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Abstract

Capitalizing on the existing silicon industry, fully textured perovskite-silicon tandem

solar cells have a great potential to penetrate the electricity market. While the use of

textured silicon with large pyramid size (> 1 μm) enhances the power conversion effi-

ciency (PCE), it also presents process complications. To achieve high performance,

meticulous control of deposition parameters on textured silicon is required. This

study provides a guideline for the use of the hybrid evaporation/spin-coating route

to form high-quality perovskite absorbers. Using various characterization techniques,

we highlight intrinsic differences between perovskite growth on flat versus textured

substrates. Furthermore, we provide pathways to ensure a high perovskite phase

purity, reveal mitigation strategies to avoid the formation of undesired dendritic

perovskite structures, give guidelines to ensure photostability, and discuss the “mis-

leading” effect of residual PbI2 on the perovskite photoluminescence response. A

good understanding of the perovskite growth on textured silicon enables the fabrica-

tion of a tandem device with a PCE > 26% (without employing additives or surface

treatments) and a good operational stability. The comprehensive guidelines in this

study provide a better understanding of perovskite formation on textured silicon and

can be transferred when upscaling the hybrid route perovskite deposition.
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1 | INTRODUCTION

In less than 8 years of development, perovskite silicon tandem solar

cells have taken the lead as the best-performing double-junction

solar cell technology.1 Among other factors, this achievement is

mainly due to optimizing the perovskite deposition via solution pro-

cessing to uniformly coat textured-front silicon bottom solar cells with

small pyramid heights < 1 μm.2–7 Simulation studies predict a further

enhancement in the power conversion efficiency (PCE) by adopting

the fully textured tandem architecture.8–10 That is the fabrication of
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the perovskite sub-cell on a double-side textured silicon bottom cell

with pyramid heights > 1 μm, representing the current standard in the

silicon PV industry. In this architecture, the perovskite absorber

conformally follows the silicon texture pattern instead of forming a

very thick layer which renders the top surface flat. With that, the fully

textured tandem cell is expected to have reduced reflection losses in

the blue-rich part of the spectrum which raises the short-circuit

density ( jSC) of the device.11,12 Moreover, taking into account module

integration, it is expected to achieve the highest energy yield in the

field.13,14 Nevertheless, standard perovskite solution processing is

incompatible with large pyramids as it leads to shunting problems

(uncovered Si pyramids).15,16

To solve this issue, the hybrid evaporation/spin-coating route

emerged as the state-of-the-art processing technique for conformal

perovskite growth on textured silicon with large pyramid height.17 It

consists of the following three steps: 1) evaporation of inorganic

perovskite precursors to form a porous scaffold, 2) wet-chemical

deposition of organic perovskite precursors to infiltrate into the

formed scaffold, and 3) annealing to initiate precursors interdiffusion

and perovskite crystallization.18 The hybrid route merges the benefits

of both, the solution process and the vacuum-based deposition, giving

high compositional flexibility without using reactive and toxic sol-

vents.16 It has been used to fabricate high-efficiency devices on small

active areas (�1 cm2).17,19–25 More recently the spin-coating step has

been replaced by blade coating, spray coating, and inkjet printing,

which demonstrates the scalability perspective of this processing

route.20,26,27

One of the most important factors to achieve highest perfor-

mance for fully textured perovskite silicon tandem solar cells is a well-

controlled deposition of the perovskite film and ensuring high bulk

and surface quality. This becomes more difficult on textured silicon

due to the introduced surface roughness. To date, there is no compre-

hensive study that analyses the influence of process parameters on

the film quality for perovskite absorbers deposited via the hybrid

route on textured silicon with pyramid heights > 1 μm. In this work,

we provide a practical guideline for the use of the hybrid evaporation/

spin-coating route to form high-quality wide-bandgap perovskite

absorbers. Using various characterization techniques, we highlight

intrinsic differences between perovskite growth on flat versus tex-

tured substrates. Furthermore, the following aspects are addressed: 1)

we provide pathways to efficiently tune the perovskite optical band-

gap and shed light on the impact of cesium halides in the evaporation

step; 2) we reveal the critical impact of the organohalide mixture on

the perovskite layer uniformity and present mitigation strategies to

avoid undesired dendritic perovskite film formation; 3) we provide

multiple strategies to achieve a high perovskite phase purity based on

the A+ site cation engineering scheme; 4) we investigate in-depth the

impact of PbI2 phases which are common when using the hybrid route

and discuss their effect on charge extraction as well as the “mislead-

ing” perovskite photoluminescence response; and 5) we analyze the

impact of cesium content in the absorber and identify the optimal

regime where perovskite photostability is ensured. A good under-

standing of the perovskite formation on textured silicon enables the

fabrication of a tandem device with a PCE > 26% (without employing

additives or surface treatments) and good operational stability.

2 | EXPERIMENTAL SECTION

2.1 | Solar cell fabrication

Perovskite single-junction solar cell fabrication: perovskite single-

junction cells were fabricated according to the procedure in our

previous publication.18

Perovskite silicon tandem solar cell fabrication: the perovskite top

cell and the silicon bottom cell processing were similar to the proce-

dure described in ref.28 Information on process parameter variation is

mentioned within the text.

2.2 | Characterization

UV–vis measurements: to derive absorptance curves, reflectance (R),

and transmittance (T) measurements were conducted using a lambda

950 spectrometer (PerkinElmer). Measurements were carried out in

the wavelength range of 250–1,200 nm with a 2 nm step size.

Absorptance (A) was calculated by the formula A = 1 – R – T. The

Tauc method was applied to determine the optical bandgap.29

PL measurements: steady-state photoluminescence (PL) measure-

ments were performed using the LuQY Pro instrument from Quantum

Yield Berlin. A 532 nm laser was used to excite the perovskite

absorber. The equivalent laser intensity was set to approximately

1 sun, the spot size to 0.1 cm2, and the resolution time to 3 s.

SEM measurements: for cross-sectional and top-view scanning

electron microscopy (SEM) images, a Schottky emission SEM model

Auriga 60 (Zeiss) device was used. The acceleration voltage was set to

5 kV. Top-view measurements were taken with a 45� angle.

XRD: X-ray diffraction (XRD) measurements were carried out

with a Bruker D8 Advance diffractometer in the Bragg–Brentano

geometry. The tool was equipped with a Cu anode tube at

40 mA/40 kV. Measurements were performed in the 2θ range of

5�–45�, with a step size and time per step of 0.03� and 0.1 s, respec-

tively. Data analysis was carried out with the DIFRAC.EVA software.

XPS: X-ray photoelectron spectroscopy (XPS) was performed

using a Kratos Axis Ultra DLD photoelectron spectrometer with

monochromatized Al Kα radiation at 1486.6 eV acting as excitation

source. The anode was operated at a power level of 225W. Survey

spectra between 1,330 eV and �5 eV were recorded with a pass

energy of 80 eV, 0.5 eV step width, and 200ms dwell time over a

measurement area of 300�700μm2. The chemical composition of

the sample surface was quantified using the instrument-specific

library of relative sensitivity factors (RSF). Depth profiling was

achieved by scanning a focused beam of Ar ions across the sample

with 1 keV kinetic energy.

ToF-SIMS: time-of-flight secondary ion mass spectrometry

(ToF-SIMS) was conducted with a TOF.SIMS VI from the company
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IONTOF GmbH. A liquid-metal ion gun (LMIG) was used as the

primary ion source, providing Bi+ ions at a kinetic energy of 30 keV.

The source was operated in high current bunched mode, where the

pulsed Bi+ current is about 1.5 pA. Depth profiles in negative

secondary ion polarity were recorded using the Cs+ sputter source.

The accelerating voltage was 1,000 eV, and the beam current was

85 nA. The measurement window was 100 μm � 100 μm in size, and

the sputtering window was chosen to be 300 μm � 300 μm to avoid

edge effects. An electron flood gun and the non-interlaced mode with

0.3 s pause between sputter and Bi+ beam provided sufficient charge

compensation. A special sample holder for azimuthal rotation with a

velocity of �30–60 rpm was used to minimize depth profile broaden-

ing effects due to the surface texture in conjunction with shading

effects originating from the geometric arrangement between primary

and sputter beams.

jV measurements: for tandem solar cells, current–voltage ( jV)

measurements were carried out using a Wacom solar simulator

equipped with two filtered light sources, a halogen lamp, and a xenon

lamp. Prior to the measurement, the spectral response was measured

for the cell. Lamp intensities were then calculated following the

procedure described by Meusel et al30 and adjusted with the help of

two filtered WPVS reference solar cells. After calibration, the device

was kept in open-circuit conditions under illumination for 3 hours. jV

curves were recorded using a Keithley 2400 source meter in forward

then reverse direction (range from �0.1 V to 1.85 V, scan speed

34 mV/s, step width 20 mV). Between the single measurement points

of the jV curve, the solar cell is under open circuit condition. A shadow

mask was used to limit light exposure area to the 1 cm2 cell active

area. For single-junction solar cells, jV measurements were performed

with a solar simulator equipped with a xenon short arc lamp and a

Keithley 2651A source meter. Using a silicon reference cell, the light

intensity was calibrated to 1 sun under AM1.5g spectrum. Spectral

mismatch was not considered. The measurements were done in the

forward scan, then in the reverse scan with a scan speed of 34 mV/s,

a range of �0.1 V to 1.2 V, and a voltage step of 20 mV. A shadow

mask was used to limit the exposure area to the individual 0.25 cm2

cell active area.

EQE: The external quantum efficiency was measured as described

in our previous publication.31 Note that the measured EQEs are not

absolute. Details can be found in 10.1002/solr.202200948.

3 | RESULTS AND DISCUSSION

In this work, we opt for a 1.66 eV wide bandgap perovskite absorber

with the composition FAxCs1-xPb (IyBr1-y)3. While the introduction of

methylammonium (MA+) in the A-site (of the ABX3 perovskite crystal

structure) has been reported to enhance the perovskite bulk

quality,32–34 other reports emphasize avoiding MA+, even in small

amounts, as it compromises the absorber's thermal stability.35–38 For

the latter reason, a double cation double halide perovskite composi-

tion is pursued.

For a conformal perovskite deposition on textured silicon, the

hybrid evaporation/spin-coating route is used. In the first step,

inorganic compounds CsX (X = Br, I) and PbI2 are co-evaporated to

form a conformal inorganic scaffold (alternatively called a template)

on the substrate. Subsequently, an organohalide mixture of FABr/FAI

(FA = formamidinium) dissolved in ethanol is spin-coated onto the

scaffold. Finally, an annealing step in air at 150�C for 25 mins induces

precursor interdiffusion and perovskite formation.18 A sketch of the

hybrid route as well as influencing process parameters can be seen in

Figure 1.

3.1 | Bandgap tuning and layer uniformity:
influence of the organohalide mix

To achieve current-matching in a monolithic perovskite silicon tandem

solar cell, the most employed strategy is optimization of the perov-

skite optical bandgap (Eg) and thickness.31,39–45 With the hybrid route,

F IGURE 1 Perovskite hybrid route processing and pathways to tune its properties. (A) The hybrid evaporation/spin-coating route for
perovskite formation on micrometer-sized textured silicon (reprint with permission from author16) and (B) critical process parameters investigated
in this work for the formation of a high-quality perovskite absorber.

88 ER-RAJI ET AL.
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the optical bandgap can be mainly tuned by varying the organohalide

mixture (FABr/FAI) and to a lesser extent the CsX:PbI2 evaporation

rate ratio (Figure 2A). The displayed optical bandgaps in the graph are

extracted by fitting the absorptance curves (from reflection and trans-

mission measurements) via the Tauc method. Using the most reported

inorganic scaffold in literature, CsBr:PbI2 = 10%,17,19–21,23–25 a wide

range of optical bandgaps ranging from 1.55 eV with an FAI solution

up to 1.76 eV with a FABr rich solution, can be achieved (Figure 2A).

By mixing the organohalides, easy bandgap tuning is possible. The

steady increase in Eg with higher FABr is due to the inclusion of

bromide, which has a smaller radius in comparison to iodide, thereby

reducing the perovskite crystal lattice and enlarging the bandgap.46,47

If the commonly reported evaporation precursor CsBr is replaced with

CsI, the optical bandgap is shifted downward due to higher iodide

content in the perovskite composition. This allows reaching optical

bandgaps down to 1.52 eV. Regarding the impact of the CsX:PbI2 rate

ratio, by increasing the Cs content, for a given solution mixture, the

optical bandgap can be slightly increased. This is because a higher

cesium cation incorporation induces octahedral tilting and reduces

symmetry, which leads to bandgap widening.48–50

From Figure 2A, we determine that achieving the targeted

1.66 eV optical bandgap is possible by either combining a CsBr:PbI2

scaffold with an organohalide solution mix FABr/FAI = 50/50 or a

CsI:PbI2 template with an organohalide solution mix FABr/

FAI = 65/35. Interestingly, Figure 2B shows that, for a similar band-

gap (1.66 eV), the optical absorptance property of the perovskite

absorber synthesized with CsBr as evaporation precursor is greater

than that with CsI. The enhanced absorptance over the range

between 250 nm and 747 nm is mainly attributed to a reduced reflec-

tance. To understand whether this enhancement is due to a specific

CsBr precursor property or is stemming from a distinct reaction with

the organohalides, we evaluate the optical absorptance quality of all

54 perovskite compositions reported in Figure 2A.

Figure 3A–F displays the reflectance, transmittance, and absorp-

tance curves of perovskite compositions synthesized with CsX:

PbI2 = 10% (X = I or Br) and a variation in organohalide mixture (the

results of the other four variations CsX:PbI2 = 12% and 15% can be

found in Figure S1). Particularly, we find that using a FABr/FAI

solution mixture ≤ 50/50 (labeled as critical regime in Figure 2A)

induces a systematic reduction in the reflectance curve along the

spectrum, which ultimately results in an enhanced optical absorp-

tance. That is, independently of the co-evaporated cesium halide, the

use of a solution mixture inside the critical regime leads to a system-

atic improvement of the absorptance. Consequently, the increased

F IGURE 2 Influence of the co-evaporation precursors and the organohalide solution mixture on the perovskite absorber's optical bandgap,

absorptance property, and layer uniformity. (A) Optical bandgap (extracted via Tauc method) as a function of the organohalide mix (FABr/FAI with
0.45 M molarity) spin-coated on top of six different scaffolds with either CsI or CsBr as co-evaporation precursor with PbI2 (CsX:PbI2 = 10%,
12% or 15% rate ratio, X = I or Br). The targeted bandgap is 1.66 eV. The shaded area labeled “critical regime” designates the solution space
which results in a dendritic perovskite film formation. The substrate is glass/perovskite, and the scaffold thickness is set to 300 nm.
(B) Absorptance and reflectance spectra and (C,D) top-view and cross-section scanning electron microscopy (SEM) images of two perovskite
absorbers synthesized with either CsI or CsBr as co-evaporation precursor with PbI2 and their corresponding FAX solution mixture to achieve
1.66 eV optical bandgap.
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absorptance of the 1.66 eV perovskite absorber synthesized with

CsBr in comparison to CsI is solely ascribed to the used solution

mixture. Cross-sectional and top-view SEM images reveal a dendritic

film formation with surface nanostructures in the perovskite synthe-

sized with a solution mixture inside the critical regime (Figure 2C). On

the other hand, a smooth and uniform surface is obtained outside the

critical regime (Figure 2D). This observation is reproducible in differ-

ent batches and is replicated on textured substrates as highlighted in

Figure S2.

For all the perovskites in the critical regime, we assume that the

dendrites/nanostructures on top of the perovskite surface, with a

length ranging from 100 nm to > 800 nm, can interact with light (simi-

lar wavelength) and enhance the light incoupling, which reduces

reflection and leads to a higher absorptance. While this property is

appealing, the randomly distributed dendrites can also create shunt

paths due to non-conformal formation of subsequent thin charge

transport layers (CTLs), and therefore should be avoided. From a

structural point of view, no additional phase could be detected in the

X-ray diffractograms of the perovskite absorbers inside the critical

regime (neither on flat nor on textured substrate) as can be seen in

Figure S3. This indicates that the additional nanostructures have a

perovskite crystal structure. Dendritic perovskite film formation has

been previously reported in literature.51 The driving force for dendrite

growth requires some anisotropy,52 usually of the interfacial energy

between crystal and solution/liquid.51,53 When mixing different orga-

nohalides (as performed in Figure 2A), a change in the difference in

chemical potential that drives crystal growth will lead to a change

in the anisotropy. We suspect that once the iodide content in the

solution equals or exceeds the bromide content (FABr/FAI ≤ 50/50,

toward the critical regime), the crystal tends to grow in a more

anisotropic direction, leading to a dendritic film formation. It thus

becomes clear that for the hybrid route, tuning the organohalide

mixture is not only necessary for optimizing the perovskite bandgap

but also for ensuring a uniform layer formation, which is crucial to

prevent non-conformal CTL and electrode coverage.

3.2 | Influence of the substrate on perovskite
morphology and composition

Next to the organohalide mixture, the perovskite growth with the

hybrid route is governed by the evaporated scaffold's morphology.

Here, intrinsic differences arise for evaporated films on flat-front vs

textured-front substrates (pyramid height > 1 μm). While the evapo-

rated CsI/PbI2 scaffold presents a dense and compact film formation

on a flat substrate, the layer appears porous on textured silicon

(Figure 4A–D). The high porosity of the inorganic template is a desired

attribute, since it enables a better infiltration of the organohalide solu-

tion in the second wet-chemical step, and thereby to the formation of

a homogeneous perovskite absorber.55

Previous full molecular-dynamics simulation studies have exten-

sively modeled the formation of vapor-deposited films depending on

deposition rate, incidence angle, substrate temperature, and in partic-

ular the substrate type.52,54,56–61 As depicted in Figure 4E,F, the

F IGURE 3 Influence of the organohalide solution mixture on the perovskite absorber's optical bandgap, reflectance, transmittance, and
absorptance properties. (A,B) Reflectance, (C,D) transmittance, and (E,F) absorptance curves of perovskite absorbers formed with either CsI or
CsBr and PbI2 as co-evaporation precursors and a systematic variation in organohalide solution mixture (FABr/FAI = 100/0 to FABr/
FAI = 0/100).
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results of the numerical simulation study carried out by Paik and col-

leagues reproduce to a large extent our experimental observations.54

When introducing a surface roughness, the vapor-deposited film is

characterized by a columnar growth and the layer is more porous

(Figure 4F). This observed porosity can be explained by the “shadow-

ing” effect.52,54,56 During the growth of obliquely deposited films, the

highest features of the film (in our case the pyramid tips) will geomet-

rically shadow other surfaces of the film from direct impingement by

the incoming vapor flux.60 The self-shadowing mechanism leads to

voids within the film and, under conditions of collimated vapor flux,

an elongated columnar structure. Furthermore, the shadowing effect

means that the peaks receive a greater deposition flux than the val-

leys.56 Thus, instead of the film growing at a uniform rate, the growth

rate is faster at the pyramid tip than in the valleys.56 This explains

why the thickness of the evaporated scaffold (and subsequently the

thickness of the perovskite) on the tip is always larger than the side.

Besides the shadowing effect, the increased surface area of

textured silicon in comparison to planar silicon results in a thinner

thickness of the evaporated film on the former. Here, the concept of a

texture factor is used to describe this geometric difference. It is

defined as the ratio between film thickness on a planar substrate to

that on a textured substrate and has a value greater than 1.

Besides surface roughness, numerical simulation studies have

shown that increasing the deposition angle, or reducing the substrate

temperature, can also enhance the evaporated film's porosity (not

tested in our experimental study).54,56–58,61 These insights become

important to take into consideration when, for example, thinking

about designing large evaporation chambers to upscale the hybrid

route for fully textured perovskite silicon tandem solar cells.

The top-view SEM images in Figure 4G,H show that upon the

deposition of organics via spin-coating and annealing, the perovskite

layer is uniform on the flat substrate and conformal on the textured

substrate (no voids or bare silicon tips can be spotted). Moreover, the

apparent grain size is on the order of 250–350 nm in both variations.

The discussed importance of scaffold porosity is evident when investi-

gating the structural quality of the perovskite films. By depositing a

similar solution in the second step on the two scaffolds and annealing,

full conversion to the perovskite phase is observed on textured

silicon, whereas an additional high PbI2 signal is detected on the flat

substrate (Figure S4). This impurity originates from the non-optimal

perovskite conversion (limited solution infiltration due to limited

porosity of the 550 nm thick scaffold) as will be further discussed in

Section 3.3.

Next to the morphological quality, the perovskite elemental distri-

bution on a textured substrate should be well controlled to reduce

non-radiative recombination losses at, for example, defect sites in the

bulk or at the surface.62 Moreover, while for solution-processed

perovskite absorbers, the weighed-in precursor quantities are used to

estimate the final perovskite film composition, such an approach is

not applicable to the hybrid route. Using time-of-flight secondary ion

mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy

(XPS), we shed light on differences between perovskite absorbers

synthesized on a textured vs a flat substrate.

X-ray photoelectron spectroscopy measurements conducted

along the absorber's depth show a similar bulk composition for

the perovskite films synthesized on textured and flat substrates

(Figure S5). More precisely, the halide ratio is found to be I:Br � 78:22

(Figure S5a) and the Cs:Pb ratio is nearly 15:85 (Figure S5b). From this,

we estimate a perovskite bulk composition FA0.85Cs0.15Pb(I0.78Br0.22)3

for the 1.66 eV absorbers.

Furthermore, while the performed XPS investigation was carried

out on static samples, we noted that the compositional investigation

of perovskite films on a textured substrate becomes more accurate by

introducing an azimuthal substrate rotation (�30–60 rpm) during the

measurement. By carrying out ToF-SIMS measurements, Figure S6a

shows no significant difference with the rotation variation on a flat

substrate. In contrast, a shift in the detected signals can be noted by

introducing rotation in the textured substrate (Figure S6b). This is due

F IGURE 4 Influence of the substrate roughness on the evaporated scaffold formation and the perovskite morphology. Scanning electron
microscopy (SEM) images of the PbI2/CsI scaffold (10% rate ratio) formed on top of (A, B) flat substrate and (C,D) textured substrate. (E,F) Full
molecular-dynamics simulation study depicting vapor-deposited film formation depending on the substrate's surface roughness (reprint with
permission from journal54). SEM top-view images of perovskite on top of G) flat substrate and H) textured substrate.
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to the lower influence of exponential tails caused by the shading of

ion beams which allows resolving additional features in the depth, for

example, gradients and presence of the SAM molecule (Figure 5).

Using the substrate rotation variation on both flat and textured

silicon, a simultaneous increase in PbI� and I3
� signals can be

observed at the interface between the perovskite absorber formed on

a planar substrate and the underlying 2PACz layer (Figure 5A). Such a

behavior is not observed on the textured substrate (Figure 5B). This

indicates a clustering of unreacted PbI2 at the bottom interface, which

is in accordance with the performed XRD structural analysis

(Figure S4). Furthermore, we note a larger increment in the C� signal

in the textured substrate, which we ascribe to the higher 2PACz con-

centration used (7 mmol instead of 1.2 mmol) to ensure full 2PACz

coverage on the textured substrate.

The morphological investigations with a link to former numerical

simulation reports hence demonstrate the inherent porosity enhance-

ment of evaporated CsI/PbI2 films on a rough substrate. Accurate

compositional investigations (depth profiling using ToF-SIMS and XPS

with substrate rotation) and structural investigations point out that

the enhanced porosity is a required attribute for the growth of a

homogeneous perovskite composition when employing the hybrid

perovskite deposition route.

3.3 | Strategies for perovskite phase purity and
photostability

Generally, perovskite absorbers processed with the hybrid evapora-

tion/spin-coating method are prone to impurity accumulation/

formation in case of imbalance between evaporated inorganic com-

pounds and wet-chemically deposited compounds. One way to ensure

the formation of a homogeneous absorber (without phase impurities)

is to increase the evaporated scaffold porosity as discussed in the pre-

vious section. Besides this strategy, in this section we investigate

three pathways, based on the A+ site cation engineering scheme, to

improve the perovskite conversion and ensure a good photostability

of the absorber.

X-ray diffraction measurements of perovskite films synthesized

with different CsI:PbI2 evaporation rate ratios are depicted in

Figure 6A. Besides the perovskite cubic phase, the reference absorber

(CsI:PbI2 = 10%) exhibits a high PbI2 signal shown by the characteris-

tic peaks at 12.7�, 38.7�, and 52.4� (corresponding to the (001), (003),

and (004) lattice planes).63,64 Looking at the film morphology, the

cross-sectional SEM image (Figure 6F) indicates that the PbI2 is local-

ized at the interface with the charge transport layer (2PACz). A similar

observation can be noted in the reference perovskite film on a

textured substrate (red arrows in Figure S7b, and grey-colored X-ray

diffractogram in Figure S7c). This is critical on the solar cell level as

the Insulating nature of PbI2 will impede charge extraction/transfer,

as will be demonstrated later in this section. In addition, the incom-

plete reaction (presence of remnant PbI2) entails a reduced perovskite

thickness, and hence a lower photon absorption.

With the hypothesis of a high A+ site cation deficiency at the

bottom part of the reference perovskite absorber, we increase the

CsI:PbI2 evaporation rate ratio from 10% to 12%, then 15%. With

that, the Cs:Pb atomic ratio in the scaffold increases gradually from an

average of 15 atm% to 18 atm% to 22 atm%, respectively, as derived

from X-ray photoelectron spectroscopy measurements (Figure S8). As

a result, X-ray diffractograms show a steady decrease in the PbI2

signal (Figure 6A). Certainly, a higher Cs+ content in the evaporated

scaffold will lead to further intercalation of cations in the perovskite

structure and enhance the conversion rate. To confirm that this effect

is solely stemming from Cs+ incorporation, we carry out a similar

experiment but with a variation in CsBr:PbI2 evaporation rate ratio.

Similar observations can be noted as displayed in Figure S3a (green-,

purple-, and yellow-colored X-ray diffractograms). Nevertheless, while

the perovskite conversion is enhanced, continuous steady-state

photoluminescence (PL) measurements reveal that a high incorpora-

tion of cesium compromises the photostability (Figure 6E). This can be

seen with the higher deviation rate of the PL peak position and height

over the course of the 300 s laser illumination period. In contrast, the

reference perovskite with low Cs+ (CsI:PbI2 = 10%) shows a relatively

stable PL signal over the same duration. The adverse impact of high

cesium incorporation has been previously pointed out in a number of

F IGURE 5 Influence of the substrate roughness on the perovskite elemental composition. Elemental distribution of perovskite ions (among
others) along the thickness on top of (A) a planar substrate and (B) a textured substrate, derived from ToF-SIMS measurements. I3

� and Br2
�

were investigated instead of their monoatomic ions due to the high ion intensity of those species that lead to detector saturation.
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studies where the perovskite was processed via the standard 1-step

wet-chemical technique.65–68 With the hybrid route, we confirm a

similar behavior.

To avoid compromising photostability, we pursue full perovskite

conversion by increasing the amount of the other cation in the system

(formamidinium). This can be achieved by either increasing the orga-

nohalide solution concentration or lowering the spin-coating speed. In

principle, with the former strategy, a higher solution concentration

enables the infiltration of a larger amount of FA+ molecules for a simi-

lar retained solution volume by the scaffold. Figure 6B shows that by

increasing the solution concentration in 0.05 M steps, the PbI2 signal

is systematically reduced and the optimal structural composition is

achieved with 0.55 M. The perovskite layer morphology is more

homogeneous, and no remnant PbI2 is visible at the interface with the

underlying charge transport layer (Figure 6G). Beyond full conversion,

one can note that further increasing the solution concentration can

result in the formation of excess organic phases, most probably on

top of the perovskite surface (XRD peak at 2θ = 6.74� and 10.62�).

This is detrimental as additional organic phases are hygroscopic and

accelerate the reaction with humidity, which can lead to perovskite

degradation.

Increasing the amount of infiltrated FA+ molecules can alterna-

tively be done by reducing the spin-coating speed. By investigating

the structural composition of the films directly after FABr/FAI

solution deposition (i.e., before the annealing step), Figure 6C shows

that reducing the spin-coating speed from 3,000 rpm to 1,000 rpm

increases the intensity of the intermediate phase (peak at 2θ =

10.1�).69,70 Consequently, the residual PbI2 density in the final perov-

skite film is gradually decreased (Figure 6D).

Looking one step ahead, due to the common approach of solution

infiltration within a porous evaporated template, we expect that the

derived learnings, in particular the deposition speed strategy (for

ensuring full perovskite conversion) to be transferrable to, for exam-

ple, slot-die coating, spray-coating, inkjet-printing and other scalable

wet-chemical coating techniques for deposition on large areas. Finally,

we note that while the three discussed strategies to ensure full

perovskite conversion were demonstrated on flat substrates, we

observe a similar behavior on textured silicon as can be seen in

Figure S7c (impact of organohalide solution concentration) and in

Figure 7B (impact of solution deposition speed).

To investigate the impact of remnant precursors on device perfor-

mance, perovskite single-junction solar cells on flat substrates are

F IGURE 6 Strategies to achieve a high perovskite phase purity and mitigate phase impurities. X-ray diffraction (XRD) measurements of
perovskite absorbers with variation in (A) the CsI:PbI2 evaporation rate ratio (strategy 1), (B) the organohalide solution concentration (strategy 2),
and (C,D) the organohalide deposition speed (strategy 3). In (C) the XRD measurements are taken directly after organics deposition (i.e., before
the annealing treatment). The #, �, and * signals designate extra organic, intermediate phase, and PbI2 phases, respectively. The thickness of the
scaffold was set to 300 nm. (E) Evolution of the photoluminescence (PL) peak position and normalized height as a function of the CsI:PbI2
evaporation rate ratio under 1-sun equivalent laser intensity. Cross-section scanning electron microscopy (SEM) images of perovskite films (F)
with and (G) without remnant PbI2 at the interface.
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fabricated with a variation in organohalide solution deposition speed.

Accordingly, films with the two extremes are intentionally formed:

large density of remnant PbI2 at the bottom interface (4,000 rpm)

and excess organic phases at the top interface (1,000 rpm). The

current-density voltage ( jV) curve photovoltaic metrics are displayed

in Figure S9. Most notably, the power conversion efficiency of the

devices with the lowest (1,000 rpm) and highest (4,000 rpm) solution

deposition speed is below 4%. Looking more in detail at a typical jV

curve from the two variations, on the one hand, a low shunt

resistance is observed to limit the device performance in the case of

low spin-coating speed. This indicates that excess organic phases on

top of the perovskite surface (as revealed by XRD, Figure 6D) could

indeed lead to the absorber's degradation and thereby increase the

detrimental shunt paths. On the other hand, a severe S-shape and

hysteresis can be noted in the jV curves from the samples fabricated

with a high spin-coating speed. We ascribe this observation to a

high density of unconverted PbI2 at the bottom interface

(as revealed by XRD, Figure 6D) which impedes charge extraction at

the perovskite/2PACz junction. The optimum performance in this

batch was obtained with 2,200 rpm due to the elimination of excess

organic phases. However, it is important to still highlight the hyster-

esis in the jV curves as well as the limited performance, which we

ascribe mainly, but among other factors, to the residual PbI2 (XRD in

Figure 6D). By further tuning the perovskite conversion (optimum of

previously discussed process parameters), Figure S10a shows that

the PCE for these single-junction solar cells can be enhanced from

12.7% to 14.3% (reverse scan). Moreover, the device shows a good

operational stability over 100 hours under 1-sun illumination in air

(Figure S10b).

3.4 | Interplay between remnant PbI2 and
photoluminescence response: a misleading route

To date, most reports on perovskite solar cells with high VOC and high

PCE introduce excess PbI2 into the perovskite precursor solution.71–73

To understand the impact of this strategy, extensive studies from the

community have led to the following common consensus: excess PbI2

sits at the perovskite grain boundaries and interfaces ensuring an

efficient passivation of the defects.74–83 As a result, an enhancement

in the jV metrics and particularly the VOC of the solar cell is achieved.

On the perovskite absorber level, the PbI2 excess-based enhancement

is usually reflected by an increase in the absolute photoluminescence

(PL) intensity in comparison to the perovskite without excess PbI2.

With the hybrid route however, as presented in Section 2.3, excess

PbI2 rather remains unreacted under the perovskite film due to the

nature of the two-step heterogeneous (solid–liquid) perovskite forma-

tion process. Consequently, from an optimization point of view, only

analyzing the photoluminescence response as a metric to qualify the

perovskite optoelectronic quality is insufficient.

F IGURE 7 Influence of remnant PbI2 on perovskite photoluminescence and implied open-circuit voltage (iVOC). (A) Absolute
photoluminescence (PL) response and (B) X-ray diffraction (XRD) measurements of perovskite absorbers on textured silicon with a variation in
spin-coating speed of the deposited organohalides to intentionally control the density of remnant PbI2. Evolution of (C) the main perovskite
diffraction peak (100) intensity, (D) the main PbI2 diffraction peak (001) intensity, and (E) the extracted iVOC (from PL) of the perovskite stack as a
function of the organohalide deposition speed.
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Figure 7A,B shows the absolute photoluminescence (PL) response

and X-ray diffractogram of perovskite absorbers deposited on tex-

tured silicon with a variation in organohalide solution deposition

speed to intentionally control the density of residual PbI2. By increas-

ing the deposition speed, the perovskite main peak intensity (100)

decreases gradually. Simultaneously, the PbI2 main peak intensity

(001) shows a consistent increase. In parallel to the structural changes,

optoelectronic investigation using absolute photoluminescence

spectroscopy reveals an increase in the PL intensity (Figure 7A) as well

as the extracted implied open-circuit voltage (iVOC) of the perovskite/

2PACz/ITO/textured Si stack (Figure 7E). Figure S11 shows that all

perovskite variations display a similar PL peak position as well as a

comparable full-width-half-maximum (FWHM) and peak position of

the (100) perovskite peak in XRD, thereby ruling out, for example,

bandgap enlargement or an improvement in perovskite structural

quality as potential reasons behind the enhanced iVOC. We therefore

conclude that increasing the density of PbI2 in the final perovskite film

for the hybrid route is the main reason behind the enhanced VOC

potential. Our observations align with the existing literature on

solution-processed perovskite absorbers with excess PbI2.

Nevertheless, we reveal that only relying on absolute PL as a

characterization tool can give a misleading optimization route. From

this perspective and looking at the commercialization prospects of

fully textured tandems, standard iVOC imaging methods which are

used as a quick metric to assess the absorber's quality should be com-

plemented by structural investigations (e.g., XRD) to probe the density

of remnant PbI2 as well as electric methods (e.g., jV characterization)

to investigate charge extraction.

3.5 | Implementation in a Monolithic Fully
Textured Perovskite Silicon Tandem Solar Cell
Architecture

The optimized top cell absorber FA0.15Cs0.85Pb(I0.78Br0.22)3 with

a � 630 nm thickness and � 1.66 eV bandgap was implemented in

a monolithic fully textured perovskite silicon tandem solar cell

architecture. For the perovskite sub-cell, a p-i-n configuration was

adopted, with the self-assembling-molecule 2PACz as a hole transport

layer and the standard C60/SnOx/ITO top contact (Figure 8A). The

bottom sub-cell consisted of a silicon heterojunction with a textured

front and textured back surface. Figure S12 displays the distribution

of pyramid sizes on the front side. An average size of 1.5 μm was

derived via LEXT optical microscope measurements. Furthermore, a
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high conformality of the integrated perovskite absorber as well as the

adjacent layers can be noted from the cross-sectional SEM image of

the tandem device (Figure 8D).

With a meticulous control of the hybrid route's intrinsic deposi-

tion parameters, and without employing additional crystallization/bulk

defect passivation agents or surface passivation layers, a stabilized

power conversion efficiency of 26.5% (1 cm2 active area) was

achieved (Figure S13). The statistics on the device performance can

be seen in Figure S14. Notably, a high short-circuit current density of

20.1 mA cm�2 is obtained, which mainly stems from the reduced

reflection along the spectrum using the textured substrate as can be

seen in Figure 8C. This is also reflected in the external quantum

efficiency (EQE) measurements, which show no particular dips in both

the perovskite and silicon wavelength regions. In addition to the good

performance, the optimized absorber enabled a good operational

stability by conserving 100% of the initial power output of the tandem

cell when stressed in air under 1-sun illumination intensity, with a

relative humidity RH = 35–50% and a stage temperature of 25�C

(Figure 8E). The test was stopped after 100 hours to avoid overheat-

ing of the lamps of the sun simulator setup; future studies with

dedicated setups need to be carried out to fully assess the stability

following ISOS procedures.84 Still overall, the fully textured perovskite

silicon tandem solar cell showcases a comparable stability to the

single-junction perovskite solar cell (see Section 2.3), which demon-

strates the transferability of optimized process parameters from flat

to textured substrates.

4 | CONCLUSION

In this study, we analyze the influence of the hybrid route process

parameters on the formation of methylammonium-free wide-bandgap

perovskite absorbers on industrial textured silicon versus flat sub-

strates. Using various characterization tools, we identify sources of

optoelectronic, structural, morphological, and electrical deficiency and

offer ideas to tackle them. Besides the previously reported use of

organohalide solution mixing to tune the optical bandgap, we reveal a

critical solution mixture regime where dendritic perovskite formation

occurs, which can lead to detrimental shunting paths. In addition, we

find that shunt paths are likely to be exacerbated if excess organic

phases are present on top of the perovskite surface due to non-

optimal balance between evaporated inorganic compounds and wet-

chemically deposited organic compounds. In case of a deficit of the

organic molecules, PbI2 tends to accumulate at the perovskite bottom

side. While this results in a severe limitation in the charge extraction

capability at the adjacent interface, we notice an enhanced photolumi-

nescence response with higher remnant PbI2 density. We therefore

shed light on the importance of careful analysis of PL data as well as

the need to complement optoelectronic investigations with supple-

mental structural (XRD) and electrical characterization ( jV) for hybrid

route processed perovskite absorbers to avoid a misleading optimiza-

tion direction. To enable full perovskite conversion, strategies based

on the A+ cation engineering scheme, targeting an increase of the

concentration of FA+ in the solution step or Cs+ in the evaporation

step, especially at the bottom part of the evaporated scaffold, are

studied. While both strategies efficiently reduce the density of impuri-

ties, we find that a high amount of cesium in the perovskite composi-

tion compromises its photostability. By tuning the intrinsic hybrid

route deposition parameters, the integration of the optimized perov-

skite absorber in a tandem solar cell architecture using an industrial

texturing process successfully yields a stabilized power conversion

efficiency of 26.5% and a good operational stability. In conclusion, this

work strengthens the understanding of perovskite film formation for

fully textured perovskite silicon tandem solar cells and provides

comprehensive guidelines for future work on upscaling perovskite top

cell fabrication to meet industry needs.
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