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W N e

Abstract: Background: Large language models (LLMs) like GPT-3.5-Turbo and GPT-4 show potential
to transform medical diagnostics through their linguistic and analytical capabilities. This study
evaluates their diagnostic proficiency using English and German medical examination datasets.
Methods: We analyzed 452 English and 637 German medical examination questions using GPT
models. Performance metrics included broad and exact accuracy rates for primary and three-model
generated guesses, with an analysis of performance against varying question difficulties based on
student accuracy rates. Results: GPT-4 demonstrated superior performance, achieving up to 95.4% ac-
curacy when considering approximate similarity in English datasets. While GPT-3.5-Turbo showed
better results in English, GPT-4 maintained consistent performance across both languages. Question
difficulty was correlated with diagnostic accuracy, particularly in German datasets. Conclusions:
The study demonstrates GPT-4’s significant diagnostic capabilities and cross-linguistic flexibility,
suggesting potential for clinical applications. However, further validation and ethical consideration
are necessary before widespread implementation.
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1. Research in Context
1.1. Evidence Before This Study

We conducted a comprehensive review of the literature using PubMed, Embase, and
the Cochrane Central Register up to 18 August 2023. Our search combined terms related
to artificial intelligence (e.g., “language models”, “GPT”, “natural language processing”)
with those indicating medical diagnosis (e.g., “medical diagnosis”, “clinical prediction”,
“medical consultation”). We also limited our search to studies published in English and
German. Our findings primarily consisted of studies emphasizing the potential of AI mod-
els in various medical applications. However, few detailed evaluations existed regarding
the specific diagnostic capability of large language models (LLMs) like GPT-3.5-Turbo and
GPT-4 in multiple languages.

1.2. Added Value of This Study

This manuscript presents, to our knowledge, the most comprehensive assessment of
the GPT-3.5-Turbo and GPT-4 models in terms of diagnostic accuracy across the English
and German languages. This study not only emphasizes the models’ remarkable capability
in accurate diagnosis predictions but also underscores their performance consistency across
diverse languages, suggesting their broader applicability. Moreover, our examination
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includes a comparison of the models” performances across different levels of question
difficulty, providing nuanced insights into their potential limitations and strengths.

1.3. Implications of All the Available Evidence

The findings of this study reinforce the idea that Al-driven LLMs like GPT-4 possess
significant potential as diagnostic tools, especially in scenarios demanding swift and accu-
rate medical insights. Their consistent performance across languages indicates a promising
avenue for global healthcare applications, particularly in regions facing a shortage of
healthcare professionals. Nevertheless, as our research suggests, while the models show
potential, their actual clinical integration requires further rigorous validation. Future re-
search could focus on integrating these models into clinical systems, understanding their
ethical implications, and tailoring them further based on real-world feedback.

2. Introduction

Large language models (LLMs) are language-based artificial intelligences (Als) that
potentially find application in education, research, and clinical practice [1]. The challenge
indeed lies in recognizing pitfalls and promoting feasibility in application [2]. There
are currently no standards for the use of LLMs in medicine [3]. One of the most well-
known frameworks to use large language models is ChatGPT from OpenAl [4]. Currently,
two models are available in ChatGPT [5]. The training datasets for GPT 3 consisted of
93% English language content [6]. In comparison to GPT-3.5-Turbo, the parameter size,
a value describing the model size, is about six times larger in GPT-4. GPT-4 is thus even
more capable and able to handle more demanding scenarios [7]. The most recent version
of Microsoft’s search engine Bing Chat is powered by GPT-4, merging extensive language
comprehension abilities with real-time access to recent data available on the web [8].

ChatGPT has already shown good results on the United States Medical Licensing Exam
(USMLE), reaching the passing mark of 60% [9]. ChatGPT also showed good to outstanding
results in the German medical state examination, with the number of correct answers
significantly differing between the model versions GPT-3.5-Turbo and GPT-4 [10]. This was
also confirmed in further examinations in medical tests [11,12]. In contrast to the reality in
clinics, the responses to patient complaints in the German Medical Licensing Examination
and the United States Medical Licensing Exam are predetermined by multiple-choice
answers [13,14]. This limits the response options and essentially does not reflect clinical
daily life. So far, initial studies have shown promising results regarding the performance
of LLMs in addressing open medical questions [15,16]. To further explore the limits of
these models and identify areas for improvement, additional research is essential. If these
artificial intelligences achieve similarly good results when responding to open questions
that require correct diagnoses based on medical history, symptom descriptions, laboratory
values, and imaging findings, they could potentially be more widely implemented in
clinical settings in the future.

With platforms like TrueHealth [17], Google Health [18], and Ada [19] advocating for
the democratization of healthcare—a term that remains contentious or undefined in this
context [20,21]—the role of LLMs becomes increasingly significant. The urgent need for
meticulous scientific scrutiny is amplified by the looming risks, notably misdiagnoses. The
allure of “free assessment and treatment plans” emphasizes the pressing need to evaluate
the capabilities and constraints of such Al-driven tools, prioritizing patient safety.

A crucial tool in the medical text mining toolbox is named entity recognition (NER),
which emerged as a substantial approach to transforming natural language texts into struc-
tured machine-readable data, thereby automating the extraction of necessary information.
Initially introduced in 1996 to identify various types of names and symbols [22], it has
evolved to identify specific medical entities such as diseases, drugs, and treatments, fa-
cilitating informed medical decision-making and disease risk prediction. In recent years,
advances in model architecture continuously improved the accuracy for biomedical entity
linking [23,24].
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SAMPLING

PREDICTION

EVALUATION

This study critically evaluates the capabilities of ChatGPT in medical education and
clinical routine by analyzing the performance of GPT-4 and GPT-3.5-Turbo in answering
open-ended medical questions from the German Medical Licensing Examination and the
United States Medical Licensing Exam. Specifically, we examine the number of correct
answers given by these large language models to both English and German questions—the
latter not being their main training language—to assess their utility in the medical field.

In addition, we tested how well Bing Chat recognizes the answers determined by
GPT-3.5-Turbo and GPT-4 as correct (exact match) or correct in the broader sense (broad
match) compared to the human-created databases MeSH (Medical Subject Headings) and
UMLS (Unified Medical Language System).

3. Methods
3.1. Study Design

We conducted a comparative analysis of OpenAl’s large language models GPT-4
and GPT-3.5-Turbo (version of 24 May 2023, [25]), assessing their aptitude in predicting
diagnoses based on exam questions in English and German, omitting the multiple-choice
answers. MeSH and UMLS databases facilitated alignment between the correct answers
and model responses. Furthermore, Bing Chat, with internet access during interactions,
was employed for assessing the medical equivalency of terms (Figure 1).

Total multiple-choice question pool (n=16,083)

United States Medical Second German Medical
Licensing Examination (n=5687) |State Exam (n=10,396)

Does the question
ask for a diagnosis?

econium lleus
(B) Hi rungJo#

answer options are (D)

not used in the prompt Meconium plug syn

Filtered for questions asking for a specific diagnosis (n=1089)

English questions (n=452) + German questions (n=637)

Two tested models|Questions asked| Model predictions
GPT-4 “What are the 1. Scaphoid fracture
three most likely | 2. Colonic atresia
GPT-3.5-Turbo |diagnoses?” 3. Borreliosis
Evaluation of

Corregt an.swer Model prediction ~ EXact match Broad match
Meconium ileus including Synonyms  categorized in one (in this example: green) of
Model predictions four (green + three red crosses) categories
1. Scaphoid fracture First guess X X

2. Intestinal obstruction
3. Borreliosis

intestinal obstruction
Any guess >< meconium ileus

MeSH and UMLS Comparisons between different metrics

Extra
! - Exact and Broad matches .
Term Matchlng of - First and Any guesses similarit eBz;Tgai?Jnm
icti - Language Imilarity evaluation,
model predlctlons - Model Question difficulty correlation

Figure 1. Study design describing the sampling of the questions, prediction of diagnoses, and final
evaluation after MeSH/UMLS term matching. The example shows a match within the any of the three
model suggestions (“Any guess”) or in the broader sense (“Broad match”); for example, intestinal
obstruction is not an exact match nor a synonym of meconium ileus but a broader concept.
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3.2. Sampling of Exam Questions

Questions were sourced from the Amboss learning platform [26]. We manually curated
multiple-choice questions seeking a diagnosis, specifically those with prompts like “What
is the most likely diagnosis?”. The German subset comprised questions from the second
clinical medical state exams spanning 2006-2023, while the English subset was derived from
USMLE state exam preparation questions. Questions incorporating media (e.g., images)
or having a series of queries for a single patient were excluded. From an initial pool of
16,083 questions, our final dataset included 637 (6.1%) German and 452 (7.9%) English
questions, culminating in a sample size of 1089 questions. Depending on the percentage of
correct student answers in the exam, the difficulty of each question was rated on a scale
from 1 to 5 (Supplementary Table S1).

3.3. Prompting

The following standardized prompting sentences were used in OpenAl’s large lan-
guage models GPT-4 and GPT-3.5-Turbo:

- English: “You are a medical expert (professor at a prominent US university hospital)
tasked with determining the most likely diagnosis based on patient histories. Answer
only in this format: <List of 3 diagnoses, the most probable first>".

- German: “Du bist ein Medizinexperte (Professor an einer renommierten medizinis-
chen Universitatsklinik) und mochtest die wahrscheinlichste Diagnose basierend
auf Patientenanamnese bestimmen. Antworte nur in diesem Format: <Liste von 3
Diagnosen, die wahrscheinlichste zuerst>".

3.4. Concept Detection and Diagnosis Matching

A total of 7623 medical terms were analyzed, with 1089 correct diagnoses and 6534 model-
generated responses (three diagnostic suggestions per question from GPT-3.5-Turbo and
GPT-4). In the next step, these responses/answer terms were matched with diagnoses
(exact and broad matches) using the National Library of Medicine’s MeSH and UMLS
Metathesaurus Browser. For this purpose, the German model-generated responses were
translated into English via Google Translate. In cases of non-matching, we divided the
responses into substrings (based on common patterns, Supplementary Table S2) and con-
ducted a second search. The queries’ results were split into “exact matches” (exact string
matches, abbreviations, and synonyms, e.g., atopic eczema and atopic dermatitis) and
“broad matches” (e.g., beta-Thalassemia and alpha-Thalassemia, both terms located within
the group of hemic and lymphatic diseases).

3.5. Bing Search Term Similarity Evaluation

To compare the Al-based matching of medical terms to the previously described
matching using human-generated medical databases, we used Bing Chat to evaluate pairs
of terms for synonymity or relatedness in a broader sense, employing a structured question
template (Supplementary Table S3). If the models did not respond, we posed the question
again. The Bing search mapping was then compared to the MeSH and UMLS mapping.

4. Statistical Analysis

Analyses were conducted on an Apple M1 Pro (16 GB) running macOS Ventura 13.4.1
(c) using Python 3.10.12. Libraries used include scipy (v1.11.1), Seaborn (v0.11.2), Matplotlib
(v3.7.2), Pandas (v2.0.3), Numpy (v1.25.2), and Statannotations (v0.5.0).

We employed chi-squared tests to discern differences between groups with binary
outcomes. Spearman’s rank correlation was utilized to associate question difficulty (Sup-
plementary Table S4) with the accuracy of the LLM predictions. Graphical representations
include 95% confidence intervals of the mean, with gray brackets denoting p-values > 0.5.
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Declaration of Generative Al and Al-Assisted Technologies in the Writing Process

While drafting this manuscript, we availed the services of Grammarly and GPT-4
to enhance linguistic clarity and rectify grammatical discrepancies. Thereafter, rigorous
manual reviews were undertaken, and the authors assume complete responsibility for the
content’s integrity.

5. Results

A comprehensive assessment of GPT models’ accuracy was conducted in two promi-
nent languages, namely English and German. The dataset for the English language com-
prised 452 questions, while the German dataset included 637 questions.

5.1. Matched Concepts

Of all 7623 terms (correct exam answers + models’ answers), 3749 remained after
removing duplicates. We found 2727 (72.8%) matching concepts in the MeSH database and
3746 (99.9%) in the UMLS database. A total of 2724 (72.7%) matching concepts were found
in both the UMLS and the MeSH databases. All 3749 (100%) terms, including synonym:s,
broader, and narrower concepts, were found in at least one of the two databases, thereby
ensuring the complete set of 7623 terms was available for subsequent analyses.

5.2. Correct Diagnosis in LLM Predictions

In the English dataset, when measuring broad accuracy, GPT-3.5-Turbo achieved a
75.0% accuracy rate on its first guess and 90.5% when any of the three predictions were
considered. Meanwhile, GPT-4 demonstrated enhanced performance, with an 81.9% accu-
racy on the first guess and 95.4% when considering any prediction. When evaluating exact
accuracy, GPT-3.5-Turbo and GPT-4 displayed 46.0% vs. 61.9% on the first guess and 61.1%
vs. 76.8% on any of three predictions, respectively. For the German dataset, under broad
accuracy metrics, GPT-3.5-Turbo displayed a 69.2% accuracy on its primary guess and an
82.6% accuracy on any of three predictions. In contrast, GPT-4 outperformed, with 79.0%
on its initial guess and 90.0% on any guess. Examining the exact accuracy, GPT-3.5-Turbo
achieved 47.4% on the first guess and 63.0% on any prediction, while GPT-4 reported a
slight improvement, with 64.8% on its first guess and 76.6% considering any prediction.

5.3. Statistical Comparisons Between LLMs

Upon a detailed examination of the exact and broad metrics for both languages, GPT-4
consistently demonstrated significant superiority over GPT-3.5-Turbo. For instance, in the
exact metrics for the English language, any guess by GPT-4 was significantly better than
GPT-3.5-Turbo (x? (1, N = 904) = 25.3, p < 0.001). Similar trends were observed across all
analyses (Figure 2).

5.4. Differences Between Languages

When isolating for the model type and comparing across languages, differences
became apparent. For GPT-3.5-Turbo under the broad metric, the first and any guesses for
the English language significantly surpassed that of German (x? (1, N = 1089) = 4.1/13.0,
p =0.04/p < 0.001, respectively). However, when examining GPT-4’s performance, while
differences remained significant for any guess under the broad metric, the gaps narrowed,
indicating the model’s more consistent performance across languages (Figure 3).

5.5. Comparative Analysis Between First Guess and Any Guess

When comparing the first guess to any subsequent guesses, both models across both
languages led to significantly improved accuracy, except for the first guesses made by
GPT-4 considering the broad matching of diagnoses. The differences for the exact matches
of model predictions and correct diagnoses were nullified for both types of guesses and
both models (Figure 4).
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Figure 2. A comparative analysis of diagnostic accuracy between the large language models GPT-
4 and GPT-3.5-Turbo. The comparison is structured across two dimensions, namely the type of
match—exact or broad (represented in the first and second columns, respectively)—and the language
used—English or German (depicted in the first and second rows, respectively). Pairwise comparisons
were conducted using chi-square tests to evaluate the differences in performance between the two
models, with the results indicated above the respective bars in each subplot.
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Figure 3. A comparative analysis of diagnostic accuracy for examination questions in the two
languages of German and English. The comparison is structured across two dimensions, namely
the type of match—exact or broad (represented in the first and second columns, respectively)—and
the large language model used—GPT-3.5-Turbo or GPT-4 (depicted in the first and second rows,
respectively). Pairwise comparisons were conducted using chi-square tests to evaluate the differences
in performance between the languages, with the results indicated above the respective bars in each
subplot. Comparisons not reaching statistical significance (p > 0.05) are highlighted in gray.
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Figure 4. A comparative analysis of diagnostic accuracy for the 1st vs. any guess. The comparison
is structured across two dimensions, namely the type of match—exact or broad (represented in the
first and second columns, respectively)—and the language of the examination question—English or
German (depicted in the first and second rows, respectively). Pairwise comparisons were conducted
using chi-square tests to evaluate the differences in performance between the 1st and any guess, with
the results indicated above the respective bars in each subplot.

5.6. Question Difficulty and Correct LLM Diagnoses

In our assessment of the relationship between question difficulty and the accuracy
of predicted diagnoses using Spearman’s rank correlation, distinct patterns emerged con-
tingent on the model, language, and metric applied. For English language questions, no
discernible correlation was observed across all category combinations. On the other hand,
for German language questions, the GPT-3.5-Turbo model, focusing on exact matches,
showed a decline in correct answers as question difficulty increased, evident in both the
primary guess (r = —0.13, p < 0.001) and any subsequent guesses (r = —0.08, p = 0.04).
Similarly, the GPT-4 model presented this trend, but it was confined to exact matches
on primary guesses, suggesting a decrease in accuracy with more challenging questions.
Interestingly, for other category combinations associated with German questions, no clear
link was found between question difficulty and the models” accuracy (Table 1).

5.7. Bing Evaluation of GPT-4 and GPT-3.5-Turbo Results

Next, we assessed Bing Chat’s efficacy over 4356 diagnosis pairs, which comprised
all unique combinations of correct exam answers and the LLM’s diagnostic suggestions.
Our evaluation underscores Bing Chat’s commendable accuracy of 0.79 for both exact and
approximate matches. Particularly noteworthy was the positive predictive value (PPV),
which reached 0.90 for exact matches and 0.92 for approximate matches (Table 2), pointing
to Bing Chat’s strong potential in predicting correct diagnosis matches.
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Table 1. Correct diagnosis [%] per question difficulty (very easy, easy, intermediate, difficult, and
very difficult) among different parameters (language, metric, model, and guess). Spearman’s rank
correlation between question difficulty and number of correct answers for each category are shown.
p-values < 0.05 are in bold.

Percentage of Correct Answers for Each Difficulty Category Spearman
Language Metric Model Guess I\EI::;’ Easy Intermediate  Difficult Di‘f/fei?;l ¢ r 4
GPT-3.5- 1st 77.1 74.5 72.2 78 73.7 —0.02 0.68
Turbo any 91.5 89.2 91.7 922 84.2 —0.01 0.87
broad Tst 83.1 80.3 833 84 73.7 001 089
English GPT4 any 94.9 93.6 99.1 9% 89.5 0.03 0.48
g} _ igf) GPT-3.5- 1st 47.5 452 435 50 47.4 0 0.94
Turbo any 66.1 56.7 59.3 66 63.2 —0.02 0.73
exact P4 1st 68.6 55.4 67.6 58 52.6 004 038
any 79.7 68.8 83.3 82 73.7 0.04 0.44
(‘I)Z) (2;.1124,) (32.57?’/0) (2;.255%,) (115.3%) (4.1290/0) —oo1 072
GPT-3.5- 1st 72 66.8 714 62.9 70 —0.03 0.45
Turbo any 84.5 80.3 85.1 80.6 75 —0.02 0.60
broad Tst 78.8 827 T 75.8 65 004 030
German GPT-4 any 91.7 90.4 89.6 90.3 70 —0.06 0.13
gi _ 2?,; GPT-3.5- 1st 56 46.2 46.8 30.6 35 —0.13  <0.001
ot Turbo any 68.4 60.6 66.9 48.4 50 —0.08  0.04
P4 1st 68.4 69.2 62.3 51.6 45 —011  0.007
any 77.2 79.3 76.6 71 60 —0.05 0.22
O Gosw  Game  @am  2O7TW Gl 006 <0001

Table 2. Evaluation metrics for Bing Chat’s abilities to predict the similarity of two medical terms.

Metric Exact Matches Approximate Matches
Accuracy 0.79 0.79
Sensitivity 0.74 0.83
Specificity 0.86 0.64
Positive Predictive Value (PPV) 0.90 0.92
Negative Predictive Value (NPV) 0.67 0.44

6. Discussion

The results from our assessment of the GPT models present compelling evidence
on their diagnostic acumen. Remarkably, the models exhibit considerable capability in
identifying accurate diagnoses, even in the absence of multiple-choice options. In the
English dataset, GPT-4 demonstrated an impressive accuracy of 81.9% on its first guess and
95.4% when considering any of its three predictions under broad accuracy metrics. For the
German dataset, GPT-4 achieved an admirable accuracy of 79.0% on its initial guess and
90.0% on any of its predictions. While the outcomes of the responses are not as strong as the
results of the models with multiple-choice answers, overall, similarly positive results are
evident when considering multiple answer options [27]. This efficacy is further accentuated
when broader diagnostic categories are taken into account or when considering up to three
model-generated guesses rather than only the primary one. However, it is important to
note that in the case of German language questions, there was a decline in the accuracy of
ChatGPT’s models as question difficulty increased. For the GPT-3.5-Turbo model, exact
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match accuracy decreased with question difficulty. The GPT-4 model also saw a decline in
exact match accuracy for primary guesses. This suggests that while the models perform
well overall, there is room for improvement when dealing with more challenging questions
in the German language.

The positive outcomes from this study set a promising precedent for real-world
applications. Specifically, one could envision a scenario where a clinician feeds in patient
histories and receives diagnostic suggestions “on the fly” from the model. Such a system
could serve as an invaluable clinical advisory tool, assisting doctors in swiftly pinpointing
time-sensitive diagnoses, which can be especially vital in critical care situations [28]. A
comparison of performance in diagnosis and triage has already shown similarly good
results in accurate diagnosis, albeit with room for improvement in triage performance [29].
Likewise, GPT-3 appears to generate differential diagnoses at a level comparable to that of
medical professionals [30]. This is further corroborated by our findings, which demonstrate
a high rate of accurate diagnoses across various medical conditions. With the addition of
image recognition, this support can be further expanded. However, it still requires further
scientific investigation. The integration of Al in healthcare is not just a task for computer
scientists or Al experts but also requires close collaboration between Al practitioners,
clinicians, ethicists, and policy makers.

Not only do the models need to be trained and adapted for further use, there is also
a need for training medical staff to optimally use the programs and minimize potential
sources of error. One way to improve this is through feedback mechanisms. If medical
professionals could give feedback to the Al, this can be used for continuous improvement
of the processes, as seen in reinforcement learning through human feedback (RLHF) [31].

It is essential to emphasize that Al-assisted diagnosis in its current form should be
viewed as a complementary tool that supports, rather than replaces, physician expertise.
The complexity of medical diagnosis requires a physician’s years of training, clinical
experience, and holistic understanding of patient care—capabilities that extend far beyond
pattern recognition.

A valid criticism is that the data on which GPT-3.5-Turbo and GPT-4 were trained on
is only current up to September 2021 [32]. Nevertheless, medicine is a constantly evolving
field, and the Al requires regular updates based on the latest medical research and findings
to provide current recommendations. Another critical concern is the potential data privacy
issues when using Al models [33]. Even if individual queries are not currently stored,
additional regulations and protocols are needed to safely utilize the technology in the
future. It is also essential to verify the source and quality of the data used to train these
large language models before considering their general benefits. If the models were trained
with biased or inaccurate data, this could lead to data unreliability and bias, which can be
harmful in healthcare. To this day, OpenAl has not released their training dataset. However,
they recently unveiled ChatGPT Enterprise to address security and privacy issues [34].

The incorporation of language models into healthcare can have significant economic
implications for hospitals. Through appropriate integration into daily operations, these
models have the potential to alleviate the burden on healthcare staff, reducing the need for
overtime. Especially during times of staff shortages [35,36], this technology could serve as
a valuable tool to streamline and facilitate work processes. Studies have yet to investigate
how the widespread adoption of large language models might impact healthcare insurance
costs, patient care expenses, and even the pharmaceutical industry through more accurate
and streamlined diagnoses.

Our findings demonstrate that Al can rapidly propose suitable diagnoses, potentially
facilitating the diagnostic process, yielding cost savings by avoiding misdiagnoses, and
enhancing patient safety. However, a crucial element that currently cannot be replaced is
the human touch, which is essential for a strong doctor—patient relationship [37-39]. Thus,
it is hardly surprising that one of the major incentives for employing Al in healthcare is
to enhance the efficiency of human medical staff [40]. This could free up physicians to
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provide more attentive care and listen to their patients rather than being bogged down
with electronic medical record documentation [41].

An important observation to highlight is the commendable performance of the models
in languages other than their primary training language, English. This demonstrates not
just the flexibility of the models but also suggests their potential applicability in diverse
linguistic regions, especially in regions where healthcare professionals are scarce. The
robust performance in the German language dataset indicates the models’ readiness for
deployment outside the English-speaking domain, paving the way for a broader global
impact. Even though this study was able to show that the models have equally good
results in languages they were not mainly trained in, it is important to consider the cultural
nuances in healthcare in different regions. Symptoms might be described differently and
cultural practices could influence health outcomes. This requires further investigation in
the future.

Bing Chat demonstrates promising capabilities in detecting similarities between med-
ical terms, showcasing high accuracy in both exact and broader matches. While prior
research utilizing only GPT-3.5-Turbo highlighted limited efficacy in general and medical
named entity recognition [42,43], our study breaks new ground by evaluating medical sim-
ilarity detection using Bing Chat, leveraging OpenAl’s most recent LLM GPT-4 enhanced
with web access. This preliminary success suggests its potential to become a pivotal tool in
medical diagnostics, leveraging deep learning and real-time web insights to bridge the gap
between technology and nuanced medical understanding. The system adeptly accommo-
dates near-perfect matches, paving the way for practical applications where exact matches
are not mandatory and presenting a promising avenue in the diagnostic landscape through
enriched data access. Bing Chat also has its limitations. Its performance depends on internet
connectivity and access to accurate up-to-date medical information. Furthermore, medical
terms can vary significantly across languages and cultural contexts, potentially leading
to inconsistencies in term recognition. These limitations highlight the need for further
testing and refinement before integrating Bing Chat into high-stakes clinical environments.
Nonetheless, its ability to recognize related terms efficiently is a promising step toward
more robust Al support in healthcare.

Our study, however, has some inherent limitations. Primarily focusing on English
and German datasets may limit the applicability of our findings to other less common
languages and thus a truly global context. The subjective categorization of question
difficulty based on students’ correct answers could introduce variability, possibly affecting
the perceived performance of the models against different levels of challenge. Additionally,
the evaluation was limited to GPT-3.5-Turbo and GPT-4, without considering the nuances of
other iterations or open-source models. Furthermore, we did not evaluate key performance
metrics such as model runtime, response time for diagnostic suggestions, and usability
by clinical professionals. It is crucial to emphasize that these general-purpose LLMs, in
their current form, are not intended or validated for direct clinical diagnosis or treatment
decisions within doctor—patient relationships. And while the findings are encouraging,
real-world clinical validation of these models is essential before any firm conclusions
on their applicability can be drawn. And finally, diagnostic reasoning involves not only
identifying disease patterns but also the integration of clinical, social, and personal factors
of the patient. The models’ performance might differ depending on the complexity of a
real-world clinical context.

Future studies are crucial to validate GPT-4 and GPT-3.5-Turbo’s diagnostic capabilities
in real-world clinical settings. We propose prospective trials comparing Al-generated
suggestions with final diagnoses and outcomes while prioritizing ethical considerations
such as patient safety, Al's impact on decision-making, and integration into electronic
health record (EHR) systems. These steps will ensure rigorous validation for a safe and
effective use in healthcare.
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In conclusion, while further validations and iterations are necessary, the promise
shown by the models in providing accurate diagnostics across languages suggests a promis-
ing horizon for Al in healthcare.
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