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Abstract

In contrast to extensively studied prokaryotic ‘small’ transcriptomes (encompassing all small noncoding RNAs), small proteomes
(here defined as including proteins ≤70 aa) are only now entering the limelight. The absence of a complete small protein catalogue in
most prokaryotes precludes our understanding of how these molecules affect physiology. So far, archaeal genomes have not yet been
analyzed broadly with a dedicated focus on small proteins. Here, we present a combinatorial approach, integrating experimental data
from small protein-optimized mass spectrometry (MS) and ribosome profiling (Ribo-seq), to generate a high confidence inventory of
small proteins in the model archaeon Haloferax volcanii. We demonstrate by MS and Ribo-seq that 67% of the 317 annotated small
open reading frames (sORFs) are translated under standard growth conditions. Furthermore, annotation-independent analysis of
Ribo-seq data showed ribosomal engagement for 47 novel sORFs in intergenic regions. A total of seven of these were also detected by
proteomics, in addition to an eighth novel small protein solely identified by MS. We also provide independent experimental evidence
in vivo for the translation of 12 sORFs (annotated and novel) using epitope tagging and western blotting, underlining the validity
of our identification scheme. Several novel sORFs are conserved in Haloferax species and might have important functions. Based on
our findings, we conclude that the small proteome of H. volcanii is larger than previously appreciated, and that combining MS with
Ribo-seq is a powerful approach for the discovery of novel small protein coding genes in archaea.

Keywords: proteomics, ribosome profiling, small protein, sORF, mass spectrometry, sprotein, Haloferax volcanii, archaea, small pro-
teome, Ribo-seq

Introduction
Small open reading frames (sORFs) of 100 codons or fewer have
long been omitted from genome annotations and proteomic anal-
yses (Dinger et al. 2008, Storz et al. 2014). Nonetheless, the ‘small
proteome’ has recently become of interest as the functional im-
portance of a number of small proteins [here defined as those ≤70
amino acids (aa)] has been demonstrated in eukarya, bacteria, and
even viruses [reviewed in Storz et al. (2014), Pueyo et al. (2016), Du-
val and Cossart (2017), Plaza et al. (2017), Orr et al. (2020), Steinberg
and Koch (2021), Gray et al. (2022)]. Emerging evidence in bacteria
suggests that small proteins can function as regulators or compo-
nents of larger proteins or protein complexes, are often localized
at membranes, and commonly act by protein–protein interactions
(Storz et al. 2014, Garai and Blanc-Potard 2020, Orr et al. 2020).

Their short length and absence of canonical protein domains
makes small ORFs (sORFs) difficult to predict based on sequence

alone (Pueyo et al. 2016). Therefore, most sORFs are omitted
from annotations as false positives. Experimental identification
of small proteins using biochemical and mass spectrometry (MS)
approaches has traditionally been hampered by technical con-
straints [recently reviewed in Cassidy et al. (2021), Ahrens et al.
(2022)]. Classical methods for protein analysis are biased against
small proteins, which typically combine short length with limited
charge and strong hydrophobicity (Weaver et al. 2019). Moreover,
small proteins usually represent only a small fraction of the to-
tal protein mass within a cell (Klein et al. 2007, Miravet-Verde et
al. 2019). Recently, several improvements of classical MS sample
preparation workflows, driven by the interest in small proteins,
have been made (Slavoff et al. 2013, Petruschke et al. 2020). These
include the generation of peptides by proteases other than trypsin
to increase sequence coverage of small proteins, as more than one
peptide is required for confident detection and the short length of
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small proteins caters poorly to this requirement (Pueyo et al. 2016,
Kaulich et al. 2020). Besides experimental workflow adaptations,
specialized algorithms for MS data analysis tailored to small pro-
teins have also been developed [recently reviewed in Cassidy et al.
(2021)].

Ribosome profiling (Ribo-seq) is based on sequencing of tran-
scripts associated with translating ribosomes (‘polysomes’), and
has provided widespread evidence for translation of unannotated
ORFs in diverse organisms (Menschaert et al. 2013, Mumtaz and
Couso 2015, Ingolia 2016). In Ribo-seq, translating ribosomes are
captured along with mRNAs, which are trimmed by nonspecific
RNases to generate so-called ribosome footprints, and the result-
ing RNA fragments are deep sequenced. Mapped reads reveal ribo-
some occupancy genome wide, and comparison to coverage in a
transcriptome library prepared in parallel allows for the quantifi-
cation of translation efficiency (ratio Ribo-seq/RNA-seq coverage)
as well as definition of ORF boundaries and untranslated regions
(UTRs) (Ingolia et al. 2009, Ingolia 2016). Ribo-seq addresses pro-
tein biosynthesis from an angle complementary to MS, as it relies
on the high sensitivity and resolution of RNA-seq while being in-
dependent of protein biochemistry. Ribo-seq has identified sORFs
in, e.g. the human cytomegalovirus (Stern-Ginossar et al. 2012),
SARS-CoV-2 (Finkel et al. 2021), Escherichia coli (Neuhaus et al. 2017,
Weaver et al. 2019, Hemm et al. 2020), Salmonella Typhimurium
(Baek et al. 2017, Venturini et al. 2020), Staphylococcus aureus (Fuchs
et al. 2021), and diverse vertebrates (Bazzini et al. 2014, Ji et al.
2015). Ribo-seq is by now an invaluable part of integrated omics
approaches aimed at the detection of novel sORFs (Menschaert et
al. 2013, Miravet-Verde et al. 2019, Venturini et al. 2020, Fuchs et
al. 2021, Vazquez-Laslop et al. 2022).

Archaea represent the third domain of life and exhibit an ex-
ceptional mosaic of bacterial and eukaryotic traits. A handful of
studies have identified certain small proteins in a few archaea,
mostly identified coincidentally based on their role in specific
physiological processes [reviewed in Weidenbach et al. (2021)].
Nonetheless, small protein biology is emerging as a growing field
of study in archaea (Kubatova et al. 2020a,b, Prasse et al. 2015,
Cassidy et al. 2016, 2019, Nagel et al. 2019, Kaulich et al. 2020,
Gutt et al. 2021, Liao et al. 2021, Zahn et al. 2021). Apart from
an early attempt for Halobacterium salinarum and recent efforts
in Methanosarcina mazei, inventories of small proteomes are still
missing (Klein et al. 2007, Cassidy et al. 2016, 2019, Kaulich et al.
2020, Gutt et al. 2021). Another recent study used ribosome profil-
ing to determine characteristics of translation for Haloferax volcanii
strain H98 (Gelsinger et al. 2020). Haloferax volcanii is a halophilic
archaeon and a model organism for Haloarchaea. Halophilic ar-
chaea are easy to grow, because they are aerobic, grow at moder-
ate temperatures and they only require high salt concentrations.
Due to its genetic accessibility, H. volcanii is one of the few ar-
chaea where small protein functions have been experimentally
addressed in. A total of three ubiquitin-like small archaeal mod-
ifier proteins (SAMP1–3 with 87, 66, and 92 aa) have been inves-
tigated for their role in protein degradation, oxidative stress re-
sponses, and sulphur metabolism (Humbard et al. 2010, Dantu-
luri et al. 2016). Evidence for translation, alongside structural in-
sights, for a small iron metabolism-related protein has been re-
ported, as well as the involvement of several small one-domain
zinc-finger proteins (up to 70 aa) in diverse cellular functions, in-
cluding stress-tolerance (Kubatova et al. 2020a, Nagel et al. 2019,
Zahn et al. 2021). The CdrS small protein (61 aa) was shown to be
a transcriptional regulator governing H. volcanii cell shape and di-
vision (Liao et al. 2021). While this limited body of information al-
ready underlines the metabolic and regulatory potential of small

proteins in (halo-)archaeal physiology, an inventory of its com-
plete small protein complement is lacking.

Here, we explored the small protein landscape of H. volcanii
strain H119 by combining MS-based proteomics, tailored to small
proteins, with Ribo-seq to detect translated ORFs. In this way, we
provide evidence for translation of 212 annotated sORFs under
standard growth conditions. We also discovered a set of 48 novel
sORFs with high confidence. We also provide our Ribo-seq data
in an easily accessible interactive web-based genome-browser:
http://www.bioinf.uni-freiburg.de/ribobase. A subset of H. volcanii
small proteins was selected for validation, and expression was
confirmed in vivo by western blotting, thereby supporting the pre-
dictive power of our approach. This inventory of H. volcanii small
proteins is a crucial prerequisite for functional and systems biol-
ogy analysis of this model archaeon, and provides a framework
for characterizing the small proteome in other archaea.

Methods
Growth of H. volcanii for MS analysis
All experiments were carried out using the H. volcanii wild-type
strain H119 (Allers et al. 2004). H119 was cultivated aerobically at
45◦C in YPC (for MS and Ribo-seq sample preparation) or selective
media Hv-Ca with addition of tryptophan (for in vivo validation)
(Allers et al. 2004).

Enrichment of small proteins for MS analysis
A method based on the interaction of small proteins with a here"
was applied to enrich small proteins present in archaeal pro-
tein extracts. For this, H. volcanii cells were grown to exponential
(OD650nm 0.5) or stationary phase (OD650nm 1.2–1.3) and harvested
in triplicate by centrifugation. Flash-frozen pellets were thawed
and suspended in TrisHCl buffer (50 mM, pH 7.4) before disrup-
tion by ultrasonication with an MS72 sonotrode (Bandelin) oper-
ated at 40 W output (4 × 60 s). A mild centrifugation step at 8000
× g for 5 min ensured minimal loss of membrane-related small
proteins, while undisrupted cells and cell debris were sufficiently
removed. Small proteins were enriched by solid phase enrichment
(SPE) as previously described in Bartel et al. (2020). Briefly, dis-
posable SPE columns (Phenomenex, 8B-S100-AAK) packed with
an 8.5-nm pore size, modified styrene–divinylbenzene resin were
equilibrated and 500 μg proteins were loaded, and unbound, po-
tentially larger proteins were removed by washing. Finally, the en-
riched small protein fraction was eluted and evaporated to dry-
ness in a vacuum centrifuge.

Proteolytic digest for MS analysis
One small protein enriched aliquot of each sample (∼20 μg) was
digested with Lys-C (Bartel et al. 2020). In brief, the samples were
diluted with triethylammonium bicarbonate buffer (TEAB), con-
taining the acidlabile detergent RapiGest (Waters). All samples
were subsequently reduced with Tris(2carboxyethyl) phosphine
(TCEP). The reaction was quenched by adding iodoacetamide and
the mixture was allowed to alkylate before Lys-C was added in
a 1:100 enzyme to protein ratio. The samples were digested for
12 h and the digestion was interrupted by acidifying the mixture
with hydrochloric acid. Prior to analysis with MS, peptides were
purified by Pierce C18 Tips (Thermo Fisher Scientific) according to
the manufacturer’s protocol and retention time calibration pep-
tides (iRT, Biognosys) were spiked to each sample in order to moni-
tor reproducibility of subsequent LCMS runs. In a complementary

D
ow

nloaded from
 https://academ

ic.oup.com
/m

icrolife/article/doi/10.1093/fem
sm

l/uqad001/6988176 by U
niversity Freiburg user on 20 August 2024

http://www.bioinf.uni-freiburg.de/ribobase


Hadjeras et al. | 3

approach, an additional aliquot from each sample was prepared
without digestion before MS analysis.

Liquid chromatography and electrospray MS
All samples were analyzed with a Q-Exactive coupled to an
EASYnLC 1000 (both Thermo Fisher Scientific) which was
equipped with an inhouse built 20 cm reversed phase column
packed with 3 μm diameter C18 particles (Dr. Maisch) with in-
tegrated emitter tip. About 1 μg peptides were loaded onto the
column with solvent A [0.1% (v/v) acetic acid in water], eluted by
a nonlinear gradient of solvent B [0.1% (v/v) acetic acid in ace-
tonitrile] and online infused in the MS. For analysis of the Lys-C
digested samples the Q-Exactive was operated with the follow-
ing parameters: Survey scan: 300–1650 thomson (Th) mass range;
70 000 resolution at m/z 200; 3 × 1e6 predictive automatic gain
control target; max. 120 ms injection time; activated lock mass
correction. Fragment scans: data-dependent higher energy colli-
sional dissociation at normalized energy of 27.5 for the top 10 ions
with an assigned charge state between +2 and +6; fixed first mass:
100 Th; mass range dependent on precursor m/z; 17 500 resolu-
tion at m/z 200; 1 × 1e5 predictive automatic gain control target;
max. 60 ms injection time. For undigested samples the resolution
of the survey and fragment scans was increased to 140 000 and
35 000, respectively, and only the top eight ions with any assigned
charge state above +1 were fragmented with a stepped normal-
ized collision energy of 27.5/32.5 omitting a fixed first mass.

MS data analysis
The mass spectrometric data were analyzed by two different
strategies: First, proteins annotated in the H. volcanii genome were
identified using a conventional database containing 4107 already
annotated proteins. This database was complemented with 116
sequences of commonly observed laboratory contaminants and
a reversed version of each protein. The final database contained
8442 entries. Second, unannotated proteins were identified based
on a six-frame translation of the complete H. volcanii genome se-
quence. After stop codon-to-stop codon translation and in silico
performed nonspecific enzymatic cleavage, 547 803 unique pep-
tide sequences were supplemented with a shuffled decoy vari-
ant of each peptide to obtain the final search database. Unspe-
cific enzymatic cleavage, i.e. possible cleavage between any amino
acids independent of the protease’s specific motif on both peptide
termini, was assumed for two reasons: First, we observed a high
amount of unspecific or semispecific (only one nonspecific termi-
nus per peptide) cleavage upon SPE in our earlier work (Bartel et al.
2020) and second, this assumption ensures that all mapped pep-
tides used to identify novel sORFs are sequence-unique and not
only unique by different adjacent protease cleavage-sites.

Obtained raw files were converted to mzXML using the mscon-
vert script of ProteoWizard (v3.0.9974) and its vendor-supplied al-
gorithms for centroiding mass peaks. Afterwards, spectra were
searched against either database using MSFragger (v2.4) (Kong
et al. 2017). During the search for already annotated proteins,
semispecific enzymatic cleavage (Lys-C) or unspecific enzymatic
cleavage (undigested samples), up to two missed cleavage sites
and optional methionine oxidation (+15.994915 Da), conversion
of N-terminal glutamic acid or glutamine to pyroglutamic acid
(17.026549 or 18.010565 Da, respectively), and acetylation at pro-
tein N-termini (+42.01060 Da) as variable modifications were con-
sidered. Contrary, during the search against the six-frame transla-
tion derived database, nonspecific enzymatic cleavage for all sam-
ples and no variable modifications were assumed. For the Lys-C-

digested samples static carbamidomethylation (+57.021464 Da)
was taken into account for both search strategies. A deviation up
to 10 ppm was allowed for the precursor mass whereas fragment
mass tolerance was 20 ppm. MSFragger was set up to automati-
cally recalibrate the masses for each file separately and the option
to detect optimal parameters was enabled. Identification proba-
bilities were unified experimentwise by PeptideProphet (Keller et
al. 2002) using a minimal peptide length of six aa, semiparamet-
ric modelling of a ppm-error based high mass accuracy model,
reporting of decoy hits and calculated MW of proteins. Results
from Lys-C digested and undigested samples were merged by In-
terProphet applying the peptide-length model. The ipro.pep.xml
file resulting from the search against the conventional database
was subsequently processed with ProteinProphet (Nesvizhskii et
al. 2003) and analyzed with the filter and report options of Philoso-
pher (v3.2.3) (da Veiga Leprevost et al. 2020). Multi-level false-
discovery rates (FDR) were calculated for spectrum, peptide, and
protein level using the picked FDR algorithm (Savitski et al. 2015)
and a cut-off of 1.0% was applied for reporting. In accordance with
(Omasits et al. 2017), annotated proteins were considered to be
identified only if the number of independent spectra was at least
two.

For the detection of novel proteins, spectral hits with an inter-
prophet adjusted peptide-probability of at least 0.998 were an-
alyzed with the Pepper proteogenomics software suite (v1.5.1)
(Fuchs et al. 2021). Briefly, proteinase-K digestion (which is identi-
cal to unspecific digestion in Pepper) was assumed, peptide se-
quences were translated into all possible DNA sequences with
NCBIs translation table 11 and mapped onto the genome se-
quence of H. volcanii using Peppers ‘uniq_only_smart’ option. For
mapping, individual replicons were concatenated with a 100xN
spacer. Potential ORFs and sORFs were then concluded following
a set of rules, ensuring that already annotated ORFs are preferred.
Unannotated ORFs were ranked by Pepper based on the puta-
tive start codon, the presence and location of potential ribosome-
binding sites, and product length, which ensured a minimal set of
potential novelties. The results were manually curated for plausi-
bility and sORFMS8 was rejected as false-positive as it was identi-
fied with only one spectral hit, mapping to a highly hydrophobic
peptide with a basic pI.

Physicochemical properties of novel and annotated small pro-
teins were calculated by the aminoAcidProperties function of the
alakazam (Gupta et al. 2015) package in R 3.6 (R Core Team 2019).
The distribution of these values was further visualized by den-
sity plots, assuming a Gaussian kernel and an adjusted bandwidth
(x 2 for annotated proteins, x 1.4 for novel proteins) chosen by
the Sheather & Jones method. The reference data set (complete
small proteome) contained 316 sequences of annotated small pro-
teins and 47 predicted, novel small proteins that were identified
by Ribo-seq.

Additionally, the MS-detectability of sORFs was analyzed based
on unique peptides. For this purpose, the generate-peptides option
of the crux toolkit (Park et al. 2008) was applied, assuming semis-
pecific cleavage by Lys-C (up to two missed cleavage sites) or
unspecific cleavage for the semi-top-down approach. Protein N-
termini were considered with and without methionine cleavage
and peptides between 6 and 30 residues length and a mass be-
tween 700 and 8000 Da were stored for analysis with in-house
python scripts. Using ProteoMapper (Mendoza et al. 2018), pep-
tide sequences were mapped to a six-frame translation of the H.
volcanii genome sequence. Unique peptides were defined as those
belonging to ORF variants sharing the same stop codon but could
have multiple starting sites. Detectability scores of unique pep-
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tides were calculated by Deep-MS-Peptide (Serrano et al. 2020) and
a score greater than 0.5 indicated that the peptide might be de-
tectable.

Validation of MS-detected novel small proteins
by synthetic peptides
To validate the identification of peptides assigned to proteins not
annotated in the reference database, 26 peptides for 12 proteins
were synthesized by JPT Peptide Technologies (Berlin) and an-
alyzed by MS. These peptides were selected based on a search
against a preliminary database with incomplete annotation and
seven peptides originating from six proteins of these were not
identified in the main search. Thus 19 peptides for six identified
sORFs (sORF7, 8, 10, 11, 12, and 45) were available for validation
(Table S4D, Supporting Information). Notably, the reference pep-
tides were not limited to peptides with enzyme-specific cleavage
sites but were allowed to be unspecifically cleaved. Using the same
pipeline as described above, the samples were searched with MS-
Fragger against a database containing the full length sequences of
the 12 proteins to validate, 44 sequences of commonly observed
laboratory contaminants, and the retention time calibration pep-
tides, as well as a reversed version of each protein. This database
finally contained 112 entries. Spectra identified with a Peptide-
Prophet assigned probability of at least 0.99 that identified one
of the synthesized peptides or a truncated version of these, were
included into a spectral library built with SpectraST (version 5.0)
(Lam et al. 2007), which we called synthetic peptide library. Trun-
cated versions of synthetic peptides could appear due to the pro-
cess of peptide synthesis at JPT. The synthetic peptide library was
supplemented with spectra obtained at a 0.1% peptide FDR from
an MSFragger database search of 48 H. volcanii samples, which
were analyzed as userservice samples on the same instrument,
against the reference database. Decoy spectra were created within
SpectraST on the level of the merged consensus spectra. The re-
sulting spectral library was called ‘combined spectral library’. The
SEP-enriched samples were finally searched against the combined
spectral library and not yet annotated proteins, which obtained
at least two spectral counts at 1% FDR on spectral, peptide, and
protein level, were considered validated if the identifying spectra
passed a subsequent manual inspection.

Sample preparation for ribosome profiling
For Ribo-seq sample preparation, H. volcanii cells were grown aer-
obically at 45◦C in YPC to exponential phase (OD600nm 0.4) and 40
OD600 equivalent units were harvested rapidly by fast-chilling in
an ice bath to halt cell growth and translation. Briefly, cultures
were rapidly placed in a prechilled flask in an ice-water bath and
incubated with gentle shaking for 3 min. Cells were then imme-
diately harvested by centrifugation at 6000 × g for 10 min before
snap-freezing in liquid N2. Before centrifugation, a sample of cul-
ture for total RNA analysis was harvested, mixed with 0.2 vol stop
mix [5% buffer-saturated phenol (Roth) in 95% ethanol], and snap
frozen in liquid N2.

Preparation of ribosome footprints
Ribosome profiling was performed as previously described (Oh
et al. 2011) with some modifications. Briefly, cell pellets were re-
suspended with cold lysis buffer [100 mM NH4Cl, 25 mM MgCl2,
20 mM Tris-HCl, pH 8.0, 0.1% NP-40, 0.4% Triton X-100, 150 U
DNase I (Fermentas), 500 U RNase Inhibitor (MoloX, Berlin), and
lysed by sonication (constant power 50%, duty cycle 50%, 3 × 30 s
cycles with 30 s cooling on a water-ice bath between each sonica-

tion cycle to avoid heating of the sample)]. The lysate was clari-
fied by centrifugation at 10 000 × g for 12 min at 4◦C. Next, 15 A260

units of lysate were digested with either 20 000 U of MNase (NEB)
or 200 U of RNase I (Thermo Fisher Scientific) in lysis buffer sup-
plemented with 10 mM CaCl2 (only for MNase) and 500 U RNase
Inhibitor. Polysome digestion was performed at 25◦C with shaking
at 1450 rpm for 90 min (MNase) or at 450 rpm for 60 min (RNase I).
A mock-digested control (no enzyme added) was also included for
each lysate to confirm the presence of polysomes. MNase diges-
tion was stopped with ethylene glycol-bis(β-aminoethyl ether)-
N, N, N′, N′-tetraacetic acid (EGTA, final concentration 6 mM) for
the MNase treated sample. To analyze polysome profiles and re-
cover digested monosomes, 15 A260 units were layered onto a lin-
ear 10%–55% sucrose gradient prepared in the following buffer:
[25 mM MgCl2, 20 mM Tris-HCl, pH 8, 100 mM NH4Cl, 5 mM CaCl2,
2 mM dithiothreitol (DTT)], in an ultracentrifuge tube (13.2 ml
Beckman Coulter SW-41). Gradients were centrifuged in a SW40-
Ti rotor at 35 000 rpm for 2 h 30 min at 4◦C in a Beckman Coulter
Optima XPN-80 ultracentrifuge. Gradients were processed using a
Gradient Station (IP, Biocomp Instruments) fractionation system
with continuous absorbance monitoring at 254 nm to resolve ri-
bosomal subunit peaks. The 70S monosome fractions were col-
lected and subjected to RNA extraction to purify the RNA foot-
prints. RNA was extracted from fractions or cell pellets for total
RNA using hot phenol–chloroform–isoamyl alcohol (25:24:1, Roth)
or hot phenol (Roth), respectively, as described previously (Sharma
et al. 2007, Vasquez et al. 2014). Ribosomal RNA was depleted
from 5 μg of DNase I-digested total RNA by subtractive hybridiza-
tion (Pan-Bacteria riboPOOLs, siTOOLs, Germany) according to the
manufacturer’s protocol with Dynabeads MyOne Streptavidin T1
beads (Invitrogen). Total RNA was fragmented with RNA Fragmen-
tation Reagent (Ambion). Monosome RNA and fragmented total
RNA were size-selected (26–34 nt) on a 15% polyacrylamide/7 M
urea gel as described previously (Ingolia et al. 2012) using RNA
oligonucleotides NI-19 and NI-20 as guides. RNA was cleaned up
and concentrated by isopropanol precipitation with 15 μg Gly-
coBlue (Ambion) and dissolved in H2O. Libraries were prepared by
Vertis Biotechnologie AG (Freising, Germany) using a small RNA
protocol without fragmentation and sequenced on a NextSeq500
instrument (high-output, 75 cycles) at the Core Unit SysMed at the
University of Würzburg.

Ribosome profiling data analysis
Ribo-seq data were analyzed using the workflow HRIBO (version
1.4.3) (Gelhausen et al. 2020), which has previously been used
for analysis of bacterial Ribo-seq data (Venturini et al. 2020, Gel-
hausen et al. 2022). In brief, read files were processed with a snake-
make (Koster and Rahmann 2012) workflow that downloads all
required tools from bioconda (Grüning et al. 2018) and automat-
ically determines the necessary processing steps. Adapters were
trimmed from the reads with cutadapt (version 2.1) (Martin 2011)
and then mapped against the H. volcanii genome with segemehl
(version 0.3.4) (Otto et al. 2014). Reads corresponding to riboso-
mal RNA (rRNA), multimappers, and tRNAs were removed with
SAMtools (version 1.9) (Li et al. 2009) using the rRNA and tRNA an-
notations. Quality control was performed by creating read count
statistics for each processing step and RNA-class with Subread
featureCounts (1.6.3) (Liao et al. 2014). All processing steps were
analyzed with FastQC (version 0.11.8) (Wingett and Andrews 2018)
and results were aggregated with MultiQC (version 1.7) (Ewels et
al. 2016). ORFs were called with an adapted variant of REPARA-
TION (Ndah et al. 2017) using blast instead of usearch (REPARA-
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TION_blast https://github.com/RickGelhausen/REPARATION_bla
st) and with DeepRibo (Clauwaert et al. 2019). Summary statis-
tics for all available annotated and merged novel ORFs detected
by REPARATION and DeepRibo (Ndah et al. 2017, Clauwaert et al.
2019) were computed in a tabularized form including TE, RPKM
normalized read-counts, codon counts, nucleotide, and amino
acid sequences, and so on. Additionally, GFF track files with the
same information were created for in-depth genome browser
manual inspection.

To benchmark the performance of the ribosome profiling based
open reading frame prediction tools we used the RiboReport
and manual inspection approaches described previously (Gel-
hausen et al. 2022). Asserting about translation/no translation
based on the inspection of paired Ribo-seq and RNA-seq libraries
(normalized to the lowest number of reads between the two)
was conducted using an Integrated Genome Browser (IGB) and
similar scale. Novel or annotated ORFs were called as ‘trans-
lated’ using the following three criteria. (1) The shape of the
Ribo-seq coverage over the ORF, its evenness and its restric-
tion within ORF boundaries (and ribosome footprints excluded
from 5′/3′ UTRs) were called as translated, (2) the Ribo-seq sig-
nal was generally required to be comparable or higher to the
transcriptome signal from the RNA-seq library (often TE >0.5–
1), and (3) RNA-seq and Ribo-seq coverage was required to be,
generally, at least ten reads per nucleotide normalized (RPKM) by
sample size.

We manually curated all 317 annotated sORFs to obtain a set
of 205 translated sORFs. Using the evaluation scripts contained in
the RiboReport GitHub repository (https://github.com/RickGelha
usen/RiboReport), we then created the set of positive sORF can-
didates that were predicted by DeepRibo, REPARATION_blast and
IRSOM, respectively. The candidates were predicted with the same
input genome, annotation and sequencing files already used for
the HRIBO analysis. The hand curated set was automatically in-
tersected by the RiboReport pipeline with the tool predictions re-
sulting in performance evaluation for the tools using our cur-
rent labelling and dataset. To generate a reasonable set of novel
sORFs, we applied the following expression cutoffs: mean TE cut-
off ≥0.5 and RNA-seq RPKM ≥10 (in both replicates). In addition,
novel translated sORF candidates were required to be predicted
by REPARATION or DeepRibo [DeepRibo score >0 that allows for
ORF candidate ranking (Clauwaert et al. 2019)]. In the context
of Ribo-seq, TE is used in order to normalize Ribo-seq coverage
to available total RNA transcript levels. From this, one can infer
the relative rate of translation of an ORF. TE is calculated by tak-
ing the ratio of the ORF expression in the Ribo-seq library com-
pared to its expression in the total RNA library. For example, a
highly translated ORF will have a high TE ratio (often >0.5–1),
because it has coverage in both the total RNA and Ribo-seq li-
braries and most of the time the coverage is high in the Ribo-seq
library compared to the RNA-seq library. In contrast, noncoding
RNAs should have a very low TE ratio, as the coverage in the Ribo-
seq library is very low compared to the RNA-seq library. Many
top-hit DeepRibo predicted sORFs were not labelled as translated
after manual inspection because they did not correlate with the
Ribo-seq/RNA-seq coverage (e.g. ORFs harbouring uneven/strange
Ribo-seq coverage possibly introduced by technical biases or the
translatome structure of H. volcanii). To our knowledge, this the
first time that DeepRibo has been applied to archaeal Ribo-seq
datasets. We hypothesize DeepRibo falls short as this predic-
tion tool is trained on model bacterial species with mostly lead-
ered mRNAs and strong reliance on Shine–Dalgarno sequences
(RBS). Therefore, we recommend using the DeepRibo ORF pre-

dictions combined with translation efficiency values as well as
manual curation of the predictions in a genome browser [see Gel-
hausen et al. (2022)], before asserting translation for a given ORF
or sORF.

In vivo protein validation by epitope-tagging and
western blot analysis
Genes for candidate sORFs were cloned, including up to 150 nu-
cleotides of the upstream promoter region or without promoter
region if combined with the p.tna promoter, with a 3xFLAG-
epitope tag sequence fused to its penultimate codon (CFLAG con-
structs) or a 3xFLAG-epitope-tag sequence preceding the coding
region (NFLAG constructs). Construction of plasmid pTA-pnat-
xxx-CFLAG was carried out using classical PCR amplification with
a H. volcanii gDNA template and the oligonucleotides listed in Ta-
ble S4 (Supporting Information) followed by standard enzymatic
cloning using ApaI/SnaBI restriction sites and plasmid pTA927-
CFLAG carrying the 3xFLAG ORF including a stop codon (oligonu-
cleotides and plasmids are listed in Table S4, Supporting Infor-
mation). Construction of plasmid pTA-ptna-NFLAG was carried
out analogously but followed by standard enzymatic cloning us-
ing HindIII/BamHI and with plasmid pTA927-NFLAG carrying the
3xFLAG ORF excluding the stop codon (oligonucleotides and plas-
mids are listed in Table S4, Supporting Information). Plasmids
were transformed into H119 as described previously (Cline et al.
1989). Strains were grown to OD650nm 0.4–0.7 (exponential phase)
in selective media [Hv-Ca+Trp; (Allers et al. 2004)] and harvested
by centrifugation. S70 protein extracts were prepared by 1 h ultra-
centrifugation at 70 000 × g and 4◦C after lysis by ultrasonication
in 100 mM Tris-HCl, pH 75, 10 mM EDTA.

S70 protein extracts were directly analyzed by Tricine SDS-
PAGE gel electrophoresis (Schagger 2006) or subjected to im-
munopurification of FLAG-tagged small proteins using ANTI-
FLAG® M2 agarose affinity gel according to the manufacturer’s
recommendations (Sigma Aldrich). Where required, protein con-
centration was increased by acetone precipitation. After sepa-
ration in a 16% Tricine-SDS-PAGE gel, proteins were transferred
to nitrocellulose membranes with the semidry Trans-Blot Turbo
Transfer System (BioRad). FLAG-tagged proteins were detected us-
ing monoclonal ANTI-FLAG® M2-HRP antibody (Sigma-Aldrich) at
a dilution of 1:1000 and the signal was captured via the ChemiDoc
System (BioRad).

Conservation and domain search analyses
The identification of novel small protein homologues was per-
formed by using Blastp and tBlastn searches of the genomes of
Haloferax species using the National Center for Biotechnology In-
formation (NCBI) database (https://blast.ncbi.nlm.nih.gov/Blast.c
gi). The protein sequences for the novel protein candidates identi-
fied by Ribo-seq and MS in H. volcanii H119 were used as the query
sequence. For tBlastn, the following parameters were used: an E-
value (Expect value) ≤100, a seed length that initiates an align-
ment (word size) of 6, and the filter for low complexity regions off.
Novel small proteins were also analyzed for secondary structure
and conserved domains using the Phyre2 server [http://www.sbg.
bio.ic.ac.uk/∼phyre2/(Kelley et al. 2015)] potential cellular local-
ization with PSORTb v3.0.2 [https://www.psort.org/psortb/, (Yu et
al. 2010)].
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Results
Small protein-adapted MS increases
identification of H. volcanii small proteins
The H. volcanii genome is currently annotated to encode 4107 pro-
teins (Schulze et al. 2020). Of these, 317 possess 70 aa or less
(Fig. 1C; Table S1, Supporting Information). To explore the H. vol-
canii small proteome, we performed small protein-adapted MS
(Fig. 1A) and combined this with analysis of the translatome using
Ribo-seq (Fig. 2A). To provide a comprehensive insight into pro-
tein translation in the low molecular weight (MW) range, we first
generated a new proteomic dataset with an adapted MS approach
that aimed at optimal detection of small proteins (Fig. 1A).

To increase the number of spectra generated from small pro-
teins, we applied solid-phase extraction (SPE) with small pore size
column material to enrich small proteins. This was combined with
peptidase Lys-C treatment, or in a semi-top-down approach, with-
out protease treatment. During the enrichment step, only small
proteins can enter the pores of the column and interact with
the column material while larger proteins pass the SPE column
directly. This has been demonstrated to increase the absolute
numbers of identified small proteins by factor two (Bartel et al.
2020). Spectra were first matched to a classical proteomics search
database generated from the H. volcanii ORF annotation (Schulze
et al. 2020). This modified MS workflow identified 1174 proteins,
represented by 12 949 peptides, from 74 519 spectra. The majority
of identified small proteins had normalized spectral abundance
values (Paoletti et al. 2006) above the median NSAF (normalized
spectral abundance factor) of the whole dataset, demonstrating
enrichment of shorter proteins by our approach (Figure S1, Sup-
porting Information). We detected 103 out of 317 (32.5%) anno-
tated small proteins in the H. volcanii reference genome under the
examined (standard) growth conditions (exponential and station-
ary phase) (Fig. 1B). The enrichment of small proteins achieved by
our adapted MS approach is illustrated by the distribution of the
spectra collected, as 23% of all spectra belong to proteins shorter
than 70 aa. Moreover, while small proteins only represent 7.7% of
the coding potential of the H. volcanii genome, they represent 8.7%
of all proteins identified in our experiment. The overall proteome
coverage achieved by our adapted MS analysis was stable across
all size ranges (around 30%, Fig. 1C) in contrast to the coverage
achieved by the previous analysis (Jevtić et al. 2019) resulting in
a higher identification rate in the ≤70 aa size range in this study
(Fig. 1C).

To obtain the most comprehensive set of small proteins, we
compared those identified in our dataset to two additional pre-
viously published MS-based H. volcanii proteomics datasets (Jevtić
et al. 2019, Schulze et al. 2020). The study of Jevtić et al. (2019)
is an in-depth analysis of the H. volcanii protein complement un-
der standard and various stress conditions using shot-gun liquid
chromatography-MS/MS (LC-MS/MS) (Jevtić et al. 2019). Although
the experimental and analysis workflow of this study was not
specifically designed for the identification of small proteins, we
re-evaluated these data for proteins ≤70 aa. This identified 60 out
of 317 annotated small proteins (range 42–70 aa) with a recovery
rate of only 19% even though several different stress conditions
were analyzed (Fig. 1B and C, Table S1A, Supporting Information).

We next compared the small proteins identified by our
adapted workflow to the Archaeal Protein Project (ArcPP) database
(Schulze et al. 2020). This database stems from a joint overview
project summarizing and reanalyzing MS data available for vari-
ous H. volcanii strains under a variety of growth conditions, encom-
passing the dataset of Jevtić et al. (2019). The ArcPP database in-

cludes 77 small proteins detected in at least one of the 12 datasets
(Fig. 1B). Despite covering a much larger variety of genomic back-
grounds and growth conditions, only 55 out of 103 small proteins
captured by our adapted MS analysis were identified in the ArcPP
database, highlighting the advantage of the small protein adapted
workflow for archaeal low MW proteome identification. Taken to-
gether, previously published MS data together with MS data from
this study support the translation of 129 of the 317 annotated H.
volcanii small proteins under at least one condition.

Establishment of ribosome profiling (Ribo-seq) in
H. volcanii
Ribo-seq is a different approach for (small) protein discovery iden-
tifying the so-called ‘translatome’. Haloferax volcanii strain H119
was grown to exponential phase and samples were harvested for
both Ribo-seq and RNA-seq (Fig. 2A). Several steps of the Ribo-seq
workflow must be adapted to the physiology of the organism be-
ing studied including cell harvest, lysis, and footprint generation
(Glaub et al. 2020, Vazquez-Laslop et al. 2022). To maintain the
stability of ribosome–mRNA complexes, H. volcanii, cells were har-
vested by a ‘fast-chilling’ method (see ‘Methods’). We were able to
recover polysomes using this approach even without treatment
with translation inhibitors (Figure S2A, Supporting Information),
which might introduce bias into Ribo-seq coverage (Gerashchenko
and Gladyshev 2014, Mohammad et al. 2019, Vazquez-Laslop et al.
2022). However, even under our optimized conditions, many ribo-
somes split into subunits during the harvesting or lysis steps, such
that only a fraction of the potential ribosome footprints were re-
covered (Figure S2A, Supporting Information).

To produce ribosome-protected ‘footprints’, complete trim-
ming of mRNA not protected by ribosomes is necessary, while ri-
bosome stability must be maintained and over-digestion limited.
The broad-range nuclease RNase I, used in eukaryotic Ribo-seq
(Ingolia et al. 2012), was reported to be inactive in bacteria such as
E. coli (Bartholomäus et al. 2016). Consequently, prokaryotic Ribo-
seq protocols, including the one used recently for archaea (H. vol-
canii) (Gelsinger et al. 2020), use micrococcal nuclease (MNase) in-
stead. However, MNase can show some preference for cleavage
before A or T nucleotides, as well as imprecise trimming of the
mRNA on the 5´ side of the ribosome in bacteria (Bartholomäus et
al. 2016, Hwang and Buskirk 2017, Mohammad et al. 2019). There-
fore, we generated Ribo-seq libraries from a lysate that has been
split to be digested either with MNase or RNase I (Fig. 2A).

In general, by comparing Ribo-seq coverage to a paired RNA-
seq library for a given gene, ORF boundaries and 5´/3´ UTRs, if
they exist, can be defined and TE (translational efficiency; Ribo-
seq/total RNA ratio) can be calculated. Global inspection of TE
across our dataset for different annotated gene classes (CDS: all
annotated coding sequences, abundant noncoding RNAs, sORFs)
showed that protein coding features had a higher mean TE when
compared to noncoding RNA genes such as RNase P RNA, SRP
RNA, and CRISPR RNAs (Fig. 2B). This demonstrates generally that
the Ribo-seq dataset obtained can differentiate between H. vol-
canii protein coding and RNA coding genes. Manual inspection of
coverage at single loci also showed differentiation between these
two gene classes. For example, read coverage for the noncoding
transcript of the RNase P RNA (HVO_1802R) was restricted to the
RNA-seq library (Fig. 2C). In contrast, HVO_0196, coding for a 55-
aa small protein, showed significant read coverage in the Ribo-seq
library when compared to the associated RNA-seq library (Fig. 2D).

Overall, no significant difference between MNase and RNase
I trimming was observed via visual inspection for trimming of
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Figure 1. MS-based proteomic detection of small proteins in H. volcanii. (A). We adjusted a standard proteomics workflow to optimize the detection of
small proteins. Small proteins were enriched on a solid-phase column and either digested with Lys-C instead of trypsin or were directly measured by
LC-MS/MS (liquid chromatography-tandem mass spectrometry). Small proteins were detected using both a classical database search aimed at
detection of annotated small proteins and a proteogenomics search strategy to reveal novel candidates. For MS analysis, Haloferax cells grown to
exponential and stationary phase were analyzed. Higher-energy collisional dissociation (HCD) was used to fragment the peptides. (B). Venn-diagram
showing the overlap of detected, published and annotated sORFs. The number of annotated sORFs (outer circle) and MS-identified small proteins
detected by our adapted small protein MS (purple) and previous datasets [ArcPP (rose) and Jevtić et al. (mustard) (Jevtić et al. 2019, Schulze et al. 2020)]
is shown. (C). The number of proteins (left axis) for different protein length bins is compared between annotated proteins (red), small protein adapted
MS (dark grey; data from this study), and standard MS [light grey; exemplified by Jevtić et al. dataset (Jevtić et al. 2019)]. Proteome coverage (right axis)
achieved across length bins by this small protein adapted MS (blue) opposed to nonadjusted MS approaches [lilac; exemplified by Jevtić et al. dataset;
(Jevtić et al. 2019)] is shown.

known 5´ UTRs like those found for HVO_1080 and HVO_1072
(Fig. 2E). This shows that RNase I, which is not suitable for bac-
teria, does work well for archaea.

The observed ribosome density in the Ribo-seq libraries at the
UTRs of these genes (−15 nucleotides before the start codon) is
a characteristic of leadered translation and is probably generated
from footprints of initiating ribosomes (Fig. 2E).

The footprints obtained from our Ribo-seq libraries showed a
broad distribution in length from 12 to 40 nucleotides with the
27–30 nt footprints being predominant in both the MNase and
RNase I libraries (Figure S2B, Supporting Information). In addi-
tion, metagene analysis of ribosome occupancy near all annotated
start codons (ATG, GTG, and TTG) for leadered and leaderless tran-
scripts using the 5´ end of the 27 and 30 nt footprints, respectively,
showed an enriched ribosome density directly at the translation
start site (Figure S2C, Supporting Information) for the leaderless
transcripts and at −12 nucleotides upstream of the start codon
for the leadered transcripts. This is in line with what was ob-
served previously for H. volcanii ribosome footprints (Gelsinger et
al. 2020).

Ribosome profiling reveals the small translatome
of H. volcanii
Altogether, the MS datasets suggested that 129 of the 317 anno-
tated sORFs are in fact translated into proteins under at least one
condition (Fig. 3A; Table S1B, Supporting Information), providing
us with a set of true positive translated sORFs to evaluate our
Ribo-seq data. To benchmark our Ribo-seq data for its utility in
small protein analysis, we manually inspected the read coverage
of the 317 annotated sORFs in a genome browser. This suggested
that 205 out of 317 annotated small proteins were translated un-
der the analyzed growth condition (Table S1, Supporting Informa-
tion). The overlap between sORFs detected as translated by Ribo-
seq and all MS datasets obtained for Haloferax hitherto was 122,
including all nine annotated ribosomal proteins ≤70 aa (Fig. 3A;
Table S1, Supporting Information). This overlap suggests our Ribo-
seq approach is a sensitive method for detecting translated small
proteins. In addition, Ribo-seq detected translation of 83 anno-
tated small proteins not detected in any proteomics dataset, sug-
gesting that it might be more sensitive (Fig. 3A and B).

However, seven small proteins were detected by MS alone
(Fig. 3A; Table S1A, Supporting Information). Further inspection
of Ribo-seq coverage for their corresponding genes showed that
some were lowly expressed and lost upon application of TE or
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Figure 2. Ribosome profiling distinguishes between H. volcanii coding and noncoding transcripts. (A). The setup of Ribo-seq to map the translatome of
H. volcanii. Translating ribosomes (polysomes) were first captured on mRNAs by fast chilling and subsequently digested to monosomes by either
MNase or RNase I treatment. Approximately, 30 nt footprints protected from digestion and copurifying with ribosomes were then subjected to cDNA
library preparation and deep sequencing. A second library was generated from total RNA for standard RNA-seq. (B). Scatter plot showing global
translation efficiencies computed from all H. volcanii Ribo-seq datasets for all annotated coding sequences (CDS; 4107), five selected abundant
noncoding RNAs (ncRNAs; RNase P RNA, SRP RNA, and three CRISPR RNAs), annotated sORFs and the annotated sORFs that were detected as
translated (after filtering and visual inspection) by Ribo-seq (205 sORFs). The blue lines indicate the mean TE for each gene class for all replicates of
MNase and RNase I libraries. (C). Coverage for the RNase P RNA gene (HVO_1802R) is mostly restricted to the RNA-seq library (black track), confirming
that the RNase P RNA is not translated. Ribo-seq coverage is shown in blue (obtained with RNase I). (D). A leaderless sORF (HVO_0196, uncharacterized
protein, 55 aa) detected by MS was also identified as translated based on Ribo-seq data (coverage shown for Ribo-seq library obtained with RNase I
digest). (E). Comparison of RNA trimming by MNase and RNase I. Read coverage for two leadered genes (HVO_1080 and HVO_1072) in the RNA-seq
library (black track) and Ribo-seq libraries obtained with MNase (blue track) and RNase I (green track). The genomic position is indicated for the genes
shown in panels (C), (D), and (E) at the bottom alongside a schematic representation of the genomic region (relevant genes in black). Arrows indicate
the transcription start sites [TSS based on Babski et al. (2016)].
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Figure 3. Translation of the H. volcanii annotated small proteome revealed by Ribo-seq. (A). Overlap between annotated sORFs (‘annotated sORFs’,
green) and translated small proteins detected by MS (all MS datasets, labelled ‘proteomics’; blue) and Ribo-seq (yellow). (B). Length distribution (in
codons) of annotated small proteins identified by proteomics (all datasets; grey) and Ribo-seq (blue). (C). Comparison of sORFs detected in Ribo-seq
data by manual labelling (‘manual’; green) or different automated ORF prediction tools for Ribo-seq data: REPARATION (yellow) and DeepRibo
(orange); IRSOM (only RNA-seq data) (blue). (D). In vivo validation of translation for five annotated small proteins identified either by both Ribo-seq and
MS (HVO_1796, 46 aa; HVO_A0348A, 63 aa; HVO_2400, 58 aa, and HVO_1599, 49 aa) or only by Ribo-seq (HVO_A0249A, 34 aa). ORFs were tagged at their
N- or C-terminus with a 3xFLAG epitope and expressed under a p.tna promoter (Allers et al. 2010) or natural promoter (HVO_A0348A) from a plasmid
in H. volcanii. Strains were grown to exponential phase in selective media and protein extracts were analyzed by western blotting with an anti-FLAG
antibody. Analysis of a nontranslated sORF served as negative control (Figure S5D, Supporting Information). M: molecular weight marker, sizes are
shown in kDa. Top: Ribo-seq (blue) and RNA-seq (black) coverage, genomic position is indicated below with a schematic representation of the genomic
region (black: sORF investigated). Bent arrows indicate the transcription start sites [TSS based on Babski, Haas et al. (2016)].

RNA-seq RPKM cut-offs (e.g. HVO_A0542, HVO_A0399; Figure S4A,
Supporting Information) or might be wrongly annotated as sORFs
and their Ribo-seq and RNA-seq read coverage would rather fit
longer ORFs (e.g. HVO_A0015, HVO_1204; Figure S4B, Supporting
Information).

The HRIBO workflow used to process our Ribo-seq datasets
(Gelhausen et al. 2020) generates ORF predictions based on the
Ribo-seq coverage using two tools [REPARATION and DeepRibo

(Ndah et al. 2017, Clauwaert et al. 2019)]. These tools as well as
IRSOM (Platon et al. 2018), a transcriptomic-based ORF prediction
tool established in eukaryotes, were recently evaluated for their
performance on Ribo-seq data from diverse bacterial species (Gel-
hausen et al. 2022), but have not yet been investigated for their
performance with archaeal data.

We took advantage of our curated H. volcanii sORF set, man-
ually labelled based on Ribo-seq data (Table S1B, Supporting In-
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formation), to evaluate their performance. DeepRibo detected
169 of the 205 positively labelled benchmark sORFs and none
called as not translated (negatively labelled) by manual cura-
tion (Fig. 3C; Table S1B, Supporting Information). In contrast, IR-
SOM and REPARATION detected only 51 and 15 positively la-
belled sORFs, respectively, and even missed highly translated ri-
bosomal sORFs. These results indicate that out of the tested
ORF prediction tools, DeepRibo is best suited for H. volcanii
Ribo-seq data.

To validate the accuracy of our MS/Ribo-seq datasets in detect-
ing translated sORFs, we selected translated annotated sORFs for
validation by an independent method in vivo. A total of five anno-
tated sORFs with strong Ribo-seq and MS signals were tagged with
a 3xFLAG epitope at their C-terminus (HVO_1796, a 46-aa unchar-
acterized protein; HVO_A0249A, a 34-aa uncharacterized protein,
and HVO_A0348A, a 63-aa uncharacterized protein) or N-terminus
(HVO_1599, a 49-aa uncharacterized protein; and HVO_2400, a 58-
aa CPxCG-related zinc finger protein). Western blot analysis of cell
lysates showed specific anti-FLAG signals at the expected sizes for
all five protein fractions, confirming that their encoding sORFs are
indeed translated in vivo (Fig. 3D). We also validated translation in
a similar fashion for two additional sORFs (Figure S5, Supporting
Information). Taken together, these results show that our com-
plementary approach using MS and Ribo-seq is a powerful tool to
detect the translated small proteome of H. volcanii.

Ribo-seq reveals hidden sORFs
Visual inspection of Ribo-seq data strongly suggested that ge-
nomic regions outside the annotation might encode small pro-
teins not detected by MS. To identify strong candidates for novel
sORFs, we first inspected DeepRibo predictions. To reduce the
large number of predictions (8000) to a more manageable list, we
applied cut-off for the TE (≥0.5) and RNA-seq expression (≥10
RPKM) based on the 205 sORFs, that were positively labelled as
translated (Fig. 3A). DeepRibo also provides a score to rank can-
didates, and we also applied a relatively stringent score cut-off
(score >0), based on values for the annotated translated small
proteome (Table S2B, Supporting Information; see ‘Methods’ for
details). Manual inspection of coverage for the resulting 161 pre-
dictions indicated that only 13 might be translated. The high rate
of potentially false positives generated by DeepRibo was already
reported in a previous study (Gelhausen et al. 2022) and can be
due to the translatome structure of the organisms being studied
or technical biases from cDNA library preparation. This predic-
tion tool is trained on model bacterial species with mostly lead-
ered mRNAs and strong reliance on Shine–Dalgarno sequences.
In addition to the analysis of DeepRibo top-hits, 26 novel sORF
candidates were identified by a genome-wide visual inspection
of Ribo- and RNA-seq coverage performed as in a previous study
(Gelhausen et al. 2022) (for details see ‘Methods’). While the TE
of these candidates was generally high (>1), they exhibited a neg-
ative DeepRibo score (prediction score below 0; Table S5D, Sup-
porting Information). However, negative scores do not per se argue
against translation, as seen for some of the annotated sORFs from
H. volcanii that were identified as translated in our study (Tables
S5D and S6, Supporting Information) and for lowly expressed val-
idated small proteins in E. coli (Gelhausen et al. 2022).

In line with our data, 16 out of these additional 26 predicted
novel sORFs were also predicted as translated in the recently pub-
lished H. volcanii Ribo-seq data (Gelsinger et al. 2020). The large
number of strong candidates identified manually but missed by

DeepRibo stringent cut-offs indicates that the ranking score of
this tool is imperfect for archaeal Ribo-seq data.

In addition to computational predictions from Ribo-seq data,
we also manually curated previously predicted sORFs and sRNAs
from the literature (for details see ‘Methods’) (Babski et al. 2011,
Laass et al. 2019). Most previously reported sRNAs had signifi-
cant coverage only in RNA-seq libraries, suggesting they are bona
fide noncoding transcripts (data not shown). However, two genes
predicted to encode sRNAs had significant coverage in Ribo-seq
libraries, suggesting that they might harbour translating sORFs
(Table S5D, Supporting Information). We termed these genes
HVO_1425A and HVO_2293A [previously termed HVO_1425n3 and
HVO_2293n3 in Babski et al. (2011)]. Inspection of 16 long 5´ UTRs
identified by differential RNA-seq and proposed to encode sORFs
(Babski et al. 2016) added six additional candidates (Table S5D,
Supporting Information).

Overall, Ribo-seq identified 47 strong candidates for novel
sORFs (Fig. 4A; Tables S2B and S5D, Supporting Information) and
showed that genes annotated as noncoding RNA genes might be
protein coding genes.

De novo protein identification by MS identifies
additional novel sORFs
To approach novel sORF identification from a complementary an-
gle, the spectral data gathered by small protein adapted MS was
analyzed by an additional database search following a proteoge-
nomics approach (Fuchs et al. 2021). While traditional database
searches are restricted to a search space defined by the or-
ganisms genome annotation, proteogenomics aims to overcome
this limitation by extending the search space to an annotation-
independent, complete translation of the genome in all reading
frames, thereby enabling the identification of nonannotated pro-
teins (Pueyo et al. 2016, Fuchs et al. 2021). This reanalysis iden-
tified eight candidate small proteins, four of which were vali-
dated by measuring synthetic peptides (sORFMS1, 2, 3, and 7) (Ta-
ble S2A, Supporting Information). Inspection of Ribo-seq cover-
age for these eight MS candidates showed evidence of transla-
tion for seven (sORFMS1, 2, 4, 5, 6, 7, and 9). The Pepper proteoge-
nomics software outputs the best potential ORF, but also reports
second-order ORFs with start codons further downstream of the
best spectral match. Comparison to the Ribo-seq data allowed us
to clarify the ORF engaged by the ribosome in vivo (Table S5, Sup-
porting Information).

To compare Ribo-seq- and MS-based detection for novel sORFs,
we inspected the sets of novel sORFs predicted by each method in
detail. Ribo-seq generally detected smaller ORFs, as well as basic
proteins with a predicted isoelectric point up to 12 (Fig. 4B; Figure
S3A and B, Supporting Information). The fraction of basic residues
(His, Lys, and Arg) was 4% higher in candidates detected only by
Ribo-seq compared to MS (predicted sORFs MS-identified: 12.3%;
predicted sORFs Ribo-seq-identified: 16.5%; and annotated small
proteins: 12.5%).

Short and basic proteins are often underrepresented in MS-
based studies, as they generate only a few peptides in the MS-
detectable range (Omasits et al. 2013). Although we reduced this
bias by application of Lys-C, which cuts, unlike trypsin, only af-
ter lysine and not arginine, as well as by the measurement of the
same samples without any protease added, the median number
of unique peptides potentially generated per small protein in our
data was substantially smaller for Ribo-seq only candidates (both
novel and annotated) (Table S3, Supporting Information). Due to
overlapping sequences, not all theoretically generated peptides
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Figure 4. Ribo-seq combined with MS expand the H. volcanii small proteome. (A). Overlap between the novel small proteins detected by Ribo-seq (blue)
and MS (grey). (B). Length distribution (in codons) of the novel small proteins identified by Ribo-seq. (C). and (D). In vivo validation of translation for five
novel small proteins identified either by both Ribo-seq and MS (sORF8, 56 aa; sORF10, 40 aa, and sORF13, 45 aa; top panel) (C) or only by Ribo-seq
(sORF46, 42 aa and sORF47, 23 aa; bottom panel) (D). Small ORFs were C-terminally fused to a 3xFLAG tag and expressed from a plasmid in H. volcanii.
Strains were grown to exponential phase in selective media and protein extracts were analyzed by western blotting. Proteins were detected with an
anti-FLAG antibody. A nontranslated sORF served as negative control (Figure S5D, Supporting Information). M: molecular weight marker. Top: genome
browser screenshots of read coverage from Ribo-seq(blue track)/RNA-seq(black track) libraries. Genomic positions are indicated below with a
schematic representation of the genomic region (novel sORFs in black). Bent arrows indicate the transcription start sites (TSS) based on Babski et al.
(2016).

are present in a sample and we therefore considered the Deep-
MS-Peptide MS detectability score (Serrano et al. 2020). Peptides
with a detectability score greater than 0.5 are generally consid-
ered detectable. Again, of the novel candidates detected by both,
Ribo-seq and MS, six candidates passed this threshold with at

least two peptides, whereas the majority of Ribo-seq identified
candidates (27 of 47) did not generate at least two detectable pep-
tides (Table S3, Supporting Information). Notably, there was no
bias against membrane-associated small proteins by MS, as the
predicted grand average of hydrophobicity index (GRAVY) for all

D
ow

nloaded from
 https://academ

ic.oup.com
/m

icrolife/article/doi/10.1093/fem
sm

l/uqad001/6988176 by U
niversity Freiburg user on 20 August 2024



12 | microLife, 2023, Vol. 4

three subsets (MS, Ribo-seq, and annotated) did not differ (Figure
S3C, Supporting Information).

In summary, Ribo-seq and MS both detected an overlapping set
of seven novel sORFs (Fig. 4A). These sORFs, in addition to those
detected by epitope tagging, provide a high confidence list of novel
H. volcanii small proteins. Further, MS-based identification sug-
gests the presence of eight and Ribo-seq of 47 sORF candidates
demonstrating the power of Ribo-seq in revealing novel sORFs. We
confirmed the translation for five of these novel small proteins by
in vivo expression and western blot analysis (Fig. 4C and D).

Characteristics of Haloferax small proteins
The combined power of small protein-adapted MS and Ribo-seq
confirmed the translation of 212 of the 317 small proteins an-
notated in the H. volcanii genome and revealed translation for 48
novel small proteins, thereby raising the total to 260.

Next, we sought to broadly characterize the translated small
proteins (annotated and novel, 260 sORFs) in terms of their po-
tential function and the location of their genes. Small proteins
detected by our analysis were distributed across the chromosome
as well as all the minichromosomes (Fig. 5). Less than 20% of the
212 translated sORFs were encoded by leadered transcripts and
most of them (74%) were found in intergenic regions or in oper-
ons (Fig. 6A and B). The novel sORFs (48 sORFs), however, showed
a different distribution, with around half being preceded by a UTR
(Fig. 6A and B). A large number of novel sORFs were also encoded
in 5´/3´ UTRs, with a considerable number being encoded anti-
sense to coding sequences (Fig. 6B).

To gain additional confidence in our 48 novel sORF1 predictions,
as well as first evidence that they might encode a functional small
protein, we investigated their conservation in Haloferax species us-
ing tblastn searches (Altschul et al. 1997) (Fig. 6C). Our analysis
revealed that all but 10 novel sORF candidates are conserved in
at least one other Haloferax species with more than 60% amino
acid identity. BlastP analysis showed perfect matches for 11 novel
sORFs indicating that they are already annotated in at least one of
the analyzed Haloferax species. For most of the other novel sORFs,
only partial matches with annotated proteins were recovered.
These partial matches correspond to annotated proteins that are
either slightly shorter or longer. Most of these partial hits were to
hypothetical proteins of unknown function.

Undefined function was also a hallmark we observed for al-
most all annotated small proteins found as translated in our study
(Fig. 6D). For a handful, functions are already assigned, such as
examples of ribosomal proteins, cold shock proteins, and compo-
nents of the Sec transport system (Fig. 6D). We analyzed the amino
acid sequences of the translated annotated small proteins of at
least 30 residues length using the Phyre2 suite (Kelley et al. 2015),
which informs on potential protein homology, secondary struc-
ture, and tertiary structure. This analysis identified conserved do-
mains such as the CPxCG-related zinc finger domain, the CopG
domain, or transmembrane helices (Fig. 6D; Table S5B, Supporting
Information). We next performed Phyre2 analyses for the newly
predicted sORFs. However, domain assignment was only possible
for approximately half of them, as most were shorter than the
30 aa cut-off of Phyre2. For several of the sORFs analyzed, do-
mains such as RuvA-domain like, transmembrane domain, zinc
finger, Rmlc-like-cupin domain, ATPase domain, docking domain
as well as several DUF (domain of unknown function) domains
(Table S5B, Supporting Information) were found. To gain infor-

1A total of 47 novel ORFs are predicted by Ribo-seq and an additional novel
one by MS only.

mation on potential subcellular location of the newly identified
small proteins, we investigated their sequences with PSORTb (Yu
et al. 2010). Out of 48 novel candidates, four were predicted to be
membrane-bound (sORF7, 23, 26, and 33), 26 were predicted to be
cytosolic, and three examples had a predicted extracellular local-
ization (sORF1, 27, and 47) (Fig. 6E).

Discussion
The small proteome is a vastly unexplored part of the archaeal
cellular machinery. Here, we report the first use of a combination
of ribosome profiling and MS-based proteomics to provide a com-
prehensive description of the small protein complement of the
archaeon H. volcanii.

Inventory of the small proteome of H. volcanii
We approached the identification of small proteins in H. volcanii
from two complementary angles: small protein adapted MS to
detect their physical presence and Ribo-seq to detect and map
translational events across the transcriptome. Importantly, both
approaches featured open-end analysis and were not limited to a
priori annotated ORFs, thereby allowing the detection of previously
unannotated small proteins.

Our modified experimental and analysis MS workflow, tailored
for small protein detection, captured 103 (32.5%) of 317 anno-
tated sORFs under standard conditions (exponential and station-
ary phase). Other small protein adapted MS analyses detected 25%
of proteins up to 10 kDa in H. salinarum (Klein et al. 2007) and 68
of approximately 1400 predicted small proteins in M. mazei (4.9%)
(Kaulich et al. 2020, Gutt et al. 2021, Weidenbach et al. 2021). Our
results are more comparable to the 31% recovered for S. aureus
Newman by a similar MS-based approach for small proteins (here
a cut-off of 100 aa was used) (Fuchs et al. 2021), suggesting that
the applied modifications for small protein detection are invalu-
able in the investigation of archaeal small proteomes. We also re-
evaluated publicly available proteomic datasets, generated with-
out adaptations for small protein detection, for different H. volcanii
strains from diverse growth conditions (Jevtić et al. 2019, Schulze
et al. 2020). This added evidence for 26 additional annotated small
proteins. All MS data together confirmed the expression of 129
(41%) out of 317 annotated H. volcanii small proteins under var-
ious conditions.

Small proteome characterization greatly benefits from mul-
tidisciplinary approaches (Fijalkowski et al. 2022). Thus, we
added Ribo-seq analysis to map ribosome engagement for sORFs
across the H. volcanii transcriptome. We made our Ribo-seq data
available to the scientific community at our interactive web-
based genome-browser: http://www.bioinf.uni-freiburg.de/ribob
ase. Ribo-seq detected translation of 205 out of 317 (65%) an-
notated small proteins at exponential growth phase. This cov-
erage is similar to that observed for Salmonella (76%, Venturini
et al. 2020), and clearly demonstrates the sensitivity of trans-
latomics. No single approach can catalogue the small proteome
to completeness due to immanent methodological biases. There-
fore, the presence of annotated small proteins should be classi-
fied as high confidence if accounted for by both methods and as
highly likely if returned by only one technique as suggested earlier
(Venturini et al. 2020). Together, our data support the translation
of 122 annotated H. volcanii small proteins (38%) with high con-
fidence (detected by both methods) and 212 (67%) small proteins
have strong evidence for translation under the examined growth
condition.
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Figure 5. Genomic distribution of H. volcanii translated small proteins. Data from MS and Ribo-seq were used to display the expanded proteome. The
outer rings indicate all currently annotated ORFs (light grey) and % GC (dark grey). Black: all annotated sORFs; dark blue: all annotated translated
sORFs; and purple: novel translated sORFs. The main chromosome as well as the three minichromosomes pHV1, pHV3, and pHV4 are shown.

Annotation algorithms are often biased against sORF detec-
tion (Storz et al. 2014). Thus, the small proteome of H. volcanii
known to us via annotation is likely far from complete. Experi-
mental data analysis can expand and refine proteome annota-
tions in the low MW spectrum (VanOrsdel et al. 2018, Miravet-
Verde et al. 2019, Hemm et al. 2020, Venturini et al. 2020, Fuchs et
al. 2021). The predictive power of the bioinformatic workflows may
be limited on the archaeal datasets, as the underlying algorithms
were optimized for bacterial genome features and need training
on archaeal data for which we provide a valuable first dataset—
albeit more of them will be needed. Therefore, the H. volcanii small
proteome could be larger than the relatively conservative, high-
confidence list presented here.

A recent study reporting Ribo-seq data for another H. volcanii
strain (strain H98: �pyrE2 �hdrB) predicted 68 novel putative
sORFs (with <50 codons) (Gelsinger et al. 2020). The H. volcanii
strain H119 used in this study (Table S4A, Supporting Informa-
tion) and strain H98 used by Gelsinger et al. (2020) are both de-
rived from H. volcanii H26 (�pyrE2) and only differ in the dele-
tion of additional marker genes (H119 has additionally trpA and
leuB genes deleted and H98 has an additional deletion in the hdrB
gene) (Allers et al. 2004), thus data from both studies are compara-
ble. We investigated these 68 putative sORFs and found only 16 to
be translated after manual inspection of Ribo-seq coverage gener-
ated in our study. Moreover, our Ribo-seq data revealed translation
of 31 additional sORFs that were not detected in strain H98. Dif-
ferences in sORF translation observed between the two datasets
might arise from the strain background, the growth conditions
and protocols used for Ribo-seq, as well as prediction of sORFs
based on start codon Ribo-seq coverage for strain H98. Despite
these biological differences, we could provide independent vali-
dation (MS or tagging/western blotting) for five novel sORFs in H.
volcanii, underscoring the robustness of our dataset. Altogether,
application of Ribo-seq to H. volcanii suggests its small proteome
is much larger than what is currently annotated.

The number of candidate novel H. volcanii sORFs detected by
our analyses lies with 48 within the range of those described in
other prokaryotic species using Ribo-seq, MS or combined ap-
proaches [Salmonella: 42 by Ribo-seq (Venturini et al. 2020, Fi-
jalkowski et al. 2022), S. aureus: 24 by MS (Fuchs et al. 2021), and E.
coli: 68 by Ribo-seq (Weaver et al. 2019)]. However, as study designs
are so individual only a rough comparison can be drawn.

The total number of sORFs (up to 100 aa in length) has been es-
timated to be 16 +/− 9% of the total coding capacity in bacterial
genomes (Miravet-Verde et al. 2019). Our analysis suggests a total
of 8.8% sORFs for H. volcanii, falling within the limits of the pre-
diction, despite only considering proteins up to 70 aa (excluding
sORF overlapping larger ORFs). The comparatively small number
of novel sORFs we uncovered might reflect an already relatively
complete coverage of sORFs in the current annotation. As small
proteins may mediate adaptation to specific metabolic or stress-
related states, detection of novel sORFs might also be limited in
the standard conditions we applied for this proof-of concept study.

The difference between the number of translated ORFs (anno-
tated and novel) revealed by proteomics and Ribo-seq shows that
MS analysis is less sensitive than Ribo-seq in detecting transla-
tion of small proteins. Absence of detection by proteomics may
be accounted for by short half-life, or specific features that in-
terfere with MS detection (small number of peptides, low charge,
and high hydrophobicity). In a study of the small proteome of S.
Typhimurium with a similar experimental setup, it was recently
shown that lower abundance was not a major factor contributing
to the different sensitivities of Ribo-seq and MS-based detection of
sORFs (Fijalkowski et al. 2022). In line with this, there was no differ-
ence in TE between small proteins detected by both methods and
those only detected by Ribo-seq in our data. Novel sORFs identi-
fied by Ribo-seq alone tended to be shorter and exhibit a larger pI
range, with many having a more basic isoelectric point than those
identified by MS. The higher number of basic residues results in
an overabundance of protease cleavage sites quenching the me-
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Figure 6. Features identified for the H. volcanii translated small proteome. (A). Pie chart indicating the proportion of leaderless (red) and leadered (blue)
sORFs in the 212 translated annotated (left) and 48 novel (right) sORFs. ND: not determined. (B). Genomic location of translated annotated (left) and
novel (right) sORFs relative to currently annotated genes. (C). Conservation of the 48 translated novel sORFs was determined for the genus Haloferax
using tblastn (blue; depth denotes % conservation). The gradient on the right side indicates the % identity at the amino acid level. For comparison,
three ribosomal proteins (HVO_2550, HVO_2475, and HVO_0700; far right) are included. Detection by blastp and MS are indicated at the bottom (red;
depth indicates recovered hits). Legend at the bottom: ‘yes’: a 100% match was found to an annotated protein; ‘partial’: parts of the protein sequence
match to an annotated protein, ‘no’: no matches were found for the sORF. (D). Annotated as well as predicted function (using Phyre2) for the 212
translated annotated sORFs. (E). Cellular localization predicted using PSORTb for the 48 translated novel sORFs in H. volcanii.

dian number of unique peptides available. Additionally, analy-
sis of Deep-MS-Peptide scores attests a lower MS-detectability of
the generated peptides. Ribo-seq coverage accounts for ribosome
occupancy, but has also been demonstrated for noncoding se-
quences that associate in a translation-independent fashion with
the ribosome as well as a consequence of ribosome scanning, pro-
tection by RNA binding proteins, and/or RNase resistance (Wilson
and Masel 2011, Pueyo et al. 2016, Fremin and Bhatt 2020), thereby
increasing the number of false positives. Moreover, protein lev-
els do not necessarily correlate with ribosome density (Hemm et
al. 2020). This illustrates that concordant identification in both
datasets ascertains presence in vivo but missing representation
does not preclude it. However, candidates detected by only a sin-
gle method should not be dismissed, but they will need further
experimental support.

In the light of this, we supported the validity of our small
protein identification scheme by successful in vivo detection of
epitope-tagged versions of seven of the annotated proteins found
at the proteomic or translational level. A similarly high rate of in
vivo validation was achieved for the novel small proteins demon-
strating the analytical power of our combinatorial approach for

the detection of small proteins. Here, in vivo support for five novel
sORFs predicted only by a Ribo-seq event strengthens confidence
in ribosomal profiling-only predictions. Validation of all candi-
dates is beyond the scope of this article but their description as
potential novel sORFs is a valuable and essential first step to their
future analysis. Bacterial studies, together with our analysis of H.
volcanii illustrate that genome annotations are likely missing sub-
stantial portions of the small proteome in all prokaryotes. This
gap must be filled to allow for genetic screens, comparative ge-
nomic studies, including small proteins (Hemm et al. 2020). To
do so, systematic approaches that gather empirical evidence for
missing gene annotations are called for and our analysis demon-
strates for the first-time the feasibility and power of multiomic
approaches to fill this gap for the archaeal domain.

Characteristics of the haloarchaeal small
proteome
The functions of small proteins can be difficult to identify be-
cause they are too small to harbour known domains and encode
less sequence information than longer proteins (Law et al. 2001,
Storz et al. 2014). Small proteins in general tend to be less con-
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served and seem to be a species-specific adaptation tailored to
individual needs (Wang et al. 2008, Storz et al. 2014, Venturini et
al. 2020). We detected close homologs for almost all of the newly
described sORF candidates within other Haloferax species, which
might reflect either functional conservation or the propensity of
Haloarchaea for extensive horizontal gene transfer and recombi-
nation (Papke et al. 2015) or a combination of both owed to shared
evolutionary pressures. This conservation across species barriers
strengthens the robustness of our predictions despite a large por-
tion of candidates being recovered from Ribo-seq data only. Un-
fortunately, homologs of these are mostly annotated as hypothet-
ical proteins, and like most small proteins, most do not harbour
known domains (Wang et al. 2008, Storz et al. 2014). A large propor-
tion of the novel sORFs we identified in 5´ UTRs are located within
a few nucleotides of, or extend into, the coding region of the neigh-
bouring gene. This is reminiscent of the upstream ORFs (uORFs)
or leader peptide genes that regulate transcription or translation
of the downstream gene in bacteria and eukaryotes [reviewed in
Cabrera-Quio et al. (2016), Orr et al. (2020)].

Conclusion
In summary, our analysis shows that translated small proteins are
found across the Haloferax genome and with evidence for, consid-
ering all datasets, 260 (212 annotated, 48 new) being translated.
The lack of functional predictions is unsatisfying but leaves room
for ample exploration that the comprehensive catalogue of small
proteins, venturing beyond annotated coding regions, presented
herein will spark. We also hope to inspire future use of this multi-
omics scheme in other archaeal species as the wealth of archaeal
small proteins is still largely untapped.
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