailed experimental investigation of several cases, which is infeasible for us. However,

genome-wide computational studies can be used to address the following questions:

• Are these splice events overrepresented or underrepresented in certain genes, pro-

teins, or protein regions?

• Is there evidence for specific selection pressures that act on these splice events?

• Is there evidence for a regulation of these splice events, for example in a tissue-specific

manner?

• Are these events evolutionary conserved?

Thus, bioinformatics can provide a global view of these subtle splice events and can help to

guide experimental efforts that clearly have to complement and prove the computational

findings.

We start with analyzing NAGNAG acceptors, proceed with investigating genetic vari-

ations at these sites, and extend our studies to tandem donor sites. In collaboration with

Matthias Platzer´s group, we tested our computational results experimentally.

4.2 Widespread occurrence of alternative splicing at

NAGNAG acceptors

4.2.1 Genomic view of NAGNAG acceptors

We started our analysis with a screen of the human genome for acceptor sites with a

NAGNAG pattern. We used the RefSeq transcript annotations (release October 2003) in

the UCSC Genome Browser as an extensive collection of human transcripts. To assure a

high quality data set, we discarded all transcripts with an erroneous open reading frame

or with ambiguous characters in their sequence. The exon-intron structures of these

transcripts were taken from the RefSeq to genome alignments.

This RefSeq scan revealed for 5% (8,105 of 152,288) of the human acceptors a NAGNAG

motif. According to the CDS annotation of the RefSeq transcripts, 627 and 152 of these

belong to introns that are exclusively located in the 5’ and 3’ UTR, respectively. As our

prime interest was the impact of alternative splicing at tandem acceptors for the pro-

teome diversity, we considered all 7,326 remaining NAGNAG acceptors that are located
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Figure 4.1: Proposed nomenclature for NAGNAG acceptors and transcripts.
E: 3’ half of the NAGNAG motif becomes part of the exon; I: the NAGNAG motif is completely
retained in the intron.

upstream of an exon annotated as part of the protein coding sequence. However, it is

important to note that in numerous cases a UTR exon in RefSeq becomes part of the

CDS in an alternative transcript, either as the result of a different mRNA maturation or

as the consequence of alternative promoter usage. Thus, several of these NAGNAGs in

the UTR might be located in the CDS in another transcript.

To create a senseful nomenclature, we denote the upstream AG in the NAGNAG

motif as the ’E acceptor ’ giving rise to the ’E transcript ’, since part of the tandem will

be exonic. The downstream AG is denoted as ’I acceptor ’ and its usage results in an ’I

transcript ’, while the whole tandem is intronic (Figure 4.1).

To find out which fraction of the tandem acceptors is known to be alternatively

spliced, we used 30 nt from the upstream and downstream exon to compile two search

strings that represent the E and I transcript. Then, we used Blast to search dbEST. Since

this alternative splice event is rather small, we applied very stringent filtering criteria

(only one gap or one mismatch and exact identity in the region 27-33 of the search string,

resulting in an E-value < 1e-20) to exclude putative EST artifacts that mimic NAGNAG

splicing. We consider a NAGNAG acceptor as alternatively spliced (also denoted as

’confirmed ’) if both E and I transcript are matched by at least one EST and/or RefSeq

transcript. The remaining NAGNAG acceptors are called ’unconfirmed ’ with the notion

that they are enriched in tandem acceptors that are not alternatively spliced. We found

evidence for alternative splicing for 878 of the 7,326 (12%) NAGNAGs. Remarkably, the

majority of NAGNAGs is confirmed by multiple ESTs. Thus, NAGNAG acceptors occur

frequently in the human genome and a considerable fraction is known to be alternatively

spliced.

4.2.2 Characteristic features of NAGNAG splicing

Next, we asked which NAGNAG acceptors are preferably alternatively spliced. We di-

vided all NAGNAG acceptors into the 16 possible motifs. As shown in Table 4.1, 48%

(533 of 1,111) of the YAGYAGs (Y stands for C or T) are confirmed. In contrast, only

1.5% (65 of 4,430) of the NAGGAG acceptors are confirmed. This agrees with the nu-
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motif observed confirmed
AAGAAG 54 20 37%
AAGCAG 164 69 42%
AAGGAG 199 4 2%
AAGTAG 32 15 47%
CAGAAG 888 104 12%
CAGCAG 720 343 48%
CAGGAG 2,882 41 1%
CAGTAG 96 28 29%
GAGAAG 9 1 11%
GAGCAG 227 10 4%
GAGGAG 15 2 13%
GAGTAG 45 2 4%
TAGAAG 366 59 16%
TAGCAG 258 142 55%
TAGGAG 1,334 18 1%
TAGTAG 37 20 54%
sum 7,326 878 12%

Table 4.1: Number of observed and confirmed tandem acceptors divided into the 16 motifs.

cleotide preference at position -3 for standard acceptor splice sites, where C and T are

most frequent and G is very rare [182].

Next, we calculated scores measuring the strength of the E and I acceptor splice site

with the Genesplicer program [191]. For confirmed tandem acceptors, the E acceptor has

a significantly higher average score than the I acceptor (4.5 vs. 1.2, t-test: P<0.0001).

This is in agreement with the EST count, where the E acceptor has on average 28 EST

hits more than the I acceptor (40 vs. 12, t-test: P<0.0001). Thus, in general, the E

acceptor is used preferentially. Moreover, this coincides with the observation that AG

is the most avoided dinucleotide in the -20 to -2 region of an acceptor [23]. These data

indicate that the common splicing machinery is operating at tandem acceptors and that

the sequence context of the E and I acceptors is one of the discriminating factors in the

splice site choice.

4.2.3 Effect on the proteins

The position of an intron relative to codons is referred to as the intron phase. An intron

in phase 0 is located between two codons. Introns in phase 1 start after the first codon

base and introns in phase 2 start after the second codon base. The consequence of a

NAG indel in the CDS depends on the phase of the affected intron. The effects on the

proteins are indels of a single amino acid (aa for short), the exchange of a dipeptide

and an unrelated single aa, or the creation/destruction of a stop codon (Figure 4.2).

Remarkably, there are eight different single aa events:
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Figure 4.2: Protein variability caused by alternative splicing at tandem acceptors.
(A) Single amino acid indels. (B) Exchange of a single aa and an unrelated dipeptide (only
possible for intron phase 1 and 2). (C) Indel of a stop codon. Exonic nucleotides are in upper
case, intronic nucleotides are in lower case. RefSeq ID is given for annotated transcripts, n.a.
means not annotated.

• Glu, Lys, and Gln in phase 0,

• Ala, Glu, Gly, and Val in phase 1,

• Arg and Ser in phase 2.

The dipeptide events are even more diverse (Figure 4.2). Thus, despite the rather simple

genomic structure, NAG indels lead to a surprisingly high diversity at the protein level.

We found 51 tandem acceptors that create/destroy a stop codon and ten of these are

confirmed. The transcripts with the premature stop codon can be either candidates for

NMD, which results in the downregulation of the transcript and protein level or they are

translated to a truncated protein. In any case, the creation/destruction of a stop codon

by such a small alternative splice event can have a dramatic effect on the protein.

4.2.4 Non random distribution of NAGNAG acceptors

The intron phase distribution of all human introns is 46%, 33%, and 21% in phases 0,

1, and 2, respectively [192]. In contrast, 40% of the introns harboring confirmed tandem

acceptors are in phase 0, 43% in phase 1, and 17% in phase 2, which is a significant

difference (χ2: P<0.0001). The striking bias towards phase 1 is a strong hint that

tandem acceptors are not randomly scattered in the human genome.

The exchange of a dipeptide and an unrelated single aa is only possible for intron

phase 1 and 2. Nevertheless, we found that 92% of phase 1 and 91% of phase 2 tandem

acceptors result in single aa indels. To assess whether confirmed tandem acceptors are

enriched in single aa indel events, we simulated the 3 nt indels using non-NAGNAG

splice acceptors as a null model. We extracted 12,448 non-NAGNAG acceptors from

phase 1 introns and 8,553 non-NAGNAGs from phase 2 introns. All those acceptors have
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the consensus NAG. In order to obtain ’simulated’ alternative transcripts, we elongated

the respective exons by 3 nt upstream, thus including the downstream splice site NAG

into the mature mRNA. The modified mRNAs were translated and the percentage of

single aa indel events was determined. We found that null model acceptors result in

significantly fewer single aa indels (87% for phase 1, 81% for phase 2, Fisher’s exact test:

P=0.0009 and P=0.0007, respectively). Thus, confirmed NAGNAGs in phase 1 and 2

are significantly enriched in single aa indels. We suppose that this process is driven by a

higher compatibility of single aa indels with essential functions of the affected protein.

Nevertheless, an indel of a charged aa might be a dramatic event for a protein. Among

the single aa indels, Arg and Lys are positively charged and Glu is negatively charged.

Using the isoelectric point (pI) as a measure for the charge, we observed that the ±10-aa

context of 126 confirmed Glu-indels is significantly enriched in negatively charged residues

(average pI=6.22). Accordingly, the contexts of 66 Lys- and 33 Arg-indels are already

basic (Lys: pI=7.47; Arg: 7.64). In contrast, charged amino acids in non-NAGNAG

genes are in more neutral contexts (Glu: pI=6.93, Lys: 7.25, Arg: 7.46) and exon-exon

junctions do not introduce a bias, since 32,097 junctions from non-NAGNAG genes are

on average neutral (pI=7.06). For Glu, the observed pI difference is significant (t-test:

P=0.0046). Thus, the indel of a positively (negatively) charged aa by a NAGNAG splice

event mostly happens in a local environment that is positively (negatively) charged.

This is expected to result in less dramatic effects on the proteins. These findings further

support our view that tandem acceptors evolve to introduce subtle protein changes.

The average hydrophobicity (using Kyte-Doolittle values) of exon-exon junctions of

confirmed NAGNAGs for the ±10-aa context is -0.73 (negative values indicate hydrophilic

amino acids). In contrast, non-NAGNAG exon junctions are significantly more hydropho-

bic with an average of -0.36 (t-test: P<0.0001). As the protein surface is generally more

polar, this indicates that the affected protein regions are often located at the surface and

not in the structural core. Moreover, this might also indicate that the respective protein

regions are frequently involved in protein-protein interactions, since polar residue hot

spots have been observed at protein-protein binding sites [193].

4.2.5 Non random distribution of NAGNAG proteins

To test the hypothesis that genes with NAGNAG acceptors are involved in protein-protein

interactions, we considered the DIP database that contains data on experimentally veri-

fied protein interactions. While 4% (548 of 14,209) of the proteins expressed from genes

without NAGNAG acceptors are found in this database, this percentage is significantly

higher for proteins expressed from genes with confirmed tandem acceptors (7%, 71 of

1,054; Fisher’s exact test: P<0.0001).

We further analyzed the distribution of Pfam domain families between proteins ex-

pressed from genes with confirmed and without tandem acceptors. We found that the
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Gene dbEST cDNA library
Symbol intron nE nI fE L name nE nI P tissue
MRPS11 1 70 50 0.58 1 S2SNU668s1* 0 12 0.0003 stomach
FKBP8 4 147 81 0.64 4 MGC-99 6 17 0.0018 lymph
C1orf77 3 44 61 0.42 1 L4SNU368s1* 0 12 0.0163 liver
C1orf144 1 46 49 0.48 1 MGC-109 10 1 0.0442 ovary
CAP1 2 344 55 0.86 4 MGC-20 7 7 0.0126 skin

Table 4.2: EST mining for tissue specificity of alternative splicing at NAGNAG acceptors.
nE : number of ESTs confirming the E acceptor.
nI : number of ESTs confirming the I acceptor.
fE: frequency of dbEST hits for the E acceptor, fE = nE/(nE + nI).
L: number of cDNA libraries matching the criteria of at least eleven ESTs hits for the NAGNAG.
P: P-value for obtaining an equally or more extreme number of E and I matching ESTs was
determined by using the binomial distribution:

(

nE+nI

nE

)

fnE

E (1 − fE)nI where nE and nI are the
number of ESTs for the library. The P-value was corrected for multiple testing by multiplication
with the number of examined cDNA libraries (11).
*: annotated in dbEST as normalized cDNA libraries.

distribution of certain Pfam domain families is significantly biased towards either of

these protein classes. The Pfam PF00001 ”7 transmembrane receptor (rhodopsin fam-

ily)” is completely missing in genes with confirmed tandem acceptors (Fisher’s exact

test: P=0.0016, corrected for multiple testing), while PF00076 ”RNA recognition motif”

is preferably coded by these genes (P=0.0022). We conclude from these results that

tandem acceptors prevalently occur in genes coding for proteins that interact with other

macromolecules.

4.2.6 Tissue-specific regulation

Alternative splicing is often controlled in a tissue or developmental stage specific man-

ner [13]. Tissue or cell specificity of alternative splicing is usually taken as evidence that

these events are biologically important.

To find out if alternative splicing at NAGNAG acceptors can be tissue-specific, we

first carried out an in silico EST mining on human dbEST. From all confirmed tandem

acceptors, we selected those having at least 44 EST matches for both the E and I acceptor

(15 NAGNAGs). We defined the overall percentage of E acceptor usage by the percentage

of EST that match the E acceptor in the entire dbEST. Then, we extracted information

about the cDNA libraries (the tissue or cell line sources from which the ESTs were

sampled) from the dbEST annotation. For all cDNA libraries that match a NAGNAG

with at least eleven EST hits, we determined the library specific number of E and I

matching ESTs. For five of the 15 NAGNAGs, we found one cDNA library with a

number of E and I matching ESTs that is significantly different from the expectation

(Table 4.2).
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ITGAM SMARCA4 BTNL2
tissue E I fE E I fE E I fE

Leucocytes 164 85 0.66 51 21 0.71 75 0 1.00
Liver 59 25 0.70 +a +a 31 0 1.00
Pancreas 23 27 0.46 +a +a 8 0 1.00
Brain 45 28 0.62 +a +a 41 0 1.00
Small intestine 0 59 0 - +b 0 24 0
LCL0844 16 0 1.00 n.d. n.d. n.d. n.d.

Table 4.3: Quantification of tissue-specific expression of E and I transcripts by resequencing of
RT-PCR subclones.
fE : fraction of E transcripts.
a: no subcloning, direct sequencing revealed pattern E+I.
b: no subcloning, direct sequencing revealed pattern I.
LCL: lymphoblastoid cell line.
n.d.: not determined.

To verify these in silico findings, we experimentally investigated the tandem accep-

tors for the genes ITGAM (intron 13), SMARCA4 (intron 30), and BTNL2 (intron 1) in

different tissues (Table 4.3). Although ITGAM and SMARCA4 produce E and I tran-

scripts in several tissues, we found exclusively the I variant in small intestine (Figure 4.3).

For BTNL2, we also observed only I transcripts in small intestine, while all other tissues

express only E transcripts. Thus, we conclude that splicing at tandem acceptors can be

tissue-specific.

4.2.7 NAGNAG acceptors in other species

To find out if tandem acceptors occur in other genomes, we first searched the litera-

ture and found reports of alternative NAGNAG splicing in rat [194, 195], mouse and

chicken [196], rabbit [197], ruminants [198], and tomato [199]. To investigate the fre-

quency of NAGNAG acceptors in other genomes, we considered the RefSeq and EST

databases for mouse (Mus musculus), fruitfly (Drosophila melanogaster), and nema-

tode (Caenorhabditis elegans). NAGNAG acceptors occur frequently in these species

and many of them have EST evidence for alternative splicing (Table 4.4). Remarkably,

C. elegans has a higher number of RefSeqs and ESTs as D. melanogaster, but only a

very low fraction of confirmed tandem acceptors. This may reflect unique features of the

splicing machinery in C. elegans [200], whose introns typically lack both branch point and

polypyrimidine tract consensus sequences, preventing an extensive utilization of tandem

acceptors in this species.

4.2.8 Conservation of NAGNAG acceptors in mouse

We further asked if purifying selection is acting on NAGNAG acceptors. We constructed

a large set of 77,414 orthologous acceptor pairs from human and mouse. In this set, we
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Figure 4.3: Tissue-specific expression of E and I transcripts of ITGAM.
The figure shows partial electropherograms from direct DNA sequencing of RT-PCR products for
the exon 12 - exon 13 junction (reverse sequencing direction).
(E+I) Simultaneous expression of E and I transcripts results in a superposition of two sequences
after crossing the exon boundary (vertical line). (E) Expression of only the E transcript gives
clear sequencing results including the E acceptor NAG (boxed). (I) Expression of only the I
transcript gives clear sequencing results lacking the NAG.

identified 3,861 human tandem acceptors. Of these, the NAGNAG motif is conserved

in mouse in 2,806 (73%) cases. This high conservation rate is consistent with the re-

cent observation that NAGNAG acceptors represent 45% of all human-mouse conserved

alternative 3’ splice sites [75].

Furthermore, we used the set of 77,414 orthologous acceptor pairs to determine the

local base-specific sequence conservation. For all human NAGNAG acceptors, we de-

termined the fraction of identical bases in the orthologous mouse sequences. According

to the annotated acceptor, the following alignment positions (indicated by a ’?’) were

studied:

intronic exonic

H. sapiens nagnagNNN nnnnagNAG

M. musculus n??nagNNN nnnnagN??

As a control, we analyzed the local base conservation for A in AH and G in BG dinu-

cleotides (H stands for A,C,T; B stands for C,G,T) in non-NAGNAG acceptor pairs:

intronic A intronic G exonic A exonic G

H. sapiens nahnagNNN nbgnagNNN nnnnagNAH nnnnagNBG

M. musculus n?nnagNNN nn?nagNNN nnnnagN?N nnnnagNN?

Intronic extra AGs of NAGNAG acceptors show higher base identity rates between or-

thologs than the control cases (72% vs. 59%, Fisher’s exact test: P<0.0001 for A; 65%
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acceptors
NAGNAG

species RefSeqs ESTs ESTs
RefSeqs

all observed confirmed

H. sapiens 20,213 5,483,952 271 152,288 7,326 4.8%a 878 12.0%b

M. musculus 16,960 4,056,273 239 127,954 5,100 4.0% 629 12.3%
D. melanogaster 18,960 274,367 14 44,026 1,484 3.4% 97 6.50%
C. elegans 23,461 298,805 13 101,562 4,487 4.4% 30 0.7%

Table 4.4: Observed and confirmed tandem acceptors in human, mouse, fly, and worm.
a observed vs. all.
b confirmed vs. observed.

vs. 55%, P=0.0004 for G). Moreover, the identity rate of the AG dinucleotides is higher

than the expected value from the combination of the base identity frequencies (observed

52%, expected 72% · 65% = 47%). In contrast, the nucleotides of exonic extra AGs are

slightly but significantly less conserved than bases in control acceptors (89% vs. 91%,

Fisher’s exact test: P=0.003 for A; 84% vs. 87%, P<0.0001 for G). Here, the AG

dinucleotide has a conservation rate as expected from combinatorics (observed 74.6%,

expected 74.8%). This may be explained by much stronger coding constraints that su-

perimpose the exonic alternative splice site. Furthermore, many exonic I acceptors are

GAG (Table 4.1), which are unlikely to be used as an acceptor. We conclude that a

subset of tandem acceptors is conserved between human and mouse.

4.3 SNPs in tandem acceptors influence alternative splicing

In our further analysis, we investigated genetic variation of NAGNAG acceptors in the

human population. In particular, we focused on single nucleotide polymorphisms (SNPs),

since they make up more than 90% of the human sequence variations and more than

eight million are listed in dbSNP [201] (release January 2005). This analysis seems to be

promising since SNPs affecting NAGNAG acceptors

• may influence alternative splicing,

• may contribute to human diseases,

• and represent ’natural knock-out experiments’, which allow us to study the NAGNAG

splicing mechanism.

4.3.1 Genome-wide screen for polymorphic NAGNAG acceptors

We started with a genomic screen to identify all known human SNPs that affect the

NAGNAG motif of a tandem acceptor. First, we extracted all annotated SNPs from the

UCSC Genome Browser that are located within the last six nucleotides of an intron or

within the first three nucleotides of an exon, given intron-exon boundaries from RefSeq
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Figure 4.4: Schematic illustration how SNPs affect splicing at NAGNAG acceptors.
(A) SNP alleles at position -2, -1, +2, or +3 of a NAGNAG acceptor destroy this motif by
affecting the E (left) or I acceptor (right), thus preventing alternative splicing. (B) SNP alleles
at intron positions -5, -4 can create a novel E acceptor (left) and at exon positions +2, +3 a
novel I acceptor (right), thus yielding a NAGNAG motif. Acceptors at these alleles may allow
alternative splicing as indicated by the two transcripts (E transcript above, I transcript below).
(C) SNP alleles at position -3 or +1 can convert a NAGNAG acceptor that allows alternative
splicing (right) to a NAGNAG that only allows the expression of one transcript (left), or vice
versa. Positions refer to a standard intron-exon boundary. H stands for A, C, or T. Upper and
lower case letters indicate exonic and intronic nucleotides, respectively. Exonic nucleotides are
boxed. For simplicity, only variations at the G of acceptor AGs are shown in (A) and (B).

transcripts. Then, we selected the SNPs that affect a NAGNAG acceptor. With respect

to the human reference genome sequence (which represents one allele), the other SNP al-

lele can create or destroy a NAGNAG acceptor by affecting one of both AGs (Figure 4.4A

and B). Since the nucleotide upstream of a standard acceptor AG is usually C or T [182]

and a change at this position is likely to alter alternative splicing at a tandem acceptor,

we also considered SNPs at the N positions in an existing tandem (Figure 4.4C). We

found a total of 121 SNPs affecting NAGNAG acceptors.

To check if these polymorphic NAGNAGs are alternatively spliced, we searched

dbEST for the existence of E and I transcripts. We found EST evidence for 19 of these

121 (16%) tandem acceptors. However, this percentage must be considered as a lower
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intron phase
0 1 2

confirmed NAGNAGsa 349 39.8% 379 43.2% 150 17.0%
plausible NAGNAGsb 1,111 42.5% 1,099 42.0% 405 15.5%
implausible NAGNAGsb 2,568 54.5% 1,466 31.1% 677 14.4%
all introns c 46% 33% 21%

Table 4.5: Phase distribution of human introns and NAGNAG acceptors.
Only NAGNAGs that are located upstream of a coding exon are considered.
a the 878 confirmed NAGNAG acceptors (see section 4.2.1).
b the 7,236 CDS NAGNAG acceptors (see section 4.2.1).
c genome-wide frequencies [192].

bound, since in addition to the general limitations of an EST based evaluation of alterna-

tive splicing (mainly insufficient EST coverage, see section 2.1), the allele frequencies of

the NAGNAG alleles as well as population biases in EST sampling introduce further con-

strictions. Thus, we believe that more polymorphic NAGNAGs are alternatively spliced

than the current data suggest. Interestingly, for nine of these 19 confirmed polymorphic

NAGNAGs the human reference genome sequence is identical with the non-NAGNAG

allele, thus the confirmed NAGNAG acceptor sequence is not ’visible’ in genome browsers.

4.3.2 Extracting splicing relevant SNPs

Since more alternatively spliced polymorphic NAGNAGs are probably contained in the

total set, we searched for a way to subdivide all 121 SNPs into those that are likely

and unlikely to affect alternative splicing, respectively. Considering the NAGNAG mo-

tif, 18 of the 19 (95%) confirmed tandem acceptors match the consensus HAGHAG (H

stands for A, C, or T). Thus, from 68 polymorphic HAGHAGs, 18 (26%) are EST con-

firmed, whereas from the 53 acceptors carrying G at one or both variable positions of

the NAGNAG motif only 1.9% (one of 53) are EST supported. This is in line with our

genome-wide observation, where 30.6% of the HAGHAGs but only 1.7% of the remaining

NAGNAGs are confirmed (Table 4.1).

Based on these differences in the degree of confirmation by EST data, we propose to

subdivide all tandem acceptors into

• ’plausible’ (HAGHAG),

• and ’implausible’ (GAGHAG, HAGGAG, GAGGAG) acceptors.

Here, plausible has the meaning ’likely to be alternatively spliced’, whereas implausible

means ’unlikely to be alternatively spliced’. Further support for this classification comes

from the genome-wide observation that all plausible NAGNAGs have the same bias to-

wards intron phase 1 as EST confirmed NAGNAGs (section 4.2.4), while the introns with

implausible tandem acceptors are not biased towards phase 1 (Table 4.5).
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genotypes
dbSNP ID gene symbol homozygous

NAGNAG
heterozygous homozygous

non-NAGNAG

genomica cDNAb genomic cDNA genomic cDNA
rs2245425 TOR1AIP1 c 3 E+I 6 E+I 2 I
rs2275992 ZFP91 c 1 E+I 7 E+I 4 E
rs1558876 KIAA1001 0 - 6 E+I 6 E
rs2290647 KIAA1533 0 - 4 E+I 8 E

Table 4.6: Correlation between acceptor genotypes and the appearance of E and I transcripts.
a number of probands with the respective genotype.
b E+I: presence of both E and I transcripts; E: only E transcripts; I: only I transcripts.
c see also Figure 4.5.

Applying this classification to the 121 SNPs, 68 (56%) SNPs affect a plausible

NAGNAG. However, four of those convert a plausible into another plausible NAGNAG,

which has presumably no drastic consequence for NAGNAG splicing, even though we

cannot exclude the possibility of changes in the ratio of E and I transcripts or changes in

tissue specificity. As our primary goal is to extract SNPs that affect alternative NAGNAG

splicing, we consider the remaining 64 SNPs as relevant for NAGNAG splicing.

4.3.3 The NAGNAG motif is necessary and sufficient for alternative

splicing

SNPs that lead to NAGNAG and non-NAGNAG acceptor alleles represent ’knock-out

experiments made by nature’. We took this opportunity to prove the assumed correla-

tion between NAGNAG acceptor genotypes and the appearance of E and I transcripts.

Such a study seemed reasonable since so far it has been performed in artificial splic-

ing systems only [202]. We selected four SNPs with a minor allele frequency of greater

than 0.2 that affect EST confirmed HAGHAG acceptors for genotyping and detection

of transcript forms. We consistently observed E and I transcripts in cells with at least

one HAGHAG allele, while cells that do not have a HAGHAG acceptor allele produced

only one transcript (Table 4.6). This strict correlation between NAGNAG alleles and

alternative splicing is illustrated for ZFP91 and TOR1AIP1 in Figure 4.5. These results

confirm that a NAGNAG acceptor motif is necessary for this type of alternative splicing.

An even more challenging question is whether the NAGNAG motif is also sufficient for

alternative splicing. This question can be addressed by investigating NAGNAG acceptors

that have been created in recent human evolution. With regard to the human reference

genome sequence, in 36 of 64 cases (56%) a novel NAGNAG is created, in 18 cases (28%) a

known NAGNAG is destroyed by affecting an AG, and ten (16%) N positions are changed.

Since the appearance of a SNP allele in the human genome sequence does not reflect its

evolutionary history, the best reference for the question of gain vs. loss of NAGNAG
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Figure 4.5: SNPs that affect plausible NAGNAG acceptors as ’natural knock-out experiments’.
(A) Representation of a NAGNAG acceptor at the genome level (left) and representation of the
splice event at the transcript level (right).
(B) rs2245425 affecting the E acceptor of intron 2 of TOR1AIP1 leads to the exclusive expression
of the I transcript from the A allele (NAGNAG position -4).
(C) rs2275992 affecting the I acceptor of intron 4 of ZFP91 leads to the exclusive expression of
the E transcript from the G allele (position -2).
a: homozygous NAGNAG allele;
b: heterozygous;
c: homozygous non-NAGNAG allele;
left: genomic with genotypes;
right: cDNA with E:I transcript ratio determined by counting subcloned and sequenced RT-PCR
fragments;
*: E transcripts can be assigned to the SNP alleles in the I acceptor (A=15, G=72).
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acceptors is the chimpanzee genome sequence. Comparing the sequence context of the 64

plausible NAGNAG affecting SNPs, for 61 (95%) the orthologous chimpanzee nucleotide

is identical to one of both human alleles, which we therefore consider as the ancestral

allele [203]. In 43 cases the plausible NAGNAG is gained (non-ancestral) and in 18 cases

it is lost (ancestral).

We found EST evidence for alternative splicing for seven of the 43 (16%) non-ancestral

NAGNAGs, indicating that the non-ancestral SNP alleles enable alternative NAGNAG

splicing. To provide further experimental support, we selected two non-ancestral plau-

sible NAGNAGs without EST evidence. In individuals that are heterozygous or ho-

mozygous for the NAGNAG allele of the SNP rs5248, we observed the expression of E

and I transcripts in the ratios 4:14 and 11:7, respectively. In case of rs17105087, we

were unable to identify the non-ancestral allele in our Caucasian population sample. By

analyzing the human-chimpanzee genomic sequence context of the seven EST confirmed

non-ancestral NAGNAGs, we found three cases where both genomes are identical in a long

range (rs2287800 identical nucleotides -140 to +123 from the SNP position, rs3765018

-130/+95 nt, and rs2290647 -105/+70 nt). Since most splicing enhancers function only

in a distance of less than 100 nt from the affected splice site [31], these findings indicate

that NAGNAG motifs are sufficient for alternative splicing in the context of a previously

non-NAGNAG acceptor.

4.3.4 Evolutionary aspects of SNPs in NAGNAG acceptors

We observed striking differences in the numbers of SNPs that affect the AG of the E and

I acceptor in ancestral plausible and implausible NAGNAGs, respectively. For the 16

ancestral HAGHAGs, the E acceptor is affected in eleven and the I acceptor in five cases.

In contrast, for 22 implausible HAGGAGs (one ancestral GAGGAG and two GAGHAGs

were not considered since the number of cases is too small), the E acceptor is affected in

five and the I acceptor in 17 cases (Fisher’s exact test: P=0.008). Interestingly, we ob-

served the same trend by comparing all 138 human NAGNAGs that are not conserved in

the chimpanzee genome (one GAGGAG and seven GAGHAGs were omitted). The I ac-

ceptors of 79 HAGHAGs are affected in 44 cases (56%), while the GAG of 59 HAGGAGs

is affected in 49 cases (83%, Fisher’s exact test: P=0.0009).

Since tandem acceptors are non-randomly distributed in the human genome with

a bias towards intron phase 1 and towards single amino acid indels in phase 1 and 2,

we questioned whether the non-ancestral plausible NAGNAGs are also biased. Indeed,

these NAGNAGs show the same bias towards intron phase 1 and they also have a strong

tendency to result in single aa indels (Table 4.7). Thus, the process of establishing SNPs

that are relevant for alternative NAGNAG splicing in the human population seems to

be a non-random process, which is subjected to the same evolutionary forces as the

maintenance of the tandem acceptors themselves.
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intron phase single aa events
0 1 2 phases 1 and 2

non-ancestral
NAGNAG alleles a 12 31.6% 16 42.1% 10 26.3% 24 92.3%
non-polymorphic
confirmed NAGNAGs b 349 39.8% 379 43.2% 150 17.0% 487 92.1%

Table 4.7: Intron phase distribution and single aa events of non-ancestral plausible NAGNAG
acceptors.
Only NAGNAGs that are located upstream of a coding exon are considered.
a plausible polymorphic NAGNAGs where the chimpanzee acceptor has no NAGNAG.
b EST confirmed NAGNAGs.

4.3.5 Potential disease relevance of NAGNAG SNPs

Alternative splicing at tandem acceptors can result in the gain or loss of a premature

stop codon in the mRNA. Among SNPs affecting plausible NAGNAGs, the G allele of

the SNP rs9644946 changes the acceptor context of intron 7 of GOLGA1 from AAATAG

to AAGTAG. Since intron 7 resides in phase 0, an in-frame TAG insertion would be the

consequence if the novel E acceptor is used. Interestingly, the gene codes for an autoanti-

gen associated with Sjogren’s syndrome (OMIM 270150). As the E acceptor is preferred

in alternative NAGNAG splicing (section 4.2.2), the novel AAG acceptor is likely to be

functional. The resulting E transcript is a candidate for nonsense-mediated mRNA decay.

Thus, the AAGTAG allele would result in a lower protein expression. Alternatively, it is

possible that the mRNA containing the premature stop codon escapes degradation and

that the truncated protein exhibits autoantigenic properties. It remains to be elucidated

in populations with a sufficiently high allele frequency whether alternative splicing at the

AAGTAG acceptor contributes to the disease.

A literature search revealed an example that demonstrated the disease relevance of

a NAGNAG SNP for the ABCA4 gene [204]. In this work, Maugeri et al. describe a

NAGNAG mutation (2588G→C, changing the acceptor site TAGGAG→TAGCAG) that

has a much higher frequency in patients with Stargardt disease 1 (STGD1; OMIM 248200).

This mutation is assumed to cause STGD1 in combination with a severe ABCA4 muta-

tion. By experimental analysis of the splice patterns of two STGD1 patients carrying the

mutation and one control individual, they found that only the alleles with the plausible

tandem acceptor (TAGCAG) produce two splice forms. Our study exactly predicts this

mutation outcome.

4.4 Tandem acceptors in U12 introns

The great majority of introns has GT-AG or GC-AG termini and is spliced by the ma-

jor U2-dependent spliceosome that requires the snRNPs U1, U2, U4, U5, and U6 for
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splicing. However, another class of introns often having AT-AC termini exist in higher

eukaryotes [205, 206]. These introns are spliced by the minor U12-dependent spliceosome

that requires the snRNPs U11, U12, U4atac, and U6atac, while the U5 snRNP is shared

by both spliceosomes. U12-dependent introns (U12 introns for short) exhibit a nearly in-

variant donor splice site with the sequence (A/G)TATCCTTT. Furthermore, the branch

point sequence TTCCTTAAC is very strict and the bulged adenosine (underlined) is

mostly located 10-26 nt upstream of the acceptor [207]. Remarkably, the acceptor dinu-

cleotide in U12 introns is highly diverse including AC, AG, AA, CG, and TT [208, 207].

Despite these U12 introns are very rare, they occur in numerous species and their splice

sites are often highly conserved [206]. Furthermore, mutations in these introns have been

linked to human diseases [209].

There is evidence that the fidelity in the acceptor recognition is lower for U12 com-

pared to U2 introns. Mutations in the donor site are reported to activate other acceptor

sites in the vicinity of the annotated acceptor [208, 209] and small acceptor variations

are also reported in an EST based study [210].

Motivated by the widespread alternative splicing at NAGNAG acceptors (which al-

most exclusively occur in U2 introns), we investigated whether acceptor sites in U12 in-

trons exhibit similar three nucleotide splice variations. Based on the RefSeq transcript an-

notations, we scanned all human introns for donor sites with the pattern (A/G)TATCC.

For these introns, we searched dbEST for evidence that putative acceptor sites ±3 nt

from the annotated acceptor are used in the splicing process. Due to the diversity of

the U12 acceptor, we did not restrict the search to certain acceptor dinucleotides. From

the 896 U12 introns, 13 (1.5%) exhibit three nucleotide variations at the acceptor site

(Table 4.8). A U12 branch point sequence is found for all 13 introns, suggesting that

they are real U12 introns. For none of these 13 acceptors we found SNPs in the acceptor

vicinity, excluding the possibility of allele-specific splicing. In two cases (GBL, GMFB)

the alternative acceptor is conserved and confirmed in mouse, suggesting that these splice

events are real and not EST artifacts.

Consistent with previous studies, the alternative acceptor dinucleotides are highly

variable, although AT and AG are preferred (Table 4.8). Only one of these 13 U12

introns has a NAGNAG acceptor (GBL). Finally, it should be noted that our scan specif-

ically searched for ±3 nt splice variants. However, in contrast to U2 introns, U12 introns

frequently produce small out-of-frame splice variants by choosing other acceptor dinu-

cleotides located in a range of 1 to 6 nt from the ’normal’ acceptor, which is likely to

be the consequence of a higher error rate in acceptor recognition [210]. Whether the 13

identified ±3 nt splice variants for U12 introns have a biological function or represent

splicing errors, remains unclear.
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gene symbol RefSeq intron splice sites a acceptor pattern b E:I c ratio d

XPO4 NM 022459 19 AT-AG cag|AAT 9:2 18.2%
SLC12A6 NM 005135 11 GT-AG tggtag| 1:14 6.7%
GMFB NM 004124 4 AT-AC aaaaac| 4:75 5.1%
C10ORF61 NM 015631 8 GT-GG tgg|ATG 23:1 4.2%
POLR2E NM 002695 5 GT-AG tcgcag| 15:348 4.1%
GBL NM 022372 2 GT-AG cag|CAG 208:8 3.7%
WDR10 NM 052985 25 GT-AG cggcag| 1:33 2.9%
STX6 NM 005819 2 AT-AC acctac| 1:35 2.8%
E2F5 NM 001951 3 AT-AC cagtac| 1:38 2.6%
KCMF1 NM 020122 4 AT-AT tat|GAT 60:1 1.6%
TUSC3 NM 006765 7 GT-AG ctgcag| 1:104 1.0%
SMS NM 004595 6 AT-AC gcggac| 1:115 0.9%
RBM8A NM 005105 4 GT-AG cag|GGG 298:1 0.3%

Table 4.8: Three nucleotide variations at acceptor sites of U12 introns.
a donor-acceptor splice site dinucleotides of the annotated intron.
b | denotes the annotated intron-exon boundary. Upper and lower case letters indicate exonic
and intronic nucleotides, respectively.
c number of ESTs for the E and I transcript.
d EST ratio of the minor splice form.

4.5 Alternative splicing at tandem donors

Having observed that NAGNAG acceptors are frequently alternatively spliced, we ques-

tioned whether donor splice sites with the motif GTNGTN also allow the expression of

two splice forms differing only by a GTN triplet (note that only U2 intron donor sites can

have a GTNGTN motif). This is of interest since the recognition of donor and acceptor

splice sites is entirely different. While the acceptor AG and its preceding polypyrim-

idine tract is recognized by the U2AF heterodimer [211], the donor splice site has an

extended consensus sequence CAG|GTRAGT (| is the exon-intron boundary, R stands

for A or G) that is recognized by base pairing with the 5’ end (nucleotides 2-10) of the

U1 snRNA [212]. Remarkably, two donor sites that are only 3 nt apart would result

in overlapping U1 snRNA binding sites and the GTNGTN motif differs from the donor

consensus sequence at the two conserved positions +4 and +5.

4.5.1 Genomic view of tandem donors

Consistent with the proposed nomenclature for NAGNAG acceptors, we termed the up-

stream donor ’i donor ’ that renders the complete GTNGTN motif to be intronic. Like-

wise, the downstream donor is called the ’e donor ’ since the upstream GTN becomes

exonic (Figure 4.6A). Note that inversely to NAGNAG acceptors, the e donor is located

downstream to the i donor. We use lower case letters for the two donor sites and up-

per case letters for the two acceptor sites to distinguish between the transcripts that
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Figure 4.6: Nomenclature for tandem donor sites and transcripts.
(A) Splicing at the downstream e donor makes the upstream GTN exonic, while splicing at the
upstream i donor makes the complete GTNGTN motif intronic. (B) Simultaneous usage of e or
i donor and E or I acceptor results in four different transcripts (e-E, i-E, e-I, and i-I transcript).

arise by alternative splicing at tandem donors or acceptors and between combinations of

alternative donor and acceptor usage (Figure 4.6B, see also section 4.7.2).

The search for tandem donors as well as the Blast against dbEST was done similar

to the NAGNAG analysis described in section 4.2.1. Again, our genome-wide analysis

is based on the RefSeq transcript annotations (November 2005). In agreement with the

donor consensus sequence that shows no GT dinucleotide 3 nt up- or downstream of

the donor site, we only found 4,152 (2.5%) tandem donors from the total of 165,295

annotated donor sites. By searching dbEST and the human mRNAs from GenBank,

we identified evidences for alternative splicing at 81 (2% of 4,152) tandem donors. We

term these tandem donors ’confirmed ’, whereas the remaining 4,071 donors are called

’unconfirmed ’.

Further supporting the EST-derived confirmation of these alternative splice events,

we performed RT-PCR in several human tissues. We selected six genes with confirmed

GTNGTNs and found e and i transcripts for all six tandem donors. We detected no

variation among the tissues, suggesting that these tandem donors are not regulated in a

tissue-specific manner.

It has been reported that SNPs in the vicinity of donor sites lead to a shift in the splice

site [213, 214]. To exclude that there is a general trend that confirmed GTNGTNs might

be influenced by SNPs in their genomic flanks, thus giving rise to allele-specific splice

forms [106], we selected all SNPs from dbSNP that are mapped to the 100 nucleotide

context up- and downstream of these tandem donors. We found that 59% (48 of 81) of the

confirmed GTNGTNs do not have an annotated SNP in this 206 nucleotide region. As a

control, we randomly selected 500 unconfirmed GTNGTNs and likewise found no SNP for

59% (294 of 500), suggesting that most of the confirmed tandems are not associated with

allele-specific splice forms. We also analyzed the splicing at one tandem donor (intron
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21 of STAT3 ) in leucocytes of six individuals and consistently observed both transcripts.

This agrees with the in silico finding that tandem donor splicing in general does not

depend on specific genotypes and further excludes the possibility that a peculiarity of

the spliceosome or its components is causal for the two splice forms.

We proceed with a characterization of these splice events. However, it should be

noted that the small number of confirmed GTNGTNs does not allow to perform all the

analyses done for NAGNAGs.

4.5.2 Characteristic features of confirmed GTNGTN donors

A or G is strongly preferred at intron position +3 for standard donor sites GTN, while

T and C have lower frequencies [215]. We classified the confirmed GTNGTN donors

according to their pattern into three groups:

• GTRGTR (R = A or G),

• GTTGTR, GTRGTT or GTTGTT,

• and GTCGTN or GTNGTC.

The GTRGTR pattern is clearly preferred as 86% (70 of 81) of the confirmed GTNGTN

donors belong to this group. A smaller fraction has one or two Ts at the N-positions

(eight of 81, 10%) and the third group is very rare with only three cases. These findings

indicate that the common splicing machinery is operating at these sites.

Furthermore, we generated a sequence logo for the genomic context of

• confirmed tandem donors,

• unconfirmed GTNGTNs where either the e or i donor is confirmed,

• and donor sites without a GTNGTN motif (Figure 4.7).

The three nucleotides up- and downstream of confirmed tandem donors are non-randomly

distributed (Figure 4.7B), consistent with the observation that both donor sites are alter-

natively used in the splice process. In contrast, either the upstream or downstream side

of unconfirmed GTNGTNs is more randomly distributed. The higher conservation of

the AG upstream of the unconfirmed GTNGTN motifs with annotated i donor indicates

that the non-consensus intronic sequence is compensated by a more stringent match to

the exonic part of the donor consensus sequence (compare Figure 4.7C with A).

4.5.3 Differences in U1 snRNA binding for confirmed and unconfirmed

GTNGTN donors

The U1 snRNA determines the donor site by base pairing with the mRNA [212]. To

define the strength of a donor site, we calculated the average free energy of the binding

of the nucleotides 2-10 of U1 snRNA to the donor site [216]. In general, the e donor

of confirmed GTNGTNs has a higher strength compared to the i donor (average -4.96
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Figure 4.7: Sequence logos of the 12 nt donor context.
(A) Donors without a GTNGTN motif. (B) Confirmed GTNGTN donors. (C) unconfirmed
GTNGTNs with annotated i donor. (D) unconfirmed GTNGTNs with annotated e donor. The
y axis is given in bits.

vs. -3.68 kcal/mol). In agreement with that, the e donor is annotated in 73% (59 of

81 confirmed GTNGTNs) in RefSeq. Furthermore, the e donor is represented by an

average of 233 ESTs, which is about tenfold higher than the average of 24 ESTs for the

i donor. These findings can be explained by a stronger consensus sequence downstream

of a standard GT donor compared to the three upstream positions (Figure 4.7A).

Nevertheless, there are 17 of the 81 confirmed GTNGTN tandems with more ESTs for

the i donor than the e donor. Therefore, we compared the free energy values and found

that 15 of these 17 cases (88%) have a lower free energy for the i donor, thus allowing

a more stable U1 binding (Figure 4.8A). Likewise, 56 of the remaining 64 confirmed

GTNGTNs (88%) with more ESTs for the e donor have a lower free energy for the e

donor. The same trend was observed for the annotated donor of unconfirmed GTNGTNs

(Figure 4.8B). In agreement with other experimental and computational studies [217, 80],

the free energy of the U1 snRNA binding generally determines the donor that is used

more frequently.

Since only a small fraction of all human tandem donors are confirmed, we searched

for differences between confirmed and unconfirmed ones. Comparing the average free

energies, we found that the e as well as the i donor of confirmed GTNGTNs is significantly

stronger than the respective unannotated donor of unconfirmed GTNGTNs (Table 4.9,

t-test: P<0.00001). In contrast, the annotated donor of unconfirmed GTNGTNs is

significantly stronger than the respective donor of confirmed GTNGTNs (Table 4.9, t-

test: P<0.00001). We repeated this analysis using the number of base pairs between

donor sites and U1 snRNA [216] and the maximum entropy scores [218] to measure the
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Figure 4.8: The free energy values (kcal/mol) of U1 snRNA binding to the e and i donor.
(A) confirmed GTNGTNs. (B) unconfirmed GTNGTNs.
In (A) black triangles represent tandem donors with more ESTs for the e donor, blue crosses
tandem donors with more ESTs for the i donor. In (B) black triangles represent annotated e
donors, blue crosses annotated i donors. To better illustrate the distribution of the free energies,
we added a random number between -0.1 and 0.1 to each value (necessary since many donor sites
have the same 9 nt context pattern).

strength of a donor site and found consistent results (Table 4.9, t-test: all P-values <

0.00001). Thus, unconfirmed tandem donors are characterized by a strong donor that

successfully competes for U1 snRNA binding with the much weaker donor. The smaller

difference between both donors for confirmed tandems probably allows U1 binding to

both sites, leading to the observed splice variants.

We assumed that the strength of both donors might be a criterion to distinguish

alternatively from non-alternatively spliced tandem donors. To test this experimentally,

we selected nine unconfirmed GTNGTNs with a low free energy for both donor sites

for experimental verification. For none of the nine candidates, we found evidence for

alternative splicing at the tandem donor, suggesting that the majority of unconfirmed

GTNGTNs is presumably not alternatively spliced. We conclude that

• stable U1 binding is necessary but not sufficient for alternative tandem donor splic-

ing,

• the currently confirmed GTNGTNs represent a large fraction of all alternatively

spliced tandem donors,

• and alternatively spliced GTNGTNs are not easily predictable.

4.5.4 Confirmed tandem donors have overrepresented sequence motifs

in their intron flanks

Since the free energy of U1 binding seems not to be the only discriminative criterion,

we searched for other differences between confirmed and unconfirmed GTNGTNs. The

regulation of alternative splicing often involves auxiliary exonic and intronic splicing
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average
free energy
(kcal/mol)

no. of base
pairs

maximum
entropy score a

i e i e i e
unconfirmed, e annotated -2.3 -5.93 3.87 7.31 -14.62 7.85
unconfirmed, i annotated -5.21 -0.53 6.41 4.13 4.11 -10.95
confirmed -3.68 -4.96 4.84 6.64 -6.47 3.89

Table 4.9: Characteristics of U1 snRNA binding to confirmed and unconfirmed GTNGTN
donors.
a higher values indicate stronger splice sites

enhancer and silencer elements (ESE, ESS, ISE, and ISS). Previous computational studies

followed by experimental verification identified 238 hexamers as ESEs [41], 2,060 octamers

as ESEs and 1,019 octamers as ESSs [42], and 133 hexamers as ISE motifs in the vicinity

of donor sites [43].

We used these motifs to compare their average frequency between both groups. Since

most unconfirmed GTNGTNs are probably not alternatively spliced, this large group

constitutes an appropriate null model. The 100 nt exonic flanks of confirmed GTNGTNs

are statistically indistinguishable from unconfirmed ones when comparing the frequency

of ESE and ESS motifs. However, we found a significantly higher frequency of ISE motifs

in the 100 nt intron flanks for confirmed GTNGTNs (average 10 vs. 8, t-test: P=0.0174).

Repeating this analysis with a shorter intronic context of 50 nt, leads to consistent results.

To find out if specific ISE hexamers are statistically overrepresented, we used a re-

sampling strategy. We randomly sampled 10,000 sets, each comprising 81 intron flanks

from unconfirmed GTNGTNs. We estimated the P-value as the fraction of random sets

with a higher frequency of a given ISE hexamer compared to the observed frequency in

confirmed tandem donors. CGGGGT is the only one among the 133 ISE motifs that is

significantly overrepresented in the vicinity of confirmed GTNGTN donors as all 10,000

random sets have a lower frequency (P< 1/10, 000 · 133 = 0.0133 to correct for multiple

testing).

To find out if other sequence motifs are overrepresented in the intron flanks of con-

firmed tandem donors, we repeated this procedure with tetramers. A word length of 4 nt

was chosen to account for the rather small set of confirmed GTNGTNs. We expect that

such motifs occur (i) at least with the expected frequency assuming random sequences and

(ii) with a significant higher frequency in the flanks of confirmed GTNGTNs compared

to unconfirmed GTNGTNs. There are 97 overlapping tetramers in a 100 nt sequence,

thus we analyze a total of 81 · 97 = 7, 857 tetramer occurrences. For complete random

sequences, each tetramer should occur 7, 857/256 = 30.7 times. To fulfill (i), we con-

sidered a total of 119 tetramers that occur 30 times or more in the flanks of confirmed

GTNGTNs and multiply the P-value with 119 to correct for multiple testing. Point (i)
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prevents the detection of overrepresented but rare motifs that presumably do not explain

why most confirmed GTNGTNs are alternatively spliced.

We found a significant overrepresentation for GGGT and CGGG (both have a higher

frequency in only two random sets, P< 3/10, 000 · 119 = 0.0357). Since both GGGT

and CGGG are substrings of the overrepresented ISE CGGGGT, no new sequence mo-

tifs were found. The common feature of the overrepresented sequence motifs is the G

triplet. Interestingly, this motif occurs in 82 of the 133 ISEs [43] and is a known splicing

enhancer [219]. Since both splice sites of confirmed GTNGTNs are weaker compared to

the annotated splice site of unconfirmed ones (Table 4.9), the G triplets might simply be

associated with weak splice sites. To exclude this possibility, we compared the average

GGG frequency with unconfirmed GTNGTNs having a low U1 binding potential for both

e and i donor (average free energy -3 kcal/mol for the e donor, -2.2 for the i donor) and

still found an overrepresentation in the intron flanks of confirmed GTNGTNs (average

4.4 vs. 2.6 G triplets per intron flank). Since this triplet was found to be more frequent

in shorter introns [220], we divided our confirmed and unconfirmed datasets into short

and long introns using 200 nt as a cut-off. Consistently, the GGG is more frequent in the

flanks of short as well as long introns with confirmed GTNGTNs (average 8.3 vs. 4.4 G

triplets per short intron, average 3.4 vs. 2.7 per long intron). Thus, the occurrence of G

triplets is another discriminating criterion between confirmed and unconfirmed tandem

donors.

4.5.5 Effect on the proteins

72 of the 81 (89%) confirmed GTNGTNs are located downstream of a coding exon. As

for NAGNAGs, the effect on the protein depends on the phase of the intron as well as

the sequence of the i donor and the up-/downstream exon. Of the 72 GTNGTNs, 60

result in the following single aa events:

• Val in phase 0 (encoded by the i donor GTN),

• Gly, Arg, and Ser in phase 1,

• Trp, Cys, and Tyr in phase 2.

Apart from eight observed dipeptide events, alternative splicing at four GTNGTNs results

in the indel of a stop codon. In two cases, the splice form with the premature stop codon

is a clear candidate for NMD. In the other two cases, the tandem donor affects the last

intron of the transcript, thus the stop codon-containing splice variant should be translated

into a protein with a shortened C-terminus.

Next, we compared the frequency of single aa events in phase 1 and 2 for confirmed

and, as a control, for unconfirmed GTNGTNs. While only 42% (495 of 1180) of un-

confirmed tandem donors in phase 1 result in a single residue indel, this percentage is

significantly higher for confirmed tandems (64%, 18 of 28, Fisher’s exact test: P = 0.02).
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species no. of donors a GTNGTN
observed confirmed

H. sapiens 165,295 4,152 2.51%b 81 1.95%c

M. musculus 125,332 3,188 2.54% 49 1.54%
R. norvegicus 53,631 1,424 2.66% 12 0.84%
G. gallus 19,793 554 2.80% 1 0.18%
D. rerio 29,091 619 2.13% 5 0.81%
D. melanogaster 40,811 1,274 3.12% 19 1.49%
C. elegans 92,938 3,195 3.44% 26 0.81%
A. thaliana 112,684 3,541 3.14% 36 1.02%

Table 4.10: GTNGTN donors in eight investigated species.
a total number of all unique donor sites annotated in RefSeq transcripts; for A. thaliana total
number of unique donor sites based on the CDS feature annotation of GenBank
b no. of observed GTNGTNs / no. of all donors
c no. of confirmed GTNGTNs / no. of observed GTNGTNs

The small number of phase 2 tandems does not allow a significant result, although the

same trend is visible (100%, five of five confirmed tandems; 76%, 431 of 566 unconfirmed

tandems). Similar to NAGNAG acceptors, this argues for a selection pressure towards

single aa indels. However, we cannot exclude the possibility that this is an indirect con-

sequence of a sequence bias of the GTNGTN motif and its context for confirmed tandems

that primarily aims at a more stable U1 snRNA binding.

4.5.6 Tandem donors in seven other species

Next, we asked whether alternative splicing at GTNGTN donors occurs in other species.

Therefore, we extended our analysis to the RefSeq transcripts of mouse, fruitfly, and

nematode (release November 2005). Due to an improved RefSeq annotation and an

increased number of ESTs, we extend this analysis also to three other species (rat (Rattus

norvegicus), chicken (Gallus gallus), and zebrafish (Danio rerio)).

The percentage of GTNGTN motifs in all donor sites is similar in all species and

ranges from 2.1% to 3.4% (Table 4.10). Except for chicken, we found EST evidence for

alternative splicing for 0.8% to 1.5% of all GTNGTN donors. Finally, we searched tandem

donors in the plant Arabidopsis thaliana using the CDS annotation from GenBank and

detected 36 confirmed GTNGTNs. Thus, all investigated species are able to produce e

and i transcripts at tandem donors by alternative splicing.

4.5.7 Conservation of exonic and intronic flanks in mouse

Having observed several alternative GTNGTN splice events in human and mouse, we

found conservation of the GTNGTN motif for 53 (65.4%) of the 81 human confirmed

GTNGTNs. To find out whether this percentage is high or not, we counted GTNGTN

conservation for the 3,909 unconfirmed tandems (162 of the 4,071 unconfirmed ones have
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no orthologous locus in mouse) and found a very similar percentage of 65.5% (2,561 of

3,909). The fraction of tandem donors that have a completely identical GTNGTN pattern

in mouse is also equal: 40 of 81 (49.4%) confirmed, 1,939 of 3,909 (49.6%) unconfirmed.

Thus, there is no evidence for a general selection pressure to maintain a confirmed tandem

donor since the divergence of the human-mouse ancestor.

However, a considerable fraction (ten of 53, 19%) of the conserved and confirmed

human GTNGTNs is also confirmed in mouse. For example, the GTAGTT donor of

intron 21 of human STAT3 is conserved in the orthologous mouse gene Stat3 and both e

and i transcripts are supported by mouse ESTs. As in humans, we performed RT-PCR

in mouse tissues and found experimental evidence for alternative splicing at the Stat3

tandem donor. Interestingly, the ratio of e and i transcripts estimated by the EST counts

are virtually identical: 57 of 74 (77%) human ESTs and 55 of 69 (79.7%) mouse ESTs

are e transcripts. To accurately quantify the ratio of e and i transcripts in one selected

tissue, we counted individual sequenced clones and found a remarkable agreement in the

transcript ratio: 82.8% of the human clones indicate splicing at the e donor, which is

highly similar to 85.3% in mouse. Moreover, this tandem donor is conserved in several

other mammals and the e:i ratio is very similar (9:2 ESTs for rat, 12:3 for cow, 9:1 for

dog). This suggests that in addition to the tandem donor putative regulatory elements

are conserved.

The intronic flanks of alternative exons are significantly more conserved in mouse

compared to the flanks of constitutive exons, which is presumably attributed to the

force to maintain regulatory elements [76]. From genomic human-mouse alignments,

we calculated a per-position identity value for the region 30 nt up- and downstream of

the human GTNGTNs. For a specific position, this value is the fraction of identical

nucleotides in all pairwise alignments [75, 76]. We calculated per-position identities for

three groups:

(i) confirmed human tandem donors with a conserved GTNGTN motif in mouse,

(ii) the subset of (i) that is also confirmed in mouse,

(iii) and unconfirmed human tandems.

Plotting these average values, it can be seen that group (i) and in particular group (ii)

have noticeably higher identities for both the exonic and intronic side compared to the

control group (iii) (Figure 4.9). The exonic identities for the ten human and mouse

confirmed and conserved tandem motifs exceed 90% for most positions, a feature that is

also typical for alternative exons [92]. Furthermore, the GTNGTN pattern with 3 nt up-

and downstream is completely identical between both species for these ten tandems and

average identities of more than 80% are observed for the first 13 intronic positions.
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Figure 4.9: Per-position identity values in human-mouse alignments for the region 30 nt up- and
downstream of the GTNGTN motif.
The black line represents unconfirmed human GTNGTN donors, the blue line confirmed hu-
man tandem donors with a conserved GTNGTN motif in mouse, and the green line conserved
GTNGTNs that are confirmed in human and mouse. To avoid large variations due to low case
numbers, we plotted for each position the average of this and the three positions up- and down-
stream.

splice donor pattern observed confirmed

GTNGTN 4,152 2.51%a 81 1.95%b

GTNGCN 856 0.52% 14 1.64%
GCNGTN 3,510 2.12% 15 0.43%
GCNGCN 32 0.02% 0 0.00%
GYNGYN 8,550 5.17% 110 1.29%

Table 4.11: Human tandem donor sites divided into the four different GYNGYN patterns.
a percent of all 165,295 annotated donor sites
b no. of confirmed / no. of observed

4.5.8 Alternative splicing at GCNGTN and GTNGCN donors

Although the great majority of donor sites has a GT dinucleotide, a small fraction of

0.76% has a GC dinucleotide [9]. Thus, we questioned whether donor sites with a

GCNGTN, GTNGCN, and GCNGCN motif also allow alternative splicing. Together

with GTNGTNs, we call these donors GYNGYN donors (Y stands for C or T). A search

in the human species revealed numerous such donors (Table 4.11). Surprisingly, we found

EST evidence for alternative splicing for 15 GCNGTNs and 14 GTNGCNs (Table 4.11).

No confirmed GCNGCN donor was found, presumably because this motif is very rare

and the weaker GC donor requires a more stringent sequence context.

Extending the search to the seven other species, we consistently found confirmed

GCNGTNs and GTNGCNs but no confirmed GCNGCN (Table 4.12). Interestingly,

three of the human confirmed GCNGTNs/GTNGCNs are conserved and confirmed in

other species, suggesting that the respective splice events are real.
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species no. of donors a GCNGTN and GTNGCN
observed confirmed

H. sapiens 165,295 4,398 2.66%b 29 0.66%c

M. musculus 125,332 3,237 2.58% 12 0.37%
R. norvegicus 53,631 1,440 2.69% 3 0.21%
G. gallus 19,793 553 2.79% 2 0.36%
D. rerio 29,091 699 2.40% 1 0.14%
D. melanogaster 40,811 1,906 4.67% 5 0.26%
C. elegans 92,938 2,838 3.05% 1 0.04%
A. thaliana 112,684 2,091 1.86% 8 0.38%

Table 4.12: GCNGTN and GTNGCN donors in eight investigated species.
a total number of all unique donor sites annotated in RefSeq transcripts; for A. thaliana total
number of unique donor sites based on the CDS feature annotation of GenBank
b no. of observed GCNGTNs and GTNGCNs / no. of all donors
c no. of confirmed GCNGTNs and GTNGCNs / no. of observed GCNGTNs and GTNGCNs

4.5.9 Comparison of GYNGYN donors and NAGNAG acceptors

To provide a complete genomic view of alternative splicing at GYNGYN donors and

NAGNAG acceptors, we updated the NAGNAG analysis to the seven species having a

RefSeq annotation in the UCSC Genome Browser using the same data as for GYNGYNs

(Table 4.13). In general, the percentage of confirmed NAGNAGs is one order of mag-

nitude higher compared to GYNGYN donors (compare Table 4.10 and 4.12 with 4.13).

This can be explained by large differences in the mechanisms of donor and acceptor site

recognition. While the acceptor AG is bound by the U2AF35 protein, the donor site is

recognized by base pairing with the U1 snRNA. In contrast to the acceptor, the binding

site of U1 comprises a larger range. This imposes more sequence constraints on a tandem

donor site and prevents the extensive use of potential e and i donors compared to poten-

tial E and I acceptors. Apart from human and mouse, the fruitfly has a high percentage

of confirmed NAGNAG sites, which is probably due to the higher percentage of tandem

acceptors with the HAGHAG pattern that preferably allow alternative splicing. In con-

trast, a very low fraction of the NAGNAG acceptors of C. elegans is confirmed, which

is particularly striking since C. elegans has the highest fraction of HAGHAG acceptors.

This rareness of alternative splice events at NAGNAG acceptors is not due to differences

in the EST coverage (see Table 4.4) and C. elegans has a similar percentage of confirmed

tandem donors compared to the other species. This finding, based on a larger data set,

confirms our initial result that NAGNAGs in C. elegans are rarely alternatively spliced.

4.6 A relational database of tandem splice sites

Although tandem splice sites are frequent in many species, neither existing databases

on alternative splicing nor genome browsers provide easy and comprehensive access to
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species no. of
acceptorsa

NAGNAG HAGHAG confirmed
NAGNAG

confirmed
HAGHAG

H. sapiens 164,841 9,465 5.7%b 3,530 37.3%c 1,511 16%d 1,373 90.9%e

M. musculus 125,233 7,116 5.7% 2,662 37.4% 1,087 15.3% 1,022 94.0%
R. norvegicus 53,598 3,080 5.7% 1,098 35.6% 215 7.0% 202 94.0%
G. gallus 19,794 1,069 5.4% 401 37.5% 97 9.1% 92 94.8%
D. rerio 29,067 1,540 5.3% 484 31.4% 132 8.6% 118 89.4%
D. melanogaster 39,441 1,584 4.0% 859 54.2% 177 11.2% 170 96.0%
C. elegans 92,867 4,184 4.5% 2,637 63.0% 33 0.8% 33 100.0%

Table 4.13: NAGNAG acceptors in seven species.
a total number of all unique acceptor sites annotated in RefSeq transcripts
b no. of NAGNAG acceptors / no. of all acceptors
c no. of HAGHAG acceptors / no. of NAGNAG acceptors
d no. of confirmed NAGNAG acceptors / no. of NAGNAG acceptors
e no. of confirmed HAGHAG acceptors / no. of confirmed NAGNAG acceptors

this phenomenon. Since we had collected a wealth of data about the splice events at

GYNGYN donors and NAGNAG acceptors, we developed a database TassDB (TAndem

Splice Site DataBase) to provide public access to these data. TassDB consists of a

relational database (PostgreSQL 8.0.3) and a web interface to retrieve the data. With this

database, we aim at facilitating further large-scale bioinformatics as well as experimental

analysis of tandem splice sites.

TassDB contains tandem splice sites of eight species (the seven species listed in Ta-

ble 4.13 and in addition the dog (Canis familiaris)). We stored the following data:

• the tandem splice site motif,

• the maximum entropy scores for both splice sites [218],

• the genomic locus,

• location in the transcript (5’/3’ UTR or intron phase 0/1/2),

• the impact of the splice event on the protein,

• the sequences and length of the up- and downstream exon and the intron,

• and information about the ESTs and mRNAs that match the E/I and e/i transcript,

respectively.

In addition, the database annotates the 121 NAGNAG acceptor SNPs (identified in

section 4.3.1). As for 51 polymorphic tandem acceptors the NAGNAG pattern is not

visible in the genome reference sequence, TassDB always stores the allele sequence with

the NAGNAG acceptor.

The basic design of this database was driven by the idea to separate splice site specific

data from transcript specific data. For example, the GYNGYN and NAGNAG motif, the

genomic locus, and the splice site scores are independent of the transcript annotation.

However, features such as intron phase, protein impact, and EST confirmation depend on
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Figure 4.10: TassDB result table for the CAGCAG acceptor of intron 13 of PHF1.

the annotation as well as the exon-intron structure of the transcript. Thus, one tandem

splice site can have multiple transcript specific data. For example, the intron 13 of the

human PHF1 gene that contains a CAGCAG acceptor is in intron phase 2 according to

the annotation of NM 024165. Due to skipping of the upstream 95 nt exon, this intron

is in phase 1 according to the annotation of another transcript NM 002636. Thus, the

protein impact of the CAGCAG is indel S in NM 024165 but indel A in NM 002636. In

such cases, TassDB will show a result table with more than two columns (Figure 4.10).

The database has three web interfaces to retrieve data that allow:

1. to search for all (confirmed and unconfirmed) GYNGYNs and NAGNAGs of a gene

given its symbol or transcript accession,

2. to search for genes containing tandem splice sites with specific features (splice site

pattern, the number of ESTs/mRNAs that match both splice forms, location in the

UTR or in the CDS, and the protein impact),

3. and to perform complex searches by sending a user-defined SQL query to the database.

Thus, TassDB can be used to retrieve large datasets for further computational analysis of

tandem splice sites. Furthermore, it allows biologists to search for their genes of interest

and to get all relevant information about the respective tandem splice sites. The database

is available at http://helios.informatik.uni-freiburg.de/TassDB/.
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4.7 Discussion

4.7.1 Functional consequences of tandem splice sites

We have performed the first detailed analysis of alternative splicing at GYNGYN donors

and NAGNAG acceptors. Addressing the four questions on page 85 in a genome-wide

analysis, we detected the following characteristics of NAGNAG acceptors:

• a bias towards introns in phase 1,

• a bias towards single aa indels,

• the indel of a charged aa happens in a protein context that is similarly charged,

• exon-exon junctions of confirmed NAGNAGs are enriched in polar residues,

• genes with NAGNAG acceptors are frequently involved in protein-protein interac-

tions,

• genes with NAGNAG acceptors exhibit a special distribution of Pfam domains,

• a subset of NAGNAG acceptors is conserved in mouse,

• splicing at NAGNAG acceptors can be tissue-specific.

These points strongly indicate that NAGNAG acceptors are subjected to selection pres-

sures during evolution. In particular, as signs of negative selection, the protein-related

biases show that the NAGNAG-derived variability is deleterious for certain proteins or

protein regions.

Noteworthy, our findings concerning tissue specificity and conservation were confirmed

and extended by other groups later. Tadokoro et al. detected tissue-specific variations of

E and I transcripts for several genes [202]. Akerman and Mandel-Gutfreund confirmed the

sequence conservation of the NAGNAG motif and additionally found a high conservation

of intronic flanking regions [221]. Furthermore, they detected several overrepresented

sequence motifs in the vicinity of confirmed NAGNAGs, which might contribute to the

regulation of these sites.

As conservation and tissue-specific regulation is usually taken as evidence for biolog-

ical or functional relevance of splice events, we performed a literature search and found

several cases where NAGNAG-derived alternative splicing events result in functionally

different protein isoforms:

• IGF1R isoforms (Thr-Gly vs. Arg) have different signaling activities [188],

• DRPLA isoforms (Gln indel) have differences in subcellular localization [202],

• mouse Pax-3 isoforms (Gln indel) have different DNA binding affinities [189],

• isoforms of the A. thaliana U11-35K protein (Gln indel) have different protein bind-

ing affinities [222],

• alternative NAGNAG splicing in the UTR of mouse Ggt1 affects the translational

efficiency [223].
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Furthermore, a mutation in the ABCA4 gene that enables alternative NAGNAG splicing

is relevant for Stargardt disease 1 [204]. It is tempting to speculate that further functional

differences can be caused by changes in recognition sequences for post-translational mod-

ifications (such as phosphorylation) or by a variation in the distance between functional

domains in proteins.

For tandem donors, the smaller data set does not allow to perform all the statistical

analyses done for NAGNAG acceptors. In contrast to NAGNAGs, the GTNGTN pattern

is not significantly conserved and tandem donor splicing seems not to be tissue-specific.

However, a considerable fraction of the human confirmed and evolutionary conserved

tandem donors is also confirmed in other species, and tandem donors exhibit the same bias

towards single aa indels as NAGNAGs. Interestingly, one tandem donor with functional

consequences is also described in the literature. Alternative splicing at a GTAGTG donor

of the human glucocorticoid receptor gene NR3C1 leads to an Arg insertion between two

zinc fingers, and the respective isoform has an activity reduced to 48% [224, 225].

As a major difference to alternative splicing in general, which often severely affects the

protein function, tandem splice sites provide a mechanism to create subtle changes. This

is supported by our finding that confirmed GTNGTNs and NAGNAGs are significantly

enriched in single aa events and that for NAGNAGs the indel of a charged aa happens

in a protein context that is similarly charged. As discussed above, these subtle changes

may be of functional relevance.

Apart from functional consequences, it is conceivable that many other of these subtle

splice events might have no functional implications. Except for dramatic events such as

stop codon indels, the amino acid indels might simply be tolerated by the cells. Thus,

similar to genetic variants, tandem donor and acceptor splice variants may be neutral

with respect to physiological protein properties or may result in phenotypic differences.

Consequently, these splice variants represent another large playground of molecular evo-

lution [226, 77], with purifying selection acting to remove deleterious variants and posi-

tive selection reinforcing beneficial variants. Which fraction of NAGNAG acceptors and

GYNGYN donors plays a role in biological functions deserves further research.

We and others [202] found a subset of NAGNAG acceptors to be regulated in a tissue-

specific manner. Other NAGNAG acceptors as well as GYNGYN donors do not exhibit

this property [227]. The latter group of splice events is likely to contain cases, which

are the result of a stochastic or ’noisy’ binding of the spliceosome to the neighboring

splice sites [228]. This is supported by the finding that the strength of a splice site is an

important factor that determines its frequency (section 4.2.2, 4.5.3 and [228]). However,

it should be noted that noise is important for many biological processes such as cell

divergence in Dictyostelium, pili expression in bacteria, and neuronal firing [229, 230],

leading to the model of ’cultivated noise’ [230]. Another example is noisy alternative

splicing of the Drosophila DSCAM gene. This gene has four clusters of mutually exclusive
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exons and may express a total of 38,016 different transcripts. In a stochastic manner each

single cell produces only a small number of the 38,016 possible transcripts [231]. This

noisy process results in an efficient mechanism to individualize cells, which is important

for proper axon guidance in Drosophila [55]. Although it has to be proven, it is tempting

to speculate that noise arising by orchestrated splicing at tandem splice sites provides

another stochastic mechanism, maybe for cell individualization.

4.7.2 A mechanism to increase the protein diversity

One of the main findings is that the rather simple structures of tandem splice sites allow

highly diverse protein events. Confirmed tandem donors and acceptors are able to insert

twelve of the 20 different amino acids by single aa events and the dipeptide exchanges

are even more diverse. Furthermore, stop codon indels were observed for GYNGYNs and

NAGNAGs.

Currently, there are more than 1,500 confirmed human NAGNAG acceptors. Due

to a limited EST coverage, we expect more NAGNAGs to be also alternatively spliced.

Since a large number of genes is affected, alternative splicing at tandem splice sites is

a major mechanism to increase the proteome diversity. Additionally, the number of

possible protein variants is strongly increased, if one gene harbors more than one tandem

acceptor. We found several genes with more than one confirmed tandem acceptor (up

to five for the human NCOR1 gene). If alternative splice events from the five tandem

acceptors are freely combined, this would result in 25 = 32 NCOR1 protein isoforms.

The simultaneous use of a GYNGYN donor and a NAGNAG acceptor for one intron

further contributes to variability (Figure 4.6B). Such an example is intron 9 of BRUNOL4

for which we found 14 e-E, three i-E, and six e-I transcripts in dbEST that result in protein

forms with a GPA, AA, and GP peptide, respectively.

Another dimension of variability of the protein level comes from translationally non-

silent SNPs that affect NAGNAG acceptors. Of the 64 SNP detected in section 4.3.2,

15 (23%) are non-silent and thus change the I acceptor and the amino acid sequence of

the E protein. While homozygotes express either one or two isoforms, heterozygosity

results in even three different proteins (Figure 4.11). The amino acid change can be

dramatic, as for example from Glu to the oppositely charged Lys in PAPSS2. Moreover,

it is conceivable that some of the non-silent SNPs may confer a heterozygous advantage.

Apart from tandem splice sites, there are other mechanisms to introduce subtle pro-

tein changes by alternative splicing. Very similar mutually exclusive exons can lead to

similar but functionally different proteins. This was observed for the RAB6A gene [232],

many ion channels [82], and the above mentioned Drosophila DSCAM gene. Comparing

mutually exclusive exons with tandem splice sites, the latter provide a simpler way to

introduce minor protein changes, probably explaining their higher frequency.
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Figure 4.11: A SNP that affects the I acceptor and the amino acid sequence of the E protein
(rs2275992 in ZFP91 ).
(A) Homozygosity of the G allele without a NAGNAG results in the expression of one protein,
(B) homozygosity of A allele with the NAGNAG results in two, and (C) heterozygosity in three
isoforms. All three transcripts are confirmed by at least four ESTs/mRNAs. The two allele
variants are highlighted in blue and green. Amino acids are shown below the second codon
position. Upper and lower case letters indicate exonic and intronic nucleotides, respectively.
Exons are boxed.

4.7.3 Mechanism of tandem donor and acceptor splicing

NAGNAG acceptors prevalently occur in genes coding for proteins that interact with

other proteins and RNA molecules. In agreement with that, genes involved in splicing

are equipped with tandem acceptors, for example PRPF3, PRPF8, PRPF31, PRPF4B,

SFRS11, and the neuronal polypyrimidine tract-binding protein PTBP2, which is of

particular interest for alternative splicing in the nervous system [233]. These tandem

acceptors are conserved between human, mouse, and rat. Moreover, tandem acceptors

raise interesting questions about the 3’ splice site selection [234]. Their alternative usage

requires some flexibility in the interaction of the splicing factors that recognize the branch

point, the polypyrimidine tract, and the splice site AG. This flexibility of the splicing

machinery may be enhanced by isoforms of its protein components. U2AF35 is known

to be alternatively spliced [235]. Interestingly, both U2AF35 as well as its interacting

partner U2AF65 exhibit a tandem acceptor. Tandem acceptor derived isoforms of U2AF

subunits might promote flexibility in the spatial architecture of the spliceosome with pos-

sible functional consequences for the splicing process and even for splicing at NAGNAG

acceptors.

Most confirmed GYNGYNs have a low free energy of U1 snRNA binding to both the e

and i donor, suggesting that the U1 snRNA can stably bind to both sites. However, there

are a few exceptions where one donor is much stronger than the other one in a confirmed

tandem (Figure 4.8A). The mechanism of splicing at these sites remains unclear, but there

are several hypotheses that might guide future investigations. For example, it has been

reported that U6 snRNA rather than U1 snRNA determines a donor site in the human

FGFR1 gene [236]. Moreover, there is in vitro evidence that splicing can occur without

U1 snRNA binding to the donor site [237, 238]. Furthermore, other protein factors can
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influence the splice site choice and/or (de)stabilize U1 snRNA binding [239, 240]. We

believe that a further experimental investigation of confirmed tandem splice sites may

help to elucidate further details of the splicing process.

4.7.4 Polymorphic NAGNAG acceptors

We identified 121 SNPs that may affect alternative splicing by creation, destruction, or

changing NAGNAG acceptors. In order to improve the specificity of our prediction, we

classified NAGNAG acceptors into plausible and implausible ones. This subdivision of

the tandem acceptors, primarily based on the degree of confirmation by mRNA and EST

data, is further supported by

• the fact that GAG acceptors are very rare [182],

• our genome-wide observation that only plausible but not implausible NAGNAGs

have the same bias towards intron phase 1 as EST confirmed NAGNAGs,

• and the observed differences in the number of SNPs that affect the AGs of ancestral

plausible and implausible NAGNAGs, respectively.

The latter indicates, that the selection pressure to maintain the E acceptor for HAGGAGs

is higher than the pressure to preserve the coding sequence since destruction of the HAG

acceptor will leave a GAG that is unlikely to act as an acceptor site. In contrast, for plau-

sible HAGHAGs, destruction of either AG is much less deleterious as the other will still

function as an acceptor. Nevertheless, it represents an experimental and bioinformatics

challenge to elucidate what makes the rare cases of confirmed implausible NAGNAG

acceptors. Focusing on SNPs that affect NAGNAG acceptors, our approach for the

identification of SNPs that result in variations in alternative splicing patterns is highly

effective.

We used SNPs in NAGNAG motifs as ’knock-out experiments by nature’ to con-

firm that the disruption of a plausible NAGNAG acceptor abolishes the expression of

alternative transcripts. Then, we asked whether NAGNAG motifs created by the non-

ancestral SNP alleles allow alternative splicing or not. Usually, the introduction of an AG

anywhere in the pre-mRNA does not create a functional acceptor site since a polypyrim-

idine tract upstream and possibly enhancer sequences are required for recognition by the

spliceosome. However, we suppose that the creation of a second AG three bases up- or

downstream of an existing acceptor is very likely to result in a functional tandem acceptor

since the splice relevant sequence context is already present. Referring to the chimpanzee

genome as the reference for ancestral SNP alleles, we found EST and RT-PCR evidences

that novel plausible NAGNAGs are most likely functional. This implies that a change of

a normal acceptor to a plausible NAGNAG acceptor by a single mutation is sufficient to

enable alternative splicing. Although the mechanism of NAGNAG splicing is not under-

stood in detail, our findings argue against a general involvement of other signals than the
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NAGNAG motif itself. However, additional signals might be necessary for tissue-specific

regulation of alternative splicing at tandem acceptors [221]. We conclude that SNPs in

plausible NAGNAGs have an influence on splicing at ancestral as well as non-ancestral

NAGNAGs.

Alternative splicing is a major source of proteome diversity and is therefore relevant

as a therapeutic target [68]. The subtle effects of alternative splicing at tandem acceptors

on multiple proteins simultaneously might be of importance in the pathogenesis of com-

plex diseases. For example, four of the six genes known to cause obesity by single-gene

mutations contain NAGNAG acceptors (LEPR, POMC, PCSK1, and LEP). Further-

more, SNPs in NAGNAG acceptors might be associated with human diseases. The SNP

rs1650232 within a NAGNAG acceptor is associated with the respiratory-distress syn-

drome [241] and for the ABCA4 gene the disease relevance of a NAGNAG mutation

was demonstrated [204]. Moreover, we found that 18 of the 64 (28%) SNPs that affect

plausible NAGNAGs (see section 4.3.2) occur in known disease genes. Thus, they are

preferable candidates for more detailed functional analyses and association studies to link

alternative splicing with diseases.

4.7.5 Alternative splicing at tandem donors

Extending our analysis to the 5’ intron end, we found alternative donor usage for GTNGTN,

GTNGCN, and GCNGTN motifs in eight investigated eukaryotic species. Since only

about 1% of all GYNGYN donors are confirmed, we have to exclude that the observed

events are attributed to EST artifacts. Several lines of evidence indicate that the majority

of confirmed GYNGYN splice events are real:

• our experimental verification of six human and one mouse GTNGTN donor,

• numerous GTNGTNs are confirmed by multiple ESTs/mRNAs and for several of

these events both e and i transcripts are deposited in the RefSeq database,

• the existence of orthologous tandem donors that are confirmed in two or more species,

• confirmed GTNGTNs have a higher conservation of the exonic and intronic flanking

regions, a situation that is typical for conserved alternative splice events [76, 75],

• all of the six investigated human individuals express e and i transcripts for STAT3,

thus excluding the possibility of allele-specific instead of alternative splicing [106],

• by manual examination of all human confirmed GYNGYNs, we excluded the exis-

tence of paralogs or processed pseudogenes that could mimic alternative splicing at

a tandem donor.

The percentage of donor sites with a GYNGYN motif as well as the percentage of tandem

donors that are confirmed is very similar between the eight investigated species (tolerating

some variation probably due to differences in the number of ESTs and mRNAs). Given

the large evolutionary distance between A. thaliana, C. elegans, and H. sapiens, it is likely
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that all species that have alternatively spliced genes are able to produce e and i transcripts

at certain tandem donor sites. The detection of 44 alternatively spliced tandem donors

in A. thaliana is consistent with the recent finding that alternative splicing in plants is

not as rare as thought for a long time [242, 243].

Although only a fraction of the tandem donors is confirmed, we found features that

distinguish confirmed from unconfirmed ones. Since the non-annotated donor of uncon-

firmed tandems does not allow a sufficiently stable binding to the U1 snRNA, the other

donor is used exclusively in the splice process. For confirmed tandem donors, both sites

allow a stable binding to U1 snRNA. However, in most of the confirmed cases one donor

has a better strength and this results in its preferred usage as measured by the EST ratio

between both transcripts. The second discriminative feature is the overabundance of G

triplets in the intronic flanks of confirmed GTNGTNs, especially for introns shorter than

200 nt. This triplet is the core of many known ISE motifs [43, 219] and was demonstrated

to function in splice site definition [220]. Interestingly, in the human alpha-globin gene,

GGG elements were shown to exert their effect by binding to the nucleotides 8-10 (5’-

CCT-3’) of the U1 snRNA [219]. We have searched for overrepresented tetramers and

found a significantly higher frequency of CGGG and GGGT. Strikingly, the nucleotides

7-11 of U1 snRNA are 5’-ACCTG-3’. The CGGG as well as the GGGT motif are comple-

mentary to this part of U1, thus it is tempting to speculate that these motifs bind to U1

snRNA with four instead of three base pairs. Since CGGG and GGGT are more frequent

in the intronic flanks of confirmed tandem donors, they may be involved in alternative

splicing at these donor sites. If U1 snRNA is a critical factor, we do not expect much

variation in splicing between tissues since U1 is ubiquitously expressed in high amounts.

Consistent with this notion, the six experimentally investigated tandem donors exhibit

similar e to i transcript ratios in all tissues.
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Outlook

In the first part of this thesis, we described a novel Pfam domain based approach for

predicting exon skipping and intron retention events without using EST data. We devel-

oped an efficient algorithm to overcome the computational complexity and demonstrated

in a genome-wide application that this method yields highly reliable predictions.

As EST data is often the limiting factor in splice event discovery, it should be noted

that there are only seven species having more than one million ESTs in dbEST. Even

model organisms that have been studied for a long time can have a surprisingly low

number of ESTs, for example C. elegans has less than 350,000 ESTs. Thus, it is likely

that many splice events in these organisms remain to be detected. Noteworthy, despite

the existence of about eight million human ESTs, we were still able to predict and verify

novel human splice events, indicating that even millions of ESTs are not enough.

Furthermore, as a precondition for the accurate detection of conserved elements by

comparative genomics [244], numerous genome sequencing projects are in progress, pro-

viding additional raw genome sequences in future. It is unlikely that these genomes will be

complemented by as many ESTs and mRNAs as there are for the human genome. Thus,

the annotation of genes, transcripts, and proteins needs computational tools. Genome

browsers and databases like Ensembl or the UCSC Genome Bioinformatics Site use com-

plex pipelines to address the first step, which is the prediction of genes in genomic

sequences [98, 245]. These pipelines use information from ab initio gene prediction algo-

rithms, comparative methods, and available transcript and protein sequence data. Next,

a second pipeline can predict the entire set of transcripts. Although numerous algorithms

for ab initio gene prediction exist, approaches for ab initio splice event prediction are

rather recent developments, thus their number is small. The second pipeline, currently

mainly using EST data [246], needs to be extended by these non-EST based prediction

methods and, of course, data from available microarray experiments. Based on the pre-

dictions of this second pipeline, a third pipeline can annotate the protein sequences and

predict their function. Noteworthy, the knowledge about proteins and their function re-

quires information about the transcripts. For completeness, it should be mentioned that
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this simple three step view (set of genes → set of transcripts → set of proteins) describes

only a very rough picture, which misses many important aspects such as mRNA editing,

mRNA stability, or post-translational protein modifications.

We have shown that our splice event prediction approach is highly reliable in human.

As Pfam domains are annotated in many other species, we expect that this method also

yields reliable predictions when applied to other genomes. Furthermore, our approach

complements existing methods since our predictions have little overlap with the predic-

tions of other methods. In summary, we hope that our method will become part of a

larger set of bioinformatics approaches for non-EST based splice event prediction and

that these approaches will be routinely and successfully used in future.

In the second part of this thesis, we provide evidence that the secondary structure of

splicing factor binding sites affects the splicing process. Then, we developed a new motif

finding algorithm that integrates the additional knowledge about secondary structures

to better discriminate real from spurious protein binding sites.

Like cells use a code for translation, they have a code for (constitutive and alternative)

splicing [178]. It is of great interest to decipher this splicing code, which apparently seems

to be much harder compared to the translation code. Much experimental and computa-

tional research focuses on the characterization of regulatory splicing proteins and their

binding motifs. Often, only the sequence of a binding site but not its secondary struc-

ture context is considered. Our findings argue that the sequestration of binding sites in

double-strands can hamper or abolish binding of splicing factors, which seems to hold

for any single-stranded RNA binding protein as well [132]. This general principle has

many fascinating implications from interpreting mutagenesis experiments or the effect of

splicing relevant SNPs to potential new therapeutic ways to correct splicing defects. As

secondary structures are dynamic and small sequence changes may induce large struc-

ture changes [177], it is tempting to speculate that nature uses mRNA structural changes

to produce different splicing patterns under different conditions (such as developmental

stages or tissues) or even during evolution of species [133]. Most importantly, this mech-

anism provides another piece in the complex puzzle of the splicing code.

We demonstrated that information about secondary structures integrated in the

MEMERIS algorithm helps to identify the real binding motif. However, an evalua-

tion of MEMERIS on SELEX data for splicing factors turned out to be difficult due to

degenerate sequence motifs and an unknown location of the real binding sites in these

sequences. Thus, how useful MEMERIS is to identify binding motifs of splicing factors

awaits further investigations and experimental validations of the predicted binding sites.

Despite evidence that real binding sites have a higher single-strandedness, we do

not know in which regions mRNA is free to fold and to which extent base pairs within

the binding sites can be tolerated by the binding proteins. A better understanding of
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these points will help to make better predictions and to design better computational

approaches.

In the third part of this thesis, we focus on a barely investigated group of alternative

splice events that occur at tandem donors and acceptors. We provide strong evidences

that tandem splice sites represent an important mechanism to increase the proteome

diversity in a wide range of species. Recently, these subtle splice events have attracted

attention by several other research groups [202, 221, 227, 228, 247].

The elucidation which splice variants have functional consequences and what these

consequences are is one big area of biological research and many experimental studies ad-

dress this topic. Furthermore, computational analyses contribute to the global picture of

the diverse functions of alternative splicing. However, the subtle splice events at tandem

splice sites were often not considered in experimental as well as computational studies.

Nevertheless, few cases are known where alternative splicing at tandem splice sites re-

sult in functionally different protein isoforms. Thus, for a complete characterization of a

transcriptome, it is necessary to include these subtle splice events.

However, which of these subtle splice events play a biological role and which are due to

noise that is tolerated by cells remain challenging, since the putative effect of NAG indels

on transcripts and the effect of single amino acid indels on proteins is mostly not obvious.

Therefore, it is important to extract promising candidates for further experiments. To

this end, knowledge about conservation and tissue-specific regulation can be used. We

have identified functional gene groups that are enriched or depleted in NAGNAG accep-

tors. Further analyses are needed to refine and extend these protein regions exhibiting

over- or underrepresentation of tandem splice sites. As enrichment may indicate posi-

tive selection, these tandem splice sites may be interesting experimental candidates too.

Likewise, SNPs that create tandem acceptors in protein regions where NAGNAGs are

usually depleted may be interesting for association studies or for linking genetic variations

to phenotypic effects. Finally, we hope that our tandem splice site database TassDB will

be useful for computational and experimental studies.

As a more speculative functional impact, the model of ’cultivated noise’ [230] may ap-

ply to some tandem splice sites. We believe that it was important to shed light on tandem

donors and acceptors and that ongoing studies will provide fascinating new insights.
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Abbreviations

aa amino acid
cDNA complementary DNA
CDS protein coding sequence
CPU central processing unit
dbEST database for Expressed Sequence Tags
dbSNP database for Single Nucleotide Polymorphisms
DP dynamic programming
dsMotif double-stranded motif
ED energy difference
EF expected fraction of unpaired bases
EM expectation maximization
ESE exonic splicing enhancer
ESS exonic splicing silencer
EST expressed sequence tag
HIV human immunodeficiency virus
HMM hidden Markov model
hnRNP heterogeneous nuclear ribonucleoprotein
indel insertion/deletion
IRE iron responsive element
IRES internal ribosome entry site
ISE intronic splicing enhancer
ISS intronic splicing silencer
ML maximum likelihood
mRNA messenger RNA
NMD nonsense-mediated mRNA decay
nt nucleotides
OMIM online mendelian inheritance in man
OOPS One motif Occurrence Per Sequence model
ORF open reading frame
PDB protein data bank
peptide cassette exons an exon with a length that is a multiple of 3 nt and

that do not encode an in-frame stop codon
Pfam protein domain family
PIE polyadenylation inhibition element
pI isoelectric point
PSPM position-specific probability matrix
PTC premature termination codon
PU probability that a substring is unpaired
Rfam RNA family
RT-PCR reverse transcription polymerase chain reaction
SELEX SElection of Ligands by EXponential enrichment
SLDE stem-loop destabilizing element
SNP single nucleotide polymorphism
snRNA small nuclear RNA
snRNP small nuclear ribonucleoprotein particle
SQL structured query language
SR protein serine/arginine rich protein
ssMotif single-stranded motif
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TAR trans-activation response
TCM Two-Component Mixture model
TM transmembrane
UCSC Genome Browser University of California Santa Cruz, Genome Browser
UTR untranslated region
ZOOPS Zero or One motif Occurrence Per Sequence model

Used IUPAC nucleotide codes

B C, G, or T/U
H A, C, or T/U
R A or G
Y C or T

Statistical tests

We used the following standard statistical tests in this thesis.

• The t-test was used to compare to means.

• Fisher´s exact test was used to test independence in a 2x2 contingency table.

• The χ2 test was used to test independence in a contingency table larger than 2x2.


