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Supplementary Methods 

 

Additional gene-based test 

As sensitivity analyses, we performed burden tests using a LoF mask, containing only high-

confidence loss-of-function variants, for all significant gene-metabolite associations detected 

across matrices and masks in the main analyses. Moreover, SKAT and SKAT-O tests as 

implemented in the seqMeta R-package version 1.6.71 were carried out. Results from these 

sensitivity analyses are included in Supplementary Table 4. 

 

Stratified analyses 

Further sensitivity analyses evaluated the presence of differences for the significant 

associations identified in all main analyses across strata of sex and eGFR (≤/>45 

ml/min/1.73m2). Burden tests as implemented in the seqMeta R-package version 1.6.71 were 

calculated for both masks within each stratum, including the same covariates as in the main 

analyses with the exception of the variable that was used for stratification. Differences 

between effect sizes across strata were assessed based on the test statistic Z = (beta1 - 

beta2)/(SE(beta1)2 + SE(beta2)2)1/2, with beta1 and beta2 indicating the effect sizes in each 

stratum and SE(beta1) and SE(beta2) their standard errors2. The test statistic Z follows 

approximately a standard normal distribution for large samples, based on which two-sided P-

values were computed. Significant differences between effect sizes were defined as P-value 

<0.05/128 for plasma and P-value <0.05/107 for urine, correcting for the number of tested 

associations. 
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Comparison to previous association studies 

We compared our significant findings to the findings from eight published genetic studies of 

the plasma/serum or urine metabolome that focused on rare exonic variant aggregation 

testing and used sequencing and high-throughput metabolomics data3–10. More information 

on the metabolomics platform, cohort, statistical tests, masks, aggregation units, 

transformation, covariates, and significance thresholds used in these previous studies can be 

found in the footnote of Supplementary Table 6.  

We first assessed whether the genes identified in our study were reported as 

associated with any metabolite in any of the eight studies at their respective multiple-testing 

corrected significance threshold, after having mapped all gene names to their current version 

in Ensembl version 109 using https://www.ensembl.org/biomart/martview. We then 

ascertained for all matching i.e., previously reported genes whether they were associated 

with the same metabolite(s) as in our study. Metabolites were matched by biochemical name, 

with manual curation in case of similar names, and by HMDB ID and Compound ID for 

metabolites quantified at Metabolon, if available. To quantify the proportion of novel gene-

metabolite associations that involve metabolites analyzed in a previous study, we focused on 

studies with MS-based quantification of plasma/serum metabolites with the same 

technology3,5,6,10 to enable exact metabolite matching by biochemical name, HMDB ID, and 

Compound ID. We thereby compared all previously reported results from the analysis of rare 

exonic variants, both at the aggregation level as well as at the single-variant level. There were 

no previous independent studies of sequence-based rare variants and their associations with 

urine metabolites. Among the selected plasma/serum studies, only Bomba and colleagues3 

made summary statistics for aggregated variants available above their chosen significance 

threshold, i.e., at less significant levels. For all QVs and genes involved in significant 
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associations in our study, we extracted the summary statistics for the corresponding 

metabolite and variant or window and compared effect sizes. We focused on summary 

statistics from the burden test and the variable threshold (VT) test because of the closest 

similarity to our approach. For each significant gene-metabolite pair, we compared the GCKD 

effect size to the one for the window, the test, and the mask (LOF, MLOF, CODING) with the 

lowest P-value in Bomba et al3. 

The presence of common variants associated with the corresponding metabolite(s) in 

or near the identified genes was assessed by searching for common variants (MAF >1%) within 

a window of ±500 kb around the gene that were significantly (P-value <5e-8) associated with 

the implicated metabolite. Common variant associations were based on GWAS of inverse 

normal transformed metabolite levels in the GCKD study (N = 4,991 for plasma, N = 4,911 for 

urine) performed with REGENIE v2.2.411 under additive modeling, using array-based and 

TOPmed imputed genotypes with high imputation quality and adjusting for age, sex, and the 

first three genetic principal components12. Gene positions were based on Ensembl version 

101. Conditional analyses were performed to assess the influence of common variants on 

gene-based rare variant association signals, for all 157 gene-metabolite associations across 

plasma and urine that contained an associated common variant within the gene region. We 

repeated the burden tests using the same masks, additionally adjusting for genotypes at the 

common variant. Differences between effect sizes without and with conditioning on common 

variants were assessed based on the test statistic Z (see paragraph above). Significant 

differences between effect sizes were defined as P-value <0.05/157. 
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Whole-body modeling 

The implicated genes’ loss-of-function were investigated in virtual IEMs generated through 

organ-resolved sex-specific whole-body models (WBMs) based on the Virtual Metabolic 

Human database (VMH)13 using a constraint-based modeling and reconstruction analysis 

(COBRA) approach9. Mapping the gene-metabolite pairs significant in the exome-wide 

screening onto the VMH database14, virtual IEMs were created to explore all represented 

gene-metabolite pairs via in silico knockout modeling of the gene’s function. For male and 

female human modeling, the WBM model versions “Harvey_1_04b” and “Harvetta_1_04c” 

were employed, respectively. 

 

Absolute metabolite quantification for members of a family with the KYNU-attributed IEM 

8-methoxykynurenate, xanthurenate, and 3-hydroxykynurenine were quantified in urine 

samples using high performance liquid chromatography coupled to tandem mass 

spectrometry (HPLC/MS/MS; Exion LC and 5500+ triple quadrupole MS, AB Sciex, 

Framingham, MA, USA). Urine samples were diluted 1:10 with water and 10 µL of the diluted 

samples were injected. HPLC separation was performed at 40 °C on a Force C18 column (100 

x 3.0 mm, 3 µm particles, Restek Corporation, Bellefonte, PA, USA) equipped with guard 

column using water (solvent A) and methanol (solvent B), both containing 0.01 vol% formic 

acid and 1 mM ammonium formate. The flow rate was 300 µL/min and the linear gradient 

profile of solvent B was as follows: 0 min 1%, 1 min 1%, 10 min 40%, 12 min 90%, then isocratic 

at 90% until re-equilibration. The analytes were detected using positive ion electrospray 

ionization (5500 V and 350 °C, nitrogen curtain and ion source gas, declustering potential 1.0 

V, entrance potential 10 V) and the multiple reaction monitoring mode (nitrogen collision 

gas). Compound-specific MS parameters are given in Supplementary Note Table 1. 
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Supplementary Note Table 1. Mass spectrometric parameters for detection and 

quantification of the analytes 

  Precursor ion 
[m/z] 

Product ion 
[m/z] 

Collision 
energy [V] 

Collision cell exit 
potential [V] 

8-methoxy-
kynurenate 

Quantifier 220.0 174.1 27 12 

Qualifier 220.0 118.1 39 14 

Xanthurenate Quantifier 206.0 160.1 27 12 

Qualifier 206.0 132.1 39 10 

3-hydroxy 
kynurenine 

Quantifier 225.0 162.1 29 10 

Qualifier 225.0 110.1 19 10 

 

Quantification was based on external 4-point calibration curves covering the ranges of 

detected signal abundances in the samples. Quantitative results were normalized to urine 

creatinine concentrations (expressed as mmol/mol creatinine) before comparison between 

samples. Legal guardians of the proband consented for genetic and urine analyses. 

 

Analysis of phenylalanine in serum for members of a family with the PAH-attributed IEM 

Phenylalanine was quantified in serum samples using ion chromatography with post-column 

addition of ninhydrin and subsequent photometric detection (Biochrome 30+ amino acid 

analyzer, Biochrom Ltd., Cambridge, UK). A volume of 200 µL serum was mixed with 50 µL 

10% sulfosalicylic acid (for denaturation of proteins) and 25 µL internal standard (S-2-

aminoethyl-L-cysteine) solution. After centrifugation for 1 min at 2655 x g, 100 µL of the 

supernatant were mixed with 200 µL dilution buffer and 40 µL of the resulting solution were 

injected. Cation exchange ion chromatography was performed on a lithium column (prod. No. 

40016551, Biochrom Ltd.) equipped with a guard column at a flow rate of 20 mL/h with a 

temperature and pH gradient using five different lithium citrate buffers and a lithium 

hydroxide solution. Post-column addition of the ninhydrin solution was also performed at a 
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flow rate of 20 mL/h. Primary amino acids (e. g. phenylalanine) were detected at 570 nm. 

Quantification was based on internal standard methods using an external 1-point calibration. 

 

Relation of genes and variants to clinical traits, diseases and protein levels 

We used different data sources to link the associated genes and QVs identified in our study 

to clinical outcomes and diseases. Implicated genes were queried for related monogenic 

disorders and traits using the OMIM catalog (https://www.omim.org/; accessed on 

1/6/2022), and for the presence of known IEMs using 

https://panelapp.genomicsengland.co.uk/panels/467/ version v4.0. Drug target status and 

the corresponding indication were annotated for all identified genes by querying 

https://platform.opentargets.org/ on 7/12/2022. Clinical significance and the corresponding 

trait or disease were annotated for all qualifying variants based on ClinVar 

https://www.ncbi.nlm.nih.gov/clinvar/ accessed on 3/30/2022. Fisher’s exact test was used 

to test whether metabolite-associated genes were overrepresented among genes known to 

be causative for IEMs, defined as those with high (“green”) and moderate (“amber”) evidence 

in the Genomics England panel https://panelapp.genomicsengland.co.uk/panels/467/ 

version v4.0 and present among the 16,525 genes analyzed in our study. 

We additionally searched for gene-level and variant-level associations of the genes 

and QVs identified in our study with about 15,500 binary and 1,500 continuous phenotypes 

contained in the AstraZeneca PheWAS Portal (https://azphewas.com/; downloaded on 

26/08/2022, v4 450k). This portal contains genetic associations identified based on whole-

exome sequencing data from ~450,000 UK Biobank (UKB) participants.15 Binary phenotypes 

with <30 cases were excluded from both gene- and variant-level analysis. At the variant level, 

associations were restricted to those identified in at least 30 samples. For gene-level and 
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variant-level associations, we only extracted the most significant collapsing model and 

genotype model per trait, respectively. Statistical significance was defined as P-value <2e-

0915, and suggestive significance as P-value <1e-05. Fisher’s exact test was used to test 

whether metabolite-associated genes were overrepresented among genes associated with 

binary traits in the UKB at suggestive significance (P-value <1e-05). 

Moreover, we searched for cis-associations of the metabolite-associated genes with 

plasma protein levels in the UKB to investigate whether damaging variants influencing 

metabolite levels also result in altered plasma protein levels. We used gene-level summary 

statistics of protein levels measured by Olink Explore 3072 platform16 resulting from masks 

similar to the ones we used (aggregating protein truncating and/or rare damaging variants; 

ptv, raredmg, ptvraredmg)17 available at the AstraZeneca PheWAS Portal 

(https://azphewas.com/). For 17 of 73 significant genes detected in our study, plasma levels 

of the encoded proteins were present and cis-associations could be assessed. 

 

Supplementary Results 

 

Sensitivity analyses for gene-based testing: LoF only, SKAT, SKAT-O tests 

We performed sensitivity burden test analyses based on high confidence LoF variants only to 

investigate how the choice of QV selection affected the significant gene-metabolite pairs 

identified in the main analysis. Whereas effect sizes in the LoF only mask tended to be greater 

than in the two main masks, association P-values were much less significant (Extended Data 

Fig. 1, Supplementary Table 4). Moreover, almost a quarter of associations detected with the 

two main “HI_mis” and “LoF_mis” masks could not be assessed with the LoF only mask due 

to missing high confidence LoF variants in the corresponding genes. 
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 In addition, we evaluated the identified gene-metabolite associations using the SKAT 

and SKAT-O tests (Supplementary Methods) to compare power between burden test and 

alternative approaches in our setting. The P-value provided by the burden test outperformed 

the one provided by the SKAT test for 369 of 382 associations (Extended Data Fig. 2, 

Supplementary Table 4), supporting that burden tests perform better in a setting of assumed 

loss-of-function as the mechanism underlying metabolic changes. As expected, the SKAT-O 

performed better than the SKAT test, but nevertheless, burden tests provided lower P-values 

for 338 of 382 SKAT-O associations (Supplementary Table 4). 

 

Stratified analyses to investigate potential subgroup-specific effects 

Several stratified analyses were conducted for all significant gene-metabolite associations. 

Effect sizes across individuals with lower (≤45 ml/min/1.73m2) and higher (>45 

ml/min/1.73m2) eGFR were strongly correlated (Pearson correlation coefficient 0.97), and 

none of the gene-metabolite pairs showed significantly different effect sizes across groups 

(Extended Data Fig. 3a, Supplementary Table 5). This supports that the identified gene-

metabolite associations were not affected by differences in eGFR. 

With regard to sex, effect sizes between men and women were highly correlated as 

well (Pearson correlation coefficient 0.96), and significant differences in effect sizes were 

exclusively observed for associations at the X-chromosomal TMLHE gene, where men showed 

more extreme effects on metabolite levels compared to women (Extended Data Fig. 3b). 

These findings are consistent with hemizygosity (and therefore effectively homozygosity) in 

men compared to heterozygosity in women.  
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Comparison to previous rare variant studies 

We compared our identified gene-metabolite associations to significant findings from 

previous genetic studies on metabolite levels that focused on the aggregation of rare exonic 

variants using sequencing and high throughput metabolomics3–10 (Supplementary Methods). 

Of the 73 identified unique genes, 31 (42.5%) have not been reported as significant in any of 

these studies. Moreover, 110 of all 192 detected gene-metabolite associations (57.3%) were 

novel (Supplementary Table 6). Seven of these eight previous studies were independent and 

focused on plasma/serum3–8,10. Comparison of the 128 identified gene-plasma metabolite 

associations to those detected in these independent studies showed that 83 of them (65%) 

were novel (Supplementary Methods, Supplementary Table 6). When focusing on studies 

that employed comparable metabolite quantification technology3,5,6,10, 69% (88/128) of the 

associations with plasma metabolites have not been reported, although the underlying 

metabolite had been analyzed for 95% (122/128) of the identified associations in at least one 

of the four studies. Hence, 93% (82/88) of these novel plasma associations involved 

metabolites analyzed before. Among the newly reported genes, two are targets of drugs that 

are already approved or in development (Supplementary Table 6). 

 

Variant characterization of gene-metabolite associations 

To characterize the genetic architecture underlying the identified gene-metabolite 

associations, we initially evaluated the contribution of individual QVs to their gene association 

signal by performing a forward selection procedure3 (Methods). The visualization of the 

association P-value based on the successive aggregation of the most influential QVs 

(Supplementary Data 2) showed notable differences: first, each of the two masks detected 
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some unique genetic associations, highlighting differences in statistical power to detect 

associations as well as in genetic architecture. Second, some genes showed different 

association patterns for the same metabolite in plasma and in urine (e.g., TMLHE and hydroxy-

N6,N6,N6-trimethyllysine). Third, histidine exemplifies a metabolite with different associated 

genes in plasma (HAL) and urine (SLC6A19), implicating an enzyme involved in its hepatic and 

blood-based breakdown and a transporter responsible for its tubular reabsorption. Fourth, 

genes associated with the same metabolite in the same matrix can differ in terms of genetic 

architecture (e.g., urine diacetylspermidine with PAOX and HDAC10). 

Furthermore, we evaluated the convergence of rare and common variant association 

signals by assessing any common variant in the identified metabolite-associated gene regions 

(Supplementary Methods). We detected significant common variant associations in the 

regions of 157 of the 235 (192+43) unique gene-metabolite pairs (Supplementary Table 9). 

There was no relation between the absolute aggregated effect size of rare variants with the 

presence of a GWAS signal in the region (Extended Data Fig. 5a). Sensitivity analyses that 

additionally conditioned the gene-based tests on the associated common variant within a 

region showed no significant differences in effect sizes compared to the unconditional 

analysis (Spearman correlation 1.0; Extended Data Fig. 5b, Supplementary Table 9). 

 

Curation of whole body modeling based on the GCKD data 

We performed a range of model curation steps in order to leverage the biological information 

generated by the WES-metabolite association data from the GCKD study for improving the 

knowledge base underlying the WBM. These curation steps ranged from adding pathways 

over improved mapping and checking failing simulations to altering model constraints. The 
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following paragraphs detail all performed model curations. We performed curations for six 

virtual IEMs, for which we could identify reasons for model failure (e.g., in the case of 

DMGDH) or for which the GCKD data was instrumental in improving the knowledge base (e.g., 

in the case of KYNU and 8-methoxykynurenate). 

 

Modeling of 8-methoxykynurenate in the virtual IEM for kynureninase deficiency (KYNU) 

Although a known human metabolite, the metabolite 8-methoxykynurenate was not included 

in the initial WBMs due to limited evidence on the enzymes involved in its production. 

However, in the association results from the GCKD study, urine 8-methoxykynurenate was 

positively associated with rare, putatively damaging variants in KYNU. This indicates that this 

metabolite originates upstream of a reaction catalyzed by kynureninase. As 8-

methoxykynurenate is a methylated derivative of xanthurenate, it is plausibly generated by a 

corresponding methylation reaction as noted in KEGG (KEGG reaction R03955; Xanthurenic 

acid + S-adenosyl-L-methionine <=> 8-methoxykynurenate + S-adenosyl-L-homocysteine). 

Interestingly, we found ASMTL, a gene encoding for a protein with presence of a probable 

catalytic S-adenosyl-L-methionine binding domain in the C-terminal region and thus a 

probable methyltransferase, to be negatively associated with urine 8-methoxykynurenate (P-

value=5.1e-09), which barely missed the study-wide multiple-testing corrected significance 

threshold. On these grounds, we added 8-methoxykynurenate (C05830) along with the 

(hypothesized) associated methylation reaction (Xanthurenic acid + S-adenosyl-L-methionine 

<=> 8-Methoxykynurenate + S-adenosyl-L-homocysteine) and corresponding transport 

reactions to the ten organs of the male WBM and twelve organs of the female WBM 

(Supplementary Table 12), where the participating metabolites of the methylation reaction 

were all present. We then repeated the in silico knockout of KYNU, and successfully replicated 
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the association of KYNU with higher flux of 8-methoxykynurenate into urine compared to the 

wild-type. 

 

Modeling of N-formylanthranilic acid in the virtual IEM for AFMID  

Both N-formylanthranilic acid and the AFMID gene were represented in the initial WBM. 

However, the urinary secretion of N-formylanthranilic acid could not carry flux in the initial 

simulations. Investigating the model setup for N-formylanthranilic acid, we found that for the 

transport reaction from the blood compartment to the kidney (WBM reaction name: 

Kidney_EX_nformanth(e)_[bc]) under the current default constraint setting (lower bound=-

3.7368, upper bound=0) any flux of N-formylanthranilic into the kidney compartment was 

blocked. Consequently, no excretion process into urine could occur. As N-formylanthranilic 

acid is, however, detected in human urine, we made corresponding adjustments to the 

constraint setting, allowing N-formylanthranilic acid to be secreted into urine. After this 

adjustment, the model correctly predicted the observed association between rare, damaging 

variants in AFMID and urine N-formylanthranilic acid levels in the GCKD study. Both the initial 

and the curated virtual IEM correctly predicted the observed association between rare, 

damaging AFMID variants and plasma N-formylanthranilic acid levels. 

 

Modeling of the virtual IEM for TMLHE  

TMLHE encodes the enzyme trimethyllysine dioxygenase, which uses N6,N6,N6-trimethyl-L-

lysine as one of its substrates. While TMHLE had been included in the initial version of the 

WBM, none of the metabolites associated with it in the GCKD study could be modeled. We 

found that in the initial WBM, N6,N6,N6-trimethyl-L-lysine was neither produced from 

methylated protein-bound lysine residuals, nor was it covered by dietary constraints, 
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meaning that trimethyllysine dioxygenase reactions could not carry flux. To enable modeling, 

we unbound the diet constraint for N6,N6,N6-trimethyl-L-lysine18, making N6,N6,N6-

trimethyl-L-lysine available to the WBM. After this step, the virtual IEM for TMLHE was 

perfectly predicting the signs of the observed TMLHE-metabolite associations in the GCKD 

study. 

 

Modeling of dimethylglycine in the virtual IEM for dimethylglycine dehydrogenase deficiency 

(DMGDH) 

Both dimethylglycine and the gene DMGDH could be mapped in the initial WBM. However, 

knockout of DMGDH had no effect on dimethylglycine blood and urine secretion fluxes in the 

female model, and no effect on urine secretion in the male model. Exploring the gene-protein-

reaction relations in the initial WBM, we found three reactions assigned to DMGDH 

(mitochondrial dimethylglycine dehydrogenase (VMH ID: DMGDHm), N,N-

dimethylglycine:electron-transfer flavoprotein oxidoreductase (VMH ID: HMR_4700), and S-

adenosyl-L-methionine:sarcosine N-methyltransferase (VMH ID: HMR_4701)). To the latter 

two reactions, the gene PDPR, encoding for a regulatory subunit of the pyruvate 

dehydrogenase phosphatase, was assigned as well. We removed the assignment to PDPR, as 

we could not find additional evidence for PDPR playing a role in dimethylglycine metabolism 

besides a distant relation in terms of sequence similarity to DMGDH19. After removing PDPR 

as a hypothetical isozyme for the reactions HMR_4700 and HMR_4701, the virtual IEM for 

DMDGH correctly predicted the observed effect direction for dimethylglycine both in blood 

and urine and in both sexes.  
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Modeling of the virtual IEM for KYAT1 

In the initial WBM, we were unable to map the KYAT1 gene, although it was actually included 

in the model, due to an identifier discrepancy. We rectified this by adding the corresponding 

identifier for KYAT1 in the VMH database (VMH gene identifier: 883), which increased the 

number of mapped and modeled genes to 26. Three of the metabolites associated with KYAT1 

in the GCKD study, 3-(4-hydroxyphenyl)lactate, indolelactate, and phenylpyruvate, could be 

mapped in the WBMs and two, 3-(4-hydroxyphenyl)lactate and phenylpyruvate, could be 

modeled. However, KYAT1 knockout did not replicate the observed effects from the GCKD 

study, indicating that further curation of the WBMs is needed in the case of KYAT1. 

 

Modeling of hexanoylglycine in the virtual IEM for medium-chain acyl-CoA dehydrogenase 

deficiency (ACADM) 

In the wild-type and knockout ACADM models, we initially calculated maximal secretion fluxes 

for hexanoylglycine into urine. However, the result was consistently a maximum secretion 

flux of zero for all simulations. Upon exploration, we found that none of the hexanoylglycine-

related reactions carried flux in the current WBM. Thus, the metabolite fails the criteria of 

being transported to blood and urine, and the current WBM is unable to model the ACADM-

hexanoylglycine gene-metabolite pair. The initial flux calculations of zero were therefore 

without biological meaning. 

 

Modeling of the virtual IEM for ACY1 and N-acetylisoleucine 

We observed the same scenario as in the curation of the virtual IEM of ACADM and 

hexanoylglycine. The initial computation of maximal secretion flux of N-acetylisoleucine into 

urine consistently yielded zero for all simulations, and none of the related reactions did carry 
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flux. We were unable to detect the presence of N-acetylisoleucine in human reactions; 

instead it was exclusively involved in transport reactions across compartments. As a result, 

the ACY1-N-acetylisoleucine pair could not be modeled within the current WBMs. 

 

Personalized WBMs capture observed metabolic changes - PAH 

Analogously to the showcase with regard to KYNU, where in silico WBMs captured changes in 

urine levels of metabolites in the kynurenine-pathway observed for both heterozygous and 

homozygous loss of KYNU function, we focused on the gene PAH. 567 microbiome-

personalized20 WBMs could be successfully generated (Methods) and effect sizes of in silico 

PAH knockout on metabolite excretion into urine against the natural variation induced by the 

personalized microbiomes were calculated (Supplementary Table 13). Nine of 272 available 

metabolites had a modeling P-value <0.05/272, where five of them belong to the 

phenylalanine metabolism, highlighting their potential role for the corresponding IEM 

phenylketonuria (Supplementary Table 14). Moreover, effect sizes of these 9 metabolites 

based on in silico knockout of PAH were significantly correlated with those for PAH in the 

GCKD study, with phenylalanine showing the largest effect in both (Supplementary Fig. 2b). 

As a known biomarker of phenylketonuria, absolute levels of phenylalanine measured in 

serum samples of a patient with phenylketonuria and her parents (Supplementary Methods) 

were highly elevated in the homozygous patient and in the compound heterozygous father 

(Fig. 6b). This additional showcase serves to corroborate the findings with regard to KYNU. 

 

Association of metabolite-associated variants and genes with human traits 

Data from ~450,000 UKB participants with WES was queried for associations of the identified 

2,077 QVs and 73 genes with thousands of quantitative and binary health outcomes to assess 
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whether they may be plausibly related to disturbances of the implicated metabolites. The 

prefiltered UKB dataset contained 696 QVs and 72 genes. At the gene-level, significant 

associations (P-value<2e-09) were identified between APOC3 and the binary health outcome 

“disorders of lipoprotein metabolism and other lipidaemias” (Supplementary Table 15), 

consistent with its association with 19 plasma phosphatidylethanolamine and diacylglycerol 

metabolites in our study. Moreover, 13 genes showed 282 significant associations with 

quantitative health outcomes. These mostly arose from clinical chemistry parameters and 

contained many plausible and well supported examples (Supplementary Table 15). At the 

variant-level, there were 555 significant associations between a QV and a quantitative as well 

as two additional associations with a binary health outcome (Supplementary Table 18). These 

included well-established examples, but also less studied candidates such as an SLC6A19 

variant encoding the p.Asp173Asn substitution in the sodium-dependent neutral amino acid 

transporter SLC6A19 (B0AT1), which was associated with lower serum creatinine and cystatin 

C levels and erythrocyte distribution width. 

We have previously shown that the comparison of the effect of common genetic 

variants (minor allele frequency >0.01) on plasma and urine metabolite levels can deliver 

specific insights into functions of the kidney12. In this study of rare variants of minor allele 

frequency <0.01, all identified genes that were associated with one or more measures of 

kidney function (i.e., serum creatinine or cystatin C) in the UKB encode for transport proteins 

that are highly expressed in the kidney21–23: SLC47A1, SLC6A19, SLC7A9, and SLC22A7 

(Supplementary Table 15). The gene products of SLC47A1, SLC6A19, and SLC7A9 are localized 

in the apical membrane of tubular cells21–23. Their metabolic fingerprints were almost 

exclusively detected in urine (Supplementary Table 3) and reflected the encoded proteins’ 

functions. Conversely, SLC22A7 encodes for an organic anion transporter in the basolateral 
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membrane of tubular cells24, leaving a metabolic signature in plasma. QVs in SLC47A1 and 

SLC22A7 were only associated with creatinine levels but not with cystatin C, in agreement 

with their known role as creatinine transporters25. In contrast, QVs in SLC7A9 and SLC6A19 

showed association with lower levels of both creatinine and cystatin C26, suggesting that their 

loss-of-function is associated with better kidney function through yet unidentified 

mechanisms. These observations illustrate how rare damaging variants leave a specific 

signature in plasma and urine metabolomes that mirror exchange processes at the plasma 

membrane domains of renal epithelial cells and are associated with clinical measures of 

kidney function, but not with binary kidney disease outcomes after correction for multiple 

testing (Supplementary Table 15). With regard to all metabolite-associated genes and 

diseases studied in the UKB, similar observations were made. Metabolite-associated genes 

were not overrepresented among genes associated with binary traits in the UKB, of which 

many are not expected to be related to altered metabolite levels (odds ratio=1.48, P-

value=0.085; Supplementary Methods), suggesting that strong genetic effects on metabolite 

levels do not necessarily translate into genetic effects on diseases. 

 

Supplementary Discussion 

 

Potential limitations of the study 

First, discovered gene-metabolite relationships were based on study participants of European 

ancestry with moderately reduced kidney function, and might therefore not be generalizable. 

However, rare genetic variants that are predicted or experimentally shown to result in loss-

of-function should show effects on associated metabolites regardless of genetic background. 

Moreover, although metabolite levels may differ between persons with and without reduced 
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kidney function, our previous work12,27 and the kidney function-stratified analyses in this 

study showed comparable genetic effect sizes across different levels of kidney function, 

including persons with normal kidney function from several population-based cohorts as the 

UKB. Second, burden tests assume that all aggregated QVs result in direction-consistent 

effects of similar size, which, if violated, results in a loss of power28. Because our study 

assumed loss-of-function as the mechanism underlying metabolic changes, we did not 

evaluate alternative aggregate variant tests such as SKAT29 on an exome-wide basis. SKAT is 

less powerful in a setting with direction-consistent effects30, does not provide effect sizes, 

and is difficult to interpret and replicate31,32. Our comparisons to findings from previous 

studies of the plasma/serum metabolome need to be interpreted in light of such differences 

in statistical tests, as well as in study design and definition of QVs. Third, inclusion of 

effectively neutral variants as QVs in a burden test can lead to an underestimation of a gene’s 

effect. Further methodological improvements are required in order to better predict a 

variant’s functional consequence, as well as for optimizing the selection and weighting of QVs 

to better reflect specific genetic architectures. Fourth, we analyzed non-targeted, semi-

quantitative population metabolomics data that do not allow for conclusions whether 

metabolite levels are outside the clinical reference range. However, non-targeted 

metabolomics provides much broader coverage than conventional targeted screening within 

and across biochemical pathways33, thus enabling the discovery of genetic associations with 

previously unreported metabolites, as well as the detection of entirely new gene-metabolite 

relationships as observed here. Lastly, we utilized WBMs for in silico validation based on the 

steady state assumption, whereas it is conceivable that dynamic modeling may improve the 

predictive power of virtual IEMs. However, such modeling is computationally expensive, and 

adequate data for fitting dynamic models are often missing. A great advantage of the utilized 



20 
 

constraint-based modeling is its scalability, permitting easy integration with genome-wide 

genetic screens. 
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Supplementary Figure 1: Number of significantly associated metabolites by matrix/matrices 

and biochemical super-pathway. 

Bar plots display the number of metabolites (y-axis) that were determined in plasma or urine 

only, or in both (x-axis) for each super-pathway. The coloring of each bar indicates which 

proportion of the measured metabolites was significantly associated in plasma (red) or urine 

(blue) only, in both (purple), or not significantly associated (light gray). 

 

 
  



28 
 

Supplementary Figure 2: Predicted changes upon in silico knockout modeling and observed 
effect sizes based on aggregate variant testing in the GCKD study. 
Relation between effect sizes (regression coefficients) upon in silico knockout of KYNU (a) and 

PAH (b) (x-axis) and observed effect sizes in the GCKD study (y-axis) for 18 and 9 metabolites 

that showed significant changes upon in silico knockout of KYNU (modeling P-value <0.05/257 

adjusted for the number of available metabolites) and PAH (modeling P-value <0.05/272), 

respectively. WBM estimates are based on QP-modeling (Methods), and GCKD estimates on 

aggregating rare, damaging variants in KYNU and PAH, respectively. Symbol color represents 

the sub-pathway of the corresponding metabolite. The gray line is the linear regression line 

through the data points, the shaded gray area represents its 95% confidence interval. 

Simulated in silico effects of KYNU and PAH knockouts are clearly correlated with the 

observed effects in humans given the Pearson correlation coefficients and the corresponding 

two-sided P-values. 
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Supplementary Figure 3: Contribution of individual QVs in SLC13A1 and SLC26A1 to their 

gene-based association signal with height measured in the GCKD study. 

The symbols visualize the -log10(P-value) (y-axis) with regard to height measured in 3,239 

participants of the GCKD study for the successive aggregation of the most influential QVs in 

SLC13A1 (mask HI_mis) (a) and SLC26A1 (mask LoF_mis) (b) with respect to the forward 

selection procedure (Bomba et al., PMID: 35568032, Methods) based on burden tests. The 

number of QVs aggregated for burden testing is shown on the x-axis. Symbol shape indicates 

the variant’s consequence. The symbol color and size reflect the effect size and the P-value 

of the variant based on its single-variant association test. The gray dashed lines represent the 

significance threshold (-log10(0.05)), the total -log10(P-value) of the aggregate variant test 

including all QVs in SLC13A1 and SLC26A1 for the respective mask, and the -log10(lowest P-

value) that can be reached by aggregating only the driver variants from the forward selection 

procedure. For both genes, a clear association with height in the GCKD study is observed when 

aggregating driver variants. 
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Supplementary Data 1: Plasma and urine metabolite levels among carriers and non-carriers 

of QVs in significantly associated genes. 

Metabolite levels after inverse normal transformation and covariate-adjustment are shown 

on the y-axis, among non-carriers and carriers of QVs in both masks (LoF_mis and HI_mis) on 

the x-axis for all significant gene-metabolite associations based on up to 4,713 individuals 

(Supplementary Table 3). Associations in plasma are shown on the left, in urine on the right. 

Plots are sorted alphabetically by gene name. Symbol color and shape indicate a variant’s 

driver status and consequence, respectively. Carriers of multiple heterozygous QVs are 

denoted by an asterisk. Orange filling of symbols denotes homozygosity for the respective QV 

for autosomal genes, and hemizygosity for X-chromosomal genes. The boxes range from the 

25th to the 75th percentile of metabolite levels, the median is indicated by a line, and whiskers 

end at the last observed value within 1.5*(interquartile range) away from the box. 

 

Due to size limits, these plots are included as a separate file. 

 

 

Supplementary Data 2: Contribution of individual QVs to their gene-based association signal 

with plasma and urine metabolite levels. 

For each significant gene-metabolite pair in plasma and/or in urine (sorted by gene and 

metabolite’s biochemical name), the symbols visualize the -log10(P-value) (y-axis) for the 

successive aggregation of the most influential QVs with respect to the forward selection 

procedure (Bomba et al. 2022, PMID: 35568032, Methods) based on burden tests for both 

masks (LoF_mis on the left, HI_mis on the right). The number of QVs aggregated for burden 

testing is given on the x-axis. Symbol shape indicates the variant’s consequence. The symbol 

color and size reflect the effect size and the P-value of the variant based on its single-variant 

association test. The gray dashed lines represent the significance threshold (-log10(5.04e-9) 

for plasma and -log10(4.46e-9) for urine), the total -log10(P-value) of the aggregate variant test 

including all QVs in the respective gene and mask, and the -log10(lowest P-value) that can be 

reached by aggregating only the driver variants from the forward selection procedure. Hence, 

the variants sorted on the left, which provide the lowest P-value when aggregated, represent 

the driver variants (for further variant annotation see Supplementary Tables 7a,b). 

 

Due to size limits, these plots are included as a separate file. 

 

 




