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Chapter 1

Introduction

This introductory chapter has a threefold aim: explanation of the physical system, historical
review and motivation for this work.

The system we are considering in this thesis is a mesoscopic diffusive wire of length L, height
b and width a. A sketch is given in figure (1.1). The word mesoscopic indicates that at least
the transverse length scales are neither microscopic nor macroscopic. The length L could be
macroscopic. Typical transverse extensions in the experiments are of the order of several tens of
nanometers, and the length of the wire could reach up to several micrometers (in the experiment
of [1]: L = 29µm , b = 190 nm and a = 22 nm). Due to its transverse extensions our wire is not
a strictly one–dimensional system (like for example carbon nanotubes) in the sense that it has
only few transmitting channels. The wires we have in mind posses several thousand channels.

The electrons move diffusively through the wire due to the weak disorder that is present.
A typical piece of a trajectory is depicted in figure (1.1). The expression weak disorder shall
indicate that there are more than just a handful of impurities in the wire because in that case
the electrons would move ballistically through the wire. Also the expression weak disorder shall
indicate that the impurity concentration nimp is not that high that the electrons are captured
in bound states (Anderson localization [2]). In the weak disorder regime the electron states are
extended over the whole system. There is a characteristic mean free path l along which the
electrons move on straight lines. This picture is of course only valid if the Fermi wavelength
λF = 2πh̄/pF (pF is the electron momentum at the Fermi level.) is much smaller then l. For
metals this condition is typically very well fulfilled.

L

b

a

l

Figure 1.1: Different length scales in a mesoscopic wire

The mean free path is connected to the elastic scattering time τ by l = vF τ where vF is the
Fermi velocity. Typically l is several tens of nanometers. The exact quantitative definition of
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6 CHAPTER 1. INTRODUCTION

weak disorder is given by the inequality ǫF τ ≫ 1 where ǫF is the Fermi energy. In section (2.1)
we will show where this condition comes from and how the scattering time τ is connected to the
impurity concentration nimp. Concerning the length scales we can characterize our regime by
λF ≪ l, a, b≪ L. 1

Let us also consider our system at the level of energy scales. First there is the Fermi energy
ǫF. As we will construct an effective theory for the low energy excitations of the system, the
Fermi energy is much bigger than any other energy scale of our problem. Due to the geometry
of our wire we get three more characteristic energies. We assume that the diffusion is isotropic
and that we have just one diffusion constant D for all directions. The diffusive motion is
characterized by Dt = x2. The time ta = a2/D is the typical time a particle needs to spread
over a distance a. The inverse of ta is called the Thouless energy Ea = 1/ta = D/a2. 2 Hence
the energies Ea, Eb and EL are connected to the diffusion of the particle. Further energies are
the temperature kBT and the voltage eV (that one applies in a tunnelling experiment, if one
constructs a contact by approaching another piece of metal). We assume that the temperature
is very low because otherwise all the effects we want to discuss in this work are destroyed by the
thermal fluctuations. Let us look at eV as the energy that is tunable which we use to investigate
the different regimes. Assuming that a < b and choosing eV in such a way that we have the
following hierarchy of energies

kBT < EL ≪ Eb < Ea < eV < ǫF, (3D) (1.1)

we are working in the three dimensional regime. Choosing however eV smaller than Ea, one
talks of the quasi two–dimensional regime. Translating the hierarchy

kBT < EL ≪ Eb < eV < Ea < ǫF (quasi 2D) (1.2)

into time scale makes this understandable. When one probes times of order 1/eV the particle is
already completely spread over the extension a and for the residual effective motion remain only
two dimensions. Lowering the energy eV further we cross over to the quasi one–dimensional
regime:

kBT < EL ≪ eV < Eb < Ea < ǫF. (quasi 1D) (1.3)

The particle is then completely spread over the cross section of the wire and the time scale 1/eV
resolves only the movement along the wire. Lowering the energy even below EL we arrive at a
zero dimensional system:

kBT < eV < EL ≪ Eb < Ea < ǫF. (0D) (1.4)

In this work we are investigating our diffusive wires in the quasi one–dimensional regime.3 We
will explain later why we choose this regime as we need some more ingredients to understand the
reasoning. So far, we have outlined what is understood by a diffusive mesoscopic wire and gave
the definition of a quasi one–dimensional system, but we neglected completely the interactions
between the electrons.4 However in reality our electrons are coupled by the Coulomb interaction.

1In the ballistic regime l is of order L or bigger.
2We have set h̄ = 1.
3In the following we set a = b.
4Including interactions introduces new energy scales that modify our hierarchy of energies. We will have to

introduce two more diffusion constants which measure the propagation of charge and spin. This implies the
appearance of six new Thouless energies. We skipped that complication here for the sake of clarity. In section
(2.2.5) we will be more precise and explain how the definition of the quasi dimension is modified.
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Nevertheless for many phenomena it is sufficient to neglect the Coulomb interaction. The reason
is that in metals the screening is very efficient and the effective screened interaction becomes
short–range.

For an interacting electron system (= Fermi liquid) without disorder it was shown by Landau
([3], [4] and [5])5 that one can treat the low lying excitations as non–interacting quasiparticles.
The interaction between the electrons can be taken into account by a renormalization of various
parameters (for example a renormalized mass). What remains is the quasiparticles, which do
not interact, that one could imagine as electrons dragging a cloud of screening charges with
them. Up to the nineteen seventies the general feeling was that adding some disorder would not
modify essentially the Fermi–liquid theory. Thus it came quite as a surprise when it was shown
by Altshuler and Aronov in 1979 ([7], [8]) that interactions in disordered Fermi liquids lead to
strong singularities at the Fermi level. For the density of states (DOS) of a quasi one-dimensional
systems they predicted a suppression going like 1/

√
eV .6 For the quasi two-dimensional system

the singularity should go like ln(eV ), and in three dimension they still predicted a suppression
of the DOS according to

√
eV . This reduction of the DOS near the Fermi energy due to the

repulsive interactions is usually called zero bias anomaly.

In experiments the effect can be seen by a measurement of the tunnelling conductance G.7

For low temperatures one can derive the following direct connection between the tunnelling
conductance G and the DOS ν:

δG(V )

G
=
δν(V )

ν
. (1.5)

A derivation of that expression is given in section (9.1) as it is the decisive link to the experiments.
In figure (1.2) one can see the decrease of the conductance towards the Fermi energy (ǫ = 0). The
intuitive explanation why little disorder can make such a big difference is the following: If we add
enough impurities that the electrons travel through the wire no more ballistically but diffusively,
it has also an impact on the mutual interactions. Slowed down to the diffusive movement the
electrons spend longer time close to each other and thus have more time to interact. In the
chapter on perturbation theory we will remind the reader which part of the diffusive theory
reflects exactly that crucial feature.

Considering the three different functional dependencies of the suppression of the DOS, we
remark that the strongest effect shows up in the quasi one–dimensional system. Also this is
understandable in the same spirit. Reducing the dimension and thus the space for the electrons
to move increases the effect of the interactions. It is harder for the electrons to avoid each other.
As the combined effect of interaction, disorder and spatial restriction is most pronounced in
quasi one–dimensional systems we focus in this thesis on this class of systems.

5 See also Noizieres and Pines [6].
6The energy is measured relative to the Fermi energy.
7The conductance is defined by G := σLd−2 where σ is the conductivity and d the dimension of the conductor.

One can define the dimensionless conductance g = G/(e2/h̄).
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Figure 1.2: Experimental data for the zero bias anomaly taken from [1]
The conductance of an aluminum wire was measured for different temperatures.

Before entering the historical review of the field let us discuss the quantity that we are
focussing on: The quasiparticle density of states per volume and spin direction (DOS) which
we denote for the three dimensional case by ν3(ǫ). It has the unit

[
1

Jm3

]
. In the remainder we

will often just talk of the density of states which is in some books associated with the quantity
that has the dimension

[
1
J

]
. Our DOS however will always be related either to a volume or

to a length. We denote it either by ν3(ǫ) or ν1(ǫ)
[

1
Jm

]
indicating the different dimensionality.

According to text books8 the DOS of a free electron gas confined in a box is given by

ν3(ǫ) =

√
2 m3/2

h̄3π2

√
ǫ (1.6)

where m is the electron mass. The DOS increases with
√
ǫ. In this work we examine the DOS

close to the Fermi energy ǫF. In order to give a feeling what we mean by close to ǫF, let us look
at some numbers: The energy Es related to the singlet interaction, that will appear in this work,
is of the order of 10−9ǫF. In the figure (1.3) we plotted ν3(ǫ) for typical values of a metal. The
Fermi energy is several eV and the effective mass is close to the free electron mass. For such
values the DOS at the Fermi level is of order 1047 1

Jm3 . We have put an energy strip indicating

the regime of our investigation, which is rather disproportionate because even 1000Es ≈ 10−5eV
is very small.9 In our calculations we will always approximate the DOS ν3(ǫ) around the Fermi
level by a constant because it changes, in the energy strip we are interested in, only very weakly.
We set ν3 := ν3(ǫF).

8See for example [9].
9See also the energy scale in figure (1.2).
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Figure 1.3: Density of states ν3(ǫ) for free electrons in a box.
The sketch shows the small strip we will investigate in real diffusive metals.

There is a wealth of experimental data on the observation of the zero bias anomaly. In
the quasi one–dimensional case studies were carried out on thin wires of WRe (Chaudari and
Habermeier 1980 [10]), AuPd (Giordano et al. 1979 [11], Giordano 1980 [12], White et al.
1982 [13]), Pt (Masden and Giordano 1981 [14], 1982 [15]), Cu and Ni (White et al. 1982
[13]). The experiments confirmed the 1/

√
eV behavior. Especially we want to mention the

beautiful experiments by Imry and Ovadyahu [16] who varied the thickness of an indium oxide
film (a = 16–260nm) and could observe the transition from the 1/

√
eV to ln(eV ) behavior. The

experimental data is shown in figure (1.4).
The curves in figure (1.2) are taken from a recent experiment of Pothier et al. [1]. They

stress that the 1/
√
eV behavior arises from the diffusion of the electric potential along the wire

and not from the diffusion of the quasiparticles. In section (2.2.5) we will prove the correctness
of this statement in the framework of diffusive perturbation theory.

Figure 1.4: Tunneling conductance as function of lnV (left) and
√
V (right) for a indium–isolator–

lead junction. The different curves are obtained by varying the thickness a of the indium oxide film:
a) a = 16nm; b) a = 19nm; c) a = 21nm; d) a = 31nm; e) a = 46nm; f) a = 260nm; see [16]
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On the theoretical side we want to mention two recent works that generalized the perturbative
results obtained by Altshuler and Aronov. Kamenev and Andreev [17] successfully derived a
non–perturbative result for the quasi two–dimensional DOS using a Keldysh σ–model. Inspired
by this work, Rollbühler and Grabert ([18], [19]) developed a theory for quasi one–dimensional
systems including additionally the inter–electrode interactions. They obtained a non divergent
solution for the DOS at low energies, that recovers the 1/

√
eV behavior for higher energies.

In our discussion of the effect of the interaction on the DOS we neglected so far the influence
of the spin of the electrons. Also here Altshuler and Aronov were the pioneers who first obtained
results using perturbation theory ([20], [21], [22], [23] and [24]). For a quasi one–dimensional sys-
tem they found two additional singularities in the presence of an external magnetic field. Apart
from the 1/

√
eV divergence they predicted poles at 1/

√
|eV + 2µBBex| and 1/

√
|eV − 2µBBex|.

In the early nineties Raimondi, Castellani and Di Castro [25] reinvestigated the problem
using perturbation theory and a renormalization group analysis. They predicted that the diver-
gencies at 1/

√
|eV + 2µBBex| and 1/

√
|eV − 2µBBex| do not exist and instead one would see

broadened peaks at ± 2µBBex. Up to now, no experimental papers are known to the author
that investigated the dependence of the DOS on the spin. According to private communications
Pothier et al. made experiments taking their aluminum wires of the experiment shown above
[1]. Up to several Tesla they did not see any signature due to external magnetic field.

Of course, this does not mean too much as one has to analyze carefully under which conditions
one can expect a measurable effect. Spin scattering due to magnetic impurities and spin–
orbit scattering tend to suppress the effect of the spin. We will discuss this in the chapter on
perturbation theory. However one could ask if there are any features at ±2µBBex at all, even
without any mechanism of suppression. It could be that the predicted dips or divergencies are
an artefact of an insufficient theoretical description. Maybe a theory that takes into account the
Coulomb interaction non perturbatively cures the divergencies, like it was shown by Kamenev
and Andreev [17] and Rollbühler and Grabert [18] for the spinless case. If there is an effect of
the spin on the DOS, it is necessary to estimate its magnitude and seek a suitable regime in
which it is most pronounced. In this thesis we will try to answer these questions.

Outlook

We will approach the problem of calculating the DOS near the Fermi level in the presence
of disorder and interactions using Green’s functions. The Green’s functions are a powerful tool
in tackling such many–body problems. Therefore we connect the DOS to a Green’s function
which we then determine approximately taking into account the various effects. Assuming non–
interacting electrons confined in a box of volume V the eigenstates of the Schrödinger equation

HΨ = EΨ form a discrete set with eigenvalues ǫp = p2

2m . The DOS per volume and spin direction
is given by10

ν3(ǫ) =
1

V
∑

p

δ(ǫ− ǫp). (1.7)

For a macroscopic system the energy levels lie very close. The average level distance ∆ǫ can
be related to the DOS in the following way: ∆ǫ = 1

ν3V . In experiments one always has a finite
measuring time which leads to the fact that one is averaging over a certain energy interval which
is determined by the uncertainty principle. Thus instead of seeing the highly peaked structure
of equation (1.7) one obtains a smooth function as depicted in figure (1.3). The Green’s function

10Note that δ(ǫ − ǫp) has the unity 1/J .
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associated with the problem
(
ǫ−H0

)
G(r, r′, ǫ) = δ(r − r′) reads in (ǫ, p)–representation11

G(ǫ, p) =
1

ǫ− ǫp + iη sign(ǫ)
(1.8)

where η is a positive infinitesimal quantity. Note that for ǫ > 0 one has the so called retarded
Green’s function GR. Writing the real and imaginary parts separately, we get

GR(ǫ, p) =
ǫ− ǫp

(ǫ− ǫp)2 + η2
− i

η

(ǫ− ǫp)2 + η2
. (1.9)

Hence the imaginary ImGR(ǫ, p) = −πδ(ǫ−ǫp),12 and we can express the DOS per spin direction
as

ν3(ǫ) = − 1

πV Im
∑

p

GR(p, ǫ). (1.11)

This relation between ν3 and GR holds in general. For a proof consult for example [26]. Here
we just wanted to link ν3 and GR using an easy and intuitive example.

The thesis is organized as follows: In the next chapter we will extensively use the standard
perturbation theory for diffusive metals in order to calculate the DOS for various situations. In
particular we will review results in the literature and extend them by accounting for dynamical
screening. These results will serve as a benchmark for our non–perturbative results for high en-
ergies.13 Furthermore we will discuss the spin scattering mechanisms due to magnetic impurities
and spin–orbit scattering.

Afterwards we will turn to a path integral approach for Fermions. In the chapters 3, 4 and 5
we will explain the construction of a coherent state path integral for Fermions on the Keldysh–
contour and show how to implement disorder and spin dependent interactions. In chapter 6 we
will combine the effects of disorder and interactions (including spin) writing down an action that
models our diffusive quasi one–dimensional wire. Generalizing an idea of Kamenev and Andreev
we will be able to determine a non–perturbative expression for the Green’s function which will
allow us to derive a non–perturbative result for the quasi one–dimensional DOS.

In chapter 7 we implement additionally a constant external magnetic field in the action.
We investigate the influence of the external field on the quasi one–dimensional DOS. Using the
example of Palladium, which is a promising material as it has a high magnetic susceptibility for
low temperatures, we will estimate quantitatively the magnitude of the spin effects on the DOS
and discuss their observability.

In the conclusions we will finally summarize our findings and discuss the open questions.

11See [26], [27] or [28].
12In the limit η → 0 the real part is the principal value of 1

ǫ−ǫp
and the imaginary part is up to a factor of π a

representation of the δ–function. One has

1

x + iη
= P 1

x
− iπδ(x) (η = 0+). (1.10)

13By high energies we mean here several Es away from the Fermi edge ǫ = 0.
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Chapter 2

Perturbation Theory

As mentioned in the introductory part we will tackle the problem of calculating the DOS in
the presence of disorder, interactions and external magnetic fields using the Green’s function
formalism. For the one particle Green’s function exists a well established diagram technique. In
this chapter we are going to discuss the crucial lowest order diagrams in the Coulomb interaction
at zero temperature which already predict the spectacular suppression of the DOS near the Fermi
level. However taking only into account the first order diagrams in the interaction leads to a
result for the DOS which diverges in the quasi one–dimensional case like 1/

√
ǫ for small energies.

This unphysical divergence can only be cured by taking into account the Coulomb interaction
in all orders. However the problem of identifying and summing up the relevant diagrams in the
presence of disorder is a quite intricate task. In order to incorporate higher order processes in
the Coulomb interaction we later turn to a path integral approach in the following chapters.
The effective low energy model we will use is a Keldysh σ–model.

Let us develop the diagrammatic technique step by step including all the different effects
like disorder, interactions and external magnetic fields. The chapter is organized as follows:
First we describe how the Green’s function is changed in the presence of static impurities U(Ri).
Then we add an interaction V (q, ω) and sketch the two basic first order diagrams. We will
discuss the so called impurity ladder and explain the concept of quasi one–dimensionality. At
that level of complexity we will calculate the correction to the DOS. Afterwards we include an
external magnetic field and discuss the effects of magnetic impurities and spin–orbit scattering.
In the whole chapter we restrict ourselves to zero temperature. We indicate the retarded and
advanced functions by an upper index R or A. The propagators without index R or A are time–
ordered. However in subsequent chapters where all the different time orderings appear in the
same equation we will also indicate the time–ordered functions by an upper index T .

2.1 Green’s function in weak disorder

We consider a particle moving through a static disorder potential.1 The Hamiltonian of the
problem is

H =
p2

2m
+

N∑

i=1

U(r −Ri)

1See [26] and [27] for further information.

13
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The second term represents N short range impurities at the positions Ri. It is convenient
to rewrite this in second quantization in which we allow many–electron states. However we
emphasize that the electrons do not interact with each other except for the constraint on the
wave functions imposed by the antisymmetry condition.

H =
∑

p

ǫp c
†
pcp +

∑

q

U(q)ρq
∑

p

c†p+qcp

where

ρq =
N∑

i=1

e−iq·Ri .

The energy ǫp is measured relative to the Fermi energy. So in fact we are considering H−µN =∑
p ξp c

†
pcp where µ is the chemical potential and ξp = ǫp − µ. By shifting the energy scale

we write however just ǫp. The operators cp and c†p are the electron creation and annihilation
operators with the anti commutation relation

{cp , c†p′} = δpp′ {cp , cp′} = {c†p , c†p′} = 0.

The non diagonal time–ordered Green’s function is defined as

Gpp′(t) := −i〈| T [cp(t) c
†
p′(0)] |〉

where |〉 is the ground state of the noninteracting electron gas. It is filled up to ǫF = µ(T = 0).

cp(t) is the Heisenberg operator cp(t) = eiHt cp e
−iHt and T [cp(t)c

†
p′(0)] := Θ(t)cp(t)c

†
p′(0) −

Θ(−t)c†p′(0)cp(t). Calculating the partial derivative with respect to the time t, one gets the
equation of motion

(
i∂t − ǫp

)
Gpp′(t) = δpp′δ(t) +

∑

q

U(q)ρqGp+q,p′(t).

Fourier transforming (t→ ǫ) and iterating, we obtain a series solution to the problem.

Gpp′(ǫ) = δpp′G
0
p(ǫ) +

1

VG
0
p(ǫ)U(p− p′)ρp−p′G

0
p′(ǫ)

+
1

V2

∑

q

G0
p(ǫ)U(q)ρqG

0
p+q(ǫ)U(p− q − p′)ρp−q−p′G

0
p′(ǫ) + ...

(2.1)

where

G0
p(ǫ) =

1

ǫ− ǫp + iη sign(ǫ)
(2.2)

is the unperturbed Green’s function for U = 0 with η = 0+.
We are interested in universal properties of the system that do not depend on the special

realization of the disorder. A suitable method is to average over the disorder configurations. If
there are N impurities in the system at positions R1, R2, ...RN then G is a functional of this set
of vectors G = G(R1, R2, ...RN ) and the average is defined as

G =
1

VN
∫
d3R1...d

3RN G(R1, R2, ...RN )
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Figure 2.1: a) First and b) second order contribution to the disorder averaged Green’s function Gp(ǫ)

where V is the volume of the system. We assume that each Ri is uncorrelated with all oth-
ers. Applying this averaging procedure to the series of Gpp′(ǫ), we have averages of the form
ρq1ρq2 ...ρqN . We find for the first term

ρq =
N

V

∫
d3R e−iq·R = Nδq,0.

For the second term (which has two contributions i 6= j and i = j)

ρq1ρq2 = N2δq1,0 δq2,0 +Nδq1+q2,0.

One can show in general that the averaging process makes the Green’s function diagonal.2

Gpp′(ǫ) = δpp′ Gp(ǫ)

In figure (2.1) we represented the averaged first and second order terms of the series of equation
(2.1) by diagrams. The solid line represents G0

p(ǫ). In these diagrams the single dashed lines
ending in a circle may be thought of as independent scattering events (in lowest order Born
approximation) from different impurities and the pair of dashed lines ending in a single circle
corresponds to second order Born scattering from the same impurity.

Σ= +
Figure 2.2: Feynman diagram of the Dyson equation of the Green’s function

It is not possible to sum all diagrams. However by introducing the concept of irreducible
diagrams one can carry out a partial summation. An irreducible diagram is defined as a diagram
which cannot be divided into two sub–diagrams joined only by a single G0

p(ǫ) line. The sum of
the irreducible diagrams (where the incoming and outgoing G0

p(ǫ) lines are removed) is called

the self energy Σp(ǫ) =
∑

i Σ
(i)
p (ǫ). This allows us to write the Green’s function in the form of

a Dyson equation:

Gp(ǫ) = G0
p(ǫ) +G0

p(ǫ)Σp(ǫ)Gp(ǫ). (2.3)

The graphical representation of the Dyson equation is in figure (2.2) and the self–energy is given
in figure (2.3). The diagrams in the self–energy can be classified according to their dependence
on the impurity density nimp = N

V . We remark that every scattering circle represents a factor
nimp. We will restrict ourselves to low densities which means keeping only the single scattering
circle diagrams (Assumption 1).

2The averaging process restores the translational invariance. In the remainder we will not write Gpp′ indicating
the disorder average but just Gpp′ in order to keep the notation simple.
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Σ +

p+q

= −qqq=0

N N 

+ + ...

p+q p+q+q’

q q’

N 

−q−q’

Figure 2.3: The Self–energy

Furthermore we only take into account the two simplest irreducible diagrams that are de-
picted in figure (2.3) which means that we assume the scattering from a given impurity to be
weak (Assumption 2). 3

The first term contributes NU(q = 0). This simply leads to a shift in the energy.

ǫp → ǫp + Σ(1)
p (ǫ) = ǫp +NU(q = 0) = ǫp + nimp

∫
d3r U(r)

We can take care of this term by a redefinition of the energies ǫp. The second order Born
approximation reads

Σ(2)
p (ǫ) =

N

V2

∑

q

U(q)G0
p+qU(−q).

As U(r) is real we have U(q)∗ = U(−q). Also we assumed U(q) to be short ranged and we can
replace in good approximation U(q) by its value at q = 0 which we denote by U0. The energy
levels in a bulk systems lie very close. As one has a finite observation time t one can not resolve
the discrete level spacing ∆ǫ. If the inequality ∆ǫ≪ h̄/t holds we can replace the q–sum by an
energy integral with a suitable smooth density of states ν3(ǫ).

1

V
∑

q

... ≈
∫ ∞

−ǫF
dǫ ν3(ǫ)... (2.4)

We have then

Σ(2)
p (ǫ) = nimpU

2
0

∫ ∞

−ǫF
dǫ′

ν3(ǫ
′)

ǫ− ǫ′ + iη sign(ǫ)
. (2.5)

As the integrand is peaked around the Fermi energy ǫF we can replace ν3(ǫp) by its value at ǫF
which we denote by ν3. The real part is divergent. This is a consequence of the simple model
taken for the scattering potential U . A more realistic model will generally cure the divergence
and give rise to a finite contribution that may be absorbed into a redefinition of the energies.
The imaginary part (see formula (1.10)) is approximately

Σ(2)
p (ǫ) = −iπν3nimpU

2
0 sign(ǫ).

It is convention to define the elastic scattering time

τ =
1

2πν3nimpU2
0

. (2.6)

3Three successive scattering events from one impurity as depicted in the third diagram on the right side of
figure (2.3) are then negligible.
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Then we obtain for the self–energy

Σp(ǫ) ≈ Σ(1)
p (ǫ) + Σ(2)

p (ǫ) = − i

2τ
sign(ǫ)

and the damped Green’s function reads

Gτ (p, ǫ) =
1

ǫ− ǫp + i
2τ sign(ǫ)

. (2.7)

Compared to (2.2) η is replaced by 1/2τ . Due to the impurities the Green’s function has a finite
imaginary self–energy part and every state with energy ǫp acquires a finite lifetime. In the time
domain one has Gτ (t, p) ∼ e−t/2τ . This is understandable as the momentum eigenstates, taken
as a basis, are no longer solutions of the problem.

Keep in mind that equation (2.7) is not the general solution of the problem. In neglecting
the crossed diagrams (see figure (2.4) diagram d) ) we restricted us to the case of weak disorder
which is characterized by the inequality ǫF τ ≫ 1. In [29] it is explicitly shown how crossed lines
lead to an extra factor 1

ǫFτ
.

d)c)

Figure 2.4: c) is included by our self–energy d) is not included in Gτ (p, ǫ)

Note however that the Green’s function Gτ is the self–consistent solution for our regime.
Taking the damped Green’s function of equation (2.7) as starting point and taking again into
account scattering events in the second order Born approximation we will arrive at the same
Green’s function in the end. This is due to the fact that we only need that the pole lies close to
the real axis which amounts to the condition ǫF τ ≫ 1.

Having now the basic quantity for our perturbation theory we can start adding a short range
interaction between the quasiparticles. Let us denote this potential by V (q, ω). The terminology
short range means that the interaction is finite in the limit q → 0 and ω → 0.

2.2 Calculation of the DOS without external magnetic field

In this part we calculate the DOS of a weakly disordered, interacting wire neglecting the spin
dependent interactions. Thus in this section the spin only comes in as a factor of 2. All
parameters affecting the spin like external magnetic fields and spin scattering are discussed in
the following sections.

Our philosophy in this chapter will be to write down first the expressions to be determined,
and then step by step we will explain the meaning of the different objects that appear. How-
ever we do not repeat in this work all the rules how to construct Feynman diagrams. For a
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introduction see for example [26], [27] or [28]. The correction to the DOS for one spin direction
reads

δν(ǫ)

ν3
= −sign(ǫ)

πν3

1

V
∑

p

Im

[
δG(p, ǫ)

]
(2.8)

where V is the volume of the system and ν3 the three–dimensional DOS at the Fermi level of the
noninteracting wire per spin direction. The additional sign(ǫ) that appears here in comparison
to equation (1.11) is due to the fact we use the time–ordered instead of the retarded Green’s
function. In all our diagrams the solid lines represent the time–ordered Green’s function. Note
that p is a three–dimensional vector. In principle all vectors in our calculation are three–
dimensional. However in the quasi one–dimensional regime one can neglect certain components.
This will be discussed in section (2.2.5).

δG(p, ǫ) = G(p, ǫ) −Gτ (p, ǫ)

is the change of the Green’s function G(p, ǫ) due to the Coulomb interaction. The time–ordered
Green’s function of the noninteracting wire is given in equation (2.7). In lowest order perturba-
tion theory one has

δG(p, ǫ) = G(1)(p, ǫ) −Gτ (p, ǫ) = Gτ (p, ǫ)Σ
(1)(p, ǫ)Gτ (p, ǫ)

where the self–energy Σ(1)(p, ǫ) consists of two parts

Σ(1)(p, ǫ) = ΣExc(p, ǫ) + ΣHar(p, ǫ)

coming from the exchange and the Hartree diagrams depicted in figure (2.5) and (2.6). The
indices α and β indicate the spin of the corresponding particle. They can be neglected for our
current discussion but will become important when we add an external magnetic field.

q ω)( ,
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, α , α

, α

p−q

p’’p’−q

qq

p’, α

, α

α p

, α

p ,

p’’−q

Figure 2.5: Exchange diagram in the presence of disorder.

Let us begin with the exchange diagram. The solid lines represent the damped Green’s
function Gτ and the wavy line symbolizes the dynamic interaction V (q, ω). Finally there are the
two shaded boxes. These boxes represent the so called diffusion ladder L(q, ω). A diagrammatic
translation of the ladder is given in figure (2.7). One can see that the ladder takes into account
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successive scattering events of a particle–hole pair at a sequence of impurities. As it is the key
element of the diffusive theory we will derive its form in the next section.4

Thus the exchange diagram represents an electron emitting a photon with momentum q and
energy ω and reabsorbing it again. The ingoing and outgoing electron lines are connected by
scattering events. Let us already stress here that due to the ladder elements before and after
the emission of the photon the main contribution comes from small momenta q and small
energies ω. The functional form of L(q, ω) will make this obvious. Throughout the whole work
we will use the letters q and ω to indicate small quantities whereas p’s and ǫ’s represent big
momenta and energies near the Fermi surface. The correction to the DOS due to the exchange
diagram reads

δνexc = −2
sign(ǫ)

πV Im
∑

p

Gτ (p, ǫ)

[
1

V
∑

q

∫ ∞

−∞

dω

2π
L(q, ω)Gτ (p− q, ǫ− ω)L(q, ω)(iV (q, ω))

1

V
∑

p′

Gτ (p
′, ǫ)Gτ (p

′ − q, ǫ− ω)
1

V
∑

p′′

Gτ (p
′′, ǫ)Gτ (p

′′ − q, ǫ− ω)

]
Gτ (p, ǫ)

(2.9)

where the additional factor of i in front of V (q, ω) comes from the internal photon line (see
Feynman rules in [28]) and the factor of 2 in front takes into account that the diagram can be
drawn for spin α = 1/2 and α = −1/2.

The Hartree diagram has a different structure. The ingoing electron interacts with a second
electron performing a closed loop. The energy ω transferred by the interaction V (q, ω) has to be
0 as we need to conserve the energy in the upper loop (remember that the impurities are static
and therefore can not exchange energy). Note also that the transferred momentum p′ − p′′ is
not necessarily small. The second important difference is the additional minus sign coming from
the electron loop. As a consequence the Hartree correction has the opposite sign of the
exchange correction.
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p , α p’, p’’, αα p , α

Figure 2.6: Hartree diagram in the presence of disorder.

4Inverting the hole line one obtains the so called Cooperon which is the particle–particle ladder. Taking into
account the Cooperon one gets the weak localization correction to the conductivity. For further information see
[29]



20 CHAPTER 2. PERTURBATION THEORY

A third point which will become important when we take into account the spin in the
presence of an external magnetic field is that we can of course choose the spin of the loop
electron independent of the spin of the incoming electron. Here however this freedom just
amounts in an additional factor of 2. So the spin degeneracy of the Hartree diagram without
external field is 4.

δνHar = − 4
sign(ǫ)

πV Im
∑

p

Gτ (p, ǫ)

[
1

V
∑

q

∫ ∞

−∞

dω

2π
(−i) L(q, ω)Gτ (p− q, ǫ− ω)L(q, ω)

1

V2

∑

p′,p′′

Gτ (p
′, ǫ)Gτ (p

′ − q, ǫ− ω) V (p′ − p′′, 0)Gτ (p
′′, ǫ)Gτ (p

′′ − q, ǫ− ω)

]
Gτ (p, ǫ)

(2.10)

For the evaluation of (2.9) and (2.10) we need to determine the functions L(q, ω) and V (q, ω).
This will be done in the next sections.

2.2.1 The ladder approximation

Two particles can scatter at the same static impurity. It can be shown that the leading order
term for low energies arises from diagrams without any crossing of lines (see for example [27]
or [29] ). The relevant processes are shown in figure (2.7). The dashed line with a circle in the
middle represents the scattering at a static impurity. Static implies that it can not absorb or
emit energy. All the impurity does, is transferring momentum from one particle to the other as
can be seen on the right side of the diagram in figure (2.7). The particle moving to the right
changes its momentum from p to p′ and the hole moving to left changes its momentum from
p′ − q to p − q. Quite general the series of scattering events may be evaluated by solving the
integral equation for ladder Lp,p′,ǫ(q, ω).

Lp,p′,ǫ(q, ω) = L0 + L0
1

V
∑

p′′

Gτ (p
′′, ǫ)Gτ (p

′′ − q, ǫ− ω)Lp′′,p′,ǫ(q, ω) (2.11)

Each impurity line contributes L0 = nimpU
2
0 = 1

2πτν3
(see equation (2.6)). The ladder generally

depends on three momenta and two energies. However in the diffusive limit we will see that the
ladder in fact only depends on q and ω and we can drop the subscripts p, p′ and ǫ.

L(q, ω) = L0 + L0
1

V
∑

p

Gτ (p, ǫ)Gτ (p− q, ǫ− ω)L(q, ω) (2.12)

We define the (spin independent) polarization bubble

Π0(q, ω) =
1

V
∑

p

Gτ (p, ǫ)Gτ (p− q, ǫ− ω). (2.13)
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Figure 2.7: Diagrammatic representation of the ladder Lαβ(q, ω)

Usually in the literature one can find diagrams like in figure (2.8) for the polarization bubble.
One would say that there are no bubbles in the ladder diagrams in figure (2.7). However bending
the Green’s function lines straight, one recognizes the pair of Green’s functions appearing in the
ladder sequences.

p−q
p−q

, α

, β

p

, β

, α

=
p

Figure 2.8: Diagrammatic representation of the polarization propagator Παβ
0

We calculate Π0 in the continuum limit. The standard approximation reads

1

V
∑

p

... ≈
∫

d3p

(2π)3
... =

∫
dǫp ν3(ǫp)

∫
dΩp

4π
... ≈ ν3

∫
dǫp

∫
dΩp

4π
... (2.14)

where dΩp = dφ dθ sin θ and the boundaries for the φ integration are 0 and 2π and the θ
integration goes from 0 to π. For the integration over dǫp the choice of the correct boundaries
needs some caution. Usually one finds the following

1

V
∑

p

... ≈ ν3

∫ ∞

−ǫF
dǫp ... ≈ ν3

∫ ∞

−∞
dǫp ... (2.15)

The extension of the lower boundary to −∞ is only justified if the contribution of the integrand
in the interval [−∞,−ǫF] is negligible. The reader can verify that for our integrand the contri-
bution is of order ν3

ǫ+ǫF+ i
2τ

∼ ν3τ
1
ǫFτ

≪ ν3τ which is negligible. Thus we calculate Π0 in the

approximation of equation (2.15).
A second comment we have to make before starting the calculation is how the diffusive

regime is reflected in our calculations. Diffusion is a continuous process which describes long
time developments. Thus the length scale L on which we observe diffusive motion is related to
the mean free path l by L ≫ l. For the k-vectors associated with L we have approximately:
q ≈ 1/L. Thus we have the relation: ql = vFqτ ≪ 1. We do not have only big length scales
but also big timescales t. t is much bigger than the elastic scattering time τ : t ≫ τ . Relevant
energies associated with t are ω ≈ 1/t. If we combine these last two statements we obtain a
second inequality ωτ ≪ 1. Using the diffusion approximation thus means focussing on small
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energies ω and small k–vectors q. This allows some approximations in several integrals. Near
the Fermi surface one has

ǫp−q ≈ ǫp − vF · q where vF = ∇p ǫp
∣∣
|p|=pF

is the Fermi velocity. We use bold letters for the vectors. Then Π0 reads

Π0(q, ω) = ν3

∫ ∞

−∞
dǫp

∫
dΩp

4π

1

ǫ− ǫp + i
2τ sign(ǫ)

1

ǫ− ω − ǫp + vF · q + i
2τ sign(ǫ− ω)

.

For the ǫ–integration we can apply the residue theorem. In the complex ǫp–plane the poles have
to lie on different sides of the real axis in order to get a non vanishing contribution. We obtain

Π0(q, ω) = 2πiν3

∫
dΩp

4π

(
Θ(ǫ)Θ(ω − ǫ)

ω − vF · q + i
τ

− Θ(−ǫ)Θ(ǫ− ω)

ω − vF · q − i
τ

)
.

We multiply nominator and denominator by ±iτ

Π0(q, ω) =
ν3τ

2

∫
dΩ

(
Θ(ǫ)Θ(ω − ǫ)

1 − iωτ + ivF · q +
Θ(−ǫ)Θ(ǫ− ω)

1 + iωτ − ivF · q

)
.

Although the angular integral may be evaluated exactly we restrict ourselves to the diffusive
limit 5 and expand in frequency and momentum. We find

1

1 ∓ iωτ ∓ ivF · qτ ≈ 1 ± iωτ ± ivF · qτ − (vF · qτ)2 + ...

We neglect higher order terms in ωτ and vF · qτ as this accuracy is high enough to reproduce
the results of the macroscopic diffusion theory (see the footnote to equation (2.23)). Now we
integrate over the angles noting that

∫ 1
−1 d(cos θ) cos θ = 0 and

∫ 1
−1 d(cos θ) cos2 θ = 2

3 . We get

Π0(q, ω) = 2πν3τ Θ+(ǫ, ω) (1 + i|ω|τ −Dq2τ) (2.16)

where D = vF l
3 = 1

3v
2
F τ is the classical diffusion constant in three dimensions and we introduced

the abbreviation Θ+(ǫ, ω) := Θ(ǫ)Θ(ω − ǫ) + Θ(−ǫ)Θ(ǫ− ω). From equation (2.12) we deduce

L(q, ω) =
L0

1 − L0 Π0(q, ω)
(2.17)

and obtain

L(q, ω) =
Θ+(ǫ, ω)

2πν3τ2(Dq2 − i|ω|) . (2.18)

Now we can see explicitly what we announced in the previous section: The function L(q, ω) selects
small momenta q and small frequencies ω due to its so called diffusive pole. This
diffusive pole will be finally responsible for the correction of the DOS. But before calculating
the correction to the DOS we need to discuss the dynamically screened interaction appearing in
equations (2.9) and (2.10).

5This expansion is sufficient in the low energy (or low temperature) regime when ǫτ ≪ 1. At higher energies
with ǫτ ≥ 1 one must retain the full frequency and momentum dependence of Π0. This defines the quasi–ballistic
regime. A detailed discussion can be found in [41]
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2.2.2 Dynamically screened interaction and polarization function

Let us start with a static bare interaction V0(q) between our particles. This bare interaction
is screened in a many–particle system. Each electron is surrounded by other charge carriers.
Thus other electrons do not feel the bare electron charge but an effective screened charge.
The reorganization of charges is a dynamical time dependent process which leads to an energy
dependent effective interaction V (q, ω) between the quasiparticles (=electrons + surrounding
clouds). V (q, ω) can be expressed by the bare interaction V0(q) and the so called polarization
propagator Π(q, ω) in the form of a Dyson equation6

V (q, ω) = V0(q) + V0(q)Π(q, ω)V (q, ω). (2.19)

The graphical representation is shown in figure (2.9). The polarization propagator Π(q, ω)
represents all irreducible diagrams with one incoming and one outgoing photon line. Of course,
we are not able to take into account all the irreducible diagrams. A common and successful
approximation is the so called random phase approximation (RPA) which takes into account a
certain class of diagrams. For the clean case one can find an excellent description in [28]. In the
presence of disorder this approximation has to be modified including ladder diagrams. In the
literature this is often called diffusive RPA. Although we denoted the polarization propagator in
the diffusive approximation by ΠDif in figure (2.9) in order to stress the difference to the exact
Π, we will omit the index in the following to keep the notation simple.

Π= +

= +
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Figure 2.9: Dyson equation: a) exact, b) diffusive RPA–approximation

The first graph on the right side in figure (2.10) shows the first correction to the bare
photon line. This diagram is called polarization bubble. It can be interpreted as creation and
annihilation of a particle–hole pair.

p−q, β p’−q, β

p , α p’, αp , α

p−q, β

p , α

p−q, β p’’−q, β

p’’, α

p’−q, β

p’, α
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

+ + ...= +

Figure 2.10: Bubble of the diffusive RPA–approximation

In the presence of impurities those two particles can be scattered during their existence (see
second and third diagram on the right side in figure (2.10)). Again we include the scattering
processes in the ladder approximation.

6Π(q, ω) plays here the same role as Σp(ǫ) in equation (2.3)
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Writing figure (2.10) as an equation we find

Π(q, ω) = −2i

∫
dǫ

2π

1

V
∑

p

Gτ (p, ǫ)Gτ (p− q, ǫ− ω) Γ0(p, ǫ, q, ω) (2.20)

where the factor of 2 in front comes from the spin and Γ0(p, ǫ, q, ω) is

Γ0(p, ǫ, q, ω) = 1 +
1

V
∑

p′

Gτ (p, ǫ)Gτ (p− q, ǫ− ω)Lp′,p,ǫ(q, ω).

Putting the expression for Γ0(p, ǫ, q, ω) in equation (2.20) one can identify the arising terms with
diagrams on the right side of figure (2.10). Using the diffusive results (2.16) and (2.18) we get

Γ0(q, ω) = 1 +
Θ+(ǫ, ω)

(Dq2 − i|ω|)τ . (2.21)

With the explicit expression for Γ0 we are now able to start the calculation of the polarization
propagator given in equation (2.20). We begin with the so–called static part which is propor-
tional to the 1 in equation (2.21).

Πstat(q, ω) = −2i

∫
dǫ

2π

∫
d3p

(2π)3
Gτ (p, ǫ)Gτ (p− q, ǫ− ω)

As the integrand contains no function with poles for small q and ω we can neglect the q and ω
dependence in the appearing Green’s function.

Πstat(q, ω) ≈ −2i

∫
dǫ

2π

∫
d3p

(2π)3
Gτ (p, ǫ)

2

We start with the integration over ǫ

Πstat(q, ω) ≈ −2i
1

2π

∫
d3p

(2π)3




[

−1

ǫ− ǫp − i
2τ

]0

−∞
+

[
−1

ǫ− ǫp + i
2τ

]∞

0





and get

Πstat(q, ω) ≈ −i
π

∫
d3p

(2π)3

(
1

ǫp + i
2τ

− 1

ǫp − i
2τ

)
≈ −iν3

π

∫ ∞

−∞
dǫp

(
−i/τ

ǫ2p + 1
(2τ)2

)
.

As we are in the limit of weak disorder ǫFτ ≫ 1 the appearing function is in good approximation
−i 2πδ(ǫp). Hence

Πstat(q, ω) = −2ν3

which is nothing else but the total DOS at the Fermi level of the non–interacting system. The
dynamic part contains a diffusive pole coming from the ladder.

Πdyn(q, ω) = −2i

∫
dǫ

2π

∫
d3p

(2π)3
Gτ (p, ǫ)Gτ (p− q, ǫ− ω)

Θ+(ǫ, ω)

(Dq2 − i|ω|)τ
Using once more (2.16) and keeping only the leading 1 we obtain
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Πdyn(q, ω) = −4iπν3

∫ ∞

−∞

dǫ

2π

Θ+(ǫ, ω)

(Dq2 − i|ω|) .

The ǫ–integral yields |ω|.

Πdyn(q, ω) = −2ν3
i|ω|

Dq2 − i|ω| (2.22)

We find in diffusive ladder approximation

Π(q, ω) = Πstat + Πdyn = −2ν3
Dq2

Dq2 − i|ω|
and the retarded function is

ΠR(q, ω) = −2ν3
Dq2

Dq2 − iω
. (2.23)

At this point one can often read in the literature, that the form of Π reflects particle conservation
and that the pole is a direct consequence of the particle conservation. In order to shed light
on this statement we added a footnote and show how to derive the expression for Π starting
with the continuity equation.7Returning to equation (2.19) we can write down the retarded,
dynamically screened interaction in diffusive RPA approximation

V R(q, ω) =
V0(q)

1 + 2e2ν3V0(q)
Dq2

Dq2−iω
. (2.29)

7The polarization function Π also appears in the context of linear response theory. Studying the response
of the density of an electron gas ρ to an applied external field φ one can derive a Kubo formula: ρ(q, t) =R∞

−∞
dt′χ(q, t − t′)φ(q, t) where the retarded response function χ(q, t − t′) = −iΘ(t − t′)〈|ρ(q, t), ρ(−q, t′)|〉. ΠR is

nothing else than χ (for further information see [26]). That is why Π is also often called density–density response
function. Let us derive the expression for the density–density response function from macroscopic equations. On
the one hand we have the continuity equation

∂t ρ(x) + ∇j(x) = 0 (2.24)

and on the other hand the current density j is determined by

j(x) = −D∇ρ(x) + σ E(x) (2.25)

The electric field is connected to the scalar potential by E = −∇φ and the conductivity σ can be connected to
the Diffusion constant D via the Einstein relation

σ = 2e2ν3 D. (2.26)

Hence we have �
∂t − D∆

�
ρ(x) = 2e2ν3D∆φ(x). (2.27)

Putting this into the diffusion equation above and Fourier transforming leads to
�
−iω + Dq2

�
ρ(q, ω) =

−2e2ν3Dq2φ(q, ω) . We finally obtain

ρ(q, ω) = −2e2ν3
Dq2

Dq2 − iω| {z }
ΠR

φ(q, ω) (2.28)
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2.2.3 The exchange and the Hartree terms

Having discussed in the last sections the Green’s function Gτ (p, ǫ), the ladder L(q, ω) and the
dynamically screened interaction V (q, ω), we are now able to evaluate the expressions given in
equations (2.9) and (2.10). In both equations we find the following product of Green’s functions8

γ3 :=
1

V
∑

p

G2
τ (p, ǫ)Gτ (p− q, ǫ− ω) (2.30)

which we calculate using the same approximations as before.

γ3 = ν3

∫ ∞

−ǫF
dǫp

∫
dΩ

Ω

1

[ǫ− ǫp + i
2τ sign(ǫ)]2

1

ǫ− ω − ǫp + vF · q + i
2τ sign(ǫ− ω)

We extend the lower boundary to −∞ and use the residue theorem. We find

γ3 = −2πiν3τ
2

∫
dΩ

Ω

(
Θ(ǫ)Θ(ω − ǫ)

[1 − ωτ + ivF · qτ ]2 − Θ(−ǫ)Θ(ǫ− ω)

[1 + iωτ − ivF · qτ ]2
)

We keep only the highest order in the diffusive limit

γ3 = −2πiν3τ
2Θ−(ǫ, ω) (2.31)

where Θ−(ǫ, ω) := Θ(ǫ)Θ(ω−ǫ)−Θ(−ǫ)Θ(ǫ−ω). Let us start with the exchange term. Plugging
in our results for the different objects

δνexc = −2
sign(ǫ)

πV Im

[
1

V
∑

q

∫ ∞

−∞

dω

2π

[
−2πiν3τ

2Θ−(ǫ, ω)
] (
iV (q, ω)

)

[
Θ+(ǫ, ω)

2πν3τ2(Dq2 − i|ω|)

]2 [
2πν3τ Θ+(ǫ, ω)

]2
]
.

One has sign(ǫ)Θ−(ǫ, ω) = Θ+(ǫ, ω) and Θ5
+(ǫ, ω) = Θ+(ǫ, ω) and one is left with

δνexc = −2
ν3

πV
∑

q

∫ ∞

−∞
dω Θ+(ǫ, ω) Im

[
V (q, ω)

(Dq2 − i|ω|)2
]
.

We replace the time–ordered propagators by retarded ones. This is possible because ω is always
positive in the integrand and at T = 0 one has 9

V R(q, ω) = ReV R(q, ω) + i ImV R(q, ω) sign(ω).

Finally we obtain10

δνexc = −2
ν3

πV
∑

q

∫ ∞

|ǫ|
dω Im

[
V R(q, ω)

(Dq2 − iω)2

]
(2.32)

8This is only true if we neglect spin. In the Hartree diagram the spin α can be different from β.
9see Appendix 2 in [26]

10More precisely the upper integration limit in ω should be 1/τ since the diffusion approximation is only valid
in the limit ωτ ≪ 1. The error we commit however is negligible.
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The expression (2.32) is still quite general. One can plug in various interaction propagators
V R(q, ω).

But before evaluating the remaining integrals let us turn to the Hartree term. The Hartree
term has a more complicated structure. We can see in the second line of equation (2.10) that
the four Green’s functions are connected with the interaction V (p′ − p′′, 0) via their momenta.
We define like it was done in [39]11 the so called F–factor.

F := c0
1

V2

∑

p′,p′′

Gτ (p
′, ǫ)Gτ (p

′ − q, ǫ− ω)V (p′ − p′′, 0)Gτ (p
′′, ǫ)Gτ (p

′′ − q, ǫ− ω) (2.33)

where c0 = [(2πν3τ)
2V (0, 0)Θ+(ǫ, ω)]−1. The Hartree correction then reads

δνHar = −4
sign(ǫ)

πV Im

[
1

V
∑

q

∫ ∞

−∞

dω

2π

[
−2πiν3τ

2Θ−(ǫ, ω)
]

(−i)

[
(2πν3τ)

2F V (0, 0)
] [ Θ+(ǫ, ω)

2πν3τ2(Dq2 − i|ω|)

]2 ]
.

Following the same steps as for the exchange term we finally get

δνHar = 4
ν3

πV
∑

q

∫ ∞

|ǫ|
dω Im

[
F V R(0, 0)

(Dq2 − iω)2

]
. (2.34)

Remark the two fundamental differences between the exchange and the Hartree expressions.
First the Hartree term has the opposite sign and second the interaction V (p′−p′′, 0) selects pro-
cesses with different momentum transfer (so called large angle scattering).12 For the evaluation
of (2.32) and (2.34) we follow the lines of [29]. The important contribution comes from the small
momentum and energy region due to the diffusive pole 1/(Dq2 − iω)2. We restrict ourselves to
a short range interaction which is equivalent to the assumption that V R(0, 0) is finite. 13 So we
can replace in good approximation V R(q, ω) by V R(0, 0) in the exchange expression. The total
correction to the DOS then reads

δν3

ν3
= − 2

π

1

V
∑

q

∫ ∞

|ǫ|
dω Im

[
(1 − 2F ) V R(0, 0)

(Dq2 − iω)2

]
. (2.36)

In fact there is another correction coming from the Cooper channel. Here however we neglect
this contribution. Formally one may assume the presence of a small magnetic field which kills
the Cooper contribution (see [29] for further information).

11Our definition is slightly different from the one in the paper [39] because these authors used retarded and
advanced propagators to build up the perturbation theory.

12The evaluation of the F–factor is usually done in the following way: Due to the Green’s functions that are
highly peaked around pF one sets the absolute value of the appearing momenta in V (p′−p′′, 0) to pF and averages
the interaction over the angles. We denote this constant by V (p′ − p′′, 0). Having replaced the interaction by a
constant one can use the result (2.16) for the remaining products of Green’s functions and obtains

F ≈ V R(p′ − p′′, 0)

V R(0, 0)
. (2.35)

13That assumption is also used in the standard Fermi liquid theory.
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Simply summing up the contributions of the exchange and of the Hartree diagrams is however
dangerous. One is not really summing up two first order contributions concerning the interaction
as the dynamically screened interaction V (q, ω) already is a infinite sum in which V0(q) appears
to all orders (see the discussion in [24] chapter 3.3 and in [30] section III.B.3.C. Specific heat

and tunnelling density of states). A correct way to handle the problem and at the same time a
way to include higher order diagrams in the interaction is the replacement of

V1 := V R(0, 0) and V2 := F V R(0, 0) (2.37)

by Fermi liquid scattering amplitudes Γ1 and Γ2. We will discuss this procedure in the next
section in detail.

S1

S4

p+q 

S3

1V

p’+q 
S2

p p’ 

S1

S4 S2

p+q p’+q 

S3

.

p’ p 

2V

Figure 2.11: Small angle and large angle scattering shown as Feynman diagrams

2.2.4 Effective scattering amplitudes and Landau parameters

According to the discussion of the previous section, the relevant interaction terms are

Hint =
∑

s1,s2,s3,s4

∑

p,p′

∑

q(small)

(
V1 δs1,s4δs2,s3 c

†
s1(p)c

†
s2(p

′ + q)cs3(p
′)cs4(p+ q)

+ V2 δs1,s3δs2,s4 c
†
s1(p)c

†
s2(p

′ + q)cs4(p+ q)cs3(p
′)

) (2.38)

The sum over q is only over small momenta. In figure (2.11) we sketched the two processes that
appear in the exchange and the Hartree diagram. One can generalize the upper expressions by
replacing

V1 → Γ1 and V2 → Γ2,

which include higher order diagrams in the Coulomb interaction depicted in figure (2.12). Γ1 and
Γ2 are connected to Landau parameters. Even though the connection to the Landau parameters
was derived for the clean case, the general assumption is that the relations hold except close to
the impurities. Hence for weak disorder meaning low impurity density the replacement by Γ1

and Γ2 should work quite well.
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Figure 2.12: Diagrammatic representation of Γ1 and Γ2

If there is no mechanism present that could flip the spins one can decompose all diagrams into
singlet and triplet diagrams.14

Γ1 δs1s4δs2s3 − Γ2 δs1s3δs2s4 =

[
Γ1 −

Γ2

2

]
δs1s4δs2s3︸ ︷︷ ︸
singlet

+

[
−Γ2

2

]
σs1s4σs2s3︸ ︷︷ ︸

triplet

(2.39)

We define the singlet and triplet amplitudes

Γs = Γ1 − Γ2/2 Γt = −Γ2/2. (2.40)

These effective coupling constants are connected with the Landau parameters F s0 and F a0 in the
following way:15

Γs =
1

2ν3

F s0
1 + F s0︸ ︷︷ ︸
As

0

Γt =
1

2ν3

F a0
1 + F a0︸ ︷︷ ︸
Aa

0

. (2.41)

Sometimes one also finds the parameters As0 and Aa0. The Landau parameters can not be
calculated for disordered metals from a first principle theory. The Fermi liquid theory however
connects the Landau parameters to various response functions which allows to determine them
experimentally. In section (9.4) we will look in detail at the Landau parameters in the example
of palladium. In summary we made the replacement:

V R(0, 0) − 2FV R(0, 0) = V1 − 2V2 → Γ1 − 2Γ2 → Γs + 3Γt. (2.42)

These effective amplitudes are also screened by polarization effects. The difference however
to the procedure in section (2.2.2) is that the amplitudes Γs and Γt already include all the static

14At this stage the names singlet and triplet are rather arbitrary and we are just using a mathematical identity
in equation (2.39) to rewrite the spin structure. However in the part where we discuss the effect of an external
magnetic field we will see how the singlet part remains unaffected, whereas the triplet part splits up into m =
−1, 0, 1 components.

15A derivation of (2.41) can be found in [27] or [31]
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diagrams. This means that we only have to take the dynamical part Πdyn of the polarization
propagator given in equation (2.22) in order to avoid multiple counting of diagrams. The Dyson
equation then reads

Γs(q, ω) = Γs + ΓsΠdyn(q, ω)Γs(q, ω)

and one finds

Γs(q, ω) = Γs
Dq2 − iω

Dq2 − iωZs
(2.43)

where Zs = 1 − 2ν3Γs = 1 −As0. For the triplet interaction one has in the same way

Γt(q, ω) = Γt
Dq2 − iω

Dq2 − iωZt
(2.44)

where Zt = 1 − 2ν3Γt = 1 − Aa0. We introduce field diffusion constants D∗
s = D/Zs and

D∗
t = D/Zt writing the interactions in the form

Γs(q, ω) =
Γs
Zs

Dq2 − iω

D∗
sq

2 − iω
Γt(q, ω) =

Γt
Zt

Dq2 − iω

D∗
t q

2 − iω
(2.45)

The field diffusion constants measure how fast the fields spread over the conductor. D∗
s de-

termines the propagation of the charge density, whereas D∗
s determines the propagation of the

spin density. In general they differ largely from the particle diffusion constant D. Putting these
interactions in our formula for the correction to the DOS (2.36) we have

δν3

ν3
= − 2

πV
∑

q

∫ ∞

|ǫ|
dω Im

[
Γs(q, ω) + 3Γt(q, ω)

(Dq2 − iω)2

]
(2.46)

which reads explicitly

δν3

ν3
= − 2

πV
∑

q

∫ ∞

|ǫ|
dω Im

[
Γs/Zs

(Dq2 − iω)(D∗
sq

2 − iω)
+

3Γt/Zt
(Dq2 − iω)(D∗

t q
2 − iω)

]
. (2.47)

As a next step we want to evaluate the q–sum. For this purpose we have to discuss the concept
of quasi–dimensionality. We will do this in the following section.

2.2.5 Correction to the DOS / Quasi one–dimensional approximation

q is a three–dimensional momentum in equation (2.47). This does not mean necessarily that we
convert the sum over q into a three–dimensional integral because we treat a finite size system.
The evaluation of the q–sum depends on the energy scale we are looking at. Suppose our
energy is the applied voltage eV . As already mentioned in the introduction there exist several
characteristic energies for a wire defined by its geometry. In the case of a wire of length L,
height a and width a (with a ≪ L), we have the Thouless energies EL = D

L2 and Ea = D
a2

that are connected to the particle diffusion. Furthermore one has the Thouless field energies

EiL =
D∗

i
L2 and Eia =

D∗
i
a2 (where i is either s or t). In order to sort these energies according to

their magnitude we need to know how the different diffusion constants are related to each other.
From the preceding section we have

D∗
s =

D

1 −As0
D∗
t =

D

1 −Aa0
. (2.48)
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Approaching the ferromagnetic state the Fermi liquid parameter As0 → 1 and Aa0 → −∞. For
Palladium we found As0 = 0.966 and Aa0 = −4.16 That implies

D∗
s > D > D∗

t . (2.49)

We define: A system is quasi one–dimensional concerning its particle diffusion if

Ea > eV > EL

and a system is quasi one–dimensional concerning the charge or spin diffusion if

Eia > eV > EiL where i = s or t

We see that there are various situations possible. For example a system can be quasi one–
dimensional concerning the charge diffusion but three–dimensional concerning particle and spin
diffusion if the order of energies is

Esa > eV > EsL, EL, Ea, E
t
L, E

t
a (2.50)

In our calculations we will assume that eV is such that the wire is quasi one–dimensional with
respect to the particle and singlet field diffusion.17

Esa, Ea > eV > EsL, EL (2.51)

Let us consider the q–dependent part of the first term in equation (2.47)

δνs3
ν3

∼ 1

V
∑

qx,qy ,qz

1

(D(q2x + q2y + q2z) − iω) (D∗
s(q

2
x + q2y + q2z) − iω)

.

The q–values are quantized due to the finite volume. In transverse direction the smallest mo-
menta qx and qy are of order 2π/a and in the longitudinal direction qz is of order 2π/L. Let
us compare the contributions of the two q–vectors q0 = (0, 0, 2π/L) and q1 = (2π/a, 0, 2π/L) in
our expression above. The two appearing diffusion constants are D and D∗

s but as D∗
s is much

bigger than D we neglect D for a while. We see that the contribution of q1 is much smaller
because

1

D∗
s/a

2 +D∗
s/L

2
≈ 1

D∗
s/a

2
≪ 1

D∗
s/L

2

As we are interested in energies eV ≪ D∗
s/a

2 we can neglect all terms in our sum where qx
or qy are different from zero. Thus we sum only over vectors like q0 with a non vanishing qz–
component in order to determine the main contribution in the energy regime of interest. The
sum over qz we write as an integral assuming an infinitely long wire.

1

V
∑

qx,qy ,qz

≈ 1

a2

∑

qx,qy

∫
dqz
2π

δqx,0 δqy ,0 =
1

a2

∫
dqz
2π

(2.52)

Thus in summary we replace a three–dimensional sum by a one–dimensional integral based on
the energy inequality (2.51). This justifies the name quasi one–dimensional system. For the

16See section (9.4) in the appendix.
17We do not need to specify the dimensionality concerning triplet field diffusion as the two others already

determine the quasi one–dimensional approximation
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second term of equation (2.47) the reasoning is the same (according to equation (2.51) we have
eV ≪ D/a2). Thus in the quasi one–dimensional limit we are left with

δν3

ν3
= − 2

π a2

∫
dqz
2π

∫ ∞

|ǫ|
dω Im

[
Γs/Zs

(Dq2z − iω)(D∗
sq

2
z − iω)

+
3Γt/Zt

(Dq2z − iω)(D∗
t q

2
z − iω)

]
. (2.53)

We replace the interaction amplitudes Γs and Γt according to equation (2.41) and rename qz = q.

δν3

ν3
= − 1

π a2ν3

∫
dq

2π

∫ ∞

|ǫ|
dω Im

[
As0/(1 −As0)

(Dq2 − iω)(D∗
sq

2 − iω)
+

3Aa0/(1 −Aa0)

(Dq2 − iω)(D∗
t q

2 − iω)

]
(2.54)

Here we introduce the quasi one–dimensional DOS ν1 := a2ν3 . Also we multiply nominator
and denominator on the left side of the equation by a2. According to the residue theorem

∫ ∞

|ǫ|
dω

∫
dq

2π
Im

[
1

(Dq2 − iω)(D∗q2 − iω)

]
=

1√
2 (

√
D +

√
D∗)

1√
|ǫ|
. (2.55)

Hence we have
δν1

ν1
= − 1√

2π ν1

[
As0/(1 −As0)

(
√
D +

√
D∗
s)

+
3Aa0/(1 −Aa0)

(
√
D +

√
D∗
t )

]
1√
|ǫ|

(2.56)

and obtain

δν1

ν1
= − 1√

2π ν1

√
D

[
As0

(1 −As0 +
√

1 −As0)
+

3Aa0
(1 −Aa0 +

√
1 −Aa0)

]
1√
|ǫ|

(2.57)

Remember that Aa0 is negative and leads instead of a suppression to an augmentation of the
DOS. To see the connection with earlier work we note that neglecting the dynamical screening
of the interaction and replacing (1 − 2F )V R(0, 0) by Γs + 3Γt according to equation (2.42) in
equation (2.36), we find that in this case the dimensionality is only defined by D because there
appear no other diffusion constants. Using

∫ ∞

|ǫ|
dω

∫
dq

2π
Im

[
1

(Dq2 − iω)2

]
=

1

2
√

2D|ǫ|
(2.58)

leads us to the known result of Altshuler and Aronov with generalized amplitudes Γs and Γt.

δν1

ν1
= − 1√

2π
√
Da2

Γs + 3Γt√
|ǫ|

(2.59)

As above we express everything in terms of the Landau parameters As0 and Aa0 using equation
(2.41). Then (2.58) becomes

δν1

ν1
= − 1

2
√

2πν1

√
D

As0 + 3Aa0√
|ǫ| (2.60)
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Figure 2.13: Shift of the distri-
bution of the two spin species
in an external magnetic field

Looking at equations (2.43) and (2.44) one can see that setting Zs = 1−As0 and Zt = 1−Aa0 to 1
brings us back to the static interactions Γs and Γt. Performing that limit in equation (2.57) the
denominators are replaced by 2 and we obtain (2.60). The result of naive perturbation theory
which neglects the dynamical screening of the static amplitudes should be taken with caution
because it is only valid for As0, A

a
0 ≪ 1. In ordinary metals the parameter Aa0 is actually small but

As0 is close to one. Hence one should turn to (2.57). For Palladium, that has an extraordinary
high magnetic susceptibility for small temperatures, even the parameter Aa0 becomes large. In
section (9.4) we will estimate a value of −4 for Aa0.

At this stage we can also confirm what Pothier et al. pointed out in their paper [1]. They
claimed that in their experiment with aluminum the 1/

√
eV behavior arises from the diffusion

of the electric potential. We see from equation (2.56) that for Aa0 ≪ 1 but As0 close to 1, the
term containing D∗

s = D/(1 −As0) indeed determines the correction of the DOS.

Just for completeness we note that the energy dependence of the DOS for systems with other
dimensions differs from the one in the one–dimensional case. Replacing the q–sum in equation
(2.52) not by an one dimensional integration but two or three dimensional integrations one finds
in the quasi two–dimensional case

δν2 ∼ ln(|ǫ|τ) (2.61)

and in the three dimensional case

δν3 ∼
√
|ǫ| (2.62)

For further information see [24].

2.3 Calculation of the DOS in the presence of external field

In this section we redo the calculation adding an external time independent field Bex in z–
direction which forces us to take the spin of the quasiparticles into account. The first question,
we have to answer, is: How is the Green’s function Gτ changed in the presence of a magnetic
field? The number of electrons with spin–up and spin–down arrange such that one has a common
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Fermi level (see figure (2.3)). The occupation at T = 0 is given by18

〈|c†α,pcα,p|〉 = Θ(−ξp + α ωs)

where ωs = gµBBex and α = ±1/2. µB = e
2mc is the Bohr magneton and we approximate

the gyromagnetic factor g by 2 as we are focussing on metals19. Again we rescale our energies
ξp → ǫp and obtain for the Green’s function

Gα(ǫ, p) =
1

ǫ− ǫp + α ωs + i
2τ sign(ǫ)

. (2.63)

We see that the external magnetic field causes a Zeeman splitting. Turning off the external field
we recover the Green’s function of equation (2.7). As next element of the perturbation theory
we reinvestigate the ladder Lαβ(q, ω) which as can be seen in figure (2.7) depends on two spins.
The Dyson equation reads

Lαβ(q, ω) = L0 + L0Π
αβ
0 (q, ω)Lαβ(q, ω)

where Παβ
0 is depicted in figure (2.8). We have then

Παβ
0 (q, ω) =

∫
d3p

(2π)3
Gα(p, ǫ)Gβ(p+ q, ǫ− ω)

where the Green’s function is given in equation (2.63). We calculate Παβ
0 (q, ω) using the ap-

proximations we discussed in section (2.2.1). One arrives at

Παβ
0 (q, ω) =

ν3τ

2

∫
dΩ

(
Θ(ǫ)Θ(ω − ǫ)

1 − iωτ + ivF · q − i(α− β) ωsτ
+

Θ(−ǫ)Θ(ǫ− ω)

1 + iωτ − ivF · q + i(α− β) ωsτ

)
.

We restrict ourselves to weak magnetic field assuming that iωsτ ≪ 1.20

1

1 ∓ ωτ ∓ ivF · qτ ∓ i(α− β) ωsτ
≈ 1 ± iωτ ± i(α− β) ωsτ ± ivF · qτ − (vF · qτ)2

and we get

Παβ
0 (q, ω) = 2πν3τ Θ+(ǫ, ω) (1 + i|ω|τ + i(α− β) |ωs|τ −Dq2τ). (2.64)

Hence one obtains for the ladder

Lαβ(q, ω) =
Θ+(ǫ, ω)

2πν3τ2(Dq2 − iω − i(α− β) ωs)
. (2.65)

18without external field we have 〈|c†α,pcα,p|〉 = Θ(−ξp)
19In semiconductors g can differ largely from 2
20Note that the inequality allows external magnetic fields of several Tesla. However when will talk of weak

external magnetic fields in chapter 7 they are of order 10−5 Tesla.
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We see that the ladder becomes spin dependent in the presence of an external field. If α = β
we recover the form (2.18). In order to keep things simple let us calculate the correction to the
DOS taking the static amplitudes Γ1 and Γ2 for the interaction in the exchange and the Hartree
diagrams. The basic effect of the external magnetic field will already be visible at this stage
without taking into account the dynamical screening of the interaction amplitudes.

2.3.1 Correction to the DOS using static interactions

In this subsection we calculate the DOS approximating the interaction by the constants Γ1 and
Γ2 in the exchange and the Hartree diagram respectively. Translating the exchange diagram
(2.5) into functions we find

δνexc
α = −sign(ǫ)

πV Im
∑

p

Gα(p, ǫ)

[
1

V
∑

q

∫ ∞

−∞

dω

2π
Lαα(q, ω)Gα(p− q, ǫ− ω)Lαα(q, ω) iΓ1

1

V
∑

p′

Gα(p′, ǫ)Gα(p′ − q, ǫ− ω)
1

V
∑

p′′

Gα(p′′, ǫ)Gα(p′′ − q, ǫ− ω)

]
Gα(p, ǫ).

(2.66)

Note that we first examine the correction δνexc
α for one spin direction α. That is why there

is no factor 2 in front like in equation (2.9). Remark also that Lαα(q, ω) = L(q, ω) and that
Παα

0 = Π0. Finally we need to determine the element

γαβ3 :=
1

V
∑

p

G2
α(p, ǫ)Gβ(p− q, ǫ− ω).

Although we have in the exchange term α = β we calculate γαβ3 for two independent spins α
and β because this combination will appear in the Hartree expression. Using for the Green’s
functions equation (2.63) and following the same steps as for γ3 yields

γαβ3 =−2πiν3τ
2

∫
dΩ

Ω

(
Θ(ǫ)Θ(ω − ǫ)

[1 − ωτ − ivF · qτ − i(α− β)ωsτ ]2
− Θ(−ǫ)Θ(ǫ− ω)

[1 + iωτ + ivF · qτ + i(α− β)ωsτ ]2

)
.

Keeping only the leading order term in the diffusive limit (and neglecting i(α−β)ωsτ ≪ 1) one
finds

γαβ3 = −2πiν3τ
2Θ−(ǫ, ω). (2.67)

We see that in the limit of weak magnetic fields defined by the condition µBBexτ ≪ 1 the
expression γαβ3 is independent of the external field. For the exchange term where α = β anyway
we do not need the assumption of weak fields. We can thus conclude that an external
magnetic field has no influence on the exchange term at all. Multiplying the result by
2 we recover exactly the singlet part given in equation (2.60).

The Hartree term however is sensitive to the external field. According to diagram (2.6) we
have
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δνHar
α = − sign(ǫ)

πV Im
∑

p

∑

β

Gα(p, ǫ)

[
1

V
∑

q

∫ ∞

−∞

dω

2π
(−i)Lαβ(q, ω)Gβ(p− q, ǫ− ω)Lαβ(q, ω)

1

V2

∑

p′,p′′

Gα(p′, ǫ)Gβ(p
′ − q, ǫ− ω) Γ2 Gα(p′′, ǫ)Gβ(p

′′ − q, ǫ− ω)

]
Gα(p, ǫ).

(2.68)

Note that instead of the simple factor of 2 for the internal spin in the loop in equation (2.10) we

have to sum over the internal spin β. Using the results for Παβ
0 and the factor γαβ3 we obtain

δνHar
α

ν1
=

Γ2

πa2
Im
∑

β

∫
dq

2π

∫ ∞

|ǫ|
dω

1

(Dq2 − iω − i(α− β)ωs)2
. (2.69)

The sum over the spin β generates two terms. Either the spins are parallel (β = α) or antiparallel
(β = −α).

δνHar
α

ν1
=

Γ2

πa2
Im

∫
dq

2π

∫ ∞

|ǫ|
dω

[
1

(Dq2 − iω)2
+

1

(Dq2 − iω − i(2α)ωs)2

]

In the second integral we shift the integration variable.

δνHar
α

ν1
=

Γ2

πa2
Im

∫
dq

2π

[∫ ∞

|ǫ|

dω

(Dq2 − iω)2
+

∫ ∞

|ǫ+2αωs|

dω

(Dq2 − iω)2

]

For α = 1
2 =↑

δνHar
↑
ν1

=
Γ2

πa2
Im

∫
dq

2π

[∫ ∞

|ǫ|

dω

(Dq2 − iω)2
+

∫ ∞

|ǫ+ωs|

dω

(Dq2 − iω)2

]

and for α = −1
2 =↓

δνHar
↓
ν1

=
Γ2

πa2
Im

∫
dq

2π

[∫ ∞

|ǫ|

dω

(Dq2 − iω)2
+

∫ ∞

|ǫ−ωs|

dω

(Dq2 − iω)2

]
.

We evaluate the integrals using equation (2.58). The total change of the DOS (both spin
directions) is

δν1

ν1
= 2

δνexc

ν1
+
δνHar

↑
ν1

+
δνHar

↓
ν1

.

We find

δν1

ν1
= − 1

2
√

2π
√
Da2

(
2Γ1 − 2Γ2√

|ǫ|
− Γ2√

|ǫ− ωs|
− Γ2√

|ǫ+ ωs|

)
.

Using that 2Γ1−2Γ2 = 2Γs+2Γt and −Γ2 = 2Γt and replacing the Γi’s by the Landau parameters
we obtain
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δν1

ν1
= − 1

2
√

2π
√
Dν1

(
As0 +Aa0√

|ǫ|
+

Aa0√
|ǫ− ωs|

+
Aa0√

|ǫ+ ωs|

)
. (2.70)

The external magnetic field creates two new poles at the shifted positions −Aa0/
√
|ǫ− ωs| and

−Aa0/
√
|ǫ+ ωs|. At his level the name triplet amplitude for Aa0 becomes understandable. The

3Aa0 split up in the presence of a magnetic field like the triplet levels in an atom. Sending ωs → 0
in the equation (2.70) we recover the result of equation (2.60).21

2.3.2 Dynamical screening of the static interactions in the presence of an
external magnetic field

Determining the dynamically screened interaction in the presence of an external magnetic field
is more complicated than in the zero field case as the screening process represented by the
polarization function Παβ(q, ω) (depicted in figure (2.10)) is affected by the external field. Going
through the steps of the calculation in section (2.2.2) and replacing Gτ by Gα and Gβ according
to the depicted diagrams one arrives in diffusive ladder approximation at

Παβ(q, ω) = −ν3
Dq2 − i(α− β)ωs

Dq2 − i|ω| − i(α− β)ωs
(2.73)

and especially

Παβ
dyn(q, ω) = −ν3

i|ω|
Dq2 − i|ω| − i(α− β)ωs

. (2.74)

Remember that we only need the dynamic part of Παβ(q, ω) for the screening as all the static
diagrams are already included in the effective amplitudes Γs and Γt.

Γs
.

Γs (q,ω)Γs(q,ω) Γs

δα β

Π dyn
αβ

δs s1 4
δs s1 4

δs s2

= +
.

3

Figure 2.14: Diagrammatic Dyson series for the singlet interaction

21The result (2.70) was first derived by Altshuler and Aronov. In [24] one finds in chapter 6.

δν = − 1

2
√

2π
√

D

�
λ

(j=0)
ν + 1

2
λ

(j=1)
ν√

ǫ
+

1
2
λ

(j=1)
ν√

ǫ − ωs

+
1
2
λ

(j=1)
ν√

ǫ + ωs

�
(2.71)

where

λν = λ(j=0)
ν +

3

2
λ(j=1)

ν (2.72)

and

λν = ν1

�
V R(0, 0) − 2V R(p′ − p′′, 0)

�
.

The additional factors of 1/2 in front of λ
(j=1)
ν in equation (2.71) compared to (2.70) are due to the different

definition of the triplet part in equation (2.72).
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It is convenient to introduce the quantum number m which takes the values −1, 0, 1. Additional
to (2.74) we will use

Πm
dyn(q, ω) = −ν3

i|ω|
Dq2 − i|ω| − imωs

. (2.75)

Let us begin to set up a Dyson equation like (2.19) for the singlet amplitude Γs(q, ω). According
to figure (2.14) we have

Γss1s2s3s4(q, ω) = Γs δs1s4δs2s3 + Γs δs1s4
∑

αβ

δαβ Παβ
dyn(q, ω) Γsβs2s3α(q, ω)

which is

Γss1s2s3s4(q, ω) = Γs δs1s4δs2s3 + Γs δs1s4
∑

α

Παα
dyn(q, ω) Γsαs2s3α(q, ω)

We can replace Παα
dyn(q, ω) by

Π
(m=0)
dyn (q, ω) = −ν3

i|ω|
Dq2 − i|ω| (2.76)

that is independent of the spin. We discuss only the nonzero components of Γss1s2s3s4 . We find
for example the two coupled equations22

Γs1111(q, ω) = Γs + Γs Π
(m=0)
dyn (q, ω)

[
Γs1111(q, ω) + Γs1221(q, ω)

]
(2.77)

and

Γs1221(q, ω) = Γs + Γs Π
(m=0)
dyn (q, ω)

[
Γs1111(q, ω) + Γs1221(q, ω)

]
.

Subtracting the equations we find that Γs1111(q, ω) = Γs1221(q, ω). Plugging this into equation
(2.77) we get

Γs1111(q, ω) =
Γs

1 − 2 Π
(m=0)
dyn (q, ω) Γs

.

The same result we obtain for Γs2112(q, ω) and Γs2222(q, ω). So we can summarize that the dy-
namically screened singlet interaction does not depend on the spins and therefore is not affected
by the external magnetic field. Thus we recover the equation (2.43).

Γss1s2s3s4(q, ω) = Γs(q, ω) δs1s4δs2s3 . (2.78)

Γt
.

Γt (q,ω)Γt (q,ω) Γt

Π dyn
αβ= +

.

3
σs s1 4

σα β
σs s1 4

σs s2

Figure 2.15: Diagrammatic Dyson series for the triplet interaction

22Only in this subsection we denote 1
2
≡↑≡ 1 and − 1

2
≡↓≡ 2. Thus instead of writing Γs

1

2

1

2
− 1

2
− 1

2

we just write

Γs
1122
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The Dyson equation for the triplet interaction has a different spin structure which is depicted
in figure (2.15). 23 At each vertex we have σ matrices instead of δ matrices.

Γts1s2s3s4(q, ω) = Γt σs1s4σs2s3 + Γt σs1,s4
∑

α,β

σαβ Παβ
dyn(q, ω) Γtβs2s3α(q, ω)

We discuss only the nonzero components of Γts1s2s3s4 . Starting for example with Γts1s2s2s1(q, ω),
we obtain the pair of equations

Γt1111(q, ω) = Γt
[
1 + Π11

dyn(q, ω) Γt1111(q, ω) − Π22
dyn(q, ω) Γt2112(q, ω)

]
(2.79)

Γt2112(q, ω) = −Γt
[
1 + Π11

dyn(q, ω) Γt1111(q, ω) − Π22
dyn(q, ω) Γt2112(q, ω)

]
.

It follows Γt1111(q, ω) = −Γt2112(q, ω). Putting this into equation (2.79) yields

Γt1111(q, ω) =
Γt

1 − 2 Π
(m=0)
dyn (q, ω) Γt.

In the same way we get Γt2222(q, ω) = −Γt1221(q, ω), and Γt2222(q, ω) is identical to Γt1111(q, ω). So
for the m = 0 components we recover the result of equation (2.44). Turning to the combination
Γt1212(q, ω) we find the Dyson equation

Γt1212(q, ω) = 2Γt − 2Γt Π21
dyn(q, ω) Γt1212

which leads to

Γt1212(q, ω) =
2Γt

1 + 2 Π
(m=1)
dyn (q, ω) Γt

. (2.80)

And finally for Γt2121(q, ω) we get

Γt2121(q, ω) =
2Γt

1 + 2 Π
(m=−1)
dyn (q, ω) Γt

(2.81)

where we used Π21
dyn(q, ω) = Π

(m=1)
dyn (q, ω) and Π12

dyn(q, ω) = Π
(m=−1)
dyn (q, ω). We can summarize

all the partial results by

Γts1s2s3s4(q, ω) = Γ̃ts1s2s3s4(q, ω) σs1s4σs2s3 (2.82)

where Γ̃t1212(q, ω) = 1
2Γt1212(q, ω) and Γ̃t2121(q, ω) = 1

2Γt2121(q, ω) as the factor of 2 is generated by
the combination of σ’s. Turning off the dynamical screening, which means practically sending
Πm

dyn(q, ω) → 0, brings us back to the static result Γts1s2s3s4 = Γt σs1s4σs2s3 . Written with the
quantum number m, the dynamically screened interaction reads

Γmt (q, ω) = Γt
Dq2 − iω − imωs
Dq2 − iωZ − imωs

. (2.83)

23see also equation (2.39) for the spin structure
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2.3.3 Correction to the DOS including a dynamically screened interaction

With the results (2.78) and (2.83) we are now able to calculate the correction to the DOS tak-
ing into account the modified dynamically screened interaction in the presence of an external
magnetic field. The diagrams that have to be calculated are depicted in figure (2.16). The
replacements for the triplet diagram are given in the brackets. Looking at figure (2.16) one
remarks that the singlet–triplet formulation is more symmetric than the exchange–Hartree for-
mulation we started with. All one has to do to go from the singlet to the triplet diagram is to
change the spin matrices at the interaction vertices from δij → σij and change the interaction
propagator Γs(q, ω) → Γt(q, ω). Let us begin with the calculation of the singlet correction to
the DOS per spin direction.
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Figure 2.16: Diagrammatic representation of singlet (triplet) correction to the DOS

δνsing
α = −sign(ǫ)

πV Im
∑

s1,s2,
s3,s4

∑

p

Gα(p, ǫ)

[
1

V
∑

q

∫ ∞

−∞

dω

2π
δs1α Ls1s4(q, ω)Gα(p− q, ǫ− ω)

i Γs(q, ω) δs1s4 δs2s3
1

V
∑

p′

Gs1(p
′, ǫ)Gs4(p

′ − q, ǫ− ω)

Ls3s2(q, ω)
1

V
∑

p′′

Gs3(p
′′, ǫ)Gs2(p

′′ − q, ǫ− ω) δs3α

]
Gα(p, ǫ).

Evaluating all the sums in the diffusive approximation in the quasi one–dimensional limit, we
arrive at

δνsing
α

ν3
= − 1

πa2

∫
dq

2π

∫ ∞

|ǫ|
dω Im

[
Γs(q, ω)

(Dq2 − iω)2

]
. (2.84)

which multiplied by 2 for the spin degeneracy reproduces exactly the singlet part given in
equation (2.57). This is no surprise as all the ingredients forming the singlet part where not
affected by the external field.



2.3. CALCULATION OF THE DOS IN THE PRESENCE OF EXTERNAL FIELD 41

The situation however changes for the triplet part. In our calculation in section (2.3.1) with
static interaction amplitudes we observed a Zeeman splitting of the three triplet terms. For the
triplet contribution per spin direction we have according to the diagram (2.16)

δνtrip
α = −sign(ǫ)

πV Im
∑

s1,s2,
s3,s4

∑

p

Gα(p, ǫ)

[
1

V
∑

q

∫ ∞

−∞

dω

2π
δs1α Ls1s4(q, ω)Gα(p− q, ǫ− ω)

i Γ̃t(q, ω) σs1s4 σs2s3
1

V
∑

p′

Gs1(p
′, ǫ)Gs4(p

′ − q, ǫ− ω)

Ls3s2(q, ω)
1

V
∑

p′′

Gs3(p
′′, ǫ)Gs2(p

′′ − q, ǫ− ω) δs3α

]
Gα(p, ǫ).

For the spin–up part we get

δνtrip
↑ = −sign(ǫ)

πV Im
1

V
∑

q

∫ ∞

−∞

dω

2π
Π2

0(q, ω)γ3(q, ω)

[
L2(q, ω)Γ1111(q, ω) + L2

12(q, ω)Γ1212(q, ω)

]

and for the spin–down part we obtain

δνtrip
↓ = −sign(ǫ)

πV Im
1

V
∑

q

∫ ∞

−∞

dω

2π
Π2

0(q, ω)γ3(q, ω)

[
L2(q, ω)Γ2222(q, ω) + L2

21(q, ω)Γ2121(q, ω)

]

Summing up these two contributions yields

δνtrip
3

ν3
= − 2

πa2

∑

m

∫
dq

2π

∫ ∞

|ǫ|
dω Im

[
Γt

(Dq2 − iωZt − imωs)(Dq2 − iω − imωs)

]
(2.85)

wherem takes the values −1, 0, 1. Note that in comparison to equation (2.69) there is a additional
Zt coming from the dynamically screened interaction. The m = 0 term is treated like the singlet
part. For the m = 1 and m = −1 terms however we need to redo the integrations.

We define w1 = ωZ +mωs and w2 = ω +mωs. Assuming that w1 and w2 > 0 we get using
the residue theorem

∫
dq

2π

1

(Dq2 − iw1)(Dq2 − iw2)
=

i3/2

2(w1 − w2)

(
1√
w2

− 1√
w1

)
. (2.86)

The energy integral for the m = 1 component is then

∫ ∞

|ǫ|
dω

1

ω

(
1√

ωZt + ωs
− 1√

ω + ωs

)
=

2√
ωs

[
arctanh

(√ |ǫZt + ωs|
ωs

)
−arctanh

(√ |ǫ+ ωs|
ωs

)]

(2.87)
For the m = −1 part one obtains a similar result where arctanh(x) is replaced by arctan(x) and
there is a multiplicative factor of −1. Taking into account the effect of dynamical screening in
the presence of an external field we thus obtain (remember that Γt = Aa0/2ν3 and Zt = 1 −Aa0)
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δν1

ν1
= − 1√

2π ν1

√
D

[
As0

(1 −As0 +
√

1 −As0)
+

Aa0
(1 −Aa0 +

√
1 −Aa0)

]
1√
|ǫ|

− 1√
2πν1

√
D
√
ωs

[
arctanh

(√ |(1 −Aa0) ǫ+ ωs|
ωs

)
−arctanh

(√ |ǫ+ ωs|
ωs

)]

+
1√

2πν1

√
D
√
ωs

[
arctan

(√ |(1 −Aa0) ǫ− ωs|
ωs

)
−arctan

(√ |ǫ− ωs|
ωs

)]

(2.88)

This is a first central result of our work. It is the generalization of the result in equation (2.70),
which was only valid for As0 and Aa0 smaller than 1. We check that for m = 1 if we can reproduce
our known results (the calculation for the m = −1 is completely analogous). Let us first send
ωs → 0. Then

1√
ωs

[
arctanh

(√ |(1 −Aa0) ǫ+ ωs|
ωs

)
−arctanh

(√ |ǫ+ ωs|
ωs

)]
=

1√
|ǫ|

(
1√

(1 −Aa0)
− 1

)
+O

(
ωs
)

(2.89)
Putting all together we obtain

δνm=1
3

ν3
≈ − 1√

2πν1

√
D

Aa0
(1 −Aa0 +

√
1 −Aa0)

1√
|ǫ|

+ O
(
ωs
)

(2.90)

where the next order term is proportional to ωs. The leading order term is one of the three
triplets in equation (2.57). The other limit we can verify is the case of static interaction. In the
limit Zt → 1 we should recover the result (2.70). Using

1√
ωs

[
arctanh

(√ |(1 −Aa0) ǫ+ ωs|
ωs

)
−arctanh

(√ |ǫ+ ωs|
ωs

)]
=

Aa0
2
√
|ǫ+ ωs|

+ O
(

(Aa0)
2

)

(2.91)
we obtain indeed

δνm=1
3

ν3
= − Aa0

2
√

2πν1

√
D

1√
|ǫ+ ωs|

+ O
(
(1 − Zt)

)
. (2.92)

2.4 Spin scattering – Suppression mechanisms for the triplets

In the preceding sections we have examined the effect of the triplet for various situations. How-
ever all this took place under idealized conditions. Of course, we assumed the temperature to
be low enough because otherwise thermal fluctuations would already smear out the effects. But
there are other mechanisms that could suppress the effect of the triplets.

Let us discuss very shortly the effect of magnetic impurities and spin–orbit interactions.
Magnetic impurities are modelled by the Hamiltonian

Hs =
∑

s1,s2

∑

p,p′

U s1s2s (p, p′) c†p,s1 cp′,s2 (2.93)
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with

U s1s2s (p, p′) =

Ns∑

i=1

∫
dr e−irp Us(r −Ri) ~S · ~σs1s2 eirp

′

(2.94)

where ~S is the spin of the magnetic impurity located at Ri with the scattering amplitude
Us(r −Ri). In the presence of spin–orbit interaction one adds the term

Hso =
∑

s1,s2

∑

p,p′

U s1s2so (p, p′) c†p,s1 cp′,s2 (2.95)

with

U s1s2so (p, p′) =
1

4m2c2

Nso∑

i=1

σs1s2

∫
dr e−irp

[
∇× Uso(r −Ri)

]
eirp

′

(2.96)

where Ri indicates an ion site and the corresponding potential is Uso(r − Ri). In second order
Born–approximation one obtains the spin–spin and spin–orbit scattering times τs and τso that
can be written as (This is obtained along similar lines as our treatment of static impurities in
section (2.1).)

1

τs
= πν3nsU

2
s S(S + 1) (2.97)

and24

1

τso
= πν3ntotU

2
so (p× p′)2. (2.98)

where ns is the concentration of magnetic impurities and ntot is the total impurity concentration.

Taking into account these additional effects one finds a modified scattering time in the
damped single particle Green’s function which leads to a modified form of the diffusive ladder

L(j,m)(q, ω) =
1

Dq2 − iω + j/ts − imωs
(2.99)

where the total spin relaxation time is given by

1

ts
=

4

3

(
1

τs
+

1

τso

)
(2.100)

Note that for the singlet component (j = 0) the term j/ts vanishes and we still have the diffusive
pole. The triplets (j = 1) are however suppressed as we have no longer a divergence for small q
and ω due to the 1/ts in the denominator. For more details see [29].

2.5 Summary

In this chapter we discussed extensively the calculation of the DOS using the techniques of
perturbation theory. First we reproduced the results by Altshuler and Aronov ([7], [8]) and
extended them using the effective coupling amplitudes Γs and Γt, which are connected with the
Landau parameters. Second we investigated the impact of an external magnetic field on the

24The line over p × p′ indicates the angle average.
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correction to the DOS. Also here we first rederived the result of Altshuler and Aronov ([24]) for
static interactions. In a second step we included dynamical screening of the static interaction
amplitudes which lead to our generalized result (2.88).

The results obtained are in good agreement with the experiments for higher energies, as
mentioned in the introductory chapter. However approaching the Fermi edge the results diverge.
This is due the fact that for small energies the interactions in the singlet and triplet channel can
no longer be treated as small perturbations. Defining the singlet and triplet energies

Es =
(As0)

2

32πh̄D(ν3a2)2(1 −As0 +
√

1 −As0)
2

Et =
(Aa0)

2

32πh̄D(ν3a2)2(1 −Aa0 +
√

1 −Aa0)
2

(2.101)
we can write equation (2.57) in the form25

δν1

ν1
= − 4√

π

(√
Es
ǫ

− 3

√
Et
ǫ

)
. (2.103)

Estimations of Es and Et for Palladium can be found in appendix (9.4). We see that if our
probing energy ǫ = eV approaches Es, we enter in the region where perturbation theory starts
to fail.

In order to solve this problem one needs to take into account higher order processes in Γs(q, ω)
and Γt(q, ω). Rollbühler and Grabert could successfully derive a non–perturbative result for the
quasi one-dimensional DOS using a path integral approach for Fermions ([18], [19]). They
achieved to sum up the exchange diagram to all orders which would correspond to a summation
of the singlet diagrams in our language. In this work we will try to generalize this approach to
electrons with spin in order to take into account the triplet diagrams and investigate the impact
of the spin on the DOS. Therefore we will explain in the next three chapters the formalism of
fermionic path integrals.

25 The square roots of theses energies are

√
Es =

As
0

4ν1

√
2πD(1 − As

0 +
p

1 − As
0)

and
√

Et = − Aa
0

4ν1

√
2πD(1 − Aa

0 +
p

1 − Aa
0)

. (2.102)

We put an additional minus sign in the definition of
√

Et because the Landau parameter Aa
0 is negative. We need

these expressions in section (6.6.1).



Chapter 3

Path Integrals for Fermions

In this chapter we will present a short overview of fermionic path integrals. First we will
introduce the mathematical concept of Grassmann variables which is necessary for the definition
of Fermion coherent states. Using these Fermion coherent states we will then formulate the
fermionic many–body problem in terms of a fermionic coherent state path integral. In this
formulation we will later calculate correlation functions. For a more detailed discussion we refer
the reader to [19], [31], [32], [33] and [34].

With regard to the treatment of disorder we will use the Keldysh technique. Therefore our
fermionic fields will live on the Keldysh contour.1

3.1 Grassmann variables

Before starting with the definition of Grassmann variables let us motivate the need of such
peculiar objects. Path integrals for Bosons can be expressed as integrals over complex valued
functions. Several complex valued functions simply commute like Bosons do. For Fermions
however we need anti–commuting objects in order to implement the correct symmetry. Thus
if we want to formulate the many–fermion problem with the help of path integrals we need
numbers that posses that anti–commutation property. The conventional Feynman path integral
is set up using the position eigenstates. In this work, however, we will use the so called coherent
states for the construction of our path integral. Coherent states for Bosons are rather well known
objects. They already appear in the context of the harmonic oscillator. The coherent states
are defined as the eigenstates of the annihilation operator. For Bosons

aα|ζ〉 = ζα|ζ〉 ζα ∈ C (3.1)

where aα is a bosonic annihilation operator, α ∈ I is a (multi–)index representing a set of
quantum numbers and |ζ〉 is a coherent state.

Suppose we have constructed a fermionic coherent state |ψ〉. Operating with a fermionic
annihilation operator cα on the state |ψ〉 we obtain

cα|ψ〉 = ψα|ψ〉 ψα ∈ G (3.2)

where ψα is an element of the Grassmann algebra G (which we will shortly define). ψα is
necessarily an anti–commuting number. This necessity becomes clear if we look at two different
annihilation operators acting on a coherent state:

1There are other field theoretical approaches based on the replica trick [35] or on the supersymmetry [36].

45
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ψαψβ |ψ〉 = cαcβ |ψ〉 = −cβcα|ψ〉 = −ψβψα|ψ〉. (3.3)

The anticommutation relation for the operators imposes

ψαψβ = −ψβψα (3.4)

for the Grassmann variables. This relation can be seen as the definition of Grassmann variables.
Additionally we demand that these variables anti–commute with fermionic operators and state
vectors with odd particle number.

Definition of the Grassmann algebra

A Grassmann algebra G is defined by a set generators {ψα|α = 1, ..., n} where each pair of
elements anti–commute

ψαψβ + ψβψα = 0 (3.5)

so that in particular
ψ2
α = 0. (3.6)

The basis of the Grassmann algebra is made of all distinct products of generators. Up to a
sign factor there are 2n distinct products of generators {1, ψα1 , ψα1ψα2 , ..., ψα1 ..ψαn} where by
convention α1 < α2 < ... < αn. For Grassmann variables one cannot set up an order relation
like > or <. Grassmann numbers cannot be big or small. However one can define a conjugation
operation ψ → ψ∗. Similar to the complex conjugation one defines

(ψ∗)∗ = ψ (λψ)∗ = λ∗ψ∗ λ ∈ C (ψ1ψ2)
∗ = ψ∗

2ψ
∗
1. (3.7)

Having the formal definition we proceed to the rules of calculus that will be applied in the
path integral calculations for fermions. Since ψ2 = 0 each function can easily be written in a
Taylor series:

f(ψ) = a+ b ψ (3.8)

where a and b can be ordinary or Grassmann numbers. An important example is eψ = 1 + ψ.
More general one could have

g(ψ,ψ∗) = a+ b ψ∗ + c ψ + dψ∗ψ. (3.9)

Generalization to more degrees of freedom is straightforward.

Integration of Grassmann functions

It is possible to define a differentiation for Grassmann functions which we will not explain
here as we do not need it for our calculations. However we need to know how to integrate a
Grassmann function. As there is no analog of the familiar sum motivating the Riemann integral
for ordinary variables, the integration over Grassmann variables is defined as a linear mapping.
One only needs two definitions

∫
dψ 1 = 0

∫
dψ ψ = 1. (3.10)

However this is not enough to calculate the integral of the function f(ψ) given in equation (3.8).
In (3.10) the 1 and ψ are adjacent to dψ. We define that dψ behaves like a Grassmann variable
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and demand that 1 and ψ have to be adjacent to dψ in order to apply (3.10). Practically that
means we have to commute or anti–commute the different terms under the integral until 1 and
ψ are directly to the right of dψ and then have the permission to apply the integration rules.
For f(ψ) we obtain for example:

∫
dψ f(ψ) = ±a

∫
dψ 1 ± b

∫
dψ ψ = ±b (3.11)

where the upper sign is for the case that the coefficients are complex numbers or consist of an
even number of Grassmann variables and the minus sign appears if the coefficients are an odd
number of Grassmann variables.

In order to integrate the function g(ψ,ψ∗) of equation (3.9) we also need to define the
integration rules for ψ∗:

∫
dψ∗ 1 = 0

∫
dψ∗ ψ∗ = 1. (3.12)

We obtain

∫
dψ∗ dψ g(ψ,ψ∗) = −d (3.13)

and especially for Gaussian integrals we have
∫
dψ∗ dψ eaψ

∗ψ =

∫
dψ∗ dψ (1 − aψ∗ψ) = a. (3.14)

A motivation for this definition of integration is that many results look similar to those of
complex integration. For instance the definition of the δ–function:

δ(ψα − ψβ) =

∫
dψγ e

ψγ(ψα−ψβ) = (ψα − ψβ). (3.15)

Taking the function f(ψ) one can easily verify that δ(ψα − ψβ) has the desired property∫
dψα δ(ψα − ψβ)f(ψβ) = f(ψβ).

A major difference towards ordinary integration is however the transformation law under a
change of variables. We examine it doing the calculation for one degree of freedom (restricting
ourselves to complex coefficients a,b and λ):

∫
dψ f(λψ) = bλ. (3.16)

On the other hand with χ = λψ
∫
dψ f(λψ) =

∫
dχJ f(χ) = b J. (3.17)

We see that J = λ. For ordinary integrals however one would get J = ∂ψ/∂χ = 1/λ. So
in conclusion we get the inverse Jacoby determinant. The corresponding is true for higher
dimensions.

Gaussian Integrals

Setting up the path integral formalism for our problem will lead to integrals of exponential
functions which are polynomials in complex variables or Grassmann variables. In the case of
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quadratic forms these are straightforward generalizations of the familiar Gaussian integral. For
brevity we just give the formulas for the case of real and complex variables (Bosonic case) and
refer the reader to [31] for the proofs.

We begin with the multidimensional integral over real variables.

∫
dx1...dxn

(2π)n/2
e−

1
2
xiAijxj+xiJi = [detA]−1/2 e

1
2
JiA

−1
ij Jj (3.18)

where A is a real symmetric positive definite matrix and the summation is over repeated indices.
This identity is established by changing variables to reduce it to diagonal form and using the
Gaussian integral

∫∞
−∞ dx eax

2
=
√

π
a .

For pairs of complex conjugate variables a similar identity is valid:

∫ n∏

i=1

dx∗i dxi
2πi

e−x
∗
iHijxj+J

∗
i xi+Jix

∗
i = [detH]−1 eJ

∗
i H

−1
ij Jj (3.19)

for any matrix H with positive Hermitian part. Finally let us establish an analogous identity
for Grassmann variables. We assume that A is a hermitian but not necessarily postive definite
C–valued n× n matrix and ξα, ξ

∗
α (α = 1, ..., n) are Grassmann variables. Then

∫ n∏

α=1

dψ∗
αdψα e

−ψ∗
αAαβψβ+ξ∗αψα+ψ∗

αξα = [detA] eξ
∗
αA

−1
αβξβ (3.20)

Note that in comparison with equation (3.19) we also find on the right hand side the inverse
matrix in the exponential but for the prefactor we have the inverse result. For the proof let
us use vector notation and abbreviate the conjugated and transposed vector (ψ∗)T = ψ†. The
strategy to evaluate the left hand side of equation (3.20) is the same as in the bosonic case. We
diagonalize the matrix A

A = M−1DM (3.21)

where D is a diagonal matrix. Furthermore we introduce the vectors

χ = Mψ χ† = ψ†M−1

and
η = Mξ η† = ξ†M−1.

The change of variables from ψα and ψ∗
α to the χα and χ∗

α brings us a factor det(M)det(M−1) =
det(MM−1) = 1.

∫ n∏

α=1

dψ∗
αdψα e

−ψ†Aψ+ξ†ψ+ψ†ξ =

∫ n∏

α=1

dχ∗
αdχα e

−χ†Dχ+η†χ+χ†η

Let us look at the exponential

exp(−χ∗
αDαχα + ηαχα + χ∗

αηα) = 1 − χ∗
αDαχα + η∗αχα + χ∗

αηα + χ∗
αηαη

∗
αχα

= 1 + η∗αχα + χ∗
αηα + χ∗

α(Dα + ηαη
∗
α)χα
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So we find according to equation (3.13)

∫
dχ∗

αdχα exp(−χ∗
αDαχα + ηαχα + χ∗

αηα) = Dα + η∗αηα

which we can rewrite as an exponential function

Dα + η∗αηα = Dα(1 +D−1
α η∗αηα) = Dα exp(D−1

α η∗αηα).

Furthermore
n∏

α=1

Dα = det(D) = det(MAM−1) = det(A).

Hence we finally obtain

∫ n∏

α=1

dψ∗
αdψα e

−ψ†Aψ+ξ†ψ+ψ†ξ =
n∏

α=1

Dα exp(D−1
α η∗αηα) = det(A) eξ

†A−1ξ

which proves equation (3.20). These Gaussian integration formulas are also valid for operators
(n→ ∞) if the boundary conditions allow to determine a unique inverse operator.

3.2 Fermion coherent states

The Fermion coherent states can be defined by

|ψ〉 = e−
P

α ψαc
†
α |0〉 =

∏

α

(
1 − ψαc

†
α

)
|0〉 (3.22)

where c†α is the Fermion creation operator (that creates a Fermion in state α: c†α|0〉α = |1〉α)
and |0〉 = |0〉α1 ⊗ ...⊗ |0〉αn is the vacuum state. Note that the product on the right hand side

is well defined since the factors (1−ψαc
†
α) commute with each other. The state |ψ〉 is indeed an

eigenstate of cα (which means that it fulfills equation (3.2)). One has

cα|ψ〉 = cα

(
|0〉α − ψα|1〉α

)∏

β 6=α

(
|0〉β − ψβ|1〉β

)

=

(
0 + ψα|0〉α

)∏

β 6=α

(
|0〉β − ψβ |1〉β

)

Now we use the property ψ2
α = 0:

cα|ψ〉 = ψα

(
|0〉α − ψα|1〉α

)∏

β 6=α

(
|0〉β − ψβ|1〉β

)
= ψα|ψ〉.

That’s it. We have constructed coherent states for Fermions which we will use in the following
to build up the path integral formulation for the Fermion many–body problem. The adjoint of
a coherent state |ψ〉 is denoted by the bra vector 〈ψ| and is given by

〈ψ| = 〈0|e−
P

α cαψ
∗
α = 〈0|

∏

α

(
1 − cαψ

∗
α

)
. (3.23)
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It is straightforward to prove that 〈ψ| is a left eigenvector for the creation operator c†α with
eigenvalue ψ∗

α.

Scalar product of two coherent states

Since (1 + ψ∗
αcα) and (1 − ψ′

βc
†
β) commute for α 6= β we get

〈ψ|ψ′〉 = 〈0|
∏

α

(
1 + ψ∗

αcα

)(
1 − ψ′

βc
†
β

)
|0〉 =

∏

α

(
1 + ψ∗

αψ
′
α

)
= eψ

∗
αψ

′
α . (3.24)

Closure relation for coherent states

An important property of the coherent states is that every vector in the Fock space F can
be expressed as a linear combination of coherent states and the unity operator I in F can be
represented by the closure relation

I =

∫ ( n∏

α=1

dψ∗
αdψα

)
e−

Pn
α=1 ψ

∗
αψα |ψ〉〈ψ|. (3.25)

For simplicity let us prove this relation just for one degree of freedom (for the general prove see
[31] or [34]):

∫
dψ∗dψ e−ψ

∗ψ |ψ〉〈ψ| =

∫
dψ∗dψ (1 − ψ∗ψ)

(
|0〉 − ψ|1〉

)(
〈0| − 〈1|ψ∗

)

=

∫
dψ∗dψ (1 − ψ∗ψ)

(
|0〉〈0| + ψ|1〉〈1|ψ∗

)

=

∫
dψ∗dψ

(
−ψ∗ψ|0〉〈0| + ψ∗ψ|1〉〈1|

)

= |0〉〈0| + |1〉〈1| = I.

Representation of the Trace by Coherent States

In order to calculate the partition function or the generating functional we need a represen-
tation of the trace of an operator A in terms of Fermion coherent states. We start writing the
trace using a complete orthonormal system {φi} and then introduce the unity operator given in
equation (3.25)

TrA =
∑

i

〈φi|A|φi〉

=

∫ ( n∏

α=1

dψ∗
αdψα

)
e−

Pn
α=1 ψ

∗
αψα

∑

i

〈φi|ψ〉〈ψ|A|φi〉.

Next we use

〈θi|ψ〉〈ψ|θj〉 = 〈−ψ|θj〉〈θi|ψ〉 (3.26)
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where θi and θj are Fock states. We need the relation only for i = j:

TrA =

∫ ( n∏

α=1

dψ∗
αdψα

)
e−

Pn
α=1 ψ

∗
αψα

∑

i

〈−ψ|A|φi〉〈φi|ψ〉.

Replacing finally
∑

i |φi〉〈φi| by I we obtain

TrA =

∫ ( n∏

α=1

dψ∗
αdψα

)
e−

Pn
α=1 ψ

∗
αψα 〈−ψ|A|ψ〉. (3.27)

Thus the trace of an operator is expressed by integrals over Grassmann variables. Now that we
have all the mathematical tools, we can construct the path integral for Fermions in terms of
coherent states.

3.3 Coherent state path integral for Fermions

In this section we apply the formalism of the Grassmann variables and coherent states to the
general expression for the partition function. The partition function reads

Z = Tr e−βH .

where H is a second quantization Hamilton operator in normal ordered form (all the creation

operators c†α are to the left of any annihilation operator cα) and β = 1/kBT is the inverse
temperature. With equation (3.27) we can write Z using coherent states. We restrict ourselves
to one degree of freedom and therefore drop the index α.

Z =

∫
dψ∗dψ e−ψ

∗ψ 〈−ψ|e−βH |ψ〉

The idea is to split e−βH along the complex contour C from z = 0 to z = −iβ (see figure (3.1))
into small steps ∆j , (j = 1, ..., P ) with

P∑

j=1

∆j = −iβ such that e−βH =
P∏

j=1

e−i∆jH .

We have2

Z =

∫
dψ∗dψ e−ψ

∗ψ 〈−ψ|
P∏

j=1

e−i∆jH |ψ〉

=

∫
dψ∗dψ e−ψ

∗ψ 〈−ψ|
P∏

j=1

(
1 − i∆jH + O(∆2

j )

)
|ψ〉.

Making the pieces ∆j smaller and smaller such that limP→∞ maxj |∆j | = 0 we can in good
approximation neglect the quadratic corrections. We rename ψ → ψ0 and introduce P −1 unity
operators along the contour.

I =

∫
dψ∗

jdψj e
−Pj ψ

∗
jψj |ψj〉〈ψj | , (j = 1, ..., P − 1) (3.28)

2In the literature this procedure is often called Trotter Breakup
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∆1

∆ 2

∆3

∆ 5

∆ 4

−iβ −iβ

0 0

C

Figure 3.1: Trotter decomposition of the contour C

Thus we get

Z =

∫
dψ∗dψ0

(P−1∏

j=1

dψ∗
jdψj

)
e−ψ

∗ψ0 〈−ψ|
(

1 − i∆PH

)
|ψP−1〉×

e−ψ
∗
P−1ψP−1 〈ψP−1|

(
1 − i∆P−1H

)
|ψP−2〉 × ...× e−ψ

∗
2ψ2 〈ψ2|

(
1 − i∆2H

)
|ψ1〉

× e−ψ
∗
1ψ1 〈ψ1|

(
1 − i∆1H

)
|ψ0〉.

As H is normal ordered we can now easily evaluate the matrix elements

〈ψj |
(

1 − i∆jH(c†, c)

)
|ψj−1〉 = 〈ψj |ψj−1〉

(
1 − i∆jH(ψ∗

j , ψj−1)

)
.

With the scalar product (3.24) we finally get

〈ψj |
(

1 − i∆jH(c†, c)

)
|ψj−1〉 = eψ

∗
jψj−1 e−i∆jH(ψ∗

j ,ψj−1).

We substitute −ψ∗ → ψ∗
P , dψ∗dψ0 = −dψ∗

Pdψ0 = dψ0dψ
∗
P and obtain

Z =

∫
dψ0 dψ

∗
P

(P−1∏

j=1

dψ∗
jdψj

)
eψ

∗
Pψ0

(
eψ

∗
PψP−1 e−i∆PH(ψ∗

P ,ψP−1)

)
×

e−ψ
∗
P−1ψP−1

(
eψ

∗
P−1ψP−2 e−i∆P−1H(ψ∗

P−1,ψP−2)

)
× ... × e−ψ

∗
1ψ1

(
eψ

∗
1ψ0 e−i∆1H(ψ∗

1 ,ψ0)

)
.

With the help of the δ–function of equation (3.15) we can write

eψ
∗
Pψ0 =

∫
dψP δ(ψP + ψ0) e

−ψ∗
PψP .
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In that way we created a product of P similar terms

P∏

j=1

e−ψ
∗
jψj
(
eψ

∗
jψj−1e−i∆jH(ψ∗

j ,ψj−1))

=

P∏

j=1

exp

(
i∆j

[
i ψ∗

j

(
ψj − ψj−1

∆j

)]
−H(ψ∗

j , ψj−1)

)

= exp

(
i
P∑

i=1

∆j

[
i ψ∗

j

(
ψj − ψj−1

∆j

)]
−H(ψ∗

j , ψj−1)

)
.

For the transformation we used the property e−ψ
∗
jψjeψ

∗
jψj−1 = e−ψ

∗
jψj+ψ

∗
jψj−1 which is true

because (ψ∗
j )

2 = 0. So let us write down our final result

Z =

∫
dψ0

( P∏

j=1

dψ∗
jdψj

)
δ(ψP + ψ0) exp

(
i
P∑

i=1

∆j

[
ψ∗
j

(
ψj − ψj−1

∆j

)]
−H(ψ∗

j , ψj−1)

)
.

We consider the limit P → ∞ and ∆j → 0. The expressions for the Riemann sum and the
differential quotient suggest to use the following notation

∫
dψ0

( P∏

j=1

dψ∗
jdψj

)
δ(ψP + ψ0) →

∫
Dψ∗Dψ

P∑

i=1

∆j

[
...
]

→
∫

C
dz[...]

ψj − ψj−1

∆j
→ ∂ψ

∂z
= ∂zψ

and
H(ψ∗

j , ψj−1) → H(ψ∗, ψ).

This allows us to write the partition function in the following elegant form

Z =

∫
Dψ∗Dψ exp

(
iS[ψ∗, ψ]

)
(3.29)

with the action S given by

S =

∫

C
dz
[
ψ∗i∂zψ −H(ψ∗, ψ)

]
. (3.30)
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The contour C is here an arbitrary contour from 0 to −iβ. For our purposes we will need the
Keldysh contour that will be explained in the next section.

A standard basic example for the application of coherent state path integrals is the partition
function for a fermionic particle. The Hamiltonian of this system is

H = ǫ c†c.

Applying the rules of Grassmann calculus one finally finds

Z = 1 + e−βǫ

which is the known result that can also be deduced in the conventional operator formalism.

3.3.1 The contour–ordered Green’s function

A key object of interest in our calculations will be Green’s function of the system which is
defined as expectation value of an annihilation and creation operator. However we have to
be more precise as there exist several Green’s functions. For the calculation of the density of
states for example we can take the retarded Green’s function (see equation (1.11)). Of course,
the retarded Green’s function can be expressed in terms of other Green’s function possessing a
different time structure. As we want to use the coherent state path integral method to treat our
problem we first need to examine which kind of time structure we obtain calculating a fermionic
coherent state path integral. So let us look at3

Gc(z(τ), z(τ
′)) = −i〈ψ(z(τ)ψ∗(z(τ ′))〉path integral

= − i

Z

∫
Dψ∗Dψ

(
ψ(z(τ))ψ∗(z(τ ′))

)
eiS[ψ∗,ψ]

(3.31)

where z(τ) and z(τ ′) are two points of the discretized path and τ is the parametrization variable
of the contour. The explicit calculation for a free particle described by the Hamiltonian H given
in equation (3.3) can be found in [19] (or for many interacting particles in [34]). One finds the
following result

Gc(z(τ), z(τ
′)) = Θ(τ − τ ′)G>(z(τ), z(τ ′)) − Θ(τ ′ − τ)G<(z(τ), z(τ ′)) (3.32)

where

G>(z(τ), z(τ ′)) = −i(1 − nF (ǫ)) e−iǫ
(
z(τ)−z(τ ′)

)
(3.33)

and

G<(z(τ), z(τ ′)) = i nF (ǫ) e−iǫ
(
z(τ)−z(τ ′)

)
(3.34)

where nF (ǫ) = 1/(eβǫ + 1). We call this type of order contour–order and the Green’s function
defined by equation (3.31) we call the contour–ordered Green’s function Gc. In order to under-
stand the expression contour–ordered let us look at the definition of G> and G< which can be
found for example in [28]4:

G>(z(τ), z(τ ′)) = −i
〈
ψ(z(τ))ψ†(z(τ ′))

〉
where τ > τ ′ (3.35)

3We put the index c because the result will be the contour ordered Green’s function.
4These definitions are made for ordinary field operators.
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G<(z(τ), z(τ ′)) = i
〈
ψ†(z(τ ′))ψ(z(τ))

〉
where τ ′ > τ (3.36)

where 〈...〉 = 〈...〉path integral.
5 In the upper two equations the Grassmann variable with the

earlier time is to the right and the Grassmann variable with the later time is to the left. We see
that in equation (3.31) the two contributions are ordered in that sense. One can introduce the
contour–ordering operator TC that already arranges the different ψ’s according to their position
on the contour:

Gc(z(τ), z
′(τ ′)) = −i〈TC

[
ψ(z(τ))ψ∗(z(τ ′))

]
〉

= −iΘ(τ − τ ′)〈ψ(z(τ))ψ∗(z(τ ′))〉 + iΘ(τ ′ − τ)〈ψ∗(z(τ ′))ψ(z(τ))〉.
(3.37)

3.4 Keldysh formalism

In this section we will describe the Keldysh formalism that allows to treat problems involving
disorder. Originally the Keldysh formalism was invented to calculate Green’s functions in non–
equilibrium situations ([37], [38]).

The idea is to start in a well defined state and propagate it to the non–equilibrium regime
where all the complicated interactions act on the state and then propagate it back. All effects
except for the interactions cancel as they appear twice during the propagation but with oppo-
site sign. This idea can be used for a system containing disorder. One starts with a system
without disorder and fixes the normalization constants of the quantities one wants to calculate.
Afterwards one adiabatically switches on the disorder potential. The normalization then gets
lost but is recovered after the back propagation of the system.

+T−i

−T

−T−i

+T

σ

β

Figure 3.2: A possible contour

A contour C that realizes the idea described above is shown in figure (3.2). In the preceding
section (3.3) we constructed a coherent state path integral for an arbitrary contour from 0 to
−iβ. Of course, we can translate the contour in the complex plane to −T and −T − iβ where T
is a real constant. Sending T → ∞ and σ → 0 we obtain the classical Keldysh contour which is
depicted in figure (3.3). This is the contour we will use in this work. The part which is parallel
to the imaginary axis is moved to −∞. It is common to divide the Keldysh contour in an upper
and a lower branch.

5 In the future we will usually omit the index path integral.



56 CHAPTER 3. PATH INTEGRALS FOR FERMIONS

C = C+ + C− (3.38)

The starting point for the upper branch is −∞ + iη with an infinitesimal η > 0. The contour
C+ runs parallel to the real axis to ∞ + iη which is the starting point for the lower branch C−.
C− returns shifted by the infinitesimal η below the real axis, to −∞− iη.

C +

C

t

8+

8

Figure 3.3: The Keldysh–contour

3.5 Matrix representation on the Keldysh contour

Before we discuss the matrix representation of the action S defined in equation (3.30) let us
repeat what we did so far. In section (3.3) we constructed a coherent state path integral for
Fermions based on the Grassmann variables. In subsection (3.3.1) we discussed which kind of
time–ordering the path integral produces. Finally in section (3.4) we chose the Keldysh contour
and explained why it is advantageous for our problem. The fact that the Keldysh contour has
two branches suggests the use of a 2×2 matrix structure for the action. We show the construction
for the example of free electrons. The Hamilton operator for free electrons is H0 = ∆/2m. 6

We put the Hamiltonian in equation (3.30) for the action. Furthermore we introduce two
so called source fields J and J∗ which will allow us to express correlation functions as partial
derivatives with respect to these fields. We have then

S[ψ,ψ∗, J, J∗] =

∫

C
dt

∫
dr ψ∗(r, t)G−1

0 (r, t)ψ(r, t) +

∫

C
dt

∫
drJ∗(r, t)ψ(r, t) + ψ∗(r, t)J(r, t)

(3.39)
where t = Re z(τ) and t′ = Re z(τ ′) and

G−1
0 (r, t) =

(
i∂t +

∆

2m

)
. (3.40)

6We neglect the spin in this discussion.
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We define the generating functional

Z[J, J∗] =

∫
DψDψ∗ eiS[ψ,ψ∗,J,J∗]. (3.41)

The name generating functional will be explained at the end of the section where we can show
the usefulness of this functional. We split the Keldysh contour in the upper and lower branch
and label the variables living on the different branches with index 1 for C+ and 2 for C−. We
write the action as S = S1 − S2

S1[ψ1, ψ
∗
1, J1, J

∗
1 ] =

∫ ∞

−∞
dt

∫
dr ψ∗

1(r, t)G
−1
0 (r, t)ψ1(r, t)+

∫ ∞

−∞
dt

∫
dr J∗

1 (r, t)ψ1(r, t)+ψ
∗
1(r, t)J1(r, t)

S2[ψ2, ψ
∗
2, J2, J

∗
2 ] =

∫ ∞

−∞
dt

∫
dr ψ∗

2(r, t)G
−1
0 (r, t)ψ2(r, t) +

∫ ∞

−∞
dt

∫
dr J∗

2 (r, t)ψ2(r, t) + ψ∗
2(r, t)J2(r, t)

The minus sign in front of S2 comes from the reversed integration direction in the t–domain.
We set x = (r, t).

S1[ψ1, ψ
∗
1, J1, J

∗
1 ] =

∫
dx ψ∗

1(x)G
−1
0 (x)ψ1(x) +

∫
dxJ∗

1 (x)ψ1(x) + ψ∗
1(x)J1(x) (3.42)

S2[ψ2, ψ
∗
2, J2, J

∗
2 ] =

∫
dx ψ∗

2(x)G
−1
0 (x)ψ2(x) +

∫
dxJ∗

2 (x)ψ2(x) + ψ∗
2(x)J2(x) (3.43)

We introduce the vector notation

Ψ =

(
ψ1

ψ2

)
Ψ∗ =

(
ψ∗

1, ψ
∗
2

)
(3.44)

and

J =

(
J1

J2

)
J∗ =

(
J∗

1 , J
∗
2

)
. (3.45)

Then the actions reads

S[Ψ,Ψ∗, J, J∗] =

∫
dxΨ∗(x)σz Ğ

−1
0 Ψ(x) +

∫
dxJ∗(x)σzΨ(x) + Ψ∗(x)σz J(x) (3.46)

where

σz =

(
1 0
0 −1

)
and Ğ−1

0 =

(
G−1

0 0

0 G−1
0

)
. (3.47)

We have then for the generating functional

Z[J, J∗] =

∫
DΨDΨ∗ eiS[Ψ,Ψ∗,J,J∗]. (3.48)

All we did in comparison to equation (3.41) is to introduce the matrix notation which will turn
out to be very convenient for the calculations.

The action is a quadratic form in ψ and ψ∗ (or Ψ and Ψ∗) hence we use equation (3.20) for
the integration over DΨ and DΨ∗. We obtain
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Z[J, J∗] = det
(
−iĞ−1

0

)
e−i

R
dxdx′J∗(x)σz

(
Ğ−1

0

)−1
(x,x′) σzJ(x′). (3.49)

From our earlier considerations we know that the entries of the 2× 2 matrix
(
Ğ−1

0

)−1
(x, x′) are

contour ordered so we call them

Ĝ0 =

(
GT0 (x, x′) G<0 (x, x′)
G>0 (x, x′) GT̄0 (x, x′)

)
. (3.50)

Before we explain the usefulness of this notation and why the (1, 1)–element GT0 is for example
just the ordinary time–ordered free electron Green’s function let us comment on the σz’s on
both sides of (Ğ−1

0

)−1
. Writing down the exponent explicitly (neglecting the position arguments

r and r′ for clarity) we have

S[J, J∗] = −i
∫ ∞

−∞
dt

∫ ∞

−∞
dt′
(
J∗

1 (t)GT0 (t, t′)J1(t
′) − J∗

1 (t)G<0 (t, t′)J2(t
′)

− J∗
2 (t)G>0 (t, t′)J1(t

′) + J∗
2 (t)GT̄0 (t, t′)J2(t

′)

) (3.51)

We see that the two minus signs appearing in front of the second and third term are due to the
Keldysh structure (Inversion of the integration direction). The fourth term has a plus sign since
both fields are on the lower branch. In order to understand what is behind the entries of Ĝ let
us look at the normalized functional

Z[J, J∗] = e−i
R
dxdx′J∗(x)σzĜ0(x,x′)σzJ(x′). (3.52)

We call it normalized because Z[0, 0] = 1. We can obtain a certain entry (Ĝ0)m,n (for n,m = 1
or 2) by calculating the following functional derivatives:

(
Ĝ0

)
m,n

= i (−1)n+m δ

δJn

δ

δJ∗
m

Z[J, J∗]

∣∣∣∣
J=0,J∗=0

. (3.53)

The prefactor (−1)n+m takes into account the signs coming from the σz matrices. On the other
hand we can calculate these functional derivatives with respect to the source fields before we
have integrated out the Fermions. The normalized functional before the integrations reads

Z[J, J∗] =
1

det
(
−iĞ−1

0

)
∫

DΨDΨ∗ ei
R
dxΨ∗(x)σz Ğ

−1
0 Ψ(x)+

R
dxJ∗(x)σ3Ψ(x)+Ψ∗(x)σz J(x). (3.54)

Calculating the functional derivatives of Z[J, J∗] like in equation (3.53) and setting J = J∗ = 0,
we obtain the following expectation values

Ĝ0 = −i
(
〈ψ1(x)ψ

∗
1(x

′)〉 〈ψ1(x)ψ
∗
2(x

′)〉
〈ψ2(x)ψ

∗
1(x

′)〉 〈ψ2(x)ψ
∗
2(x

′)〉

)
(3.55)

where

〈...〉 =
1

det
(
−iĞ−1

0

)
∫

DΨDΨ∗ ... ei
R
dxΨ∗(x)σz Ğ

−1
0 Ψ(x). (3.56)
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From equation (3.55) we see immediately that the (1, 2)– and (2, 1)–matrix elements coincide
with the definitions given in equations (3.35) and (3.36).

G<0 (x, x′) = i
〈
ψ∗

2(x
′)ψ1(x)

〉
(3.57)

G>0 (x, x′) = −i
〈
ψ2(x)ψ

∗
1(x

′)
〉

(3.58)

The time ordering for these two components is obvious since one Grassmann field lives on the
upper branch and the other one on the lower branch. The field on the lower branch is always later

in the sense of contour ordering. For the the (1, 1)– and (2, 2)–elements we have to distinguish
two cases as both Grassmann fields are on the same branch.

If z(τ) and z(τ ′) are both on C+ we have

TC [ψ(r, t)ψ∗(r′, t′)] =

{
ψ(r, t)ψ∗(r′, t′) for t > t′

−ψ∗(r′, t′)ψ(r, t) for t < t′
(3.59)

So this is just the normal time–ordering (see [28]). On the upper branch TC coincides with time–
ordering operator TT and we obtain the usual time–ordered Green’s function as the (1, 1)–matrix
element.

GT0 (x, x′) = Θ(t− t′)G>0 (x, x′) + Θ(t′ − t)G<0 (x, x′) (3.60)

If z(τ) and z(τ ′) are both on C− we have

TC [ψ(r, t)ψ∗(r′, t′)] =

{
ψ(r, t)ψ∗(r′, t′) for t < t′

−ψ∗(r′, t′)ψ(r, t) for t > t′
(3.61)

This time order is called anti–time order because the field with the smaller time is to the left
and not to the right like in the time–ordered case. However on the lower branch a smaller value
for t = Re z(τ) signifies a later point on the contour. Hence one obtains as the (2, 2)–matrix
element the anti–time–ordered Green’s function

GT̄0 (x, x′) = Θ(t− t′)G<0 (x, x′) + Θ(t′ − t)G>0 (x, x′). (3.62)

The explicit form of the different Green’s functions for the case of free electrons are given in
subsection (3.5.2) in the (ǫ, p)–representation.

In summary we explained how to invert Ğ−1
0 and showed what kind of Green’s functions

appear in the different entries of Ĝ0. They are all contour–ordered. Of course, all these Green’s
functions are not independent. They fulfill several identities (see (3.69), (3.70) and (3.71)). This
interdependence becomes most transparent if one changes to a rotated representation. Before
explaining the special rotation we introduce three more definitions which are not necessary but
allow a more condensed notation.

J̄ =
(
J∗

1 ,−J∗
2

)
Ğ0 =

(
GT0 (x, x′) −G<0 (x, x′)
G>0 (x, x′) −GT̄0 (x, x′)

)
Ψ̄ =

(
ψ∗

1,−ψ∗
2

)
(3.63)

The first two definitions allow to absorb the σz’s to the left and to the right of Ĝ0(x, x
′) in

equation (3.52) as J̄ = J∗σz and Ğ = Ĝσz. Now the generating functional simply reads

Z[J, J̄ ] = e−i
R
dxdx′J̄(x)Ğ0(x,x′)J(x′). (3.64)
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We could have introduced these definitions together with the definition of Ψ̄ already at the
beginning of this section. However the author believes that the presentation made above is
much more transparent concerning the signs that appear due to the splitting of the Keldysh
contour in two branches. Once one has understood the origin of all the signs one can go over to
the more condensed notation.

3.5.1 Keldysh rotation

There exists a convenient representation for the 2 × 2 matrix of Green’s function in which one
entry is 0 and on the diagonal one finds the retarded and the advanced Green’s function GR

and GA. Usually the Keldysh rotation is defined by the orthogonal matrix

Lu =
1√
2

(
1 −1
1 1

)
. (3.65)

In this work however we will take the matrix7

L =
1√
2

(
1 1
1 −1

)
(3.66)

which is also orthogonal and has the convenient property that it is its own inverse L−1 = L. Let
us define the rotated version of the Green’s function:

G̃ = LĞL−1 = L

(
GT −G<
G> −GT̄

)
L−1

=
1

2

(
GT −G< + (G> −GT̄ ) GT +G< + (G> +GT̄

GT −G< − (G> −GT̄ ) GT +G< − (G> +GT̄ )

) (3.67)

which reads

G̃ =

(
GR GK

0 GA

)
(3.68)

using the following standard definitions for the retarded

GR(x, x′) = GT (x, x′) −G<(x, x′) = G>(x, x′) −GT̄ (x, x′) (3.69)

advanced

GA(x, x′) = GT (x, x′) −G>(x, x′) = G<(x, x′) −GT̄ (x, x′) (3.70)

and Keldysh

GK(x, x′) = GT (x, x′) +GT̄ (x, x′) = G>(x, x′) +G<(x, x′) (3.71)

Green’s functions. In equilibrium, in (ǫ, p)–representation the Keldysh Green’s function GK is
connected to the retarded and advanced Green’s functions by

GK(ǫ, p) = F (ǫ)(GR(ǫ, p) −GA(ǫ, p)) (3.72)

7Our notation is close to the work [19] and differs slightly from [17].
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where F (ǫ) = tanh( ǫ
2β ) = 1 − 2nF (ǫ) with the Fermi function nF (ǫ) = 1/(eβǫ + 1).

We refer to the representation in which GR, GA and GK appear as the rotated represen-
tation while the unrotated representation refers to the original version with Ğ. Matrices
and vectors that are given in the rotated representation can be identified by their tilde (like G̃).

3.5.2 The Green’s functions for free electrons

In this subsection we write down the explicit form of all the free electron Green’s functions
(H0 = ∆/2m) in the (ǫ, p)–representation as we will need them in further calculation. In the
following the we will use the abbreviation ǫp = p2/2m, nF (ǫ) = 1/(eβǫ+1) and F (ǫ) = 1−2nF (ǫ).
We have then

G>(ǫ, p) = −2πi(1 − nF (ǫ)) δ(ǫ− ǫp) and G<(ǫ, p) = 2πi nF (ǫ) δ(ǫ− ǫp) (3.73)

GR(ǫ, p) =
1

ǫ− ǫp + iη
and GA(ǫ, p) =

1

ǫ− ǫp − iη
(3.74)

where η = 0+.
GT (ǫ, p) = (1 − nF (ǫ))GR(ǫ, p) + nF (ǫ)GA(ǫ, p) (3.75)

GT̄ (ǫ, p) = −(1 − nF (ǫ))GA(ǫ, p) − nF (ǫ)GR(ǫ, p) (3.76)

and finally
GK(ǫ, p) = 2πiF (ǫ) δ(ǫ− ǫp). (3.77)

For more details we recommend [28].
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Chapter 4

Electrons in a Disorder Potential

In this chapter we consider noninteracting electrons moving in a static disorder potential U(r).1

A static disorder corresponds to a situation in which the diffusive motion of the electrons is
elastic that means without changing their energy. Such a model does not describe the process of
inelastic diffusion which is responsible for the loss of phase coherence.2 The short range disorder
potential U(r) is assumed to be Gaussian that means it is determined by its first and second
moment.

〈U(r)〉 = 0 〈U(r)U(r′)〉 =
1

2πν3τ
δ(r − r′) (4.1)

ν3 is the bulk DOS at the Fermi level and τ the elastic scattering time which determines the
strength of disorder potential. The whole prefactor is chosen such that τ coincides with the
lifetime obtained in second order Born approximation by perturbation theory (see equation
(2.6)). If one wants to learn more about the introduction of disorder in a system and what kind
of different approaches exist one can consult chapter 2.2 of [40].3

Given the two correlators, how do we calculate disorder dependent quantities A[U ]? The
answer is we have to average the quantity over the disorder potential. The standard Gaussian
distribution is given by

gµ,σ(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(4.2)

where µ is the expectation value and σ the standard deviation. This allows us to set up the
distribution function for our case.

〈A[U ]〉 =
1

NU

∫
DU A[U ] e−πν3τ

R
dr U2(r) (4.3)

where NU is given by

NU =

∫
DU e−πν3τ

R
dr U2(r). (4.4)

Note that the disorder averaging does not yield a simple integral but a path integral as U
depends on the continuous variable r.

1Also here we neglect the spin degree of freedom of the electrons.
2For more information see for example [24].
3Unfortunately the book is in French.
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4.1 Disorder averaging and introduction of the Q–fields

So let us take our free electrons which we already discussed is the previous chapter and add
a disorder potential U(r). Note that U(r) has no time dependence and hence takes the same
values on the upper and lower branch of the Keldysh contour. We define Ŭ(x) = U(x) I ≡ U(r) I.
Writing Ŭ(x) we always mean the time independent potential U(r) I. All we have to do is to
replace H0 by H0 + U in equation (3.30) in order to write down the action for the problem. So
the additional part is

∫
dx Ψ̄(x)Ŭ(x)Ψ(x):

S[Ψ̄,Ψ, J̄ , J ] =

∫
dx Ψ̄(x)[Ğ−1

0 + Ŭ(x)]Ψ(x) +

∫
dx
(
J̄(x)Ψ(x) + J(x)Ψ̄(x)

)
. (4.5)

In comparison to equation (3.46) we also applied the notation defined in equation (3.63) which
allows us to absorb the signs coming the σz’s.

〈Z[J̄ , J ]〉 =

∫
DU

∫
DΨ̄DΨ eiS[Ψ̄,Ψ,J̄ ,J,U ] (4.6)

In summary we have to perform three path integrals over DΨ, DΨ̄ and DU in order to determine
the generating functional Z[J, J̄ ]. Starting with the integration over the fermionic fields Ψ and
Ψ̄ is impossible because one would have to invert [Ğ−1

0 + Ŭ(x)]. Hence we have to average first
over all disorder configurations.

〈Z[J̄ , J ]〉 =

∫
DΨ̄DΨ 〈eiS[Ψ̄,Ψ,J̄ ,J,U ]〉

=

∫
DΨ̄DΨ ei

R
dx Ψ̄(x)Ğ−1

0 Ψ(x)〈ei
R
dx Ψ̄(x)Ŭ(x)Ψ(x)〉 ei

R
dx (J̄(x)Ψ(x)+J(x)Ψ̄(x))

(4.7)

Now

〈ei
R
dx Ψ̄(x)Ŭ(x)Ψ(x)〉 =

1

NU

∫
DU ei

R
dr
R
dt Ψ̄(r,t) Ŭ(r)Ψ(r,t)e−πν3τ

R
dr U2(r)

=
1

NU

∫
DU e−

1
2

R
dr U(r)[2πν3τ ]U(r) e

R
dr
[
i
R
dt Ψ̄(r,t)Ψ(r,t)

]
U(r).

(4.8)

The path integral has a Gaussian form and we obtain

〈ei
R
dx Ψ̄(x)Ŭ(x)Ψ(x)〉 = e

1
2

R
dr
[
i
R
dt Ψ̄(r,t)Ψ(r,t)

]
1

2πν3τ

[
i
R
dt′ Ψ̄(r,t′)Ψ(r,t′)

]

= e
− 1

4πν3τ

R
dr
[R

dt Ψ̄(r,t)Ψ(r,t)
]2
.

(4.9)

We see that the disorder averaging yields a term in the exponential with 4 Ψ’s. This is rather
inconvenient because the integration over the fermionic fields is no longer Gaussian and can not
be done exactly.

We can get rid of this quartic term introducing an additional matrix field Q by a Hubbard–
Stratonovich–Transformation. Of course we will not choose Q identical to U because then we
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would just walk back. The matrix field Q is chosen such that it is suitable to describe the
low energy behavior of our system (that means the deviations from the homogeneous particle
distribution). Further motivation and information for the decoupling can be found in [36].

The connection of Q to physical quantities becomes clearer when we discuss the space in-
dependent saddle point solution for Q. We will see the connection to the quasiclassical Green’s
function g.

The quartic term is explicitly

− 1

4πτν3

∫
dr

∫
dt

∫
dt′
[
Ψ̄(r, t)Ψ(r, t)

][
Ψ̄(r, t′)Ψ(r, t′)

]

= − 1

4πτν3

∫
dr

∫
dt

∫
dt′
[
ψ∗

1(r, t)ψ1(r, t) − ψ∗
2(r, t)ψ2(r, t)

][
ψ∗

1(r, t
′)ψ1(r, t

′) − ψ∗
2(r, t

′)ψ2(r, t
′)
]

= − 1

4πτν3

∫
dr

∫
dt

∫
dt′
[
ψ∗

1(r, t)ψ1(r, t)ψ
∗
1(r, t

′)ψ1(r, t
′) + ψ∗

2(r, t)ψ2(r, t)ψ
∗
2(r, t

′)ψ2(r, t
′)

− ψ∗
1(r, t)ψ1(r, t)ψ

∗
2(r, t

′)ψ2(r, t
′) − ψ∗

2(r, t)ψ2(r, t)ψ
∗
1(r, t

′)ψ1(r, t
′)
]
.

(4.10)

Now we regroup the Grassmann fields pairing always a field ψi with a conjugated field ψ∗
j where

one of them has the argument t and the other one the argument t′.

= +
1

4πτν3

∫
dr

∫
dt

∫
dt′
[[
ψ1(r, t)ψ

∗
1(r, t

′)
] [
ψ1(r, t

′)ψ∗
1(r, t)

]
+
[
ψ2(r, t)ψ

∗
2(r, t

′)
] [
ψ2(r, t

′)ψ∗
2(r, t)

]

−
[
ψ1(r, t)ψ

∗
2(r, t

′)
] [
ψ2(r, t

′)ψ∗
1(r, t)

]
−
[
ψ2(r, t)ψ

∗
1(r, t

′)
][
ψ1(r, t

′)ψ∗
2(r, t)

]]

(4.11)

In order to decouple this expression we consider the following path integral

I[A] =
1

N

∫
DQ e

πν3
4τ

R
drdtdt′tr

{
Q(r,t,t′)Q(r,t′,t)

}
+
R
drdtdt′tr

{
Q(r,t,t′)A(r,t′,t)

}
(4.12)

where Q(r, t, t′) is a real, diagonalizable 2×2 matrix field. For given r, t, t′ the eigenvalues should
have a larger real than imaginary part. A is an arbitrary 2× 2 matrix field and ’tr’ denotes the
trace over the 2 × 2 matrix. The normalization constant is

N =

∫
DQ e−

πν3
4τ

R
drdtdt′tr

{
Q(r,t,t′)Q(r,t′,t)

}
. (4.13)

One calculates I[A] using the standard method of diagonalization and finds

I[A] = e
τ

πν3

R
drdtdt′

P2
i,j=1 AijAji(r,t

′,t)

= exp

(
τ

πν3

∫
drdtdt′

[
A11(r, t, t

′)A11(r, t
′, t) +A22(r, t, t

′)A22(r, t
′, t)

A12(r, t, t
′)A21(r, t

′, t) +A21(r, t, t
′)A12(r, t

′, t)
])
.

(4.14)
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We define

Tr =

∫
dr

∫
dt

∫
dt′ tr. (4.15)

That allows to write our result in the following compact form

I[A] =
1

N

∫
DQ e−

πν3
4τ

Tr{Q2}+Tr{QA} = e
τ

πν3
Tr{A2}

. (4.16)

The idea is now to take the right hand side of the upper equation and identify a product
ψi(r, t)ψj(r, t

′) with a matrix element of A.

e
τ

πν3
Tr{A2} !

= e
− 1

4πν3τ

R
dr
[R

dt Ψ̄(r,t)Ψ(r,t)
]2

(4.17)

From equation (4.11) and (4.14) we get4

(
A11(r, t, t

′) A12(r, t, t
′)

A21(r, t, t
′) A22(r, t, t

′)

)
=

1

2τ

(
ψ1(r, t)ψ

∗
1(r, t

′) −ψ1(r, t)ψ
∗
2(r, t

′)
ψ2(r, t)ψ

∗
1(r, t

′) −ψ2(r, t)ψ
∗
2(r, t

′)

)
(4.18)

Using identity (4.16) we can write down our final result.

e
1

4πν3τ

R
dr
[R

dtΨ̄(r,t)Ψ(r,t)
]2

=
1

N

∫
DQ e−

πν3
4τ

Tr{Q2}−Tr{Ψ̄QΨ} (4.19)

Let us repeat in words what happened. Performing the disorder average we obtained a quartic
term in ψ. In order to recover an action that is quadratic in ψ we introduced an auxiliary matrix
field Q(r, t, t′). Thus the price that we have to pay for a Gaussian action in ψ is according to
equation (4.19) a path integral over DQ.

For our purposes it will be enough to solve the path integral over DQ in saddle point
approximation neglecting even the quadratic corrections (or fluctuations) of Q. The generating
functional now reads

〈Z[J̄ , J ]〉 =

∫
DQ

∫
DΨ̄DΨ eiS[Ψ̄,Ψ,J̄ ,J,Q] (4.20)

where

iS[Ψ̄,Ψ, J̄ , J,Q] = − πν3

4τ
Tr{Q2} + i

∫
dx
(
J̄(x)Ψ(x) + J(x)Ψ̄(x)

)

+ i

∫
dx

∫
dx′Ψ̄(x)

[
Ğ−1

0 (x)δ(x− x′) +
i

2τ
Q(x, x′)δ(r − r′)

]
Ψ(x′)

(4.21)

where δ(x − x′) = δ(r − r′)δ(t − t′). Note that the matrix field Q(r, t, t′) is local in space but
depends on two different times. Setting

Ğ−1[Q](x, x′) = Ğ−1
0 (x)δ(x− x′) +

i

2τ
Q(x, x′)δ(r − r′) (4.22)

4This choice is not unique. See [19] for further information.
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we can write the action in the compact form

iS[Ψ̄,Ψ, J̄ , J,Q] = −πν3

4τ
Tr{Q2} + iTr

{
J̄Ψ + Ψ̄J

}
+iTr

{
Ψ̄Ğ−1[Q]Ψ

}
. (4.23)

Here we generalized the meaning of Tr as the number of integrations is not the same for all terms.
The trace Tr should be understood in the following as the abbreviation for the integration over
the continuous variables plus the trace over the matrix structure.

Integrating out the Fermions

After the introduction of Q we can calculate the path integral over the Fermions exactly as
the action is Gaussian in Ψ and Ψ̄.

〈Z[J̄ , J ]〉 =

∫
DQ e−

πν3
4τ

Tr{Q2}
∫

DΨ̄DΨ eiTr
{
J̄Ψ+Ψ̄J

}
+iTr

{
Ψ̄Ğ−1[Q]Ψ

}

=

∫
DQ e−

πν3
4τ

Tr{Q2} Det

[
Ğ−1

0 +
i

2τ
Q

]
e−iTr{J̄Ğ[Q]J}

(4.24)

where

Ğ[Q](x, x′) =
[
Ğ−1[Q]

]−1
=

[
Ğ−1

0 +
i

2τ
Q

]−1

(4.25)

and Det denotes the determinant of the operator with respect to the Keldysh components as
well as with respect of the space and time variables. Thanks to the identity

Det(A) = exp(Tr ln(A)) (4.26)

we can write the determinant as an exponential.

〈Z[J̄ , J ]〉 =

∫
DQ e−

πν3
4τ

Tr{Q2} eTr ln[Ğ−1
0 + i

2τ
Q] e−iTr{J̄Ğ[Q]J} (4.27)

This representation allows further treatment as we will show in the next section where we deter-
mine the saddle point equation. But before determining Z[J̄ , J ] in saddle point approximation
let us switch to the Keldysh rotated version.

Keldysh Rotation

We introduce several unities I = LL−1 = LL and use the possibility of cyclic permuta-
tions under the trace.5 Thanks to the spectral theorem we can also transform the logarithm:
L ln(A)L−1 = ln(LAL−1). We define

Q̃ = LQL−1 (4.28)

and
G̃−1

0 = LĞ−1
0 L−1 = LG−1

0 IL−1 = G−1
0 I. (4.29)

Then we have

G̃−1
0 [Q] = LĞ−1

0 [Q]L−1 = G̃−1
0 +

i

2τ
Q̃ (4.30)

5where L is given in (3.66).
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and

G̃[Q̃] = LĞ[LQL−1]L−1. (4.31)

We finally define

J̃ = LJ and ˜̄J = J̄L−1. (4.32)

Putting altogether yields

〈Z[ ˜̄J, J̃ ]〉 =

∫
DQ̃ e−

πν3
4τ

Tr{Q̃2} eTr ln[G̃−1
0 + i

2τ
Q̃] e−iTr{ ˜̄JG̃[Q̃]J̃}. (4.33)

4.2 Determination of the saddle point equation

In order to determine Z[J̄ , J ] in saddle point approximation we have to derive the saddle point
equation. At the saddle point the variational derivative with respect to Q̃ vanishes.

δ

δQ̃
S[Q̃, J = 0] = 0 (4.34)

In order to calculate the variational derivative we write

Q̃ = Q̃SP + δQ̃ (4.35)

and expand S[Q̃, J = 0] in orders of δQ̃. Let us start with the quadratic term in Q̃ of the
exponential in equation (4.33).

− πν3

4τ
Tr
{
Q̃2
}
= −πν3

4τ
Tr
{
(Q̃SP + δQ̃)2

}
= −πν3

4τ
Tr
{(
Q̃SP

)2}−πν3

2τ
Tr
{
Q̃SP δQ̃

}
+O

(
δQ̃2

)

(4.36)
The second term in which Q̃ appears is Tr lnG[Q̃]−1 .6

Tr ln[G̃−1
0 +

i

2τ
Q̃] = Tr ln

[
G̃−1

0 +
i

2τ
Q̃SP + δQ̃

]

= Tr ln

[
G̃[Q̃SP ]−1

(
I + G̃[Q̃SP ]

i

2τ
δQ̃+ O

(
δQ̃2

))]

= Tr ln

[
G̃[Q̃SP ]−1

]
+Tr

[
G̃[Q̃SP ]

i

2τ
δQ̃

]
+O

(
δQ̃2

)

(4.37)

In summary the linear terms in δQ̃ writing explicitly all the arguments read

∫
dr

∫
dr′
∫
dt

∫
dt′
(
−πν3

2τ
Q̃SP +

i

2τ
G̃[Q̃SP ]

)
(r, t, r, t′) δQ̃(r′, t′, t)δ(r − r′). (4.38)

This expression has to vanish for an arbitrary variation δQ̃. This condition implies that

6Note that we do not have to consider the third term in equation (4.33) because it is 0 when to J = 0.
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(
−πν3

2τ
Q̃SP +

i

2τ
G̃[Q̃SP ]

)
(r, t, r, t′) = 0 (4.39)

which allows us to express the saddle point for the matrix field Q̃SP in terms of the Green’s
function G̃[Q̃SP ] taken at r = r′.

Q̃SP (r, t, t′) =
i

πν3
G̃[Q̃SP ](r, t, r, t′) (4.40)

Using the definition of G̃ the self–consistent saddle point equation reads

Q̃SP (r, t, t′) =
i

πν3

[
G̃−1

0 +
i

2τ
Q̃SP

]−1

r=r′
(4.41)

There are different approaches to solve the saddle point equation. Some of them are discussed
in [19]. We will restrict ourselves to the case of a space–independent solution of equation (4.41)
that we will discuss in the next section.

4.3 Solution of the saddle point equation

Suppose we consider a translational invariant system which corresponds to a homogenous density
distribution. Then the saddle point solution Q̃SP does not depend on the spatial coordinate.

We choose here the shortest way to present the space–independent saddle point solution
simply by starting with the solution which we denote by Λ̃ and verifying that it solves the
saddle point equation (4.41). 7 The solution is

Λ̃(ǫ) =

(
1 2F (ǫ)
0 −1

)
Λ̃(t) =

(
δ(t) 2F (t)
0 −δ(t)

)
(4.42)

where F (ǫ) = tanh( ǫ
2β ) = 1 − 2nF (ǫ). We write equation (4.41) in (ǫ, p) space and consider the

limit of a bulk systems which allows us to go over to the continuum limit for the summation
over p.8

Λ̃(ǫ) =
i

πν3

1

V
∑

p

G̃(p, ǫ) =
i

π

∫ ∞

−ǫF
dǫp G̃(ǫp, ǫ) (4.43)

We have to determine G̃ in order to calculate the right side of the equation.

G̃(p, ǫ) =

[(
G−1

0 (p, ǫ) 0

0 G−1
0 (p, ǫ)

)
+

i

2τ

(
1 2F (ǫ)
0 −1

)]−1

=

[(
ǫ− ǫp 0

0 ǫ− ǫp

)
+

i

2τ

(
1 2F (ǫ)
0 −1

)]−1

(4.44)

7Another approach can be found in [19].
8We use the standard approximation for the p–sum that was already explained in the chapter on Perturbation

theory.
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where ǫp = p2/2m. Inverting the matrix we find

G̃(p, ǫ) =




1

ǫ−ǫp+ i
2τ

iF (ǫ)/τ
(ǫ−ǫp)2+1/4τ2

0 1
ǫ−ǫp− i

2τ



 . (4.45)

The result is not surprising. Remember the general structure of G̃

G̃ =

(
GR GK

0 GA

)
. (4.46)

On the diagonal we recover the standard noninteracting retarded and advanced Green’s functions
damped by weak disorder that can be derived using perturbation theory (see section (2.1)). They
can be obtained from equation (2.7) by setting sign(ǫ) = 1 for the retarded one and to −1 for
the advanced one. It is also easy to verify that the Keldysh entry of equation (4.45) fulfills the
relation GK(ǫ, p) = F (ǫ)(GR(ǫ, p) − GA(ǫ, p)). There remains the integration over ǫp. For the
retarded component we find9

i

π

∫ ∞

−ǫF
dǫp

1

ǫ− ǫp + i
2τ

= 1 (4.47)

and for the advanced component we get in the same way −1. For the Keldysh component we
note that 1/τ is very small compared to ǫF (remember the assumption ǫF τ ≫ 1) which justifies

i

π

∫ ∞

−ǫF
dǫp

iF (ǫ)/τ

(ǫ− ǫp)2 + 1/4τ2
=
i

π

∫ ∞

−ǫF
dǫp 2πF (ǫ)δ(ǫ− ǫp) = 2F (ǫ) (4.48)

Thus we proved that the right hand side and the left hand side of equation (4.43) are identical
and that the space independent saddle point solution for Q is given by the matrices in equation
(4.42).

Note that Λ solves equation (4.43) for any function F (ǫ). This is understandable since
any distribution function is allowed for noninteracting electrons. In [17] it is discussed how
interaction effects drive the system towards the equilibrium distribution.

The entries of the matrices in equation (4.42) might look familiar to persons who already
worked with the quasiclassical Green’s function g. Λ is nothing else but the quasiclassical Green’s
function for non–interacting electrons in a weakly disordered system. A possible derivation of
the quasiclassical Green’s function is given in [42], [43] and [44].

As already mentioned earlier it suffices for our purposes to solve the path integral over Q̃ in
saddle point approximation. However let us shortly comment on the corrections to the saddle
point solution.

9The real part vanishes if one interprets the integral as principal value integral.
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Fluctuations of the Q-fields

At the saddle point the next order correction for the action is quadratic.

iS[Q̃] = iS[Q̃SP ] + iS2[Q̃, δQ̃] + O
(
δQ̃3

)
(4.49)

The terms proportional to δQ̃2 are

iS2[Q̃, δQ̃] = −πν3

4τ
Tr
{
δQ̃
}
+

1

8τ2
Tr
[
G̃(x, y)δQ̃(y, y′)G̃(y′, y′′)δQ̃(y′′, x′)

]
. (4.50)

These fluctuations lead to a renormalization of the diffusion constant (see chapter 5 of [36])

D = D0

(
1 − 1

πνd

∫
ddq

(2π)d
1

D0q2 − iω

)
(4.51)

where d indicates the quasi dimension. The correction term leads to a reduction of the diffusion
constant and hence of the conductivity. This is the so called weak localization.10 Additionally
taking into account a magnetic field one can suppress this effect as one destroys the interference
of time reversed closed paths that lead to the localization of the wavefunction. Experimentally
one finds a decrease in the magneto resistance while increasing the magnetic field. Already very
low magnetic fields suppress the effect of weak localization. More details about weak localization
can be found in [46], [47] and [48].

10We are interested here in good metals far from localization where the weak localization correction is small.
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Chapter 5

Interacting Electrons

In this chapter we want to discuss the treatment of electron–electron interactions in the coherent
state path integral formalism.1 We take into account the spin of the electrons but neglect
possible disorder. The combined problem of interactions and disorder will be discussed in the
next chapter.

Let us start quite generally with

Sint[ψ,ψ
∗] = −1

2

∑

s1,s2

∫
dx1...

∫
dx4 V (x1 − x2, x3 − x2, x4 − x1) ψ

∗
s1(x1)ψ

∗
s2(x2)ψs2(x3)ψs1(x4).

(5.1)

Sint describes a general two–particle interaction that is translationally invariant in space and
time 2 where V is the interaction potential and the indices s1 and s2 at the Grassmann fields
denote the spin variables. For our purposes it is sufficient to select two areas in phase space
in order to describe the low energy physics (close to the Fermi surface) of our problem. These
two different kinds of scattering events which are sometimes referred to as small angle and large
angle scattering of a particle hole pair are depicted in figure (5.1). The white spots symbolize
the holes whereas the black spots represent the electrons.

q

p

p’

q

p’

p

Figure 5.1: Small angle and large angle scattering shown in k-space
(the big circle symbolizes the Fermi sphere)

1See [49], [50].
2 Remember x = (r, t).
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There exists a third low energy process which is called 2kF –scattering of a particle–hole pair.
It is common to assume the presence of a small magnetic field which introduces a ’mass term’ 3

that kills the contribution of the so called Cooper channel. Hence we just assume the presence of
a small magnetic field and restrict ourselves to small and large angle scattering. In momentum
space one has

Sint[ψ,ψ
∗] = −1

2

∑

s1,s2,s3,s4

∑

p,p′

∑

q(small)

(
V1 δs1s4 δs2s3 ψ

∗
s1(p)ψ

∗
s2(p

′ + q)ψs3(p
′)ψs4(p+ q)

+ V2 δs1s3 δs2s4 ψ
∗
s1(p)ψ

∗
s2(p

′ + q)ψs4(p+ q)ψs3(p
′)

)
.

(5.2)

One can assume that for the range of momenta, we are considering, the interaction potential
V can be approximated by two different constants V1 and V2. The sum over q is only over
small momenta. This ensures that the two processes cover different regions in phase space. The
processes are drawn as Feynman diagrams in figure (5.2).

S1

S4

p+q 

S3

1V

p’+q 
S2

p p’ 

S1

S4 S2

p+q p’+q 

S3

.

p’ p 

2V

Figure 5.2: Small angle and large angle scattering shown as Feynman diagrams

This picture is identical to the one we have drawn in section (2.2.3) where we discussed the
two lowest order diagrams that appear in perturbation theory. Hence we know what is behind
V1 and V2 (see equation (2.37)). Setting up an action S with these elementary processes which
appear in the exponential of the generating function Z[J, J̄ ] is thus an attempt to take into
account these processes in infinite order.

As in the case of disorder (see previous chapter) we encounter four Fermion terms which are
disturbing as the action is no longer quadratic in the Grassmann fields. Also here we introduce
auxiliary fields in order to cure the problem. Let us turn to coordinate space as we want to
determine the form of Sint on the Keldysh contour.4

3A discussion can be found in [29].
4Constant interactions in momentum space turn into point like interactions in coordinate space.
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Sint[ψ,ψ
∗] = −1

2

∑

s1..s4

∫
dx

∫
dx′
(
V1 δs1s4 δs2s3δ(x− x′) ψ∗

s1(x)ψ
∗
s2(x

′)ψs3(x
′)ψs4(x)

+ V2 δs1s3 δs2s4δ(x− x′) ψ∗
s1(x)ψ

∗
s2(x

′)ψs4(x)ψs3(x
′)

)

(5.3)

which reads after interchanging the last two Grassmann variables in the second term (remember
ψaψb = −ψbψa) and performing the x′ integral:

Sint[ψ,ψ
∗] = −1

2

∑

s1...s4

∫
dx

(
V1 δs1s4 δs2s3 − V2 δs1s3 δs2s4

)
ψ∗
s1(x)ψ

∗
s2(x)ψs3(x)ψs4(x) (5.4)

Next we use the identity

δs1s3 δs2s4 =
1

2
δs1s4 δs2s3 +

1

2
σs1s4 σs2s3 (5.5)

which allows us to write the interaction in the form

Sint[ψ,ψ
∗] = −1

2

∑

s1..s4

∫
dx

([
V1 −

V2

2

]
δs1s4δs2s3 +

[
−V2

2

]
σs1s4σs2s3

)
ψ∗
s1(x)ψ

∗
s2(x)ψs3(x)ψs4(x).

(5.6)
We introduce the singlet and triplet amplitudes5

Vs = V1 −
V2

2
and Vt = −V2

2
(5.7)

and rearrange the ψ’s forming charge density ρ(x) and spin density sn(x)

Sint[ψ,ψ
∗] = −1

2

∫
dx

([∑

s1

ψ∗
s1(x)ψs1(x)

]
Vs

[∑

s2

ψ∗
s2(x)ψs2(x)

]

+

[ ∑

s1,s4

ψ∗
s1(x)σs1s4ψs4(x)

]
Vt

[ ∑

s2,s3

ψ∗
s2(x)σs2s3ψs3(x)

]) (5.8)

where we used ψ∗
aψb = −ψbψ∗

a. We define

ρ(x) =
∑

s

ψ∗
s(x)ψs(x) sn(x) =

∑

s1,s2

ψ∗
s1(x)σ

n
s1s2ψs2(x) for n = x, y, z. (5.9)

Then the interaction term reads

5In the end we will go over to the more general amplitudes Γs and Γt which we introduced in section (2.2.4).
Here however we stick to the notation with V ’s as it is more common.
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Sint[ψ,ψ
∗] = −1

2

∫
dx

(
ρ(x) Vs ρ(x) +~s(x) Vt ~s(x)

)
. (5.10)

So far nothing has happened apart from writing the action using densities. As next step we
rewrite the four Fermion(=two density) terms in the equation above using Hubbard–Stratonovich–
Transformations. This brings the fermionic problem to a Gaussian form at the price of the
complication caused by the appearance of some new fields.

5.1 Introduction of the fields φ and ~B

Let us begin with the introduction of a scalar field φ(x) which couples to the charge density
ρ(x).

exp

[
−1

2
ρ Vs ρ

]
=

1

Nφ

∫
Dφ exp

[
−e

2

2
φ V −1

s φ+ ieφ ρ

]
(5.11)

where e is the elementary charge and the normalization constant

Nφ =

∫
Dφ exp

[
−e

2

2
φ V −1

s φ

]
. (5.12)

We used the symbolic expressions

φ V −1
s φ =

∫
dx

∫
dx′φ(x′) V −1

s (x, x′) φ(x) (5.13)

φ ρ =

∫
dx φ(x) ρ(x) (5.14)

In this notation the inverse function is understood as an integral kernel inverse to the corre-
sponding bare singlet interaction.

∫
dx1V

−1
s (x, x1)Vs(x1, x

′) = δ(x− x′) (5.15)

In our case Vs(x1, x
′) was just Vs δ(x1 − x′). In the following we will write Vs(x, x

′). On the
Keldysh contour equation (5.10) with the generalized interactions reads:

Sint[ψ,ψ
∗] = −1

2

∫

C
dt

∫
dr

∫

C
dt′
∫
dr′
(
ρ(r, t) Vs(r, t, r

′, t′) ρ(r′, t′)+~s(r, t) Vt(r, t, r
′, t′) ~s(r′, t′)

)

(5.16)
Like for ψ’s we introduce a doublet notation for the densities:

ρ =

(
ρ1

ρ2

)
and sn =

(
sn1
sn2

)
(5.17)

for n = x, y, z. ρ1 and sn1 are on the upper branch and ρ2 and sn2 are on the lower branch.

Sint[ψ,ψ
∗] = −1

2

∫
dx

∫
dx′
(
ρT (x)

[
σzV̆s(x, x

′)σz
]
ρ(x′) +

∑

n

(sn)T (x)
[
σzV̆t(x, x

′)σz
]
sn(x′)

)

(5.18)
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The σz matrices on both sides of V̆s(x, x
′) and V̆t(x, x

′) are due to the signs that we acquire by
splitting up the Keldysh contour. V̆s is the matrix

V̆s =

(
V T (x, x′) V <(x, x′)
V >(x, x′) V T̄ (x, x′)

)
(5.19)

where entries are defined by the following expectation values

V >(x, x′) = −ie2
〈
φ1(x)φ2(x

′)
〉
φ

(5.20)

V <(x, x′) = −ie2
〈
φ2(x

′)φ1(x)
〉
φ

(5.21)

V T (x, x′) = Θ(t− t′)V >(x, x′) + Θ(t′ − t)V <(x, x′) (5.22)

V T̄ (x, x′) = Θ(t− t′)V <(x, x′) + Θ(t′ − t)V >(x, x′) (5.23)

Compare (5.19) to equation (3.50) for the electron Green’s function. The reasoning is analogous
to the one presented in section (3.5) hence we will not repeat it here. Of course we encounter
the same time structure for the triplet interaction

V̆t =

(
V T
t (x, x′) V <

t (x, x′)
V >
t (x, x′) V T̄

t (x, x′)

)
(5.24)

with

V >
t (x, x′) = −iµ2

B

〈
Bn

1 (x)Bn
2 (x′)

〉
Bn (5.25)

V <
t (x, x′) = −iµ2

B

〈
Bn

2 (x′)Bn
1 (x)

〉
Bn (5.26)

V T
t (x, x′) = Θ(t− t′)V >

t (x, x′) + Θ(t′ − t)V <
t (x, x′) (5.27)

V T̄
t (x, x′) = Θ(t− t′)V <

t (x, x′) + Θ(t′ − t)V >
t (x, x′) (5.28)

for n = x, y, z. µB is the Bohr magneton.

Remark that we have four different angled brackets here:
〈
...
〉
φ

and
〈
...
〉
Bn where n = x, y, z.

They belong to the four new path integrals that we obtain by introducing the auxiliary fields φ
and ~B = (Bx, By, Bz)T (compare to equation (4.3) of the disorder chapter). We denote these
auxiliary fields by

Φ =

(
φ1

φ2

)
and Bn =

(
Bn

1

Bn
2

)
(5.29)

The fields φα and Bn
α are real. For the singlet part we have then
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eiSint[Φ] = exp

[
− i

2

∫
dx

∫
dx′
[
ρT (x)σz

]
V̆s(x, x

′)
[
σzρ(x

′)
]]

=
1

Nφ

∫
DΦ exp

[
ie2

2

∫
dx ΦT (x)

[
σzV

−1
s (x)

]
Φ(x) + ie

[
ρT (x)σz

]
Φ(x)

]

(5.30)

with a normalization constant Nφ = Det[iσzV
−1
s ]1/2.

[
σzV

−1
s (x)

]
is the inverse operator of V̆s.

For the triplet part we have

eiSint[ ~B] = exp

[
− i

2

∑

n

∫
dx

∫
dx′
[
(sn)T (x)σz

]
V̆t(x, x

′)
[
σzs

n(x′)
]]

=
1

NB

∫
D ~B exp

[
iµ2
B

2

∑

n

∫
dx (Bn)T (x)

[
σzV

−1
t (x)

]
Bn(x) + iµB

[
(sn)T (x)σz

]
Bn(x)

]

(5.31)

where D ~B =
∫
DBx DBy DBz and NB = Det[iσzV

−1
t ]3/2. It is convenient to translate back the

charge and spin density operators ρ and sn according to equation (5.9) into products of ψ’s and
ψ∗’s since we want to add the action for the free electrons in order to have the complete action
describing an interacting electron gas. Therefore we write

ρT (x)σzΦ(x) = ψ1(x)
∗φ1(x)ψ1(x) − ψ2(x)

∗φ2(x)ψ2(x)

= Ψ̄(x)

(
φ1(x) 0

0 φ2(x)

)
Ψ(x)

= Ψ̄(x) φα(x)γα Ψ(x)

(5.32)

where 6

γ1 =

(
1 0
0 0

)
and γ2 =

(
0 0
0 1

)
. (5.33)

The minus sign coming from σz is absorbed in Ψ̄. In the same way

(sn)T (x)σzB
n(x) =

∑

s1,s2

Ψ̄s1(x) σ
n
s1s2 B

n
αγ

α Ψs2(x). (5.34)

Let us now finally add the action of the free electrons plus the source field terms (see equation
(3.46)).

6We use Einstein sum convention φαγα =
P

α φαγα.
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5.2 Complete action and generating functional

In equation (3.46) we have the action of spinless electrons. The generalization in order to include
the spin degree of freedom is straightforward. We simply double the space from ψ → ψ↑, ψ↓ and
ψ∗ → ψ∗

↑, ψ
∗
↓.

Ψ =





ψ1,↑
ψ2,↑
ψ1,↓
ψ2,↓



 and Ψ̂ =





ψ∗
1,↑

−ψ∗
2,↑

ψ∗
1,↓

−ψ∗
2,↓





T

(5.35)

and the sources

J =





J1,↑
J2,↑
J1,↓
J2,↓



 and Ĵ =





J∗
1,↑

−J∗
2,↑

J∗
1,↓

−J∗
2,↓





T

(5.36)

The action for free electrons then reads

S[Ψ, Ψ̂, J, Ĵ ] =

∫
dx Ψ̂(x) Ĝ−1

0 Ψ(x) +

∫
dx Ĵ(x)Ψ(x) + Ψ̂(x) J(x) (5.37)

where Ĝ−1
0 = G−1

0 I4 and I4 is the unity matrix in the four dimensional vector space. From now
on we will always indicate which unity matrix is meant by either writing I2 or I4. The lower
index indicates the dimensionality of the vector space. A quantity O in the spin × Keldysh–
space (dimension 2 × 2 = 4) is marked in general by a hat: Ô . Although we already used the
symbols Ψ and J in equation (3.44) and (3.45) we believe that they can not be confused with
ones in equation (5.35) and (5.36), as Ψ and J appear always combined with quantities having
a ’hat’ (including spin) or a ’bar’ (neglecting spin)7.

Combining (5.30), (5.31) and (5.37), we obtain the complete action for our interacting elec-
tron gas at low energies.

S[Ψ, Ψ̂,Φ, ~B] =

∫
dx Ψ̂(x)

[(
i
∂

∂t
+

∆

2m

)
I4 + I2 ⊗ eφα(x)γα + ~σ ⊗ µB ~Bα(x)γα

]
Ψ(x)

+
e2

2

∫
dx ΦT (x) σzV

−1
0,s (x)Φ(x) +

µ2
B

2

∫
dx
∑

n

(Bn)T (x) σzV
−1
0,t (x)Bn(x)

+

∫
dx
(
Ĵ(x)Ψ(x) + Ψ̂J(x)

)

(5.38)
We changed the notation for V −1

s and V −1
t to V −1

0,s and V −1
0,t meaning that these operators are

the inverse of the respective static short range interactions Vs and Vt. Later, when we will take

7Ĵ or J̄ for example
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into account dynamical screening we will use the notation V −1
s and V −1

t for the inverse of the
dynamically screened interactions Vs(q, ω) and Vt(q, ω).

The first 2 × 2 matrix gives the structure in spin space whereas the second 2 × 2 matrix
determines the structure in Keldysh space and ⊗ indicates the direct product. The linear term
in the fields explicitly reads

Fφ, ~B =





φ1 +Bz
1 0 Bx

1 − iBy
1 0

0 φ2 +Bz
2 0 Bx

2 − iBy
2

Bx
1 + iBy

1 0 φ1 −Bz
1 0

0 Bx
2 + iBy

2 φ2 −Bz
2



 (5.39)

where we set e = µB = 1. We will use this convention throughout the whole work and only
explicitly write e or µB in final results. The generating functional is

Z[J, Ĵ ] =

∫
DΨDΨ̂

∫
DΦ

∫
D ~B exp

(
iS[Ψ, Ψ̂, J, Ĵ ,Φ, ~B]

)
. (5.40)

The action S is quadratic in the Fermion fields ψ and ψ∗ at the price of eight new path integrals
over the auxiliary fields φi, B

x
i , B

y
i and Bz

i (i=1, 2). Before integrating out the electrons exactly
we apply the Keldysh rotation L.

Keldysh rotation

The Keldysh rotation matrix L was a 2 × 2 matrix. In our treatment including spin we
encounter however also 4 × 4 matrices. As we only want to rotate in Keldysh space we add a
unity matrix I2 in spin space

Ls = I2 ⊗ L. (5.41)

We begin with the rotation of the coupling term

∫
dx Ψ̂(x)

[
I2 ⊗ φα(x)γα + ~σ ⊗ ~Bα(x)γα

]
Ψ(x). (5.42)

Introducing Ls L
−1
s = I4 and setting LsΨ = Ψ̃ and Ψ̂L−1

s =
˜̂
Ψ we obtain8

∫
dx

˜̂
Ψ(x)

[
I2 ⊗ φα(x)LγαL−1 + ~σ ⊗ ~Bα(x)LγαL−1

]
Ψ̃(x) (5.43)

where we used

Ls(M ⊗ γα)L−1
s = I2 ⊗ L (M ⊗ γα) I2 ⊗ L−1 = M ⊗ LγαL−1. (5.44)

M could be an arbitrary 2 × 2 matrix. By construction the Keldysh rotation has no effect on
the spin space structure. Thus we can focus on the Keldysh structure. Now

Lγ1L−1 =
1

2

(
1 1
1 1

)
=

1

2

[
I2 + σx

]
(5.45)

and

Lγ2L−1 =
1

2

(
1 −1
−1 1

)
=

1

2

[
I2 − σx

]
. (5.46)

8The convention is again that quantities having a tilde are in the rotated representation.
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Thus we have

φα Lγ
αL−1 =

1

2

(
φ1 + φ2 φ1 − φ2

φ1 − φ2 φ1 + φ2

)
. (5.47)

We define the rotated fields9

Φ̃ =

(
φ̃1

φ̃2

)
= LΦ =

1

2

(
φ1 + φ2

φ1 − φ2

)
. (5.48)

and the rotated matrices

γ̃1 =

(
1 0
0 1

)
and γ̃2 =

(
0 1
1 0

)
. (5.49)

For the components of ~B we can do the same

B̃n =

(
B̃n

1

B̃n
2

)
= LBn =

1

2

(
Bn

1 +Bn
2

Bn
1 −Bn

2

)
. (5.50)

In this way the coupling term keeps its form
∫
dx

˜̂
Ψ(x)

[
I2 ⊗ φ̃α(x)γ̃α + ~σ ⊗ ~̃Bα(x)γ̃α

]
Ψ̃(x). (5.51)

The interaction matrices V̂s and V̂t in the rotated representation read

Ṽ = L V̂i L
−1 =

(
V K
i V R

i

V A
i 0

)
for i = s, t (5.52)

where

V R(x, x′) = V T (x, x′) − V <(x, x′) = V >(x, x′) − V T̄ (x, x′) (5.53)

V A(x, x′) = V T (x, x′) − V >(x, x′) = V <(x, x′) − V T̄ (x, x′) (5.54)

V K(x, x′) = V T (x, x′) + V T̄ (x, x′) = V >(x, x′) + V <(x, x′) (5.55)

and V K(q, ω) = B(ω)[V R(q, ω)− V A(q, ω)]. For the expressions that are quadratic in the fields
we remark that

L σzV
−1(x) L−1 = σxV

−1(x). (5.56)

In summary we obtain for the action in the rotated representation:

S[Ψ̃,
˜̂
Ψ, Φ̃, ~̃B] =

∫
dx

˜̂
Ψ(x)

˜̂
G−1[Φ̃, ~̃B] Ψ̃(x) +

∫
dx
(

˜̂
J(x)Ψ̃(x) +

˜̂
ΨJ̃(x)

)

+

∫
dx Φ̃T (x) σxV

−1
0,s (x)Φ̃(x) +

∫
dx
∑

n

B̃n(x) σxV
−1
0,t (x)B̃n(x).

(5.57)

9Note that our definition is different from [19] and follows the convention of [17].
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where

˜̂
G−1[Φ̃, ~̃B] =

[(
i
∂

∂t
+

∆

2m

)
I4 + I2 ⊗ φ̃α(x)γ̃α + ~σ ⊗ ~̃Bα(x)γ̃α

]
(5.58)

Remember our convention for the notation. The tilde indicates that we are in the Keldysh
rotated representation and the additional hat indicates that we are dealing with a quantity of
the four dimensional vector space.

Integrating out the Fermions

After the introduction of Φ and ~B we can calculate the path integral over the Fermions
exactly because the action is Gaussian in Ψ and Ψ̂.

The generating functional in the rotated representation reads

Z[J̃ ,
˜̂
J ] =

∫
DΨ̃D ˜̂

Ψ

∫
DΦ̃

∫
D ~̃B exp

(
iS[Ψ̃,

˜̂
Ψ, J̃ ,

˜̂
J, Φ̃, ~̃B]

)
(5.59)

where the action is given in equation (5.57). Integrating out the Fermions yields

Z[J̃ ,
˜̂
J ] =

∫
DΦ̃

∫
D ~̃B Det

[ ˜̂
G−1[Φ̃, ~̃B]

]
exp

(
i

∫
dx

∫
dx′ ˜̂J(x)

˜̂
G[Φ̃, ~̃B](x, x′)J̃(x′)

+ i

∫
dx Φ̃T (x) σxV

−1
0,s (x)Φ̃(x) + i

∫
dx
∑

n

(B̃n)T (x) σxV
−1
0,t (x)B̃n(x)

) (5.60)

where

˜̂
G[Φ̃, ~̃B] =

[(
i
∂

∂t
+

∆

2m

)
I4 + I2 ⊗ φ̃α(x)γ̃α + ~σ ⊗ ~̃Bα(x)γ̃α

]−1

. (5.61)

Using the identity Det(A) = exp(Tr ln(A)) we can write the function under the path integrals
as pure exponential

Z[J̃ ,
˜̂
J ] =

∫
DΦ̃

∫
D ~̃B exp

(
iS[J̃ ,

˜̂
J, Φ̃, ~̃B]

)
. (5.62)

where the effective action is

S[J̃ ,
˜̂
J, Φ̃, ~̃B] = −iTr ln

[
˜̂
G−1[Φ̃, ~̃B]

]
+

∫
dx

∫
dx′ ˜̂J(x)

˜̂
G[Φ̃, ~̃B](x, x′)J̃(x′)

+

∫
dx Φ̃T (x) σxV

−1
0,s (x)Φ̃(x) +

∫
dx
∑

n

(B̃n)T (x) σxV
−1
0,t (x)B̃n(x).

(5.63)

Again like in the previous chapter where we discussed the treatment of disorder we determine
the saddle point of the action. However in order to describe Coulomb Blockade effects it does
not suffice to evaluate the path integrals over the auxiliary fields Φ and ~B by taking their value
at the saddle point. In addition we have to take into account the field fluctuations (quadratic
corrections) around the saddle point.
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5.3 Determination of the saddle point

We will determine the saddle point in the rotated representation. The saddle point is defined
by

δ

δφ̃α(x)
S[Φ̃, ~̃B, J̃ = 0] = 0 and

δ

δB̃n
α(x)

S[Φ̃, ~̃B, J̃ = 0] = 0. (5.64)

In order to calculate the derivatives we write

φ̃α = φ̃SPα + δφ̃α B̃n
α =

(
B̃SP
β

)n
+δB̃n

α (5.65)

(
B̃SP
β

)n
is the n–th component of the saddle point field B̃SP

β . n is either x, y or z. The quadratic
term in the field φ is

Sφ =
1

2

∫
dx (Φ̃SP + δΦ̃)(x)

[
σx V

−1
0 (x)

]
(Φ̃SP + δΦ̃)(x). (5.66)

So the term proportional to δφα(x) is

δSφ

δφ̃α(x)
=

[
[ σx V

−1
0,s (x)

]
Φ̃SP (x)

]α
. (5.67)

In the same way we obtain from the quadratic part SB of the action in ~̃B for the different
components

δSB

δB̃n
α(x)

=

[
[ σx V

−1
0,t (x)

](
B̃SP

)n
(x)

]α
. (5.68)

The other term we have to look at is

− iTr ln
[ ˜̂
G−1

[
Φ̃, ~̃B]

]
. (5.69)

The inverse Green’s function reads:

˜̂
G[Φ̃, ~̃B]−1 =

[
G−1

0 I4 + I2 ⊗ φ̃α(x)γ̃α + ~σ ⊗ ~̃Bα(x)γ̃α
]

=

[
G−1

0 I4 + I2 ⊗ φ̃SPα (x)γ̃α + ~σ ⊗ ~̃BSP
α (x)γ̃α

]
+I2 ⊗ δφ̃αγ̃

α + ~σ ⊗ δB̃αγ̃
α

=
˜̂
G[Φ̃SP , B̃SP ]−1(x) + I2 ⊗ δφ̃αγ̃

α + ~σ ⊗ δB̃αγ̃
α.

(5.70)

We get to first order in the fields:

˜̂
G−1[Φ̃, ~̃B] =

˜̂
G[Φ̃SP , B̃SP ]−1(x)

[
I4+

∫
dx′ ˜̂GSP [Φ̃SP , B̃SP ](x, x′)

[
I2⊗δφ̃α(x′)γ̃α+~σ⊗δ ~̃Bα(x′)γ̃α

]]
.

(5.71)
In the following let us abbreviate

˜̂
G[Φ̃SP , B̃SP ]−1(x) = (

˜̂
GSP )−1(x) and

˜̂
GSP [Φ̃SP , B̃SP ](x, x′) =

˜̂
GSP (x, x′). (5.72)
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Then we have

ln
˜̂
G−1[Φ̃, ~̃B] ≈

[
ln(

˜̂
GSP )−1 +

∫
dx′ ˜̂

GSP (x, x′)
[
I2 ⊗ δφ̃α(x′)γ̃α + ~σ ⊗ δ ~̃Bα(x′)γ̃α

]]
(5.73)

where we used ln(AB) = ln(A)+ln(B) and ln(1+A) = A+O
(
A2
)
. Hence the partial derivatives

with respect to the fields are

δ

δφ̃α(x)

(
−iTr ln

[
G[Φ̃, ~̃B]−1

])
= tr

[
−iG̃SP (x, x)

[
I2 ⊗ γ̃α

]]
(5.74)

and

δ

δB̃n
α(x)

(
−iTr ln

[
˜̂
G[Φ̃, ~̃B]−1

])
= tr

[
−i ˜̂GSP (x, x)

[
σn ⊗ γ̃α

]]
(5.75)

where n = x, y, z. We do not have to consider the term
∫
dx
∫
dx′ ˜̂J(x) G̃[Φ̃, ~̃B](x, x′)J̃(x′) of

equation (5.63) as the functional derivatives are taken at J̃ = 0. So we can already write down
the saddle point equations for the fields

[
[ σ1 V

−1
0,s (x)

]
Φ̃SP (x)

]α
=

1

e
tr

[
i
˜̂
GSP (x, x)

[
I2 ⊗ γα

]]
(5.76)

and for the different components of the magnetic field

[
[ σ1 V

−1
0,t (x)

](
B̃SP

)n
(x)

]α
=

1

µB
tr

[
i
˜̂
GSP (x, x)

[
σn ⊗ γα

]]
(5.77)

We added the constants e and µB in theses final results. For the scalar field φ̃ equation (5.76)
is nothing else but the well known Poisson equation from electrodynamics. On the right side
we have a sum of Green’s functions taken at equal points in space which corresponds to a
charge density.10 In the ordinary Poisson equation one finds on the left side ∆/4π where ∆
is the Laplace operator. Here however we assumed a special form of short range interaction
V −1

0,s (x) = 1
Vs

.

The charge density on the right side only appears because we neglected the positive charge
background. In the Keldysh formalism one does not have to take it into account as the contri-
butions on the upper and lower branch cancel each other.

For the components of the magnetic field we find a corresponding equation. Here we find on
the right side a spin density and on the left side the inverse operator of the triplet interaction.

We will show in the following section that Φ̃SP = 0 and ~̃BSP = 0 is a self consistent solution
of the saddle point equations.

10One might wonder if the unit is correct because we have 1/e instead of e in front of the density (see [19]). The
answer is: The equation is correct due to the different unit of V −1

0,s . Our saddle point equations can be directly
compared to the ones in [42].
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5.4 Solution of the saddle point equations

Like for the saddle point equation of Q we consider a translationally invariant system. We will
show that

Φ̃SP = 0 and ~̃BSP = 0 (5.78)

is a solution of the saddle point equations. Let us begin with the right hand side of the equations
(5.76) and (5.77). We denote the entries of the Green’s function by

˜̂
GSP (x, x′) =





GR↑↑ GK↑↑ GR↑↓ GK↑↓

0 GA↑↑ 0 GA↑↓

GR↓↑ GK↓↑ GR↓↓ GK↓↓

0 GA↓↑ 0 GA↓↓




. (5.79)

We skip the SP for the entries otherwise the notation would be overloaded. One obtains for the
four different traces that contain γ̃1

tr

[
˜̂
GSP (x, x)

[
I2 ⊗ γ̃1

]]
=
[
GR↑↑ +GA↑↑ +GR↓↓ +GA↓↓

]
(5.80)

tr

[
˜̂
GSP (x, x)

[
σx ⊗ γ̃1

]]
=
[
GR↑↓ +GA↑↓ +GR↓↑ +GA↓↑

]
(5.81)

tr

[
˜̂
GSP (x, x)

[
σy ⊗ γ̃1

]]
= i
[
(GR↑↓ +GA↑↓) − (GR↓↑ +GA↓↑)

]
(5.82)

tr

[
˜̂
GSP (x, x)

[
σz ⊗ γ̃1

]]
=
[
(GR↑↑ +GA↑↑) − (GR↓↓ +GA↓↓)

]
(5.83)

and for the other four that contain γ̃2

tr

[
˜̂
GSP (x, x)

[
I2 ⊗ γ̃2

]]
=
[
GK↑↑ +GK↓↓

]
tr

[
˜̂
GSP (x, x)

[
σx ⊗ γ̃2

]]
=
[
GK↑↓ +GK↓↑

]

tr

[
˜̂
GSP (x, x)

[
σy ⊗ γ̃2

]]
= i
[
GK↑↓ −GK↓↑

]
tr

[
˜̂
GSP (x, x)

[
σz ⊗ γ̃2

]]
=
[
GK↑↑ −GK↓↓

]

There exists a notation which allows to write all this in a convenient form. Taking different
linear combinations of the components we go over to the singlet/triplet representation.

G = G0δss′ + ~G · ~σss′ (5.84)

where G0 and ~G are defined as

G0 :=
1

2

∑

s

Gss ~G :=
1

2

∑

ss′

~σss′Gs′s. (5.85)
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More explicitly

G0 =
1

2
(G↑↑ +G↓↓) ~G =

1

2

∑

ss′




σxss′Gs′s
σyss′Gs′s
σzss′Gs′s



 =
1

2




G↑↓ +G↓↑
iG↑↓ − iG↓↑
G↑↑ −G↓↓



 =:




Gx
Gy
Gz



 . (5.86)

G0 behaves like a scalar under rotations whereas ~G behaves like a coordinate vector. Comparing
the eight equations above with our definitions in equation (5.86) we see that we exactly encounter
these combinations. The left hand side of (5.76) and (5.77) is easily evaluated and we obtain

φ̃SP1 (x) =
2iVs
e

GK,SP0 (x, x) (5.87)

and

φ̃SP2 (x) =
2iVs
e

[
GR,SP0 (x, x) +GA,SP0 (x, x)

]
(5.88)

for the components of Φ and

~̃BSP
1 (x) =

2iVt
µB

~GK,SP (x, x) (5.89)

~̃BSP
2 (x) =

2iVt
µB

[
~GR,SP (x, x) + ~GA,SP (x, x)

]
(5.90)

for the components of ~B. Now we are at a stage where we can verify, that the solution of these

saddle point equations is given by (5.78). For Φ̃SP = 0, ~̃BSP = 0 we know that our Green’s
function is nothing else but the Green’s function of non–interacting electrons.

˜̂
GSP [Φ̃SP = 0, ~̃BSP = 0](ǫ, p) =





1
ǫ−ǫp+iη

2iηF (ǫ)
(ǫ−ǫp)2+η2 0 0

0 1
ǫ−ǫp−iη 0 0

0 0 1
ǫ−ǫp+iη

2iηF (ǫ)
(ǫ−ǫp)2+η2

0 0 0 1
ǫ−ǫp−iη




. (5.91)

where η = 0+ and ǫp = p2/2m. The only difference compared to (4.45) is the replacement of 1
2τ

by η since we have no disorder potential in this section. There is no mechanism that could flip
the spin. Hence all the components G↑↓ and G↓↑ are zero (→ Gx = Gy = 0)! Furthermore there
is no mechanism that lifts the degeneracy of G↑↑ and G↓↓ one has G↑↑ = G↓↓ and thus Gz = 0.

Therefore the right hand sides of (5.89) and (5.90) are zero and we conclude that ~BSP = 0 is a
self–consistent solution. Let us continue with equation (5.87). We have

GK,SP0 (x, x) =

∫
dǫ

2π

∫
d3p

(2π)3
GK,SP0 (ǫ, p). (5.92)

For the p–integration we can take our result from equation (4.48). As F (ǫ) is an odd function
in ǫ, the ǫ–integration gives 0.

For the expression GR,SP0 (x, x) + GA,SP0 (x, x) we refer the reader to equation (4.47). The
expression vanishes already after the p–integration as it is proportional to 1−1 = 0. In summary
we come to the conclusion that also the right hand sides of (5.87) and (5.88) vanish. Hence
ΦSP = 0 is a solution of (5.87) and (5.88).
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5.5 Fluctuations

In this section we discuss the Gaussian fluctuations or mathematically spoken the quadratic
corrections to the saddle point. Remember that the linear order vanishes at the saddle point.
We take the action (5.57) in the rotated representation and calculate the second variational
derivatives. We define

δφ̃α := (φ̃α − φ̃SPα ) δB̃n
α :=

(
B̃n
α −

(
B̃SP
α

)n)
. (5.93)

Let us begin with the quadratic term in Φ̃ in equation (5.60)

S2,φ =
1

2

∫
dx

∫
dx′

δ2Sφ[Φ̃]

δφ̃α(x)δφ̃α′(x′)

∣∣∣∣
ΦSP

δφ̃α(x)δφ̃α′(x′). (5.94)

In linear order we found
δSφ[Φ̃]

δφ̃α(x)
=

[
[ σx V

−1
0,s (x)

]
Φ̃SP (x)

]α
(5.95)

hence we get for the second derivative

δ2Sφ[Φ̃]

δφ̃α(x) δφ̃α′(x′)
= δ(x− x′)[ σx V

−1
0,s (x)

]α,α′

. (5.96)

For the quadratic terms in equation (5.60) containing the inverse triplet interaction V −1
0,t (x) we

find analogously for the second functional derivative

δ2SB[ ~̃B]

δB̃n
α(x)δB̃m

α′(x′)
= δ(x− x′)

[
σx V

−1
0,t (x)

]α,α′

δn,m (5.97)

Note the additional factor δn,m. The other term we have to look at is

− iTr ln
[
G̃−1

[
Φ̃, ~̃B]

]
. (5.98)

Remember that we set J = 0. Therefore the second term in the first line of equation (5.60)
vanishes. We use the definitions given in (5.72) and begin the calculation with equation (5.73)
adding the second order term

ln
˜̂
G−1[Φ̃, ~̃B] ≈

[
ln(

˜̂
GSP )−1 +

∫
dx′ G̃SP (x, x′)

[
I2 ⊗ δφ̃α(x′)γ̃α + ~σ ⊗ δ ~̃Bα(x′)γ̃α

]

− 1

2

∫
dx′
∫
dx′′

(
˜̂
GSP (x, x′)

[
I2 ⊗ δφ̃α′(x′)γ̃α

′

+ ~σ ⊗ δ ~̃Bα′(x′)γ̃α
′]

˜̂
GSP (x′, x′′)

[
I2 ⊗ δφ̃α(x′′)γ̃α + ~σ ⊗ δ ~̃Bα(x′′)γ̃α

])]

(5.99)

where we used ln(AB) = ln(A)+ ln(B) and ln(1+A) = A−A2/2+O
(
A3
)
. Note the arguments

of the second Green’s function in the quadratic term. We have G̃SP (x′, x′′) and not G̃SP (x, x′′)
as one might think writing down naively the A2 term. This is because A has to be interpreted
as an operator acting on something to its right. We define
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Mα
0 = I2 ⊗ γα Mα

n = σn ⊗ γα (5.100)

for n = x, y, z. Including the trace Tr 11 we obtain for the quadratic term in the fields

− 1

2

∫
dxdx′ tr

[ ˜̂
GSP (x, x′)δφ̃α′(x′)Mα′

0
˜̂
GSP (x′, x)δφ̃α(x)Mα

0

]

− 1

2

∑

n

∫
dxdx′ tr

[ ˜̂
GSP (x, x′)δB̃n

α′(x′)Mα′

n
˜̂
GSP (x′, x)δB̃n

α(x)Mα
n

]
+ mixed terms.

(5.101)

With mixed terms we mean all combinations proportional to δφ̃αδB̃
n
α′ or δB̃n

αδB̃
m
α′ where n 6= m.

We do not to write them down explicitly because they all vanish according to the following simple
argument. Remember that the Green’s function for our situation is given in equation (5.91).

˜̂
GSP (x, x′) =





GR GK 0 0

0 GA 0 0

0 0 GR GK

0 0 0 GA




= I2 ⊗

(
GR GK

0 GA

)
=: I2 ⊗ G̃0 (5.102)

Hence the general form of a mixed term is

tr
[
Mα
i

˜̂
GSP Mα′

j
˜̂
GSP

]
(5.103)

where i, j = 0, x, y, z but i 6= j and α, α′ = 1, 2. Let us consider for example i = 0 and j = x, y
or z and evaluate the product

Mα
0

˜̂
GSP Mα′

n
˜̂
GSP = (I2 ⊗ γα)(I2 ⊗ G̃0)(σn ⊗ γα

′

)(I2 ⊗ G̃0)

= (I2 ⊗ γαG̃0)(σn ⊗ γα
′

G̃0) = σn ⊗ γαG̃0γ
α′

G̃0.

(5.104)

For direct products one has tr(A⊗B) = tr(A) tr(B). Therefore we find for arbitrary α and α’

tr (σn ⊗ γαG̃0γ
α′

G̃0) = tr (σn) tr (γαG̃0γ
α′

G̃0) = 0 (5.105)

as the trace of the Pauli matrix σn vanishes. Obviously we obtain zero for any combination as
long as i 6= j because we will find always something proportional to a Pauli matrix in the trace
over the spin space. We conclude that all mixed terms vanish.

So we can turn to the remaining expressions in equation (5.101). Remark that they are
characterized by i = j.

tr
[
Mα
j

˜̂
GSP Mα′

j
˜̂
GSP

]
= tr (I2) tr (γαG̃0 γ

α′

G̃0) = 2 tr
[
γαG̃0 γ

α′

G̃0

]
(5.106)

We define the Polarization function 12

Pα,α
′

(x, x′) := −i tr
[
γαG̃0(x, x

′)γα
′

G̃0(x
′, x)

]
. (5.107)

11which means effectively setting x = x′′, summing over x and summing over the 4 × 4 matric structure.
12It can be shown that P α,α′

coincides with the polarization function of the RPA approximation (clean case).



5.5. FLUCTUATIONS 89

Combining (5.96), (5.97) and (5.101) and using the definition of Pα,α
′
(x, x′) the quadratic cor-

rection to the saddle point reads

S2 =

∫
dx

∫
dx′ Φ̃T (x)

[
σxV

−1
0,s (x)δ(x− x′) + P (x, x′)

]
Φ(x′)

+
∑

n

(B̃n)T (x)

[
σxV

−1
0,t (x)δ(x− x′) + P (x, x′)

]
B̃n(x′)

(5.108)

where we used that δΦ̃ = Φ̃ and δ ~̃B = ~̃B since Φ̃SP = 0 and ~̃BSP = 0. We will not determine
Pα,α

′
(x, x′) in this work as we do not need it for our further calculations (Apart from interactions

we want to include the effect of disorder.). For Pα,α
′
(x, x′) we refer the reader to [19] where the

detailed calculation can be found. One obtains

P (q, ω) =

(
0 PA(q, ω)

PR(q, ω) PK(q, ω)

)
(5.109)

where PA(q, ω) = (PR)∗(q, ω) and PK(q, ω) = coth(βǫ/2)(PR(q, ω) − PA(q, ω)). Thus the
matrix P (q, ω) is determined by PR(q, ω) which is

PR(q, ω) = ν3 +
iω

2π

∫
d3p

(2π)3
GR(p, ǫ)GA(p− q, ǫ− ω). (5.110)

Defining

V −1
s (x, x′) :=

[
σxV

−1
0,s (x)δ(x− x′) + P (x, x′)

]
(5.111)

and

V −1
t (x, x′) :=

[
σxV

−1
0,t (x)δ(x− x′) + P (x, x′)

]
(5.112)

we obtain for the effective quadratic action the compact form

S[Φ̃, ~̃B] = Tr

[
Φ̃T (x) V −1

s (x, x′)Φ̃(x′) +
∑

n

(B̃n)T (x) V −1
t (x, x′)B̃n(x′)

]
. (5.113)

It turns out that the dynamically screened interactions (inverse of (5.111) and (5.112)) in the
singlet and triplet channel corresponds to the standard random phase approximation (RPA) (for
the clean case). See [19] for more information.

In the following chapter where we will take into account disorder and interactions we will
determine a corresponding expression for the quadratic corrections in the action. The dynam-
ically screened interaction in the singlet and triplet channel will turn out to be the diffusive

random phase approximation interactions of equation (2.45).
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Chapter 6

Interaction and Disorder

After the three preceding chapters that were rather technical but provided the necessary math-
ematical tools, let us remind what we are heading for. Our goal was to calculate the DOS
near the Fermi edge of a diffusive quasi one–dimensional wire non perturbatively. In particular
we wanted to study the dependence of the DOS on an external magnetic field which makes it
necessary to take into account the spin of the electrons.

The path integral formulation of the fermionic many–body problem will allow us to reach
this goal. By calculating the necessary path integrals for the generating functional Z[J, Ĵ ] we
perform a summation over an infinite number of diagrams which will lead to a non divergent
result for the DOS.

Before setting up the action for interacting electrons in an diffusive environment let us
repeat the key quantities and how they are connected. According to equation (1.11) the DOS is
connected with the imaginary part of the retarded Green’s function. This can also be expressed
in a different way:

ImGR =
i

2

(
GR −GA

)
=
i

2

(
G> −G<

)
. (6.1)

Taking into account the spin of the electrons explicitly we have to sum the up–spin and down–
spin DOS:

ν(ǫ) = ν↑(ǫ) + ν↓(ǫ) =
i

2πV
∑

p

(
G>↑↑(p, ǫ) −G<↑↑(p, ǫ) +G>↓↓(p, ǫ) −G<↓↓(p, ǫ)

)
. (6.2)

Thus in order to calculate the DOS non perturbatively we need a non perturbative result for the
Green’s functions appearing on the right hand side of the equation above. An elegant method
to determine Green’s functions is the calculation of the generating functional Z of the system
including source fields J and Ĵ that are coupled linearly to the electrons. Then the Green’s
function can be obtained as functional derivative of Z[J, Ĵ ]. We demonstrated this procedure in
section (3.5).

Ok, so let us write down the action S which determines the generating functional:

Z[J, Ĵ ] =
1

NU

∫
DΨ̂

∫
DΨ

∫
DΦ

∫
D ~B

∫
DU eiS[Ψ,Ψ̂,Φ,U, ~B,J,Ĵ ]. (6.3)

In the unrotated representation the action that takes into account disorder and interactions
reads

91
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S[Ψ, Ψ̂,Φ, U, ~B, J, Ĵ ] =

∫
dx Ψ̂(x)Ĝ−1[Φ, ~B, U ](x)Ψ(x) +

∫
dx
(
Ĵ(x)Ψ(x) + Ψ̂J(x)

)

+
e2

2

∫
dx ΦT (x) σzV

−1
0,s (x)Φ(x) +

µ2
B

2

∫
dx
∑

n

(Bn)T (x) σzV
−1
0,t (x)Bn(x)

(6.4)

with

Ĝ−1[Φ, ~B, U ](x) =

(
i
∂

∂t
+

∆

2m

)
I4 + I2 ⊗ eφα(x)γα + ~σ ⊗ µB ~Bα(x)γα + U(r)I4. (6.5)

The first 2×2 matrix gives the structure in spin space whereas the second 2×2 matrix determines
the structure in Keldysh space. For the following steps we set again e = µB = 1 and reinsert
them in our final result.

Remark that we already introduced the fields Φ and ~B that decouple the four Fermion
interaction terms. As next step we perform the disorder averaging (path integral over U(r)) like
it was explained in chapter 4. The decoupling of the appearing quartic fermion terms leads to
a path integral over a 4 × 4 matrix field Q.1 The generating functional is then

Z[J, Ĵ ] =

∫
DΨ̂

∫
DΨ

∫
DΦ

∫
D ~B

∫
DQ̂ eiS[Ψ,Ψ̂,Φ,Q̂, ~B,J,Ĵ ] (6.6)

with the action

S[Ψ, Ψ̂,Φ, ~B, Q̂] =

∫
dx

∫
dx′ Ψ̂(x)Ĝ−1[Φ, ~B, Q̂](x, x′)Ψ(x′) − πν3

4τ
Tr{Q̂2}

+
1

2

∫
dx ΦT (x) σzV

−1
0,s (x)Φ(x) +

1

2

∫
dx
∑

n

(Bn)T (x) σzV
−1
0,t (x)Bn(x)

+

∫
dx

(
Ĵ(x)Ψ(x) + Ψ̂J(x)

)

(6.7)

where

Ĝ−1[Φ, ~B, Q̂](x) =

[(
i
∂

∂t′
+

∆

2m

)
I4 + I2 ⊗ φα(x′)γα + ~σ ⊗ ~Bα(x′)γα

]
δ(x− x′)

+
i

2τ
Q̂(r, t, t′)δ(r − r′).

(6.8)

1We explained the procedure in chapter 4 for the spinless case. We will discuss how the form of Q̂ changes
including spin when we determine the saddle point solution.
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6.1 Introduction of a rotation and local gauge factors

The action is quadratic in Ψ and Ψ̂, hence we could integrate out the electrons. However before
doing this, we use an idea that was first formulated by Kamenev and Andreev in [17]. They
introduced gauge factors of the form eikαγα

, which allow to find an approximate saddle point for
the combined problem of disorder and interaction. In their case they determined the functions
kα’s such that they compensated approximately the scalar field Φ and they could use the result
of the non–interacting saddle Λ in order to construct a solution for the interacting problem. 2

In our work we want to use this trick in order to treat also the magnetic field non perturba-
tively. However the approach has to be modified for the following reason: The field matrix Fφ, ~B
(see equation (5.39)) in our case is non diagonal! This is due to the inclusion of the triplet
interaction represented by the field ~B.

Analyzing the calculation of Kamenev and Andreev with gauge factors shows that it is
important that the field matrix eφαγ

α (it is diagonal !) commutes with the gauge factors eikαγα

(which are also chosen diagonal). The necessity of this property becomes clear when one has
to determine the gauge factors kα explicitly as functions of the fields φα. We will remind the
reader, where we need the commutativity, when we arrive at this stage in our calculations.

Unfortunately our field matrix Fφ, ~B has a quite complicated structure. Hence our idea is to
diagonalize our field matrix by an orthogonal transformation and then proceed with the trick of
the gauge factors. The gauge factors can then also be chosen diagonal.

So let us first diagonalize the field matrix Fφ, ~B. The form of the rotation, which we denote
by R, can be calculated by determining the normalized eigensystem of the matrix Fφ, ~B. We
skip the calculation which is just linear algebra and present the result. R reads explicitly

R =





B⊥
1

√
1+Bz

1/B1√
2(Bx

1 +iBy
1 )

0 −B⊥
1

√
1−Bz

1/B1√
2(Bx

1 +iBy
1 )

0

0
B⊥

2

√
1+Bz

2/B2√
2(Bx

2 +iBy
2 )

0 −B⊥
2

√
1−Bz

2/B2√
2(Bx

2 +iBy
2 )

B⊥
1√

2B1

√
1+Bz

1/B1
0

B⊥
1√

2B1

√
1−Bz

1/B1
0

0
B⊥

2√
2B2

√
1+Bz

2/B2
0

B⊥
2√

2B2

√
1−Bz

2/B2





. (6.9)

R is unitary which allows to calculate the inverse of R simply by complex conjugation and
transposition: R−1=(R∗)T . In further calculations we will denote the matrix elements of R by
Rij . Note that R is a function of the components of ~B only and independent of Φ.

Assumption: Throughout this derivation we will encounter many additional terms com-
pared to the treatment of Kamenev and Andreev due to the additional rotation matrix R.
Our general philosophy will be to assume that the variations of ~B in space and time are small
and terms proportional to the derivatives of the components ∂tB

n and ∇Bn can be neglected
compared to the contributions. Applying the rotation one obtains a diagonal matrix

Dφ,B = R−1Fφ, ~BR (6.10)

which reads

2For further information see [17] (or [19] which is more detailed).
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Dφ,B =





φ1 +B1 0 0 0
0 φ2 +B2 0 0
0 0 φ1 −B1 0
0 0 φ2 −B2



 (6.11)

with Bi =
√

(Bx
i )

2 + (By
i )

2 + (Bz
i )

2.3 We chose the rotation such that the magnetic field has
only a z–component and its magnitude is the absolute value of the fields. One can use equation
(6.10) to rewrite equation (6.8) as

Ĝ−1[Φ, ~B, Q̂](x) =

[(
i
∂

∂t′
+

∆

2m

)
I4 + RDφ,BR−1

]
δ(x− x′) +

i

2τ
Q̂(r, t, t′)δ(r − r′). (6.12)

We introduce rotated fields ΨR and Ψ̂R

ΨR(x) = R−1(x)Ψ(x) Ψ̂R(x) = Ψ̂(x)R(x). (6.13)

The integration measure remains unchanged DΨ̂DΨ = DΨ̂RDΨR. However the two parts of
the action S given in equation (6.7) which contain the fields Ψ change. We obtain the action

SR[Ψ, Ψ̂,Φ, ~B, Q̂] =

∫
dx
(
Ĵ(x)R(x)ΨR(x) + Ψ̂RR−1(x)J(x)

)
+ S[Φ2, B2, Q̂2]

+

∫
dx

∫
dx′ Ψ̂R(x)

(
δ(x− x′)

[
R−1G−1

0 R +Dφ,B

]
+
i

2τ
R−1Q̂(r, t, t′)Rδ(r − r′)

)
ΨR(x′).

(6.14)

By S[Φ2, B2, Q̂2] we denoted all the unchanged quadratic field terms that appear in the action.
After having diagonalized the field matrix we choose the gauge transformation as

U(x) = exp



i





k1 + f1 0 0
0 k2 + f2 0 0
0 0 k1 − f1 0
0 0 k2 − f2







 (6.15)

or in tensor notation

U(x) = ei(I2⊗kαγα+σz⊗fαγα). (6.16)

The quantities k1 and k2 have the same purpose as in the paper by Kamenev and Andreev where
U reads

U(x) = eikαγα
= exp

[
i

(
k1 0
0 k2

)]
(6.17)

They will account for the field Φ. Additionally we introduced the function f1 and f2 which will
compensate the magnetic fields B1 and B2. What we mean by compensate will become clear

3i = 1, 2 is the Keldysh index
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when we determine below the k’s and f ’s. In the action we introduce factors of UU−1 wherever
a Ψ appears and define the rotated and gauged fields ΨRU and Ψ̄RU

ΨRU (x) = U(x)R−1(x)Ψ(x) Ψ̂RU (x) = Ψ̂(x)R(x)U−1(x) (6.18)

The action then becomes

SRU [Ψ, Ψ̂,Φ, Q̂, ~B] =

∫
dx

∫
dx′ Ψ̂RU (x)Ĝ−1

RU [Φ, ~B, Q̂](x, x′)ΨRU (x′) + S[Φ2, B2, Q̂2]

+

∫
dx

(
Ĵ(x)R(x)U−1(x)ΨRU (x) + Ψ̂RU (x)U(x)R−1(x)J(x)

) (6.19)

with

Ĝ−1
RU [Φ, ~B, Q̂](x) = U(x) Ĝ−1[Φ, Q̂](x, x′) U−1(x′)

=

[
U(x)R−1(x)G−1

0 (x)R(x)U−1(x) +Dφ,B(x)

]
δ(x− x′)

+
i

2τ
U(x)R−1(x)Q̂(r, t, t′)R(x′)U−1(x′)δ(r − r′)

(6.20)

where we used that

U(x)Dφ,B(x)U−1(x) = Dφ,B(x). (6.21)

Note that the integration measure DΨ̄RDΨR = DΨ̄RU DΨRU remains unchanged under the
transformation with U .

Integrating out the Fermions

We integrate out the fermionic fields ΨRU and Ψ̄RU and are left with a path integral over
Φ, ~B and Q̂ which cannot be done exactly. The generating functional reads

Z[J, Ĵ ] =

∫
DΦ

∫
D ~B

∫
DQ̂ eiS[Φ, ~BQ̂,,J,Ĵ ] (6.22)

with the action

S[Φ, ~B, Q̂] =

∫
dx

∫
dx′ Ĵ(x)R(x)U−1(x) ĜRU [Φ, ~B, Q̂](x, x′) U(x′)R−1(x′)J(x′)

+
1

2

∫
dx ΦT (x) σzV

−1
0,s (x)Φ(x) +

1

2

∫
dx
∑

n

(Bn)T (x) σzV
−1
0,t (x)Bn(x)

− πν3

4τ
Tr{Q̂2} − iTr ln

[
Ĝ−1

RU [Φ, ~B, Q̂](x, x′)

]

(6.23)

where ĜRU [Φ, ~B, Q̂](x, x′) is the inverse operator of Ĝ−1
RU [Φ, ~B, Q̂] given in equation (6.20).
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Our strategy to proceed is the following: We determine an approximate saddle point for Q̂ for
the combined problem with disorder and interaction. The path integral over Q̂ we perform then
as previously by simply taking its value at the approximate saddle point Q̂SP .4 For the fields Φ
and ~B we will take into account the quadratic fluctuation corrections around the approximate
saddle point.

6.2 Determination of a saddle point for Q̂

We have to evaluate
δ

δQ
S[Φ, B, Q̂, J = 0] = 0. (6.24)

We do this like already demonstrated in chapter 4. We write Q̂ = Q̂SP + δQ̂ and develop
S[Q̂,Φ, B, J = 0] in orders of δQ̂. For the quadratic term in Q̂ there is no change

− πν3

4τ
Tr
{
Q̂2
}
= −πν3

4τ
Tr
{(
Q̂SP

)2}−πν3

2τ
Tr
{
Q̂SP δQ̂

}
+O

(
δQ̂2

)
(6.25)

except that Q̂ now denotes a 4 × 4 matrix. The second term in which Q̂ appears is

Ĝ−1
RU [Φ, ~B, Q̂] = UR−1G−1

0 RU−1 +Dφ,B +
i

2τ
UR−1(Q̂SP + δQ̂)RU−1

= Ĝ−1
RU [Φ, ~B, Q̂SP ] +

i

2τ
UR−1δQ̂ RU−1

(6.26)

where the inverse of Ĝ−1
RU [Φ, ~B, Q̂SP ] is given by

ĜRU [Φ, ~B, Q̂SP ](x) =

[(
U(x)R−1(x)G−1

0 (x)R(x)U−1(x) +Dφ,B(x)

)
δ(x− x′)

+
i

2τ
U(x)R−1(x)Q̂SPR(x′)U−1(x′)δ(r − r′)

]−1

.

(6.27)
We abbreviate Ĝ−1

RU [Φ, ~B, Q̂SP ] = Ĝ−1
RU [Q̂SP ]. Again we expand the logarithm

Tr ln
[
Ĝ−1

RU [Q̂]
]

= Tr ln

[
Ĝ−1

RU [Q̂SP ] +
i

2τ
UR−1δQ̂ RU−1

]

= Tr ln

[
Ĝ−1

RU [Q̂SP ]

(
I4 + ĜRU [Q̂SP ]

i

2τ
UR−1δQ̂ RU−1

)]

= Tr ln

[
Ĝ−1

RU [Q̂SP ]

]
+Tr

[
ĜRU [Q̂SP ]

i

2τ
UR−1δQ̂ RU−1

]
+Ô

(
δQ̂2

)
.

(6.28)

4 We already mentioned in chapter (4) that the fluctuations of Q̂ are not relevant for our problem and explained
what kind of physics they contain.
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We focus on the second term which is proportional to δQ̂ and transform it using the cyclic
invariance of the trace

Tr

[
ĜRU [Q̂SP ]

i

2τ
UR−1δQ̂ RU−1

]
= Tr

[
i

2τ
RU−1ĜRU [Q̂SP ]UR−1 δQ̂

]
. (6.29)

Thus we have in linear order
∫
dr dr′ dt dt′

(
−πν3

2τ
Q̂SP +

i

2τ
RU−1ĜRU [Q̂SP ]UR−1

)
(r, t, r′, t′) δQ̂(r′, t′, t)δ(r− r′). (6.30)

The term in the brackets has to be zero in order that the whole expression vanishes for arbitrary
δQ̂:

(
−πν3

2τ
Q̂SP +

i

2τ
RU−1ĜRU [Q̂SP ]UR−1

)
(r, t, r, t′) = 0 (6.31)

which gives the saddle point equation

UR−1 Q̂SPRU−1(r, t, t′) =
i

πν3
ĜRU [Φ, ~B, Q̂SP ](r, t, t′) (6.32)

How do we solve this equation? Consider ĜRU and assume that we could choose the functions
kα and fα such that they would gauge away the fields φα and Bα. Then U would chosen such
that

U(x)R−1(x)G−1
0 (x)R(x)U−1(x) +Dφ,B(x) = G−1

0 (x)I4. (6.33)

Whether this can be fulfilled we will study below. Plugging (6.33) into the Green’s function
(6.27), we find

ĜRU [Φ, ~B, Q̂SP ](x) =

[
G−1

0 (x)δ(x− x′) +
i

2τ
UR−1Q̂SPRU−1δ(r − r′)

]−1

(6.34)

and the saddle point equation reads

UR−1 Q̂SPRU−1(r, t, t′) =
i

πν3

[
G−1

0 (x)δ(x− x′) +
i

2τ
UR−1Q̂SPRU−1δ(r − r′)

]−1

. (6.35)

For this saddle point equation we can construct a solution using the saddle point solution QSP

of the non–interacting spinless case derived in chapter 4, which we denoted by Λ. It was given
in chapter 4 in the rotated representation. In the unrotated representation, in which we are
currently working, one finds5

Λ(ǫ) =

(
F (ǫ) 1 − F (ǫ)

1 + F (ǫ) −F (ǫ)

)
Λ(t) =

(
F̃ (t) δ(t) − F̃ (t)

δ(t) + F̃ (t) −F̃ (t)

)
. (6.36)

5Remember that the two representations are connected by LΛL = Λ̃.
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In the situation without interactions and external magnetic field the 4× 4 saddle point solution
reads

Λ̂ = I2 ⊗ Λ = I2 ⊗
(

ΛT −Λ<

Λ> −ΛT̄

)
. (6.37)

This can be immediately understood if one repeats the calculations of section (4.3) including
the spin degree of freedom and replaces (4.46) by (5.91). With the help of Λ̂ the solution for the
interacting saddle point can be written as

Q̂SP = RU−1 Λ̂UR−1. (6.38)

Equation (6.35) reduces to

Λ̂(r, t, t′) =
i

πν3

[
G−1

0 (x)δ(x− x′) +
i

2τ
Λ̂

]−1

r=r′
(6.39)

and Λ̂ is obviously the self–consistent solution. Thus we found a saddle point solution for the Q̂
field. What remains to be done is the determination of the gauge functions kα and fα in such
a way that equation (6.33) is satisfied. The operator G−1

0 =
(
i ∂∂t + ∆

2m

)
acts on the product

R(x)U−1(x) and generates several terms. We separate these terms in a part where G−1
0 acts

only on U−1 and a rest term N where derivatives of R and U−1 appear.

UR−1G−1
0 RU−1 = UG−1

0 U−1 + UR−1N (6.40)

We begin with the first terms on the right hand side

UG−1
0 U−1 =

[
i∂tI4 + I2 ⊗ k̇αγ

α + σz ⊗ ḟαγ
α − 1

2m

(
−∇ I4 − I2 ⊗ k′αγ

α − σz ⊗ f ′αγ
α
)2
]
.

(6.41)
We restrict ourselves to slowly varying fields, which means |∇φα/φα| ≪ kF or 1/l and |∇Bα/Bα| ≪
kF . As the k’s and f ’s depend on the φ’s and B’s, we can assume that |∇kα/kα| ≪ kF and
|∇fα/fα| ≪ kF . We neglect therefore the quadratic terms in the k’s and f ’s. Hence we get
approximately

UG−1
0 U−1 +Dφ, ~B ≈ G−1

0 (x) I4 + C(x) (6.42)

where

C(x) = I2 ⊗ Cφα(x)γα + σz ⊗ CBα (x)γα (6.43)

with Cφα containing the φ–dependent part

Cφα(x) = Cφα(x, pF ) = ∂tkα + vF (pF ) · ∇kα + φα (6.44)

and CBα containing the B dependent part

CBα (x) = CBα (x, pF ) = ∂tfα + vF (pF ) · ∇fα +Bα. (6.45)
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vF (pF ) is the Fermi velocity in the direction of pF . The second term in equation (6.40) is
negligible. In all terms contributing to N appears by definition at least one partial derivatives
∂tR or ∇R. Note that R is an explicit function of the components of ~B. Hence each partial
derivative is proportional to either ∂tB or ∇B. Thus according to our general assumption the
N term can be neglected. The validity of (6.33) is then connected with a choice of the gauge
fields that leads to a vanishing C(x) in (6.42).

Maybe here is the best point to explain our wish to construct gauge factors that com-
mute with the field matrix. Imagine we would have instead of (6.21) an expression containing
UFφ, ~BU

−1. Then the equations (6.44) and (6.45) would look much more complicated as the k′s
and f ′s would appear in all powers. Yet in our equations (6.44) and (6.45) the gauge factors
appear only linearly. However even these equations can only be solved exactly in some special
cases. The complicated term is the one containing vF (pF ) which depends on the direction of
p. In a disordered system the particles keep their momentum only on a time scale τ . For time
scales that are bigger than τ there is no information about the initial direction left and the
problem becomes isotropic. We will not determine the kα and fα from the equations (6.44) and
(6.45) but develop in a few lines a weaker condition that contains an angle average. As our
object of investigation is a diffusive system that posses isotropy in the sense explained above,
even working with the weaker condition leads to reasonable results.

We approximate the Green’s function at the saddle point given in (6.27) using the right hand
side of equation (6.42) and the saddle point Q̂SP of equation (7.21).

ĜSP (x, x′) =

[
Ĝ−1

0 +
i

2τ
Λ̂ + C

]−1

(6.46)

We define

Ĝτ =

[
Ĝ−1

0 +
i

2τ
Λ̂

]−1

(6.47)

which is nothing else but the matrix of the well known disorder damped Green’s functions. It
is connected to G̃ of equation (4.45) by the relation

Ĝτ = I2 ⊗ LG̃L. (6.48)

We develop the Green’s function ĜSP in equation (6.46) in powers of the small field C.

ĜSP (x, x′) =
[
Ĝ−1
τ + C

]−1
=
[
I4 + ĜτC

]−1
Ĝτ

= Ĝτ − ĜτCĜτ + ĜτCĜτCĜτ − ...

(6.49)

From this series arises a new condition. Instead of fulfilling C = 0 it is sufficient to fulfill the
weaker condition

ĜτCĜτ |r=r′ = 0. (6.50)

As we need the Green’s function only at equal points in space (see the saddle point equation)
one can demand r = r′. From this weaker condition we will determine in the next section the
functions kα and fα.
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6.3 Determination of the gauge factors kα and fα

We Fourier transform equation (6.50) to energy and momentum space

1

V
∑

p

Ĝτ (p, ǫ)C(q, ω)Ĝτ (p− q, ǫ− ω) = 0. (6.51)

Already in the previous section we threw away quadratic variations in kα and fα (see discussion
below equation (6.41)) with the argument that we restrict ourselves to the regime |∇kα/kα| ≪ kF
and |∇fα/fα| ≪ kF . That restriction translates to the condition q ≪ pF or q ≪ 1/l in
momentum space. This can be seen comparing (6.45) to

CBα (q, ω) = iωfα − ivF · qfα +Bα. (6.52)

Note that the small q condition is in accordance with the diffusive phenomena which we want
to treat. We look at the problem in spin space

1

V
∑

p

(
G↑↑(p, ǫ) G↑↓(p, ǫ)
G↓↑(p, ǫ) G↓↓(p, ǫ)

)(
(Cφα + CBα )(q, ω)γα 0

0 (Cφα − CBα )(q, ω)γα

)

×
(
G↑↑(p− q, ǫ− ω) G↑↓(p− q, ǫ− ω)
G↓↑(p− q, ǫ− ω) G↓↓(p− q, ǫ− ω)

)
= 0

(6.53)

The Hamiltonian contains no spin–flip mechanism, so all the Gij with i 6= j are 0 and we are
left with

1

V
∑

p

(
G↑↑(C

φ
α + CBα )γαG↑↑ 0

0 G↓↓(C
φ
α − CBα )γαG↓↓

)
= 0. (6.54)

It would suffice to demand that each component vanishes but we will determine the gauge factors
kα and fα such that every single term in each component vanishes

1

V
∑

p

Gii(p, ǫ)C
φ
α(q, ω)γαGii(p− q, ǫ− ω) = 0 (6.55)

1

V
∑

p

Gii(p, ǫ)C
B
α (q, ω)γαGii(p− q, ǫ− ω) = 0 (6.56)

where i =↑ or ↓. Without external magnetic field G↑↑ and G↓↓ are equal and we are left with only

2 conditions. Let us discuss the second condition. The calculation for Cφα(q, ω) is completely
equivalent. We examine

1

V
∑

p

G̃(p, ǫ)C̃B(q, ω)G̃(p− q, ǫ− ω) = 0 (6.57)

in the Keldysh rotated representation and use the decomposition

G̃(p, ǫ) =

(
GR(p, ǫ) F (ǫ)(GR(p, ǫ) −GA(p, ǫ))

0 GA(p, ǫ)

)
=
GR(p, ǫ)

2

(
I2 + Λ̃(ǫ)

)
+
GA(p, ǫ)

2

(
I2 − Λ̃(ǫ)

)
.

(6.58)
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Then (6.57) reads

0 =
1

4

∑

p

GR(p, ǫ)C̃Bα (q, ω)GR(p− q, ǫ− ω)

[
(I2 + Λ̃(ǫ))γ̃α(I2 + Λ̃(ǫ− ω))

]

+GR(p, ǫ)C̃Bα (q, ω)GA(p− q, ǫ− ω)

[
(I2 + Λ̃(ǫ))γ̃α(I2 − Λ̃(ǫ− ω))

]

+GA(p, ǫ)C̃Bα (q, ω)GR(p− q, ǫ− ω)

[
(I2 − Λ̃(ǫ))γ̃α(I2 + Λ̃(ǫ− ω))

]

+GA(p, ǫ)C̃Bα (q, ω)GA(p− q, ǫ− ω)

[
(I2 − Λ̃(ǫ))γ̃α(I2 − Λ̃(ǫ− ω))

]
.

(6.59)

For the terms containing products of GRGR or GAGA the poles lie on equal sides of the real
axis. Their contribution is negligible and we are left with

0 =
∑

p

C̃Bα (q, ω)

(
GR(p, ǫ)GA(p− q, ǫ− ω) +GA(p, ǫ)GR(p− q, ǫ− ω)

)[
γ̃α − Λ̃(ǫ)γ̃αΛ̃(ǫ− ω)

]

+ C̃Bα (q, ω)

(
GR(p, ǫ)GA(p− q, ǫ− ω) −GA(p, ǫ)GR(p− q, ǫ− ω)

)[
Λ̃(ǫ)γ̃α − γ̃αΛ̃(ǫ− ω)

]

(6.60)

It is useful to define

Π1(q, ω) :=
1

V
∑

p

GR(p, ǫ)GA(p− q, ǫ− ω) (6.61)

Π2(q, ω) :=
1

V
∑

p

GR(p, ǫ)(vF · q)GA(p− q, ǫ− ω). (6.62)

We then get

0 =

([
B̃α(q, ω) + iωf̃α(q, ω)

]
Π1(q, ω) − if̃α(q, ω)Π2(q, ω)

+
[
B̃α(q, ω) + iωf̃α(q, ω)

]
Π∗

1(q, ω) − if̃α(q, ω)Π∗
2(q, ω)

)[
γ̃α − Λ̃(ǫ)γ̃αΛ̃(ǫ− ω)

]

+

([
B̃α(q, ω) + iωf̃α(q, ω)

]
Π1(q, ω) − if̃α(q, ω)Π2(q, ω)

−
[
B̃α(q, ω) + iωf̃α(q, ω)

]
Π∗

1(q, ω) − if̃α(q, ω)Π∗
2(q, ω)

)[
Λ̃(ǫ)γ̃α − γ̃αΛ̃(ǫ− ω)

]
.

(6.63)

We introduce the abbreviations
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R1(q, ω) := Re Π1(q, ω) R2(q, ω) := iωRe Π1(q, ω) − iRe Π2(q, ω) (6.64)

I1(q, ω) := Im Π1(q, ω) R2(q, ω) := iωIm Π1(q, ω) − iIm Π2(q, ω). (6.65)

Multiplying (6.63) by Λ̃(ǫ) from the left side and using that Λ̃(ǫ)2 = I2, we obtain

0 = 2
(
R1(q, ω)B̃α +R2(q, ω)f̃α

)[
Λ̃(ǫ)γ̃α − γ̃αΛ̃(ǫ− ω)

]

− 2i
(
I1(q, ω)B̃α + I2(q, ω)f̃α

)[
γ̃α − Λ̃(ǫ)γ̃αΛ̃(ǫ− ω)

]
.

(6.66)

6 The matrix products are

Λ̃(ǫ)γ̃1 − γ̃1Λ̃(ǫ− ω) = [F (ǫ) − F (ǫ− ω)]

(
0 1
0 0

)
(6.67)

Λ̃(ǫ)γ̃2 − γ̃2Λ̃(ǫ− ω) =

(
F (ǫ) 1
−1 −F (ǫ− ω)

)
(6.68)

Λ̃(ǫ)γ̃1Λ̃(ǫ− ω) − γ̃1 = −[F (ǫ) − F (ǫ− ω)]

(
0 1
0 0

)
(6.69)

Λ̃(ǫ)γ̃2Λ̃(ǫ− ω) − γ̃2 =

(
F (ǫ) 2F (ǫ)F (ǫ− ω) − 1
−1 −F (ǫ− ω)

)
. (6.70)

Defining

m11 :=
[
(R1B̃2 +R2f̃2) − i(I1B̃2 + I2f̃2)

]
F (ǫ) (6.71)

m12 :=
[
(R1B̃1 +R2f̃1) + i(I1B̃1 + I2f̃1)

](
F (ǫ) − F (ǫ− ω)

)

+
[
(R1B̃2 +R2f̃2) + i(I1B̃2 + I2f̃2)

]
−i(I1B̃2 + I2f̃2)

(
2F (ǫ)F (ǫ− ω) − 1

) (6.72)

m21 := −
[
(R1B̃2 +R2f̃2) − i(I1B̃2 + I2f̃2)

]
(6.73)

m22 := −
[
(R1B̃2 +R2f̃2) − i(I1B̃2 + I2f̃2)

]
F (ǫ− ω) (6.74)

we have the matrix equation (
m11 m12

m21 m22

)
= 0. (6.75)

From m11 = m21 = m22 = 0 we obtain

6The minus sign in front of the second row appears due to the changed order of the matrices in the second
bracket.
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(R1 − iI1)B̃2 + (R2 − iI2)f̃2 = 0 (6.76)

and from the condition m12 = 0 we get

(R1 + iI1)B̃1 + (R2 + iI2)f̃1 = −2i (I1B̃2 + I2f̃2)
1 − F (ǫ)F (ǫ− ω)

F (ǫ) − F (ǫ− ω)
. (6.77)

In thermal equilibrium F (ǫ) = tanh(βǫ/2) and

1 − F (ǫ)F (ǫ− ω)

F (ǫ) − F (ǫ− ω)
= coth

(
βω

2

)
=: B(ω). (6.78)

We can combine equations (6.76) and (6.77) to the matrix equation

(
R2 + iI2 2i I2 B(ω)

0 R2 − iI2

)(
f̃1

f̃2

)
= −

(
R1 + iI1 2i I1 B(ω)

0 R1 − iI1

)(
B̃1

B̃2

)
. (6.79)

Inverting the matrix on the left hand side we obtain

(
f̃1

f̃2

)
=

(
−R1+iI1
R2+iI2

2i B(ω) R1I2−R2I1
(R2+iI2)(R2−iI2)

0 −R1−iI1
R2−iI2

)(
B̃1

B̃2

)
(6.80)

We introduce

DR := −R1 + iI1
R2 + iI2

and DA :=
R1 − iI1
R2 − iI2

. (6.81)

From the definition of R2 and I2 one can see that DR = (DA)∗. With equation (6.81) one can
write equation (6.80) in the form7

(
f̃1

f̃2

)
= µB

(
DR B(ω)(DR + DA)
0 −DA

)(
B̃1

B̃2

)
(6.82)

Let us introduce the short hand notation

f̃ [B̃](q, ω) = µBÃ(q, ω)B̃(q, ω) (6.83)

with f̃ [B] = (f̃1, f̃2)
T , B̃ = (B̃1, B̃2)

T and

Ã(q, ω) =

(
DR B(ω)(DR + DA)
0 −DA

)
. (6.84)

The matrix Ã(q, ω) is uniquely determined by DR, which can be expressed as a function of Π1

and Π2.

DR(q, ω) =
Π1(q, ω)

−iΠ2(q, ω) − iωΠ1(q, ω)
(6.85)

For the scalar field Φ one obtains in the same way

7where we reinserted µB .
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(
k̃1

k̃2

)
= e

(
DR B(ω)(DR + DA)
0 −DA

)(
φ̃1

φ̃2

)
(6.86)

or in short notation

k̃[Φ̃](q, ω) = eÃ(q, ω)Φ̃(q, ω). (6.87)

The gauge factors kα are proportional the components of Φ whereas the gauge factors fα are
proportional to the absolute value of ~B. We will see later that the appearance of the absolute
value of ~B in the fα’s complicates the evaluation of the path integral over the components of ~B.

DR(q, ω) in the diffusive case

We evaluate Π1 and Π2 in the continuum approximation. The calculation is analoguous
to the one of Π0 in section (2.2.1) and one obtains in the diffusive limit (ql = vF qτ ≪ 1 and
ωτ ≪ 1)

Π1(q, ω) ≈ 2πν3τ
(
1 − iωτ − (vF qτ)

2
)
. (6.88)

and

Π2(q, ω) ≈ −2πiν3(vF qτ)
2. (6.89)

Putting the results for Π1 and Π2 in equation (6.85) and keeping only the lowest order terms
one finally finds

DR(q, ω) =
1

Dq2 − iω
(6.90)

where we introduced the diffusion constant D = v2
F τ/3 = vF l/3.

The last thing we need to do before we can calculate Green’s functions, is to determine the
Gaussian fluctuations of the fields Φ and B. We will see that these quadratic corrections together
with quadratic terms containing V −1

0,s and V −1
0,t will correspond to the dynamically screened RPA

interactions, that we already derived using perturbation theory.

6.4 Gaussian fluctuations of the fields Φ and B

We approximated in section (6.2)

− iTr ln
[
G−1

RU
]

by − iTr ln
[ ˜̂
G−1
τ + C

]
. (6.91)

Expanding

− iTr ln
[
Ĝ−1
τ + C

]
= −iTr ln

[
Ĝ−1
τ

]
−iTr ln

[
I4 + CĜτ

]
(6.92)

in orders of C yields
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− iTr ln
[
Ĝ−1
τ

]
−i(−1)n−1

n
Tr

([
ĜτC

]n
)

n ≥ 2. (6.93)

We restrict ourselves to the Gaussian approximation which means that we only take into
account the term n = 2 and neglect the higher order terms. That corresponds to the assumption
that the fluctuations around the saddle point are small. For our translationally invariant system
the second order term reads

S2 =
i

2
Tr
[
Ĝ(x− y)C(y − y′)Ĝ(y′ − y′′)C(y′′ − x′)

]
. (6.94)

We Fourier transform S2 and find

S2 =
i

2
tr

∫
dω

2π

∫
dǫ

2π

1

V2

∑

p,q

[
G(p, ǫ)Cp̂(q, ω)G(p− q, ǫ− ω)Cp̂(−q,−ω)

]
(6.95)

where p̂ = p/|p| is the unit vector in the direction of p. In this equation we already replaced
Cp−q/|p−q| by Cp̂. This should be a good approximation as q ≪ p. In the Keldysh rotated
representation we have

S2 =
i

2V2
tr

∫
dω

2π

∫
dǫ

2π

∑

q

[∑

p

(
G̃↑↑(C̃

φ
α + C̃Bα )γ̃αG̃↑↑ 0

0 G̃↓↓(C̃
φ
α − C̃Bα )γ̃αG̃↓↓

)]
γ̃β

(
C̃φβ + C̃Bβ
C̃φβ − C̃Bβ

)
.

(6.96)
Without external magnetic field G↑↑ = G↓↓, and there remains the combination

2 G̃ γ̃αG̃ γ̃β
[
C̃φα C̃

φ
β + C̃Bα C̃Bβ

]
(6.97)

where G̃ is given in (4.45). The expression
∑

pGCG|r=r′ within the brackets of equation (6.96)
was treated already in the section 6.3 where we determined the gauge factors. In section 6.3 we
argued that the contribution relevant for small q comes from the GRGA and GAGR terms and
neglected the GRGR and GAGA contributions. Here, however, we have an additional integration
over ǫ which means that we have to take into account the GRGR and GAGA terms. The gauge
factors fα where chosen such that equation (6.60) is fulfilled. So we are left with8

∑

β

{
1

4V
∑

p,α

GR(p, ǫ)C̃α(q, ω)GR(p− q, ǫ− ω)

[
(I2 + Λ̃(ǫ))γ̃α(I2 + Λ̃(ǫ− ω))

]

+GA(p, ǫ)C̃α(q, ω)GA(p− q, ǫ− ω)

[
(I2 − Λ̃(ǫ))γ̃α(I2 − Λ̃(ǫ− ω))

]}
γ̃βC̃β

(6.98)

where C̃α is either C̃φα or C̃Bα . The calculation for both terms proceeds identically. We define

Mα
1 := γ̃α + Λ̃(ǫ)γ̃αΛ̃(ǫ− ω) and Mα

2 := Λ̃(ǫ)γ̃α + γ̃αΛ̃(ǫ− ω) (6.99)

in order to rewrite the matrix products in (6.98). One has

8The factor 1/4 stems from the decomposition given in equation (6.58).
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Mα
1 +Mα

2 = (I2 + Λ̃(ǫ))γ̃α(I2 + Λ̃(ǫ− ω)) (6.100)

and
Mα

1 −Mα
2 = (I2 − Λ̃(ǫ))γ̃α(I2 − Λ̃(ǫ− ω)). (6.101)

We then have

1

4

∑

α,β

C̃α(q, ω)

{∫
d3p

(2π)3
[
GR(p, ǫ)GR(p− q, ǫ− ω)

][
Mα

1 +Mα
2

]
γ̃β

+

∫
d3p

(2π)3
[
GA(p, ǫ)GA(p− q, ǫ− ω)

][
Mα

1 −Mα
2

]
γ̃β
}
C̃β(−q,−ω).

(6.102)

As a next step we form combinations of GRGR and GAGA and define

π± := ν3

∫ ∞

−ǫF
dǫp

[
GR(p, ǫ)GR(p− q, ǫ− ω) ±GA(p, ǫ)GA(p− q, ǫ− ω)

]
(6.103)

where we split up the p–integration into the ǫp–integration and the angular integration.

1

V
∑

p

... ≈ ν3

∫ ∞

−ǫF
dǫp

∫
dΩp

4π
... (6.104)

This allows us to write the quadratic contribution S2 as

S2 = i tr
1

V
∑

q

∫
dω

2π

∫
dΩp

4π

∫
dǫ

2π

1

4

∑

α,β

C̃α(q, ω)

{
π+

[
Mα

1 γ̃
β
]
+π−

[
Mα

2 γ̃
β
]}
C̃β(−q,−ω).

(6.105)
We will not present explicitly here the calculation of π+ and π−. We just remark that one is
not allowed to shift the lower boundary of the ǫp–integration from −ǫF → −∞ (like in equation
(2.15)) because there is a contribution coming from −ǫF . Doing subsequently the ǫ–integration
we get
∫

dǫ

2π
π+(q, ǫ, ω) = 0 and

∫
dǫ

2π
π−(q, ǫ, ω) =

∫
dǫ

2π
2πiν3δ(ǫ+ ǫF ) = iν3. (6.106)

Thus the first term in (6.105) vanishes. The trace of the expression proportional to π− is

tr
[
Mα

2 γ
β
]
= 2

(
0 F (ǫ) + F (ǫ− ω)

F (ǫ) + F (ǫ− ω) 0

)
. (6.107)

As π− only contributes at ǫ = −ǫF , we need the matrices above only in the limit ǫ→ −∞.

tr
[
Mα

2 γ
β
]∣∣∣∣
ǫ→−∞

= −4

(
0 1
1 0

)
(6.108)

because tanh(βǫ/2)|ǫ→∞ = −1 and we are left with

S2 =
ν3

V
∑

q

∫
dω

2π

∑

α,β

∫
dΩ

Ωp
C̃α(q, ω) σαβx C̃β(−q,−ω). (6.109)
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The angular average has to performed over products of the C̃’s. Let us take for example the
C̃B’s

C̃Bα (q, ω) C̃Bβ (−q,−ω) =
[
iωf̃α(q, ω)+i(vF · q)f̃α(q, ω) + B̃α(q, ω)

]

[
−iωf̃β(−q,−ω) − i(vF · q)fβ(−q,−ω) + B̃β(−q,−ω)

]

(6.110)

We get 3 types of expressions. First we have expressions that do not depend on p̂ at all. They
remain unchanged as the angular average is normalized. In (6.110) these terms are

[
iωf̃α(q, ω) + B̃α(q, ω)

][
−iωf̃β(−q,−ω) + B̃β(−q,−ω)

]
. (6.111)

Second we get terms proportional to (vp̂ · q) which vanish. And third there is a term which is
proportional (vp̂ · q)2

f̃α(q, ω)f̃β(−q,−ω)

∫
dΩ

Ωp
(vp̂ · q)2 = f̃α(q, ω)f̃β(−q,−ω)

v2
F

3
q2 (6.112)

Dividing S2 into two terms

SB2 := SB2,I + SB2,II (6.113)

we finally obtain

SB2,I =
ν3

V
∑

q

∫
dω

2π

∑

α,β

[
iωf̃α(q, ω) + B̃α(q, ω)

]
σα,βx

[
−iωf̃β(−q,−ω) + B̃β(−q,−ω)

]
(6.114)

and

SB2,II =
ν3v

2
F

3

1

V
∑

q

∫
dω

2π

∑

α,β

f̃α(q, ω) σαβx q2 f̃β(−q,−ω). (6.115)

Using f̃ [B](q, ω) = Ã(q, ω)B̃(q, ω) we can write

SB2,I =
ν3

V
∑

q

∫
dω

2π

[
Φ̃T (−q,−ω)

[
(I2 − iωA(−q,−ω))Tσx(I2 − iωA(q, ω))

]
Φ̃(q, ω)

]
. (6.116)

We define the inner part as

Πg = (I2 − iωA(−q,−ω))Tσx(I2 − iωA(q, ω)). (6.117)

Evaluating Πg using the explicit form of D(q, ω) given in equation (6.90) one arrives at

Πg(q, ω) = P̃0 + P̃+ =

(
0 PA0 (q, ω)

PR0 (q, ω) PK0 (q, ω)

)
+

(
0 PA+ (q, ω)

PR+ (q, ω) PK+ (q, ω)

)
(6.118)

where

PR0 (q, ω) = ν3
iω

Dq2 − iω
(6.119)



108 CHAPTER 6. INTERACTION AND DISORDER

and
PA0 = (PR0 )∗ (6.120)

and
PK0 (q, ω) = B(ω)(PR0 (q, ω) − PA0 (q, ω)). (6.121)

The same relations are valid for the components of the second matrix with entries P+ where

PR+ (q, ω) = ν3
Dq2

Dq2−iω . We will need only the first matrix in the sequel. The term containing P̃+

will disappear as well as SB2,II when we write down the normalized generating functional Z[J, Ĵ ].
Taking the quadratic term of equation (6.23) in the Keldysh rotated version (σz → σx see

equation (5.56)) and combining it with the part containing P̃0, we have in (q, ω)–representation

SB2 =
1

V
∑

q

∫
dω

2π

[∑

n

(B̃n)T (q)
[
σxV

−1
0,t

]
B̃n(−q) + B̃T (q)P̃0(q, ω)B̃(−q)

]
. (6.122)

In our case V −1
0,t is a constant and does not depend on q. In order to relate the absolute value of

B with the field components we need two things. First we remember that the field ~B was real
so that we have B(q) = B(−q). Furthermore treating B as an effectively classical field coming
from outside like the potential V (x) in the Schrödinger equation in first quantization, one has
that B1(q) = B2(q). Then we have

SB2 =
1

V
∑

q

∫
dω

2π

[∑

n

(B̃n)T (q)
[
σ1V

−1
0,t + P̃0(q, ω)

]
B̃n(−q)

]
. (6.123)

Let us evaluate the inner part:

Ṽt(q, ω) = [V −1
0,t σ1 + P̃0(q, ω)]−1

=

(
0 PA0 (q, ω) + V −1

0,t

PR0 (q, ω) + V −1
0,t PK0 (q, ω)

)−1

=




−V 2

t P
K
0 (q,ω)

(1+PA
0 (q,ω)Vt)(1+PR

0 (q,ω)Vt)
Vt

1+PR
0 (q,ω)Vt

Vt

1+PA
0 (q,ω)Vt

0





=

(
V K
t (q, ω) V R

t (q, ω)
V A
t (q, ω) 0

)

(6.124)

where V K(q, ω) = B(ω)[V R(q, ω) − V A(q, ω)]. Introducing now instead of Vt the renormalized
vertex Γt as explained in chapter 2 we obtain for the retarded component

V R =
Γt

1 + PR0 (q, ω)Γt
=

Γt

1 + ν3
iω

Dq2−iωΓt
= Γt

Dq2 − iω

Dq2 − iωZt
(6.125)

where Zt = 1 − 2ν3Γt = 1 − Aa0. This result is identical to the RPA summed result in equation

(2.44). Going likewise through all steps for the combination Cφα C
φ
β we find a dynamically

screened singlet interaction
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Γs(q, ω) = Γs
Dq2 − iω

Dq2 − iωZs
(6.126)

where Zs = 1 − 2ν3Γs = 1 −As0 which coincides with the result of equation (2.43).
We go back to the unrotated representation in order to compare our result with the action

given in (6.23). The quadratic terms in the field now read

S[Φ2, B2] =
1

2

∫
dx

∫
dx′

[
ΦT (x) V −1

s (x, x′)Φ(x) +
∑

n

(Bn)T (x) V −1
t (x, x′)Bn(x′)

]
(6.127)

where

V −1
s (x) = [σzV

−1
0,s δ(x− x′) + P0(x− x′)] (6.128)

and
V −1
t (x) = [σzV

−1
0,t δ(x− x′) + P0(x− x′)]. (6.129)

6.5 Calculation of the single particle Green’s function

For the calculation of the single particle Green’s function we take the normalized generating
functional Z[J, Ĵ ]. 9

Z[J, Ĵ ] =
1

NφNB

∫
DΦ

∫
D ~B eiS[Φ,Q̂SP , ~B,J,Ĵ ] (6.130)

with the action

S[Φ, Q̂SP , ~B] =

∫
dx

∫
dx′ Ĵ(x)R(x)U−1(x) Ĝτ (x, x

′) U(x′)R−1(x′)J(x′)

+
1

2

∫
dx ΦT (x) V −1

s (x)Φ(x) +
1

2

∫
dx
∑

n

(Bn)T (x) V −1
t (x)Bn(x)

(6.131)

where Ĝτ (x, x
′) is given by equation (6.48). Explicitely

Ĝτ (t− t′) = I2 ⊗
(
GTτ (t− t′) −G<τ (t− t′)
G>τ (t− t′) −GT̄τ (t− t′)

)
. (6.132)

Differentiating the normalized generating functional with respect to the source fields J and Ĵ ,
we obtain the Green’s function in the presence of interaction and disorder

G(x, x′) = i
δ

δJ(x)

δ

δĴ(x′)
Z[J(x), Ĵ(x′)] =

〈
R(x) U−1(x)Ĝτ (x, x

′) U(x′) R−1(x′)

〉

φ,B

.

(6.133)

9where normalized means that Z[0, 0] = 1.
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where10

〈 ....〉φ =
1

Nφ

∫
DΦ ...ei/2Tr[ΦTV −1

s Φ] and 〈 ....〉B =
1

NB

∫
D ~B ...ei/2

P
n Tr[(Bn)TV −1

t Bn]

(6.134)
The considerable task that remains to be done is to average over the fluctuating fields Φ and ~B.
But before evaluating the path integrals one has to multiply the five 4 × 4 matrices. We begin
with the inner matrices and denote the result by GF (x, x′) indicating that these Green’s already
include the exponential gauge factors.

GF (x, x′) := U−1(x)Ĝτ (x, x
′)U(x′)

=





e−i(k1+f1)GTτ e
i(k1+f1) −e−i(k1+f1)G<τ e

i(k2+f2) 0 0

e−i(k2+f2)G>τ e
i(k1+f1) −e−i(k2+f2)GT̄τ e

i(k2+f2) 0 0

0 0 e−i(k1−f1)GTτ e
i(k1−f1) −e−i(k1−f1)G<τ e

i(k2−f2)

0 0 e−i(k2−f2)G>τ e
i(k1−f1) −e−i(k2−f2)GT̄τ e

i(k2−f2)





(6.135)

where the left exponential factor always depends on x and the right on x′. Next we multiply
the rotation matrices on both sides. R depends on x and R−1 depends on x′. This gives

G(x, x′) = R(x) GF (x, x′) R−1(x′) =





R11 0 R13 0
0 R22 0 R24

R31 0 R33 0
0 R42 0 R44









GTF↑↑ −G<F↑↑ 0 0

G>F↑↑ −GT̄F↑↑ 0 0

0 0 GTF↓↓ −G<F↓↓
0 0 G>F↓↓ −GT̄F↓↓









R∗
11 0 R31 0
0 R∗

22 0 R42

R∗
13 0 R33 0
0 R∗

24 0 R44



 .

(6.136)

We denote the matrix elements as follows:

G(x, x′) =





GT↑↑ −G<↑↑ G>↑↓ −GT̄↑↓
G>↑↑ −GT̄↑↑ G>↑↓ −GT̄↑↓
GT↓↑ −G<↓↑ GT↓↓ −G<↓↓
G>↓↑ −GT̄↓↑ G>↓↓ −GT̄↓↓




(x, x′). (6.137)

In particular one finds

G>↑↑ = R22R∗
11G

>
F↑↑ + R24R∗

13G
>
F↓↓ G<↑↑ = R11R∗

22G
<
F↑↑ + R13R∗

24G
<
F↓↓ (6.138)

G>↓↓ = R42R31G
>
F↑↑ + R44R33G

>
F↓↓ G<↓↓ = R31R42G

<
F↑↑ + R33R44G

<
F↓↓ (6.139)

These are the four Green’s functions we need in order to determine the DOS from equation
(6.2). Let us pick G>↑↑(x, x

′) and calculate the averages over φ and ~B. Afterwards, we will

10with a normalization constants Nφ = Det[iσzV −1
s ]1/2 and NB = Det[iσzV −1

t ]3/2
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shortly comment on what is different for the other three Green’s functions. Writing down
explicitly the dependence on the fields, the Green’s function G>↑↑ reads

G>↑↑ =

〈
R22[ ~B2(x)]R∗

11[ ~B1(x
′)]e−if2(B(x))eif1(B(x′))+ R24[ ~B2(x)]R∗

13[ ~B1(x
′)]eif2(B(x))e−if1(B(x′))

〉

B

×
〈
e−ik2(Φ(x))eik1(Φ(x′))

〉

Φ

G>τ (x− x′).

(6.140)

So R∗
11 depends on the components of the magnetic field ~B1(x

′) on the upper branch while R22

depends on the components of the magnetic field ~B2(x) on the lower branch. Remember that
the lower index stands for the Keldysh branch. The gauge factors fα, however, only depend on
the absolute values of ~Bα but of both branches (see equation (6.82)).11 Finally the gauge factors
kα depend on Φ = (φ1, φ2)

T . In the following we shorten the notation by omitting the ~B’s and
φ’s, so that

G>↑↑ =

〈
R22(x)R∗

11(x
′) e−if2(x)eif1(x′) + R24(x)R∗

13(x
′) eif2(x)e−if1(x′)

〉

B

×
〈
e−ik2(x)eik1(x′)

〉

φ

G>τ (x− x′)

(6.141)

The averaging over the Φ fields can be done exactly as we will see in the next part. However
the path integral over the components of the magnetic field is not Gaussian and we will have to
approximate it.

6.5.1 Path integral over scalar field Φ

We have to determine:

Pφ :=

〈
e−ik2(x)eik1(x′)

〉

φ

=
1

Nφ

∫
DΦ e

i
2

R
dy
R
dy′ΦT (y)V −1

s (y,y′)Φ(y′)e−ik2(x)eik1(x′) (6.142)

where

V −1
s (y, y′) =

[
σ3V

−1
0,s δ(y − y′) + P0(y − y′)

]
(6.143)

and kα(x) is given in the unrotated representation by12

kα(x) = e

2∑

β=1

∫
dy Aαβ(x, y)φβ(y). (6.144)

The Gaussian path integral will lead to an exponential. Let us denote the exponent by Jφαα′(x, x′)
defined by

11Our notation is B = (B1, B2)
T .

12A = LÃL−1.
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eJ
φ

αα′ (x,x
′) :=

〈
eikα(x)e−ikα′ (x′)

〉

φ

=
1

Nφ

∫
DΦ e

i
2

R
dy
R
dy′ΦT (y)V −1

s (y,y′)Φ(y′)−i[kα(x)−kα′ (x′)].

(6.145)
We will skip the index of the interaction for the rest of this chapter writing simply V −1 instead
of V −1

s . Employing the definition of the k′s one has

eJ
φ

αα′ (x,x
′) =

1

Nφ

∫
DΦ exp

(
i

2

∑

ββ′

∫
dy

∫
dy′φβ(y)V

−1
ββ′(y, y

′)φβ′(y′)

+ i
∑

β

∫
dy
[
Aαβ(x, y) −Aα′β(x

′, y)
]
φβ(y)

) (6.146)

where the right hand side combines to give

= exp

(
− i

2

∑

ββ′

∫
dy dy′

[
Aαβ(x, y) −Aα′β(x

′, y)
]
V̆ββ′(y, y′)

[
Aαβ′(x, y′) −Aα′β′(x′, y′)

])
.

(6.147)
Performing the path integral effectively inverts V −1

ββ′(y, y′). In the unrotated representation one

has 13

V̆ (x, x′) =

(
V T (x, x′) V <(x, x′)
V >(x, x′) V T̄ (x, x′)

)
. (6.148)

The exponent in (6.147) contains terms of the form:

V(x, x′) =

∫
dy

∫
dy′A(x, y)V̆ (y, y′)AT (x′, y′) (6.149)

It is straightforward to show that V(x, x′) has the same time structure as V̆ (x, x′)

V(x, x′) =

(VT (x, x′) V<(x, x′)

V>(x, x′) VT (x, x′)

)
. (6.150)

We write Jφαα′(x, x′) in terms of V as

Jφαα′(x, x
′) =

1

2i

[
Vαα(x, x) − Vαα′(x, x′) − Vα′α(x′, x) + Vα′α′(x′, x′)

]
(6.151)

or

Jφαα′(x, x
′) = − 1

2i

[
Vαα′(x, x′) + Vα′α(x′, x) − Vαα(x, x) − Vα′α′(x′, x′)

]
. (6.152)

This is the general result for Jφαα′(x, x′). Let us determine the explicit expression for Jφ21(x, x
′)

as we need only this component for our Green’s function G>↑↑(x, x
′).

Jφ21(x, x
′) =

i

2

[
V21(x, x

′) + V12(x
′, x) − V11(x, x) − V22(x

′, x′)
]

(6.153)

13See section (5.1).
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Using (6.150) we have

Jφ21(x, x
′) =

i

2

[
V>(x, x′) + V<(x′, x) − VT (x, x) − V T̄ (x′, x′)

]
. (6.154)

This can be rewritten using the relations (5.53), (5.54) and (5.55) as

Jφ21(x, x
′) =

i

2

[
1

2

(
VK + VR − VA

)
(x, x′) +

1

2

(
VK − VR + VA

)
(x′, x) − VK(x, x)

]
(6.155)

where we also used the thermal equilibrium property V(x, x) = V(x′, x′). In order to simplify
this further we assume in addition a translationally invariant system which means that Jφ(x, x′)
depends only on x− x′ =: (r, t).

Jφ21(r, t) =
i

4V

∫
dω

2π

∑

q

[
(VK+VR−VA)(q, ω) eiqr−iωt+(VK−VR+VA)(q, ω) e−iqr+iωt−2VK(q, ω)

]

(6.156)
We rearrange the terms in the form

Jφ21(r, t) =
i

4

∫
dω

2π

1

V
∑

q

[
VK(q, ω) (eiq·r−iωt + e−iq·r+iωt)

+ (VR − VA)(q, ω) (eiq·r−iωt − e−iq·r+iωt) − 2VK(q, ω)

]
(6.157)

and get

Jφ21(r, t) =
i

2

∫
dω

2π

1

V
∑

q

[
VK(q, ω) cos(q · r−ωt) + i(VR−VA)(q, ω) sin(q · r−ωt)− 2VK(q, ω)

]
.

(6.158)
Now using the result of the following section (6.5.2)14

VK(q, ω) = B(ω)
[
VR − VA

]
(q, ω) = 2iB(ω)ImVR (6.159)

where used the relation (VA)∗ = VR and B(ω) = coth(βω/2). One obtains

Jφ21(r, t) = −
∫
dω

2π

1

V
∑

q

ImVRs (q, ω)

︸ ︷︷ ︸
=:ImYs(ω)

[
B(ω) (cos(q · r − ωt) − 1) + i sin(q · r − ωt)

]
. (6.160)

where we defined the function

Ys(ω) =
1

V
∑

q

VRs (q, ω). (6.161)

14See equation (6.170).
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We put the index s for singlet because Vs contains the singlet interaction. If one looks especially
at equal positions in space (which means r = 0) and also notes that the imaginary part of VRs is
an odd function, which can be seen from the explicit form of VR given in equation (6.171), one
gets

Jφ21(0, t) = −2

∫ ∞

0

dω

2π
ImYs(ω)

[
B(ω) (cos(ωt) − 1) − i sin(ωt)

]
. (6.162)

We abbreviate Jφ21 for future calculations as Jφ. Our final result then reads

Pφ(t) = eJφ(t). (6.163)

6.5.2 Determination of VR

We Fourier transform equation (6.149) in (q, ω)–space and go over to the Keldysh rotated rep-
resentation

Ṽ(q, ω) = Ã(q, ω)Ṽ (q, ω)ÃT (−q,−ω) (6.164)

In components we have

Ṽ(q, ω) =

(
DR(q, ω) DK(q, ω)

0 −DA(q, ω)

)(
V K(q, ω) V R(q, ω)
V A(q, ω) 0

)(
DR(−q,−ω) 0
DK(−q,−ω) −DA(−q,−ω)

)
.

(6.165)
Looking at the explicit form of DR(q, ω) given in equation (6.90) one finds

DR(−q,−ω) = DA(q, ω), DA(−q,−ω) = DR(q, ω) (6.166)

and

DK(−q,−ω) = −DK(q, ω), DK(q, ω) = B(ω)
[
DR(q, ω) + DA(q, ω)

]
. (6.167)

Using these relations to express Ṽ in terms of functions with the arguments (q, ω), we find

Ṽ(q, ω) =

(
DR(q, ω) DK(q, ω)

0 −DA(q, ω)

)(
V K(q, ω) V R(q, ω)
V A(q, ω) 0

)(
DA(q, ω) 0
−DK(q, ω) −DR(q, ω)

)

=

(
DRV KDA − (DRV R −DAV A)B(ω)

[
DR + DA

]
−DRV RDR

−DAV ADA 0

)
(q, ω).

(6.168)

This can be simplified to read

Ṽ(q, ω) =

(
B(ω)

[
−DRV RDR + DAV ADA

]
−DRV RDR

−DAV ADA 0

)
(q, ω) =

(
VK VR
VA 0

)
(q, ω) (6.169)
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where
VK(q, ω) = B(ω)(VR(q, ω) − VA(q, ω)). (6.170)

The explicit expression of VR(q, ω) which we need for the calculation of the J ’s is then

VR(q, ω) = − V R(q, ω)

(Dq2 − iω)2
(6.171)

Let us now turn to the path integral over the magnetic fluctuations.

6.5.3 Path integral over B

We denote the factor coming from the path integral over B by

PB(x, x′) :=

〈
R22(x)R∗

11(x
′) e−if2(x)eif1(x′) + R24(x)R∗

13(x
′) eif2(x)e−if1(x′)

〉

B

. (6.172)

The path integral over the components of the magnetic field cannot be solved exactly. In
particular since the matrix elements Rij are complicated functions of the components of the
magnetic field. Hence we make use of our assumption formulated in the beginning of section
(6.1) (The variations of ~B are small.)

Furthermore we treat ~B1(x
′) and ~B2(x) semiclassically15 which means that we can neglect

the Keldysh index as the field components are assumed to take the same values on the upper
and lower branch. We write down the first three terms of a Taylor expansion of R∗

11(B(x′))
around B(x) 16

R∗
11(B(x′)) = R∗

11(B(x)) + C1(B(x))∂tB(x) · (t− t′) + C2(B(x))∇B(x) · (r − r′) + ... (6.173)

where C1 and C2 are coefficients at B(x′) = B(x). As for the calculation of the DOS we need
the Green’s function only at equal points (r = r′) in space all terms containing the difference
(r − r′) vanish. According to our assumption ∂tB(x) is small. However ∂tB(x) is multiplied
by t − t′ which could become large. Fortunately we have a factor eJφ from the scalar field Φ

which falls off exponentially. At T = 0 it roughly goes like e−
√
Es|t−t′|(1+i) as we will show in

the next section.
√
Es is the energy scale of the singlet which is much bigger than

√
Et the

corresponding triplet energy. Hence we can restrict ourselves in good approximation to the first
term of equation (6.173). The products of matrix elements then read approximately

R22(x)R∗
11(x

′) ≈ 1

2

(
1 +

Bz(x)

B(x)

)
+ O

(
Ḃ(x),∇B(x)

)
(6.174)

R24(x)R∗
13(x

′) ≈ 1

2

(
1 − Bz(x)

B(x)

)
+ O

(
Ḃ(x),∇B(x)

)
(6.175)

where B =
√

(Bx)2 + (By)2 + (Bz)2 is the absolute value of the magnetic field. This simplifies
the expression that we have to calculate considerably

15like the potential eV (x) in the one particle Schrödinger equation in first quantization.
16x = (r, t) and x′ = (r′, t′)
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PB ≈ 1

2

〈
e−if2(x)eif1(x′) + eif2(x)e−if1(x′)

〉

B

+
1

2

〈
Bz(x)

B(x)

(
e−if2(x)eif1(x′) − eif2(x)e−if1(x′)

)〉

B

.

(6.176)
It can be shown that the second term vanishes exactly. However there is another argument
which is shorter and thus easier to understand: Calculating the DOS one has to sum G>↑↑ and

G>↓↓ and the second term in the equation above proportional to Bz(x)
B(x) cancels exactly with a

contribution of G>↓↓. This can be seen from equations (7.37) and (7.39) below in which one has
to set Bex = 0 in order to have the correct expressions for our current problem. Hence we only
have to evaluate the first term on the right hand side of equation (6.176):

PB ≈ 1

2

〈
eif2(x)e−if1(x′) + e−if2(x)e−if1(x′) =

〉

B

=

〈
cos
(
f2(x) − f1(x

′)
)〉

B

(6.177)

or in a power series

PB(x, x′) =
∞∑

n=0

1

(2n)!

〈(
f2(x) − f1(x

′)
)2n
〉

B

(6.178)

Unfortunately the f ’s are not linear in the field components but linear in the absolute value.
fα(x) reads in the unrotated representation

fα(x) = µB

2∑

β=1

∫
dy Aαβ(x, y)

√
(Bx

β)
2 + (By

β)
2 + (Bz

β)
2 (y). (6.179)

Thus we have for PB:

PB(x, x′) =
∞∑

n=0

1

(2n)!

∑

β1...β2n

∫
dy1 ... dy2n

[
A2β1(x, y1) −A1β1(x

′, y1)

]
...

[
A2β2n(x, y2n) −A1β2n(x′, y2n)

]
µ2n
B

〈
Bβ1(y1)...Bβ2n(y2n)

〉

B

.

(6.180)

The path integral

〈
Bβ1(y1)...Bβ2n(y2n)

〉

B

is not exactly solvable for an arbitrary number of B’s

at different points. In Appendix (9.2) we discuss this in some detail. Here we only summarize
the results. For example one can obtain the exact result for the correlator of two absolute values
of B at different points

〈B(x)B(x′)〉B =
2

π

(
3
√
Vt(x, x)2 − Vt(x, x′)2+

(Vt(x, x)
2 + 2Vt(x, x

′)2) arcsin(Vt(x, x
′)/Vt(x, x))

Vt(x, x′)

)
.

(6.181)
This is a rather inconvenient expression for further calculations so we look at the limiting case
of a long range interaction (constant in space and time). We remind that the interaction in the
triplet channel is connected to the fluctuations of the components of the magnetic field
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V R
t (x, x′)δij = −iµ2

B

〈
Bi

1(x)B
j
2(x

′)
〉
B

i, j = x, y, z. (6.182)

We already assumed weakly varying magnetic field components when we approximated the
elements of the rotation matrix. Here one can see that weakly varying magnetic fields translate
also into a slowly varying interaction Vt(x, x

′). Hence we are using the same approximation as
before. In the limit of a constant interaction V (x, x′) = Vlong the arcsin in equation (6.181)
becomes π/2 and one obtains 〈

B(x)B(x′)
〉
B

= 3Vlong. (6.183)

Proceeding along the same line of reasoning, the four point correlator reads

〈
B(x)B(x1)B(x2)B(x3)

〉
B

=
〈
B(x)4

〉
B

= 15Vlong. (6.184)

This is the decisive idea that allows us to calculate arbitrary powers of B at different points.
Thus we will determine the remaining average in the limit of a long range interaction in which
we can use the results of the higher moments at one point in space/time. The general result
for
〈
B(x)2n

〉
B

for a constant interaction Vlong we get from formula (9.45) in the appendix for
l = 2n adding the factor µ2n

B which was neglected in the calculation in the Appendix.

µ2n
B

〈
B(x)...B(x)︸ ︷︷ ︸

2n

〉

B

=
2n+1

√
π

Γ

(
2n+ 3

2

)
(iVlong)

n (6.185)

Putting this result into (6.180), we have

PB(x, x′) =

∞∑

n=0

1

(2n)!

2n+1

√
π

Γ

(
2n+ 3

2

)
2n
(

1

2

∑

ββ′

∫
dy dy′

[
A2β(x, y) −A1β(x

′, y)

]

iVlong

[
A2β′(x, y′) −A1β′(x′, y′)

])n
.

(6.186)

We define analogously to the singlet case (see equation (6.149)) a propagator containing a triplet
interaction plus two factors of A

Vt(x, x′) =

∫
dy

∫
dy′A(x, y)V̆longA

T (x′, y′). (6.187)

The 2×2 matrix V̆long has as all matrix elements the constant Vlong. Vt(x, x′) has the same time
structure as in the singlet case:

Vt(x, x′) =

(VTt (x, x′) V<t (x, x′)

V>t (x, x′) VTt (x, x′)

)
. (6.188)

Also we introduce a function

JBαα′(x, x′) = − 1

2i

[
Vtαα′(x, x′) + Vtα′α(x′, x) − Vtαα(x, x) − Vtα′α′(x′, x′)

]
. (6.189)
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Restricting ourselves, as in the singlet case, to a translationally invariant system we obtain at
equal positions in space

JB21(0, t) = 2

∫ ∞

0

dω

2π

1

V
∑

q

ImVRt (q, ω)

[
B(ω) (cos(ωt) − 1) − i sin(ωt)

]
. (6.190)

We abbreviate JB21 by JB. The only difference with Jφ is that the singlet interaction is replaced
by the triplet interaction. We define

Yt(ω) =
1

V
∑

q

VRt (q, ω). (6.191)

Expressing the series of equation (6.186) in JB we find

PB(t) =
∞∑

n=0

22n+1

(2n)!
√
π

Γ

(
2n+ 3

2

)
JB(t)n. (6.192)

Rewriting the Γ–function

Γ

(
n+ 1 +

1

2

)
=

Γ (2(n+ 1))

Γ (n+ 1)

√
π 2−2(n+1)+1 (6.193)

brings us to

PB(t) =
∞∑

n=0

Γ (2(n+ 1))

Γ (n+ 1)

1

(2n)!
JB(t)n =

∞∑

n=0

(2n+ 1)
JB(t)n

n!
. (6.194)

This can be written in compact form since

∞∑

0

(2n+ 1)
xn

n!
= ex + 2x

∞∑

0

xn−1

(n− 1)!
= (1 + 2x) ex (6.195)

Thus we obtain a quite simple result

PB(t) = [1 + 2JB(t)] eJB(t). (6.196)

Equation (6.196) is a central result of this thesis. It is exact for the case of a constant magnetic
field (→ constant interaction). As there is no interaction which is absolutely constant in space
and time let us go back to equation (6.190). VRt (q, ω) contains a factor 1/(Dq2 − iω)2 (see
equation (6.171)) which is highly peaked in (q, ω)–space. Thus the factor 1/(Dq2 − iω)2 can
serve as a cut off.

An interaction that is constant in real space is a δ–function in (q, ω)–space. If however the
interaction falls off over a finite length in real space it has also a finite width in (q, ω)–space.
If the width of the factors A(q, ω) is smaller than the one of V (q, ω) they cut off the q and ω
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integral in (6.190). So we can allow a certain space and time dependence of the interaction and
replace Vlong → Vt(x, x

′). We generalize (6.187) to

Vt(x, x′) =

∫
dy

∫
dy′A(x, y)V̆t(y, y

′)AT (x′, y′). (6.197)

6.5.4 Result for the Green’s functions

Let us summarize what we have found for the Green’s function G>↑↑(r, r
′, t− t′)|r=r′ in the limit

of weakly varying magnetic fields. Putting equations (6.163) and (6.196) in equation (6.141) we
obtain

G>↑↑(t, p) = Pφ(t)PB(t)G>τ (t, p) = eJφ(t)+JB(t)
[
1 + 2JB(t)

]
G>τ . (6.198)

Going through the corresponding steps of the calculation of G<τ , one finds the complex conju-
gated J ′s (Jφ12 = (Jφ21)

∗ and JB12 = (JB21)
∗) and the result

G<↑↑(t, p) = P ∗
φ(t)P ∗

B(t)G>τ (t, p) = eJ
∗
φ(t)+J∗

B(t)[1 + 2J∗
B(t)

]
G<τ (t, p). (6.199)

Without external magnetic field it follows directly that

G>↓↓(t, p) = G>↑↑(t, p) and G<↓↓(t, p) = G<↑↑(t, p). (6.200)

6.6 Density of states

In this section we calculate the DOS of an infinite quasi one–dimensional wire at zero tempera-
ture. Taking the expressions for the Green’s functions of the previous section we are now able to
calculate the DOS non perturbatively. Without external magnetic field equation (6.2) simplifies
to

ν(ǫ) = ν↑(ǫ) + ν↓(ǫ) =
i

πV
∑

p

(
G>↑↑(p, ǫ) −G<↑↑(p, ǫ)

)
(6.201)

We have17

Λ(t) =
i

πν3V
∑

p

Gτ (t, p) =

(
F̃ (t) δ(t) − F̃ (t)

δ(t) + F̃ (t) −F̃ (t)

)
(6.202)

and thus18

ν1(t) = ν1

[(
δ(t) + F (t)

)
eJφ+JB (1 + 2JB) +

(
δ(t) − F (t)

)
eJ

∗
φ+J∗

B (1 + 2J∗
B)

]
(6.203)

which gives

ν1(t) = 2ν1

[
δ(t) +

1

2

(
eJφ+JB (1 + 2JB) − eJ

∗
φ+J∗

B (1 + 2J∗
B)
)
F (t)

]
. (6.204)

As we are interested in the DOS as a function of energy we Fourier transform ν1(t).

17(4.43) is the corresponding equation in Keldysh rotated representation.
18We multiplied both sides of the equation by a2 in order to obtain the quasi one–dimensional DOS ν1 = a2ν3.
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ν1(ǫ) = 2ν1

[
1 +

1

2

∫ ∞

−∞
dt 2πF (t)

[
P (t) − P ∗(t)

]
eiǫt
]

(6.205)

where we introduced the function

P (t) :=
eJφ(t)+JB(t)(1 + 2JB)(t)

2π
. (6.206)

This may be written as

ν1(ǫ) = 2ν1

[
1 +

1

2

∫ ∞

−∞
dt

∫ ∞

−∞

dǫ′

2π

∫ ∞

−∞

dE

2π
2πF (ǫ′)

[
P (E) − P ∗(E)

]
eit(ǫ−ǫ

′−E)

]
. (6.207)

Performing the t integration one gets a factor δ(ǫ− ǫ′−E) which we use for the integration over
dǫ′ to obtain

ν1(ǫ) = 2ν1

[
1 +

1

2

∫ ∞

−∞
dE F (ǫ− E)

[
P (E) − P ∗(E)

]]
. (6.208)

In order to simplify this expression further we have to determine the function P (E) and relate
P ∗(E) to P (E).

6.6.1 Determination of P (E)

In order to calculate P (E) let us begin with the calculation of Y (ω). We will treat singlet and
triplet contributions in parallel. The function Yn(ω) was defined as Yn(ω) = 1

V
∑

q VRn (q, ω).
19 In the quasi one–dimensional system of infinite length in z–direction the sum over q is
approximated as explained in section (2.2.5).

1

V
∑

qx,qy ,qz

≈ 1

a2

∫
dqz
2π

(6.209)

Plugging the interactions

Γs(q, ω) =
Γs
Zs

Dq2 − iω

D∗
sq

2 − iω
, Γt(q, ω) =

Γt
Zt

Dq2 − iω

D∗
t q

2 − iω
(6.210)

in equation (6.171), we obtain for Yn(ω) the following integral

ImYn(ω) = cn Im

∫
dq

2π

1

(D∗
nq

2 − iω)(Dq2 − iω)
(6.211)

with n = s or n = t. The constants are

D∗
s =

D

1 −As0
D∗
t =

D

1 −Aa0
(6.212)

and

cs =
As0

2ν1(1 −As0)
ct =

Aa0
2ν1(1 −Aa0)

(6.213)

19where n = s or n = t.
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where we combined a2ν3 to ν1. Performing the q–integral according to equation (2.55) we have

ImYn(ω) =
cn ω

−3/2

2
√

2(
√
D +

√
D∗
n)
. (6.214)

With the definitions of equation (2.102) it follows

ImYs(ω) =
2π

ω

√
Es
4πω

ImYt(ω) = −2π

ω

√
Et

4πω
. (6.215)

Having the ImYn(ω) we can go on with the calculation of the J ’s from equations (6.162) and
(6.190). At T = 0 the function J(t) can be evaluated exactly. In the singlet case one has

Jφ(t) = 2

∫ ∞

0

dω

ω

√
Es
4πω

(e−iωt − 1). (6.216)

Using the integral

∫ ∞

0
dω ω−3/2(e−iωt − 1) = −

√
2π|t|(1 + isign(t)) (6.217)

one obtains

Jφ(t) = −
√

2Es|t|(1 + isign(t)). (6.218)

In the triplet case we just have to add a minus sign.

JB(t) =
√

2Et|t|(1 + isign(t)) (6.219)

So we can address the computation of P (E). We divide P (E) into 2 parts:

P (E) =
1

2π

∫ ∞

−∞
dt eJφ(t)+JB(t)+iEt

︸ ︷︷ ︸
P1(E)

+
1

π

∫ ∞

−∞
dt JB(t) eJφ(t)+JB(t)+iEt

︸ ︷︷ ︸
P2(E)

. (6.220)

Also we set

√
Eg :=

√
Es −

√
Et (6.221)

which allows us to write the sum of the J ’s simply as

J := Jφ(t) + JB(t) = −
√

2Eg|t|(1 + isign(t)) (6.222)

So let us begin with the calculation of P1(E). As it can be seen directly from the definition
J(−t) = (J(t))∗. We use this property in order to restrict the time integral to the positive real
axis

P1(E) =
1

2π

∫ ∞

0
dt

(
eReJ(t)−iImJ(t)−iEt + eReJ(t)+iImJ(t)+iEt

)
=

1

π

∫ ∞

0
dt eReJ(t) cos(ImJ(t) + Et).

(6.223)
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Now we plug in the explicit form of J(t) and substitute u =
√

2Egt.
20 This gives

P1(E) =
1

πEg

∫ ∞

0
du u e−u cos

(
E

2Eg
u2 − u

)

=
1

πEg

∫ ∞

0
du u e−u

[
cos

(
E

2Eg
u2

)
cos(u) + sin

(
E

2Eg
u2

)
sin(u)

] (6.225)

With21

I1 =

∫ ∞

0
du u e−βu cos

(
αu2

)
cos(βu) =

β

4

√
π

2α3
e−β

2/(2α) (6.226)

and

I2 =

∫ ∞

0
du u e−βu sin

(
αu2

)
sin(βu) =

β

4

√
π

2α3
e−β

2/(2α) (6.227)

the solution is

P1(E) =
1√
πEg

(
Eg
E

)3/2

e−Eg/E . (6.228)

Note that at T = 0 : P1(E) = 0 for E < 0. This can be seen by substituting E′ = −E
into equation (6.225) and using (6.224). We will use this property for further manipulations
of equation (6.208). We turn to P2(E) and use the definition (6.222). Again we substitute
u =

√
2Egt and arrive at

P2(E) =
2
√
Et

π(Eg)3/2

∫ ∞

0
du u2 e−u

[
cos

(
E

2Eg
u2 − u

)
− sin

(
E

2Eg
u2 − u

)]
. (6.229)

Setting α = E
2Eg

and b0 = 2
√
EB

π(Eg)3/2 we have

P2(E) = b0

∫ ∞

0
du u2 e−u

[
cos
(
αu2

)
cos(u)+sin

(
αu2

)
sin(u)−sin(αu2) cos(u)+cos(αu2) sin(u)

]

(6.230)
We can relate this integral to the integrals (6.226) and (6.227) given above. One has

− ∂

∂β
I1

∣∣∣∣
β=1

=

∫ ∞

0
du u2 e−βu [cos(αu) cos(βu) + cos(αu) sin(βu)]

∣∣∣∣
β=1

(6.231)

and

20One has

sin(α + β) = sin(α) cos(β) + cos(β) sin(α) cos(α + β) = cos(α) cos(β) − sin(α) sin(β). (6.224)

21See [51].
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− ∂

∂β
I2

∣∣∣∣
β=1

=

∫ ∞

0
du u2 e−βu [sin(αu) sin(βu) − sin(αu) cos(βu)]

∣∣∣∣
β=1

(6.232)

which brings us to the final result

P2(E) =
2
√
Et√

π(Eg)3/2

(
Eg
E

)3/2

e−Eg/E

(
2Eg
E

− 1

)
. (6.233)

Note that at T = 0 also P2(E) = 0 for E < 0. This can be seen by substituting α′ = −α
which is equivalent to E′ = −E into equation (6.230) and using (6.224). As P1 and P2 vanish
for negative energies, P (E) as a whole vanishes for negative energies. It is also easy to see that
P ∗(E) = P (−E). A third property of P (E) is its normalization:

∫
dE P (E) = 1.22 We leave

the proof to the reader. Using these properties we can further transform equation (6.208).

6.6.2 The DOS at T = 0

For T = 0 the function F (ǫ − E) = tanh( ǫ−E2T ) becomes sign(ǫ − E). Together with P ∗(E) =
P (−E) equation (6.208) turns into

ν1(ǫ) = 2ν1

(
1 − 1

2

∫ ∞

−∞
dE sign(E − ǫ) [P (E) − P (−E)]

)
(6.234)

Substituting E′ = −E in the second integral we get

ν1(ǫ) = 2ν1

(
1 − 1

2

∫ ∞

0
dE P (E) [sign(E − ǫ) + sign(E + ǫ)]

)
. (6.235)

We assume that ǫ is positive. For 0 < E < ǫ the first sign is negative. Furthermore we use that
the integral of P (E) over all energies is 1. In the case of T = 0 the integral only goes from 0 to
∞ and we have

ν1(ǫ) = 2ν1

(∫ ∞

0
dE P (E) − 1

2

[
−
∫ ǫ

0
dE P (E) +

∫ ∞

ǫ
dE P (E) +

∫ ∞

0
dE P (E)

])
. (6.236)

Thus we finally obtain

ν1(ǫ) = 2ν1

∫ ǫ

0
dE P (E). (6.237)

So we get the DOS simply by integrating P (E) over dE from 0 to ǫ. This final integration is
rather simple and yields23

22Formally our P (E) is similar to the P (E) that appears in the theory of Coulomb Blockade ([52], [53], [54],
[55]). The connection of the microscopic approach to Coulomb Blockade Theory is discussed in [19].

23One uses the definition of the Error function

1 − Erf(x) =
2√
π

Z ∞

x

dv e−v2

(6.238)

See [56].
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ν1(ǫ) = 2ν1

[
1 − Erf

(√
Eg
ǫ

)
+

4√
π

√
Et
ǫ
e−Eg/ǫ

]
(6.239)

Expanding this expression for high energies ǫ and using the definition of
√
Eg one obtains

ν(ǫ) = 2ν1

[
1 − 2√

π

(√
Es
ǫ

− 3

√
Et
ǫ

)]
. (6.240)

We see that δν1(ǫ)/ν1 exactly coincides with the result of perturbation theory in equation (2.103).
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Figure 6.1: The DOS close to the Fermi energy. The drawn through curve is the full result containing
the Triplets whereas the dashed curve is the non perturbative result for the Singlets only. The dotted
curve is the perturbative result which diverges for small energies.

In figure (6.1) we show the full solution (6.239) and the perturbative result (6.240). Additionally
we show only the singlet part of the non–perturbative result in order to make the contribution
of the triplet term visible. For the plot we have chosen R =

√
Et/

√
Es = 0.05 which is a

conservative value. The larger R the bigger is the effect of the triplet. In appendix (9.4) we
estimated a value of R = 0.12 for Palladium.



Chapter 7

Interaction, Disorder and External
Magnetic Field

In this chapter we add a constant external magnetic field Bex in z–direction to our interacting
and disordered system, that we discussed in the previous chapter. We will investigate how the
DOS changes in the presence of the external field. The strategy to solve the problem remains
the same. We introduce a rotation matrix and gauge factors in order to find an approximate
saddle point solution. Of course, all the matrices change due to the presence of the external
magnetic field.

In the case of a strong external magnetic field (Bex → ∞) we will be able to extract an
analytic solution for the DOS at T = 0 that coincides with the predictions of perturbation
theory for high energies. For an external magnetic field that is of order of the characteristic
energies Es and Et we will have to resort to numerical treatment even at zero temperature. But
also there the numerical curve converges for high energies towards the perturbative result.

Finally we will evaluate our formula for the DOS for finite temperatures. That will allow to
estimate up to which temperatures triplets effects survive.

Let us begin again with the generating functional which now depends on the additional
parameter Bex:

Z[J, Ĵ , Bex] =
1

NU

∫
DΨ̂

∫
DΨ

∫
DΦ

∫
D ~B

∫
DU eiS[Ψ,Ψ̂,Φ,U, ~B,J,Ĵ,Bex]. (7.1)

The external magnetic field couples linearly to the electron density. Thus it affects the action
only through the first term in

S[Ψ, Ψ̂,Φ, U, ~B, J, Ĵ , Bex] =

∫
dx Ψ̂(x)Ĝ−1[Φ, ~B, U,Bex](x)Ψ(x) +

∫
dx
(
Ĵ(x)Ψ(x) + Ψ̄J(x)

)

+
1

2

∫
dx ΦT (x) σzV

−1
0,s (x)Φ(x) +

1

2

∫
dx
∑

n

(Bn)T (x) σzV
−1
0,t (x)Bn(x)

(7.2)

with

Ĝ−1[Φ, ~B, U,Bex](x) = G−1
0 I4 + I2 ⊗ φα(x)γα + ~σ ⊗ ~Bα(x)γα + U(r)I4 + σz ⊗BexI2. (7.3)

125
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As Bex is constant and points in z–direction, it couples to a σz matrix in spin space and a unity
matrix in Keldysh space. The field matrix now reads

Fφ, ~B,Bex
=





φ1 +Bz
1 +Bex 0 Bx

1 − iBy
1 0

0 φ2 +Bz
2 +Bex 0 Bx

2 − iBy
2

Bx
1 + iBy

1 0 φ1 −Bz
1 −Bex 0

0 Bx
2 + iBy

2 φ2 −Bz
2 −Bex



 . (7.4)

Again we do the disorder averaging first, like it was explained in chapter (4). The decoupling of
the resulting quartic fermionic terms leads to a path integral over a 4 × 4 matrix field Q̂. The
generating functional then reads

Z[J, Ĵ , Bex] =

∫
DΨ̂

∫
DΨ

∫
DΦ

∫
D ~B

∫
DQ̂ eiS[Ψ,Ψ̂,Φ,Q̂, ~B,J,Ĵ,Bex] (7.5)

with the action

S[Ψ, Ψ̂,Φ, Q̂, ~B,Bex] =

∫
dx

∫
dx′ Ψ̂(x)Ĝ−1[Φ, ~B, Q̂, Bex](x, x

′)Ψ(x′) − πν3

4τ
Tr{Q̂2}

+
1

2

∫
dx ΦT (x) σzV

−1
0,s (x)Φ(x) +

1

2

∫
dx
∑

n

(Bn)T (x) σzV
−1
0,t (x)Bn(x)

+

∫
dx

(
J̄(x)Ψ(x) + Ψ̄J(x)

)

(7.6)

where

Ĝ−1[Φ, ~B, Q̂, Bex](x) =

[
G−1

0 I4 + I2 ⊗ φα(x′)γα + ~σ ⊗ ~Bα(x′)γα + σz ⊗BexI2

]
δ(x− x′)

+
i

2τ
Q̂(r, t, t′)δ(r − r′).

(7.7)

7.1 Introduction of a rotation and local gauge factors

We proceed with the introduction of a rotation matrix Rex in order to diagonalize the field
matrix including the external field Bex:

Dφ,B,Bex = R−1
ex Fφ, ~B,Bex

Rex. (7.8)

The modified rotation matrix reads
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Rex =





B⊥
1 B

s+
1

(Bx
1 +iBy

1 )
√

(B⊥
1 )2+(Bs+

1 )2
0

−B⊥
1 B

s−
1

(Bx
1 +iBy

1 )
√

(B⊥
1 )2+(Bs−

1 )2
0

0
B⊥

2 B
s+
2

(Bx
2 +iBy

2 )
√

(B⊥
2 )2+(Bs+

2 )2
0

−B⊥
2 B

s−
2

(Bx
2 +iBy

2 )
√

(B⊥
2 )2+(Bs−

2 )2

B⊥
1√

(B⊥
1 )2+(Bs+

1 )2
0

B⊥
1√

(B⊥
1 )2+(Bs−

1 )2
0

0
B⊥

2√
(B⊥

2 )2+(Bs+
2 )2

0
B⊥

2√
(B⊥

2 )2+(Bs−
2 )2





(7.9)
where we introduced the abbreviations

B⊥
i :=

√
(Bx

i )
2 + (By

i )
2 B̂i :=

√
(Bex +Bz

i )
2 + (B⊥

i )2 (7.10)

and

Bs+
i := Bex +Bz

i + B̂i Bs−
i := Bex +Bz

i − B̂i. (7.11)

where i = 1, 2. We see that we recover the matrix (6.9) in the limit of vanishing external
magnetic field. Our new diagonal matrix is

Dφ,B,Bex =





φ1 + B̂1 0 0 0

0 φ2 + B̂2 0 0

0 0 φ1 − B̂1 0

0 0 φ2 − B̂2




. (7.12)

The advantage of including Bex in the diagonalization is that we can expand all quantities in the
limit Bex → ∞ which will simplify the calculation. For finite external magnetic field however
we can already anticipate at this early point of the calculation that the evaluation of the DOS is
far more complicated although Bex is assumed to be constant in space and time. For the gauge
factors we use the same ansatz as before

Uex(x) = exp



i





k1 + f1 0 0
0 k2 + f2 0 0
0 0 k1 − f1 0
0 0 k2 − f2







 . (7.13)

The difference however is that the functions f1 and f2 should now compensate the magnetic
fields B̂1 and B̂2 instead of the absolute values B1 and B2 before. We go exactly through the
steps of section (6.1). All one has to do is the replacement R → Rex, Dφ,B → Dφ,B,Bex and
U(x) → Uex(x). One integrates out the Fermions and obtains the modified generating functional

Z[J, Ĵ , Bex] =

∫
DΦ

∫
D ~B

∫
DQ̂ eiS[Φ,Q̂, ~B,J,Ĵ,Bex] (7.14)

with the action
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S[Φ, Q̂, ~B,Bex] =

∫
dx

∫
dx′Ĵ(x)Rex(x)U

−1
ex (x)Ĝex[Φ, ~B, Q̂, Bex](x, x

′) Uex(x
′)R−1

ex (x′)J(x′)

+
1

2

∫
dx ΦT (x) σzV

−1
0,s (x)Φ(x) +

1

2

∫
dx
∑

n

(Bn)T (x) σzV
−1
0,t (x)Bn(x)

− πν3

4τ
Tr{Q̂2} − iTr ln

[
Ĝ−1
ex [Φ, ~B, Q̂](x, x′)

]

(7.15)

where Ĝex[Φ, ~B, Q̂](x, x′) is the inverse of

Ĝ−1
ex [Φ, ~B, Q̂, Bex](x) =

[
Uex(x)R−1

ex (x)G−1
0 (x)Rex(x)U

−1
ex (x) +Dφ,B,Bex(x)

]
δ(x− x′)

+
i

2τ
Uex(x)R−1

ex (x)Q̂(r, t, t′)Rex(x
′)U−1

ex (x′)δ(r − r′).

(7.16)

7.2 Determination of a saddle point for Q̂

The determination of the saddle point equation is completely analoguous to the case without
external magnetic field and one arrives at

UexR−1
ex Q̂SPex RexU

−1
ex (r, t, t′) =

i

πν3
Ĝex[Φ, ~B, Q̂

SP
ex ](r, t, t′) (7.17)

with

Ĝex[Φ, ~B, Q̂
SP
ex ](x) =

[(
Uex(x)R−1

ex (x)G−1
0 (x)Rex(x)U

−1
ex (x) +Dφ,B,Bex(x)

)
δ(x− x′)

+
i

2τ
Uex(x)R−1

ex (x)Q̂SPex Rex(x
′)U−1

ex (x′)δ(r − r′)

]−1

.

(7.18)
Formally the two equations above are identical with the Bex = 0 case except for the additional
index ex at all quantities. We follow the same solution strategy for the saddle point equation.
We adjust the gauge factors such that they approximately annihilate the diagonal field matrix
Dφ,B,Bex . Then we are able to construct a solution of equation (7.17) starting from the saddle
point solution of the non interacting problem.

In the case of a finite external magnetic field Bex we have no longer a unity matrix in spin
space (see equation (6.37)) but two different solutions for the spin–up and the spin–down part
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due to the different occupation of the spin–up and the spin–down levels. In energy space the
non interacting saddle point solution for Q̂ reads

Λ̂ex(ǫ) =

(
Λ↑(ǫ) 0

0 Λ↓(ǫ)

)
=





F↑(ǫ) 1 − F↑(ǫ) 0 0
1 + F↑(ǫ) −F↑(ǫ) 0 0

0 0 F↓(ǫ) 1 − F↓(ǫ)
0 0 1 + F↓(ǫ) −F↓(ǫ)



 (7.19)

where

F↑(ǫ) = F (ǫ− µBBex) and F↓(ǫ) = F (ǫ+ µBBex). (7.20)

An approximate saddle point for the interacting problems is then given by

Q̂SPex = RexU
−1
ex Λ̂ex UexR−1

ex (7.21)

which leads to the approximate Green’s function

ĜSPex (x, x′) =

[
Ĝ−1

0 +
i

2τ
Λ̂ex + Cex

]−1

. (7.22)

Following the lines of argumentation in section (6.2), one arrives at

Cex(x) = I2 ⊗ Cφα(x)γα + σz ⊗ CB,exα (x)γα (7.23)

with Cφα given in equation (6.44) and

CB,exα (x) = ∂tfα + vF (pF ) · ∇fα + B̂α. (7.24)

Compared to the equations (6.45) Bα is replaced by B̂α. In analogy to (6.47) we define

Ĝτ,ex =

[
Ĝ−1

0 +
i

2τ
Λ̂ex

]−1

=

(
G−1

0 + i
2τ Λ↑ 0

0 G−1
0 + i

2τ Λ↓

)−1

(7.25)

and expand the Green’s function ĜSPex in equation (7.22) in powers of the small field Cex which
leads to the condition1

Ĝτ,exCexĜτ,ex
∣∣
r=r′

= 0 (7.26)

The determination of the gauge factors from the condition proceeds as above. Looking at
equation (6.54) one really has to distinguish now between G↑↑ and G↓↓. However as there is no
mixing of the G’s, the results for the respective Π1’s and Π2’s remain unchanged. The energy
shift due to the external magnetic field simply disappears after a rescaling of the energies. For
the gauge factors kα we recover exactly equation (6.86) whereas for the gauge factors fα one

finds ̂̃B on the right side instead of B̃.

(
f̃1

f̃2

)
= µB

(
DR B(ω)(DR + DA)
0 −DA

)(̂̃B1

̂̃B2

)
(7.27)

1Compare with (6.50).
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Taking into account Gaussian fluctuations of the field B leads unfortunately to untractable
expressions when the dependence on the external magnetic field of the screened interaction is
retained. In the sequel we neglect the effect of the external field on the dynamically screened
interaction.2 Another option would be to neglect the quadratic corrections in ~B and work
with the static amplitude Γt. We have shown in chapter 2 on perturbation theory that the
modification of the interaction due to the external field is not decisive. Even with the static
amplitudes one obtains the shifted poles at ±2µBBex. We will perform the calculations with
the effective interactions given in equation (6.131).

7.3 Calculation of the single particle Green’s function

The normalized generating functional Z[J, Ĵ , Bex] in the presence of an external magnetic field
reads3

Z[J, Ĵ , Bex] =
1

NφNB

∫
DΦ

∫
D ~B eiS[Φ,Q̂SP , ~B,J,Ĵ,Bex] (7.28)

where the action

S[Φ, Q̂SP , ~B,Bex] =

∫
dx

∫
dx′ Ĵ(x)Rex(x)U

−1
ex (x) Ĝτ,ex(x, x

′) Uex(x
′)R−1

ex (x′)J(x′)

+
1

2

∫
dx ΦT (x) V −1

s (x)Φ(x) +
1

2

∫
dx
∑

n

(Bn)T (x) V −1
t (x)Bn(x)

(7.29)

and

Ĝτ,ex(t− t′) =





GT↑ (t− t′) −G<↑ (t− t′) 0 0

G>↑ (t− t′) −GT̄↑ (t− t′) 0 0

0 0 GT↓ (t− t′) −G<↓ (t− t′)

0 0 G>↓ (t− t′) −GT̄↓ (t− t′)




. (7.30)

The explicit form of GR↑ (ǫ, p) and GR↓ (ǫ, p) is for example given in equation (2.63). We do not
need the explicit form of the elements above as we go over to the Keldysh rotated representation
for the calculation of the DOS. The Green’s function in the presence of interaction, disorder and
external magnetic field follows from4

Gex(x, x
′) = i

δ

δJ(x)

δ

δĴ(x′)
Z[J(x), Ĵ(x′), Bex] =

〈
Rex(x)U

−1
ex (x)Ĝτ,ex(x, x

′)Uex(x
′)R−1

ex (x′)

〉

φ,B

.

(7.32)
The four components that are relevant for the calculation of the DOS are

Gex,>↑↑ = R22(Rex
11)

∗Gex,>F↑↑ + Rex
24(Rex

13)
∗Gex,>F↓↓ (7.33)

2We will take the result of section (6.2).
3with a normalization constants Nφ = Det[iσzV −1

s ]1/2 and NB = Det[iσzV −1
t ]3/2

4

〈 ....〉φ =
1

Nφ

Z
DΦ ...ei/2Tr[ΦT V −1

s Φ] and 〈 ....〉B =
1

NB

Z
D ~B ...ei/2 n Tr[(Bn)T V −1

t Bn] (7.31)
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Gex,<↑↑ = Rex
11(Rex

22)
∗Gex,<F↑↑ + Rex

13(Rex
24)

∗Gex,<F↓↓ (7.34)

Gex,>↓↓ = Rex
42Rex

31G
ex,>
F↑↑ + R44Rex

33G
ex,>
F↓↓ (7.35)

Gex,<↓↓ = Rex
31Rex

42G
ex,<
F↑↑ + Rex

33Rex
44G

ex,<
F↓↓ . (7.36)

The definitions are made in complete analogy to section (6.5). The index ex just indicates
that we have now modified rotation matrix elements and the Green’s functions Gex,Fsisi

contain

modified exponentials eifα .5The Φ dependent part is of course unchanged and thus the path
integral over Φ is performed like in the previous chapter.

For the path integral over ~B we use again the assumption of slow variations. As a first step
we approximate the products of rotation matrix elements in that spirit. We obtain suppressing
the arguments

Gex,>↑↑ =

[
1

2

(
1 +

Bz +Bex

B̂

)
G>↑ e−i(f2−f1) +

1

2

(
1 − Bz +Bex

B̂

)
G>↓ ei(f2−f1)

]
eJφ (7.37)

Gex,<↑↑ =

[
1

2

(
1 +

Bz +Bex

B̂

)
G<↑ e−i(f1−f2) +

1

2

(
1 − Bz +Bex

B̂

)
G<↓ ei(f1−f2)

]
eJ

∗
φ (7.38)

Gex,>↓↓ =

[
1

2

(
1 − Bz +Bex

B̂

)
G>↑ e−i(f2−f1) +

1

2

(
1 +

Bz +Bex

B̂

)
G>↓ ei(f2−f1)

]
eJφ (7.39)

Gex,<↓↓ =

[
1

2

(
1 − Bz +Bex

B̂

)
G<↑ e−i(f1−f2) +

1

2

(
1 +

Bz +Bex

B̂

)
G<↓ ei(f1−f2)

]
eJ

∗
φ . (7.40)

Note that we recover the expressions in equtions (6.174) and (6.175) if we send Bex → 0 in the
prefactors above. Let us repeat ones more the formula for the DOS

ν(ǫ) =
i

2πV
∑

p

(
Gex,>↑↑ (p, ǫ) −Gex,<↑↑ (p, ǫ) +Gex,>↓↓ (p, ǫ) −Gex,<↓↓ (p, ǫ)

)
. (7.41)

Now we cannot simply take the spin–up contribution and multiply it by two. However it is ad-
vantageous not to treat the spin–up and spin–down contribution completely separately. Adding
equation (7.37) and equation (7.39) we see that the terms proportional to Bz+BexbB cancel exactly
and for the DOS remains

ν(t) =
i

2πV
∑

p

〈(
e−i(f2−f1)G>↑ e

Jφ − e−i(f1−f2)G<↑ e
J∗

φ

)
+

(
ei(f2−f1)G>↓ e

Jφ − ei(f1−f2)G<↓ e
J∗

φ

)〉

B

.

(7.42)
Performing the p–sum in the continuum limit like in (6.202) and multiplying both sides by a2,
we obtain

5The fα’s are given in equation (7.27).
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ν1(t) =
ν1

2

〈(
e−i(f2−f1)Λ>↑ e

Jφ − e−i(f1−f2)Λ<↑ e
J∗

φ

)
+

(
ei(f2−f1)Λ>↓ e

Jφ − ei(f1−f2)Λ<↓ e
J∗

φ

)〉

B

.

(7.43)
The relevant matrix elements of (7.19) read in t–space:

Λ>↑ = δ(t) + F↑(t) Λ<↑ = −(δ(t) − F↑(t)) (7.44)

Λ>↓ = δ(t) + F↓(t) Λ<↓ = −(δ(t) − F↓(t)). (7.45)

Using furthermore the definitions

PB,↑ :=
〈
e−i(f2−f1)

〉
B

PB,↓ :=
〈
ei(f2−f1)

〉
B

(7.46)

one has

ν1(t) =
ν1

2

[
2δ(t)+F↑(t)

(
PB,↑ e

Jφ−P cB,↑ eJ
∗
φ

)]
+
ν1

2

[
2δ(t)+F↓(t)

(
PB,↓ e

Jφ−P cB,↓ eJ
∗
φ

)]
(7.47)

where P cB,↑ and P cB,↓ denote the expectation values
〈
e−i(f1−f2)

〉
B

and
〈
ei(f1−f2)

〉
B

respectively.
They are not independent of the two expectation values defined in (7.46). One obtains P cB,↑
simply by replacing JB by J∗

B in PB,↑ and P cB,↓ by replacing JB by J∗
B in PB,↓ . These replace-

ments do not correspond to complex conjugation as PB,↑ depends also on iBex. It can be shown
that PB,↓ can be obtained from PB,↑ by the replacement of Bex by −Bex. Hence we only need to
determine one of the averages. Let us first discuss the limit of a strong external magnetic field
and calculate the average over the fluctuations of ~B in that limit. Afterwards we will determine
the path integrals for arbitrary external magnetic field for slowly varying magnetic fluctuations.

7.4 The DOS at T = 0 for strong external magnetic field

In this section we assume that µBBex is much bigger than all the other energies involved in our
problem. Thus we expand our expressions in 1/Bex and keep only the leading order term which
corresponds to the limit Bex → ∞. We have

B̂ = Bex +Bz +
B2

⊥
2Bex

+ O(1/B3
ex) (7.48)

We approximate B̂ in the gauge factors fα by Bex+Bz. The gauge factors then simplify to read

fα(x) = µB

2∑

β=1

∫
dy Aαβ(x, y)B

z
β(y) − iµBBext. (7.49)

This has the consequence that the path integrals over ~B become Gaussian because Bz appears
now linear in the exponentials.6 Thus the integral is completely analoguous to the path integral
for the scalar field Φ.7 We can calculate it exactly and do not have assume slow spatial variations

6Bex is not involved in the averaging process.
7 We set e = µB = 1 in the following.
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of the magnetic fluctuations like in section (6.5.3), where we calculated the average over ~B for
zero external field. For r = r′ we obtain

PB,↑(t− t′) =

〈
e−i(f2(r,t)−f1(r,t′))

〉

B

= eJ
B
21(0,t−t′)eiBex(t−t′). (7.50)

Setting t = t− t′ and using our convention JB21 = JB, the four expectation values read

PB,↑ = eJB(t)eiBext PB,↓ = eJB(t)e−iBext (7.51)

and
P cB,↑ = eJ

∗
B(t)eiBext P cB,↓ = eJ

∗
B(t)e−iBext. (7.52)

Combining these averages with the factors eJφ and eJ
∗
φ respectively we define

P↑ :=
1

2π
eJ(t)−iBext P↓ :=

1

2π
eJ(t)+iBext (7.53)

and

P c↑ :=
1

2π
eJ

∗(t)−iBext P c↓ :=
1

2π
eJ

∗(t)+iBext (7.54)

where we used again the abbreviation intoduced in equation (6.222): J(t) = Jφ(t)+JB(t). Then
the DOS can be written in the compact form

ν1(ǫ) = ν1

(
2 +

1

2

∫ ∞

−∞
dE F (ǫ− E −B)

[
P↑(E) − P c↑ (E)

]
+ F (ǫ− E +B)

[
P↓(E) − P c↓ (E)

])
.

(7.55)
The definition of the P ’s in (7.53) and (7.54) is similar to the definition of P1 in equation (6.220).
One can relate the different P ’s as function of the energy E to P1(E) and P ∗

1 (E) through a shift
by ±Bex . Using then for T = 0 the properties P1(E) = 0 for E < 0 and P ∗

1 (E) = P1(−E)8 we
arrive at

ν1(ǫ) = 2ν1

∫ ǫ

0
dE P1(E) (7.56)

which leads to

ν1 = 2ν1

[
1 − Erf

(√
Eg
ǫ

)]
. (7.57)

Expanding this expression for high energies ǫ and using the definition of
√
Eg one obtains

ν(ǫ) = 2ν1

[
1 − 2√

π

(√
Es
ǫ

−
√
Et
ǫ

)]
. (7.58)

We see that δν1(ǫ)/ν1 coincides with the result of perturbation theory in equation (2.88) because
the terms containing the arctanh and arctan vanish for Bex → ∞. One could say: High magnetic
fields simply suppress two of the three triplet terms.

8See section (6.6.1).
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In figure (7.1) we plotted our result (7.57) for infinite field and the perturbative solution
(7.58). Additionally we plotted the non–perturbative result (6.239) for Bex = 0. Again we have
chosen R =

√
Et/

√
Es = 0.05.

In figure (7.2) we plotted our non perturbative solutions for zero and infinite field for high
energies for two different ratios of Es and Et. 1000Es correspond to approximately 0.003mV
which is still two orders of magnitude lower than the voltages in figure (1.2). Turning on and off
a sufficiently high external magnetic field would allow to jump in between the two corresponding
curves. We see that with increasing R the step height increases but even for a value of R = 0.1
the effect corresponds only to a change of about one percent.
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Figure 7.1: The DOS close to the Fermi energy. The solid line is the non–perturbative asymptotic
result for Bex → ∞. The dashed curve is the non–perturbative result including the singlet and
the triplet terms for Bex = 0 and the dotted curve is the perturbative result in the limit of infinite
external magnetic field which diverges for small energies.
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Figure 7.2: The DOS further away from the Fermi energy (1000Es correspond to approximately
0.003mV). The solid lines are the non–perturbative asymptotic results for Bex → ∞ and the dashed
lines are the non–perturbative results including the singlet and the triplet terms for Bex = 0.

7.5 The DOS at T = 0 for arbitrary external magnetic field

For an arbitrary magnetic field the calculation is much more complicated as we cannot develop
the fα’s in Bex and thus do not encounter a Gaussian integral for the fluctuations of ~B. We have
to make the same assumptions as in section (6.5.3) and evaluate PB,↑ :=

〈
e−i(f2−f1)

〉
B

in the
limit of weakly varying magnetic fluctuations which simplified the path integral to an ordinary
three dimensional integral. The explicit calculation can be found in appendix (9.2.3) . We just
cite here the result

PB,↑ =
eJB

2iBext

(
eiBext

(
iBext+ 2JB

)[
1 + Erf

(
iBext+ 2JB

2i
√
JB

)]

+ e−iBext
(
iBext− 2JB

)[
1 − Erf

(
iBext− 2JB

2i
√
JB

)]
.

(7.59)

PB,↓ is obtained by replacing Bex → −Bex. In the case without external field G>τ,↑ and G>τ,↓
would be equal and the terms containing the Erf would cancel in equation (7.37) and we would
recover eJB (1 + 2JB). Sending Bex and Vt → 0 (= JB → 0) we obtain PB,↑ = 1 which is also
correct. P ∗

B,↑ and P ∗
B,↓ are obtained from PB,↑ and PB,↓ simply by replacing JB by J∗

B. We

decompose these expressions in two parts. For convenience, we add a factor eJφ emerging when
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we average over the scalar field and a factor of 1
2π . Putting

eJφPB,↑
2π

= Pg1 + Pg2 ,
eJφPB,↓

2π
= Pg1 − Pg2 (7.60)

we have

Pg1 :=
1

2π

eJφ+JB

2iBext

(
eiBext

(
iBext+ 2JB

)
+e−iBext

(
iBext− 2JB

))
(7.61)

Pg2 :=
1

2π

eJφ+JB

2iBext

[
eiBext

(
iBext+ 2JB

)
Erf

(
iBext+ 2JB

2i
√
JB

)

− e−iBext
(
iBext− 2JB

)
Erf

(
iBext− 2JB

2i
√
JB

)]
.

(7.62)

In the following we abbreviate again J = Jφ + JB. In the limit T = 0 we will be able to
evaluate analytically the contribution of Pg1 to the DOS. The part coming from Pg2 is determined
numerically.9 With these definitions the formula for the DOS of (7.47) becomes

ν1(t) =
ν1

2

[
4δ(t) + 2πF↑(t)

([
Pg1 + Pg2

]
−
[
P cg1 + P cg2

])
+2πF↓(t)

([
Pg1 − Pg2

]
−
[
P cg1 − P cg2

])]
.

(7.63)
We separate the parts containing Pg1 and Pg2 defining

ν1 := νg1 + νg2 (7.64)

where νg1 and νg2 read in energy representation

νg1(ǫ) :=
ν1

2

[
4 +

∫ ∞

−∞
dE

[
F↑(ǫ− E) + F↓(ǫ− E)

](
Pg1(E) − P cg1(E)

)]
(7.65)

and

νg2(ǫ) :=
ν1

2

∫ ∞

−∞
dE

[
F↑(ǫ− E) − F↓(ǫ− E)

](
Pg2(E) − P cg2(E)

)
. (7.66)

Let us first discuss the evaluation of νg1 . In order to write down the Fourier transform of Pg1(t)
we need to determine two basic Fourier transforms. The first one is already known

P1(t) =
eJ(t)

2π
→ P1(E) =

1√
πEg

(
Eg
E

)3/2

e−Eg/E (7.67)

The second basic Fourier transform we denote by P3:

P3(t) :=
2JB(t)eJ(t)

2πiBext
→ P3(E) =

4√
πBex

(
EB
E

)1/2

e−Eg/E (7.68)

9The definitions of P c
g1

and P c
g2

are completely analogous. The only difference is that they contain J∗
φ and J∗

B

instead Jφ and JB .
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The derivation of P3(E) can be found in subsection (9.3). Note that P ∗
1 (E) = P1(−E). But

P ∗
3 (E) = −P3(−E). This is due to the additional 1/t appearing in P3. Using furthermore that

at T = 0 the function F (ǫ− E) = tanh( ǫ−E2T ) becomes sign(ǫ− E) we can derive

νg1(ǫ) =
ν1

2

[
2

∫ ǫ

0
dE P1(E) +

∫ ǫ+2Bex

0
dE P1(E) +

∫ |ǫ−2Bex|

0
dE P1(E)

− sign(ǫ− 2Bex)

∫ |ǫ−2Bex|

0
dE P3(E) +

∫ ǫ+2Bex

0
dE P3(E)

] (7.69)

The E–integrations can be performed using

∫ ǫ

0
dE P1(E) = 1 − Erf

(√
Eg
ǫ

)
(7.70)

and

∫ ǫ

0
dE P3(E) =

8
√
Eg

√
EB

Bex

(√
ǫ

Eg

e−Eg/ǫ

√
π

+ Erf

(√
Eg
ǫ

)
−1

)
. (7.71)

Thus we obtain for νg1(ǫ):

νg1(ǫ) =
ν1

2

[
4 − 2Erf

(√
Eg
ǫ

)
− Erf

(√
Eg

ǫ+ 2Bex

)
− Erf

(√
Eg

|ǫ− 2Bex|

)
)

− 8

√
EB
√
Eg

Bex

({
1 −

√
ǫ+ 2Bex
Eg

e−Eg/(ǫ+2Bex)

√
π

− Erf

(√
Eg

ǫ+ 2Bex

)}

− sign(ǫ− 2Bex)

{
1 −

√
|ǫ− 2Bex|

Eg

e−Eg/|ǫ−2Bex|
√
π

− Erf

(√
Eg

|ǫ− 2Bex|

)})]

(7.72)
In the limit Bex → 0 one gets

νg1(ǫ, Bex = 0) = 2ν1

[
1 − Erf

(√
Eg
ǫ

)
− 4√

π

√
EB
ǫ
e−Eg/ǫ

]
(7.73)

which is exactly the result of equation (6.239) that we found for zero external magnetic field.
Thus the contribution of νg2 has to vanish for Bex = 0. Let us verify this property analytically.
Without loss of generality we can assume ǫ > 0 and Bex > 0 as the problem is symmetric about
ǫ = 0. For T = 0 we have

F↑(ǫ− E) − F↓(ǫ− E) = F (ǫ− E −Bex) − F (ǫ− E +Bex)

= −
[
sign(E − (ǫ−Bex)) − sign(E − (ǫ+Bex))

]
=

{
−2 ǫ−Bex < E < ǫ+Bex

0 else

(7.74)
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and thus

νg2(ǫ) = −ν1

∫ ǫ+Bex

ǫ−Bex

dE
[
Pg2(E) − P cg2(E)

]
. (7.75)

We see that the integration interval of length 2Bex goes to zero for Bex → 0 and hence νg2 → 0.
For the numerical evaluation of νg2 it is not useful to work with equation (7.75) because one
would have to determine first Pg2 and P cg2 as function of energy and then do the dE integration.
What remains in t–representation is the Fourier transformation to ǫ:

νg2(ǫ) = ν1

∫ ∞

−∞
dt 2π

[
F↑(t) − F↓(t)

](
Pg2(t) − P cg2(t)

)
eiǫt. (7.76)

In t–representation F↑ and F↓ are given by

F↑(t) = − i

πt
e−iBext and F↓(t) = − i

πt
eiBext. (7.77)

One might wonder if the infinite integration interval poses a problem. This is not the case
because Pg2(t) (P cg2(t)) contains a factor eJ(t) (eJ

∗(t)) which falls off exponentially. So let us
analyze the results of the numerical calculation. We assumed as before R = 0.05. We begin
with the limits of strong and weak external magnetic field. We have chosen Bex = 10 (in units
of Es) for the plot in figure (7.3) and Bex = 0.02 for the plot in figure (7.4). As reference curves
we plotted the two limits of zero and infinite external magnetic field, are given in equations
(6.239) and (7.57). In figure (7.3) we see that the DOS for an external field of Bex = 10Es is
already close to the Bex = ∞ limit. According to our estimate of Es given in equation (9.82)
the energy of µBBex = 10Es corresponds to approximately 10−3Tesla. Such a small field could
already serve as switching field (see figure (7.2)).
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Figure 7.3: The DOS close to the Fermi energy. The solid line is the non–perturbative numerical
solution for Bex = 10. The dashed curve is the non–perturbative result for Bex = 0 and the dotted
curve is the non–perturbative result in the limit of infinite external magnetic field. (The dotted line
is almost completely masked by the solid line.)
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Figure 7.4: The DOS close to the Fermi energy. The solid line is the non–perturbative numerical
solution for Bex = 0.02. The dashed curve is the non–perturbative result for Bex = 0 and the dotted
curve is the non–perturbative result in the limit of infinite external magnetic field. One remarks a
small offset at ǫ = 0 for the finite field of Bex = 0.02.

Figure (7.4) shows results for a weak external magnetic field. One notes that the DOS for
Bex = 0.02 almost lies on top of the Bex = 0 curve. However for small energies there is a visible
difference. The DOS for Bex = 0.02 does not go to zero for ǫ = 0. In figure (7.5) we analyzed
this offset in greater detail. For zero and infinite external magnetic field the offset of the DOS
is zero. For finite field, however, the DOS does not decrease to zero. This might be due to
the appearance of an additional length scale in the system, the cyclotron radius r = mv/eBex,
introduced by the external magnetic field.
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Figure 7.5: The DOS at the Fermi energy (ǫ = 0) plotted as a function of the applied external field.
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Figure 7.6: The DOS close to the Fermi energy. The solid line is the non–perturbative numerical
solution for the intermediate field Bex = 1. The dashed curve is the non–perturbative result for
Bex = 0 and the dotted curve is the non–perturbative result in the limit of infinite external magnetic
field. The dashed–dotted line is the perturbative prediction.
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In figure (7.6) we have chosen Bex = 1 and plotted additionally to the zero and infinity field
solution the perturbative prediction. We note that our non–perturbative curve does not have
any feature at ǫ = 2µBBex. It is completely smooth and does not show even a dip like it was
predicted by Raimondi, Castellani and Di Castro [25].

7.6 The DOS at T > 0 for arbitrary external magnetic field

Let us finally consider the case of finite temperatures. The question is how low the temperature
has to be in order to see the effects we described above. For finite temperature we have to evaluate
both νg1 and νg2 numerically. The temperature enters in our theory through the function F .
We noted already that in energy representation F (ǫ) = tanh(ǫ/2T ). In t space we get for the
shifted functions F↑ and F↓:

F↑(t) = −i T e−iBext

sinh(π t T )
and F↓(t) = −i T eiBext

sinh(π t T )
. (7.78)

In figure (7.7) we plotted the DOS obtained for various temperatures.
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Figure 7.7: The DOS near the Fermi edge for Bex = 1 shown for different temperatures. The
zero bias anomaly is already smeared out for very low temperatures. kBT = Es corresponds to
approximately a temperature of T = 0.03mK.
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Chapter 8

Conclusions

In this thesis we investigated the effect of the spin on the density of states (DOS) near the Fermi
edge in quasi one–dimensional diffusive wires. In order to approach this task we had to set up
a formalism which allows to treat interacting spinfull electrons in a disordered environment.

First we used the methods of classical diagrammatic perturbation theory. We discussed how
the one particle Green’s function, that is connected to the DOS, is modified in the presence
of weak disorder. Afterwards, we added the Coulomb interaction between the electrons and
constructed the two basic diagrams, namely the exchange and the Hartree diagrams, that lead
to the famous zero bias anomaly which was first discovered by Altshuler and Aronov in 1979
([7], [8]).

As next step we showed how to generalize this result to higher orders in the interaction by
taking effective amplitudes with values determined by Landau parameters of the Fermi liquid
theory. We rewrote the exchange and the Hartree terms into a singlet and a triplet contribution
that allowed us to isolate the effect of the spin triplet on the DOS.

As the Landau parameters are connected to response functions like the specific heat and spin
susceptibility, one is able to estimate the magnitude of the suppression of the DOS due to the
singlet and triplet terms on the basis of measured properties of the metal under consideration.
In general, one can say that the impact of the triplet terms in metals on the DOS is very small.
Palladium however is a promising material as it has an extraordinarily large magnetic suscep-
tibility for low temperatures. Approaching the magnetic transition the magnetic susceptibility
increases which corresponds to an increase of the triplet amplitude whereas the singlet amplitude
changes only very little. From the values of the response functions taken from different experi-
mental works we estimated that the triplet contribution could be of the order of some percent
of the singlet contribution. However the absolute energies Es and Et, that are connected to the
interaction in the singlet and triplet channels, are very small and one would have to go to very
low temperatures (mK or less), because otherwise thermal fluctuations simply smear out the
effect. Doping Palladium with impurities in order to increase the magnetic susceptibility is not
a real option because scattering from magnetic impurities suppresses the triplet contribution as
we have also discussed. Additional impurities could also increase the spin–orbit scattering which
cuts off the triplet contribution.

Furthermore we investigated in the framework of perturbation theory also the effect of an
external magnetic field. We showed that the singlet term remains unchanged whereas the triplet
term splits up into three different terms which reminds of the Zeeman splitting of a spin triplet
in an atom in the presence of an external field. By splitting it is meant here that within
perturbation theory one obtains three different poles in the quasi one–dimensional DOS at
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1/
√
ǫ, 1/

√
|ǫ− 2µBBex| and 1/

√
ǫ+ 2µBBex. Also this result was first derived by Altshuler

and Aronov ([20], [21], [22], [23] and [24]). But the theory is not satisfactory because one
can trust the expression for the DOS only for sufficiently high energies ǫ that means far from
the divergencies. The question is: What happens if one takes into account more diagrams
in the Coulomb interaction? Do the divergencies at ± 2µBBex disappear completely or do
they transform into peaks of finite height? There is an approach using perturbation theory
combined with a renormalization group analysis by Raimondi, Castellani and Di Castro [25]
that predicts that the divergencies disappear. In their work they obtained finite peaks at the
energies ± 2µBBex.

We tried to approach the task of including higher order diagrams in the Coulomb interaction
and going beyond the perturbative result by different means. We used a path integral formalism
that allows to describe interacting Fermions in the presence of disorder. For this purpose we
presented in chapter 3 the construction of a coherent state path integral for Fermions on the
Keldysh contour. In chapters 4 and 5 we showed how to incorporate disorder and interactions
(including spin effects).

In chapter 6 we calculated for a wire of infinite length at zero temperature the DOS without
an external magnetic field. We generalized the idea of a gauge ansatz presented by Kamenev
and Andreev [17] by introducing an additional rotation matrix. The additional complications
due to the non–commutativity of the spin matrices allowed us to derive the DOS in the limit of
quasi static and spatially weakly varying magnetic fluctuations only. Our result reproduces the
perturbative result of the DOS for higher energies. For low energies there appears instead of
the unphysical divergency in the perturbative approach an exponential suppression of the DOS.
Including only the singlet part of the interaction1 we recover results first derived by Rollbühler
and Grabert [18].2 Our discussion of the triplet interactions, which enormously complicate the
problem, remains incomplete since non–perturbative results for arbitrary magnetic fluctuations
could not be derived. This should be subject of future work. Maybe a different gauge approach
could circumvent the technical problems we encountered.

In chapter 7 we introduced a constant external magnetic field in the path integral formalism.
We could determine analytically the DOS in the case of a large external magnetic field at zero
temperature. Also here we could prove that we recover the perturbative expression for high
enough energies. The calculation was even easier than in the zero field case. We only had to
assume that the magnetic variations are slow in time but not in space because the path integral
over the magnetic fluctuations became Gaussian and could be done exactly.

In the case of a finite external magnetic field one has to determine the DOS partially nu-
merically even at zero temperature. The numerical data that we obtained show the correct
asymptotic behavior for high energies meaning that they approached the perturbative result.
Furthermore our results have two interesting and remarkable properties: First, there are no
features at the energies ± 2µBBex. The curve is completely smooth. In contrast to the findings
in [25]. This should not be over–interpreted as every approach is only able to take into account
a certain subset of diagrams and we are not able to prove that we included all the decisive ones.
However, we recover the correct low energy behaviour of the singlet channel which indicates
that our approach is powerful. Second, at zero temperature the value of the DOS is different
from zero at ǫ = 0. This could be due to the appearance of a new length scale in the system
which is the magnetic length associated with the cyclotron radius (r = mv/eBex). Finally we
investigated the DOS for finite temperatures. It turned out that already temperatures of a few

1but taking into account additional interactions between the electrodes
2See figure (6.1).



145

mK mask the small offset at ǫ = 0 of the DOS.
In summary one can say that the spin triplet effects in the DOS of a quasi one–dimensional

wire are small. In order to make them visible, for example by turning on and off an external
magnetic field, one would need to examine a metal with large spin density fluctuations.

Regarding the theoretical approach employed we conclude that the path integral technique
allows to go substantially beyond previous work by including a non–perturbative summation of
diagrams. However, a complete solution of the problem was not yet achieved since our analysis
could only be justified for slow and weakly varying magnetic fluctuations. Although the results
might be valid more generally, alternative approaches should be pursued in the future to establish
the solution for arbitrary fluctuations.



146 CHAPTER 8. CONCLUSIONS



Chapter 9

Appendices

9.1 Connection between tunnelling conductance and DOS

The modification of the DOS near the Fermi energy due to the interaction between the electrons
can be observed by measuring the tunnelling conductance. In the experiment one places the
conductor one wishes to study close to another metal whose DOS νA is well known. Measuring
the tunnelling current which is proportional to the DOS of the two metals allows to observe
the anomaly in the DOS. The suppression of the tunnelling conductance is not restricted to the
case of weak disorder that we consider here. In order to understand the connection between
conductance and DOS remember that the current I(V ) for a tension of V > 0 applied between
two metals A and B depends on the tunnelling probability of electrons between the two metals.
The tunnelling rate between an initial state i of metal A and a final state f of metal B is given
by Fermi’s Golden Rule

Γi→f (V ) =
2π

h̄
|tif |2 δ(ǫi − ǫf + eV ) (9.1)

where tif is the matrix element describing the coupling of the two metals. The tunnelling rate
between the two metals A and B depends on the occupation numbers of the initial and the final
state. It is given by

ΓAB(V ) =
2π

h̄

∑

i,f

|tif |2 nF (ǫi)
[
1 − nF (ǫf )

]
δ(ǫi − ǫf + eV ) (9.2)

where nF (ǫ) is the Fermi distribution. At finite temperature there is also a finite probability for
electrons to tunnel from metal B to metal A. Summing these two contributions and multiplying
by the elementary charge we get for the current at finite temperature T

I(V ) = e(ΓAB − ΓBA) =
2πe

h̄

∑

i,f

|tif |2
[
nF (ǫi) − nF (ǫf )

]
δ(ǫi − ǫf + eV ). (9.3)

Assuming that the matrix element depends only very weakly on the energy and that the tension
V and the temperature T are both small compared to the Fermi energy and the barrier height
we can replace the sums by integrals introducing densities of states νA(ǫ) and νB(ǫ). On has

I(V ) =
2πe

h̄
|t|2
∫ ∞

−∞
dǫ νA(ǫ) νB(ǫ+ eV )

[
nF (ǫ) − nF (ǫ+ eV )

]
. (9.4)

147



148 CHAPTER 9. APPENDICES

If the two density of states vary weakly near the Fermi energy we can replace them by their
value at the Fermi energy νA = νA(ǫF) and νB = νB(ǫF) and obtain

I(V ) =
2πe2

h̄
|t|2 νA νB V → G0 =

2πe2

h̄
|t|2 νA νB (9.5)

Assuming that the DOS of the reference metal A is constant as a function of energy the variation
δνA of the metal to study leads to a variation δI(V ) of the current and thus to a variation δG(V )
in the conductance.

δG =
dδI

dV
= −2πe2

h̄
|t|2 νA

∫ ∞

−∞
dǫ δν(ǫ) n′F (ǫ− eV ) (9.6)

For small temperatures the derivative n′F is in good approximation a δ–function. Dividing by
the conductance given in equation (9.5) we get

δG(V )

G0
=
δν(V )

νB
. (9.7)

The reduction of the conductance is a direct measure of the change of the density of states due
to the Coulomb interactions.
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9.2 Path integral over the magnetic fluctuations

The problem in section (6.5.3) is to calculate averages of the form
〈
B(x1)...B(xn)

〉
B

where

B(xi) is the absolute value of ~B(xi). Unfortunately we are not able to solve this problem for an
arbitrary number of B’s at different points in space/time. One can also reformulate the problem
in the language of generating functionals. It reads written as discrete version

Z = N0

N∏

i=1

{∫ ∞

−∞

dBx
i√

2π

dBy
i√

2π

dBz
i√

2π

}
exp



−1

2

∑

k=x,y,z

Bk
i V

−1
ij Bk

j + λi

√ ∑

k=x,y,z

(Bk
i )

2



 (9.8)

where N0 = (detV −1)3/2. Averages of components of ~B could be calculated using the idea of
diagonalization which we applied in section (3.1). This method however fails for the absolute
values of ~B as one can see: 1

Z = N0

N∏

i=1

{∫ ∞

−∞

dχxi√
2π

dχyi√
2π

dχzi√
2π

}
exp



−1

2

∑

k=x,y,z

χkiDiiχ
k
j + (βjMji)

√ ∑

k=x,y,z

(Mipχkp)
2





(9.9)
The rotation M diagonalizes V → D but in the second part in the exponential all components
are entangled.

So let us begin with a simpler problem of just two absolute values of ~B at two different
points:

〈
BiBj

〉
B

.2 As there appear only two points in the problem one might ask if one has to
use (or to know) the whole matrix V (or V −1) for calculation. The answer is no. Actually one
can reduce

V =





V11 ... ... ... ... ... V1N

... ... ... ... ... ... ...

... ... Vii ... Vij ... ...

... ... ... ... ... ... ...

... ... Vji ... Vjj ... ...

... ... ... ... ... ... ...
VN1 ... ... ... ... ... VNN





→
(
Vii Vij
Vji Vjj

)
. (9.10)

The proof is given in the following subsection.

9.2.1 Theorem

In this subsection we present a mathematical theorem which allows to reduce considerably the
dimension of a multidimensional integral. Let x = (x1, ...xN ) be random variables with values
in the N–dimensional real space and ∆(x1...xN ) the probability density. Then the probability
that x1 < t1, x2 < t2 ,...,xN < tN is given by

P (x1 < t1, x2 < t2, ..., xN < tN ) =

∫ t1

−∞
dx1

∫ t2

−∞
dx2...

∫ tN

−∞
dxN ∆(x1, x2, ..., xN ). (9.11)

1Let M be the rotation matrix. Then V −1 = M−1DM , χk = MBk and λt = βtM .
2without loss of generality i < j
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Furthermore the expectation value of a function f(x1, x2, ..., xN ) of the variables x1, ..., xN is

〈
f(x1, x2, ..., xN )

〉
=

∫ ∞

−∞
dx1...

∫ ∞

−∞
dxN f(x1, x2, ..., xN )∆(x1, x2, ..., xN ). (9.12)

Definition: A N-dimensional vector of random variables x = (x1, ..., xN )T is called gaussian
(or normally) distributed with expectation value 0 if its probability density is given by

∆(x) = N0 e
− 1

2
xTV −1x (9.13)

where V is the symmetric positive definite covariance matrix (Vij = 〈xixj〉) and the normaliza-
tion constant N0 = (2π)−N/2/

√
detV .

Lemma:

〈
exp

(
itTx

) 〉
= exp

(
−1

2
tTV t

)
. (9.14)

This is just an application of the Gaussian integrals (see (3.18)). The expectation value of
exp(itTx) is called Characteristic function of the random vector x. Now to the important
theorem which reads:

Theorem: If x = (x1, ..., xN )T is gaussian distributed then also y = (x1, ..., xp)
T with p < N

is gaussian distributed with the probability density ∆̃(~y) = Ñ0 exp[−1
2(x1, ..., xp)Ṽ

−1(x1...xp)
T ]

with the reduced p× p covariance matrix Ṽij = Vij .

Proof : Let ∆̃ be the probability density of the vector y = (x1, ..., xp) then we can write

P (x1 < t1, x2 < t2, ..., xp < tp, xp+1 <∞, ..., xN <∞) =

∫ t1

−∞
dx1...

∫ tp

−∞
dxp ∆̃(x1, ..., xp).

(9.15)
This probability can also be expressed with the original total probability density.

P (x1 < t1, ..., xp < tp, xp+1 <∞, ..., xN <∞) =

∫ t1

−∞
dx1...

∫ tp

−∞
dxp

∫ ∞

−∞
dxp+1...

∫ ∞

−∞
dxN ∆(x1, ..., xN )

(9.16)
From equation (9.15) we get

∂

∂t1
...

∂

∂tp
P (x1 < t1, ..., xp < tp, xp+1 <∞, ..., xN <∞) = ∆̃(t1, ..., tp) (9.17)

and from equation (9.16) one obtains for the same derivative

∂

∂t1
...

∂

∂tp
P (x1 < t1,..., xp < tp, xp+1 <∞, ..., xN <∞)

=

∫ ∞

−∞
dxp+1...

∫ ∞

−∞
dxN ∆(t1, ...tp, xp+1, ..., xN ).

(9.18)

The last two equations allow to connect the densities ∆(x1, ..., xN ) and ∆̃(x1, ..., xp)
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∆̃(t1, ..., tp) =

∫ ∞

−∞
dxp+1...

∫ ∞

−∞
dxN ∆(t1, ...tp, xp+1, ..., xN ) (9.19)

So if we want to calculate an expectation value of the function exp (i
∑p

i=1 tixi) of the first p
variables we can write this using (9.19)

〈
exp

(
i

p∑

i=1

tixi

)〉
=

∫ ∞

−∞
dx1...

∫ ∞

−∞
dxp exp

(
i

p∑

i=1

tixi

)∫ ∞

−∞
dxp+1...

∫ ∞

−∞
dxN ∆(x1, ...xp, xp+1, ..., xN )

(9.20)
which is

〈
exp

(
i

p∑

i=1

tixi

)〉
=

∫ ∞

−∞
dx1...

∫ ∞

−∞
dxN exp

(
i
N∑

i=1

tixi

)
∆(x1, ..., xN )

∣∣∣∣
tp+1→0,...tN→0

. (9.21)

The result we can take from the Lemma above

〈
exp

(
i

p∑

i=1

tixi

)〉
= exp



−1

2

N∑

i,j=1

tiVijtj




∣∣∣∣
tp+1→0,...tN→0

(9.22)

which is finally

〈
exp

(
i

p∑

i=1

tixi

)〉
= exp



−1

2

p∑

i,j=1

tiVijtj



 . (9.23)

That’s it. We determined so to speak the Fourier transform of the probability density. But as
the Fourier transform determines uniquely the probability density we can stop here. We remark
that the entries of the reduced covariance matrix Ṽij are in fact the Vij of the original covariance
matrix. The theorem also holds if the expectation value is different from 0.

9.2.2 Two point correlators

In this subsection we show how to calculate with the help of the theorem expectation values of
the form 〈

Bl
nB

k
m

〉
=

〈√
(Bx

n)
2 + (By

n)2 + (Bz
n)

2
l√

(Bx
n)

2 + (By
n)2 + (Bz

n)
2
k
〉

(9.24)

where l and k are ≥ 0. Unfortunately this is not enough to solve the non Gaussian case given
above as there appear products of absolute values of B’s at more than two different points
in space/time. However from this calculation arises the idea in which limiting case the non
Gaussian path integral can be solved approximately. We define

El,k :=

〈
Bl
nB

k
m

〉
= N0

N∏

i=1

{∫ ∞

−∞

dBx
i√

2π

dBy
i√

2π

dBz
i√

2π

}


√ ∑

k=x,y,z

(Bk
n)

2




l

×




√ ∑

k=x,y,z

(Bk
m)2




k

exp



−1

2

∑

k=x,y,z

Bk
i V

−1
ij Bk

j





(9.25)
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and introduce a bunch of abbreviations in order to shorten the notation.




x1

y1

z1



 :=




Bx
n

By
n

Bz
n








x2

y2

z2



 :=




Bx
m

By
m

Bz
m



 (9.26)

and

R =
√
x2

1 + y2
1 + z2

1 S =
√
x2

2 + y2
2 + z2

2 . (9.27)

Finally we set

(
A11 A12

A12 A22

)
:=

(
Vnn Vnm
Vnm Vmm

)−1

=
1

VnnVmm − V 2
nm

(
Vmm −Vnm
−Vnm Vnn

)
. (9.28)

As we have only a two point function we do not need the whole 3N × 3N covariance matrix.
It can be shown (see theorem in section (9.2.1)) that only the following 6 × 6 matrix enters the
problem:

Vred =





Vnn Vnm 0 0 0 0
Vnm Vmm 0 0 0 0
0 0 Vnn Vnm 0 0
0 0 Vnm Vmm 0 0
0 0 0 0 Vnn Vnm
0 0 0 0 Vnm Vmm




(9.29)

which has the inverse

V −1
red =





A11 A12 0 0 0 0
A12 A22 0 0 0 0
0 0 A11 A12 0 0
0 0 A12 A22 0 0
0 0 0 0 A11 A12

0 0 0 0 A12 A22




. (9.30)

Instead of equation (9.25) we get

El,k =
Ñ0

(2π)3

∫
dx1 dy1 dz1dx2 dy2 dz2 R

lSk e−
1
2
(A11(x2

1+y21+z21)+2A12(x1x2+y1y+z1z2)+A22(x2
2+y22+z22))

(9.31)
with Ñ0 such that for l = 0 and k = 0 the integral is normalized to 1. We introduce two sets of
spherical coordinates and choose θ1 to be the angle between the vector in between (x1, y1, z1)

t

and (x2, y2, z2)
t.

El,k =
Ñ0

π

∫ ∞

0
dR

∫ ∞

0
dS

∫ π

0
dθ1 R

l+2 Sk+2 sin θ1e
− 1

2
A11R2

e−
1
2
A22S2

e−A12RS cos θ1 . (9.32)

where we performed already the integrations over φ1, φ2 and θ2 which are easy. Next we integrate
over θ1.
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El,k =
Ñ0

π

∫ ∞

0
dR

∫ ∞

0
dS Rl+2 Sk+2 e−

1
2
A11R2

e−
1
2
A22S2

[ −1

A12RS
e−A12RS cos θ1

]π

0

(9.33)

which is

El,k =
Ñ0

A12π

∫ ∞

0
dR

∫ ∞

0
dS Rl+1 Sk+1 e−

1
2
A11R2

e−
1
2
A22S2

[eA12RS − e−A12RS ]. (9.34)

We replace the last term by its power series. It is

eA12RS − e−A12RS = 2
∞∑

ν=0

(A12RS)(2ν+1)

(2ν + 1)!
. (9.35)

Now we integrate term by term and exchange the sum and the 2 integrals. This can be done as
the expressions converge very well due to the exponentials.

El,k =
2Ñ0

A12π

∞∑

ν=0

∫ ∞

0
dR

∫ ∞

0
dS

A2ν+1
12

(2ν + 1)!
Rl+2ν+2 Sk+2ν+2 e−

1
2
A11R2

e−
1
2
A22S2

(9.36)

It is3

∫ ∞

0
dx xα e−

1
2
βx2

= 2
α−1

2 Γ

(
α+ 1

2

)
β−

α+1
2 (9.37)

Using this general result we find

El,k =
2Ñ0

π

∞∑

ν=0

A2ν
12

(2ν + 1)!

(
2

l+2ν+1
2 Γ

(
l + 2ν + 3

2

)
A

− l+2ν+3
2

11

)(
2

k+2ν+1
2 Γ

(
k + 2ν + 3

2

)
A

− k+2ν+3
2

22

)
.

(9.38)
We arrange the terms in order to identify the following Hypergeometric function

F (α, β, γ, z) =
Γ(γ)

Γ(α)Γ(β)

∞∑

n=0

Γ(α+ n)Γ(β + n)

Γ(γ + n)

zn

n!
. (9.39)

Applying several identities for the Γ–function4 and resubstituting to the original quantities one
arrives at

El,k =
4

π

(V 2
nn − V 2

nm)(3+l+k)/2

V
3+(l+k)/2
nn

2
l+k
2 Γ

(
l + 3

2

)
Γ

(
k + 3

2

)
F

(
l + 3

2
,
k + 3

2
,
3

2
,

(
Vnm
Vnn

)2
)
.

(9.41)

3See [51].
4

Γ(n + 1) = n! Γ(n + 1) = nΓ(n) Γ(2n) =
1√
2π

22n−1/2 Γ(n) Γ(n + 1/2) (9.40)
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This is the general result for two point correlator. Let us evaluate the formula for two special
cases.

E2,0 =
〈
BnBn

〉
B

= 3Vnn (9.42)

and

E1,1 =
〈
BnBm

〉
B

=
2

π

(
3(V 2

nn − V 2
nm)1/2 +

(V 2
nn + 2V 2

nm) arcsin(Vnm/Vnn)

Vnm

)
. (9.43)

E1,1 is a rather inconvenient expression for further calculations so we look at the limiting case
that Vnn ≈ Vnm which corresponds to picture of a long range interaction. The arcsin becomes
approximately π/2 and we get

Elong
1,1 ≈ 3Vnm ≈ 3Vnn (9.44)

This is the crucial point of the calculation. In the case of long range interaction the expectation
value E1,1 approaches the value of E2,0. Of course this also has to be true for any higher moment.
All correlators with B’s at different points 〈Bn1Bn2 ....Bnl

〉 in space/time can be approximated
in the long range limit by the one point correlator 〈Bl

n1
〉 = El,0. From (9.41) we get

El,0 =
2(l+2)/2

√
π

Γ

(
2l + 3

2

)
V l
nn. (9.45)

This result will be used in the calculation of the path integral over ~B in subsection (6.5.3).

9.2.3 The path integral for arbitrary external field

In this section we demonstrate the evaluation of PB,↑ =
〈
e−i[f2−f1]

〉
B

.

PB,↑ = N0

∫
DBx

∫
DBy

∫
DBz e

i
2

R
dy
R
dy′

P
i=x,y,z

Bi(y)V −1
t (y,y′)Bi(y′)+i[f2(x)−f1(x′)]

(9.46)

The expectation value looks like o problem given in equation (6.177). This time however the
f ’s have a more complicated structure as they are not proportional to the absolute value B but
proportional to B̂ =

√
(Bz +Bex)2 + (Bx)2 + (By)2. We have in unrotated representation

fα(x) = µB

2∑

β=1

∫
dy Aαβ(x, y)

√
(Bx

β)
2(y) + (By

β)
2(y) + (Bz

β(y) +Bex)2. (9.47)

The constant external field Bex does not have a Keldysh index as it has the same value on
both branches. We approximate the path integral in the same way as before assuming that
the magnetic field components vary slowly in space and time meaning: Bi(x) ≈ Bi(x′). That
implies

〈
B̂(x1)B̂(x2)...B̂(xn)

〉

B

≈
〈
B̂n(x)

〉

B

. (9.48)
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With the theorem of section (9.2.1) we obtain

PB,↑ :=

〈
e−i[f2(x)−f1(x′)]

〉

B

≈ N0

∫ ∞

−∞
dBx

∫ ∞

−∞
dBy

∫ ∞

−∞
dBz e−AB̃ e−

1
2V
B2

(9.49)

where N0 = (2πV )−3/2 and e−i[f2(x)−f1(x′)] = e−AB̃ (summarizing everything in front of B̃ by
A). We substitute B0 = Bz +Bex.

PB,↑ = N0

∫ ∞

−∞
dBx

∫ ∞

−∞
dBy

∫ ∞

−∞
dB0 e

−AB̃ e−
1

2V

[
(Bx)2+(By)2+(B0−Bex)2

]
(9.50)

It is B̃ =
√

(Bx)2 + (By)2 + (B0)2.

PB,↑ = N0 e
− 1

2V
B2

ex

∫ ∞

−∞
dBx

∫ ∞

−∞
dBy

∫ ∞

−∞
dB0 e

−AB̃ e−
1

2V

[
B̃2−2B0Bex

]
(9.51)

We go over to spherical coordinates (B̃,θ,φ). Then we have B0 = B̃ cos θ.

PB,↑ = N0 e
− 1

2V
B2

ex

∫ ∞

0
dB̃

∫ 2π

0
dφ

∫ π

0
dθ B̃2 sin θ e−AB̃ e−

1
2V

[
B̃2−2BexB̃ cos θ

]
(9.52)

After the integration over φ and θ we are left with

PB,↑ =
2πV N0

Bex
e−

1
2V
B2

ex

∫ ∞

0
dB̃ B̃ e−AB̃

(
e−

1
2V

[
B̃2−2BexB̃

]
− e−

1
2V

[
B̃2+2BexB̃

])
. (9.53)

We substitute in the first term B1 = B̃ −Bex and in the second term B2 = B̃ +Bex.

PB,↑ =
1

Bex
√

2πV

(∫ ∞

−Bex

dB1 (B1 +Bex) e
−A(B1+Bex)e−

1
2V
B2

1

−
∫ ∞

Bex

dB2 (B1 −Bex) e
−A(B2−Bex)e

− 1
2Vt

B2
2

) (9.54)

Evaluating these four integrals and substituting JB = 1
2AV A and ABex = −iBext one obtains

PB,↑ =
eJB

2iBext

(
eiBext

(
iBext+ 2JB

)[
1 + Erf

(
iBext+ 2JB

2i
√
JB

)]

+ e−iBext
(
iBext− 2JB

)[
1 − Erf

(
iBext− 2JB

2i
√
JB

)]
.

(9.55)

PB,↓ = PB,↑(−Bex). P ∗
B,↑ and P ∗

B,↓ are obtained simply by replacing JB by J∗
B. We see that if

G>τ,↑ and G>τ,↓ would be equal as in the case without external field the terms containing the Erf

would cancel in equation (7.37) and that PB,↑ = eJB

2 (1 + 2JB) reproduces the terms without
external field. Sending Bex and Vt → 0 we obtain PB,↑ = PB,↓ = 1 which is also correct.
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9.3 Calculation of P3(E) and its contribution to the DOS

We calculate P3(E) which we define without a factor e±iBext.

P3(E) =
1

iπBex

∫ ∞

−∞
dt

ReJB + iImJB
t

eReJ+iImJ+iEt (9.56)

Using J(−t) = J∗(t) we get

P3(E) =
1

iπBex

∫ ∞

0
dt
eReJ

t

[
ReJB

(
ei(ImJ+Et) − e−i(ImJ+Et)

)

+ i
ImJB
t

(
ei(ImJ+Et) + e−i(ImJ+Et)

)]
.

(9.57)

It is u = ReJ(t) = ImJ(t) = −
√

2Egt for t > 0.

P3(E) =
4
√
EB

πBex
√
Eg

∫ ∞

0
du e−u

[
cos

(
E

2Eg
u2 − u

)
+ sin

(
E

2Eg
u2 − u

)]
(9.58)

We set b1 = 4
√
EB

πBex

√
Eg

, α = E
2Eg

and use the theorems for sin(x) and cos(x) given in (6.224).

P3(E) = b1

∫ ∞

0
du e−u

[
cos
(
αu2

)
cos
(
u
)
+ sin

(
αu2

)
sin
(
u
)
+ sin

(
αu2

)
cos
(
−u
)
− cos

(
αu2

)
sin
(
u
)]

(9.59)
Using the integrals (6.226) and (6.226) we find

∫ 1

dβ I1(β) =

∫ ∞

0
du
e−u

2

[
cos
(
αu2

)
sin
(
u
)
− cos

(
αu2

)
cos
(
u
)]

(9.60)

and ∫ 1

dβ I2(β) = −
∫ ∞

0
du
e−u

2

[
sin
(
αu2

)
sin
(
u
)
+ sin

(
αu2

)
cos
(
u
)]

(9.61)

which implies that P3(E) = −2b1
∫ 1
dβ
[
I1(β) + I2(β)

]
. Thus we get

P3(E) = − 4√
πBex

(
EB
E

)1/2

e−Eg/E (9.62)

Using formula (6.238) one finds

νP3 = ν1

∫ ǫ

0
P3(E)dE = ν1

8
√
Eg

√
EB

Bex

(√
ǫ

Eg

e−Eg/ǫ

√
π

+ Erf

(√
Eg
ǫ

)
−1

)
. (9.63)
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9.4 Estimation of Es and Et

In this appendix we estimate the characteristic energies Es and Et that appear in our calcula-
tions. We do this for Palladium at low temperatures (T ≈ 0.1K). Palladium is an interesting
material because it is expected to have a relatively large triplet energy Et. In SI–units the
energies Es and Et get an additional h̄ in the denominator:

Es =
(As0)

2

32πh̄D(ν3a2)2(1 −As0 +
√

1 −As0)
2

Et =
(Aa0)

2

32πh̄D(ν3a2)2(1 −Aa0 +
√

1 −Aa0)
2
.

(9.64)
The constants As0 and Aa0 are connected with the Landau parameters by

As0 =
F s0

1 + F s0
Aa0 =

F a0
1 + F a0

. (9.65)

The Landau parameter appear in the theory of Fermi liquids and take into account the effects of
interaction between the particles. F s0 and F a0 are the lowest order coefficients representing the
s–wave and therefore low energy part of the interaction. The Fermi liquid theory connects the
Landau parameters to experimentally measurable quantities. A detailed description of Fermi
liquids can be found in [6]. A response function containing F s0 is for example the compressibility
K.

K = − 1

V

∂V

∂P
=

1

n2

ν3

1 + F s0
(9.66)

where n is the particle density and ν3 is the density of states at the Fermi level. The density of
states ν3 for a free gas5 of particles with effective mass m∗ is given by

ν3 =
m∗kF
π2h̄2 . (9.67)

A quantity that contains F a0 is the spin susceptibility:

χ =
µ0µ

2
Bm

∗kF
π2h̄2

1

1 + F a0
= µ0µ

2
B

ν3

1 + F a0
. (9.68)

where µ0 = 1.26 · 10−6 mkg
s2A2 and µB = eh̄

2mc = 9.27 · 10−24 J
T . χ is dimensionless.6 Looking at

(9.66) and (9.68) we see that we need experimental data for the electron density n, the bulk
density of states ν3, the compressibility K and the spin susceptibility χ in order to get values
for the F ’s.

Palladium Pd46
106.4 has a FCC crystal structure which means that in each unit cell one finds

4 atoms which have each 46 electrons. The lattice constant is 0.39nm according to [9]. From
this we estimate the electron density:

n =
N

V
=

4 · 46

(0.39 · 10−9m)3
= 3.1 · 1030 1

m3
. (9.69)

5the word gas indicates noninteracting!
6µ0µ

2
Bν0 = ( m·kg

s2·A2 )( J
T

)2 1
Jm3 = J

m·A2

J2m4

V2s2
1

Jm3 = 1
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For the determination of ν3 we use the specific heat γ which is in the Fermi liquid theory given
by

γ =
cV
T

=
m∗kFk2

B

3h̄2 . (9.70)

γ has the unit [ J
m3·K2 ]. Using equation (9.67) we have

ν3 =
3γ

π2k2
B

. (9.71)

In [58] one finds γ = 9.5 mJ
mol·K2 at T = 0.1K which we have to convert into J

m3·K2 . Palladium has
a mass density nM of 12 g

cm3 and weighs Mmol = 106.4 g
mol (see [9]). We obtain

nM
Mmol

=
12

106.4

mol

cm3
= 112782

mol

m3
. (9.72)

Multiplying the γ given above by this ratio yields γ = 1071 J
m3·K2 . With the value of the

Boltzmann constant kB = 1.38 · 10−23 J
K the density of states is

ν3 = 1.7 · 1048 1

Jm3 . (9.73)

In [57] one finds for Palladium data concerning the compressibility. In the tables the coefficients
a and b appear in the formula

∆V

V
= aP + bP 2. (9.74)

a is proportional to the compressibility. For Palladium aPd = −5.423 · 107 and for Copper
aCu = −7.49 · 107. As all this is given in some mysterious units we take from [59] the value for

the compressibility of Copper in SI–units. KCu = 7.14 · 10−12 m2

N and obtain for Palladium

KPd =
aPd
aCu

KCu = 5.15 · 10−12 m2

N
. (9.75)

Thus we find for F s0 = n2K
ν3

− 1:

F s0 = 28.6 and As0 = 0.966. (9.76)

The value of As0 is close to 1 as expected for metals. Aa0 we determine from the magnetic
susceptibility. In [60] a magnetic susceptibility of

χm(T = 0) = 710 · 10−6 emu

mol
(9.77)

was measured for Palladium. The unit emu is used for various quantities and has each time a
different meaning. In the case of magnetic susceptibilities it translates into

emu

mol
=

cm3

mol
. (9.78)

The standard dimensionless susceptibility χ is defined by B = (1 + 4πχ)H. In experiments the
common susceptibilities are however the susceptibility per gram χg = χ

ρ and the susceptibility
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per mole χm = χgMmol = χVmol where Mmol is the molecular weight in gram per mole and
Vmol is the volume of a mole. Furthermore one has to pay attention that susceptibilities quoted
in the context of emu need a factor 4π: 4πχ[emu] = χ[SI − units]. The volume of one mole of

Palladium is Vmol = Mmol
nM

= 8.9 cm3

mol . Thus we get

χ = 4π
χm
Vmol

= 1 · 10−3. (9.79)

We can finally isolate F a0 in equation (9.68): F a0 =
µ0µ2

Bν3
χ − 1 and obtain

F a0 = −0.8 and Aa0 = −4. (9.80)

One can see that increasing the magnetic susceptibility or reducing the density of states let F a0
converge to −1 which means that the parameter Aa0 goes to −∞. For the ratio of Et/Es we find

Et
Es

≈ 0.015 or R :=

√
Et
Es

≈ 0.12. (9.81)

R is the parameter that appears in our results for the DOS in the various situations. Our plots
we did with a conservative value of R = 0.05 because we did not want to overestimate the effect
of the triplet.

Finally let us determine the absolute value of Es for a wire with transverse extension a =
10 nm. In order to get a value for the diffusion constant we use the relation D = σ

e2ν3
. It is

σPd = 9.5 · 106 1
Ωm which is the value for clean Palladium. Thus D = 2.2 · 10−4 m2

s . 7 We obtain
for Es (with a = 10 nm):

Es = 5 · 10−28 J (9.82)

which is translated into temperature and voltage

Ts = 3.3 · 10−5K ≈ 0.03mK Vs = 3.1 · 10−9V = 3.1nV. (9.83)

Es strongly depends on the transverse extension a. For a wire with a = 20nm the temperature
is reduced by a factor 16: Ts|a=20 ≈ 0.002mK. So in order to increase the energy scale Es one
needs to fabricate samples with small cross section a2. Decreasing the diffusion constant and
lowering the DOS also help.

Let us compare our absolute energy scale to the one derived for gated wires by [19]. The
characteristic energy E0 that determines the magnitude of the correction of the DOS

δν1

ν1
= − 2√

π

√
E0

eV
(9.84)

is given by

E0 =
h̄

D∗(RKC0)2
(9.85)

where RK = 25800 Ω and C0 is the capacitance per unit length and D∗ is the field diffusion
constant. Taking the values form [1] where the effect was actually observed in the perturbative

7Due to impurities the expected diffusion constant D in experiments could be an order of magnitude lower.
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regime we find E0 ≈ 2, 7 ·10−28J. So Es is of order E0 if the transverse extensions are fabricated
small enough. The triplet effect we predict is of the order of some percent thus one order of
magnitude smaller.
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