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Objective: The aim of this study was to compare image quality features and lesion characteristics between a faster deep 
learning (DL) reconstructed T2-weighted (T2-w) fast spin-echo (FSE) Dixon sequence with super-resolution (T2DL) and a 
conventional T2-w FSE Dixon sequence (T2STD) for breast magnetic resonance imaging (MRI).
Materials and Methods: This prospective study was conducted between November 2022 and April 2023 using a 3T scanner. 
Both T2DL and T2STD sequences were acquired for each patient. Quantitative analysis was based on region-of-interest (ROI) 
measurements of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Qualitative analysis was performed 
independently by two radiologists using Likert scales to evaluate various image quality features, morphology, and diagnostic 
confidence for cysts and breast cancers. Reader preference between T2DL and T2STD was assessed via side-by-side comparison, 
and inter-reader reliability was also analyzed.
Results: Total of 151 women were enrolled, with 140 women (mean age: 52 ± 14 years; 85 cysts and 31 breast cancers) 
included in the final analysis. The acquisition time was 110 s ± 0 for T2DL compared to 266 s ± 0 for T2STD. SNR and CNR were 
significantly higher in T2DL (P < 0.001). T2DL was associated with higher image quality scores, reduced noise, and fewer 
artifacts (P < 0.001). All evaluated anatomical regions (breast and axilla), breast implants, and bone margins were rated 
higher in T2DL (P ≤ 0.008), except for bone marrow, which scored higher in T2STD (P < 0.001). Scores for conspicuity, sharpness/
margins, and microstructure of cysts and breast cancers were higher in T2DL (P ≤ 0.002). Diagnostic confidence for cysts was 
improved with T2DL (P < 0.001). Readers significantly preferred T2DL over T2STD in side-by-side comparisons (P < 0.001).
Conclusion: T2DL effectively corrected for SNR loss caused by accelerated image acquisition and provided a 58% reduction 
in acquisition time compared to T2STD. This led to fewer artifacts and improved overall image quality. Thus, T2DL is feasible 
and has the potential to replace conventional T2-w sequences for breast MRI examinations.
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DL reconstruction may mask small lesions [20], it is crucial 
to evaluate DL applications in detail.

The objective of this study was to evaluate whether deep 
learning reconstructed T2-weighted Dixon with super-
resolution (T2DL) improves acquisition time, quantitative 
and qualitative image quality characteristics, and diagnostic 
confidence for cysts and breast cancers.

MATERIALS AND METHODS

Study Design
This prospective, mono-institutional study was conducted 

between November 2022 and April 2023 on participants 
presenting for breast MRI for screening, follow-up, staging, or 
diagnostic clarification of results. The inclusion criteria were 
age over 18 years and no allergies to contrast agents, devices 
unsuitable for MRI, impaired renal function, or pregnancy/
lactation period. Of the 237 women offered participation, 151 
agreed and gave written informed consent before examinations 
with a standardized protocol were performed. Procedures are 
in line with the Declaration of Helsinki, were approved by 
the Institutional Review Board of the University of Freiburg 
(IRB No. EK22-1185), and are registered in the German 
Clinical Trials Register (DRKS-ID: DRKS00029550). Subsequent 
exclusion criteria included an incomplete study protocol at 
3T MRI, technical defects, and incomplete histopathological 
documentation for breast cancers. A pseudonymized design 
was used to obtain additional information in cases of proven 
malignancy, which was blinded for the readings. See study 
enrollment in Figure 1. 

MRI Acquisition Parameters
MRI was performed using a 3T scanner (MAGNETOM 

Vida, Siemens Healthcare, Erlangen, Germany) with an 
18-channel breast coil (Siemens Healthcare). Prior to 
a standard dynamic breast MRI protocol with pre- and 
three post-contrast-enhanced T1-w fast spin-echo (FSE) 
Dixon series (Gadoteridol 0.1 mL/kg body weight; Bracco 
Imaging; sequence parameters: echo time: 2.46, repetition 
time: 5.96, flip angle: 8, slice thickness: 2 mm, Matrix: 
576 x 576), a standard T2- weighted fast spin-echo Dixon 
sequence (T2STD) and a research application package of a DL-
reconstructed T2-w FSE Dixon with SR (T2DL) were acquired. 
Regular undersampling was implemented with generalized 
autocalibrating partially parallel acquisition using the 
Parallel Imaging Technique. The acceleration factors were 
4 for T2DL and 2 for T2STD. Matrix size and spatial resolution 

INTRODUCTION

Deep learning (DL) models have recently been 
introduced to assist in diagnostic and segmentation tasks, 
showing significant improvements in the image quality 
and acquisition time of T2-weighted (T2-w) magnetic 
resonance imaging (MRI) sequences [1,2]. DL-based image 
reconstruction methods have demonstrated superior image 
quality and maintained or even improved signal-to-noise 
ratio (SNR) across various sequence types, anatomical 
structures, and organ systems [3-7]. Although there is a high 
demand for breast MRI, which could be met by improvements 
in acquisition time, the use of DL reconstruction for breast 
MRI has not been well studied. 

In addition to analyzing breast lesions using contrast-
enhanced dynamic T1-w sequences, T2-w sequences provide 
valuable anatomical contrast, assist in evaluating masses, 
and can help narrow the differential diagnosis. T2-w 
imaging can improve the specificity of breast MRI, reducing 
the risk of false positives [8]. Breast MRI performed at 
3T field strength is superior to 1.5T in terms of faster 
acquisition and higher SNR, enhancing the visualization of 
morphological features [9]. The main technical issue of B0 
field inhomogeneities at 3T when using conventional fat 
saturation can be addressed using the Dixon method, which 
offers uniform fat suppression [10]. The Dixon method has 
the advantage of simultaneously obtaining fluid- and fat-
sensitive sequences, which can increase specificity for 
detecting fat-containing masses, such as fibroadenomas, fat 
necrosis, and lymph nodes [11]. Despite the disadvantages 
of swapping artifacts [12] and longer acquisition times 
associated with the Dixon technique [13], T2-w Dixon 
sequences have demonstrated superior fat suppression 
compared to standard spectral fat suppression techniques 
in breast imaging [12,14], and have been integrated into 
abbreviated protocols [15,16].

Acquisition times can be reduced by parallel imaging, 
compressed sensing (CS), or interpolation techniques 
[17]. DL-based image reconstruction has been shown to 
compensate for the lower SNR caused by parallel imaging 
techniques, achieved by undersampling k-space data, which 
allows for fewer iterations and thus faster acquisition [18]. 
The combination of a DL-reconstructed T2-w Dixon sequence 
using iterative denoising [19] and super-resolution (SR) 
networks [1] is promising. Given that T2-w imaging is 
associated with relatively long acquisition times, further 
optimization could improve the efficiency of breast MRI. As 
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differed (T2DL: 305 x 576, 0.3 x 0.3 x 3.0 mm3 (interpolated) 
vs. T2STD: 576 x 576, 0.6 x 0.6 x 3.0 mm3). Changes in phase 
oversampling (T2DL: 75%, T2STD: 30%) and phase resolution 
(T2DL: 100%, T2STD: 53%) were applied to accelerate the DL 
sequence. All other sequence parameters were set identically 
(Table 1). 

DL-Based Image Reconstruction
The employed DL-based image reconstruction comprised two 

sequential, separate processing steps, both trained on clinical 
1.5T and 3T scanners (MAGNETOM, Siemens Healthcare). 
First, images were reconstructed from k-space data using an 
architecture inspired by variational networks [18,21]. The 
model received undersampled k-space data as well as coil 
sensitivity maps estimated from calibration scans as input. 
It then generated an image through multiple iterations that 
alternated between data consistency updates and hierarchical 
down-up networks for image regularization. The architecture 
was implemented offline and trained in a supervised manner 
using approximately 25000 fully sampled images acquired 
with different contrasts in various body regions.

In the second step, the obtained images were interpolated 
using a DL-based SR algorithm based on a residual dense 
network [21]. The algorithm performed an initial upsampling 

by a factor of two in both image dimensions in-plane and 
was trained in a supervised manner using approximately 
14000 images acquired with different contrasts in different 
body regions. After the DL-based SR, the obtained images 
were finally interpolated to the target resolution using 
conventional sinc-interpolation. For both processing steps, 
the determined network parameters were exported and 
integrated into a research application for prospective use in 
the scanner’s reconstruction pipeline.

Quantitative Image Analysis
For quantitative image analysis, region-of-interest (ROI) 

were placed by a radiologist (C.W.; 6 years’ experience in 
breast imaging) in breast tissue, fat tissue, and air using 
in-house developed image analysis software (https://www.
nora-imaging.com), allowing placement of ROI in the exact 
same locations in the spatially co-registered T2DL sequence. 
SNR was calculated using the following equation: 

SNRBreast tissue = Mean SIBreast tissue/SDAir and
SNRFat tissue = Mean SIFat tissue/SDAir.
In addition, the contrast-to-noise ratio (CNR) in breast 

cancers was calculated using the following formula: 
CNRBreast cancers =
‌�|MeanSISurrounding breast tissue - MeanSIBreast cancers|/SDAir.

Excluded

Excluded

Excluded

T2DL and dynamic 3T breast MRI with T2STD (n = 151)

  • Incomplete/defect examination (n = 9)

  • Low contrast of contrast medium (n = 1) 
  • Incomplete aquisition of the breast (n = 1)

  • ‌�Tumorsize to small for 
measurement (n = 5)

Image quality analysis (n = 140)

Image quality, 
image noise, 
motion and 

other artifacts 
(n = 140)

Breast 
implants 
(n = 14)

Participants with 
histologically proven 

breast cancer 
(n = 36 IBC)

Cysts 
(n = 85)

Inclusion of 
n = 31 breast 

cancers

Visible lesions (n = 121 lesions)

Breast parenchyma, contrast 
between fat and breast 

tissue, Cooper’s ligaments, 
cutis, nipple, axilla, 

pectoralis muscle, lymph 
nodes, bone margins, 

bone marrow (n = 140)

Fig. 1. Flowchart depicting patient inclusion and allocation to subgroups for the analysis. T2DL = deep learning reconstructed T2-weighted 
fast spin-echo Dixon sequence with super-resolution, T2STD = standard T2-weighted fast spin-echo Dixon sequence, IBC = invase breast cancer

https://www.nora-imaging.com
https://www.nora-imaging.com
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Qualitative Image Analysis
To assess qualitative image quality, in-phase and water-

images of the T2-w Dixon sequences (T2DL, T2STD) were 
independently rated by two radiologists with 6 (C.W.) and 
12 years (J.N.) of experience in breast imaging. T2STD and 
T2DL were shown in direct intra-individual comparison in 
random order on diagnostic monitors in a blinded fashion. 
Image noise, motion, and other artifacts were assessed 
using Likert scales ranging from 1 (none), 2 (minimal), 
3 (moderate) to 4 (very strong). Reading scores of 1 and 
2 were considered sufficient for clinical use. Readers also 
independently assessed, using Likert scales ranging from 
1 (non-diagnostic), 2 (poor), 3 (moderate), 4 (good), to 
5 (excellent), overall image quality; visibility of breast 
parenchyma; contrast between breast tissue and fat; 
sharpness of Cooper’s ligaments, cutis, nipple, pectoralis 
muscle, breast implants (if applicable), axilla, lymph nodes, 
bone margins, and bone marrow; as well as conspicuity, 
sharpness/margins, and microstructure of cysts and breast 
cancers. Reading scores of 4 and 5 were considered sufficient 

for clinical use. The degree of suspicion for malignancy was 
also recorded for breast cancers, ranging from 1 (no), 2 
(unlikely), 3 (possible), 4 (probable), to 5 (almost certain). 
Cysts were defined by a strong and homogenous T2w-
hyperintense signal with sharp margins. In the case of 
multiple cysts, only the largest cyst was analyzed.

To evaluate readers’ preferences for the sequence type, a 
split view was selected on a diagnostic monitor, and both 
sequences of each participant (T2DL, T2STD) were presented 
side-by-side in a blinded and randomized order, so that 
readers did not know which sequence was presented on the 
left or right of the split view. 

Statistical Analysis
Normal distribution was tested using the Shapiro-Wilk 

test. Continuous data are presented as means ± standard 
deviations (SD) for normally distributed data and median ± 
interquartile ranges (IQR) for non-normally distributed data, 
unless otherwise stated. Paired samples t-test and Wilcoxon 
Signed-Rank tests were used to test for differences. Chi-
square test was used to compare readers’ preferences 
in side-by-side comparisons. Inter-reader reliability 
analysis was performed using weighted Cohen’s Kappa (κ). 
Agreement was interpreted according to the definition by 
Landis and Koch [22]. Statistical analyses were performed 
using SPSS 29.0 (IBM Corp., Armonk, NY, USA). Two-sided 
P-values of <0.05 were considered statistically significant. 

RESULTS

Study Cohort
Of the 237 participants who were offered participation 

in the study, 151 women agreed to participate and gave 
written informed consent prior to the examination. Eleven 
participants were excluded from the analysis: nine due to 
incomplete MRI scans, one due to a technical coil failure, 
and one due to incomplete breast coverage. The final cohort 
consisted of 140 women with a mean age ± SD of 52 ± 
14 years. A total of 140 MRI examinations were analyzed 
for image quality features. Eighty-five cysts and 31 breast 
cancers were analyzed by the readers. The average size of 
cysts was 0.9 ± 0.9 cm (range: 0.2–4.4 cm). Five patients 
were excluded from the breast cancer analysis because the 
tumors were too small for sufficient measurements, defined 
as diameters less than 3 mm or due to locations close to a 
marker clip with susceptibility artifacts. The average size of 
breast cancers was 2.8 ± 2.2 cm (range: 0.3–9.0 cm). See 

Table 1. Acquisition parameters of the deep learning T2DL and the 
conventional T2STD in comparison

Characteristic  T2DL T2STD 
FOV, mm2 340 x 340
Matrix size 305 x 576 576 x 576
Number of slices     55
Slice thickness, mm       3
Resolution, mm3 0.3 (i) x 0.3 (i) x 3.0 0.6 x 0.6 x 3.0 
TR, ms 6000
TE, ms   101
Flip angle, °   151
Phase oversampling, % 75   30
Phase resolution, % 53 100
Fat saturation technique Dixon
Turbo factor     19
Echo trains per slice   8   21
Averages       1
Concatenations       2
Acceleration factor   4     2
Reconstruction Deep learning 

unrolled network
GRAPPA

Interpolation mode Deep learning super-
resolution network

None

Acquisition time, s 110 266

T2DL = deep learning reconstructed T2-weighted fast spin-echo 
Dixon sequence with super resolution, T2STD = standard T2-
weighted fast spin-echo Dixon sequence, FOV = field of view, 
(i) = interpolated, TR = repetition time, TE = echo time, GRAPPA = 
generalized autocalibrating partially parallel acquisition
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Figure 1 for a description of the study cohort and Table 2 
for detailed tumor characteristics.

Acquisition Time
With a 58% reduction, the acquisition time of T2DL was 

significantly shorter compared to T2STD (T2DL: 110 s ± 0 vs. 
T2STD: 266 s ± 0), corresponding to a potential saving of 156 
seconds in T2DL (Fig. 2).

Quantitative Image Analysis
The SNR of breast and fat tissue in T2DL was significantly 

higher compared to T2STD (P < 0.001). Breast cancers 
showed significantly higher mean CNR in T2DL compared to 
T2STD (P < 0.001) (Table 3, Fig. 3).

Qualitative Image Analysis
T2DL was superior to T2STD in terms of image noise, 

artifacts, and overall image quality (P < 0.001) (Table 4, 
Fig. 4, Supplementary Fig. 1). T2DL was superior to T2STD 
for all anatomical structures (P ≤ 0.008) except for bone 
marrow, for which both readers reported lower scores 
for T2DL compared to T2STD (P < 0.001). Further details, 
including κ values and examples, are provided in Table 4 
and Figure 4.

Conspicuity, sharpness, and microstructure of cysts were 
rated significantly higher in T2DL compared to T2STD (P < 
0.001) (Table 4). Diagnostic confidence in the assessment 
of cysts was also rated significantly higher in T2DL compared 
to T2STD (P < 0.001) (Table 4, Fig. 5, Supplementary Fig. 2A).

Breast cancers showed significantly higher scores in 
T2DL compared to T2STD for conspicuity, margins, and 
microstructure (P ≤ 0.002) (Table 4). Diagnostic confidence 

Table 2. Patient and lesion characteristics

Characteristic Data

Patient (n = 140)

Age, yrs 52 ± 14 (range, 24–82) 

Total number of included participants 140

Reason for examination

Diagnostic confirmation 30/140

Screening 21/140

High risk screening 51/140

Staging 32/140

Follow-up   6/140

Menopausal status

Premenopausal 58/140

Postmenopausal 82/140

Breast density

A (almost entirely fatty) 10/140

B (scattered fibroglandular tissue) 31/140

C (heterogeneously dense tissue) 48/140

D (extremely dense tissue) 41/140

Silicone implants 14/140 
(unilateral: 10, bilateral: 4)

Breast cancer (n = 31)

Histopathological finding

NST (no special type)   20/31

NST + DCIS   4/31

DCIS   1/31

Lobular cancer   3/31

Mucinous cancer   1/31

Inflammatory cancer   1/31

Sarcoma   1/31

TNM (8th ed), T

pTis   1/31

cT1   17/31

cT2   9/31

cT3   2/31

cT4   2/31

Histologic grade

G1   2/31  

G2 18/31

G3 11/31

TNM (8th ed), N

N0 26/31

N1   5/31

TNM (8th ed), M

M0 28/31

M1   3/31

Esterogene receptor

Positive 19/31

Negative 12/31

Table 2. Patient and lesion characteristics (continued)

Characteristic Data
Progesterone receptor

Positive 18/31
Negative 13/31

HER2
Positive   9/31
Negative 22/31

Ki-67
<10%   4/31
>10% 27/31

Data are given in number of participants or mean ± standard 
deviation values.
NST = no special type, DCIS = ductal carcinoma in situ, pTis = 
ductal carcinoma in situ without invasive carcinoma, HER2 = 
human epidermal receptor, Ki-67 = proliferation index
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for breast cancers was significantly higher for T2DL only for 
reader 2 (P = 0.031). Further details and examples are given 
in Table 4, Supplementary Figure 2B, and Figure 6. A sub-
analysis of small lesions (≤1 cm) showed consistent results 
(Supplementary Tables 1, 2).

When the readers compared both sequences side by side, 
both perceived significantly better overall image quality in 
T2DL compared to T2STD (reader 1: 130/140 cases, reader 2: 
137/140 cases; both P < 0.001). In only a few cases (reader 
1: 10/140; reader 2: 3/140), there was no noticeable 
difference in image quality between the two sequence 
types, or T2STD was preferred (Figs. 4-6).

DISCUSSION

In this prospective study, our results indicate that T2DL for 
breast MRI substantially accelerated acquisition time while 
improving SNR, CNR of breast cancers, and image quality 
compared to T2STD. We also observed fewer motion artifacts, 
less image noise, and improved lesion conspicuity, visibility 
of microstructure, and increased edge sharpness in cysts and 
breast cancers. Diagnostic confidence in T2DL increased for 
cysts and remained the same for breast cancers, with no loss 
of morphological information. These findings support the 
feasibility of DL reconstruction for routine clinical practice.

Our study demonstrates that applying DL networks, in 
combination with modified sequence parameters and parallel 

Fig. 2. Sequences and networks. Utilized T2-w MRI sequences and reconstruction workflow. Illustration of the sequences and DL networks 
used in the study. The upper box demonstrates the DL-reconstructed T2DL, resulting in an interpolated spatial resolution of 0.3 x 0.3 x 3 mm3 
after the two DL networks (denoising network [1, yellow] and the super-resolution network [2, turquoise] are applied to the k-space data. 
The lower box shows the conventional T2-w Dixon sequence (T2STD) with a spatial resolution of 0.6 x 0.6 x 3.0 mm3. T2-w = T2-weighted, 
DL = deep learning, T2DL = deep learning reconstructed T2-weighted Dixon with super-resolution, T2STD = standard T2-weighted fast spin-echo 
Dixon sequence, PI = parallel imaging, GRAPPA = generalized autocalibrating partially parallel acquisition

Table 3. SNR and CNR

T2DL T2STD
P

Mean SD Mean SD
SNR breast tissue (n = 140)   50.9 26.1 40.1 19.5 <0.001
SNR fat tissue (n = 140) 155.6 51.3 113.5 36.1 <0.001
CNR breast cancers (n = 31)   99.1 52.7 65.9 33.2 <0.001

SNR = signal-to-noise ratio, CNR = contrast-to-noise ratio, T2DL = deep learning reconstructed T2-weighted Dixon with super-resolution, 
T2STD = standard T2-weighted fast spin-echo Dixon sequence, SD = standard deviation
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imaging techniques, improved image quality while reducing 
acquisition time by 58%. Our results align with studies 
reporting shorter acquisition times for DL T2-w FSE of the 
breast [1], spine [23], or prostate MRI [3,4]. Even though the 
Dixon method has a longer examination time than standard 
T2w sequences [13], the acquisition of four contrasts offers 
diagnostic advantages, and the Dixon technique allows 
improved fat suppression in 3T breast MRI [12].

Motion and other artifacts occurred less frequently in 
T2DL. This finding is significant, as motion artifacts are the 
most common, occurring in up to 16% of cases due to the 
long repetition time of T2-w sequences [24] and are a major 
cause of reduced image quality [25]. Shorter scan times 
can effectively reduce motion artifacts. Although evidence 
on the influence of DL networks on motion artifacts in 
breast imaging is lacking, this effect has been reported 
for a combination of DL and CS [26]. Similar to our study, 
Bischoff et al. [26] applied a denoising and upscaling DL 
reconstruction to standard T2-w FSE, low-resolution T2-w 
FSE, and low-resolution CS T2-w FSE, and found significantly 
improved image sharpness with reduced artifacts, including 
motion, ringing, partial volume, and susceptibility artifacts. 
The effect of faster acquisition time leading to fewer motion 
artifacts is expected to be similar for DL-reconstructed 
images. This is further supported by a study on DL 
reconstructions of the shoulder, which reported reduced 
motion artifacts [27]. Faster acquisition may especially 
improve image quality in patients with movement associated 
with pain or non-compliance.

Allen et al. [1] reported significantly improved SNR, 
sharpness, and image quality for DL-reconstructed T2-w 
breast MRI. They compared standard and high-resolution 
T2-w sequences with their DL-reconstructed versions. Similar 
to our results, SNR and CNR were improved through the 
application of DL networks. This aligns with studies that 
reported no loss of SNR with DL reconstructions for MRI of 
the prostate [28] and brain [29] or improved SNR for the 
prostate [30] and abdomen [31]. Thus, DL reconstructions 
help compensate for the limitations of parallel imaging, 
which usually only applies up to factors between 2 and 
4 without a loss of SNR proportional to the square root 
of acceleration [32]. Our findings corroborate that the 
loss of SNR caused by higher acceleration factors can 
effectively be compensated by the denoising effects of DL 
networks [3,4]. Additionally, breast cancers presented with 
improved SNR and CNR, which is relevant for morphological 
structures. A study in women with breast cancer combined 
DL reconstruction with CS at 3T MRI and also found an 
additional gain in CNR and image quality scores compared to 
conventional T2-w FSE [1].

Despite the similarities between studies, comparisons 
can only be estimative due to differing sequences, settings, 
and organ systems. Notably, aside from one study on a 
combination of CS and DL in T2-w FSE [33] and one study on 
a T2-w FSE [1], no comparable studies exist on breast MRI 
using DL reconstructions on T2-w FSE Dixon sequences. 

Regarding overall improved image quality, our results in 
the qualitative analysis align with studies reporting improved 

     T2DL

     T2STD

     T2DL

     T2STD

        T2DL

        T2STD

180

160

140

120

100

80

60

40

20

0

400

350

300

250

200

150

100

50

0

300

250

200

150

100

50

0

SN
R

SN
R

CN
R 

in
 b

re
as

t 
ca

nc
er

s

SNR breast tissue SNR fat tissue CNR breast cancers

*
* *

Fig. 3. Quantitative image quality analysis of breast tissue, fat tissue, and breast cancer. SNR of breast tissue and fat tissue, and CNR of 
breast cancers for conventional T2 Dixon (T2STD) and T2DL. T2DL showed significantly higher SNR for breast and fat tissue as well as higher 
CNR in breast cancers. *Indicates statistically significant differences between both sequence types for each category, P < 0.001. SNR = 
signal-to-noise ratio, CNR = contrast-to-noise ratio, T2STD = standard T2-weighted fast spin-echo Dixon sequence, T2DL = deep learning 
reconstructed T2-weighted Dixon with super-resolution



36

Wilpert et al.

https://doi.org/10.3348/kjr.2023.1303 kjronline.org

image quality scores [1,33]. Other studies on breast MRI have 
focused on diffusion-weighted imaging [34-36], with only 
two examining standard T2-w imaging [1]. Far more studies 
have investigated other organ systems, finding improved 
image quality characteristics of DL-reconstructed sequences 
across various networks (denoising alone, SR alone, and 
combined denoising and SR). This has been demonstrated for 
T2-w imaging in the pancreas [37], musculoskeletal system 

[38], prostate [26,39], and brain [40]. For T2-w imaging 
with DL reconstruction of the female pelvis in 3T MRI, reader 
preference and image quality were proven non-inferior 
compared to the standard T2-w turbo spin echo sequence [41]. 
Moreover, sequence interchangeability has been demonstrated 
for cervical and lumbar spine MRI features [23,42]. Compared 
to other studies, ours included different anatomical regions 
of the breast and axilla, along with numerous features 

Table 4. Qualitative analysis of image quality

T2DL T2STD P 

R1 median 
(IQR)

R2 median 
(IQR)

Cohen’s
κ (R1, R2)

R1 median 
(IQR)

R2 median 
(IQR)

Cohen’s
κ (R1, R2)

R1
P (T2DL vs. 

T2STD)

R2 
P (T2DL vs. 

T2STD)

Image quality features (n = 140)
Image noise 1 (1-1) 1 (1-1) 0.421 2 (2-2) 2 (2-2) 0.481 <0.001 <0.001
Motion artifacts 1 (1-2) 1 (1-2) 0.512 2 (1-2) 2 (1-3) 0.621 <0.001 <0.001
Other artifacts 1 (1-1) 1 (1-1) 0.455 2 (2-2) 2 (2-2) 0.487 <0.001 <0.001
Overall image quality 5 (5-5) 5 (5-5) 0.492 4 (4-4) 4 (4-4) 0.558 <0.001 <0.001

Anatomical structures and implant (n = 140)
Visibility of breast parenchyma 5 (5-5) 5 (5-5) 0.691 4 (4-4) 4 (4-4) 0.522 <0.001 <0.001
Contrast between breast tissue and fat 5 (4-5) 5 (5-5) 0.348 5 (4-5) 5 (4-5) 0.461 <0.001 <0.001
Sharpness of Cooper’s ligaments 5 (5-5) 5 (5-5) 0.288 4 (4-4) 4 (4-4) 0.502 <0.001 <0.001
Sharpness of cutis 5 (5-5) 5 (5-5) 0.205 4 (4-4) 4 (4-4) 0.627 <0.001 <0.001
Sharpness of nipple 5 (5-5) 5 (5-5) 0.205 4 (4-4) 4 (4-4) 0.653 <0.001 <0.001
Sharpness of pectoralis muscle 5 (5-5) 5 (5-5) 0.133 4 (4-4) 4 (4-4) 0.495 <0.001 <0.001
Sharpness of breast implants 5 (5-5) 5 (5-5) 0.874 4 (4-4) 4 (4-4) 0.965   0.008   0.008
Sharpness of axilla 5 (5-5) 5 (5-5) 0.374 4 (4-4) 4 (4-4) 0.521 <0.001 <0.001
Sharpness of lymph nodes 5 (5-5) 5 (5-5) 0.209 4 (4-4) 4 (4-4) 0.472 <0.001 <0.001
Sharpness of bone margins 5 (5-5) 5 (5-5) 0.195 4 (4-4) 4 (4-4) 0.333 <0.001 <0.001
Sharpness of bone marrow 4 (4-4) 4 (4-4) 0.180 5 (5-5) 5 (5-5) 0.417 <0.001 <0.001

Cysts (n = 85)
Conspicuity 5 (5-5) 5 (5-5) 0.491 5 (5-5) 4 (4-4) 0.613 <0.001 <0.001
Sharpness 5 (5-5) 5 (5-5) 0.641 4 (4-4) 4 (4-4) 0.650 <0.001 <0.001
Microstructure 5 (5-5) 5 (5-5) 0.414 4 (4-4) 4 (4-4) 0.554 <0.001 <0.001
Diagnostic confidence 5 (5-5) 5 (5-5) 0.851 5 (5-5) 5 (4-5) 0.457 <0.001 <0.001

Breast cancers (n = 31)
Conspicuity 5 (4-5) 5 (3-5) 0.918 4 (3-4) 4 (3-5) 0.808 <0.001   0.002
Margins 5 (4-5) 5 (4-5) 0.889 4 (3-4) 4 (3-4) 0.837 <0.001 <0.001
Microstructure 5 (3-5) 5 (4-5) 0.853 4 (3-4) 4 (2-4) 0.690 <0.001 <0.001
Diagnostic confidence 5 (3-5) 5 (3-5) 0.795 4 (3-5) 5 (3-5) 0.754   0.160   0.031
Suspicion for malignancy 5 (3-5) 5 (4-5) 0.726 5 (3-5) 5 (3-5) 0.746   0.125   0.500

Note that for image noise and motion and other artifacts, Likert scales ranged from 1 (none), 2 (minimal), 3 (moderate) to 4 (very 
strong) with reading scores of 1 and 2 considered sufficient for clinical use. The rate for malignancy for breast cancers was rated 
according to the following scale: 1 (no), 2 (unlikely), 3 (possible), 4 (probable), 5 (almost certain). For all other items Likert scales 
ranged from 1 (non-diagnostic), 2 (poor), 3 (moderate), 4 (good) to 5 (excellent), and reading scores of 4 and 5 were considered 
sufficient for clinical use. Data are given median with IQR in parenthesis. Interreader-reliability is specified in Cohen’s κ. κ ≤ 0.20 
corresponds to slight, 0.20 < κ ≤ 0.40 to fair, 0.40 < κ ≤ 0.60 to moderate, 0.60 < κ ≤ 0.80 to substantial, and 0.80 < κ ≤ 1.00 to almost 
perfect agreement between readers. Two-sided P-values were applied. 
IQR = interquartile range, T2DL = deep learning reconstructed T2-weighted Dixon with super-resolution, T2STD = standard T2-weighted fast 
spin-echo Dixon sequence, R1 = reader 1, R2 = reader 2
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Fig. 4. Comparisons of image quality in deep learning reconstructed and standard breast MRI. The figure shows axial planes of the T2DL 
on the left in comparison to the T2STD on the right side for different anatomical regions and structures. Note the significantly improved 
image quality of anatomical structures and findings. The upper row shows a lymph node metastasis on the left and a benign lymph node 
on the right, each with improved sharpness in T2DL. Motion artifacts (pink arrows) are more prominent in the T2STD sequence. The yellow 
star demonstrates stronger noise in silicone implants in T2STD compared to T2DL. Sharpness of the nipples (blue arrows), cutis (violet 
arrows), and Cooper’s ligaments (blue arrows, lower row) is improved in T2DL. Notably, opposite results are seen for bone marrow (orange 
arrows), with sharper delineation of bone marrow structures in T2STD compared to improved sharpness of bone margins in T2DL. T2DL = deep 
learning reconstructed T2-weighted Dixon with super-resolution, T2STD = standard T2-weighted fast spin-echo Dixon sequence
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such as the visibility of breast implants, allowing a precise 
evaluation of image quality in specific examination areas 
after applying DL networks. The improved scores in T2DL could 
result from edge-enhancing effects from the SR network and 
the doubled spatial resolution after acquiring only half the 
spatial resolution. The resulting higher SNR is smoothed 
by denoising effects, leading to an overall improved image 
quality. As no additional artifacts were reported, a cumulative 

positive effect of combining both networks is assumed.
However, we observed inferior results for bone marrow 

in T2DL. We suspect that the smoothing effects of SR 
reconstruction are responsible, as the heterogeneous 
structure of active bone marrow may be more susceptible 
to loss of structural details. It is difficult to draw causal 
inferences, so it remains unclear whether bone marrow is 
more susceptible to distortion in DL reconstructions than 

Fig. 5. Comparisons of image quality of DL reconstructed T2-w images and standard T2-w images with visible cysts including in-phase 
and water-images. The figure shows axial planes of T2DL on the left and T2STD on the right side, showing a lobulated cyst in the upper row 
and a simple cyst in the lower rows, including comparisons between in-phase and water images of the T2-w Dixon sequence. Note the 
increased sharpness of cysts in all DL reconstructed images. DL = deep learning, T2-w = T2-weighted, T2DL = deep learning reconstructed 
T2-weighted Dixon with super-resolution, T2STD = standard T2-weighted fast spin-echo Dixon sequence
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other anatomical structures. Consequently, T2DL might 
not be robust for supplementary assessment of bone 
marrow pathologies in breast MRI. Similar observations 
were reported in a study on the lumbar spine [2], but 
further studies focused on musculoskeletal applications of 
algorithms may be warranted.

The qualitative analysis showed that cysts were rated 
higher on T2DL for conspicuity, sharpness, microstructure, 
and diagnostic confidence. Our results are similar to 
those of Allen et al. [1], who evaluated DL T2-w FSE on 
3T breast MRI and found improved sharpness for cysts 
and anatomical structures. Breast cancers also had higher 
quality scores in T2DL in our study, though the degree of 

superior ratings and data dispersion was lower, particularly 
for conspicuity compared to cysts. This can be explained by 
the lower signal intensity and contrast of cancers in T2-w 
imaging compared to the very high signal of cysts. While 
an increase in detection rates was not expected, improved 
sharpness and microstructure could prove helpful for further 
lesion analysis, such as characterizing septa or irregularly 
shaped lesions, and likely explain the improved diagnostic 
confidence for cysts observed in T2DL. It is noteworthy that 
the sub-analysis of small lesions was robust only for cystic 
lesions (n = 56). In contrast, only a few breast cancers had 
diameters ≤1 cm (n = 3), which did not allow for sufficient 
statistical analysis. As small cysts did not significantly 

Fig. 6. Comparisons of image quality in deep learning reconstructed T2-w images and standard T2-w breast MRI in cases with visible 
masses and non-mass enhancement. The figure shows axial planes of the T2DL on the left and the T2STD on the right side for invasive 
breast cancer in the upper row (pink arrows), for invasive breast cancer (blue arrows, left breast) and a cyst (green arrowheads, right 
breast) in one patient in the middle row, and for DCIS (yellow bidirectional arrows) and a clip marker (blue ring) in the lower row. 
Subtraction images from the dynamic scan and T1-w images are also shown for the case in the upper and lower rows to demonstrate 
the findings in more detail. Note the increased sharpness of anatomical structures, cysts, and breast cancers in all images. T2-w = T2-
weighted, T2DL = deep learning reconstructed T2-weighted Dixon with super-resolution, T2STD = standard T2-weighted Dixon, DCIS = ductal 
carcinoma in situ, T1-w = T1-weighted, Sub = subtraction image from the first post-contrast dynamic scan
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affect the qualitative analysis scores, this underscores the 
value of improved image quality for small lesions.

Our results suggest the application of T2DL in clinical 
practice. In times of limited scanner availability, both time- 
and cost-effectiveness are increasingly important to meet 
the growing demand for breast MRI [43-45]. A study by Kim 
et al. [28] evaluated even further acceleration with a time 
reduction of up to 76%, finding that SNR did not differ 
between the most accelerated low-resolution DL sequence 
(52 s) and the conventional sequence (212 s), while 
contrast was higher in the conventional T2-w sequence [28]. 
As an outlook, a large reduction in acquisition time for 
T2-w could be useful for personalized abbreviated protocols 
[16,46]. Further sequence development and studies are 
needed to determine whether T2-w signal can be preserved 
after massive acquisition time reductions.

Limitations of this study include that it was performed 
only on a 3T scanner. The use of CS or simultaneous multi-
slice techniques was not implemented, though there is 
evidence that these can further improve image quality [33]. 
The DL networks were not analyzed separately to investigate 
the effects of the denoising and SR networks independently. 
This may make it difficult to attribute specific effects to 
each network. The reduced scan time of T2DL is not solely 
due to the acceleration of the parallel imaging technique 
and was partly due to increasing phase oversampling, 
reducing phase resolution, and shortening echo trains per 
slice. Additionally, T1-w images were not evaluated in this 
protocol, as it was not part of the study design. Regarding 
the qualitative analysis, the edge-sharpening effect in T2DL 
may have led to a learning effect in the readers, which could 
have influenced the results. Only a small number of breast 
cancers (n = 31) and no benign masses were analyzed, which 
may not represent the wide range of tumor morphologies. 
Furthermore, this study was exploratory, with no adjustment 
for multiple comparisons or clinically meaningful effect 
sizes. We provide preliminary data that need to be replicated 
in future studies.

In conclusion, this prospective comparative study 
demonstrates the potential of a DL-reconstructed T2-w 
Dixon sequence to replace the commonly used T2-w 
sequence in breast MRI. With benefits of 58% faster 
acquisition time, improved image quality, reduced motion 
artifacts, and better diagnostic confidence regarding cysts 
and breast cancers, the applied DL reconstruction is feasible 
for clinical application. It could increase patient comfort 
and address the time- and cost-effectiveness of breast MRI. 
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