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Figure S1: Experimental design of the study. (a) We performed whole genome bisulfite 

sequencing (WGBS) and inferred single nucleotide polymorphisms (SNPs) from these data from 

leaf tissue collected from 84 plants belonging to 21 populations of Fragaria vesca grown in their 

wild conditions (field, top) (see Fig. 1a for the sampling locations). We transplanted 147 plants 



(7 plants per population) in a common garden (bottom), where we clonally propagated them 

for one year. For all the plants, we performed WGBS and inferred SNPs from leaf tissue of adult 

clonal offspring of at least the third generation, and RNA-sequencing for 63 individuals (3 plants 

per population). (b) The Venn diagram shows the overlap between the number of field (blue) 

and garden (orange) samples used for WGBS and SNP calling, and the garden samples used for 

RNA-sequencing. The provided sample list (right) represents population CZ_01 (used as an 

example). Bold entries denote samples with both field and garden WGBS and SNP data, non-

bold entries represent samples with only garden WGBS and SNP data, and entries marked with 

asterisks (*) indicate samples used for RNA-sequencing.  

  



Figure S2: Principal component analysis (PCA) for genetic variants (SNPs), gene expression 

(RNA) and DNA methylation colored by mean temperature (a-e) and precipitation (f-j). SNPs 

(a, f), gene expression (b, g), and CG (c, h), CHG (d, i) and CHH (e, j) methylated positions. For 

SNPs and methylated positions, field plants: n = 84, garden plants: n = 84. For gene expression, 

garden plants: n = 63. 



 

Figure S3: Boxplots showing methylation distribution across different genomic features for 

field and garden conditions. CG, CHG and CHH: genome-wide methylation levels in the three 

sequence contexts. TE: transposable elements. 

Within each boxplot, the central line represents the median, while the box spans the 

interquartile range (IQR) from the first quartile (Q1) to the third quartile (Q3). Whiskers extend 

from the box to indicate variability outside the IQR. Any points beyond the whiskers' range are 

depicted as individual dots and considered outliers. 

  



Figure S4: Total numbers of differentially methylated regions (DMRs) identified in different 

genomic contexts. (a) Plants in the field (n = 84). (b) Plants in the garden (n = 84). Note that a 

single DMR can overlap with both the promoter and gene body of the same gene. The number 

in each panel shows the frequencies of DMRs in the different sequence contexts. TE: 

transposable elements. 

  



Figure S5: Methylation level of differentially methylated regions (DMRs) in the garden, 

overlapping with genes and transposable elements (TEs). (a) CG-DMRs, (b) CHG-DMRs and (c) 

CHH-DMRs overlapping with genes and their 1 kb-long upstream and downstream sequences. 

(d) CG-DMRs, (e) CHG-DMRs and (f) CHH-DMRs overlapping with TEs and their 1 kb-long 

upstream and downstream sequences. TSS: transcription start site; TES: transcription end site. 

Number of plants: 84. 

  



Figure S6: Distribution of the strongest differentially methylated region (DMR) predictor in 

the garden. Circos plots showing the density of garden-DMRs, gene and transposable element 

(TE) annotations for all the chromosomes (Fvb) in the CG (a), CHG (b) and CHH (c) contexts. 

From outer to inner circles: gene and TE annotations (yellow), predicted DMRs in trans (light 

blue), climate-predicted DMRs (green), predicted DMRs in cis (dark blue) and unexplained 

DMRs (grey). DMRs where all the three predictors failed to explain >10% of the variance are 

classified as “unexplained”.  



 

Figure S7: Number of cis-, trans-, climate-predicted and unexplained differentially methylated 

regions (DMRs) overlapping promoters, gene bodies or transposable elements (TEs). The 

number of DMRs shown in the plot exceeds the total number of DMRs identified in this study 

because a single DMR can overlap with both the promoter and gene body of the same gene. (a) 

Field plants: n = 84. (b) Garden plants: n = 84. 

 

  



 

Figure S8: Dot plots for genome-wide association (GWA) analyses for climate-predicted 

differentially methylated regions (DMRs) overlapping promoters. (a) CG-, (b) CHG- and (c) 

CHH-DMRs. Each dot represents a significant association between a SNP and a climate-

predicted DMR. Only associations that remain significant after Bonferroni correction are 

plotted. These DMRs were then classified as indirectly associated with the environment. The 

analysis was performed using all the available garden plants (n = 147). 

 

 

 

 

 

 

 

  



 

Figure S9: Circos plots showing correlations identified through mixOmics analyses between 

CG (a), CHG (b) and CHH (c) climate-associated DMRs and gene expression. The links within 

each Circos plot represent the positive (orange) and negative (black) correlations, with a 

correlation cutoff of r = 0.7. The blue, yellow and red lines outside the Circos plots correspond 

to the methylation and gene expression levels of the predictive variables under cold, 

intermediate and warm climatic conditions, respectively. These conditions were determined 

based on the mean temperature and precipitation from 2011-2018. The populations 

corresponding to these climatic conditions are as follows: FV_IT_05, FV_IT_07, FV_NO_03, 

FV_NO_04, FV_NO_05, FV_NO_06, FV_NO_07 (cold); FV_CZ_04, FV_CZ_05, FV_CZ_06, 

FV_CZ_07, FV_IT_02, FV_IT_06, FV_NO_01, FV_NO_02 (intermediate); FV_CZ_01, FV_CZ_02, 

FV_CZ_03, FV_IT_01, FV_IT_03, FV_IT_04 (warm). The number of components (comp) retained 

for each methylation context were 5 for CG, 6 for CHG, and 7 for CHH, after fine-tuning the 

parameters of our analysis. For variable selection, we kept 100 variables for both CG and CHG 

methylation, between 30 to 90 variables for CHH methylation, and 10 variables for gene 

expression across all analyses. 



Methods S1 
 
WGBS library preparation and sequencing 

We extracted genomic DNA from individual plants using the Qiagen DNeasy Plant Mini Kit, 

following the manufacturer’s instructions with minor modifications. To improve DNA quality 

and yield from F. vesca, a known recalcitrant species, we used an increased amount of buffer 

AP1 (600 µl) together with 100 µl of EDTA (0.5 M, pH=8) and PVPP (polyvinylpolypyrrolidone), 

and an increased amount of buffer P3 (260 µl).  

We then prepared libraries for WGBS using the NEBNext Ultra II DNA Library Prep Kit and EZ-96 

DNA Methylation-Gold MagPrep (ZYMO). Briefly, we sonicated 200-300 ng of genomic DNA to a 

mean fragment size of ~350 bp using the Covaris instrument. We then performed end repair 

and 3’ adenylation of sonicated DNA fragments, ligated the NEBNext adaptors, performed size 

selection with AMPure XP Beads (Beckman Coulter, Brea, CA), we treated the DNA with 

bisulfite, we performed PCR enrichment and index ligation using Kapa HiFi Hot Start Uracil+ 

Ready Mix (Agilent) (14 cycles). Finally, we sequenced paired-end reads on HiSeq X Ten 

(Illumina, San Diego, CA), using a sequencing coverage per sample of 30x. 

  



Methods S2 

Methylation and DMR calling 

We used EpiDiverse WGBS pipeline to perform quality control (FastQC v0.11.9), base quality 

and adaptor trimming (cutadapt v2.10), bisulfite-aware mapping (erne-bs5 v2.1.1) and non-

conversion rate calculation, duplicates detection (Picard MarkDuplicates v2.23.3), alignment 

statistics and methylation calling (Methyldackel v0.4.0) (‘MethylDackel’; ‘Picard toolkit’, 2018; 

Andrews, 2010; Martin, 2011; Prezza et al., 2016). In the mapping step, we used the most 

recent version of the genome of F. vesca v4.0.a2 (Edger et al., 2018; Li et al., 2019). On average, 

the sequencing produced 97,142,389 reads per sample (see Table S2 for detailed information), 

of which 96% mapped successfully to the genome after retaining only uniquely-mapping reads. 

We calculated the bisulfite non-conversion rate using the chloroplast genome, which is 

naturally unmethylated (Fojtová et al., 2001), and we found an average bisulfite non-conversion 

rate among samples of 0.38% (see Table S2). We obtained individual bedGraph files of 

methylated positions for each sample and sequence context. 

For PCA and RDA analyses, we combined the individual bedGraph files from both field and 

garden conditions in a multisample bedGraph file using custom scripts and bedtools (Quinlan & 

Hall, 2010). In order to compare the field with the garden conditions, we used only the samples 

for which we had WGBS data for both conditions (n = 84 per condition). We retained all the 

cytosines having coverage ≥ 5 in at least 80% of the samples (total methylated positions: 

1,644,729, 2,574,494 and 12,335,916, respectively for CG, CHG and CHH). We then performed 

PCA on methylated positions that were transformed using the Hellinger transformation 

(Borcard et al., 2018). This transformation involves dividing each value in the data matrix by the 



sum of its respective row (i.e. samples) and subsequently taking the square root of the 

quotient. This transformation assigns lower weight to variables with low counts or a significant 

number of zeros.  

We performed PCAs using custom scripts with the R function prcomp in the stats package 

(v3.5.1) (Sigg & Buhmann, 2008), and colored the plots using either country of origin, mean 

temperature or precipitation averaged over 7 years before the sampling year (2011-2018), as 

these were the only recent years available on the C3S Climate Data Store (CDS) website 

(https://cds.climate.copernicus.eu/cdsapp#!/home) (Cornes et al., 2018). 

To test for significance of the differences among countries, growth conditions, climatic 

conditions of origin of the plants and their joint effects, we performed RDA with the RDA 

function in the vegan package (v2.6.4) (Oksanen Jari et al., 2020). For DNA methylation, we 

performed six separate RDA analyses, using in all of them Hellinger-transformed methylated 

positions as dependent variable and in 1) country of origin as a predictor and growth conditions 

(field, garden) and climate (mean temperature and precipitation averaged across 2011-2018) as 

covariates to account for the effect of growth condition and climate on the plants’ methylomes; 

2) climate of origin of the plants as a predictor and country and growth conditions as 

covariates; 3) growth conditions as a predictor and country and climate as covariates; 4) 

country, 5) climate or 6) growth conditions as a predictor and no covariates to calculate the 

variation in DNA methylation that is explained by each predictor individually, without 

controlling for the effects of other variables. In the Venn diagrams, we used the values derived 

from the partial RDA analyses to determine the area of the non-overlapping circles. To calculate 

the area of the overlapping circles, we subtracted the values obtained from the partial RDA 



analyses from those obtained from the RDA analyses with the same predictors and without 

covariates. We tested the statistical significance of the RDA analyses using a permutation test 

with 499 permutations. 

For DMR calling, we called DMRs separately for all the pairwise comparisons between the 

populations from the field, and the populations from the garden (i.e. we never compared a field 

population with a garden population). We used as input individual bedGraph files filtered for 

cytosine coverage ≥ 5. Separately for field and garden conditions, we then combined the output 

bed files in a multisample bed file using custom scripts and bedtools (v2.27.1) (Quinlan & Hall, 

2010), and we merged the overlapping DMRs obtained from all the pairwise comparisons with 

bedtools. We used only the samples for which we had WGBS data for both conditions (n = 84 

per condition). We obtained 82,546 CG-DMRs, 49,459 CHG-DMRs and 211,363 CHH-DMRs for 

field, and 71,856 CG-DMRs, 37,795 CHG-DMRs and 138,807 CHH-DMRs for garden. 

  



Methods S3 

DMR variance decomposition analysis 

To assess the amount of methylation variance explained by cis-genetic variants, trans-genetic 

variants and climatic variation, we performed a DMR variance decomposition analysis using the 

marker_h2() function from the R package heritability (v1.3) (Kruijer et al., 2014). For both field 

and garden conditions, we ran three mixed models for each individual DMR, and we classified 

each DMR according to what the strongest predictor of its variance was. If no predictor 

explained >10% of the variance, the DMR was classified as unexplained (Galanti et al., 2022). 

Each mixed model included one random factor matrix that captured one of the three 

predictors, as in (Galanti et al., 2022): 

cis_h2 = marker_h2(my_data$DMR_meth, my_data$sample, covariates = NULL, cis_ibs, 

max.iter = 100) 

trans_h2 = marker_h2(my_data$DMR_meth, my_data$sample, covariates = NULL, trans_ibs, 

max.iter = 100) 

env_h2 = marker_h2(my_data$DMR_meth, my_data$Pop, covariates = NULL, clim_norm, 

max.iter = 100), 

where “DMR_meth” represents a vector of DMR-methylation values, “sample” refers to sample 

names, “Pop” to population names, and cis_ibs, trans_ibs and clim_norm contain matrices of 

cis-variants, trans-variants and climatic variation, respectively.  

For cis-variants, we used an Isolation-By-State (IBS) matrix generated with PLINK (v1.90b6.12) 

(http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al., 2007) using genetic variants within 

50kb from the DMR middle point. For trans-variants, we used an IBS matrix obtained from 

http://pngu.mgh.harvard.edu/purcell/plink/


genetic variants filtered for Minor Allele Frequency (MAF) ≥ 0.01 and pruned for Linkage 

Disequilibrium (LD) with an LD threshold (r2) of 0.8 for SNP pairs in a sliding window of 50 SNPs, 

sliding by 5. For climatic variation, we calculated a Euclidean distance matrix between climatic 

data from all the field sites, which we reversed and normalized to obtain a similarity matrix in a 

0 to 1 range. We used the same matrix for both field and garden conditions. The climatic data 

included mean, maximum and minimum temperature, and precipitation, all averaged across 

2011-2018, as these were the only recent years available on the website. We sourced climatic 

data at a resolution of 0.1 × 0.1° (v20.0e) from the European gridded dataset E-OBS, available 

through the C3S Climate Data Store (CDS) website 

(https://cds.climate.copernicus.eu/cdsapp#!/home) (Cornes et al., 2018). For methylation 

variants, we use the merged DMRs obtained from all the pairwise comparisons with bedtools, 

separately for field and garden (see above). As above, we used only the samples for which we 

had WGBS data for both conditions (n = 84 per condition). We extracted average methylation of 

the resulting DMRs from all the samples with the function regionCounts from the R package 

methylKit (v1.16.1) (Akalin et al., 2012), using a minimum cytosine coverage of 5. 

  

https://cds.climate.copernicus.eu/cdsapp#!/home


Methods S4 

Genome-wide association (GWA) analysis 

We ran GWA analysis as described in (Galanti et al., 2022), using the R package rrBLUP (4.6.1) 

(Endelman, 2011). For genetic variants, we imputed the missing genotype calls with BEAGLE 5.2 

(Browning et al., 2018) and filtered for MAF > 0.04. After filtering, we were able to retain 

83,095 SNPs. We corrected for population structure using an IBS matrix obtained from variants 

filtered for MAF ≥ 0.01 and pruned for Linkage Disequilibrium (LD) with an LD threshold (r2) of 

0.8 for SNP pairs in a sliding window of 50 SNPs, sliding by 5. We used individual average DMR-

promoter methylation for each sequence context as phenotype, calculated with the 

regionCounts methylKit function (v1.16.1) (Akalin et al., 2012), using a minimum cytosine 

coverage of 5. To determine the significance threshold, we applied the Bonferroni correction 

method. 

  



Methods S5 

RNA-sequencing 

We extracted mRNA using the Nucleospin RNA Plus kit (Macherey Nagel), following the 

manufacturer’s instructions with minor modifications. To improve RNA quality and yield from F. 

vesca, we used an increased amount of lysis buffer (500 µl) together with 100 µl of EDTA (0.5 

M, pH=8) and PVPP (polyvinylpolypyrrolidone). The cDNA library and sequencing (PE150, 6 Gb 

per sample of raw data) were performed by Novogene Co., Ltd, Cambridge, using an Illumina 

NovaSeq 6000 platform. On average, we obtained 22,252,025 raw reads. We trimmed adaptors 

with cutadapt (v1.16) and assessed sequencing quality with MultiQC (v1.10.1) (Ewels et al., 

2016). We aligned the reads to the Fragaria vesca genome (v4.0.a2) using STAR (Spliced 

Transcripts Alignment to a Reference) (v2.7.1a) (Dobin et al., 2013), assembled them into 

transcripts and quantified using StringTie (v2.1.5) (Kovaka et al., 2019). 

  



Table S1: Origin sites and common garden characteristics of Fragaria vesca populations used 

in this study. Country, population ID, population size, geographic coordinates, and climatic 

variables (mean, maximum, minimum temperature and precipitation) averaged over 7 years 

before the sampling year (2011-2018). For the common garden, the climatic variables refer to 

the year of cultivation of the plants in such conditions (2018-2019). For this condition, we do 

not report precipitation as these plants were watered regularly. 

 

Table S2: Mapping statistics for whole genome bisulfite sequencing (WGBS) analysis, single 

nucleotide polymorphisms (SNP) calling and RNA-sequencing. WGBS: number of uniquely 

mapped reads, percentage of duplicate sequences, coverage and bisulfite non-conversion rate 

per sample. SNP calling: base count of Phred value > 20 (Q20) or 30 (Q30). RNA-seq: total 

number of raw reads and raw data, percentage of bases with Phred value > 20 or 30, total 

amount of mapped data and percentage of duplicate sequences. 

 

Table S3: Correlation between number of cis-, trans-, climate-, unexplained-DMRs and 

number of genes and TEs. The correlation was calculated considering the DMR, gene and TE 

counts assigned to 1 kb genomic bins. Values represent the Pearson correlation coefficient (r). 

All the values are significant at P < 0.05. Field plants: n = 84, garden plants: n = 84. 

 

Table S4: Enrichment ratio analysis of trans-predicted DMRs in CHG and CHH contexts, and 

unexplained DMRs in the CHH context, across different TE superfamilies. In all cases, the 

statistical tests assessing the random distribution of DMRs among TE superfamilies yielded 



significant results (P < 0.001, Fisher's exact test). We employed an enrichment ratio threshold 

of 1. The TE superfamilies are named as per the TE annotation file: DTA for hat, DTC for CACTA, 

DTH for PIF/Harbinger, DTM for Mutator, DTT for Tc1/Mariner and LTR for long terminal repeat.  

 

Table S5: Gene Ontology (GO) enrichment analysis of predicted DMRs in cis, trans, climate-

predicted and unexplained DMRs. Only GO terms with an adjusted P-value < 0.05 are shown. 

BP: biological process, CC: cellular component. 

 

Table S6: List of climate-predicted DMRs found in the garden condition with a statistically 

significant correlation between promoter methylation and expression of the adjacent gene. 

Only correlations with P-value < 0.05 are shown. 

 

Table S7: List of correlations identified through mixOmics analyses between climate-

predicted DMRs and gene expression. Only correlations with an absolute value of r ≥ 0.7 are 

shown. This stringent cut-off ensures the inclusion of only highly correlated DMRs. 

 

Table S8: List of overlapping differentially expressed genes (DEGs) and environmentally linked 

DMRs that had significant correlations with gene expression. Only DEGs with an adjusted P 

value < 0.05 and an absolute value of fold change (FC) ≥ 1.5 were included in the analysis. 
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