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Temporal dynamics in vertical leaf angles
can confound vegetation indices widely
used in Earth observations
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Earth observation data is key for monitoring vegetation dynamics across temporal and spatial scales.
The most widely used method to estimate vegetation properties from Earth observation data is
vegetation indices. However, temporal dynamics in vertical leaf angles can strongly alter reflectance
signals and, hence, vegetation indices. Here, we derive leaf angles fromplant photographs to simulate
the effect on vegetation indices with radiative transfer models. We show that leaf angle dynamics
systematically confound widely applied vegetation indices. Moreover, we demonstrate that these
effects are not randombut tightly linked to abiotic environmental conditions. These systematic effects
of vertical leaf angles have implications for monitoring plant properties, biodiversity, and ecosystem
functional properties. We discuss the related challenges and opportunities to assess spatio-temporal
vegetation dynamics with remote sensing and vegetation indices.

Since the seventies, Earth observation satellites have been providing crucial
data on vegetation dynamics in time and space1. Optical satellite sensors are
of particular value formonitoring terrestrial ecosystemdynamics, given that
plant canopies have evolved to interact with light. The reflectance of plants
across wavelengths can inform about various biophysical and -chemical
properties. The fractions of light reflected at visible wavelengths, for
instance, are indicative of pigment concentrations. Reflectances in the near
and short-wave infrared regions are sensitive to biochemical and structural
properties and components such as cellulose, water, and lignin2,3. Hence,
temporal changes in reflectance measured from satellites provide an
extremely effective basis for monitoring such plant properties across
ecosystems.

However, the reflectance at a particular wavelength cannot trivially be
translated into plant properties, such as leaf pigment or water contents,
because many plant properties determine radiative transfer processes in
overlapping wavelengths through scattering and absorption. Therefore, the
estimation of plant properties from reflectance signals is commonly based
on a combination of multiple wavelengths. Themost widely used empirical
approach uses vegetation indices (VIs) as proxies, combining two or more
spectral bands of different wavelengths4,5. VIs enable the estimation of

specific vegetation properties by reducing or suppressing background sig-
nals or confounding factors related to vegetation characteristics with
overlapping spectral features. More than 130 indices have been proposed to
indicate different plant properties6. These have been applied in a plethora of
vegetation-related studies, ranging frommonitoringplant vitality7, assessing
global greening andbrowning8,9, inferring functional diversity1,10, estimating
biophysical state variables, such as leaf area index (LAI), the fraction of
absorbed photosynthetically active radiation (FAPAR) or above-ground
biomass11,12, and deriving modes of climate variability13,14. Many VIs can be
derived across optical satellite missions, such as the MODIS and Landsat
Missions (NASA) or the Sentinel-Missions (Copernicus, ESA)6 and are
often available in the form of harmonized and ready-to-use products15,16.

Although VIs are amongst the most frequently used tools for Earth
observation data analytics, in terms of their interpretability, they often
remain a black box because the vast biochemical and structural diversity of
plants makes it difficult to precisely infer specific plant properties from
reflectance spectra or derived indices1,17,18. Especially the configuration of
canopy structure and density is known to determine plant reflectance across
visible to the shortwave infrared (400–2500 nm), by controlling light
interception probabilities and scattering processes19–22. The most important
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canopy structural properties that affect light interceptionprobabilities are (i)
the total leaf surface area in a given area interacting with light (typically
approximated by LAI), (ii) how these leave surfaces are spatially clumped,
and (iii) the vertical inclination of these leaf surfaces (Fig. 1), commonly
described as leaf angle distributions.

While plant canopies are often perceived as stationary structures
that typically develop over multiple years, already Charles Dar-
win acknowledged The Power of Movement in Plants and described
short-term temporal changes in vertical surface angles of leaves23. These
leaf movements are driven by environmental conditions and can force an
overall increase or decrease in vertical leaf angles24,25. A prominent
example are flaccid leaves that emerge from a loss of turgor pressure
during drought or heat extremes26. In such situations of leaf drooping,
leaf surfaces typically tend to traverse from a horizontal (0°) or oblique to
a more vertical orientation (90°).

Changes in vertical leaf surface angles induced by environmental
dynamics may confound reflectance signals and, hence, VIs: On the one
hand, vertical leaf angle dynamics may induce pertubing dynamics to
vegetation index values. For example, an apparent leaf angle-induced
change of a chlorophyll index value could be falsely interpreted as an actual
change in chlorophyll content. On the other hand, the actual variation of a
plant property might not be detectable due to the dominant influence of
vertical leaf angle variation on reflectance. This may be crucial since strong
vertical leaf angle dynamics may coincide with changes in other plant
properties, e.g., during plant stress (Fig. 2, see also refs. 7,27).

So far, the confounding effect of vertical leaf angle dynamics on VIs is
only marginally analyzed and acknowledged in the literature. Previous

studies attempted to assess these effects using radiative transfer models
(RTMs)1,21,28–33. Theseprocess-basedmodelsmimic the transferof light from
the sun through the plant canopies to the sensors as a function of bio-
chemical and structural plant properties, including the leaf angle distribu-
tion (LAD) within a canopy. RTMs enable a specific assessment of the
strong spectral imprint of LADs while controlling other factors that may
affect reflectance signals, such as the variation in plant structural and bio-
chemical traits, phenology, and soil background. However, the impact of
LAD dynamics on vegetation reflectance remains an understudied phe-
nomenon, since efficiently measuring LADs on long time scales at high
temporal resolution was for a long time not feasible under field
conditions34–36. Therefore, previous studies were limited to using loosely
defined LAD or sparse LAD observations of only one or very few plant
species21,34. Consequently, a clear understanding of the temporal coupling of
LAD and VI dynamics is missing. Yet, recently, photographs from time-
lapse cameras in concert with deep learning-based pattern recognition
enable an effective tracking of LADs through time37.

Here, we employ deep learning-derived LAD observations repre-
sentative of typical satellite overpass times at solar noon as input for the
radiative transfer model PROSAIL18,38 to expose the imprint of LAD
dynamics on 124 established VIs (Fig. 3). During the year 2022 with
meteorological and soil drought39, LAD dynamics were recorded for 10
temperate deciduous tree species growing in dense, evenly-aged mono-
cultures (MyDiv experiment, Germany)40. Based on this analysis, we reveal
that LAD dynamics can strongly confound many widely used VIs. In
addition, we demonstrate that this effect varies with plant species and
environmental conditions. This can result in systematic effects on VIs and
their potential misinterpretation in remote sensing-based vegetation
assessments, including plant biophysical state variables, vitality status, or
functional diversity.

Results
All data were recorded in a growing season (day of year 158 to 279, 2022)
whenWest-Central Europe was characterized by a substantial soil moisture
drought and strongly elevated temperatures41. At our experimental site, the
relative soil moisture (at 5, 10, and 55 cm depth) varied between 11.2 and
19.7% and fell below the wilting point of approximately 15% [estimated in
ref. 42]. The temperature ranged between 7.8 and 27.8 °C, relative humidity
between 48 to 85%, and vapor pressure deficit between 0.17 and 2.43 kPa.
Along these strong environmental fluctuations (see Supplementary Fig. 1),
vertical leaf angles varied substantially between the different tree species:
The mean leaf angle at solar noon varied considerably for fast-growing
species, such asPrunus avium (sd = 9.4°) andBetula pendula (sd = 8.5°) and

Fig. 1 | Definition of vertical leaf surface angles as the integrated angle of the
entire leaf surface. A entirely horizontally oriented leaf corresponds to (0°) and a
vertically oriented leaf to (90°).

VPD

VPD

VPD

VPD

Fig. 2 | Environmental drivers, such as vapor pressure deficit (VPD), can mod-
ulate distributions of vertical leaf angles. Changes in leaf angle distributions (left)
affect reflectance characteristics of plant canopies (right). The presented data is
aggregated from daily leaf angle dynamics at the time of satellite overpass (solar
noon) of Prunus avium tracked during a vegetation period in Bad Lauchstädt,

Germany. The reflectance data is simulated using radiative transfer models (see
“Methods” section). Angles represent a horizontal (0°) and vertical orientation (90°).
Note, that leaf angles (here defined as surface angle) typically increase when leaves
are hanging.
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less for late successional species, such as Quercus petraea (sd = 5.0°) and
Fraxinus excelsior (sd = 5.6°). Time series of daily leaf angle dynamics are
shown in Supplementary Fig. 2.

For each LAD observation at satellite overpass times (here considered
10:00-11:00 am local solar time), we derived VIs from simulated canopy
reflectance (PROSAIL radiative transfer model43). Other vegetation prop-
erties relevant for radiative transfer simulations, including pigments, LAI,
water, and dry matter content, were randomly sampled within ranges
obtained from extensive data sources (for details see methods section)44,45.
The confounding effect of LADs onVIs (referred to asΔVI)was determined
as the difference of VIs derived from canopy reflectance simulated with (i)
actual dynamics of LADs and (ii) average species-specific LADs. Since not
all VIs share a similar dynamic range, we normalized ΔVI values by the
obtained quantile range of each VI (onwards ΔVI%, Q01 and Q99). For VIs
frequently used for quantifying greenness (e.g. in the context of assessing
vegetation vitality, density, or productivity),weobserve a considerable range
of ΔVI%: NDVI = 33.7%, SAVI = 38.2%, EVI = 50.5%, kNDVI = 45.3%
(Fig. 4). Similar effects are found across all application types of VIs (Fig. 5a
and Supplementary Fig. 3), including indices used for pigment assessments
(e.g., MCARI, 28.23%) or leaf water content retrieval (e.g., NDWI =

20.68%). Thus, VIs differ in their sensitivity to LADdynamics, affecting the
specificity of a VI toward a designated target property (e.g., pigments).

Furthermore,wefind thatVIsdiffer strongly in their specificity to LAD
dynamics, as quantified by the Pearson correlation coefficient (r, absolute
values) ranging from 0 to 0.9 between the indices. Some indices, such as the
NDVI, show a comparably moderate correlation to LAD dynamics
(r = 0.47, Fig. 4).More sophisticatedVIs that have been specifically designed
to overcome saturation and structural effects observed in high-density plant
canopies are exceptionally confounded by LAD dynamics (r > 0.89),
includingNIRv, SAVI, EVI, and kNDVI [for rationales on theseVIs see refs.
46–49]. Note that other vegetation properties used as input for the reflec-
tance simulationwere by experimental design statistically independent from
LAD dynamics. Thus, the partly high correlation of some VIs with LAD
dynamics, such as for the pigment indexMCARI (r = 0.77) or the greenness
index kNDVI (r = 0.89), are not caused by actual changes in pigment
contents or foliage density but by LAD dynamics alone.

Overall, we observe significantly higher ΔVI% for VIs integrating
spectral bands in the Near Infrared (p < 0.01) or Red bands (p < 0.01), while
lower ΔVI% are found for VIs integrating a shortwave infrared band
(1610 nm, p < 0.05) or a Red-Edge band (p < 0.02). The correlation of VIs

Fig. 3 | Workflow of revealing the impact of ver-
tical leaf angle dynamics on satellite-derived
vegetation indices. The leaf angle observations are
based on AngleCam37, a computer vision method
that was trained to derive leaf angle dynamics from
plants in the foreground of plant photographs. For
simplicity, the dynamics of vertical leaf angles are
visualized as average leaf angles, while the Angle-
Cam method37 predicts leaf angle distributions
between 0 to 90 degrees. The obtained leaf angle
dynamics are then used as input to simulate the
effect on 124 commonly used vegetation indices
(VIs)6 through radiative transfer models.
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Fig. 4 | The effect (ΔVI%) of LAD dynamics on selected vegetation indices within
the vegetation season. ΔVI% was calculated as the relative difference between
vegetation index values derived from simulated reflectance data with and without
integrating actual vertical leaf angle dynamics. For visualization, LADs were

converted to average leaf angles. The VIs in the top row (NDVI, EVI, SAVI, kNDVI)
are typically used for assessing the greenness of vegetation canopies, NIRv is used as
proxy for the canopy structure, MCTI andMCARI for leaf chlorphyll content, while
NDWI is a common proxy for leaf water content.
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Fig. 5 | The effect (ΔVI%) of vertical leaf angle dynamics on 124 vegetation
indices. ΔVI% (left) is the relative difference of vegetation index values with and
without integrating actual vertical leaf angle dynamics. The mean of the absolute
correlation per species of ΔVI with relative soil moisture and vapor pressure deficit

(right) highlights that the effect of vertical leaf angles on VIs is controlled by
environmental variables, which may not be related to the variable of interest (e.g.
chlorophyll content). Indices shown in Fig. 4 are highlighted with bold font.
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with LAD dynamics (Pearson’s r) is significantly lower for VIs integrating a
shortwave infrared band at 1610 nm (p < 0.05) and higher with the inte-
gration of the Red (p < 0.05) and Near-infrared bands (p < 0.1). There is a
significant trend that LAD dynamics have a stronger impact on VIs of
greater complexity (integrating more bands or arithmetic operations), both
in terms of their value range (ΔVI%, r = 0.26, p < 0.01) and correlationwith
LAD dynamics (r = 0.33, p < 0.01). Details on the relationship of the VI
configuration and LAD effects are given in Supplementary Fig. 4.

As indicated above, LAD dynamics are closely related to the above-
described environmental dynamics, such as VPD and soil moisture. These
environmentally controlled LADdynamics are imprinted in the variation of
vegetation indices (Fig. 5b, see also Supplementary Figs. 6 and 7 for air
temperature and relative air humidity). Consequently, the temporal
dynamics of vegetation indices, such as, a chlorophyll index, may not
necessarily indicate changes in the biophysical or biochemical properties of
interest, e.g., pigment contents, but might be confounded by the environ-
mental conditions due to their imprint on leaf angles.

In the context of environmental conditions, it is important to note that
the imprint of environmental variables on leaf angle dynamics differed
between tree species (Supplementary Tab. 1–3). Species-wise correlations
for vertical leaf angle dynamics and environmental variables (Pearson r)
showed considerable variation, with r values ranging from -0.5 to 0.6 for soil
moisture, from -0.19 to 0.64 for water pressure deficit, and from −0.18 to
0.63 for air temperature. Similarly, we find that only 10% of the LAD
dynamics could be explained by linear models and recordings on tem-
perature, soil moisture, and vapor pressure deficit, while mixed-effect
models considering species as random effects explained 27% of the LAD
variation. Thus, the species-specific response of LAD dynamics to envir-
onmental stimuli results in species-specific confounding effects of LAD
dynamics on VIs (Fig. 6).

Discussion
By analyzing 124 commonly used VIs across 10 different plant species, we
show that VIs can be substiantially influenced by variations in vertical leaf
angle dynamics, posing considerable challenges to their applicability and
interpretation.Themagnitudeof this confounding effect variesbyVI, differs

across species, and is driven by environmental dynamics. The impact on VI
values varied between7.93 and 59.54%of their expected range. This implies
that when considerable LAD dynamics are expected, some VIs should not
be used for causal inference of those biochemical or structural plant prop-
erties for which they were initially designed or are frequently applied.

Previous studies have concluded that other factors, such as soil prop-
erties or the LAI, have amore substantial effect onVI variation than vertical
leaf angle dynamics50–52. However, the relative impact among these factors
depends on the LAD variation considered, while previous studies did not
evaluate real and continuous data on vertical leaf angle dynamics. Instead,
previous findings were restricted to static or even heuristically defined
species-specific LADs34. Still, only a few studies could showcase the imprint
of LAD dynamics for a few VIs (see, e.g., ref. 21), but only with small
quantities of LAD observations. Using continuous and long-term mea-
surements of LAD dynamics, we show that the effect of vertical leaf angle
dynamics across 124 VI values is often not negligible. Ignoring LAD-VI
dependencies may lead to incorrect conclusions about plant trait variation.
We expect that this effect is particularly crucial at high temporal and spatial
resolutions, such as Sentinel-2 or Landsat data, where individual pixels often
correspond to individual crowns. At coarse spatial resolutions, such as with
MODIS satellite data, we expect the imprint of vertical leaf angles to be
reduced considerablydue tomixed speciesor land cover typeswithin apixel.

We found that for most periods in time, VIs may only be moderately
affected by vertical leaf angle dynamics (see data density in Fig. 4) as
environmental conditions are stable or mild and, hence, do not exhibit a
strong forcing of LAD dynamics (Supplementary Fig. 1). However, certain
periodsmay show a strong variation in environmental conditions (e.g., peak
VPD at climate extremes) or reach a critical level (e.g., soil moisture
approaching the wilting point), which in turn induces a considerable var-
iation in vertical leaf angles (Fig. 5b) with a large effect on most VIs (ΔVI%
range, Fig. 5a). This is particularly critical for remote sensing applications-
based ecosystem monitoring, e.g. tracking plant physiology during climate
extremes or plant disease outbreaks (see Box 1), where high LAD dynamics
are expected to covary with variables of interest, such as pigment or water
contents,7,27. In such situations, the LAD dynamics may bias or occlude the
relationship between theVI values and the plant property of interest (Fig. 5).
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Fig. 6 | Species-wise absolute correlations ofΔVI across all 124 vegetation indices
with environmental conditons. Correlations are measured using (Pearson’s r) and
derived for vapor pressure deficit (VPD, kPa, left) and soil moisture at 0.05 m depth

(%, right). The boxes show the interquartile range (IQR) and median, while the
whiskers extend to the smallest and largest values within 1.5 times the IQR.
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A resulting and pressing question for future research is if such VI-based
plant physiological assessments are then systematically over- or
underestimated.

Such issues are further complicated given that LAD dynamics differ
between species due to functional differences, such as leaf toughness or
water-use strategy53 and corresponding sensitivities to environmental dri-
vers (Supplementary Tab. 1–3) and so does its imprint on VI values (Sup-
plementary Fig. 5). Thus, a relationship betweenaVI andplant properties of
interest (e.g.,MCARI vs. pigments)may vary not only through time but also
in space depending on the distribution of species or plant functional types
and their specific leaf angle behavior.

Our results thus highlight that a naive interpretation of VIs can lead to
wrong conclusions. A large share of VIs have been developed with reflec-
tance data that was directly measured at individual leaves, where canopy
structural variation was not considered in the index design (e.g., the pho-
tochemical reflectance index, PRI54). Moreover, many indices developed at
the canopy-level reflectance data were not explicitly created to be trans-
ferable across structural variation and not tested in this context4,55. Gen-
erally, our findings stress that interpreting VI dynamics in a spatiotemporal
setting should involve an apriori evaluation if the VI actually robustly
indicates the variable of interest. For some target variables, indices may not

provide a robust indicator for a multitemporal or multi-species setting. In
such cases, more complex methods that enable the compensation of
structural reflectance features may be the right choice, e.g., the inversion of
radiative transfer models7,27,43, which can consider LAD dynamics or data-
driven approaches that indirectly learn structural features from
observations44.

As indices are typically not designed in the context of LAD dynamics,
our findingsmay provide a basis for choosing a robust index formonitoring
vegetation properties over time, for instance, for tracking pigments,
greenness, diseases, or water content (Fig. 5). We found a tendency that
more simple indices were less affected by LAD dynamics. Moreover, we
found that VIs incorporating red-edge bands had a lower ΔVI. This is
particularly relevant for pigment indices, where VIs incorporating red-edge
bands, such asMTCIorCVI, aremore robust than indices that are limited to
red and near-infrared bands, such as MCARI or PSRI (Fig. 4).

This is consistent with previous studies reporting that red-edge
information is sensitive to structural leaf and canopy properties, and
therefore incorporating red-edge bands can compensate for structural
changes during the estimation of biochemical constituents or LAI56–59. This
example of the red-edge index family indicates that indices can be designed
to be less sensitive to LAD dynamics.

Box 1 | Possible implications of VI-LAD dependency for remote sensing applications

Monitoring vegetation greenness & vitality status: for monitoring eco-
systems in the face of degradation, pests, pathogens, or climate
extremes, VIs are a common method to approximate responses in the
greenness, pigment, or water content of plant canopies4. However, as
shown here, the temporal variation of related VI values can be severely
confounded by LAD dynamics. Additionally, LAD dynamics themselves
can be an immediate physiological response to environmental
conditions7,27,37. Thus, disentangling different plant morphological and
physiological responses, such as variability in LAD, leaf biochemistry, or
LAI, is vital for fully exploiting the potential of reflectance data7,27. In this
context, the presented comparisons of VIs across application domains
(Fig. 5a) may provide a basis for selecting robust VIs for approximating
different physiological and morphological plant properties. Still, the
capacity of a VIs for indicating certain plant properties can be highly
variable and should be thoroughly tested for the application case at
hand4.

Tracking ecosystem functional & physiological properties: LAD
dynamics can strongly confound VIs but these dynamics, resulting from
environmental forcing and physiological responses, may also facilitate
tracking ecosystem functional processes, such as primary productivity.
For instance, vertical leaf angles control the absorbed photosynthetically
active radiation (APAR) and can, thus, have a strong imprint on the pro-
ductivity of plants67. Here, indices with a strong sensitivity to NIR
reflectance, includingNIRv, kNDVI, and EVI30,46,68, were shown to bemost
strongly confoundedby LADdynamics (Fig. 5). Togetherwith information
on solar radiance, these VIs were also shown to be valuable proxies to
estimate gross primary productivity1,46,47. Thus, the temporal dynamics of
LADs and their effect on VIs may inherit information on the physiological
status of plants. For instance, limited water availability during a drought
may simultaneously lead to decreased productivity and hanging leaves,

which in turn alters canopy reflectance - particular in the NIR region69.
Thus, to some extent, the covariance of VIs with LAD dynamics may be
bothachallengeandanopportunity tomonitor ecosystempropertiesand
processes. More research is required for exploiting the links between
plant movements, ecosystem functional processes, and Earth observa-
tion data.

Monitoring taxonomic & functional plant diversity: attempts to derive
functional diversity from canopy reflectance typically assume a mono-
tonic relationship of spectral variation with taxonomic or functional
diversity10,70–72. However, LAD dynamics may create spectral variation
without a change in spectral or taxonomic plant diversity. Accordingly,
plant species or communities with ample leaf angle dynamics (Fig. 6)
may, hence, appear spectrally more diverse than canopies with few leaf
angle dynamics - independent of the actual species richnessor functional
diversity. Thus, the LAD-related reflectance and VI dynamics through
time may challenge both tracking the diversity of individual sites and
comparing the diversity between sites (beta diversity). Such confounding
effects on reflectance-based biodiversity assessments may be a parti-
cular challengegiven that diversity-related spectral variation amongplant
communities is often subtle73–77.
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While our results are based on 10 temperate deciduous tree species, we
expect similar effects for other functional types and biomes, such as
angiosperms with softer leaves (less stable leaf structure). Clearly, not all
plants may show pronounced leaf angle dynamics. Many gymnosperms,
such as coniferous trees with very stable needles, are expected to show less
variation in leaf angles. Yet, themovement of woody plant elements, such as
branch or tree sway, may also change the canopy structure and thus
reflectance patterns60. Given that tree and branch movement strongly
depends on environmental factors, such aswind and plant hydration status,
both short- and long-term dynamics can be expected. Still, leaf and plant
movements and their interactionwith environmental drivers aswell as other
plant physiological responses remain an understudied phenomenon with
substantial implications for remote sensing applications34,35. Novel tech-
nologies, such as computer vision applications, robotics, phenocams, ter-
restrial laser scanning, or accelerometers37,61–64,mayhelpus tounderstand its
implications for ecosystem monitoring with Earth observation data.

Our simulations did not account for correlations between leaf angle
dynamics and other plant properties. First, we excluded correlations
between vertical leaf angle dynamics and other biochemical and biophysical
vegetation characteristics to isolate the specific effect of leaf angles. Second,
these correlations are unknown or assumed to be relatively weak, variable
across species, site, and environmental conditions, anddifficult to obtain24,65.
Specifically, measuring plant properties, such as water content or chlor-
ophyll content, at high temporal frequencies is extremely challenging and
costly. Future studies could explore the coordination between leaf angles
and other plant properties by incorporating extended observation periods.

Conclusions
Vegetation indices derived from reflectance signals acquired with Earth
observation satellites provide a pivotal data stream to monitor Earth’s ter-
restrial vegetation dynamics. However, temporal dynamics in vertical leaf
angles can strongly alter reflectance signals and, hence, vegetation indices.
We found that commonly used vegetation indices are systematically con-
founded by vertical leaf angle dynamics. For most indices, this effect scales
monotonously with the magnitude of change in leaf angle distribution. We
observed that such leaf angle dynamics are often strongly correlated with
abiotic environmental variables. Such a change in VIs induced by envir-
onmental drivers may be spuriously interpreted as a change in the plant
property for which the vegetation index was designed as an indicator - even
if this property did not change at all. These systematic biases can limit the
robustness of VIs for assessing plant properties in time series analysis and
environmentalmonitoring. Therefore, interpreting the temporal patterns of
VIs can result in wrong conclusions about plant and ecosystem processes.
The anticipated rise in the frequency and severity of climate extremes could
potentially lead to increased variability in the dynamic of vertical leaf angles
and related confounding effects on vegetation indices. This is further
complicated as leaf angle dynamics vary across species. Thus, spatial and
temporal patterns found in VI products may not indeed indicate an actual
variability of a plant property, but can be, among other factors, confounded
by species-specific LADand dynamics thereof. These findings indicate both
challenges and opportunities for VI-based remote sensing. Some VIs may
not be robust against variation in vertical leaf angles to monitor the spa-
tiotemporal dynamics of plant properties for which they have been
designed. At the same time, some spectral bands and indices (e.g., red-edge
bands or the NIRv index) scale very tightly with changes in vertical leaf
angles. Corresponding spectral mechanismsmay facilitate the development
of more robust indices against leaf angle variation or may open avenues to
track processes related to leaf angle dynamics (e.g., ecosystem functional
properties and fluxes thereof).

Methods
Retrieval of LAD dynamics
LADswere acquiredusing the computer visionmethodAngleCam’37, which
is based on Convolutional Neural Networks applied on RGB photos.

Temporal dynamics of leaf angles can be derived by applying AngleCam to
photo time series derived from time-lapse cameras. For this, we used the
Brinno TLC200-Pro (Brinno Europe, The Netherlands), which acquires
RGB photos with a resolution of 1280 × 720. Note, that also other, similar
camera models are compatible with AngleCam, as the method was trained
with a variety of camera models. AngleCam predicts LADs from such
photos in 2-degree intervals from 0 to 90°, where 0 corresponds to a hor-
izontal leaf surface angle and 90 to a vertical leaf surface angle (Fig. 3).

We predicted LADs with AngleCam from photo time series acquired
across 10 tree species in the MyDiv tree experiment (Mycorrhiza in tree
Diversity effects on ecosystem functioning). The MyDiv experiment is
located inGermany, at theBadLauchstädtExperimentalResearchStationof
the Helmholtz Centre for Environmental Research-UFZ (51°23′ N, 11°53′
E). MyDiv comprises 80 plots with a systematic design of tree species,
including monocultures and polycultures of 2 or 4 tree species. For this
study, we only assessed vertical leaf angle variation in monoculture plots.
The species include Acer pseudoplatanus L., Aesculus hippocastanum L.,
Fraxinus excelsior L., Prunus avium (L.)L., Sorbus aucuparia L., Betula
pendula Roth, Carpinus betulus L., Fagus sylvatica L., Quercus petraea
(Matt.) Liebl., Tilia platyphyllos Scop. Respective tree individuals were
regularly planted in 11 m by 11 m grids with 1 m spacing. A detailed
description of the MyDiv experimental site can be found in ref. 40. During
sampling, the tree species were nine years old, and top canopy heights
ranged from approximately 3.3 to 7.3 m.

For each species, we placed two time-lapse cameras in one mono-
culture plot. The image time series was acquired within the significant part
of the vegetation period from June 6th to October 5th, 2022. The cameras
had a horizontal field of view, capturing branches of two tree individuals
located in the central area of the plot with a distance of 40–80 cm (Fig. 7).
The two cameras were affixed to an aluminum pole, orthogonally attached
to one of the trees near the central area of the plot. The mounting height
corresponded to the upper third of the tree crowns. The cameras were
configured to capture images at 5-minute intervals inHighDynamic Range
(HDR) mode. Maintenance occurred roughly every four weeks, involving
tasks such as battery replacement, checking the camera orientation, removal
of dust and pollen from the lenses, and the transfer of captured imagery.

We re-trained the AngleCam models to ensure that the method is
transferable to the conditions at theMyDiv site and its tree species. For this,
we sampled 1000 images from the above-described time-lapse imagery.We
generated LAD labels for each of these sampled images, using the visual
interpretationprocedure described and evaluated in ref. 37. The newsample
data was added to the training data described in37 to retrain the AngleCam
model (the updated version ofAngleCam is available at: https://github.com/
tejakattenborn/AngleCAM).

We applied the retrained AngleCam model to all available time-lapse
photos fallingwithin the overpass times around solar noon (10:00 - to11:00)
of typical optical Earth observation satellite missions, such as Sentinel-2,
Landsat, MODIS Terra (Fig. 3). The LADs obtained from AngleCam for
these time periods were averaged, resulting in an average LADat solar noon
per camera and day (Supplementary Fig. 2). Through the averaging in this
time period, uncertainties of individual LAD retrievals, e.g. resulting from
wind or illumination effects, were effectively reduced.

Satellite reflectance and VI simulation. For each daily LAD, vegetation
indices were simulated using the radiative transfer model (RTM) PRO-
SAIL (Fig. 7). PROSAIL is a process-based RTM that can simulate the
reflectance of vegetation canopies from 400-2500 nm with 1 nm spectral
resolution38. PROSAIL combines the PROSPECT model, which simu-
lates the optical properties of leaves (in this case, PROSPECT-D18), with
the 4SAIL2 model38, which simulates canopy-scale reflectance based on
vegetation structural properties and the sun-observer geometry. Typi-
cally, LADs in PROSAIL are parametrized using an average vertical leaf
angle or a two-factor parameter distribution function43. Here, we mod-
ified the LAD input dimension of PROSAIL to 2-degree intervals (43
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instead of 13 bins), enabling direct compatibility with the AngleCam-
derived LADs.

In addition to the observed LAD, we further varied the vegetation
properties implemented in PROSAIL to simulate a representative variation
of the reflectance and VI ranges for each tree species (Fig. 7). These other
biochemical and biophysical vegetation properties were randomly sampled
to isolate the specific imprint of leaf angles on vegetation indices. The values
for these vegetation properties were sampled from a uniform distribution
within the following ranges: LAI 1-5 m2/m2, leaf chlorophyll content
27–68 μg/cm2, leaf carotenoid content 3.8–9.7 μg/cm2, leaf anthocyanin
content 0.57–1.44 μg/cm2, leaf water content 0.008–0.026mg/cm2, and leaf
mass per area 0.003–0.011mg/cm2. These value ranges were based on a
merged dataset composed of a database curated by Cherif et al. 202344 and
theTRYdatabase45 (vers. 5). Furthermore, these datasetswere used to derive
empirical correlations among vegetation properties within the above-
described ranges. Leaf carotenoid content was calculated by dividing leaf
chlorophyll by 7 and adding normally distributed noise (SD = 1.1),
while leaf anthocyanin content was calculated by dividing leaf chlorophyll
content by 47 with normally distributed noise added (SD = 0.55). Leaf
equivalent water thickness was derived from LMA multiplied by 2.4,
with normally distributed noise (SD = 0.0023) included.

The simulated 1 nm reflectance spectra derived from PROSAIL were
converted to multispectral reflectance at Sentinel-2A bands using estab-
lished spectral response functions (see https://github.com/jbferet/prosail).
These multispectral reflectances of these Sentinel-2A bands were used to
calculate index values for 124 common VIs using the Python package
spyndex (v0.3)6. For indices that require additional parameters, the latter
were set to values as reported in their primary studies (e.g. σ for kNDVI).

The impact of LAD dynamics on VI values (onward ΔVI) was deter-
mined as the difference of (i) VI values simulated fromdaily LADdynamics
of a given camera and (ii)VI values simulated froma staticmeanLADof the
entire period of the same camera (Eq. (1). To facilitate the comparison of
LADsensitivities of the differentVIs,ΔVI valueswere normalized to relative
values (%) using the obtained value range of the respective index (0.01–0.99
quantiles). These ranges were derived from indices without considering
LAD dynamics.

ΔVI% ¼
1
n

Pn
i¼1 VIstaticLADi

� VIdynamicLADi

Q99ðVIstaticLADÞ � Q01ðVIstaticLADÞ
ð1Þ

Characterization of indices by application and complexity. To ease
the interpretation of ΔVI of the different VIs, we grouped all VIs
according to common application domains, including:
• Greenness, representing VIs designed to estimate LAI, vegetation

density, or foliage and above-ground biomass (e.g. the Normalized
Difference Vegetation Index, NDVI),

• Pigments, representing VIs for Chlorophyll, Carotenoid, vegetation
health, and greenness (e.g. Red-Edge Chlorophyll Index, CIred−edge),

• Water, representing VIs designed to track leaf water status, such as
Normalized Difference Water Index (NDWI) or Disease Water Stress
Index (DSWI1),

• Disease, representing VIs for tracking vegetation health, pests, and
pathogens, e.g. Red-Edge Disease Stress Index (REDSI),

• Other, VIs that do not fit into the above-mentioned categories (e.g.
Near-Infrared Reflectance of Vegetation Index, NIRv).

Note, that these groupingswere chosenheuristically, while indicesmay
be used for different applications.

Moreover, we comparedΔVI%valueswith respect to the complexity of
VIs, that is how many bands or arithmetic operations are used in the
formulation of an index.

Relating LAD and VI dynamics with environmental drivers. We
assessed the correlationofLADand their effect onVIdynamics (ΔVI)within
the context of environmental variables. The correlation and their sig-
nificance were quantified across all species and separately for each species
using Pearson’s correlation coefficient (r). A time series of environmental
variables were recorded using three climate stations in three plots of the
MyDiv site at 1 m height. The climate stations are based on a customized
setup described in ref. 66. Air humidity [%] and air temperature [°C] were
tracked with a SHT21 sensor (Sensirion, Germany). Soil moisture [%] at 5,
10, and 55 cm depth was measured with a SMT100 sensor (Truebner
GmbH, Germany). After initial testing, we focussed on the soil moisture
dynamics at 5 cmdepth since it showed themost variability, e.g., in response
to precipitation events. Based on these measurements, we also derived the
vapor pressure deficit (VPD) [kPa] using Eq. (3):

VPD ¼ 1� RH
100

� �

×
es

1000
ð2Þ

Fig. 7 | Workflow from leaf angle distributions
retrieval and subsequent vegetation indices
simulation. For each species, the effect of leaf angle
distributions (LAD) on vegetation indices (VI) was
determined as the relative difference of VIs derived
from actual LAD dynamics and average LADs.
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where RH is the relative humidity and es is the saturation vapor pressure in
millibars. es can be approximated by the Tatens equation (3):

es ¼ 610:78× exp
T

T þ 237:3
× 17:2694

� �

ð3Þ

here, T is the ambient air temperature in °C.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Code availability
The AngleCam method (computer vision-based estimation of vertical leaf
angles) is openly available at https://github.com/tejakattenborn/
AngleCAM. All other code for reproducing the results, including the code
for simulating reflectance spectra, calculating the 124 vegetation indices and
the statistical analytics are available at: https://doi.org/10.5281/zenodo.
12775222.

Data availability
The data used for this study are available at https://doi.org/10.5281/zenodo.
12775222. This includes the observed leaf angle distributions (derived from
theAngleCammethod) and the environmental data. Part of the trait data of
this study comes from theTRYdatabase (and canbe requested fromhttps://
www.try-db.org/) or from44 and is available from the corresponding repo-
sitory: https://gitlab.com/eya95/multi-traitretrieval.
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