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ABSTRACT

The fit of a regression model to new data is often worse due to overfitting. Analysts use variable selection techniques to develop
parsimonious regression models, which may introduce bias into regression estimates. Shrinkage methods have been proposed to
mitigate overfitting and reduce bias in estimates. Post-estimation shrinkage is an alternative to penalized methods. This study
evaluates effectiveness of post-estimation shrinkage in improving prediction performance of full and selected models. Through a
simulation study, results were compared with ordinary least squares (OLS) and ridge in full models, and best subset selection (BSS)
and lasso in selected models. We focused on prediction errors and the number of selected variables. Additionally, we proposed a
modified version of the parameter-wise shrinkage (PWS) approach named non-negative PWS (NPWS) to address weaknesses
of PWS. Results showed that no method was superior in all scenarios. In full models, NPWS outperformed global shrinkage,
whereas PWS was inferior to OLS. In low correlation with moderate-to-high signal-to-noise ratio (SNR), NPWS outperformed
ridge, but ridge performed best in small sample sizes, high correlation, and low SNR. In selected models, all post-estimation
shrinkage performed similarly, with global shrinkage slightly inferior. Lasso outperformed BSS and post-estimation shrinkage in
small sample sizes, low SNR, and high correlation but was inferior when the opposite was true. Our study suggests that, with
sufficient information, NPWS is more effective than global shrinkage in improving prediction accuracy of models. However, in
high correlation, small sample sizes, and low SNR, penalized methods generally outperform post-estimation shrinkage methods.

1 | Introduction higher variability in instances with high correlation between

covariates, low signal-to-noise ratio (SNR), or small sample size.

Regression modeling is a statistical tool with important practical
applications in many fields. The choice of a regression model
depends on the aim of the study. For instance, in prediction,
a model that includes some noise variables may be acceptable,
whereas in descriptive models, a simple model is preferred
(Shmueli 2010). For the normal-errors regression models, the
Gauss-Markov Theorem states that under certain conditions,
the ordinary least squares (OLS) estimator is the best linear
unbiased estimator. However, the OLS estimator can exhibit

The latter often results in overfitting, which can lead to poor
predictions on new data (Copas 1983; Copas and Long 1991;
James et al. 2013; Riley et al. 2021). Several shrinkage methods,
which aim to reduce the variance of estimates by introducing a
(small) bias, have been proposed to mitigate overfitting. Variable
selection using stepwise selection methods can lead to biased
regression estimates for selected variables, and shrinkage has also
been proposed to reduce this bias (Copas and Long 1991; Miller
2002; Harrell 2015).
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In this study, shrinkage methods are categorized into penal-
ized regression and post-estimation shrinkage methods to avoid
confusion. In penalized regression methods, the estimation and
shrinkage of regression coefficients are conducted simultane-
ously. The lasso (Tibshirani 1996) and ridge (Hoerl and Kennard
1970) are two popular penalized methods that will be considered.
On the other hand, post-estimation shrinkage is a two-stage
procedure. In the first stage, the regression coefficients of a
given model (full or selected) are estimated using OLS or
standard maximum likelihood estimation method. In the second
stage, the shrinkage factors are estimated and used to calculate
shrunken regression estimates (van Houwelingen and le Cessie
1990; Sauerbrei 1999). Post-estimation shrinkage methods are a
simple alternative to penalized regression methods due to their
simplicity and reliance on OLS or standard maximum likelihood
estimates (MLE), obviating the need for specialized software.
However, these methods cannot be used in high-dimensional data
due to unavailability of the OLS or MLE (van Houwelingen and
le Cessie 1990; van Houwelingen and Sauerbrei 2013; Dunkler,
Sauerbrei, and Heinze 2016).

At least three post-estimation shrinkage approaches have been
proposed: global shrinkage (van Houwelingen and le Cessie
1990), parameter-wise shrinkage (PWS; the abbreviation PWSF
(Parameterwise Shrinkage Factors) has been used in the lit-
erature) (Sauerbrei 1999), and joint shrinkage (JS) (Dunkler,
Sauerbrei, and Heinze 2016). Global shrinkage uniformly applies
shrinkage to all regression estimates, whereas PWS applies
different levels of shrinkage to regression estimates depending
on their magnitude. JS is an extension of PWS that is used when
variables are structurally grouped, such as dummy variables for
a multilevel categorical covariate. A common shrinkage factor
is estimated for regression estimates within a group (Dunkler,
Sauerbrei, and Heinze 2016). In our study, JS is not applicable as
there are no groups of variables, and all covariates are continuous
and linearly related to the outcome or have no effect.

In a simulation study, van Houwelingen and Sauerbrei (2013)
evaluated the prediction performance of global and PWS in
selected models using backward elimination. They reported that
PWS gave better predictions than global shrinkage that were
comparable to the lasso. However, their evaluation was limited
to four scenarios with low correlation and moderate-to-high SNR
or R? (50% and 71%). In our study, we consider a broader range
of simulation scenarios, including high correlation, small sample
sizes, and low SNR.

Breiman (1995) proposed the non negative garrote (NNG) and
another method that uses a quadratic penalty term on the
shrinkage factors, referred to here as quadratic PWS (QPWS). The
NNG has been well-studied in the literature (Yuan and Lin 2007
Xiong 2010; Kipruto and Sauerbrei 2022b), but QPWS seems to
have been largely overlooked and will be evaluated in our study.
The shrinkage behavior of QPWS is similar to PWS, making a
comparison between the two approaches necessary.

In this study, we will investigate and compare the shrinkage
behavior of post-estimation shrinkage methods in the context of
classical linear regression models for low-dimensional data. Our
aim is to investigate whether post-estimation shrinkage improves

the predictive accuracy of full and selected models. Furthermore,
we propose a modified version of PWS called non-negative PWS
(NPWS). The NPWS differs from PWS in that it imposes non-
negativity constraints on the shrinkage factors and can be used in
a full model, whereas PWS was originally proposed for selected
models only. We will investigate whether the non-negativity con-
straint is useful in improving the prediction performance of PWS.

In full models, we will compare the prediction performance of
OLS, post-estimation shrinkage, and ridge (reference model),
whereas in selected models, we will compare the prediction
performance of best subset selection (BSS), post-estimation
shrinkage, and lasso (reference model). All covariates in the
training dataset will be standardized to have a mean of zero and
a unit variance, and the response variable will be centered to
exclude the intercept from the regression model. Additionally, the
covariates in the new dataset will also be standardized using the
statistics derived from the training data.

Section 2 describes our simulation study following the ADEMP
structure, which entails defining aims (A), data-generating mech-
anisms (D), estimands/targets of analysis (E), and performance
(P) measures (Morris, White, and Crowther 2019), whereas Sec-
tion 3 describes our methods, categorized into three groups: post-
estimation shrinkage, penalized regression, and classical variable
selection methods. We also provide a detailed explanation of
methods for estimating post-estimation shrinkage factors using
cross-validation (CV). Section 4 presents our results, categorized
into two sets: full and selected models. Finally, Section 5 consists
of a discussion and conclusion.

2 | Simulation Design

Our simulation study follows the relevant parts of the simulation
protocol of Kipruto and Sauerbrei (2022a). However, we decided
to separate investigations of post-estimation shrinkage from the
broader comparison of variable selection procedures to better
understand the former. We also made minor modifications to the
original protocol to enable us to investigate situations that were
not captured in the original protocol. These changes are discussed
in Section 2.1.

We provide a brief description and refer interested readers to the
protocol paper for further details. Table Al shows the summary of
the simulation design from the protocol (Kipruto and Sauerbrei
2022a). The corresponding R code is provided at https://github.
com/EdwinKipruto/shrinkage. Table 1 provides the summary of
our simulation study following the ADEMP structure. The aims
and target of analysis are clearly stated in Table 1. Thus, we focus
our discussion on data generating mechanisms (Sections 2.1),
perfromance measures (Section 2.2), and methods (Section 3) in
detail.

2.1 | Data Generating Mechanisms

We generated 2000 training datasets per scenario, each consisting
of a continuous response variable (y) and 15 continuous covariates
(X). The number of simulation repetitions was set to 2000 to
ensure that the Monte Carlo standard error (MCSE) of the model
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https://github.com/EdwinKipruto/shrinkage

TABLE 1 | Simulation design following ADEMP structure.

Aims * To compare the shrinkage behavior of post-estimation shrinkage approaches in both full

and selected models

* To evaluate the effectiveness of post-estimation shrinkage approaches in improving
prediction accuracy of both full and selected models, and to compare their performance
with ridge and lasso as reference models

* To improve the performance of PWS approach in full models

Data generating
mechanism
(Section 2.1)

Training/development dataset
* X ~ N,(0,Z)wherep=15and X € RP*?; 5;; = pl~/lfor p = (0.3, 0.8) indicating low
and high correlation, respectively

* Y = XB; + ewhere B; € (B4, Bp)and e ~ N(0, ¢*I,)
True regression coefficients () for 15 covariates
B4:15,0,1,0,1,0,0.5,0,0.5,0,0.5,0,-0.5,0,0
Bp:1,1,1,1,1,1,1,0,0,0,0,0,0,0,0

SNR/R? and sample size (n)

R* ={0.11, 0.20, 0.50, 0.67, 0.80, 0.86}

n = {50, 100, 400}

Number of scenarios (full factorial design) and simulation runs
BXpPpXR Xxn=2x2Xx6X3 = 72scenarios
N = 2000 simulation repetitions per scenario

Test dataset

* New simulations with the same design as training dataset (n,,,, = 100,000)
Additional analysis for full models
We will use n, B4, p, R* = (0.11, 0.50, 0.67, 0.80, 0.86) with 30 covariates (15 original covariates
and 15 additional noise variables)

Target of analysis

* Shrinkage factors for each regression estimate

* Selection status of each covariate

* Model prediction errors
Method
OLS
Global
PWS
NPWS
QPWS
Ridge

Methods (Section 3)

Lasso
BSS

Performance measures
(Section 2.2)

Tuning parameters Initial estimates

N/A N/A
10-fold CV N/A
10-fold CV N/A
10-fold CV N/A
10-fold CV OLS
10-fold CV N/A
10-fold CV N/A
10-fold CV N/A

* Prediction accuracy: RTE and RR

Note: Changes made to the original protocol are in bold.

Abbreviations: BSS, best subset selection; CV, cross-validation; NPWS, non-negative parameter-wise shrinkage; OLS, ordinary least square; PWS, parameter-wise
shrinkage; QPWS, quadratic parameter-wise shrinkage; RR, relative risk; RTE, relative test error; SNR, signal-to-noise ratio.

error was smaller than 0.005 for better precision (see Kipruto
and Sauerbrei (2022a) for details). The X matrix was generated
by sampling from a multivariate normal distribution with a mean
vector of zero and covariance matrix %, where Z;; = pl=ilforp =
(0.3, 0.8). Each covariate in X was standardized to have a mean of
zero and unit variance. For y, we used the formulay = X, + ¢,
where B is a vector of true regression coefficients (see Table 1).
The error term ¢; was generated from a normal distribution with
a mean of zero and variance of ¢%. The value of g was chosen to
achieve the desired SNR (i.e., 6> = BIZ8;/SNR).

We selected a subset of values for SNR (0.25, 1, and 4) and
correlation (C2 and C3) from the protocol. Additionally, we added
a sample size of n = 50 and SNR values of 0.12, 2, and 6,
corresponding to R* of about 11%, 67%, and 86%, respectively
(as highlighted in Table 1). This enabled us to investigate the
performance of methods in small sample sizes and at both
low and high SNR levels. To evaluate the performance of each
prediction model, we generated an independent test dataset with
a sample size of 100,000 using the same design as the training
data.
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2.2 | Performance Measures

We used two performance measures to evaluate the prediction
performance of models. These measures are as follows.

2.2.1 | Relative Test Error (RTE)

The RTE quantifies the expected test error relative to the Bayes
error rate (Hastie, Tibshirani, and Tibshirani 2020). The RTE is
simply a standardized form of mean squared prediction error and
is defined as follows:

RTE (6) _ E[(J’o ;ngﬁ)z] _ (B_ﬁT)TZ£§_5T> +0?
ME + o2

oz

where X, denotes a random matrix of test covariates, y, is a
random vector of test response variable, 8, is a vector of true
coefficients, and 8 is a vector of estimated coefficients from

N T_ 4

a regression method such as OLS. ME = (5 — ;) Z(8 - Br)
denotes the model error. A null model (model without predictors)
has an RTE score of (8128, + ¢?)/0?> = SNR + 1, whereas
a perfect model (5 = f;) has a score of 1 as ME = 0. A good
prediction model should have an RTE close to 1.

2.2.2 | Relative Risk (RR) in Prediction Model

RR is another metric used to measure the prediction accuracy
of models, as employed by Hastie, Tibshirani, and Tibshirani
(2020) and Bertsimas, King, and Mazumder (2016). It is defined
as follows:
~ 2 ~ T ~
. BEI(XIB-XiB) 1 (B-8r) =(B-5r)
RR (ﬁ) - - .
E(X;6r) Frzfr
_ ME
BrZh;

A null and a perfect model have scores of 1 and 0, respectively. A
good prediction model should have an RR close to 0. If a model
has an RR > 1, its prediction accuracy is worse than a null model.

3 | Methods

The methods include post-estimation shrinkage (global, PWS,
and NPWS), penalized regression (lasso, ridge, and QPWS), and
BSS (with and without shrinkage). Tenfold CV will be used to
select the optimal tuning parameters for all procedures, except
for OLS, which does not require tuning parameters.

3.1 | Post-Estimation Shrinkage Methods

3.1.1 | Global Shrinkage

The global shrinkage method was proposed to improve the
prediction accuracy of regression models on new data (van

Houwelingen and le Cessie 1990). This is achieved by uniformly
adjusting all regression estimates using a shrinkage factor (c),
where the estimates are obtained from least-squares or standard
maximum likelihood estimation. For ordinary linear models, the
adjusted linear predictor is as follows:

Vi =By +cBixiy + -+ cBpxip.

The intercept ﬁ(’; is estimated after obtaining the shrunken esti-
mates. A limitation of global shrinkage is its uniform shrinkage of
both small and large coefficients. This can lead to over-shrinkage
of large coefficients which hardly need shrinkage, resulting in
excessive bias that can be detrimental to prediction. The global
shrinkage can be applied to both full and selected models (van
Houwelingen and Sauerbrei 2013). The shrinkage factor will be
estimated using 10-fold CV (Section 3.1.4).

3.1.2 | Parameter-Wise Shrinkage

PWS approach is an extension of global shrinkage (Sauerbrei
1999), in which each regression estimate from a selected model is
shrunk differently. For ordinary linear models, the adjusted linear
predictor is as follows:

Vi =By +efixin + e+ CpBpXips

where c; is a shrinkage factor for the jth predictor, and ,35* is
the intercept estimated after obtaining the shrunken estimates.
When very weak effects or noise variables are included in the
regression model, the PWS approach often estimates negative
shrinkage factors for their regression estimates, indicating that
even the signs of the estimates may be wrong. For this reason,
PWS is recommended for use after model selection, as most noise
variables and variables with very weak effects would have been
eliminated, reducing the probability of a “wrong” sign (Sauerbrei
1999). The shrinkage factors (¢;) will be estimated using 10-fold
CV (Section 3.1.4).

3.1.3 | Non-Negative PWS

In regression modeling, especially in uncorrelated settings,
shrinkage factors are typically expected to range between zero
and one (Breiman 1995). However, negative shrinkage factors can
occur when no restriction is imposed on the shrinkage factors,
as is the case with the PWS. This study introduces a modified
version of the PWS approach, named the NPWS, in which the
shrinkage factors are constrained to be non-negative (c; >0). The
NPWS estimator preserves the sign of regression estimates and
can set estimates of noise variables to zero. The non-negativity
constraint enables the application of NPWS to both full and
selected models. The shrinkage factors will be estimated using 10-
fold CV in conjunction with a constrained least-squares approach
(see Section 3.1.4 for more details).

3.1.4 | Estimation of Global and PWS Factors

Leave-one-out CV (LOOCV) was proposed for estimation of
global and PWS shrinkage factors (van Houwelingen and le
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Cessie 1990; Sauerbrei 1999; Verweij and van Houwelingen 1993).
This approach requires fitting a statistical model n times, where
n is the number of observations, which can be computationally
intractable in simulation studies. Here, we used 10-fold CV which
involved fitting a statistical model only 10 times, making it more
practical for large problem sizes (Kipruto and Sauerbrei 2022b).

Before estimating global or PWS shrinkage factors, it is necessary
to specify the outcome y and covariates x,, ..., x, for the final
model. These covariates may have been selected from a larger
set using either subset selection methods or subject matter
knowledge (Dunkler, Sauerbrei, and Heinze 2016).

The global shrinkage factors are estimated using k-fold CV as
follows:

1. Randomly divide the set of observations into k folds of
approximately equal size.

2. Hold out the first fold and fit a regression model on the
remaining k — 1 folds, resulting in a column vector of
regression coefficients 3* of dimension d x 1. Compute the
linear predictor, ; = x* B*, on the observations in the held-
out fold, where x* denotes the matrix of covariates in the
held-out fold.

3. Repeat Step 2 for each fold, holding out a different group of
observations each time. This process results in k sets of linear
predictors 17, 75, ..., 7.

4. Combine these linear predictors row-wise to form a single
matrix 7 of dimension n X 1. Use 7 as the covariate and y
as the outcome to fit a linear regression model E(y|n) = c»,
where ¢ is the regression estimate and represents the global
shrinkage factor.

On the other hand, the PWS shrinkage factors are estimated
by modifying Steps 2 and 4 of the above procedure (Dunkler,

Sauerbrei, and Heinze 2016) as follows:

2. Instead of using a single linear predictorn; = x* B*, compute

partial linear predictor 7;;_ = x;.‘ 37‘ forj=1, ..., d, where
x;. denotes a vector of values in the held-out fold for the jth
covariate. This yields a matrixn; = [n;,, ---, 7},

4. Combine these partial linear predictors row-wise to form a
single matrixn = [»y, 9,,...,54] of dimension n x d. Fit a
linear regression model E(y|7;,...,14) = ¢ 1+ - +¢0q,
where 7); represents the column vector of partial predictors
for the jth covariate, and c,, ..., ¢4 are the regression estimates
representing the PWS shrinkage factors.

The final stage (Stage 4) of estimating shrinkage factors involves
fitting a regression model with the same response variable (y)
and (partial) linear predictors () as independent variables. The
resulting regression estimates represent the shrinkage factors.
Negative shrinkage factors may occur because the regression
estimates of partial linear predictors are not constrained to be
non-negative, as demonstrated in the application of PWS to full
models (Sauerbrei 1999). The NPWS approach follows the same
procedure for estimating PWS factors, but with an additional
constraint, the regression estimates of partial linear predictors in
Stage 4 must be non-negative, which is equivalent to fitting a non-

negative least squares model. This can be achieved using software
supporting the estimation of non-negative regression estimates,
such as the nnls package (Mullen and van Stokkum 2023) or
glmnet package (with tuning parameter and lower bounds of the
coefficients set to zero) (Friedman, Tibshirani, and Hastie 2010)
in R.

3.2 | Best Subset Selection

The BSS is a traditional approach for variable selection that
identifies the best fitting model of each number of variables
included. Exhaustive search or leaps and bounds algorithms are
often used (Lumley 2020). The best model in OLS models is a
model with the smallest residual sum of squares (James et al.
2013). A 10-fold CV was used to choose the best fitting subset
of variables. It is well-known that variable selection can result
in biased regression estimates that need shrinkage (Miller 2002;
Harrell 2015). Without shrinkage, the resulting model may not
generalize well to new data (Copas and Long 1991; Riley et al. 2021;
Miller 2002). We applied shrinkage to the regression estimates
of BSS and compared results without shrinkage. The shrinkage
factors were obtained from global, PWS, NPWS, and QPWS
approaches.

3.3 | Penalized Regression Methods
3.3.1 | Ridge and Lasso

Penalized regression methods such as ridge (Hoerl and Kennard
1970) and lasso (Tibshirani 1996) are alternative approaches to
post-estimation shrinkage. Ridge and lasso have been extensively
studied in the literature, and we will briefly discuss their key
concepts. Ridge regression was proposed to address issues of mul-
ticollinearity, whereas lasso was proposed to combine variable
selection and shrinkage. For ordinary linear regression models,
the ridge (o« = 0) and lasso (@ = 1) estimators are obtained by
minimizing:

1 + 4 ’ A u
n Z<yi_ ﬁjxij> +5(1_0‘)2512-
i=1 Jj=1 Jj=1

P
+a Y |8)|. >0,
=1

where A is the tuning parameter that controls the amount of
shrinkage that is applied to the regression coefficients. When
A = 0, the penalty term has no effect and the estimates of
ridge, lasso, and OLS are identical. When 4 — oo, the lasso
estimates are zero, whereas ridge estimates approach zero but not
exactly zero (James et al. 2013). The tuning parameters 1 will be
estimated using a 10-fold CV by minimizing mean squared error.

3.3.2 | Quadratic Penalty on Shrinkage Factors
Breiman (1995) proposed a method for estimating shrinkage

factors that uses a quadratic penalty term on the shrinkage
factors. This method can produce negative shrinkage factors for
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noise variables in correlated settings, but in uncorrelated settings,
all shrinkage factors are non-negative based on the formula
provided by Breiman (1995). To avoid negative shrinkage factors,
we imposed non-negativity constraints on the shrinkage factors,
similar to the NNG (Breiman 1995). As a result, the shrinkage
factors for noise variables can be zero, indicating that the variable
should be eliminated. We refer to this approach as the QPWS
and will compare its performance to PWS, NPWS, and global
shrinkage when applied to full and selected models.

Let B;)LS for j = 1, ..., p be the OLS estimate for the jth
variable from the full or selected model. The shrinkage factors
é(4) = (éy,...,¢,) are obtained by minimizing the objective
function:

n

p p
1 AOLS 4 2
n <yi_j§1‘cjﬁj X; +§ch,cj20,/120,

=1

where A is the tuning parameter that controls the amount of
shrinkage applied to the OLS initial estimate. When 1 = 0, the
penalty term has no effect and all shrinkage factors are equal
to 1, whereas when 4 — oo, the impact of the penalty term is
high and all shrinkage factors are equal to zero. The shrunken
regression estimate for the jth variable is given by @(/1) = ¢ 6}9“.
The tuning parameters will be estimated using a 10-fold CV by
minimizing mean squared error.

3.4 | Notations

We introduce the notations used in Section 4. The full OLS
model, followed by global shrinkage, PWS, NPWS, and QPWS
approaches, is denoted as Global (F), PWS (F), NPWS (F),
and QPWS (F), respectively. Here, “F” enclosed in the brack-
ets denotes the full model. When post-estimation shrinkage is
applied after model selection, “F” is replaced by “S,” where S
denotes the selected model.

4 | Results

This section describes the key findings from our simulation study.
A subset of the results is presented, with a focus on scenarios
where the true regression coefficients follow beta-type A (54)
distribution. Additionally, a summary of all the simulation results
is provided in Supporting Information Appendix section. The
results are presented in two sets: full models (Section 4.1) and
selected models (Section 4.2).

4.1 | Full Models

4.1.1 | Comparison of Post-Estimation Shrinkage Factors
in Low and High Correlation

Figure 1 compares the shrinkage factors for post-estimation
shrinkage approaches in low-correlated settings across different
SNR levels. The left and right panels show the average shrinkage
factors with one standard error band for regression estimates
of signal and noise variables, respectively. By design, global
shrinkage factors are identical for all variables in a given dataset,
regardless of whether they are signal or noise.

For signal variables (left panel), three key findings are evident.
First, shrinkage is higher in low SNR (top left) and decreases as
SNR increases across all approaches. Second, in low SNR, global
shrinkage tends to shrink large effects (x1) more and weak effects
(e.g., x13) less. Third, in low SNR, the PWS on average estimates
negative shrinkage factors for weak effects (x7, x9, x11, and x13),
shifting to positive values as the SNR increases.

For noise variables (right panel), negative shrinkage factors are
estimated by PWS approach, both in low and high SNR, a feature
that is precluded in NPWS and QPWS approaches due to the
non-negativity constraints. The global shrinkage nearly always
estimated positive shrinkage factors, but negative shrinkage
factors were estimated in a few replications in low SNR (Figure
Al). The shrinkage behavior of NPWS and QPWS is similar.

In high correlation (Figure A2), both NPWS and QPWS tend
to apply more shrinkage to weak and no effects than global
shrinkage, whereas PWS generally estimates negative shrinkage
factors for weak effects, except in high SNR.

4.1.2 | Comparison of Prediction Errors

4.1.2.1 | Effects of SNR on Prediction. Figure 2 compares
the prediction of post-estimation shrinkage methods, OLS, and
ridge using RR and RTE metrics, where the latter magnifies
the differences. The upper and lower panels are low and high
correlation settings, respectively. The average RR and RTE are
displayed for each method. The results for NPWS and QPWS
were similar, and only NPWS results are reported. Overall,
post-estimation shrinkage methods (except PWS) improved the
prediction accuracy of OLS models. From RR, we observe
that prediction performance improves as SNR increases in all
methods, regardless of the amount of correlation.

In low correlation, we observe the following: In low SNR,
all shrinkage approaches, except PWS, perform similarly and
outperform OLS. In high SNR, NPWS outperforms all other
shrinkage approaches, whereas global shrinkage, ridge, and OLS
exhibit similar performance (Figures 2 and A3, top right panel).
The OLS generally outperformed PWS, likely due to the impact of
negative shrinkage factors.

In high correlation, post-estimation shrinkage methods improved
prediction accuracy of OLS, particularly in low-to-moderate
SNR. Ridge outperformed post-estimation shrinkage meth-
ods, whereas NPWS outperformed global shrinkage. As SNR
increases, the prediction performance of global shrinkage con-
verges toward that of OLS models, indicating that the shrinkage
factors approach one, as illustrated in Figure 1.

4.1.2.2 | Effects of Sample Size on Prediction. Figures 3
and A4 shows the relationship between RTE and sample size in
low (left panel) and high (right panel) correlation under varying
levels of SNR. The upper and lower panels show results for low
(0.12) and moderate (1) SNR, respectively. We omitted the results
of PWS as it was often inferior to the OLS model.

As sample size increased, we observed that the RTE values of all
methods approached nearly perfect accuracy of 1, regardless of
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FIGURE 1 | Full model. Average shrinkage factors with one standard error band (not visible due to small standard errors) for post-estimation
shrinkage approaches in low correlation (o = 0.3) with p =15, n =100 and beta-type A (8, ) for different SNR levels. The average shrinkage factors over
2000 replications for signal (left panel) and noise (right panel) variables are displayed. SNR, signal-to-noise ratio.
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FIGURE 2 | Fullmodel. Average RR and RTE over 2000 replication for methods in low (upper panel) and high correlation (lower panel) for n =100,
p =15 and beta-type A. Prediction is considered good when RR is close to 0 or RTE is close to 1. RTE magnifies small differences in methods. RR, relative

risk; RTE, relative test error.

correlation and SNR levels. It is evident that shrinkage is more
crucial in small sample sizes (n = 50), particularly in low SNR and
high correlation (top right panel). However, in large sample sizes
(n = 400), all methods, including OLS models, perform similarly,
suggesting that shrinkage might not be necessary.

4.1.2.3 | Effects of Many Noise Variables on Prediction.
To evaluate the effectiveness of post-estimation shrinkage in
complex settings, we developed models with 30 covariates (7
signals and 23 noises), sample size of 50, and different SNRs.
The results for NPWS and QPWS were similar, and only NPWS
results are reported. From Figure 4, we see that the PWS, which
had previously shown poor performance (see Figure 2), now
outperforms OLS. This improvement can be attributed to PWS
regression estimates being more concentrated around true values
than OLS estimates, as seen in the corresponding density plots
(not shown).

Among post-estimation shrinkage approaches, global shrinkage
tended to perform well in low SNR levels, whereas NPWS
performed well in moderate to high SNR (SNR > 1). For a small
sample size and low SNR, accurate estimation of PWS factors is
challenging. In such cases, global shrinkage approach estimating
only one parameter may be more appropriate. Ridge outper-
formed post-estimation shrinkage methods in high correlation.

The summary of simulation results in full models is shown in
Table A2.

4.2 | Selected Models

This section presents the results of post-estimation shrinkage for
selected models. We explore the behavior of shrinkage factors of
regression estimates of selected noise and signal variables. Addi-
tionally, we assess whether post-estimation shrinkage improves
the prediction performance of BSS and compare the results with
those of lasso.

4.2.1 | Behavior of Shrinkage Factors for a Selected Noise
Variable in Low-Correlated Settings

We focus on the noise variable x2, chosen arbitrarily, which is
weakly correlated with other variables. The inclusion frequen-
cies are 18.3%, 17.6%, and 11.5% for sample sizes of 50, 100,
and 400, respectively. Figure A5 shows that as the regression
estimate of a selected noise variable increases in absolute terms,
the amount of shrinkage applied decreases. Conversely, as the
estimate approaches zero, the PWS approaches assume that
the variable is more likely a noise variable, leading to more
shrinkage.
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FIGURE 3 | Full model. RTE as a function of sample size for different methods in low (left panel) and high (right panel) correlation with SNR of
0.12 (upper panel) and 1 (lower panel) for p = 15 covariates with beta-type A distribution. RTE, relative test error; SNR, signal-to-noise ratio.

The PWS approach may estimate negative shrinkage factors in
small (50) and moderate (100) sample sizes, particularly when
the regression estimate is close to zero. This is less likely to
occur in large sample sizes (400). Generally, global shrinkage
applies less shrinkage to estimates close to zero, whereas NPWS
and QPWS apply more shrinkage. As the sample size increases
from 50 to 400, the regression estimate approaches zero (near
the dashed vertical line), and the corresponding shrinkage factor
varies depending on the method used.

4.2.2 | Behavior of Shrinkage Factors for a Selected
Signal Variable in Low-Correlated Settings

‘We focus on variable x7 with the true effects of 0.5. As the effect is
relatively weak, the inclusion frequencies were 37.9%, 56.7%, and
98.2% for sample sizes of 50, 100, and 400, respectively. As the
sample size increased, the likelihood of selecting the variable also
increased, as larger sample sizes provide more power to detect
true effects.

The results show that more shrinkage is applied to estimates that
are closer to zero and smaller than true effects in absolute terms.

Conversely, less shrinkage is applied to estimates that are larger
than true effects in absolute terms. This trend is more apparent
in large sample sizes (Figure 5). The exception to this is global
shrinkage, where shrinkage seems to be applied uniformly to all
estimates regardless of their deviation from the true value.

Additionally, in small (50) and moderate (100) sample sizes, the
PWS can estimate negative shrinkage factors when its estimate
is close to zero. This is undesirable because shrinkage factors
should not alter the sign of an estimate. In contrast, the NPWS
estimates shrinkage factors for estimates close to zero as either
zero or very close to zero. It is evident that the choices of
shrinkage method and sample size have a significant impact on
the estimates obtained from shrinkage methods.

4.2.3 | Usefulness of Shrinkage on Prediction of Subset
Selection in Low and High Correlation

Figure 6 compares the prediction performance of BSS, post-
estimation shrinkage, and lasso in low (upper panel) and high
(lower panel) correlations. The results for NPWS and QPWS
were similar, and only NPWS results are reported. Post-estimation
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FIGURE 4 | Full models. Prediction performance of methods in full models with a large number of noise variables under low (upper panel) and
high (lower panel) correlation. The analysis involves a sample size of n = 50 and p = 30 covariates (7 signals and 23 noise variables) following a beta-type

A distribution.

shrinkage improves prediction accuracy of BSS, particularly in
low SNR, with negligible impact in high SNR (Figure 6, top
left panel). All post-estimation shrinkage approaches performed
similarly, with global shrinkage being slightly inferior.

The lasso outperformed BSS and post-estimation shrinkage in
small sample sizes (Figure A6), low SNR, and high correlation
(Figure 6, and Figures A7 and A8; bottom left panel). However, in
moderate (100) and large (400) sample sizes with low correlation
and high SNR, BSS and post-estimation shrinkage outperformed
the lasso (Figure 6 and Figures A7 and AS; top left panels). The
poor performance of the lasso in high SNR was likely due to the
selection of many noise variables (Figure 6 and Figures A7, A8,
and A9, right panel).

5 | Discussion
In our simulation study, we have investigated the prediction

performance of post-estimation shrinkage methods in low-
dimensional data. Our findings indicate that post-estimation

shrinkage methods (NPWS and global shrinkage) generally out-
perform OLS in both full and selected models. As expected,
when the PWS approach, proposed for use after model selec-
tion, was applied to the full model, its prediction performance
was inferior to the OLS model due to the impact of negative
shrinkage factors. The popular approach of Stein (1956) used for
estimating shrinkage factors suffered from the same problem, and
a modification was proposed called the “positive part,” where
the negative shrinkage factors are set to zero. This modification
often outperforms the original Stein approach (Copas 1983). This
also explains why NPWS outperformed PWS because when all
shrinkage factors are zero, all observations in new data are pre-
dicted using the overall mean rather than a linear predictor with
incorrect signs for the estimates. Nevertheless, the performance of
PWS was comparable to other post-estimation shrinkage methods
in selected models, as BSS eliminates some noise variables,
resulting in PWS estimating positive shrinkage factors for selected
variables in nearly all cases. These results are consistent with the
findings of van Houwelingen and Sauerbrei (2013), which showed
that PWS improved the prediction performance of backward
elimination.
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panel), and large (n = 400, right panel) sample sizes. The scenarios include an SNR of 1, low correlation (o = 0.3), and p =15 covariates following beta-type

A distribution. SNR, signal-to-noise ratio.

The prediction performance of NPWS and QPWS was better than
global shrinkage in most scenarios, except in small sample sizes
with low SNR. Using CV to estimate many shrinkage factors in
these scenarios can lead to large uncertainty. This may explain the
superior performance of global shrinkage over PWS approaches
in such cases, as it involves estimating only one parameter. More-
over, in small sample sizes with low SNR, distinguishing between
signal and noise variables is challenging, raising doubts about the
necessity of performing any model selection on such situations.
However, with sufficient information, PWS approaches tend to
outperform global shrinkage as over-shrinking of large effects is
avoided.

In scenarios with high correlation, small sample sizes, and low
SNR, shrinkage approaches outperformed OLS in prediction
accuracy. The uncertainty in OLS estimators is substantial in
these situations, and shrinkage methods can effectively reduce
variance by introducing small bias, enhancing prediction accu-
racy in new data.

We evaluated the usefulness of post-estimation shrinkage in
selected models and observed that shrinkage is more useful in
low SNR and small sample sizes. In these situations, regression
estimates of selected variables are known to be highly biased in
absolute terms, leading to an increased tendency to overpredict,
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and more shrinkage is needed (Copas 1983). Additionally, we
compared the prediction performance of post-estimation shrink-
age and penalized methods and observed that the performance
of the two approaches was comparable in moderate sample sizes
with low correlation and moderate to high SNR (SNR > 1). How-
ever, in large sample sizes with low correlation and high SNR,
the lasso performed poorly compared to both post-estimation
shrinkage and BSS. This may be attributed to the selection of a
large number of variables and an excessive amount of shrinkage,
aligning with findings by Hastie, Tibshirani, and Tibshirani
(2020), where BSS outperformed the lasso in high SNR.

In high correlation, low SNR, or small sample sizes, penal-
ized methods generally outperformed post-estimation shrinkage
approaches. This could be attributed to the estimation of post-
estimation shrinkage factors, which relies on OLS estimates. OLS
estimates are highly variable in these situations, which, in turn,
can adversely affect the estimation accuracy of shrinkage factors.

6 | Conclusion

Our study has demonstrated that post-estimation shrinkage can
be an effective tool for improving the prediction performance

of full and selected models, especially in small-to-moderate
sample sizes or SNR. However, its usefulness diminishes as the
sample size or SNR increases. When the data contain sufficient
information, NPWS is more effective than global shrinkage in
improving the prediction performance of models. However, in
high correlation, small sample size, and very low SNR, penalized
methods tend to outperform post-estimation shrinkage methods.
Therefore, researchers should carefully consider factors such
as the sample size, correlation between covariates, and SNR
levels when selecting the appropriate method to achieve the best
prediction performance.
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