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Spatial mapping shows that glioblastoma

consists of both disorganized and

structured regions. Structured regions

display a five-layered organization that is

associated with hypoxia and extends

beyond the organization that is visible by

histology.
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SUMMARY
Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial prote-
omics, and computational approaches to define glioma cellular states and uncover their organization. We
find three prominent modes of organization. First, gliomas are composed of small local environments,
each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside
in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise
interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the
layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tu-
mor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-
mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of
cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.
INTRODUCTION

In his landmark 1932 paper, Percival Bailey elegantly character-

ized the spatial architecture of gliomas observing that ‘‘the

microscopic structure of tumors of the brain is infinitely varied,

yet among their kaleidoscopic appearances certain family re-

semblancesmay be traced.’’.1 Gliomas are typically highly het-

erogeneous and infiltrative, yet specific spatial patterns are

consistently noted. In 1938, Hans Joachim Scherer detailed

the recurring spatial structures of gliomas and, in particular, glio-

blastomas (GBMs): organized secondary structures character-

istic of invasion in which glioma cells rely on or mimic the pre-ex-

isting normal structures of the brain; amorphous arrangements

of cancer cells; proper structures in which the cancer cells

form patterns that do not depend on pre-existing normal struc-

tures; and a mesenchymal tissue response surrounding areas
Cell 187, 2485–2501
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of necrosis.2 Accordingly, foci of necrosis (and hypoxia) as well

as areas around neuronal structures of the normal brain are

associated with local organization, while outside of these re-

gions, glioma tissues are dominated by a lack of histological

organization.3

Technological developments now enable us to revisit the

spatial architecture captured by classical histopathology and

describe it quantitatively with a granular, genome-wide analysis

of cell types and cellular states. The first step toward this goal

has been to define the diverse cellular components within glioma

by single-cell RNA sequencing (scRNA-seq). In prior studies that

required tissue dissociation, we defined four major states of iso-

citrate dehydrogenase (IDH)-wildtype GBM cancer cells: neural

progenitor-like (NPC), oligodendrocyte progenitor-like (OPC),

astrocyte-like (AC), and mesenchymal-like (MES).4 We conduct-

ed similar efforts for IDH-mutant glioma, defining three major
, May 9, 2024 ª 2024 The Authors. Published by Elsevier Inc. 2485
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Experimental design and spot clas-

sification per sample

(A) Experimental design and patient cohort. Fresh

frozen tissue sections from GBM (n = 13) and IDH-

mutant gliomas (n = 6) were profiled by 10X Visium.

CODEX was performed on 12 near-adjacent GBM

tissue sections with a panel of 40 antibodies. Four

tumors were spatially annotated by the neurosur-

geon during navigation-guided surgery. This GBM

Visium cohort was combined with an external GBM

Visium cohort9 for joint analysis. Scheme created

with BioRender.com.

(B) Copy-number aberrations (CNAs) were inferred

by average relative expression in sliding windows of

150 analyzed genes after sorting genes by their

chromosomal location. ZH1019, from which we

profiled both an infiltrating sample and a T1-contrast

enhancing sample, is shown here as an example.

Rows correspond to spots arranged by malignancy

level as inferred from CNA; columns correspond to

genes arranged by chromosomal position. Annota-

tion bars correspond to the region from which the

spot was derived (T1 or infiltrating) and the malig-

nancy level.

(C) Spatial maps of ZH1019 T1 contrast-enhancing

and ZH1019 infiltrating samples with spots anno-

tated by malignancy level as described in (B).

(D) Per-sample Leiden (left) and NMF clustering

(right) of ZH916 bulk for vascular and hypoxia clus-

ters (all other clusters are shown in gray).

See also Figure S1.
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malignant cell states5,6 as well as the landscape of glioma im-

mune cells7,8 across glioma subtypes. The next step requires

in situ spatial mapping of these defined cellular components

within the glioma ecosystem. Multiple methods emerged

recently for spatial transcriptomics (e.g., Visium) and proteomics

(e.g., CODEX), enabling such mapping.

The first study of GBM by Visium addressed this challenge by

defining spatial neighborhoods, but without resolving them to in-

dividual cell states and their organization.9 Ravi et al. observed

spatial segregation of neurodevelopmental neighborhoods

from hypoxia-associated mesenchymal neighborhoods and

inflammation-associated neighborhoods, suggesting that the

local tumor microenvironment (TME) is a major determinant of

cancer cell states.9 Additional studies identified specific spatial

interactions, including induction of the MES-like state by macro-

phages,8 and synaptic crosstalk between OPC-like GBM cancer
2486 Cell 187, 2485–2501, May 9, 2024
cells and neurons via glutamatergic

signaling and AMPARs.10 However, many

open questions remain concerning how

the cell states and cell types relate to

each other and to other elements of the

microenvironment. Given their remarkable

spatial diversity, are there consistent

patterns or rules of organization across

gliomas? To what degree does spatial

location dictate the diversity of cellular

states? To address these questions and

others, we profiled 19 glioma samples by
10X Visium and 12 by CODEX, integrated them with published

GBM Visium data,9 and developed a quantitative framework to

systematically describe recurring features of the spatial organi-

zation of glioma.

RESULTS

Spatial transcriptomics of glioma
We used the 10X Visium spatial transcriptomics platform to

spatially profile gliomas by RNA-seq (Figure 1A).11,12 The diam-

eter of a capture spot is 55 mm, such that each spot contains a

mixture of 1–35 cells, with a median of 8 cells in GBM based

on image analysis (Figure S1A). In four cases, we analyzed mul-

tiple frozen tissue blocks from the same tumor, each isolated

from a different region and annotated as necrotic, infiltrating,

or T1 contrast-enhancing by navigation-guided tumor resection.

http://BioRender.com
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We profiled 13 GBM sections and 6 IDH-mutant glioma sections

(three 1p/19q co-deleted oligodendroglioma and three astrocy-

toma). These samples were integrated with 13 GBM sections

from an external Visium dataset,9 retaining a total of 70,618

spots after quality control (Table S1, STAR Methods).

We used two initial approaches to classify and annotate spots.

First, we performed copy-number aberration (CNA) inference by

averaging the expression of genes in each chromosomal region

to classify spots as mostly malignant, mostly non-malignant, or

mixed (STARMethods).5,13 As expected, inferred CNAs included

the hallmarks of GBM (chromosome 7 gain and chromosome 10

deletion) and oligodendroglioma (chromosome 1p/19q co-dele-

tion) and were significantly associated with cancer-rich regions

(e.g., tumor core vs. infiltrating regions) (Figures 1B, 1C, S1B,

and S1C). Second, we clustered spots by Leiden clustering

both per sample and jointly per tumor in cases with multiple sec-

tions and annotated the clusters by gene set enrichment analysis

(Figures 1D and S1D).

While the per-sample Leiden clustering discretely groups

together spots of similar composition within samples, we next

aimed to better capture the continuous nature of cellular states.

To this end, we performed non-negative matrix factorization

(NMF) per sample and derived robust expression programs

that were consistently detected across multiple parameters

(Figures 1D and S1E, STAR Methods).14,15

Recurrent patterns of expression heterogeneity across
gliomas
In order to define expression programs that reflect core patterns

of expression heterogeneity, we compared the 492 gene expres-

sion programs identified in individual GBMsamples either by Lei-

den clustering or by NMF. We found considerable similarities

that allowed us to define 14 clusters of programs based on their

gene identity overlap, each covering programs derived frommul-

tiple GBM samples (Figures 2A and 2B, STAR Methods). For

each group of programs, we defined a consensus program of

50 genes, termed a metaprogram (MP), that reflects a recurrent

pattern of heterogeneity in GBM (Figures 2C and S1E, malignant

MPs are in bold throughout figures). Similarly, we defined six

MPs in IDH-mutant glioma (Figures S2A and S2B; Table S2,

STAR Methods).

While expression profiles of spots usually reflect combinations

of states, the MPs are highly similar to single-cell states

(Figures 2D and S2C). The ability of our approach to highlight in-

dividual states is further supported by simulations (Figures S2D
Figure 2. Deriving and annotating spatial metaprograms

(A) Scheme of metaprogram (MP) generation approach created with BioRender.co

NMF programs across all samples are clustered by their gene overlap. Each clus

across programs within the cluster.

(B) Similarity matrix based on gene identity overlap (quantified by Jaccard index), f

by sample and region identity. Cluster numbers correspond to the table in (C).

(C) Table of metaprogram names and selected genes corresponding to clusters

(D) Enrichments of spatial metaprograms (rows) with gene sets (columns) previou

hypergeometric test (�log10 FDR-adjusted p values).

(E) For each sample (represented by one bar), the proportions of spots assigned to

grouped by tumor. Below are spatial MP maps of several ZH881 tissue sections

sections isolated from the same tumor.

See also Figures S2 and S3.
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and S2E, STAR Methods) and is linked to two features —the

use of NMF to derive our programs, and the definition of MPs

as a consensus across programs that are derived from many

samples. As a toy example, consider multiple spots, each con-

taining exactly 8 cells, with a certain cell state X encompassing

(1, 2,., and 8) cells of those spots, respectively. Clustering the

spots and defining the profile of each cluster would lead to a

cluster with enrichment of X cells but with an expression profile

that also contains some influence of other cell states. However,

NMF is designed to detect the main profiles that coherently vary

across the spots and hence tends to detect only X as one of the

factors. If X correlates with a second cell state, Y, then NMFmay

identify combinations of X and Y. However, only if X and Y are

consistently highly correlated across all samples then we would

expect the MP to reflect their combination, while if this correla-

tion is lower in some samples, then the consensus MP would

highlight shared NMF genes (reflecting X) over sample-specific

genes (that include Y). Our MP approach differs from earlier

work that focused on spatially defined programs, which often

contain a mixture of cell types (Figure S2F)9 and from deconvo-

lution of spot-based spatial data with paired sc/snRNA-seq,19–23

which is well suited for capturing sample-specific cell states but

is sensitive to platform-dependent differences such as dissocia-

tion biases against some cell states and cell types.

We identified 14 GBM spatial MPs, including eight malignant

and six non-malignant programs, each reflecting a cancer cell

state or non-malignant cell type (Figures 2C and 2D; Table S2).

Non-malignant MPs included Mac (macrophage/microglia)

and Inflammatory-Mac (inflammatory macrophage/neutrophil),

Oligo (oligodendrocyte), Vasc (endothelial cells and pericytes),

Neuron, and Reactive-Ast (reactive astrocyte). The latter

included classical astrocytic markers (e.g., AGT and GJA1) and

additional markers suggesting a reactive astrocytic state (e.g.,

metallothioneins). Of the eight malignant MPs, five directly map

to the single-cell GBM states: MES-hypoxia (MES2), MES

(MES1), NPC-like, OPC-like, and AC-like (Figures 2D and S2G).

As expected, the neurodevelopmental-related malignant MPs

(NPC-like, OPC-like, and AC-like) had high gene overlap with

signatures of the respective non-malignant cell-type signatures,

as also seen for the respective MPs derived from scRNA-seq

(Figure S2H).

The three additional malignant spatial MPs include: (1) an as-

trocytic-like mesenchymal MP (MES-Ast) with enrichment

of genes associated with glioma tumor microtubes (e.g.,

GAP43, KCNF1, and PTN) (Figure S2I);24–26 (2) proliferation
m. Each sample is clustered individually by Leiden and NMF. All Leiden and all

ter is collapsed to a consensus MP by selecting for the most recurrent genes

or all programs derived fromNMF and Leiden clusters. Programs are annotated

numbered in (B). Malignant metaprograms are depicted in bold.

sly defined from studies indicated at the top.4,9,15–18 Enrichment calculated by

eachMP are shown. Four tumors with multiple sections are at the right and are

, demonstrating differences in composition and spatial organization between

http://BioRender.com
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and metabolism (Prolif-Metab), enriched with proliferation-

related (e.g., CTNNB1, CNTD1, and TP53) and metabolism

(e.g., SLC16A1 [MCT1],GGCX, andPHGK1) genes; and (3) chro-

matin regulation (Chromatin-Reg), enriched with chromatin and

transcriptional regulators (e.g., ATRX, KMT2E, BRD4, and

SOX4), as well as with NPC-related genes (Figure S2J). Re-anal-

ysis of GBM scRNA-seq data supports these MPs as represent-

ing rare cellular states with partial similarity to previously defined

states (Figures S2K, S2L, and S3A) and further shows that MES-

Ast represents a unique state and not the simple combination of

colocalized MES-like and AC-like cancer cells (Figure S3B).

Next, we annotated all spots by their highest-scoring spatial

MP (STARMethods). The overall composition of eachGBMsam-

ple was highly variable (Figures 2E and S3C), with MES-Hyp and

Neuron frequencies varying the most between samples and

MES-like frequency varying the least. Even samples isolated

from different regions of the same tumor were highly variable in

their cell-type composition (Figures 2E and S1D), highlighting

the degree of sampling bias when a single tissue section is

considered representative of the composition of an entire tumor.

Assignment of spots by MPs also correlated with their assign-

ment by other signatures associated with invasiveness and

connectivity10,24–30(Figure S2I). Spots of the three mesenchymal

MPs (MES-like, MES-Hyp, and MES-Ast) and Reactive-Ast were

all associated with high connectivity, while invasiveness was

significantly enriched with neurodevelopmental MPs (OPC-like,

NPC-like, and AC-like) and with cell-cycle signal (Figure S3D),

consistent with recent work.26,27,30 Spots classified as ‘‘Con-

nected’’ or ‘‘Invasive’’ were spatially distinct in most samples

(Figure S3E).

Spatial proteomics as a complementary approach to
map gliomas
While Visium provides comprehensive data by covering most

genes, it suffers from low spatial resolution, which is not well

suited for capturing rare or spatially scattered cell types and

cell states. Therefore, we used CODEX as a complementary

approach to validate our findings on a true single-cell protein

level. Our 40-marker antibody panel was designed based on sin-

gle-cell GBM MPs along with canonical markers to cover almost

all relevant cell types and cell states (Figures 3A and 3B;

Table S3). After quality control, we retained 428,395 cells from

12 samples (STARMethods). Protein expression profiles of single
Figure 3. Spatial profiling of gliomas by CODEX

(A) Schematic workflow of CODEX experiment, image processing, and computa

(B) Protein markers profiled by CODEX.

(C) Relative protein expression per cell type (or state) by Z score. Columns repres

type/state in one sample. Number of rows differ between cell types/states becau

(D) CODEX staining of representative examples: top row shows images with the in

masks with cytoplasmic expansion by 3 mm. Masks are colored by cell state. Sc

(E) Voronoi diagram showing cell-type/state abundances across all samples. Da

(F) Spatial maps of cell types/states annotations for (i) CODEX single-cell data,

following alignment between Visium and CODEX with STalign (STAR Methods),

0.0105 by t test). Visium spots annotated by their highest scoring MP and CODE

(G) Cumulative distribution plot showing the frequency of pseudospots in which th

of the cells than the value specified on the x axis.

(H) Exemplary CODEX image overlaid with pseudospot grid (white) and nuclear s

See also Figure S4.
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cells were clustered using PhenoGraph,31 and cluster assign-

ment was performed based on the criteria described in

Table S4. All major differentiated non-malignant cell types were

identified, including astrocytes, oligodendrocytes, neurons,

vascular cells (endothelial cells and pericytes), T cells, B cells,

and macrophages/microglia (Figures 3C, 3D, S4A, and S4B).

We also identified the major malignant cell states including

MES-like, MES-Hyp, Chromatin-Reg, OPC-like, NPC-like, and

AC-like (Figure 3E).

To enable direct comparison of CODEX and Visium data, we

spatially aligned both datasets using STalign,32 then trans-

formed the CODEX data from single cells to pseudospots com-

parable to Visium, and assigned these to MPs. In 80% of the

samples, MP assignments were significantly correlated between

CODEX and Visium data from near-adjacent sections (p < 0.05, t

test), serving as a cross-validation of our MP assignments

(Figures 3F and S4C, STAR Methods).

In Visium data, several cell types and states were not detected

by unsupervised analysis since they tend to represent a minor

component of the spots in which they reside. For example, we

did not identify a cell-cycle MP, raising the possibility that, in

most cases, a cycling cell is surrounded by many non-cycling

cells that dilute the cell-cycle signal (Figure S4D). Similarly,

T cells and B cells rarely dominate a spot, and their low mRNA

content further limits their signal such that we could not identify

T cell or B cell MPs by unsupervised analysis. Accordingly,

CODEX was better suited for identifying these cell types at the

single-cell level (Figure 3D). T cells were detected in all samples

but were lowly abundant in most tissues (0.4%median per sam-

ple), whereas B cells were absent in all but three samples (Fig-

ure S4B). In line with our previous findings,4 OPC-like was the

most cycling malignant state (median 10.8% Ki67+), whereas

Vasc was the most cycling non-malignant state (median 4.6%

Ki67+), highlighting abundant microvascular proliferation

(MVP), a hallmark of GBM (Figure S4E). Supervised cell-cycle

analysis of the Visium data further supported these results and

additionally showed that among the malignant states, Prolif-

Metab contained the largest percentage of cycling spots (me-

dian 10.6%) followed by OPC-like (median 9.4%) (Figure S4F,

STAR Methods).

Using single-cell CODEX data as a ground truth allowed us to

examine the full composition of cells within Visium-sized pseu-

dospots. We found that in 64% of pseudospots, one MP is
tional analysis. Created with BioRender.com.

ent proteins or morphological features. Each row represents the indicated cell

se some samples lack specific cell types/states.

dicated markers. Bottom row shows the corresponding nuclear segmentation

ale bar, 20 mm.

shed lines separate malignant from non-malignant and immune cells.

(ii) CODEX pseudospots, and (iii) near-adjacent section of ZH1019 infiltrating

median Pearson correlation between CODEX and Visium = 0.664, p value =

X pseudospots are annotated by the most abundant state within each spot.

e highest cell type/state, the second highest, or both cover a higher proportion

egmentation masks colored by cell type/state.
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sufficient to account for most cells in that pseudospot, and in

99% of pseudospots, one or two MPs are sufficient to account

for most cells (Figures 3G, 3H, and S4G). Thus, most spots are

dominated by just one state, supporting our approach of anno-

tating Visium spots by their dominant MP (Figure 2E). Moreover,

considering the full composition of spots, as opposed to

focusing on the dominant state, did not influence the down-

stream analysis and conclusions (Figure S4H, STAR Methods).

CODEX data also enabled us to assess the cell density of each

state. Non-malignant brain cell types had lower density (median

5 cells/spot) than malignant cells, immune cells, and endothelial

cells (median of 9 cells/spot). Of the malignant states,

Chromatin-Reg and MES-like were the densest, while NPC-

like, OPC-like, and AC-like were the least dense (Figure S4I).

We also calculated average cell densities for classical GBM

histology features. As expected, infiltrating regions had the

lowest density (median 6 cells/spot), whereas MVP (16 cells/

spot) and pseudo-palisading (median 18 cells/spot) had the high-

est cell density, though in the case of pseudo-palisading, this

increased density was not associated with increased prolifera-

tion (Figure S4J).

GBM tumors contain co-occurring structured and
disorganized regions
After annotating each spot by its highest-scoring spatial MP

(Figures S3C and S4A), we wondered to what degree each state

is enriched in neighboring vs. in scattered spots in each sample,

which we term "spatial coherence" (Figure 4A, STAR Methods).

Spatial coherence varies between samples, such that in some

samples (termed "structured"), most states tend to have high

coherence, while in other samples (termed "disorganized"),

most states tend to have low coherence (Figure 4B). While

most states varied together in spatial coherence based on sam-

ple and location, a few states were either consistently grouped

(high spatial coherence) or scattered (low spatial coherence)

(Figure 4C). These exceptions included MES-Hyp and Neuron,

which had consistently high spatial coherence across samples,

and Prolif-Metab, which had consistently low spatial coherence.

Apart from these exceptions, spatial coherence varied more

across samples than across states, indicating that it is more re-
Figure 4. Spatial distribution of cell states and organization zones

(A) Scheme of ZH881_T1 illustrating spatial coherence score calculation depict

coherence score for a scattered cell state.

(B) MP spatial coherence by sample. Standard deviation is shown in error bars.

(C) MP mean spatial coherence across all samples; standard deviation is sh

(p = 0.000003) vs. across states (p = 0.23).

(D)Left: scheme describing the assignment to organization zones. Spatial coheren

structured-malignant (Struct-Malig), structured-normal (Struct-Norm), disorganiz

data. Right: structured and disorganized regions are also found in CODEX data.

pseudopalisades or necrosis in a region that is structured at the CODEX cell sta

(E) Left: heatmap of the relative abundance of the different organizational patterns

abundance (yellow) and assignment to glioma type (green). Right: spatial maps

ganization zones.

(F) Boxplot of spatial coherence score of malignant MPs across regions (window

p values are shown on the plot (by Bonferroni-adjusted t test). Boxes indicate them

maximal and minimal values.

(G) Fraction of structured regions based on H&E staining (MVP and PAN) vs. frac

Wilcoxon rank-sum test), boxes as defined in (F).

See also Figures S5 and S6.
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gion specific than state specific (two-way ANOVA: sample effect

p = 0.000003; state effect p = 0.23).

To further explore this distinction, we devised a computational

approach to classify each spot as belonging to a structured,

disorganized, or intermediate region based on the coherence

of its local environment (Figure 4D, STAR Methods). Structured

regions (48% of total spots) were found both at the core of tu-

mors (enriched with MES-Hyp) and in infiltrated areas of the

normal brain (enriched with Neuron) (Figures S5A and S5B).

Therefore, we further subdivided structured and disorganized re-

gions based on their malignancy level (CNA signal), defining four

classes: Struct-Malig (n = 20 regions, 39% of spots), Disorg-

Malig (n = 10 regions, 22% spots), Struct-Norm (n = 6 regions,

8% spots), and Disorg-Norm (n = 4 regions, 6% spots)

(Figures 4D, 4E, and S5C). The remaining spots were annotated

as intermediate, corresponding to the boundaries between orga-

nizational zones. All GBM tumors with multiple sections were

composed of both structured and disorganized compartments,

suggesting that the co-occurrence of these patterns is a recur-

ring spatial feature of GBM (Figures 4E and S5D). Struct-Norm

regions reflected the organization of the non-malignant brain pa-

renchyma and had the highest frequency of Neuron, while

Disorg-Norm was composed of normal brain regions with a

high degree of cancer infiltration and had the highest frequency

of Oligo (Figure S5B).

Spatial organization of cancer cell states is associated
with MES-Hyp abundance
As noted above, MES-Hyp was enriched in Struct-Malig regions.

Samples enriched with MES-Hyp had high mean spatial coher-

ence even after removing the MES-Hyp spots from the calcula-

tion of spatial coherence (p = 0.0013 by t test, Figure S5E).

Therefore, the increased organization associated with hypoxia

extends beyond the hypoxic cancer cell state itself, and all ma-

lignant cell states in proximity to MES-Hyp spots were more

organized than those same states in regions lacking MES-Hyp

spots (Figure 4F, STAR Methods). Accordingly, structured re-

gions around hypoxia were significantly more abundant than

the two histological annotations associated with hypoxia-related

structure—pseudopalisading and necrosis (PAN) and MVP
ing a high spatial coherence score for a grouped cell state and a low spatial

own in error bars. Two-way ANOVA to compare variance across samples

ce and spot malignancy level (inferred from CNA) were used to assign spots to

ed malignant (Disorg-Malig), and disorganized-normal (Disorg-Norm) in Visium

H&E of the Struct-Malig zone shows microvascular proliferation (MVP) but no

te level. Upper scale bar, 100 mm; lower scale bar 50mm.

(rows) in each sample (columns). Annotation bars show per-sample MES-Hyp

of two samples from the same tumor profiled by Visium showing multiple or-

s) with high abundance (>10%) of MES-Hyp vs. low abundance of MES-Hyp.

edian and the 1st and 3rd quartiles. The upper and lower whiskers extend to the

tion of structured regions based on CODEX spatial coherence (p = 0.0019, by
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(Figure 4G, p = 0.0019 byWilcoxon rank-sum test). While Neuron

spots were also highly spatially coherent, this effect of extended

structure on adjacent cell states was not observed for Neuron-

containing regions (p = 0.35 by t test, Figure S5E). Thus, hypoxia

may provide an extrinsic force that confers a structured contin-

uum of expression states over large tissue regions33 resulting

in a known local structure that is visible by standard histology

and a previously unappreciated long-range structure that is de-

tected by molecular profiling of cellular states. Non-hypoxic re-

gions in both GBM and IDH-mutant gliomas were largely disor-

ganized (Disorg-Malig) (Figures 4E and S5F), consistent with

the overall disorganization of gliomas seen on histology.

We hypothesized that if hypoxia is the driver of spatial orga-

nization, then subjecting disorganized GBM organoids to hyp-

oxia may induce the organization of cancer cell states. To

this end, we subjected a patient-derived organoid model34 to

hypoxia (2% O2) for 24 h (n = 6) or 48 h (n = 4) with respective

controls from the same model at normoxia and profiled them by

CODEX (Figure S5G). While exogenous hypoxia globally upre-

gulated classical hypoxia-related markers (i.e., GLUT1, CA9,

and NDRG1), it did not induce the MES-Hyp state, suggesting

that a full state transition might require long-term exposure to

hypoxia and/or necrosis, immune cells, and vasculature

(Figures S5H–S5J). Additionally, while the organoid model

contained the core malignant GBM cellular states, it did not

faithfully recapitulate the spatial organization of human tumor

samples, even in control organoids containing MES-Hyp

(Figures S5K and S5L). Therefore, we lacked an appropriate

model to address the role of hypoxia on the spatial organization

of cancer cell states ex vivo.

While MES-Hyp and Neuron reflected the greatest difference

between structured and disorganized regions, we observed

additional differences in regional composition. Vasc spots

were more abundant in Struct-Malig regions (p = 0.03), while

Prolif-Metab was more abundant in disorganized regions

(p = 0.003) (Figure S6A). Vasc could be further subclustered

into two populations with differing spatial coherence—an angio-

genic (Vasc-Ang) program with high coherence and enrichment

in structured regions, and an immunomodulatory (Vasc-IMEC)
Figure 5. Spatial associations between states across scales
(A) Scheme depicting the three measures of spatial relationships between MPs ac

windows of r = 2–15), (ii) adjacency, and (iii) colocalization (STAR Methods). The e

scales of resolution.

(B) Nested circle plots depicting spatial relationship strength across scales of res

with nested circle plots (Visium) adjacent to CODEX images, scale bar indicated

vessels (CD31) �160 mm. Note: MES-Hyp/Vasc association is NA (white) at the co

within hypoxic regions to perform the calculation.

(C) Left: line plot showing the number of significant interactions across differen

number of significant interactions across the regional composition analysis (see

(D) CODEX images highlighting selected pairs of coupled cell types from (C). Left:

niche (scale bar, 40 mm). While Vasc and immune cells are immediately adjacent,

state associations across scales in structured samples covering most consens

represents the summary of a different spatial relationship measure (Visium data)

colocalization and regional composition, respectively. Dots are colored by mea

corresponds to the fraction of samples in which the relationship is significant by

(F) Top: network graphs representing couplings between normal brain cell type

malignant states. In each graph, the central node is a non-malignant cell type, and

mean scaled relationship strength across all measures (Visium). Only consensus

See also Figure S7.
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program with lower coherence and enrichment in disorganized

and infiltrative regions (Table S2; Figures S6B–S6D).

Notably, we also identified structured and disorganized re-

gions in the CODEX data, with high consistency between near-

adjacent Visium and CODEX samples (R = 0.73, p = 0.011;

Figures 4D,S6E, S6F, and S4A-iv). Moreover, the CODEX data

demonstrated that the difference in spatial coherence between

structured and disorganized regions is not restricted to neigh-

boring pseudospots but is also mirrored within pseudospots

(i.e., single cells and their neighbors). We defined a measure of

pseudospot homogeneity and found significantly higher

homogeneity in structured regions than in disorganized regions

for 13 of 14 MPs (Figure S6G). Importantly, the differences in

spatial coherence between structured and disorganized regions

remained when controlling for pseudospot homogeneity

(Figure S6H).

Pairwise state-state spatial associations recur across
samples and scales
To quantify spatial relationships between states, we devised

three complementary measures highlighting state coupling at

varying levels of resolution (STAR Methods). First, the regional

composition of the two states, defined as the correlation be-

tween their abundance across hexagonal windows of a prede-

fined radius (denoted by r) (Figure 5A). Second, adjacency be-

tween two states, defined as the enrichment of one state in the

immediate neighboring spots of the other state. Third, the coloc-

alization of two states within the same spot (or pseudospot in

CODEX). We observed overall consistency of state relationships

over increasingly sized areas, while also identifying specific

scale-dependent shifts (distance-dependent coupling) when

considering all measures together (67% consistency across

measures in structured regions, 57% consistency across mea-

sures in disorganized regions) (Figure 5B; Data S1).

Structured and disorganized regions had a similar number of

significant spatial associations by regional composition, and

these associations were largely consistent, while the colocaliza-

tion and adjacency measures mostly identified interactions that

were specific to structured regions (Figure 5C). Therefore,
ross scales (from low to high resolution): (i) regional composition (across sliding

xample shown highlights the coupling between MES-Ast and MES-Hyp across

olution. Top: schematic of nested circle plot. Bottom: example of associations

in the images. Yellow line shows the distance from hypoxia (NDRG1) to blood

localization and adjacency levels due to too low abundance of vascular spots

t analyses in structured vs. disorganized regions. Right: Venn diagram of the

criteria for ‘‘consensus interactions’’ in STAR Methods).

AC/OPC coupling (scale bar, 20 mm). Right: spatial relationships in the vascular

Vasc/MES coupling occurs over larger areas. (E) Summary heatmap of state-

us interactions and other pairs of interest (see also Data S1). Each column

across all GBM samples, with the final two columns corresponding to CODEX

n scaled relationship strength (coupling score) (STAR Methods), and dot size

Fisher’s exact test.

s or Vasc with the malignant states; bottom: couplings of immune cells with

the surrounding nodes represent cancer states. Edge strength represents the

interactions are shown.
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regional composition tends to be maintained even in the

absence of direct spatial patterning defined by neighboring cells

or spots.

To identify the most robust interactions that drive the organiza-

tion of structured GBM regions, we defined a consensus set

of state-state interactions thatare supportedbymultiplemeasures

and acrossmultiple samples (STARMethods).We found�10-fold

more consensus interactions in structured GBM regions than in

disorganizedGBM regions (21/91 vs. 2/91 state-pairs) (Figure 5C).

The only consensus interactions in disorganized GBM regions

were MES-like/Mac and NPC-like/Neuron. The consensus inter-

actions were validated by CODEX (Figures 5D and S7A). Most

consensus interactions are briefly summarized (Figure 5E) and

described in more detail in Data S1. Malignant states were largely

divided by the consensus interactions into two groups, each with

many within-group interactions: (1) neurodevelopmental states

(OPC-like, NPC-like, and AC-like) and (2) a set of mesenchymal

and hypoxia-associated states (MES-Hyp, MES-Ast, MES-like,

and Chromatin-Reg), consistent with other studies that describe

a spatially segregated GBM microenvironment9,35 (Figures 5E

andS7A). Theneurodevelopmentalmalignant statesnotonly inter-

acted among themselves but also with the non-malignant states

corresponding to the same lineage—AC-like interacted with

Reactive-Ast, NPC-like interacted with Neuron, and OPC-like in-

teracted with Oligo (Figure 5F). OPC-like also interacted strongly

with Vasc, reminiscent of OPC-endothelial migration36 and

cross-talk37 in development. Likewise, Prolif-Metab was strongly

associatedwithVasc, in linewith a previously describedmetabolic

vessel-associated GBM state.38

All three mesenchymal states had strong interactions with im-

mune cells,8 but each interacted with different subsets of im-

mune cells (Figure 5F). Of all the malignant states, MES-Ast

spots were the most enriched with T cells (Figure S7B). The

core MES state had an intermediate association with T cells,

was spatially associated with both macrophage states and,

interestingly, upregulated major histocompatibility complex

(MHC)-II genes (Figures S7C–S7E). In contrast, MES-Hyp spots

were most depleted of T cells and were strongly spatially asso-

ciated with Inflammatory-Mac. These results suggest that

MES-Ast is associated with immune activity, while MES-Hyp is

associated with immunosuppression, consistent with earlier

studies.9,39–42

Immune cells (Mac, T cells, and B cells) also strongly inter-

acted with Vasc, highlighting their dependence on trafficking
Figure 6. A layered model of GBM spatial organization

(A) Top: network graph with nodes representing cell types/states and edges re

samples and significantly coupled in >20% of samples for at least two measures o

levels of resolution, for structured regions of Visium data. Edges with dashed lines

Bottom: scheme showing gradients of hypoxia, hypoxia response, and infiltratio

(B) CODEX image showing the indicated cell types and markers, representing la

BioRender.com.

(C) Spatial maps for sample ZH881_1A: (i) Visium sample annotated by IVY Gap h

CODEX sample annotated by state layers and neuropathologist annotations of H

(D) Spatial maps comparison for Visium samples annotated by IVY Gap-histolo

layers (right).

(E) Stacked bar plot showing MP composition per IVY Gap histological feature t

tological annotations (right). Bars below 0 represent non-malignant MPs.

See also Figure S8.
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(especially for bone marrow-derived macrophages) (Figures 5E

and S7A). While Vasc was coupled to immune cells, it was de-

coupled from MES-Hyp, as expected (Figure 5B). This decou-

pling was observed up to �160 mm, suggesting that this is the

effective length scale of vascular perfusion and that beyond

this distance from blood vessels, there is a hypoxia response

(Figure S7F).

A layered model of GBM spatial organization for
structured regions
To examine whether the individual interactions described above

may combine to form a higher-order organization, we generated

a network graph in which nodes represent states and edges

represent consensus interactions (Figures 6A and 6B). This

graph reveals a five-layered organization in which edges exist

only within the same layer or between adjacent layers. This orga-

nization appears to be dominated by a hypoxia gradient, with a

first layer consisting of MES-Hyp (L1: core hypoxia/necrosis), fol-

lowed by a second layer consisting of MES-Ast, MES-like, and

Inflammatory-Mac (L2: hypoxia-associated). The third layer in-

cludes immune and angiogenesis-related cell types and states

that may help to resolve the hypoxia, including Vasc, Mac, and

Prolif-Metab (L3: angiogenic response/immune hub). Following

L3, hypoxia is presumably resolved, enabling the presence of

neurodevelopmental malignant states that may be more oxygen

dependent—AC-like, OPC-like, and NPC-like (L4: malignant

neurodevelopmental states). Finally, non-malignant brain cell

types (Reactive-Ast, Oligo, and Neuron) reflect the transition to

the infiltrated brain parenchyma (L5: brain parenchyma). Map-

ping of spots to the five layers (instead of mapping to MPs) pre-

serves the distinction between structured and disorganized re-

gions (Figures 6C, 6D, S8A, and S8B). CODEX data generated

a similar graph with the addition of B cells and T cells to L3

(angiogenic response/immune hub) (Figure S8C).

To better contextualize our layers model, we compared the

assignment of our samples to the five layers with their histopath-

ological annotations by a neuro-pathologist and by the IVY Gap

transcriptional signatures derived from histopathological fea-

tures (Figures 6E and S8D).43 We found high consistency be-

tween our model and classical annotations, with L1 resembling

PAN, L3 resembling MVP, L4 resembling cellular tumor, and L5

resembling leading edge. Notably, the hypoxia-adjacent layer

(L2) and small areas of local hypoxia are not distinguished

by classical histopathology or by the IVY Gap transcriptional
presenting recurrent interactions (mean scaled coupling score >0.35 across

f spatial relationships). Edge color represents the mean coupling score across

represent connections with cell types coming fromCODEX (T cells and B cells).

n in alignment with the layers.

yers 1–4. Layer 5 was added as scheme depicting normal brain. Created with

istological feature-associated transcriptional programs and state layers and (ii)

&E staining from the CODEX sample.

gical-feature-associated transcriptional programs (left) vs. annotated by our

ranscriptional program annotation (left) and CODEX MP composition per his-

http://BioRender.com
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programs. Likewise, comparing transcriptional signatures

derived from the five layers with transcriptional signatures corre-

sponding to micro-dissected histopathological features showed

overall agreement apart from L2, which did not map directly to a

histopathological feature (Figure S8E; Table S2). Therefore, by

unsupervised analysis of gene expression, we largely converged

to the major histological features of glioma, yet with increased

accuracy and with the addition of a new layer (L2) of hypoxia-

adjacent states. Moreover, we can now redefine the classical

histopathological features at a detailed resolution of cellular

states (Figures 6E and S8E).

DISCUSSION

We combined Visium with CODEX and computational ap-

proaches to define the organization of gliomas. The limited res-

olution of Visium led previous studies to define spatial neighbor-

hoods, often representing mixtures of cell states and cell types.9

Resolving individual cell states and cell types from spatial tran-

scriptomics remains challenging. Previous analysis relied on de-

convolution of spot profiles with matched single-cell or single-

nuclei RNA-seq.20,23,44–47 Here, we present an alternative

approach by deriving MPs that approximate single-cell profiles

directly from spatial transcriptomics data. Moreover, we identi-

fied several MPs in the spatial transcriptomics data that were

not previously defined from single-cell or single-nuclei data.

These programs could be retrospectively identified by super-

vised analysis of single-cell data (Figures S2K and S2L), sug-

gesting that spatial clustering of rare or subtle cellular states

may have amplified their signals and facilitated their identifica-

tion by Visium. These statesmay also have been depleted during

tissue dissociation in scRNA-seq (e.g., tumor microtubes of

MES-Ast or a bias against hypoxia/necrosis-associated states

better captured in situ).

Conversely, signals for cellular states with limited spatial clus-

tering are diluted by Visium and may not be detected by unsu-

pervised analysis, as is the case for cell cycle, and for lowly

abundant cell types such as T cells (see Figure S8F for a compar-

ison of GBM cell states and cell types captured by different tran-

scriptomics platforms). Our MP approach focuses on identifying

the most robust and recurrent patterns of gene expression het-

erogeneity; therefore, by design, it will not capture rare cell states

and cell types. To compensate for some of these limitations, we

also performed CODEX on near-adjacent tissue sections, allow-

ing us to detect lowly abundant cell types and uncover the

composition of Visium spots at single-cell resolution.

Overall, we found three modes of spatial organization. First,

cells tend to be surrounded by other cells in the same state

(state-specific clustering), forming local environments that are

highly enriched with an individual state. This mode is evident

by the clustering of similar cells within each spot, as shown

directly by CODEX, as well as by the clustering of spots assigned

to the same MP. This clustering suggests that spatial location

plays a central role in regulating cell state.

Second, many pairs of states are consistently associated

across multiple scales in structured regions —within spots, in

adjacent spots, and within small tissue regions (state-state asso-

ciation). Some of these interactions may mimic those of normal
brain cell types in development. For example, malignant OPC-

like is coupled to Vasc, consistent with migration of normal

OPCs along the brain endothelium36 and NPC-like is coupled

with neurons in infiltrative areas, mimicking the migration of

normal NPC toward developing neurons.48,49 The exact mecha-

nisms driving state-state associations require further studies and

may reflect not only physical connections but also recruitment

through secreted factors, dynamic transitions from one state to

the other, synergistic growth or survival of the interacting cells,

or a common dependence on microenvironmental components.

Third, the associations between states in structured regions

aggregate to form a higher-order organization with five layers,

such that states in each layer are associated only with the

same layer or adjacent layers (state layers). The presence of

higher-order organization is reminiscent of normal tissue struc-

ture and may facilitate large-scale coordination between cancer

cell states that could present a therapeutic opportunity. Four

layers are largely consistent with histological features, allowing

us to redefine the classical GBM histology by specific cell states

and to add the layer of hypoxia-associated states (L2).

Hypoxia appears to be a central driver of this organization, and

each layer can be interpreted by its relation to hypoxia. Hypoxia

is intimately linked to both necrosis and aberrant vasculature,

both of which could also contribute to the emergence of organi-

zation, consistent with the previously observed association be-

tween blood vessel proximity and GBM cell state through meta-

bolic zonation.38 Importantly, the effect of hypoxia on spatial

organization extends beyond the features visible by histopathol-

ogy. Therefore, while the known structure of gliomas is typically

restricted to small areas of hypoxia/necrosis or brain paren-

chyma, the structure at the level of cell states extends further.

Additionally, some of the hypoxic regions defined by spatial

profiling were not visible by histopathology yet still associated

with the structured organization of cell states. This hypoxia-

centric model is consistent with recent modeling studies, which

suggested that an external force such as hypoxia acting over a

large area can result in a spatial gradient that generates a contin-

uum of expression states.33,50 Likewise, hypoxia gradients were

shown to generate a continuum of macrophage states gener-

ating predictable spatial patterns in mouse breast cancer

models.51

Although tissue organization may be intuitively linked to

normal physiology while chaos is reminiscent of aggressive tu-

mor phenotypes, we note that hypoxia and necrosis, and hence

cancer cell state organization, are hallmarks of high-grade gli-

oma. Such organization may imply that certain layers are less

accessible to drugs or to immune cells and thereby more resis-

tant to particular therapies. In contrast, IDH-mutant gliomas

tend to lack hypoxia and hence are typically disorganized. In

the case of an IDH-mutant glioma that does have a high degree

of hypoxia, we also observe a high degree of organization,

consistent with the model of hypoxia as driving spatial organiza-

tion (Figures S3C and S5F).

In addition to its association with global organization, hypoxia

is linked to specific states in its vicinity, including the core

hypoxic state of MES-Hyp, but also Chromatin-Reg and three

additional states that constitute the hypoxia-associated

layer. We speculate that most (or all) of these MPs represent
Cell 187, 2485–2501, May 9, 2024 2497
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hypoxia-associated versions of other MPs observed further

away from hypoxia. Pairs of related malignant states that may

differ due to hypoxia proximity include MES-Hyp vs. MES-like,

MES-Ast vs. AC-like, and Chromatin-Reg vs. NPC-like. The pair-

ing of similar states also extends to myeloid cells, with

Inflammatory-Mac reflecting a hypoxia-associated version of

the macrophage program, characterized by upregulation of in-

flammatory cytokines, downregulation of MHC class II, and an

association with CD8+ T cells.

In summary, we provide an extensive spatial description of gli-

oma that demonstrates stereotypical spatial organization at mul-

tiple scales, with a prominent role of hypoxia as an organizer and

with relative disorganization of regions that lack hypoxia. This

adds a spatial dimension to our growing understanding of the gli-

oma ecosystem and may aid in the development of future

treatments.
Limitations of the study
Spot-based spatial transcriptomics suffers from low resolution,

making it challenging to resolve individual cell states and cell

types. Our computational approach partially resolves this, but

very similar cell states and cell types (i.e., malignant NPC-like

and non-malignant neurons) cannot be fully distinguished

when they are colocalized within spots, and other states that

are spatially scattered or lowly abundant are not efficiently de-

tected by unsupervised analysis. Due to these limitations, we

also profiled samples by CODEX and integrated both data types

in much of our analysis. We believe that the integration of lower

resolution, high complexity data (i.e., many genes) with higher

resolution, low complexity data (i.e., a smaller number of prese-

lected proteins) maximizes the potential of both approaches to

reveal biological insights.

Our results suggest a major role of hypoxia in driving overall

tissue structure and a specific 5-layer organization. Yet, we

were unable to directly prove causality, due to the use of MES-

Hyp as a proxy for hypoxia and the lack of an appropriate exper-

imental model. Initial experiments with GBM organoids sug-

gested that these models may not faithfully recapitulate human

tumor organization and that subjecting them to hypoxia did not

recapitulate the induction of MES-Hyp seen in human samples,

potentially due to the absence of necrosis, immune cells, vascu-

lature, and a true hypoxia gradient (Figures S5H–S5J).
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L., Kuliesiute, U., Von Ehr, J., Benotmane, J.K., et al. (2022). Spatially

resolved multi-omics deciphers bidirectional tumor-host interdependence

in glioblastoma. Cancer Cell 40, 639–655.e13. https://doi.org/10.1016/j.

ccell.2022.05.009.

10. Venkatesh, H.S., Morishita, W., Geraghty, A.C., Silverbush, D., Gillespie,

S.M., Arzt, M., Tam, L.T., Espenel, C., Ponnuswami, A., Ni, L., et al.

(2019). Electrical and synaptic integration of glioma into neural circuits.

Nature 573, 539–545. https://doi.org/10.1038/s41586-019-1563-y.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

See Table S3 for list of all primary

antibodies used in CODEX panel

N/A N/A

Cy�2 AffiniPure Donkey Anti-Rabbit IgG (H+L) Jackson ImmunoResearch Cat #711-225-152; RRID: AB_2340612

Cy�3 AffiniPure Donkey Anti-Rabbit IgG (H+L) Jackson ImmunoResearch Cat #711-165-152; RRID: AB_2307443

Cy�3 AffiniPure Donkey Anti-Rat IgG (H+L) Jackson ImmunoResearch Cat #712-165-153; RRID: AB_2340667

Cy�3 AffiniPure Donkey Anti-Mouse IgG (H+L) Jackson ImmunoResearch Cat #715-165-150: RRID: AB_2340813

Alexa Fluor� 680 AffiniPure Donkey

Anti-Goat IgG (H+L)

Jackson ImmunoResearch Cat #705-625-147; RRID: AB_2340440

Biological samples

Human glioblastoma samples University Hospital Zurich N/A

Human glioblastoma and IDH

mutant glioma samples

Massachusetts General

Hospital/Brigham and

Women’s Hospital

N/A

Human glioblastoma organoid

model BWH911

Dana Farber Cancer Institute N/A

Chemicals, peptides, and recombinant proteins

OCT Compound Scigen Cat #4586

Aqueous Eosin Y solution Millipore Sigma Cat #HT110216

Mayer’s Hematoxylin Millipore Sigma Cat #MHS16

Bluing Buffer Dako Cat #CS70230-2

SPRI Select Reagent Beckman Coulter Cat #B23318

DMEM/F-12 ThermoFisher Scientific Cat #11320033

MEM non-essential amino acids ThermoFisher Scientific Cat #11140050

Neurobasal medium ThermoFisher Scientific Cat # 21103049

Critical commercial assays

Quick RNA Microprep Kit Zymo Cat #ZR-R1051

Tapestation RNA Screen Tape Agilent Cat #5067-5576

Tapestation High Sensitivity D5000 Screen Tape Agilent Cat #5067-5592

Tapestation High Sensitivity D1000 Screen Tape Agilent Cat #5067-5584

Visium Spatial Tissue Optimization Kit 10X Genomics Cat # PN-1000193

Visium Accessory Kit 10X Genomics Cat #PN-1000194

Dual Index Kit TT Set A 10X Genomics Cat #PN-1000215

Novaseq SP 100 Cycles Sequencing Kit Illumina Cat #20028401

Visium Spatial Gene Expression

Slide and Reagent Kit

10X Genomics Cat # PN-1000184

FAST SYBR qPCR Master Mix KAPA Biosystems Cat # KK4600

NEBNext Library Quanit Kit for Illumina New England Biolabs Cat # E7630L

Conjugation Kit Akoya Biosciences Cat # 7000009

Staining Kit Akoya Biosciences Cat # 7000008

CODEX buffer Akoya Biosciences Cat # 7000001

Nuclear stain Akoya Biosciences Cat # 7000003

Assay reagents Akoya Biosciences Cat # 7000002

Software and algorithms

10x Genomics SpaceRanger 1.0 and 1.1 10X Genomics N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

10x Genomics Loupe Browser 5.0.1 10X Genomics N/A

Seurat 4.3.0 Hao et al.52 https://github.com/cran/Seurat

Scalop J. Laffy, Tirosh Lab https://github.com/jlaffy/scalop

Cytoscape 3.9.1 Shannon et al.53 https://cytoscape.org

QuPath Bankhead et al.54 https://qupath.github.io/

StarDist Schmidt et al.55 https://github.com/stardist/stardist

imcRtools Eiling et al.56 https://github.com/BodenmillerGroup/imcRtools

R 4.1.1 N/A https://cran.r-project.org/bin/

windows/base/old/4.1.1/

NMF Gaujoux, Seoighe et al.57 https://cran.r-project.org/ web/

packages/NMF/index.html

MASS Venables WN, Ripley BD. 2002 https://www.stats.ox.ac.uk/pub/MASS4/

inferCNA Patel et al.58 https://github.com/jlaffy/infercna

MSigDB Subramanian, Tamayo et al.59 https://www.gsea-msigdb.org/gsea/msigdb

SpatialExperiment Righelli et al.60 https://github.com/drighelli/SpatialExperiment

Fusion 1.0.5 Akoya Biosciences

PhenoGraph Levine JH et al.31 https://dpeerlab.github.io/dpeerlab-

website/phenograph.html

STalign Clifton et al.32 https://jef.works/STalign/

WeightedTreemaps Jahn et al. https://github.com/m-jahn/WeightedTreemaps

Deposited data

Glioblastoma and IDH-mutant glioma

10X Visium spatial transcriptomics

This study [https://doi.org/10.5281/zenodo.8105466];

GEO: GSE237183

Glioblastoma CODEX imaging data This study [https://doi.org/10.5281/zenodo.8105466]

Glioblastoma 10X Visium spatial

transcriptomics

Ravi et al.9,42 [https://doi.org/10.5061/dryad.h70rxwdmj]

Glioblastoma single-cell RNA

sequencing (Smart Seq2)

Neftel et al.4 GEO: GSE131928

CODEX antibody validations This study [https://doi.org/10.5281/zenodo.8105466]

Ivy Glioblastoma Atlas Project

Anatomic Structures RNA-Seq

Puchalski et al.43 https://glioblastoma.alleninstitute.org/
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Itay Tirosh (itay.tirosh@

weizmann.ac.il).

Materials availability
d This study did not generate new unique reagents.
Data and code availability
d Spatial transcriptomics data have been deposited at GEO (raw data) and Zenodo (processed data) and are publicly available as

of the date of publication under the accession number GSE237183 (GEO) and [https://doi.org/10.5281/zenodo.8105466] (Zen-

odo). Imaging (CODEX) data and antibody validations have been deposited at Zenodo under the [https://doi.org/10.5281/

zenodo.8105466]. This paper analyzes existing, publicly available data. The accession numbers for these datasets are listed

in the key resources table.

d Original code as well as the input data used to generate the main analyses of the paper are publicly available at: http://github.

com/tiroshlab/Spatial_Glioma.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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Tumor samples used for Visium spatial transcriptomics and CODEX were obtained from patients undergoing tumor resection at Uni-

versity Hospital Zurich, Zurich, Switzerland (ZH samples), Massachusetts General Hospital, Boston, MA (MGH samples), and Brig-

ham andWomen’s Hospital, Boston, MA (BWH samples) carried out in accordance with approved guidelines and with patient written

consent under ethics approval KEK-ZH-Nr. 2015-0163, University Hospital Zurich, IRB #10-417, Dana Farber Cancer Institute, and

IRB #1360-1, Weizmann Institute of Science. The clinical characteristics of the patient cohort are detailed in Table S1. Tumors

ZH1007, ZH1019, ZH881, ZH916, and ZH1041 were spatially annotated by the surgeon during navigated-guided surgery. In these

cases, multiple samples were collected from different regions of the same tumor annotated as necrotic, T1 contrast-enhancing, infil-

trating, or bulk. Equal numbers of samples from males and females were used in this study (n=17 of each).

METHOD DETAILS

Sample preparation
Samples were either flash frozen by liquid nitrogen and embedded in cold OCT on dry ice (Scigen OCT Compound, #4586) when

already frozen or embedded in OCT at the time of freezing. The RNA quality of each sample was evaluated by Tapestation (Tapes-

tation RNA Screen Tape, Agilent) after isolating RNA (Zymo Quick RNA MicroPrep Kit, #ZR-R1051) from multiple tissue sections.

Samples with RIN values >7 were profiled by spatial transcriptomics. Fresh frozen samples were sectioned at 10um thickness

with a cryostat onto 10X Visium Spatial Transcriptomics slides (Visium Spatial Gene Expression Slide and Reagent Kit, PN-

1000184) with spatially barcoded capture areas according to the manufacturer’s instructions. Tissues sectioned onto Visium slides

were profiled either on the same day as sectioning or within 1 week following storage at -80C.

H&E staining and imaging
Tissue sections on Visium slides were first fixed in methanol (Millipore Sigma #34860) followed by an aqueous eosin-based H&E pro-

tocol according to manufacturer’s instructions (10X Visium Methanol Fixation, H&E Staining, and Imaging Protocol CG000160).

Brightfield imaging was performed using a wide-field Leica DMIi8 inverted microscope (Leica-microsystems CMS GmbH Germany)

equipped with a DFC310FX color camera. Images were acquired with a 10x/0.25 dry objective and stitched by Leica Application

Suite X software. Image post-processing was performed using Fiji version 2.3.1.

10X Visium cDNA synthesis and library generation
Following imaging of H&E staining, permeabilization was carried out on the Visium slide to capture mRNA released from the tissue.

The optimal permeabilization time (9 minutes) was determined by a permeabilization time course experiment (i.e., Visium tissue opti-

mization experiment). cDNA synthesis and library generation were performed with the Visium Spatial Gene Expression Slide and Re-

agent Kit (10X Genomics). Briefly, reverse transcription was performed by a template switch oligo protocol to generate a second

strand and cDNA synthesis was carried out according to qPCR results (KAPA FAST SYBR qPCR master mix, KAPA Biosystems).

The amplified cDNA was fragmented, end repaired, ligated with index adaptors and size selected with cleanups between each

step using the SPRIselect Reagent kit (Beckman Coulter). Quality control and quantification of the resulting dual-indexed barcoded

libraries was performed with Agilent TapeStation and by qPCR (NEBNext Library Quant Kit for Illumina, New England Biolabs).

Sequencing
QC of final libraries was performed by Tapestation and paired-end dual indexed final libraries were diluted to 1.8nM, pooled, and

denatured prior to sequencing on Novaseq (Illumina) using the Novaseq SP 100 cycles sequencing kit (Illumina) with 1% PhiX and

the following sequencing parameters: Read 1 – 28 cycles, Read 2 – 90 cycles, Index 1 – 10 cycles, Index 2 – 10 cycles.

CODEX antibodies and imaging
The focus of our antibody panel was to cover themajor cancer cell states as defined by scRNA-seq by Neftel et al.4We therefore took

the top 50 genes of the AC, OPC, NPC2,MES1 andMES2 gene signatures and created an antibody priority list based on the following

criteria: (i) moderate to high RNA/protein correlation as predicted by the Human Protein Atlas61 (ii) expected protein localization:

nuclear > membrane > cytosol, (iii) carrier-free antibody formulation available. All antibodies not commercially available from Akoya

and hence requiring custom-conjugation with DNA-barcodes62 were first validated with conventional immunofluorescence. More

than 100 antibodies were rigorously tested to assemble the 40-plex panel. A list of all antibodies can be found in Table S3. Of

note: CD19 staining was not performed on 3 samples (MGH258, ZH881_INF and ZH881_T1). Control tissues included healthy duo-

denum for immunemarkers, carcinosarcoma for p53, and adequate GBM samples containing the respective cell types and states as

identified by Visium. Fresh frozen sections were fixed with 4% PFA for 20 min and blocked with 4% BSA and 0.25% TritonX-100 for

30 min. Primary antibodies were incubated overnight at 4 �C and secondary antibodies incubated for 2h at room temperature. All

antibodies (including pre-conjugated antibodies from Akoya) were additionally validated on the respective GBM control samples us-

ing multiple CODEX runs to adjust antibody concentration and exposure times to optimize signal to noise ratio. CODEX runs were
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performed using PhenoCycler-Fusion and imaged with PhenoImager (both Akoya Biosciences) according to manufacturer instruc-

tions. After the CODEX run, hematoxylin and eosin staining was performed inside the flow cell using a syringe.

GBM hypoxia organoid experiments
GBM organoids were generated and maintained as previously described.34 BWH911 organoids were initially derived from an IDH

wild-type GBM tumor specimen. Organoids were maintained under continuous mechanical agitation in serum-free media consisting

of a 1:1 mix of DMEM:F12 and Neurobasal media supplemented with MEM-NEAAs as previously described.63 For hypoxic treatment

experiments, organoids were maintained under normoxic or 2% oxygen conditions for up to 48 hours under otherwise standard cul-

ture conditions, and were subsequently embedded fresh in OCT for CODEX studies.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spatial transcriptomics (Visium) analysis
Alignment, processing, and QC of Visium data

Alignment of FASTQ files with human reference genome GRCh38, UMI counting, and spot barcode filtering were performed using

SpaceRanger (versions 1.0 and 1.1, 10x Genomics). Alignment between positionally barcoded Visium spots and tissue images to

obtain spatial coordinates necessary to generate spatial maps was performed using Loupe Browser (version 5.0.1, 10x Genomics).

Expression levels were quantified as Ei,j = log2 (1 + CPMi,j/10), in which counts per million (CPM)i,j refers to 106 3 UMIi,j/

sum(UMI1...n,j), for gene i in sample j, with n being the total number of analyzed genes. The average number of UMIs detected per

spot was less than 100,000; thus, CPM values were divided by 10 to avoid inflating the differences between detected (Ei,j > 0)

and undetected (Ei,j = 0) genes as previously described.64

For each spot, the number of counts was used as a proxy for sample quality. Spots with fewer than 1000 counts and/or expressing

more than 20% mitochondrial genes, another proxy for low quality, were filtered out. The top 7,000 most highly expressed genes

were retained and centering was performed per sample in order to define relative expression values by subtracting the average

expression of each gene i across all k spots: Eri,j = Ei,j � average(Ei,1...k), where Er represents relative expression values.

Thirteen GBM Visium samples profiled by Ravi et al.9 (Table S1) were included in our analysis. We excluded samples from the Ravi

Visium GBM dataset that were annotated as normal cortex and samples in which >50% of spots were excluded after QC filtering

(<1000 UMI counts/spot and/or >20% mitochondrial genes/spot). Additionally, two normal Visium cortex samples (UKF256_C

and UKF265_C) from Ravi et al.9,42 were used as a normal brain reference for CNA analysis. No batch integration was required since

our analysis is not performed on combined data, but rather is done per sample and only the results of various analysis (i.e., NMF/

Leiden-derived sets of genes, spatial coherence scores, colocalization or of other metrics) are combined across samples.

Per sample clustering

We applied two clustering approaches to individual samples in order to capture discrete patterns of variation (Leiden clustering) and

continuous patterns of variation (NMF). For each sample, following PCA, Leiden clustering was performed on the SNN graph (imple-

mented with Seurat version 4.3.0). Gene programs were defined per Leiden cluster by differential expression analysis based on the

top 50 most differentially expressed genes by the Wilcoxon Rank Sum Test with a p value of <0.005. For tumors in which we had

profiled multiple tissue sections from different regions, we also performed per tumor Leiden clustering in which the expression

matrices from the individual tissue sections were merged and jointly clustered.

We performed NMF on each sample separately to capture continuous patterns of gene expression variation. Negative values in

each centered expression matrix were transformed to zero. To minimize the influence of selection of an individual k parameter,

we ran NMFwithmultiple k values ranging from 2-11, generating 65NMF programs per sample. Each NMF programwas summarized

by the top 50 genes based on NMF score.

Generating consensus metaprograms

To integrate across samples, we generated metaprograms (MPs) – consensus gene signatures corresponding to a cell state or cell

type. To identify robust gene programs across samples, we jointly clustered both the per sample NMF and Leiden gene programs

collected from all GBM samples by their overlap (intersection/union, i.e., Jaccard index).

Given the high number of NMF programs, programs included in the clustering were limited to those that were both robust within a

sample (i.e., 30/50 gene overlap between at least two programs across more than one value of k), non-redundant (i.e., for a group of

similar programs, defined as at least 20% overlap with another program within a sample, only one is retained), and similar to pro-

grams generated from other samples (i.e., robust across samples, defined as at least 20% overlap with a program from another

sample).

In total, 492 gene programs from individual samples derived from NMF and Leiden clustering were used to generate metapro-

grams. The clustering process used to define metaprograms was carried out as described in Gavish et al.15 as follows: each robust

program was compared to all other robust programs to assess the degree of gene overlap between programs. Considering overlap

instances of at least 12 genes, the programs with the maximal number of overlaps was selected as a potential founder of a new clus-

ter. If the number of overlapping programs (>12 genes) exceeded four instances, the program with the highest gene overlap to the

founder programwas added, and thus a cluster was formed. TheMP for the cluster was initially defined by the genes that appeared in
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both programs such that each metaprogram reflects the most robust genes within each cluster of programs. By this approach, 13

clusters corresponding to 13 MPs were derived from all per sample GBM programs.

In two cases where we manually observed clear subclusters, we further split a single MP cluster to two clusters by hierarchical

clustering: cluster 5 and cluster 7 (one subcluster of cluster 7 was excluded due to strong enrichment of mitochondrial and ribosomal

genes suggesting low data quality). TheMP generation process described above was performed separately for the IDH-mutant sam-

ples resulting in 7 IDH-mutant MPs (see spot scoring and assignment of spots to MPs for further details on IDH-mutant MPs). The

Vasc MP cluster was also further subclustered by hierarchical clustering to identify cell subtype signatures (Vasc-Ang and Vasc-

IMEC). Consensus gene programs were derived from the gene program subclusters selecting for the top 50 most recurring genes

per subcluster.

Validation of MP generation approach by simulation

In order to illustrate and validate how our NMF/metaprogram approach generates single-cell equivalent signatures from mixed

composition Visium spots, we performed a simulation with synthetic spots. The simulation was composed of 10 samples with

200 synthetic spots per sample. Each spot contained eight synthetic cells sampled from a pool of 1000 cells per spot. To generate

synthetic cells, we first defined the cell state fractions in the sample by scaling four randomly selected fractions to sum to 1. Next, we

randomly assigned a cell state to each cell by the corresponding cell state fraction. Each cell was assigned a random program score

between 1-5 to its assigned cell state and a random score between (-1) to 1 for all other cell states. All scores were then divided by a

noise parameter (set to a constant 1.2). In order to simulate correlations between similar programs that occur in real data, in some

cases, we generated a correlation between two of the programs by adding the score of one of them to the second multiplied by a

coupling parameter.

Our simulation data contained four different cell states; however, by design, the gene-sets represented only three of them, with

each cell state represented by 50 genes. Given the programs scores, we defined the gene values in the following way: gene(i) = pro-

gram(i)_score + rand_genes (i), where program(i)_score is the corresponding cell score to each of the programs and rand_genes(i) is a

sampled value out of a distribution generated from GBM single-cell data4 by vectorizing and shuffling all the gene values after log

transformation and per sample centering.

To generate synthetic spots, we sampled eight cells out of the pool of 1000 generated cells. In order to simulate correlations be-

tween spot compositions that occur in real data, in some cases, we created a correlation between the composition distribution of two

cell types in the following way: First, we generated four data vectors with a normal distribution, two of which were correlated using a

correlation level pre-defined by a correlation degree parameter, using mvrnorm from the R package MASS.65 Next, we performed

scaling with a softmax function on each corresponding four data points to generate a percent-like vector. We multiplied this vector

by eight and rounded down. The output was then used to determine howmany cells to sample from each cell type. The remining cells

(out of eight) were sampled randomly from all cell types.

Finally, we ran NMF per sample with k=3 and extracted three clusters. We then defined final clusters derived from a Jaccard matrix

comprised of all NMF-generated clusters and compared the consensus MP signatures derived from the clusters to the original pro-

gram genes. For each original cell type program (org_p) and newly define signature (sig) we calculate the Jaccard similarity score. We

define the simulation success rate as the average of the maximum score for each original program. We generated 25 different sce-

narios by varying each parameter across five values, including gene correlations between pairs of programs and spot composition

correlations in order to simulate the correlations that occur in real data. We ran 50 simulations per scenario, yielding expression cor-

relations between -0.27 to 0.93, and composition correlations between -0.33 to 0.49 (averaged across all simulations per scenario).

Gene-set enrichment analysis
MPs typically represented a single cell state or cell type. We assessed the enrichment of MP signatures with Gene Ontology terms

(MSigDB modules H, C2, C5, C8) as well as published signatures for glioma cell states,4,17,26,66 non-malignant brain cell

types,16,18,67–73 and pan-cancer cell states and cell types15 by hypergeometric test (FDR adjusted p<0.01 was considered

significant).

Analysis of new spatial malignant states in single-cell data

We re-examined GBM scRNA-seq data4 to look for evidence of the new malignant states that we identified by spatial analysis. We

used two approaches to identify the new states in single-cell data and determine their frequency:

scRNA-Seq data was scored for the new spatial malignant states. For this analysis, genes from the MES-Ast gene program that

overlap with the MES or AC programs were removed from the MES-Ast program and genes from the Chromatin-Reg gene program

that overlap with the NPC programs were removed from the Chromatin-Reg program. The actual scoring distribution was then

compared to a control score distribution derived by shuffling the single-cell data and cells with a score >99% percentile of the shuf-

fled (control) distribution were classified as positive.

Single cells from scRNA-seq data were scored for all spatial malignant MPs including those representing new states and cells were

classified by their highest score with a minimum difference of R0:2 between the highest scoring MP and the second highest-

scoring MP.

MP correlations between platforms and final MP signatures

In order to directly compare the core GBM malignant cell states (MES1, MES2/MES-Hyp, OPC-like, NPC-like, and AC-like) across

platforms (ST=spatial transcriptomics, SC=single-cell RNA-Seq), correlations were calculated between each spatial MP gene and
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theMP score of the analogous SC4MP in the SC dataset. In order to derive truly single-cell equivalent MPs, a filtering stepwas added

in order to remove genes that were more correlated with another single-cell MP than the MP it currently belonged to according to the

following criteria: (i)The gene has a correlation below 0.3 for the spatial MP it currently belongs to (ii) The gene has a higher correlation

with a single-cell program different from the MP it belongs to (iii) The difference between the correlation of the best-matching single-

cell program and the MP it belongs to is >0.2. Lastly, mitochondrial and ribosomal genes were removed from the final MP gene

signatures.

Spot scoring and assignment of spots to MPs

Spots were scored for MPs as previously described using the scalop R package (https://github.com/jlaffy/scalop).4,8 Given a set of

genes (Gj) reflecting an MP corresponding to a cell state or cell type, we calculate for each spot i, a score, SCj(i), quantifying the rela-

tive expression ofGj in spot i, as the average relative expression (Er) of the genes inGj, compared to the average relative expression of

a control gene set (Gj cont): SCj (i) = average[Er(Gj,i)] – average[Er(Gj cont,i)]. The control gene-set is defined by first binning all

analyzed genes into 30 bins of aggregate expression levels (Ea) and then, for each gene in the gene set Gj, randomly selecting

100 genes from the same expression bin. In this way, the control gene set has a comparable distribution of expression levels to

that of Gj, and the control gene set is 100-fold larger, such that its average expression is analogous to averaging over 100 randomly

selected gene sets of the same size as the considered gene set. Spots were assigned to the MP for which it scored most highly. For

the analysis in which single cells from Neftel et al.4 were scored for the spatial MPs, a stricter approach was used for assignment of

MPs to cells. In this case, in order to be confidently annotated with a given MP, cells needed to have a minimum score of 1 for the

highest-scoring MP and a difference of at least 0.1 between the highest and second-highest MP scores.

Due to the relatively low number of IDH-mutant samples (n=6) and correspondingMPs generated from themwhen they are consid-

ered separately (n=7), when assigning IDH-mutant spots to MPs we integrated the IDH-mutant MPs with GBMMPs according to the

following procedure. First, we scored IDH-mutant spots for the GBMMPswith the following thresholds: if an IDH-mutant spot scores

highest for a GBMMP, in order for it to be assigned to a GBMMP, it must have a minimum score of at least 1.5 for the MP and there

must be a difference of at least 0.2 between the highest and second-highest MP score. If there is no equivalent IDH-mutant MP, and

at least 5% of spots could be confidently assigned to the GBMMP, then that GBMMP was added to the list of IDH-mutant MPs for

scoring and assignment of IDH-mutant spots. By these criteria, the following GBMMPswere added to the IDH-mutant MP list: Prolif-

Metab, Reactive-Ast, Inflammatory-Mac, MES-Hyp, and Chromatin-Reg.

Spot homogeneity (confidence) score

We derived a homogeneity score for each spot by subtracting the second highest MP score of the spot from the highest MP score.

Most spots are dominated by one or twoMPs such that considering the two highest scoringMPswithin each spot largely captures its

composition, and the difference between those scores reflects the confidence of the assignment to the MP with the highest score.

Validation of spot assignment approach

Multiple analyses were performed to assess the validity and downstream implications of classifying spots by their dominant MP. In

order to compare MP sample composition as calculated by the dominant MP annotation approach to MP sample composition as

calculated from cell state/cell type fractions, we performed deconvolution to infer spot composition. Deconvolution was performed

by scoring spots for MP signatures and then performing a softmax function on all spot scores R 0.1 (where a score of R 0.1 was

considered as ‘presence’ of a given cell state/type within a spot) to generate inferred fractions per spot summing to 1. These values

were then used to calculate overall MP abundance compared toMP abundance as calculated by the dominant MP spot classification

approach. We also performed a simulation with synthetic spots to evaluate the accuracy of our spot annotations using the dominant

MP approach across spot homogeneity score (i.e., confidence score) filtering thresholds (by quantiles). We generated synthetic

spots by sampling single cells from the Neftel dataset.4 Each synthetic spot contains the average scores for single-cell MPs of 8 cells.

Each spot is then assigned to the highest scoring MP.We also calculate a homogeneity score and the true composition of each spot.

A correct assignment is defined as an assignment matching to the most dominant cell type in a spot.

CNA inference

CNAs were estimated as described previously, sorting genes by their chromosomal location and calculating a moving average of

gene expression with a sliding window.5,58 We used an increased size sliding window of 150 genes as ST data is noisier than single

cell data, and two normal Visium cortex samples (UKF256_C and UKF265_C) from Ravi et al.9,42,9 were used as a normal brain refer-

ence to define a baseline for normal karyotype. We then scored each spot for ‘‘CNA signal’’, defined as the mean of the absolute of

CNA values across regions with high CNAs, and ‘‘CNA correlation’’ which refers to the correlation between the CNA profile of each

spot and the average CNA profile of all spots of the same sample. Following this we reclassified spots using the two measurements,

and spotswithin the query sample with low scoreswere integratedwith the external reference. Finally, we performed another iteration

after which we scored again each spot for CNA signal and correlation. To infer spots andMPmalignancy level we used the CNA cor-

relation score plus a scaled CNA signal score: CNAcor +
�
CNAsig � maxðCNAcorÞ

maxðCNAsigÞ
�
. We then performed a min-max scaling for the

final score.

Spatial coherence score

The spatial coherence score of a specific MP in a sample is defined as the scaled average number of immediate neighbors of the

same MP across all MP spots. To scale the observed spatial coherence score we shuffle the spots positions 100 times and perform

a similar calculation over the shuffled samples, averaging across the results to generate an expected minimum value. We also define
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a maximum expected value by modeling the average number of immediate neighbors of the same MP where all the MP spots are

organized in a regular hexagon pattern. The final score is derived as follows: observedScore � expectedmin

expectedmax � expectedmin

Wevalidated spatial coherence usingMoran’s I as an alternativemeasure.We calculatedMoran’s I, perMP per sample, based on a

scoring-based spot deconvolution (described in ‘‘Validation of spot annotation approach’’). To directly compare it to our spatial

coherence calculation, we defined only adjacent spots as neighbors. As a control, we also calculated Moran’s I per MP per sample

after shuffling the spatial location of spots.

Defining organizational zones

In order to assign each spot as structured or disorganized we first generate subsamples of three different sizes (radii 5, 8, 11) sur-

rounding each spot. Next, we calculated the spot’s spatial coherence score in each subsample by averaging the spatial coherence

of all MPs in the subsample. Each spot is defined as structured if it scores higher than the 40% quantile (across all spots from all

samples) for each of the three different window sizes, and disorganized if it scores lower than the 40% quantile for each of the three

different window sizes. Otherwise, the spot is defined as intermediate. To smooth out the resulting regions, we set a sliding window

with r= 4 surrounding each spot andmake a final region assignment based on the assignment of themajority of spots, to either struc-

tured, disorganized or intermediate, within the window. After the initial division to structured and disorganized regions, we performed

a second division by malignancy level of the spots. We inferred the spots malignancy level based on their CNA as described above.

Finally, we scaled the score to range from 0 to 1. Spots that were classified as structured and had a malignancy score R 0.4 were

classified as Structured-Malignant and those with a malignancy score <0.4 were classified as Structured-Normal. Spots that were

classified as disorganized and had amalignancy scoreR0.5 were classified asDisorganized-Malignant and those with amalignancy

score <0.5 were classify as Disorganized-Normal.

Validating structured vs. disorganized regions

We used the spot homogeneity score to validate the division to structure and disorganized regions in two ways: First, we compared

the mean homogeneity score of each MP between spots that were annotated as structured and those labeled as disorganized. Sec-

ond, we compared the fraction of adjacent spots of the same MP in structured vs. disorganized spots across different spot homo-

geneity filtering thresholds to show that difference in organization remains across varying spot homogeneity levels.

MP spatial coherence scores and proximity to MES-Hyp

Using a sliding window of r=11, we classified regions as MES-Hyp high if they had at least 10% MES-Hyp spots within the window.

We then calculated the mean spatial coherence per malignant MP in MES-Hyp high vs. MES-Hyp lowwindows per sample and aver-

aged across samples.

Spot colocalization

We first performed a scoring-based deconvolution (per sample) on all spots by scoring spots for MPs as described in ‘Spot scoring

and assignment of spots to MPs’. For each spot, all MP scores above 0.1 were considered as presence of the MP in a spot and de-

convolution matrices were binarized such that for a given spot, presence of MP=1 and absence of MP=0. The following analysis was

performed separately on spots in structured and disorganized regions per sample. First, for MP a and MP b, we compute the pro-

portion of spots containing a or b (denoted as Ta or Tb). Second, we compute N, the number of times a,b co-occur within the same

spot. Finally, we compute a colocalization value defined as N/ Ta+Tb. After calculating the mean colocalization of each MP pair per

sample (the observed colocalization value), an expected colocalization value was computed by performing themeasure on 500 shuf-

fled deconvolution matrices per sample. A p value was then computed by Fisher’s exact test. The per sample effect size was defined

as expected/observed per MP. Colocalization of each MP pair per sample was defined as significant if the effect size wasR 1.3 and

the p value was%0.01. Finally, the proportion of samples for which a MP pair was considered significant was calculated to consider

robustness across samples. For downstream analysis, themean colocalization value per pair and the proportion of samples for which

it was significantly colocalized were used.

Spot adjacency

Spot adjacency was calculated per sample. The observed asymmetrical adjacency betweenMPA andMPBwithin a given sample is

defined as: #immediate neighborsB of A

#immediate neighborsallMP of A
.

In order to regress out the spatial coherence effect of MP B on its adjacency, we normalize this score by the relative adjacency

capacity of MP B, i.e., the number of MP B spots with non-MP B neighbors out of all MP adjacency capacities (except for MP

A): MP #spots with non MP neighbors BP
all MP but A

MP #spots with non MP neighbors

Next, we shuffle the spots positions 10,000 times and calculate the expected adjacency scores to create a null distribution. The p

value is computed by the number of times the observed score was higher/lower than the shuffled scores (the smaller of the two).

Regional composition

Regional composition was computed per sample. For each radius (defined as the number of hexagons circling a spot) ranging from 1

to 15, we defined a window around each spot. We then calculated the abundance of all MPs in the window and finally, calculated the

correlations of abundance between pairs across all the windows of the same size, omitting windows that included only one MP. We

then repeated the process over 500 shuffled permutations of the spot positions to generate a randomdistribution, based onwhichwe

calculated significance for the correlation by Fisher’s exact test. In order to test the impact of varying spot homogeneity on spatial

relationships, we calculated the regional composition for all MP pairs per sample filtering across spot homogeneity score thresholds
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(set by quantiles: >15%, >30%, >45%). We then calculated the correlation between the original unfiltered regional composition and

regional composition at each filtering threshold across multiple window sizes (1-7), per MP pair per sample.

Defining consensus interactions

To be able to compare scores of pairs between analyses, we scaled the scores of all analyses by a min-max scaling so that all scores

range between 1 to -1. For each analysis after scaling, a MP pair that exhibited a mean scaled score above 0.35 across samples and

was significantly connected (by Fisher’s exact test) in at least 20% of samples was considered ‘strongly connected’. A MP pair was

defined as consistently strongly connected across analyses (i.e., consensus interaction) if it was ‘strongly connected’ within at least 2

out of 5 analyses (colocalization, adjacency, regional composition with window sizes r= 5,8,15) including at least one of themeasures

of direct coupling: colocalization or adjacency. By this definition, 21 structured pairs were consistently strongly connected compared

to only 2 pairs in disorganized regions.

Generation of layers network graph

We generated a graph of robustly coupled pairs in structured regions across analyses with Cytoscape (version 3.9.1) by the following

criteria: pairs that are defined as ‘‘strongly connected’’ in any 2/5 measures of spatial relationships (see ‘defining consensus inter-

actions’). By this definition, we include an additional 4 pairs beyond the 21 pairs initially defined as consensus interactions. All

MPs except for the Chromatin-Reg MP could be confidently assigned to layers. Chromatin-Reg is unassigned in the layers model

due to its internal inconsistency in coupling between measures in the Visium analysis and inconsistency between the Visium and

CODEX analysis.

MP frequency in infiltrative vs. non-infiltrative environments

We defined a spot to be in an infiltrative environment if 30% of the spots surrounding it, within a window of a radius of 4 spots, are

annotated as normal brain (i.e., Neuron, Oligo, or Reactive-Ast). Next, we measured the overall frequency of each MP in the two en-

vironments (infiltrative and non-infiltrative) across all the samples.

T-cell inference

To infer the presence of T-cells within spots, we lowered the UMI count QC filter to 150 to include low complexity spots due to the

association between T-cells and low RNA content/low complexity. Spots that include at least two counts for at least two canonical

T-cell markers (CD2, CD3E, CD3G, CD3D, FOXP3, CTLA4, CD28) were identified as putative T-cell containing spots. Putative T-cell-

containing spots with at least one CD8A or CD8B count and more CD8A/CD8B counts than CD4 counts were further classified as

CD8 T-cell-containing and spots containing at least two CD4 counts and more CD4 counts than CD8A or CD8B counts were further

classified as CD4 T-cell containing spots with the caveat that macrophages can also express CD4.

Cell cycle inference

Using the cell cycle metaprogram gene signatures obtained from Neftel et al.4 we scored each spot per sample for ‘‘G1/S’’ and ‘‘G2/

M’’ programs and maintain the higher of the two as the spot cell cycle signal. We set a threshold of 0.85 for both GBM and IDH-mut

samples and in both cases, this corresponds to 90% to 95%quantiles, above which a spot was classified as cycling. Next, we calcu-

lated the frequency of spots classified as cycling within each MP. The results remained overall consistent within each group at

different thresholds.

Comparison to IVY Gap transcriptional programs

To compare between the transcriptional programs derived from laser micro-dissected histopathological features as part of the IVY

Gap Atlas (also referred to as (‘‘IVY Gap programs’’)43 and the state layers, we derived layers signatures (Table S2). We performed

DEG analysis between layers per sample (including only structured samples) to generate layers signatures. Final signatures included

genes that received an adjusted p value < 0.05 and a log2(fold change) > 1 in at least 5 different samples. We then calculated Jaccard

similarity between the layers programs and IVY Gap programs.

Associations between MPs, organization, and functional states

Using published GBM functional signatures for Connectivity and Invasion,26,30 we classified spots as ‘‘Connected’’, ‘‘Invading’’, or

‘‘Unannotated’’ as follows: Spots with an absolute score R0:75 for ‘‘Connected’’ or ‘‘Invading’’ and R0:2 difference between

the two scores were annotated as ‘‘Connected’’ or ‘‘Invading’’; all other spots were unannotated. Enrichment values between

‘‘Connected’’ and ‘‘Invading’’ spots and cell cycle, spatial MPs, state layers, and organizational zone were calculated per sample

by hypergeometric test and then averaged across samples. An effect size was calculated by the proportion of samples for which

a given enrichment was significant. In order to analyze the overall spatial relationship between ‘‘Connected’’ and ‘‘Invading’’ spots,

we calculated the mean spatial proximity of connected and invading spots, across sliding windows using the regional composition

calculation (see ‘‘regional composition’’).

CODEX analysis
Segmentation of CODEX images

Nuclear segmentation was performed with the StarDist55 plugin within QuPath54 applying the pre-trained model (dsb2018_hea-

vy_augment.pb) to the DAPI channel. Areas with staining or tissue artifacts (i.e. tissue folds, freezing artifacts, outer border of the

tissue) were excluded manually from segmentation and further analysis. Nuclei were expanded by 3 mm to conservatively estimate

cell boundaries. Mean fluorescence intensity for every marker and cell compartment, together with morphology quantifications (area,

solidity, circularity) were exported and further analyzed in R.
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Cell phenotyping of CODEX data

Cell phenotyping in highlymultiplexed imaging data is challenging because of technical artifacts (i.e. autofluorescence, segmentation

artifacts) that differ from other single cell technologies.74 We followed a workflow as suggested by Hickey et al. who benchmarked

multiple normalization and clusteringmethods specifically for CODEX data75,76: (i) Log2 transformation and z-score normalization per

sample (ii) Over-clustering of the data using PhenoGraph (PMID: 26095251) with k= 10, such that even rare cell types (i.e., B-cells,

neurons) would be assigned to a distinct cluster (iii) Calculating average protein expression per cluster (iv) Cluster assignment

following the criteria described in Table S4. Clusters with the same assignments were merged. For phenotyping, we excluded

markers with a staining pattern that was not limited to the cell boundaries and thus resulted in spillover artifacts (PLP1, CD44,

GAP43, CD90, BCAN, FN1, GLUT1, CA9). T-cells were defined by CD3 expression only and in a second step sub-typed using func-

tional T-cell markers (CD4, CD8, CD279, CD69). Ki67 expression was used to define proliferating cells (z-score > 2.1) after cell iden-

tities were defined. The calling for malignant vs. non-malignant cells was based on SOX2 and EGFR staining (Table S4).

Clean clusters were defined as depicted in Table S4 and named accordingly. Mixed or ambiguous clusters (i.e., clusters that ful-

filled > 1 criteria of Table S4) were further sub-clustered. T-cell clusters were always sub-clustered to exclude CD3 spillover artifacts

that were specifically high in this cell population. In cases where the sub-clustering did not derive clean clusters, cells were excluded

from further analysis (n=96,327 of 500,738 cells, 19,2%). This included the following categories: (i) artifact (i.e., autofluorescence,

dust, tissue fold) as identified by unreasonable protein co-expression and visual inspection in QuPath. (ii) low expression as identified

by topmarker in cluster z-score < 0.5 (iii) low solidity and circularity as defined by z-score < -2 reflecting irregular and complex nuclear

shapes corresponding to segmentation artifacts (iv) small cluster as defined by cluster size < 150 cells (low abundant cell types like T-

and B-cells were excluded from this criteria) (v) spillover as defined by unreasonable protein co-expression and visual inspection in

QuPath (i.e., T-cell/Vasc, Mac/Vasc, Mac/MES-Hyp). (vi) unknown cell phenotype as defined by the remaining clusters containing

n=27.865 cells from 8 samples. These ‘‘unknown’’ clusters were heterogeneous and not redundant across samples. Hence, we could

not annotate them to a unique proteomically defined cell type/state.

Creation of pseudospots

We created and overlaid a virtual tissuemicroarray (TMA) grid corresponding to the Visium spot properties (diameter=55mm, centroid

distance=100 mm) to every sample in QuPath. Cells were associated to pseudospots if their nuclear segmentationmask centroid was

within the pseudospot boundaries. The identity of a pseudospot was defined by the most abundant cell type/state within each

pseudospot.

Spatial alignment of CODEX to Visium data

To spatially align CODEX to Visium data we used ‘‘STalign’’.32 In short, STalign uses Large Deformation Diffeomorphic Metric Map-

ping (LDDMM77) to align CODEX to Visium datasets using image varifolds. A rasterized density image is created from the centroid

positions of the CODEX data and serves as source image. In the first step, the source image was aligned to the target H&E Visium

image based on manually assigned landmark points using affine transformations. Visually, this resulted in a good alignment in half of

the samples (n=5). The remaining five samples were subjected to a second step in which the source (CODEX density image) and

target (VisiumH&E) imageswere aligned tominimize their dissimilarities using a LDDMM framework. This diffeomorphic solution gen-

erates a smooth, continuous, invertible transformation which permits mapping back and forth from the rasterized image (CODEX)

original cell positions (centroids) while respecting the biological constraints such that cell neighbor relationships stay relatively the

same. Next, we generated aligned CODEX pseudospots using the Visium spot coordinates and assigning single cell centroids

from CODEX data to a pseudospot if the distance is < 27.5mm. To compare similarity between aligned CODEX and Visium samples

we included only spots that contained information from both platforms (overlapping spots) and included only MPs that can be de-

tected in both datasets (Prolif-Metab and MES-Ast excluded). To compare the similarity between the CODEX and Visium spatial

maps, we segmented each sample into tiles (n=9). We used the tiles to calculate per sample Pearson correlations for each MP indi-

vidually. We then took the per sample median of the MPs correlations and assessed statistical significance (p<0.05) by using a t-test

comparing against 0.

Defining organizational zones

To define spatial patterns (structured/disorganized) in the CODEX samples we used CODEX pseudospots and performed a similar

process to Visiumwith window size of r=5 and 8 and a similar threshold of higher than 40% quantile across all spots from all samples

for each window size in order to define structured regions and lower than the 40% quantile to define disorganized regions.

Minimum distance to vascular cell

We created a distance matrix for each samples using the x- and y-coordinates of the segmentation masks centroids and calculated

the minimum distance from every cell type to the closest vascular cell.

Colocalization

We created a neighborhood matrix for each sample using the imcRtools package in R. In the neighborhood matrix, rows represent

cells within a sample and columns represent the count of every cell type in that neighborhood. The neighborhood for every cell was

defined by a radius of 27.5mm (coloc1: corresponding to the dimensions of 1 Visium spot) or 127.5mm (coloc3: corresponding to the

dimension of 3 Visium spots). We then calculated the mean interaction count between every possible cell type pair. Example: For cell

type A, we calculated the sum of counts that cell typeB is in the neighborhood of cell typeA and divided this value by the count of cell

type A in a given sample. To focus on co-localizations between different cell types (rather than emphasizing self-pairs), we excluded

neighborhoods that were 80% dominated by a single cell type/cell state. This filtering was important to detect neighboring cell types
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(i.e., MES) next to cell types with very high spatial coherence (i.e. MES-Hyp). Next, we shuffled cell type labels n=500 times and calcu-

lated z-scores from the observed and shuffled (expected) interaction counts. Significance was reached if 95% of shuffled z-scores

were larger or smaller (depending on directionality: coupled vs. uncoupled) than the observed value.

Regional composition

CODEX regional composition was calculated similarly to Visium regional composition on the single cell level, using the same radii as

used for Visum. For each radius i (defined as the distance between I number of spots) ranging from 1 to 15, we defined a window

around each cell. We then calculated the abundance of all MPs in thewindow and finally, calculated the correlations of all pairs’ abun-

dance across all the windows of the same size, omitting windows that included only oneMP. We then repeated the process over 500

shuffled permutations of the spots positions to generate a random distribution from which we calculated significance for the corre-

lation by Fisher’s exact test.
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Figure S1. Segmentation, CNA inference, and per-sample clustering, related to Figure 1

(A) Segmentation analysis. Left panel: cell density (cell count per 55 mm spot) for non-infiltrative and infiltrative samples. Right panel: cell density (cell count per

55 mm spot) for structured, intermediate, and disorganized regions as classified by spatial coherence analysis on CODEX pseudospots. Boxes indicate the

median and the 1st and 3rd quartiles. The upper and lower whiskers extend tomaximal andminimal values no further than 1.5 times the interquartile range from the

3rd and 1st quartiles. Data points outside the interval are represented as points, p values indicated on the plot calculated by t test.

(B) Copy-number aberrations (CNAs) across all samples for GBMWT (top) and IDH-mutant (bottom) cohorts. CNAs were inferred by average relative expression

in windows of 150 analyzed genes. Rows correspond to spots arranged by malignancy level inference (see STAR Methods), columns correspond to genes

arranged by chromosomal position.

(C) Spot CNA score by sample for GBM samples, boxes, and whiskers as defined in (A).

(D) In tumors for which there were multiple samples, Leiden clustering was performed per tumor jointly across the tissue sections (in addition to per sample).

(E) Spots vs. MP genes in one sample (ZH916), values are log-transformed normalized expression.
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Figure S2. Validation and further analysis of spatial metaprograms, related to Figure 2

(A) All Leiden and NMF gene programs across all IDH-mutant samples clustered by gene overlap (Jaccard index) to derive IDH-mutant metaprograms.

(B) Composition of IDH-mutant samples by MP.

(C) Enrichments of spatial metaprograms (columns) with gene sets (rows) previously defined from studies indicated at the top. Enrichment values calculated by

hypergeometric test; significance defined by �log10 FDR-adjusted p value < 0.01.

(D) (i) Scheme showing generation of synthetic spots and NMF simulation. (ii) Jaccard similarity matrix of generated output signatures and benchmarking results

for the parameters: expression �0.3, composition �0.36 (STAR Methods).

(E) Summary of success rate and the generated correlations and input parameters of each simulation scenario. Success rates and correlations are averaged

across 50 simulations.

(F) Enrichment of GBM spatial MPs with the five GBM spatial regional states defined by Ravi et al.9,42 (enrichment calculated by hypergeometric test, significance

defined as �log10 FDR-adjust p value < 0.01).

(G) Correlations between core malignant spatial metaprograms (per gene) with the equivalent metaprogram across each platform (ST, spatial transcriptomics;

SC, single-cell RNA-seq). For each platform, GBM data of that type were used to calculate the correlations.

(H) Jaccard overlap of single-cell programswith consensus non-malignant single-cell programs for corresponding states and Jaccard overlap of spatial MPswith

consensus non-malignant single-cell programs for corresponding states. ST, spatial transcriptomics; SC, scRNA-seq.

(I) Pearson correlation between program scores for spatial MPs and MP combinations with Connectivity and Invasion signatures24,26 averaged across samples.

(J) Correlations between core malignant GBM single-cell states and newly described spatial malignant states in scRNA-seq data.

(K) Histograms showing the distribution of scores for newly defined spatial metaprograms in scRNA-seq data (dark pink) compared with a shuffled control

distribution (light pink). Cells passing the threshold (dashed line, R99% percentile of the shuffled distribution) were classified as positive for that state.

(L) Distribution of malignant states (including newly defined spatial states) per sample in scRNA-seq data.

ll
OPEN ACCESS Article



(legend on next page)

ll
OPEN ACCESSArticle



Figure S3. Mapping spatial metaprograms to cell states, related to Figure 2

(A) Percent of malignant single cells in each state (x axis) vs. average positive score among cells classified to that state (y axis). Malignant states are colored by

their category (core malignant GBM states = yellow; new spatial states = blue; control gene signatures = red).

(B) Relative expression (log2 fold-change) of AC and MES-Ast genes (left) and MES and MES-Ast genes (right) in scRNA-seq data from MGH66 in Neftel et al.4

(C) Spatial maps showing spot annotation by MP. Spots were scored for MPs and annotated by their maximum score. Samples are ordered by hypoxia

abundance.

(D) Mean enrichment of Invading and Connected spots by spatial metaprogram; dot size represents the proportion of samples for which a given pair was

significantly enriched (p % 0:01Þ by hypergeometric test. (ii) Mean enrichment of Invading andConnected spots by cell cycle; dot size represents the proportion of

samples for which a given pair was significantly enriched (p % 0:01Þ by hypergeometric test.

(E) Mean spatial proximity of Connected and Invading spots, across sliding windows. Spatial proximity is calculated by the regional composition calculation

(STAR Methods) with spots annotated as Connected, Invading, or neither. ‘‘Spatially distinct’’ is defined as mean spatial proximity < 0 between Connected and

Invading spots. An example of a sample in which Connected and Invading are spatially distinct is on the top (UKF260), and an example of a sample in which

Connected and Invading are spatially mixed is on the bottom (UKF313).
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Figure S4. GBM profiling by CODEX, related to Figure 3
(A) Spatial maps of CODEX samples: (i) region of interest (ROI) highlighting pairwise cell state relationships. (ii) cells annotated by cell types/cell states. (iii)

pseudospots annotated by the most abundant cell type per pseudospot. (iv) pseudospots annotated by organizational zone defined by spatial coherence.

(B) Stacked bar plot showing the relative cell state/type abundance per sample.

(C) Median Pearson correlation indices of MPs per sample in near-adjacent sections profiled by CODEX and Visium following alignment by STalign, statistical

significance (p < 0.05) by t test.

(D) Histogram showing the distribution of pseudospots by fraction of proliferating cells.

(E) Boxplot of percent Ki67+ cells per sample across cells of each state. Boxes indicate the median and the 1st and 3rd quartiles. The upper and lower whiskers

extend to maximal and minimal values no further than 1.5 times the interquartile range from the 3rd and 1st quartiles. Data points outside the interval are rep-

resented as points.

(F) Boxplot showing the percentage of Visium spots containing inferred cycling cells per sample, across spots annotated for a given malignant state, boxes, and

whiskers as in (E).

(G) CODEX pseudospot frequencies of dominant cell types. The density map shows the joint frequency of the top two dominant cell types within a pseudospot. y

axis corresponds to the top dominant cell type frequency within a pseudospot. x axis corresponds to the second most dominant cell type frequency within a

pseudospot.

(H) Percent of correct assignment of single-cell generated pseudospots across homogeneity (i.e., confidence score) filtering thresholds (by quantiles).

(I) Boxplot of cell density (cell count per 55 mm diameter) per cell state, boxes, and whiskers as defined in (E).

(J) Boxplot of cell density by histopathology annotation from H&E, boxes, and whiskers as defined in (E).
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Figure S5. Association between spatial coherence and MES-Hyp, related to Figure 4

(A) Abundance of each MP across GBM Visium samples. MES-Hyp and NeuronMPs are colored. (B) Mean frequency of MES-Hyp, Neuron, Oligo, and Reactive-

Ast spots per spatial organization zone across all GBM samples. Significant adjusted p values (<0.05) by the Wilcoxon rank-sum test are shown in the panel.

(C) Spatial maps of representative Visium samples annotated by organizational zones (Struct-Malig, Struct-Norm, Disorg-Malig, and Disorg-Norm) (STAR

Methods).

(D) Heatmap showing relative abundance of structured vs. disorganized zones calculated by spatial coherence per CODEX sample. Annotation bar corresponds

to MES-Hyp abundance.

(E) Boxplot where each point represents the mean spatial coherence of samples with high abundance (>10%) of MES-Hyp or Neuron vs. samples with low

abundance (<10%) of MES-Hyp or Neuron. MES-Hyp or Neuron spots were removed from the calculation of mean spatial coherence. Boxes indicate the median

and the 1st and 3rd quartiles. The upper and lower whiskers extend to maximal and minimal values. p values calculated by t test (0.0013, MES-Hyp effect; 0.35

Neuron effect).

(F) Boxplot of MP spatial coherence per sample in IDH-mutant samples, boxes as defined in (E). Each dot represents the mean spatial coherence of all spots

annotated with a given MP per sample.

(G) Scheme depicting the workflow for GBM organoid hypoxia experiments and spatial profiling (generated with BioRender.com).

(H) Heatmap of the mean relative protein expression (by Z score) across all cells per condition. The highlighted proteins represent hypoxia markers (CA9 and

GLUT1) or hypoxia-associated markers (NDRG1 and TUBB3) that were upregulated under hypoxic conditions (24 and 48 h).

(I) Stacked bar plot showing the cell state distribution per experimental condition (all organoids per condition are pooled).

(J) Stacked bar plot depicting the fraction of hypoxic cells as defined by hypoxia score (STAR Methods) per experimental condition.

(K) CODEX images of patient-derived GBM organoids under hypoxic conditions for 24 and 48 h with respective controls. Indicated markers representing major

cancer cellular states are shown (OLIG2/OPC, DCX/NPC, GFAP/AC, and CA9/MES-Hyp). Scale bar is indicated in the images.

(L) Spatial coherence of cell states per organoid. Annotation bar indicates the experimental condition. Line indicates median.
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Figure S6. Spatial coherence and organizational zones, related to Figure 4

(A) Compositional differences in structured vs. disorganized regions (across all samples). Vasc (enriched in structured, p = 0.03) and Prolif-Metab (enriched in

disorganized, p = 0.003) were significant by t test.

(B) Boxplot of spatial coherence score per vascular subcluster. Each dot presents the mean spatial coherence score for spots of a given vascular subcluster per

sample (p< 0.001 by t test). Boxes indicate themedian and the 1st and 3rd quartiles; the upper and lower whiskers extend tomaximal andminimal values no further

than 1.5 times the interquartile range from the 3rd and 1st quartiles.

(C) Organization zone composition of each vascular subcluster (across all GBM samples).

(D) Distribution of vascular subtypes in infiltrating vs. non-infiltrating areas (STAR Methods).

(E) Correlation between relative abundance of structured spots vs. disorganized spots in near-adjacent samples in Visium and CODEX (R = 0.73, p = 0.011 by

Pearson correlation). Each point represents a sample.

(F) Example of a structured and disorganized region by H&E, single-cell spatial map (Voronoi) and CODEX image (corresponding to the image in Figure 4E). Scale

bar is indicated in the image.

(G) Average homogeneity score (i.e., confidence score) per MP in disorganized spots vs. structured spots. p values across spots were significant for all MPs

(<0.05 by t test).

(H) Scatter plot depicting the percent of spots with adjacent same-identity neighbors per organization zone across homogeneity score (i.e., confidence score)

filtering thresholds by quantiles.
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Figure S7. Spatial relationship analysis, related to Figure 5

(A) Colocalization of MP pairs within a spot for (i) structured and (iii) disorganized regions in Visium, structured regions in CODEX (ii), and IDH-mutant samples (iv).

Mean enrichment values represent observed/expected spot colocalization, and dot size represents the proportion of samples for which a metaprogram pair was

significantly enriched by Fisher’s exact test.

(B) Overall percentage of putative T-cell-containing spots per MP (across all GBM samples) and further categorization of the T-cell-containing spots (CD4, CD8,

unspecified). T-cell-containing spots in Visium data were identified by the detection of counts for canonical T cell markers (STAR Methods).

(C) Relative (log2 fold-change) expression of MHC class II genes across the mesenchymal MPs.

(D) Relative expression of MHC class I (left) andMHC class II (right) genes across myeloid MPs. Expression values represent average expression values across all

GBM samples.

(E) (i) Relative differences in protein expression between Mac and Inflammatory-Mac for the indicated markers (by Z score). (ii) CODEX immunostaining showing

macrophages with green segmentation masks. Inflammatory-Mac in hypoxic niche (NDRG1high) shows downregulation of MHCII compared with Mac in the non-

hypoxic area (NDRG1low).

(F) Boxplot showing the distance to the closest Vasc per cell type (in mm). Median distance to MES-Hyp = 165 mm. Boxes indicate the median and the 1st and 3rd

quartiles; the upper and lower whiskers extend to maximal and minimal values no further than 1.5 times the interquartile range from the 3rd and 1st quartiles.
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Figure S8. GBM state layers, related to Figure 6

(A) Spatial maps of representative Visium samples annotated by IVY-Gap transcriptional programs corresponding to histopathological annotations (left) and by

state layers (right).

(B) H&E stainings with histopathological annotation by neuropathologist (left) next to CODEX spatial maps annotated by the state layers (right).

(C) Network graph with nodes representing cell types/states and edges representing mean Z scores of spatial attraction derived from CODEX colocalization

analysis. Only edges representing recurrent interactions with Z score >8 and present in >25% of samples are retained.

(D) Composition of state layers by their Ivy Gap histopathological program annotation (Visium data).

(E) Heatmap depicting Jaccard similarity between state layers gene expression programs and gene expression programs derived from histopathological features

in the IVY Gap Atlas across all samples. (F) Scheme and heatmap depicting cell states and cell types in GBM discovered by unsupervised analysis using different

transcriptomics platforms. snRNA-seq = single-nuclei sequencing, scRNA-seq=single-cell RNA sequencing, in situ = 10X Visium spatial transcriptomics. Single-

cell cell states/cell types as defined by Neftel et al.4; Single-nuclei cell states/cell types as defined byWang et al.78 and Al-Dalahmah et al.,79 in situ cell states/cell

types as defined in this study.
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