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Summary

� Extreme droughts can have long-lasting effects on forest community dynamics and species

interactions. Yet, our understanding of how drought legacy modulates ecological relationships

is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term

responses to premature defoliation caused by an extreme drought event in European beech

(Fagus sylvatica L.).
� For two consecutive years after the extreme European summer drought in 2018, we col-

lected leaves from the upper and lower canopy of adjacently growing drought-stressed and

unstressed trees. Leaf chemistry was analyzed and leaf damage by different

herbivore-feeding guilds was quantified.
� We found that drought had lasting impacts on leaf nutrients and on specialized metabolo-

mic profiles. However, drought did not affect the primary metabolome. Drought-related phy-

tochemical changes affected damage of leaf-chewing herbivores whereas damage caused by

other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochem-

istry and herbivory were often weaker than between-year or between-canopy strata variabil-

ity.
� Our findings suggest that a single extreme drought event bears the potential to

long-lastingly affect tree–herbivore interactions. Drought legacy effects likely become more

important in modulating tree–herbivore interactions since drought frequency and severity are

projected to globally increase in the coming decades.

Introduction

Around the world, forest ecosystems are increasingly challenged
by combined effects of heat and drought (Hammond
et al., 2022). Projected climate change scenarios suggest that the
occurrence and intensity of future drought events will increase,
exacerbating the situation for forests (Touma et al., 2015; Sama-
niego et al., 2018; UNCCD, 2022). Droughts can affect forest
ecosystems directly, for example by impairing tree physiology
and metabolic functions (Aranda et al., 2012; Niinemets, 2016;
Hartmann et al., 2018; Salmon et al., 2019), or indirectly by
modulating the relationship between trees and other organisms
via tree physiological and metabolomic changes (Sthultz
et al., 2009; Anderegg et al., 2015; Gely et al., 2020).

Insect herbivores are important ecosystem drivers (Soliveres
et al., 2016) as they shape plant community dynamics

(Borgstr€om et al., 2016; Tamburini et al., 2018), provide food
for higher trophic levels (Nyffeler et al., 2018) and affect energy
and nutrient cycling through consumption of plant biomass
(Belovsky & Slade, 2000; Chapman et al., 2003). Consequently,
drought effects on plant–herbivore interactions may entail
far-reaching ecosystem-level consequences posing a challenge to
forest health and biodiversity conservation. Yet, despite a large
body of research on plant–herbivore interactions, a conclusive
framework on how different herbivore-feeding guilds correspond
to plants impacted by drought is still lacking (Gely et al., 2020).
Moreover, while in particular immediate drought effects on
insect herbivores have been explored (Huberty & Denno, 2004;
Jactel et al., 2012) it remains unclear how drought stress affects
the interaction between mature trees and herbivores in the long
term (but see Rouault et al., 2006). Addressing this knowledge
gap is important, as drought legacy effects on tree–herbivore
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interactions may be highly relevant from an ecosystem-level per-
spective (Kannenberg et al., 2020; M€uller & Bahn, 2022).

Severe drought stress can impair water transfer within trees by
inducing vessel embolism (Br�eda et al., 2006; Rennenberg
et al., 2006), which is indicated, for example in European beech
by premature defoliation (see Guan et al., 2022). Drought recov-
ery is a metabolomic costly process and may take several years
(Huang et al., 2018). During this time previously
drought-stressed trees likely differ in their phytochemistry from
unstressed trees (Gessler et al., 2017). Moreover, different tree
species can vastly vary in their drought coping and recovery stra-
tegies (Ruehr et al., 2019). Exploring drought legacy effects on
tree–herbivore interactions is further complicated by the fact that
drought impacts may vary across crown strata. For example,
Richter et al. (2022) showed that drought affects the microcli-
matic gradient along the vertical dimension of forest canopies
and these changes depend on the tree species. Yet, a constant
increase of temperature with tree height was observed for most
species (Richter et al., 2022). Consequently, drought effects on
herbivores may be more accentuated in the upper, sun-exposed
stratum than in the lower crown.

The enormous diversity of tree-feeding herbivore species and
their often vastly different feeding strategies make it challenging
to generalize herbivore responses to drought. However, herbi-
vores of the same feeding guild tend to show similar immediate
responses to drought (Koricheva et al., 1998; Huberty &
Denno, 2004). Sapsuckers and miners often perform better when
feeding on moderately drought-stressed than on unstressed plants
(Koricheva et al., 1998; Gely et al., 2020). By contrast, the per-
formance of chewing and gall-forming insects often decreases
with increasing drought stress of host plants (Koricheva
et al., 1998; Huberty & Denno, 2004; Gutbrodt et al., 2011).

Feeding guild-specific differences in responses to drought are
likely the result of drought-induced changes in phytochemical
defenses and leaf nutrient levels (He & Dijkstra, 2014; Jamieson
et al., 2017). Because of their specialized feeding mode, it has
been hypothesized that sapsuckers and miners benefit from
increasing nitrogen levels when feeding on moderately
drought-stressed plants while avoiding defensive compounds
(Gely et al., 2020). Consequently, these feeding guilds may only
be minimally affected by drought-related changes in defense
chemistry. By contrast, externally feeding chewing and scraping
herbivores feed less selectively than suckers and miners. Hence,
the positive effects of plant nutritional quality on
drought-stressed plants may be offset by drought-induced
changes in defense chemistry (Gely et al., 2020).

European beech (Fagus sylvatica L.) is currently the most
dominant broad-leaved tree species in Central European forests,
hosting a well-characterized herbivore community (Br€andle &
Brandl, 2001; Durrant et al., 2016). Several studies have docu-
mented distinct insect herbivory patterns across vertical and hori-
zontal spatial scales in beech (Gossner et al., 2014; Mangels
et al., 2015), which is likely explained by microclimatic variation
among strata.

In addition, beech–herbivore interactions are mediated by spe-
cialized leaf metabolites. Besides mono- and sesquiterpenes beech

specialized metabolite profiles are dominated by phenolics, many
of which have known effects on insect communities and herbiv-
ory (Petrakis et al., 2011; Packham et al., 2012; Rehman
et al., 2012). Moreover, studies suggest short-term consequences
of drought stress for beech primary chemistry (Pflug et al., 2018;
Zang et al., 2021). However, how drought stress may affect the
relationship between phytochemistry and herbivory in beech, in
the long run, remains unclear.

In 2018, Central Europe experienced one of the most severe
summer droughts ever recorded and beech particularly suffered
from this drought (Schuldt et al., 2020). In late summer 2018,
several beech trees in many forest stands had already prematurely
shed their leaves. Premature defoliation in beech is a clear indica-
tor for severe drought stress (Frei et al., 2022) and therewith asso-
ciated xylem embolism since the leaf petiole xylem is much more
resistant to embolisms than the stem xylem in this species (Guan
et al., 2022). Interestingly, prematurely defoliated, that is
drought-stressed, trees grew in many cases adjacent to nondefo-
liated healthy looking beech trees (Frei et al., 2022). The
observed differences in drought stress were attributed to the
small-scale variation in competition for resources (Klesse
et al., 2022) and allowed a clear differentiation between strongly
drought-affected, symptomatic trees in 2018 and nonsympto-
matic trees which remained below a xylem cavitation threshold
leading to defoliation.

In the present study, we explore the legacy effects of the 2018
extreme drought summer on beech–herbivore interactions across
two regions in Switzerland over 2 yr using a natural experimental
set up containing sites with heavily drought-stressed trees (symp-
tomatic, that is with premature defoliation in 2018) growing next
to non or only minimally stressed beech (nonsymptomatic in
2018) established by Wohlgemuth et al. (2020). We tested the
following hypotheses: (1) Previously drought-stressed and
unstressed beech differ in their phytochemical profile. (2)
Herbivore-feeding guilds differ in their preference for previously
drought-stressed trees, that is leaf damage by sapsuckers and
miners is higher, while leaf damage by chewing, scraping and
gall-forming herbivores is lower on previously drought-stressed
than on unstressed beech. (3) Drought legacy effects on phyto-
chemistry and herbivory will be more pronounced in the upper,
sun-exposed crown than in the lower crown; and (4) more pro-
nounced in the first year than in the second year after the
drought. (5) Drought legacy effects on leaf chemistry explain var-
iations in leaf damage.

Materials and Methods

Experimental overview

In August 2018, we identified several forest sites in Switzerland
with beech trees (F. sylvatica L.) displaying premature leaf disco-
loration and shedding as a result of the extreme 2018 summer
drought (Frei et al., 2022). In beech, premature defoliation is a
sign of twig and stem xylem cavitation as the leaf petiole xylem
has a higher resistance to cavitation compared to the twig and
stem xylem (Guan et al., 2022). Thus, we differentiated between
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symptomatic trees with visible drought stress signs and nonsymp-
tomatic trees, exposed to no or lower stress impacts.

We selected four sites located in the region Zurich/Aargau and
four sites in the region Baselland. At each site, we chose a plot
with drought-stressed beech trees, that is trees exhibiting prema-
ture defoliation (henceforth: drought-stressed), and, in close
proximity, a control plot with beech trees that grew under com-
parable conditions but showed no signs of severe drought stress,
that is no premature defoliation (henceforth: control; mean dis-
tance between drought-stressed and control plots: 199 m;
Table S1). In each of the 16 plots we selected three mature
beeches comparable in age and size (i.e. a total of 24
drought-stressed and 24 control beeches). We recorded the posi-
tion of each tree using a GNSS receiver (GeoXH 6000 DGNSS;
Trimble Navigation, Sunnyvale, CA, USA). Postprocessed coor-
dinates achieved a horizontal precision of 0.1–2.0 m. For each
tree, we determined distance to the forest edge (which may affect
herbivory) based on tree coordinates and a forest mask from the
Swiss National Forest Inventory (Waser et al., 2015). Leaves for
phytochemistry and herbivory measurements were sampled in
summer 2019 and 2020. Compared to 2018 lower temperatures,
higher cumulative levels of precipitation and climatic water bal-
ance, that is precipitation minus potential evapotranspiration,
were measured in 2019 and 2020 as well as in the 14 previous
years (2004–2017) (Fig. S1) we sampled leaves from one branch
of the upper, sun-exposed and one branch of the lower, shaded
crown of all trees. Thus, the experimental design for evaluating
the effects of the summer drought, time since the drought event
and crown stratum on herbivory and leaf chemistry was a 2
(plots/drought treatments) 9 2 (years since drought) 9 2
(crown strata) 9 2 (regions) 9 4 (sites) split- plot. With three
sampled trees per plot this resulted in 96 branches collected in
2019. In 2020, due to forest sanitary measures, we were unable
to collect data from seven drought-stressed trees and the six most
proximate control trees, reducing the number of analyzed
branches to 70.

Crown transparency assessment

In July 2019, 1 yr after the drought, the crown transparency of
all trees was estimated as the percentage of leaf loss compared to a
reference tree with a healthy, fully foliated crown using a photo
guide with species-specific reference standards (Eichhorn
et al., 2016; Frei et al., 2022). Crown transparency is known to
increase under (and in years after) drought (Strand, 1997; Seid-
ling, 2007). Continued increased defoliation can, therefore, be
used as a proxy for drought legacy effects and high defoliation in
the long term is generally related to mortality risk (Hunziker
et al., 2022).

Leaf sampling

Leaves were collected in late June/early July 2019 and 2020.
From each tree, we randomly selected a branch in the
sun-exposed crown (upper quarter of the tree crown between 20
and 25 m height, henceforth: upper stratum) and the shaded

crown (lower quarter of the tree crown between 3 and 5 m
height, henceforth: lower stratum). Branches were harvested
using either a crossbow and rope to break down branches (for
details see Gossner et al., 2014) or telescopic shears to cut
branches (only lower crown). The branches were selected to have
at least 100 fully developed leaves. Thirty fully developed leaves
without signs of herbivory were randomly selected from each
branch and used for phytochemical analyses. Moreover, we ran-
domly sampled 50 fully developed leaves, starting from the
branch tip, for herbivory assessments. Leaves for phytochemistry
were kept on dry ice in the field and then stored at �20°C until
further processing. Leaves for herbivory assessments were put in
plastic bags with a piece of wet sponge cloth and stored in cooling
boxes in the field. In the lab, the leaves were stored in a fridge at
4°C until analyzed.

Phytochemical analyses

Leaves for phytochemical analyses were pooled by branches, lyo-
philized, and then ground using a micro impact mill with a
1 mm mesh screen (Culatti AG, Steinerberg, Switzerland).
A subsample of the ground material was used for the analysis of
leaf fiber (reported as the total amount of cellulose and lignin)
and lignin content. Both constituents contribute to leaf tough-
ness and are associated with herbivore-feeding deterrence
(Choong, 1996; Liu et al., 2018). Fiber and lignin were quanti-
fied gravimetrically using sequential extraction in a hot acid
detergent solution in an Ankom 200 Digestor and then incu-
bated in 72% H2SO4 (Rowland & Roberts, 1994). The remain-
ing ground leaf material was pulverized in a ball mill and used for
all additional phytochemical analyses.

Leaf nitrogen concentration, a proxy for leaf protein content
and, therefore, an important nutrient for herbivores (Awmack &
Leather, 2002), was measured via a thermal combustion/elemen-
tary analysis (TC/EA) system (isoEArth; Firma Sercon, Crewe,
UK) coupled to an IRMS (HS2022; Firma Sercon). Finally,
the leaf primary metabolome, encompassing compounds that
are required for plant development and growth (Fernie &
Pichersky, 2015), and the specialized metabolome, encompassing
mainly compounds that are involved in plant stress responses
(Hartmann, 2007), were analyzed. The untargeted analysis
of the primary metabolome was performed with gas
chromatography-mass spectrometry (GC-MS) according to Jan-
sen et al. (2014), the specialized metabolome was analyzed by
ultra-high-performance liquid chromatography-quadrupole
time-of-flight mass spectrometry (UHPLC-QTOFMS) as
described in Eisenring et al. (2018) with minor modifications.
Detailed extraction and analytical methods can be found in
Methods S1.

Herbivory assessments

We assessed leaf herbivory 1–3 d after field collection. On each
leaf, we estimated the proportion of leaf area affected by chewers,
scrapers, suckers and miners using templates of beech leaves with
defined damage areas (details in Methods S2). In addition, we
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noted the presence of galls induced by gall midges and gall mites
and the woolly beech aphid Phyllaphis fagi (L.), as this was the
only herbivore that was sufficiently abundant to be analyzed.

Statistical analyses

Analyses were conducted with R 4.2.2 (R Core Team, 2023). A
detailed description of the R-packages used for each analysis can
be found in Methods S3.

The impact of drought stress (early leaf senescence due to
drought /no signs of drought stress) and region (Zurich/Basel-
land) on tree crown transparency 1 yr after the drought was ana-
lyzed in a linear model (LM). Effects on nitrogen, fiber and
lignin were analyzed in linear mixed effects models (LMMs) with
drought stress, year since drought stress, crown stratum, all possi-
ble two-way interactions as fixed effects and individual trees as
random effects.

The effects of drought stress, crown stratum and year since
drought on the primary and specialized metabolome were
explored by subjecting the primary and specialized metabolome
data from the first and second year after the drought to a princi-
pal component analysis (PCA). The first two principal compo-
nents (PC), representing integrative measures of metabolomic
variation, were then used as variables in piecewise structural equa-
tion models (see below). PC may not always reflect the variation,
that is relevant for separating groups of ecological interest (Scott
& Crone, 2021). Therefore, the primary and specialized metabo-
lome of upper and lower crown leaves of drought-stressed and
control trees were also compared using partial least squares discri-
minant analysis (PLS-DA). The latter is a supervised multivariate
analysis optimized to summarize (metabolomic) variables in a
way that best explains differences among response categories (i.e.
maximizing of co-variation between predictor variables and
response categories). The models were tuned using 10-fold
cross-validation on five PLS-DA components. Since PLS-DA is
prone to overfitting, it is important to validate the models before
the score plots can be reliably interpreted (Herv�e et al., 2018).
We validated all tuned PLS-DA models via permutation tests
(1000 permutations) using the ‘B : W ratio’ as suggested by
Bijlsma et al. (2006). The primary and specialized metabolomic
features that best discriminated between drought treatments were
identified for both years. To do so, variable influence on projec-
tion (VIP) scores were calculated in validated PLS-DA models (as
mentioned in the previous section) discriminating between
drought-stressed and control trees. For both years, the 50 most
influential features were selected and submitted to Student’s t-
tests. Features that differed significantly between control and
drought-stressed trees were then identified based on their exact
mass and MS/MS fragment properties and based on the compari-
son with existing databases.

Herbivore damage from the different feeding guilds and the
presence of P. fagi were analyzed separately on the branch level in
two steps. In a first step, we distinguished between leaves with or
without feeding guild-specific damage. The probability of finding
leaf damage (presence/absence of damage) by each feeding guild
was modeled using generalized linear mixed models (GLMMs)

with binomial distribution. In a second step, we calculated the
average proportional leaf damage (i.e. leaf area consumed) sepa-
rately for each feeding guild per branch except for gall midges,
gall mites and P. fagi, for which only presence/absence data was
available. The proportional data (i.e. observations of the open
interval (0, 1)) was analyzed in GLMMs with beta distribution
(Douma & Weedon, 2019). In all models we explored the
impact of the fixed effects drought stress (yes /no), crown stratum
(upper/lower), year since the drought event (first/second) and all
possible two-way interactions between these effects on herbivore
damage and the presence of P. fagi. Initially, we included distance
to the forest edge (which may affect herbivore communities) and
individual trees nested in region as random intercepts in all mod-
els. Based on likelihood ratio tests we removed region from all
and distance from the forest edge from all but two models
(GLMM binomial model for sucker and miner). Individual trees
were kept as random intercepts in all models.

Piecewise structural equation models (SEMs) (Lefcheck, 2016)
were used to disentangle the direct and indirect impacts (via
changes in nitrogen, fiber, lignin, variation in composite primary
and specialized phytochemical profiles (PCA axes)) of drought
stress, crown stratum and year since the drought event on the
probability of leaf damage by each feeding guild (see Methods
S4).

Finally, we explored the relationship between individual spe-
cialized metabolites that best discriminated between drought
treatments and herbivore damage patterns. The relationship
between the probability of leaf damage for each feeding guild and
all specialized metabolites that did not show signs of multicolli-
nearity was modeled in GLMMs with binomial distribution with
selected metabolites, crown stratum, and year since the drought
effect as fixed effects, individual trees as random effects and
damage probabilities as response variables. The relationship
between proportional leaf damage (consumed leaf area) for each
feeding guild and specialized metabolites was explored with par-
tial least squares regression (PLSR; can deal with highly collinear
explanatory variables) and metabolites that were most strongly
associated with variation in proportional leaf damage were identi-
fied. Metabolites with variable influence on projection (VIP)
scores > 1 were subjected to GLMMs with beta distribution with
the selected metabolites, crown stratum, and year since the
drought effect as fixed effects, individual trees as random effects
and herbivore damage levels as response variables. Based on likeli-
hood ratio tests we decided not to include region and distance
from the forest edge in any model as they did not improve the
model fit.

Results

Drought legacy effects on crown transparency

Trees with premature leaf discoloration and shedding due to
drought stress in 2018 had a > 15% higher crown transparency
(P < 0.001) in the year following the drought event than the
control trees (Fig. 1). Crown transparency levels were not affected
by regional differences.
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Drought legacy effects on leaf chemistry

Leaf nitrogen was affected by drought, but drought effects varied
between the years postdrought and between crown strata (Fig. 2a).
We found that in the first year after the drought, drought-stressed
trees had 5% higher nitrogen values than control trees. In agree-
ment with our hypothesis (4), we found that in the second year
after the drought; however, nitrogen levels were minimally lower in
drought-stressed than in control trees (drought 9 year interaction,
Fig. 2a). Nitrogen levels also differed between strata in previously
drought-stressed trees but not in control trees (drought 9 stratum
interaction Fig. 2a). In the lower stratum, leaf nitrogen levels were
8% higher in drought-stressed trees whereas in the upper stratum
nitrogen levels showed the opposite pattern. When averaged across
years and crown strata, leaf nitrogen concentrations were minimally
(< 1%) yet significantly higher in previously drought-stressed trees
(Fig. 2a) This finding is consistent with hypothesis (1) stating that
drought stress leads to differences in the phytochemical profile. In
support of hypothesis (1) also fiber levels were affected by drought
with leaf fiber concentrations being on average 4% lower in pre-
viously drought-stressed trees (Fig. 2b). However, nitrogen and
fiber levels were mainly determined by factors other than drought.
Variations in nitrogen levels were most strongly associated with
interannual differences (13% differences between years, Fig. 2a)
while fiber levels were mainly affected by differences between the
stratum (6.5% differences between crown strata, Fig. 2b). Leaf lig-
nin levels were not affected by any of the explored variables
(Fig. S2).

The first two PCA score plots explained 59.4% (year 1) and
52.1% (year 2) of the variance in the primary metabolome
and 26.6% and 27.3% of the variance in the secondary metabo-
lome in the first 2 yr after the drought event (Fig. S3). Using a
PLS-DA we did not find any separation among treatment groups
with respect to their overall primary metabolome profile (Figs 2c,
S2). Potential differences between previous drought stress and
nonstressed trees were mainly related to mostly subtle changes in
amino-, organic- and fatty acid levels (Table S2; Fig. S4).

By contrast, PLS-DA score plots on the specialized metabolome
profile revealed a clear clustering of previously drought-stressed and

unstressed leaves and a weaker but still present separation among
upper and lower stratum leaves (Figs 2d, S2). These findings sup-
port hypothesis (1) as they indicate that previous drought stress can
modulate the specialized phytochemical leaf profile in a long-
lasting way. Drought-related changes in the specialized metabo-
lome profiles could mainly be attributed to 41 different com-
pounds quantified in this study (Table S2; Fig. 3). Previous
drought stress was associated with the increase in phenolic com-
pounds, which in the most extreme case increased by > 200% in
drought-stressed trees compared to controls. Moreover, an increase
of flavanols and flavonols was observed in both years after the
drought. In the first year after the drought, previously drought-
stressed trees had lower levels of fatty acids and lipids.

The specialized metabolome score plots do not indicate a more
distinct separation between phytochemical profiles of drought-
stressed and control leaves in the first (Fig. S2) compared to the
second year after the drought (Fig. 2d), contradicting hypothesis
(4). Moreover, we found a weak separation of lower and upper
leaf chemistry within a drought treatment group which may indi-
cate that upper and lower stratum leaf specialized metabolites are
differently affected by drought.

Drought legacy effects on herbivory

Drought legacy effects had no or only subtle effects on
herbivory patterns of most feeding guilds (Figs 4, S5). The most
pronounced drought effects were observed for damage caused by
chewing herbivores (Fig. 4a). The probability of observing chew-
ing damage was similar for drought-stressed and control trees in
the first year after the drought (Fig. 4a). However, in the second
year, leaves from previously drought-stressed trees were damaged
with a 10% lower probability than leaves from control trees
(drought 9 year interaction, Fig. 4a). This result supports our
hypothesis (2) of lower chewing damage on previously drought-
stressed trees. However, our findings do not align with hypothesis
(4) as drought effects were more pronounced in the second than
in the first year after the drought event. Lower crown leaves from
previously drought-stressed trees were on average 9% less likely
damaged than lower crown leaves from control trees (drought 9
stratum interaction, Fig. 4a). No differences between drought
stress treatments were found in the upper crown. These results
contradict our hypothesis (3) of more pronounced drought legacy
effects in the upper than in the lower crown.

We predicted that besides chewing damage also the probability
of scraper damage and the number of galls would be lower on
previously drought-stressed plants (hypothesis 2). However,
neither scraper, gall midge nor gall mite damage (Figs 4d, S5)
corresponded to drought legacy effects. The probability of find-
ing sucker damage did not differ between drought-stressed and
control trees in the 2 yr after the drought (no significant drought
9 year interaction effects, Fig. 4b). However, previous drought
stress affected the probability of finding sucker damage in the
lower and upper crown stratum differently (significant drought
9 stratum interaction, Fig. 4b). Sucker damage probability was
4% higher in lower stratum leaves but 3% smaller in upper stra-
tum leaves on previously drought-stressed trees, when compared

Fig. 1 Estimate and line plot illustrating the effects of previous drought
stress (2018) and region on Fagus sylvatica crown transparency assessed 1
yr after the drought (2019). P-values were calculated with linear models.
P-values in the estimate plots: ***, < 0.001. The line plot represents the
predicted trait values (mean � 1SE).
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to control trees. Similarly, the probability for finding the sucking
P. fagi was higher in the upper crown of drought-stressed than
of control trees (Fig. S5). Miner damage probabilities were not
affected by drought stress. Overall, our results on sucker and
miner damage do not align with hypothesis (2) posing that leaf
damage of suckers and miners is generally higher on previously
drought-stressed trees.

Year and stratum had in most cases a stronger effect on damage
probabilities than drought legacy effects (Figs 4, S5). Interestingly,

chewing damage probabilities were often conversely affected by
year and stratum than damage by the other feeding guilds. For
example, the probability of finding chewing damage was 23%
lower in the second than in the first year after the drought when
averaged across upper and lower stratum of drought-stressed and
control trees (Fig. 4a). The average probability of finding sucker
and miner damage, however, was 35% and 12% higher in the sec-
ond year than in the first year (Fig. 4b,c). Similarly, the probability
of finding chewer damage was 14% higher in the upper than in

Fig. 2 Estimate and line plots (predicted mean � 1SE) illustrate the effects of previous drought stress, year, region, crown stratum and their two-way
interactions on (a) leaf nitrogen and (b) leaf fiber concentrations of Fagus sylvatica. P-values were calculated via linear mixed effects models. P-values in
the estimate plots: *, < 0.05; **, < 0.01; ***, < 0.001. dw, dry weight. Score plots of a partial least squares discriminant analysis of (c) the primary
F. sylvaticametabolome and (d) the specialized metabolome of leaves from the upper and lower crown stratum of previously drought-stressed and control
trees for the second year after the drought. Each dot represents a leaf sample of 30 pooled leaves. Results are shown for leaves collected 2 yr after the
drought event. Score plots for the first year after the drought are shown in Supporting Information Fig. S2.
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the lower stratum when averaged across years and across drought-
stressed and control trees (Fig. 4a). However, sucker damage and
gall mites occurred each on average with a 4% lower probability
in the upper stratum (Fig. 4b,d).

While drought legacy affected the probability of leaf damage
in several cases, the amount of leaf area consumed was not
affected by drought (Fig. S6). However, the consumed leaf area
varied among sampling years and crown strata.

Phytochemistry-mediated drought legacy effects on
herbivory

We found that drought and drought 9 year interactions had an
impact on individual phytochemical compounds as well as phyto-
chemical profiles, which in turn affected damage probabilities of
all feeding guilds (Figs 5, S7), supporting hypothesis (5) posing
that drought legacy effects on leaf chemistry explain variations in

Fig. 3 Change in Fagus sylvatica compound levels (peak areas) of the most influential specialized metabolites in partial least squares discriminant analysis
models of drought-stressed trees in comparison to control trees (a) 1 yr or (b) 2 yr after the drought. All compound levels differed significantly between
drought-stressed and control trees (P ≤ 0.05). A detailed list of all compounds can be found in Supporting Information Table S2.
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leaf damage. However, drought-mediated phytochemical effects
on damage probabilities were in most cases weak as indicated by
either the low estimated effect sizes of individual specialized

metabolites (Fig. S8) or the low standardized path coefficients
(i.e. thin arrows connecting phytochemical traits and damage
probabilities; Figs 5, S7).

Fig. 4 Estimate and line plots illustrating the effects of previous drought stress, year since the drought event, crown stratum and their two-way interactions
on the probability of finding Fagus sylvatica leaves with (a) chewing damage, (b) sucker damage, (c) miner damage or (d) gall mites. Leaf images represent
examples of feeding guild-specific damage patterns. P-values were calculated via generalized linear mixed models with binomial distribution. P-values in
the estimate plots: *, < 0.05; **, < 0.01; ***, < 0.001. Line plots represent predicted trait values (mean � 1SE).
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Leaf nitrogen levels, that were on average slightly higher in pre-
viously drought-stressed trees, but effect strength depended on
stratum and year, increased the probability of leaf damage by
chewers and miners and the occurrence of the beech aphid P. fagi
(Figs 5a,c, S7). By contrast, damage probabilities by suckers other
than P. fagi and gall midges were negatively affected by nitrogen
(Figs 5b, S7). Fiber concentrations, that were lower in drought-
stressed trees, were positively related to the occurrence of sucker
damage and gall mites (Fig. 5b,d). Among the 41 specialized
metabolites that were most influential for discriminating between
drought treatments, only 11 different specialized metabolites
from six compound classes significantly yet weakly correlated

with damage probabilities (Fig. S8). About half of these com-
pounds were positively related to damage probabilities.

Variation in the primary metabolomic profile affected the
probability of scraper damage and the occurrence of gall midges
(Fig. S7). Drought-driven changes in the specialized metabolo-
mic profile (PC1) differentially affected the probability of chewer
and sucker damage (Fig. 5a,b). Finally, gall mite gall and P. fagi
occurrence were affected by both, changes in the primary and
specialized metabolomic profile (Figs 5d, S7).

Drought-driven variation in phytochemistry had only a mini-
mal effect on the amount of leaf damage. Only five out of 41 spe-
cialized metabolites that were relevant for explaining differences

Fig. 5 Results from piecewise structural equation models (SEM) on the relations of the probability of observing (a) chewer damage, (b) sucker damage (c)
miner damage, (d) gall mite galls and drought stress, year since the drought event, crown stratum and their two-way interactions as well as phytochemistry
(including nitrogen, fiber, lignin, and the coordinates of the first two principal components (PC) of a principal component analysis on the primary
metabolome (Prim. metab) and specialized metabolome (Sp. metab)). Positive paths in green, negative in black, nonsignificant in gray. Thickness of paths
represent standardized effect sizes. Paths that were removed due to multicollinearity issues are shown in red. Results of the piecewise SEM including
standardized estimates are listed in Supporting Information Table S3. Leaf images represent examples of feeding guild-specific damage patterns.
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in leaf chemistry between drought-stressed and unstressed trees
affected leaf damage (Fig. S9). Moreover, only leaf miner damage
was affected by changes in leaf nitrogen levels (Fig. S10).
Changes in the phytochemical profiles did not affect leaf damage
quantity of any feeding guild (Fig. S10).

Discussion

Drought events are expected to have long-lasting consequences
for community dynamics (M€uller & Bahn, 2022). Yet, an in-
depth understanding of how drought may shape species interac-
tions in the long term is just emerging. Our findings provide
novel insights by showing that drought stress can have
long-lasting effects on nitrogen, fiber and specialized metabolite
phytochemical profiles in beech leaves. Drought and drought-
associated phytochemical changes mediated leaf damage prob-
abilities of leaf-chewing herbivores. Yet, no or rather subtle
drought legacy effects were found on leaf damage caused by other
feeding guilds. Drought legacy effects on phytochemistry and
herbivory have often been blurred by year, canopy strata, or pos-
sible differential responses among feeding guilds. Our study helps
to better disentangle how these factors individually and in inter-
action with drought legacy effects can influence tree–herbivore
interactions.

Extreme drought affects leaf chemistry over 2 yr

A key finding of our study was that drought effects on the total
beech specialized metabolome were still detectable 2 yr post-
drought supporting hypothesis (1). However, in contrast to our
hypothesis (4) the detected legacy effects were similarly pro-
nounced in both years. Numerous studies, for example on euca-
lyptus (McKiernan et al., 2016), poplar (Eisenring et al., 2022)
or oak (Rivas-Ubach et al., 2014) reported short-term drought-
induced changes in tree specialized metabolite levels. Specialized
metabolites are reported to be also involved in long-term drought
recovery processes. Yet, most recovery studies on specialized
metabolites have only been followed up upon for a few weeks
after the drought event (McKiernan et al., 2016; Almeida
et al., 2020; Du et al., 2021). Ongoing recovery from drought
may also explain the differences in the specialized metabolome in
our case. If this was true, drought recovery in beech would take
place at least over 2 yr. Because European beech sheds its leaves
every year, the annual initiation and maintenance of the drought
recovery process may be a systemic rather than a leaf-localized
response. Alternatively, the metabolomic differences observed
may be the result of postdrought acclimation (‘drought memory
effect’) (Walter et al., 2011; Gessler et al., 2020). Severe drought
stress can lead to long-term transcriptional (Ding et al., 2012)
and therewith associated metabolomic reprogramming
(Menezes-Silva et al., 2017), which may, in our case, explain the
long-lasting differences in the specialized metabolome between
previously drought-stressed and control trees.

In agreement with hypothesis (1) also leaf fiber and nitrogen
levels were significantly affected by drought stress. Fiber levels
were on average lower in previously drought-stressed beech than

in control beech. Studies on woody species show that leaf tough-
ness (a proxy for leaf lignin content) is associated with drought
tolerance (Savi et al., 2017; Fichtner et al., 2020). These findings
are in alignment with studies on herbaceous grassland plant spe-
cies showing that leaf fiber levels can increase under
drought stress (Jiang et al., 2012; Del�eglise et al., 2015). During
drought recovery, however, plants can overcompensate for the
drought-caused increase in fiber levels and the latter can drop
below initial levels of the prestressed state (Del�eglise et al., 2015).
Whether the observed reduction of leaf fiber levels in beech in
response to previous drought stress is also the result of drought
recovery-associated overcompensation remains to be tested.

Leaf nitrogen levels were not only modulated by drought treat-
ment effects but also by the crown stratum. Drought effects led to
increased nitrogen levels in the lower crown while it reduced nitro-
gen levels in the upper crown. Our findings broadly correspond
with Cano et al. (2013) who measured higher nitrogen levels in
the lower than in the upper crown in moderately drought-stressed
beech. Leaf nitrogen content is tightly linked to the leaf photosyn-
thetic machinery (Bj€orkman, 1968) and its distribution optimized
within canopies to increase CO2 assimilation (Milcu et al., 2017).
Hence, Cano et al. (2013) explained within-crown changes in leaf
nitrogen levels with the observed changes in photosynthesis levels
between crown levels. Our findings add to the results by Cano
et al. (2013) by suggesting that a drought event can have a long-
lasting effect on tree leaf nitrogen levels and possibly also on
photosynthesis activity. However, the ramifications of such
drought legacy effects seem to vary among crown strata.

In contrast to our results on the specialized metabolome, leaf
nitrogen and fiber content, PLS-DA revealed no pronounced
drought legacy effects on the total primary metabolome. Primary
metabolites are traditionally classified as highly conserved traits
that are central for basic plant functions such as development and
growth but that are less involved in plant–environment interac-
tions (Fernie & Pichersky, 2015; Maeda, 2019). It has been
shown for Scots pine (Pinus sylvestris L.) that leaf carbohydrate
concentrations are kept constant over different long-term water
availability regimes indicating that trees can keep levels of central
primary metabolites homoeostatic (Sch€onbeck et al., 2018). By
contrast, observations on beech (Peuke et al., 2002; Aranda
et al., 2018; Pflug et al., 2018) and other plants (Chan
et al., 2013; Tschaplinski et al., 2019) challenge the traditional
classification of primary metabolites being highly conserved as
studies found drought-induced changes in the primary metabo-
lites. However, studies on beech leaves (Zang et al., 2014; Pflug
et al., 2018) indicate that many drought-related changes of pri-
mary metabolites are restored within a few days after the drought
(Leuschner, 2020). Our results are in line with these previous
findings by showing that even an extreme drought event does not
have a long-lasting impact on the leaf primary metabolomic pro-
file in beech. The observed changes in leaf nitrogen contents
might be seen as indicative for changes in photosynthetic capacity
(Evans, 1989) and enzyme abundance and activity in general.
This might also have affected metabolic fluxes through various
pathways. Our approach, however, assesses the change in meta-
bolic abundance and thus metabolite pools. As the primary
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metabolites are mainly metabolic pathway intermediates, their
pools not necessarily change with altered metabolic flux rates
while the end products in the secondary metabolism can become
affected.

Phytochemistry mediates drought legacy effects on
leaf-chewing herbivores

Drought legacy effects had an impact on the probability of
herbivore-caused leaf damage. Yet, the magnitude and direction
of drought on leaf damage differed strongly among feeding
guilds. The most pronounced effect was observed for the prob-
ability of chewer damage that was reduced on drought-stressed
trees. By contrast, sucker or miner damage were only minimally
affected by previous drought stress. While these results are
broadly consistent with hypothesis (2) they do not align with the
hypothesized positive effect of moderate drought stress on sap
sucker damage. In fact, neither the probability nor the quantity
of any feeding guild-associated leaf damage increased on pre-
viously drought-stressed trees.

Herbivore-feeding guild-specific differences in drought
responses are often explained by phytochemical differences
between drought-stressed and nonstressed plants (Jamieson
et al., 2017; Gely et al., 2020). It has been proposed that sapsuck-
ers are mainly affected by drought-related changes in nutritional
compounds, leaf miners are affected by changes in plant nutrients
and leaf toughness, whereas leaf-chewing insects (chewers and
scrapers) and gall inducers are affected by changes in plant nutri-
ents, leaf toughness and defensive metabolites (Gely et al., 2020).
In alignment with ecological theory and our hypothesis (5) stat-
ing that drought legacy effects on leaf chemistry explain varia-
tions in leaf damage, we found that at least damage probabilities
of suckers and chewers are differentially affected by drought-
related changes in phytochemistry. While chewer and sucker
damage were opposingly affected by drought effects in the first
and the second year after the drought event (drought 9 year
interaction) and by drought effects on the upper and lower
canopy (drought 9 stratum effects), they also showed opposite
responses to drought-related changes in nitrogen and variation in
the specialized phytochemical profile (variation in specialized
metabolome captured via PC1), suggesting that these two feeding
guilds show contrasting responses to drought-induced phyto-
chemical changes.

However, we could not identify individual compound classes
that would explain differences in leaf damage among herbivore-
feeding guilds. Moreover, we found that about half of all specia-
lized metabolites were positively related to damage probabilities
and the amount of leaf damage. Traditionally, specialized meta-
bolites are associated with protective functions against both biotic
stressors (Hartmann, 2007). As such one would assume that her-
bivore damage should be negatively related to specialized com-
pound levels. However, specialized metabolites are often
multifunctional (Erb & Kliebenstein, 2020), and several studies
have shown that specialized metabolites can increase herbivore
performance or damage (Richards et al., 2012; Hu et al., 2018;
Gossner et al., 2023). Taken together, our results suggest that

herbivory in European beech is determined by a suite of phyto-
chemicals rather than by some individual flagship defense com-
pounds. Drought legacy effects can alter leaf phytochemical
profiles and consequently have the potential to also modulate leaf
herbivory patterns.

Drought effects on chemistry and herbivory vary between
crown strata and postdrought years

In several cases, drought effects on phytochemistry and herbivory
varied between the upper and the lower tree crown stratum.
However, in contrast to our hypothesis (3) we found not a single
case in which drought effects on herbivory or phytochemistry
were more pronounced in the upper crown than in the lower
crown. Instead, we found that fiber levels and chewing damage
were less pronounced in drought-stressed trees in the lower stra-
tum, while drought effects in the upper stratum did not differ.
Leaves in the upper tree crowns are often exposed to harsher,
environmental conditions such as higher temperatures (De
Frenne et al., 2021), higher vapor pressure deficit (Barker, 1996),
increased windspeed (Sellier & Fourcaud, 2009) or reduced sap-
flow rates (Richter et al., 2022) than lower crown regions, which
ultimately affects transpiration and rapid water loss. Hence,
upper-crown leaves that are already adapted to harsh environ-
mental conditions may be less responsive to drought stress than
leaves from the lower crown.

Our study did also not support hypothesis (4) posing that
drought legacy effects on phytochemistry or herbivory are more
pronounced in the first year than in the second year after the
drought. In the case of chewing damage probabilities, we found
that drought effects were even more pronounced in the second
than in the first year after the drought. In summary, our results
suggest that stratum and interannual effects, both of which can
strongly affect phytochemistry (Osier et al., 2000; Jamieson
et al., 2015; Eisenring et al., 2021), herbivore populations and
herbivory (Meiners et al., 2000; Seifert et al., 2020), confound
the studied 2018 drought legacy effects in beech.

Conclusion

Our study demonstrates that an extreme drought event can alter
phytochemical profiles of beech leaves, that is organs that are
newly produced annually, for at least 2 yr postdrought. These
drought legacy effects on beech chemistry have the potential to
affect damage probabilities of leaf-chewing herbivores and thus
possibly also species communities and forest health. Moreover,
drought frequency and severity are projected to increase in many
regions in the 21st century (Touma et al., 2015; Samaniego
et al., 2018; UNCCD, 2022). In addition, successive drought
events are expected to have more detrimental effects on trees and
forest ecosystems than initial droughts (Anderegg et al., 2020).
Therefore, drought legacy effects likely gain in relevance in mod-
ulating tree–herbivore interactions and thus forest ecosystem
dynamics in the near future.

As such, the findings of the present study also bear relevance
for forest management strategies. Besides focusing on measures
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that address the short-term consequences of drought events on
herbivore and potential pest populations, it will become increas-
ingly relevant to also consider closer monitoring of herbivore
population dynamics over several years following a drought event
to manage delayed negative impacts at an early stage.
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