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Abstract

Background and purpose

External drainage represents a well-established treatment option for acute intracerebral
hemorrhage. The current standard of practice includes post-operative computer tomogra-
phy imaging, which is subjectively evaluated. The implementation of an objective, auto-
mated evaluation of postoperative studies may enhance diagnostic accuracy and facilitate
the scaling of research projects. The objective is to develop and validate a fully automated
pipeline for intracerebral hemorrhage and drain detection, quantification of intracerebral
hemorrhage coverage, and detection of malpositioned drains.

Materials and methods

In this retrospective study, we selected patients (n = 68) suffering from supratentorial
intracerebral hemorrhage treated by minimally invasive surgery, from years 2010-2018.
These were divided into training (n = 21), validation (n = 3) and testing (n = 44) datasets.
Mean age (SD) was 70 (£13.56) years, 32 female. Intracerebral hemorrhage and drains
were automatically segmented using a previously published artificial intelligence-based
approach. From this, we calculated coverage profiles of the correctly detected drains to
quantify the drains’ coverage by the intracerebral hemorrhage and classify malposition-
ing. We used accuracy measures to assess detection and classification results and intra-
class correlation coefficient to assess the quantification of the drain coverage by the
intracerebral hemorrhage.
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for segmentation, quantification and classification
are available in https:/github.com/s-elsheikh/
NeuroDrAln under MIT license.
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Results

In the test dataset, the pipeline showed a drain detection accuracy of 0.97 (95% CI: 0.92 to
0.99), an agreement between predicted and ground truth coverage profiles of 0.86 (95% CI:
0.85 to 0.87) and a drain position classification accuracy of 0.88 (95% CI: 0.77 to 0.95) result-
ing in area under the receiver operating characteristic curve of 0.92 (95% ClI: 0.85 to 0.99).

Conclusion

We developed and statistically validated an automated pipeline for evaluating computed
tomography scans after minimally invasive surgery for intracerebral hemorrhage. The algo-
rithm reliably detects drains, quantifies drain coverage by the hemorrhage, and uses
machine learning to detect malpositioned drains. This pipeline has the potential to impact
the daily clinical workload, as well as to facilitate the scaling of data collection for future
research into intracerebral hemorrhage and other diseases.

Introduction

Intracerebral hemorrhage (ICH) constitutes a significant cause of morbidity and mortality,
with an estimated global incidence of about 5 million events per year [1]. To reduce the mass
effect of ICH, evacuation of the clot is feasible by positioning a drain in the bleeding using
minimally invasive surgery (MIS). Current guidelines recommend MIS in patients with supra-
tentorial ICH > 20-30 ml volume and Glasgow coma scale of 5-12 [2]. Until recently, ran-
domized trials could not prove the efficacy of MIS [3]. However, the recently published
ENRICH trial confirmed the superiority of MIS over conservative management [4, 5]. The
methods employed in the MISTIE III trial, the largest published study on MIS for ICH to date,
involved a CT scan after surgery to confirm correct placement of the drain, and repositioning
of the catheter in cases of insufficient placement [3].

Multiple techniques were introduced for the placement of drains in acute ICH; some of
these rely on image or augmented reality assistance, which can improve precision but also
increases time and cost of the procedure [6]. They also noted that the freehand technique is
still commonly employed for drain placement, resulting in frequent suboptimal positions.
Moreover, the lack of research on standardized or clinically validated criteria for detecting
malpositioned drains represents a significant limitation to both clinical and scientific evalua-
tion. Consequently, the assessment of these images remains highly subjective. The application
of automated segmentation techniques using convolutional neural networks to medical images
provides the potential for the generation of quantitative data. If validated, this data could facili-
tate objective clinical assessment and serve as a foundation for further scientific research.

In this study, we assessed the potential of an end-to-end pipeline for the evaluation of ICH
drain positioning after MIS in acute supratentorial ICH. This pipeline relies on a previously
developed ICH and drain segmentation model [7] to accurately detect drains, automate quan-
tification of drain coverage by the ICH and artificial intelligence-based classification of malpo-
sitioned drains.

Materials and methods

The retrospective study was approved by the ethics committee of the Albert-Ludwigs-Univer-
sitdt in Freiburg. Obtaining informed written or verbal consent was waived. We aimed to
develop a pipeline (Fig 1) including:

PLOS ONE | https://doi.org/10.1371/journal.pone.0316003 December 26, 2024

2/14


https://doi.org/10.1371/journal.pone.0316003
https://github.com/s-elsheikh/NeuroDrAIn
https://github.com/s-elsheikh/NeuroDrAIn

PLOS ONE NeuroDrAlIn: a Tool for Automated Detection and Classification of Intracerebral Hemorrhage Drains in CT Scans

' ' o
/ 1. Drain Detection / 2. Quantification ’ 3. Classification A A A d
_, A
AA

A“A

i . Coverage G 2
[

Fig 1. Chart delineating the inputs and outputs of each step of the pipeline. 1: Detection of true positive drain
objects in binary mask, 2: quantification of the coverage profile and 3: classification of the drain position.

https://doi.org/10.1371/journal.pone.0316003.g001

1. Detection of the drains as discrete objects.
2. Quantification of the drain coverage by the ICH.

3. Classification of the drain position.

The same cohort was used to develop a convolutional neural network for ICH and drain
segmentation [7]. Initially, 29 patients > 18 years of age, who suffered from supratentorial
ICH and were treated with MIS between 2011 and 2018 were randomly selected from our
imaging archiving system. These were partitioned into training (n = 21, 29 scans), validation
(n =3, 4 scans) and testing (n = 5, 6 scans) datasets. To avoid bias in our results, another 39
consecutive patients (53 scans) examined between 2010 and 2012 were added to the testing
dataset, resulting in a total number of n = 44 patients in the independent testing dataset (59
scans). To avoid data leakage, patients already selected in one of the other groups were
excluded (n = 13) and all scans belonging to the same patient were assigned to the same group.
To further address potential sources of bias, no exclusions were made based on scanner model,
scanning parameters, voxel size, or image quality. Image selection was performed on June 21,
2023. Patient and imaging data was pseudonymized before analysis.

In the present study, we employed the segmentation results of a previously published
model [7] to quantify the coverage of the correctly detected drains by the ICH and identify
malpositioned drains. The model was developed using the Patchwork CNN Toolbox, as pre-
viously described [8]. The model architecture employs hierarchical patching approach to
address challenges posed by large segmentation tasks, such as those commonly encountered
in medical imaging, while anatomical information. The published model employed 3 scales;
the finest scale was reformatted to 1-mm isotropic voxels. Within each scale, a Unet-
inspired architecture was applied, using leaky RELU as the activation function. The training
loss was evaluated using the binary cross-entropy loss function. Six distinct model varia-
tions were created to tune different hyperparameters; feature dimensions at each hierarchi-
cal scale, loss function, and augmentation parameters (random rotation, zoom, and flip).
Validation was conducted using a holdout dataset. This approach may have reduced the
robustness of the model, but it also mitigated the higher computational cost of a cross-vali-
dation approach. Notwithstanding the small size of the training dataset, a marginal differ-
ence between the results in the training and validation datasets was observed, suggesting
minimal or no overfitting. For model evaluation, spatial metrics were reported [9].
Although surface measures are considered superior for evaluating 3D segmentation models,
the 2D dice similarity coefficient was selected to facilitate comparison with other published
articles on ICH segmentation. In the final test group, the published model achieved a dice
similarity coefficient of 0.86 and 0.91 and a surface dice similarity coefficient of 0.79 and
0.95 in the segmentation of ICH and drains, respectively [7].
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Ground truth (GT)

Three neuroradiologists (TD, SE, AR), with 8, 18 and 5 years of experience, respectively, inde-
pendently evaluated the drain position on a local instance of the Nora imaging platform
(https://www.nora-imaging.com). Only the distal 15 mm of the drain were taken into account,
as the openings are located in this segment (S1 Fig). External ventricular drains were also
included in the evaluation. To avoid ambiguity, a numerical identifier was added to each drain
if more than one drain was present within a single patient. Correct drain position was assessed
using a binary scale (“correct” or “not correct”). Measurement and 3D reformatting tools were
available to the readers. Discrepancies were resolved by majority agreement.

Drain detection

Utilizing the drain probability masks of the previously published model [7], we calculated
accuracy measures of drain detection at multiple probability thresholds (range = 0.5-0.99,
steps = 0.01). We used GT masks to label discrete objects as either “drain” or “noise”.

Quantification of the drain coverage profile

Using the probability masks of the ICH and the correctly detected drains, in MATLAB
(MATLAB R2021a, The MathWorks) we extracted the profile of the ICH and drain relative
overlap. We first calculated a “volume of touch” (V) between ICH and drain. V was computed
via distance transforms: a voxel within the drain volume belonged to V if its spatially closest
non-drain voxel belonged to the ICH and not to the background. To establish a normalized
coordinate frame, we used the eigensystem of the moment tensor of V, in which the profiles
were always along the major axis of the eigensystem. For quantification, images were regridded
at 0.5-mm isotropic resolution, followed by Gaussian smoothing to 1-mm voxels. Output was
the relative area (orthogonal to the major axis) of V to the total drain area. This process was
repeated iteratively on each discrete object in the binary mask.

To optimize the agreement between prediction and GT coverage profiles, we tested multi-
ple probability thresholds in the drain mask (range = 0.05-0.50, steps = 0.01).

Classification of drain position

We used the predicted coverage profiles of the drains by the ICH for model training. To
develop a binary machine learning classification model for the position of the drain in relation
to ICH, we tested 10 different model variations, from various model families, including logistic
regression, neural networks and random forest. Parameter tuning was performed using leave-
one-out cross-validation with a random grid of 60 different parameter combinations to opti-
mize the area under the receiver operating characteristic curve (AUC-ROC). We used the
“caret” package version 6.0-94 in R software version 4.2.0 [10, 11]. Independent variables were
the normalized (centered and scaled) numeric values of the predicted coverage profile in the
distal 15 mm of the drain. The dependent variable was the subjective human GT evaluation of
the drain position.

The small size of our data set may present challenges in developing a predictive classifica-
tion model. To prevent overfitting we employed regularized models, but did not exclude any
of the more complex model families. To limit bias we utilized leave-one-out cross validation,
which would maximize the amount of data during training. Finally, we tested model robust-
ness on an independent testing dataset. As a thorough evaluation of the performance could
prove difficult, we included the 95%-confidence intervals in all our results. Still we recognize
that a thorough evaluation of model performance will be difficult.
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Statistics

Statistical evaluation of the results and plotting were done using R software version 4.2.0 [10].

1. Ground Truth reading of drain position: Fleiss’ kappa for inter-rater agreement, using the
“IRR” package version 0.84.1 [12].

2. Drain detection and classification accuracy: AUC-ROC, accuracy, sensitivity and specificity
[11,13].

3. Drain coverage profile: Two-way random-effects model, single-measure intraclass correla-
tion coefficients (ICC) were computed using the “IRR” package, to assess the agreement
between coverage profiles of predicted and GT volumes [12]. We visualized the disagree-
ment using concordance plots and Bland-Altman plots using the “blandr” package version
0.5.1 [14].

Results
Dataset characteristics

The mean age (SD) of included cohort was 70 (+13.56) years, 32 female. Table 1 provides fur-
ther details on the characteristics of patients and drains in each group. Images were acquired
from a single center on three different scanners. Voxel sizes encompassed a range of 0.38-0.52
x0.38-0.52x 0.7-5 mm”.

Human readings

In our cohort 36 (37.5%) of the ICH drains, as well as all external ventricular drains (n = 11),
were incorrectly positioned. The distribution of “correct” and “not correct” position of the
ICH drain tip in each group is shown in Table 2. Overall, a moderate inter-rater agreement
(Fleiss’s k = 0.57) was observed.

Drain detection

We observed 100% accuracy over a wide range of probability thresholds in the training and
validation datasets. As we intended to avoid false positive results, we used 0.9 as a threshold.
Applying this threshold on the testing group, we achieved an accuracy of 0.97 (124 of 128; 95%

Table 1. Patient and drain characteristics in all datasets.

Variable Training Validation Testing

Dataset characteristics

No. of Patients 21 3 44
No. of CT scans 29 4 59
Age 71.4 (£14.7) 67.7 (£10.7) 70 (£13.4)
No. of female patients 14 (66.7%) 1(33.3%) 17 (38.6%)
Drain characteristics

No. of drains 36 4 67
No. of ICH drains 30 4 62
No. of EVDs 6 0 5

Age is presented as mean +SD. Categorical variables are presented as a number with percentage in parenthesis. ICH:

intracerebral hemorrhage. EVDs: external ventricular drains.

https://doi.org/10.1371/journal.pone.0316003.t001
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Table 2. Results of each step in all data partitions.

Variable

Drain position and reader agreement
No. of correct ICH drains

No. of not correct ICH drains

Fleiss

Drain detection—baseline

No. of drain objects at 0.5 threshold

No. of noise objects at 0.5 threshold
Threshold range—100% drain detection

Drain detection accuracy measures at threshold 0.9

Accuracy (CI)

Sensitivity (CI)

Specificity (CI)

Coverage profiles’ agreement
Probability threshold for optimized ICC
ICC at optimized probability threshold (CI)
ICC at probability threshold 0.44 (CI)
Average disagreement (CI)
Disagreement: No. of outliers

Drain classification accuracy measures
Accuracy (CI)

Sensitivity (CI)

Specificity (CI)

AUC-ROC (CI)

Training

18 (60%)
12 (40%)
0.59

36
4
0.61-0.98

1(95% CI: 0.91 to 1)
1(95% CI: 0.9 to 1)
1(95% CI: 0.4 to 1)

0.44
0.95 (95% CI: 0.94 to 0.95)
0.95 (95% CI: 0.94 to 0.95)

-0.014 (95% CI:-0.26 to 0.23)

164 of 2196 (7.47%)

0.97 (95% CI: 0.85 to 1)
0.94 (95% CI: 0.73 to 1)
1(95% CI: 0.81 to 1)
0.98 (95% CI: 0.93 to 1)

Validation

1(25%)
3 (75%)
0.63

0.69-0.98

1(95% CI: 0.54 to 1)
1(95% CI: 0.4 to 1)
1(95% CIL: 0.16 to 1)

0.48

0.79 (95% CI: 0.74 to 0.84)

0.77 (95% CI: 0.72 to 0.82)

-0.02 (95% CI:-0.46 to 0.42)
22 of 244 (9.02%)

1(95% CI: 0.4 to 1)

1(95% CI: 0.03 to 1)

1(95% CI: 0.29 to 1)
1(95% CI: NA to NA)

Testing

41 (66.1%)
21 (33.9%)
0.54

67
61
0.99-0.99

0.97 (95% CI: 0.92 to 0.99)
0.97 (95% CI: 0.9 to 1)
0.97 (95% CI: 0.89 to 1)

0.33
0.87 (95% CI: 0.86 to 0.87)
0.86 (95% CI: 0.85 to 0.87)

-0.005 (95% CI:-0.36 to 0.35)

305 of 3965 (7.69%)

0.88 (95% CI: 0.77 to 0.95)
0.9 (95% CI: 0.77 to 0.97)
0.83 (95% CI: 0.63 to 0.95)
0.92 (95% CI: 0.85 to 0.99)

Categorical variables are presented as a number with percentage in parenthesis. ICH: intracerebral hemorrhage. ICC: Intraclass correlation coefficient. AUC-ROC: area

under the receiver operating characteristic curve. NA: not applicable.

https://doi.org/10.1371/journal.pone.0316003.t002

CI: 0.92 to 0.99), sensitivity of 0.97 (65 of 67; 95% CI: 0.9 to 1) and a specificity of 0.97 (59 of

61; 95% CI: 0.89 to 1) (Table 2).

We examined the drains that were inaccurately detected (n = 4, S2 Fig):

1. False negative results (n = 2): The pipeline missed two drains, one of which had a very short
intracranial course. In addition, two drains that were in contact with each other were
treated as a single object due to the iterative nature of the quantification algorithm, per-
forming the quantification on each discrete object.

2. False positive results (n = 2): A bone fragment incorporated into the ICH and in another

patient, a large calcification of the falx cerebri were categorized as a drain.

Quantification of the drain coverage profile

The highest agreement between predicted and GT coverage profiles in the training and valida-
tion groups combined was observed at a threshold of 0.44 (Table 2). At this threshold, the ICC
was 0.86 (95% CI: 0.85 to 0.87) in the test dataset. Concordance and Bland-Altman plots (Fig 2
and S3 Fig) showed an average disagreement of -0.005 between the prediction and GT. The
number of outliers, in which the disagreement between predicted and GT values was identified
outside the 95% confidence interval of the mean difference, was low at 7.69% (305 of 3965)

(Table 2).
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Fig 2. Concordance (A) and Bland-Altman plots (B) of the coverage profiles of predicted and GT drains in the testing dataset. Regression
line (blue) and 95% confidence interval of predicted values (shaded area).

https://doi.org/10.1371/journal.pone.0316003.9002

An illustrative case depicting CT scans before and after surgical correction of an initially
misplaced drain is shown in Fig 3.

Classification of drain position

Given the limited size of the dataset, the results obtained from the combined training and vali-
dation datasets are not sufficiently robust to thoroughly assess the model performance. How-
ever, they can be utilized to compare between different models. We found no substantial class
imbalance in the datasets (Table 2). The best results were observed using penalized logistic
regression [15]. The model achieved an AUC-ROC (CI) of 0.98 (95% CI: 0.93 to 1), accuracy
(CI) 0£ 0.98 (95% CI: 0.87 to 1), sensitivity (CI) of 0.95 (95% CI: 0.74 to 1) and specificity of
one (95% CI: 0.84 to 1). The optimal tuning parameters were a regularization parameter of
6.619512e-04 and a cost-complexity parameter of the logarithm of the sample size.

Table 2 shows the classification results of all correctly detected drains (n = 105), in each
group of our data. In the testing dataset we observed an AUC-ROC (54 Fig) of 0.92 (95% CI:
0.85 t0 0.99), accuracy (CI) of 0.88 (57 of 65; 95% CI: 0.77 to 0.95), sensitivity of 0.9 (37 of 41;
95% CI: 0.77 to 0.97) and a specificity of 0.83 (20 of 24; 95% CI: 0.63 to 0.95).

We examined the drains that were inaccurately classified (n = 9, Fig 4). In these drains, the
agreement between predicted and GT coverage profiles was moderate to good (ICC = 0.74
[95% CI: 0.7 to 0.77]). Fleiss’s k was -0.07, indicating a poor disagreement between readers,
and the human reading was not significantly different from a random classification of the tip
position (p = 0.7). In contrast, Fleiss’s « for the 96 correctly classified drains was moderate at
0.63.

1. False negative results (n = 5): In this group, drains #2—4 had intermediate values indicating
a borderline drain position. The predicted coverage profiles were generally lower than the
GT ones. Drains #7 and #9 had correctly quantified, near-zero coverage profiles, but the
human readers classified them as correct. In these cases, misclassification by the human
readers was suspected.
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Fig 3. Non-contrast axial CT scans (A, C) of a patient from testing dataset following minimally invasive surgery
showing a left frontal hemorrhage (red) and drain (green). Corresponding Plots of the coverage profiles (B, D).
Vertical dashed line separates the distal 15 mm (green) from the rest of the drain (blue). (A) There is only marginal
contact between the drain and the bleeding and (B) a coverage reaching approximately 25% between 15 and 25 mm
from the tip. (C) Following surgical correction there was an optimal positioning of the drain and (D) an almost
complete coverage of the drain with the hemorrhage.

https://doi.org/10.1371/journal.pone.0316003.g003

2. False positive result (n = 4): In this group, drains #1, #5, and #6 showed a possible border-
line position of the drain. Drain #8 had a substantially higher predicted profile (Fig 4), lead-
ing to a false positive classification. The higher predicted profile was due to an accurate
quantification of the coverage of the tip of an external ventricular drain by an intraventricu-
lar bleeding (S5 Fig). The drain position was correctly classified by human readers as incor-
rect because there was no contact with the ICH.

Discussion

Follow-up CT scans are often performed after minimally invasive drain placement for acute
supratentorial ICH and are likely to become increasingly important in light of the ENRICH
trial [4]. In our study, we developed an end-to-end pipeline that utilizes a previously published
convolutional neural network-based segmentation of ICH and intracranial drains [7] to detect,
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Fig 4. Figure depicting predicted (blue) and ground truth (green) coverage profiles of drains that were misclassified by the classification model.

https://doi.org/10.1371/journal.pone.0316003.g004

quantify and classify the location of the drain in relation to the ICH. Each step was statistically
validated independently, followed by end-to-end testing. The overall drain detection accuracy
was excellent at 0.97. We successfully quantified the coverage area between the ICH and the
drain reaching an ICC of 0.86 in the test dataset. Using the coverage profiles to classify the tip
position, our pipeline achieved a high accuracy of 0.88 (57 of 65; 95% CI: 0.77 to 0.95) with an
AUC-ROC 0f 0.92 (95% CI: 0.85 to 0.99) in identifying incorrect drain positions.
To evaluate generalizability of the model, we included image data originating from dif-
ferent scanners with a wide range of voxel sizes and anisotropy both in the training and the
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independent testing datasets. To avoid bias, we tested our pipeline on a dataset of consecu-
tive patients.

The application of machine learning for the detection and segmentation of ICH has been
extensively studied, with a detection accuracy of 98% and a dice similarity coefficient for seg-
mentation of 0.92 being achieved [16, 17]. These results are comparable to those obtained with
the model used in our pipeline [7]. A review of the literature revealed no publications on the
development of segmentation models for ICH drains. Furthermore, our search revealed a pau-
city of published literature examining the evaluation of drain position, whether using clinical
parameters or machine learning approaches. We conducted an expanded search for publica-
tions evaluating the placement of shunts in cases of hydrocephalus. Previous studies have
employed machine learning to predict shunt failure, but using different methodologies in
comparison to our proposed pipeline [18, 19]. These studies utilized either multiple morpho-
logical and clinical parameters or only the progression of ventricular volume on serial scans
for detection of shunt failure, but no quantification of the coverage was attempted. A technical
note demonstrated the successful application of machine learning for the identification of the
make and model of ventricular shunts [20].

Due to the absence of published standardized criteria for the evaluation of correct drain
position, reporting remains highly subjective. Therefore, even experienced radiologists may
classify a borderline position of the drain differently, explaining the moderate overall inter-
rater agreement (Fleiss’s k¥ = 0.57) in our cohort.

ICH and drains exhibit excellent contrast in CT. This was exploited for automated diagno-
sis with high accuracy [16, 17]. Elsheikh et. al. [7] observed the best segmentation result in
their study using a probability threshold of 0.5 for the binary masks. This however, did not
translate to an accurate detection of drains as discrete objects. Using a probability threshold of
0.9, we reached an excellent detection accuracy (0.97 (95% CI: 0.92 to 0.99)) in the test dataset.
However, our model showed weaknesses, not detecting a drain with a short intracranial course
or in cases with two drains in contact to each other. False positive detections occurred in struc-
tures exhibiting high density, e.g. bony fragments and thick calcifications. Enlarging the train-
ing cohort could enhance performance in this respect.

The segmentation model results [7] allowed an accurate quantification of the drain cover-
age, exhibiting a good concordance (ICC = 0.86) with the GT. This facilitated the graphical
visualization of the relationship between the drain and the ICH, and served as input for the
development of our classification model. In order to address the limitations of the small data-
set, we sought to mitigate the issue of overfitting by employing regularized models [21]. Fur-
thermore, a model with a simple architecture is less susceptible to overfitting than a more
complex one [21]. We observed this in our results, as the most effective model (penalized logis-
tic regression) was of a relatively simple architecture, which may indicate a certain degree of
overfitting with more complex model architectures. Conversely, to enable the model to
encompass a sufficient number of data features, we subjected the model to the greatest possible
extent of training data by employing leave-one-out cross-validation. We suspect no significant
underfitting, as the model reached an accuracy of 0.98 (95% CI: 0.87 to 1) in the training-vali-
dation dataset. The model was able to classify the tip position with high accuracy
(AUC-ROC =0.92 (95% CI: 0.85 to 0.99), accuracy = 0.88 [57 of 65; 95% CI: 0.77 to 0.95]) in
the testing group. However, in the complete dataset nine drains were incorrectly classified. An
examination of the incorrectly classified drains revealed an inherent ambiguity in the drain
position, as suggested by the poor interrater agreement (Fleiss’ k¥ = -0.07, p = 0.7) in this subset.
Although the predicted coverage profiles of these drains demonstrated a moderate to good
agreement with GT coverage profiles (ICC = 0.74), this variance may have contributed to the
incorrect classifications. The limited dataset size precludes the exclusion of potential inherent
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errors in the classification model, as indicated by the somewhat broader 95% confidence inter-
vals, which may also be a contributing factor.

The proposed pipeline has the potential to facilitate numerous research possibilities and
clinical applications. Initially, it seems necessary to perform a more comprehensive validation
of the prediction model’s generalizability using a larger dataset and a more thorough testing of
a wider range of machine learning models. Following a more robust validation, the pipeline
could be applied for scaling data collection in larger population studies, with the aim of exam-
ining the imaging criteria for a correct drain position. In order to achieve the objective of the
surgical procedure, which is to reduce ICH volume and improve patient outcome, it would be
beneficial to define the imaging criteria associated with these parameters with greater preci-
sion. The modular composition of the pipeline allows for straightforward adaptation to a mul-
titude of different tasks. This includes the incorporation of drains with varying working
lengths and the application to other disease states using different segmentation models, such
as the drainage of subdural hematomas or hydrocephalus. In the forthcoming era of com-
puter-aided diagnosis, further studies could examine whether the graphical representation of
the coverage profile and the automated classification would reduce the time needed for the
reporting process. This could be accomplished by eliminating the necessity for multiplanar
reconstructions and manual measurements. Furthermore, this approach may assist in reduc-
ing discrepancies between readers in instances where a borderline positioning of a drain is
encountered.

Our study had several limitations. First, the size of the patient cohort was relatively limited,
which may have resulted in missing some clinical scenarios that were not encountered in the
dataset. However, the issue we sought to examine exhibits limited variability, and our pipeline
was accurate when evaluated on a consecutive three-year patient cohort. Additionally, the lim-
ited sample size may introduce inherent errors in the classification model and may not allow
for adequate measurement of model performance. The model may be susceptible to memori-
zation of the dataset, leading to overfitting, or it may fail to capture sufficient features, leading
to underfitting. Such limitations may have a negative impact when the model is applied to pre-
viously unseen data. Although the generalizability was tested on a consecutive three-year
patient, the total number of included patients and scans was relatively small (n = 44, 59 scans).
Second, lacking objective criteria for classifying the drain position, we had to rely on human
readers to establish the ground truth for our model. Third, the temporal changes of the ICH
after MIS procedures and the relationship with clinical and surgical technical aspects were not
investigated in this study, as the primary focus of this study was to establish the diagnostic
validity of the pipeline.

Conclusion

Our proposed, multi-stage, automated end-to-end pipeline to detect drains following minimal
invasive surgery in acute ICH and to quantify and then classify the drain position in relation to
ICH achieved accurate results, comparable to experienced human readers. Following further
validation, the proposed methodology may be applied as a computer-aided diagnostic tool or
for data collection in large population studies in different disease states.

Supporting information

S1 Fig. Zoomed image of the employed bleeding drain, showing openings only in the distal
15 mm. Scale is given in cm.
(TIF)
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S2 Fig. Axial (A-C) and sagittal (D) reconstructions of non-contrast CT scans of falsely
detected drains superimposed with the binary drain mask at 0.90 probability threshold (blue).
(A) A displaced bone fragment within the bleeding (arrow) and (B) a thick calcification of the
flax cerebri (arrow) classified incorrectly as drains. (C) Two touching drains (arrow) seg-
mented as a single object. (D) A drain with a short intracranial course (arrow), missed in the
0.9 threshold binary mask.

(TIF)

$3 Fig. Concordance (left column) and Bland-Altman plots (right column) of the coverage
profiles of predicted and GT drains in (A) training, (B) validation and (C) testing datasets.
Regression line (blue) and 95% confidence interval of predicted values (shaded area).

(TIF)

S4 Fig. Area under the receiver operating characteristic curve (AUC-ROC) of the drain
classification results in testing dataset. 95% CI: 95% confidence interval.
(TIF)

S5 Fig. Image depicting (A) predicted (blue) and ground truth (green) coverage profiles of a
false positive classification result (drain #8). (B) Corresponding CT scan, showing contact
between tip of the external ventricular drain (blue arrow) and an intraventricular bleeding
(red arrow).

(TIF)

S1 Data. An anonymized, minimal data set to allow replication of the study findings.
(CSV)

$2 Data. A data dictionary describing the data type and contents of each column of S1 Data.
(CSV)

Author Contributions
Conceptualization: Samer Elsheikh, Marco Reisert.

Data curation: Samer Elsheikh, Ahmed Elbaz, Alexander Rau, Theo Demerath, Elias Kellner,
Ralf Watzlawick, Urs Wiirtemberger, Horst Urbach, Marco Reisert.

Formal analysis: Samer Elsheikh.

Investigation: Samer Elsheikh, Marco Reisert.
Methodology: Samer Elsheikh, Horst Urbach, Marco Reisert.
Project administration: Samer Elsheikh, Marco Reisert.
Resources: Elias Kellner, Marco Reisert.

Software: Elias Kellner, Marco Reisert.

Supervision: Marco Reisert.

Validation: Samer Elsheikh.

Visualization: Samer Elsheikh.

Writing - original draft: Samer Elsheikh, Marco Reisert.

Writing - review & editing: Samer Elsheikh, Ahmed Elbaz, Alexander Rau, Theo Demerath,
Elias Kellner, Ralf Watzlawick, Urs Wiirtemberger, Horst Urbach, Marco Reisert.

PLOS ONE | https://doi.org/10.1371/journal.pone.0316003 December 26, 2024 12/14


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0316003.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0316003.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0316003.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0316003.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0316003.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0316003.s007
https://doi.org/10.1371/journal.pone.0316003

PLOS ONE NeuroDrAlIn: a Tool for Automated Detection and Classification of Intracerebral Hemorrhage Drains in CT Scans

References

1.

10.

11.

12

13.

14.

15.

16.

17.

18.

Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, et al. (2013) Global
and regional burden of first-ever ischaemic and haemorrhagic stroke during 19902010: Findings from
the global burden of disease study 2010. The Lancet Global Health. 1(5): e259-e281 https://doi.org/10.
1016/S2214-109X(13)70089-5 PMID: 25104492

Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, et al. (2022) 2022
guideline for the management of patients with spontaneous intracerebral hemorrhage: A guideline from
the american heart association/american stroke association. Stroke. 53(7): €282—e361 https://doi.org/
10.1161/STR.0000000000000407 PMID: 35579034

Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, et al. (2019) Efficacy and
safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MIS-
TIE Ill): A randomised, controlled, open-label, blinded endpoint phase 3 trial. The Lancet. 393(10175):
1021-1032 https://doi.org/10.1016/s0140-6736(19)30195-3 PMID: 30739747

Pradilla G, Ratcliff JJ, Hall AJ, Saville BR, Allen JW, Paulon G, et al. (2024) Trial of early minimally inva-
sive removal of intracerebral hemorrhage. New England Journal of Medicine. 390(14): 1277—-1289
https://doi.org/10.1056/NEJMo0a2308440 PMID: 38598795

Ratcliff JJ, Hall Ad, Porto E, Saville BR, Lewis RJ, Allen JW, et al. (2023) Early minimally invasive
removal of intracerebral hemorrhage (ENRICH): Study protocol for a multi-centered two-arm random-
ized adaptive trial. Frontiers in Neurology. 14 https://doi.org/10.3389/fneur.2023.1126958 PMID:
37006503

Demerath T, Stanicki A, Roelz R, Farina Nunez MT, Bissolo M, Steiert C, et al. (2022) Accuracy of aug-
mented reality-guided drainage versus stereotactic and conventional puncture in an intracerebral hem-
orrhage phantom model. Journal of Neurolnterventional Surgery. 15(7): 708—711 https://doi.org/10.
1136/neurintsurg-2022-018678 PMID: 35853700

Elsheikh S, Elbaz A, Rau A, Demerath T, Fung C, Kellner E, et al. (2024) Accuracy of automated seg-
mentation and volumetry of acute intracerebral hemorrhage following minimally invasive surgery using
a patch-based convolutional neural network in a small dataset. Neuroradiology. 66(4): 601-608 https://
doi.org/10.1007/s00234-024-03311-4 PMID: 38367095

Reisert M, Russe M, Elsheikh S, Kellner E, Skibbe H (2022) Deep Neural Patchworks: Coping with
Large Segmentation Tasks. arXiv e-prints.: arXiv:2206.03210 https://doi.org/10.48550/arXiv.2206.
03210

Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: Analysis, selection,
and tool. BMC Medical Imaging. 15(1) https://doi.org/10.1186/s12880-015-0068-x PMID: 26263899

R Core Team 2022. R: A language and environment for statistical computing. [Online]. https://www.R-
project.org/

Kuhn Max (2008) Building predictive models in r using the caret package. Journal of Statistical Soft-
ware. 28(5): 1-26 https://doi.org/10.18637/jss.v028.i05

Gamer M, Lemon J, <puspendra.pusp22 @ gmail.com> IFPS 2019. Irr: Various coefficients of interrater
reliability and agreement. [Online]. https://CRAN.R-project.org/package=irr

Kuhn M, Vaughan D 2022. Yardstick: Tidy characterizations of model performance. [Online]. https://
CRAN.R-project.org/package=yardstick

Datta D 2017. Blandr: A bland-altman method comparison package for r. [Online]. https://doi.org/10.
5281/zenodo.824514

Park MY, Hastie T (2007) Penalized logistic regression for detecting gene interactions. Biostatistics. 9
(1): 30-50 https://doi.org/10.1093/biostatistics/kxm010 PMID: 17429103

Yeo M, Tahayori B, Kok HK, Maingard J, Kutaiba N, Russell J, et al. (2021) Review of deep learning
algorithms for the automatic detection of intracranial hemorrhages on computed tomography head
imaging. Journal of Neurolnterventional Surgery. 13(4): 369-378 https://doi.org/10.1136/neurintsurg-
2020-017099 PMID: 33479036

Kok YE, Pszczolkowski S, Law ZK, Ali A, Krishnan K, Bath PM, et al. (2022) Semantic segmentation of
spontaneous intracerebral hemorrhage, intraventricular hemorrhage, and associated edema on CT
images using deep learning. Radiology: Atrtificial Intelligence. 4(6) https://doi.org/10.1148/ryai.220096
PMID: 36523645

Hale AT, Riva-Cambrin J, Wellons JC, Jackson EM, Kestle JRW, Naftel RP, et al. (2021) Machine learn-
ing predicts risk of cerebrospinal fluid shunt failure in children: A study from the hydrocephalus clinical
research network. Child’s Nervous System. 37(5): 1485—1494 https://doi.org/10.1007/s00381-021-
05061-7 PMID: 33515058

PLOS ONE | https://doi.org/10.1371/journal.pone.0316003 December 26, 2024 13/14


https://doi.org/10.1016/S2214-109X%2813%2970089-5
https://doi.org/10.1016/S2214-109X%2813%2970089-5
http://www.ncbi.nlm.nih.gov/pubmed/25104492
https://doi.org/10.1161/STR.0000000000000407
https://doi.org/10.1161/STR.0000000000000407
http://www.ncbi.nlm.nih.gov/pubmed/35579034
https://doi.org/10.1016/s0140-6736%2819%2930195-3
http://www.ncbi.nlm.nih.gov/pubmed/30739747
https://doi.org/10.1056/NEJMoa2308440
http://www.ncbi.nlm.nih.gov/pubmed/38598795
https://doi.org/10.3389/fneur.2023.1126958
http://www.ncbi.nlm.nih.gov/pubmed/37006503
https://doi.org/10.1136/neurintsurg-2022-018678
https://doi.org/10.1136/neurintsurg-2022-018678
http://www.ncbi.nlm.nih.gov/pubmed/35853700
https://doi.org/10.1007/s00234-024-03311-4
https://doi.org/10.1007/s00234-024-03311-4
http://www.ncbi.nlm.nih.gov/pubmed/38367095
https://doi.org/10.48550/arXiv.2206.03210
https://doi.org/10.48550/arXiv.2206.03210
https://doi.org/10.1186/s12880-015-0068-x
http://www.ncbi.nlm.nih.gov/pubmed/26263899
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.18637/jss.v028.i05
https://CRAN.R-project.org/package=irr
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=yardstick
https://doi.org/10.5281/zenodo.824514
https://doi.org/10.5281/zenodo.824514
https://doi.org/10.1093/biostatistics/kxm010
http://www.ncbi.nlm.nih.gov/pubmed/17429103
https://doi.org/10.1136/neurintsurg-2020-017099
https://doi.org/10.1136/neurintsurg-2020-017099
http://www.ncbi.nlm.nih.gov/pubmed/33479036
https://doi.org/10.1148/ryai.220096
http://www.ncbi.nlm.nih.gov/pubmed/36523645
https://doi.org/10.1007/s00381-021-05061-7
https://doi.org/10.1007/s00381-021-05061-7
http://www.ncbi.nlm.nih.gov/pubmed/33515058
https://doi.org/10.1371/journal.pone.0316003

PLOS ONE NeuroDrAlIn: a Tool for Automated Detection and Classification of Intracerebral Hemorrhage Drains in CT Scans

19. Huang KT, McNulty J, Hussein H, Klinger N, Chua MMJ, Ng PR, et al. (2024) Automated ventricular
segmentation and shunt failure detection using convolutional neural networks. Scientific Reports. 14(1)
https://doi.org/10.1038/s41598-024-73167-4 PMID: 39333724

20. Rhomberg T, Trivik-Barrientos F, Hakim A, Raabe A, Murek M (2024) Applied deep learning in neuro-
surgery: Identifying cerebrospinal fluid (CSF) shunt systems in hydrocephalus patients. Acta Neurochir-
urgica. 166(1) https://doi.org/10.1007/s00701-024-05940-3 PMID: 38321344

21. Belkin M, Hsu D, Ma S, Mandal S (2019) Reconciling modern machine-learning practice and the classi-
cal bias—variance trade-off. Proceedings of the National Academy of Sciences. 116(32): 15849-15854
https://doi.org/10.1073/pnas.1903070116 PMID: 31341078

PLOS ONE | https://doi.org/10.1371/journal.pone.0316003 December 26, 2024 14/14


https://doi.org/10.1038/s41598-024-73167-4
http://www.ncbi.nlm.nih.gov/pubmed/39333724
https://doi.org/10.1007/s00701-024-05940-3
http://www.ncbi.nlm.nih.gov/pubmed/38321344
https://doi.org/10.1073/pnas.1903070116
http://www.ncbi.nlm.nih.gov/pubmed/31341078
https://doi.org/10.1371/journal.pone.0316003

