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ABSTRACT

This thesis presents the development and the application of a software
ADAPTREF with which to automatically control the accuracy of simulati
results obtained by finite element (FE) computations. It is especially designe
meet the requirements that are present when simulating micro-electro-mech
systems (MEMS). The software tool aims to improve the solution accuracy o
computed fields from the coupled electrical, thermal and mechanical domai

The coupled electro-thermo-mechanical fields obey (non-linear) partial diffe
tial equations and are derived by a thermodynamic formalism. By taking mi
and thus quantum statistics as a starting point one obtains, in the thermodyn
limit, the constitutive relations which together with the conservation equat
yield the coupled electro-thermo-mechanics partial differential equations.

We then provide a review of functional analytical tools which allow us to ref
mulate the differential equations in a weak form. As its name says, the weak
is less restrictive with respect to the function space the solution is sought in
thus is amenable to a formulation that allows that the solution be sought by c
puting machines, which is done here using the finite element method. Besi
finite element formulation for simple thermal or electrostatic problems we giv
more general presentation also comprising coupled thermo-electro-mecha
multi-layered plate problems, thereby demonstrating the extensibility of the
cepts.

Even though computational resources have been boosted tremendously dur
last years, one has to bear in mind that the complexity of the problems to be s
has increased, too. Therefore, dealing economically with the computati
resources, and speaking in terms of memory requirements and computa
time, we are bound to choose the number of computational nodes as small a
sible. This can be achieved by the software tool ADAPTREF. It adaptively in
duces new nodes into the computational finite element (FE) mesh which desc
the device geometry. The adaptivity is carried out according to the requireme
1
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reduce the error of the computed solution. The main tool in doing so is error
mation with which we can localize the magnitude of the errors introduced by
discretization of the physical problem and which, for multi-physically active t
structures, is derived on the basis of a functional analytical framework. In a
tion, a refinement strategy and a geometrical split pattern are required in ord
be able to implement a reliable and stable software tool with which to contro
accuracy of the solution fields.

By choosing an Object-Oriented architecture and implementation (C++)
assure a flexible extensibility of the software module ADAPTREF into a gr
range of directions. By providing a proper interface it can be used with virtu
any finite element tool, or more general, with any numerical tool that requir
mesh modification in order to improve the computed solutions.

Towards the end of the thesis, the power of the ADAPTREF is illustrated by s
ulations of a selected set of microsystems.
2
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ZUSAMMENFASSUNG

Die vorliegende Dissertation beschreibt die Entwicklung, die Implementier
und die Anwendungsmöglichkeiten eines Werkzeuges zur effizienten num
schen Simulation von Mikrosystemen. Basierend auf elementaren quantenst
schen Beziehungen wird zunächst die Herleitung einer thermodynamischen
mulierung der Kontinuumsmechanik vorgenommen. Diese beinhaltet die fü
Mikrosystemtechnik wichtigen physikalischen Effekte der Elektro-Thermom
chanik, welche durch gekoppelte partielle, und im allgemeinen nichtlineare
ferentialgleichungen beschrieben werden. Für die Geometrie des betrach
Mikrosystems sind diese unter Berücksichtigung von Randbedingungen da
lösen, um Kenntnis der unterschiedlichen Feldgrößen zu erlangen.

Die Lösung dieser Differentialgleichungen gestaltet sich für Geometrien, wie
für Mikrosysteme typisch sind, auf analytischem Wege schwierig und nicht se
aussichtslos. Deshalb greift man auf numerische Werkzeuge zurück, von we
die Finiten-Element (FE) Programme die bedeutendsten sind. Nachdem e
die Mikromechanik relevantes Plattenmodell vorgestellt wird, wird der Weg
den partiellen Differentialgleichungen zu einer allgemeinen Formulierung
Finite Element Methode auf funktionalanalytischer Basis skizziert. Die mittels
numerischen Werkzeuge erzielten Lösungen der Differentialgleichungen sin
allgemeinen umso besser, je größer die Anzahl der Rechenknoten gewählt
können aber, bedingt durch die diskrete Struktur der Rechenmethode, das K
nuum nie erreichen.

Wenngleich die Rechnerkapazitäten in den vergangen Jahren bedeutend ge
sind, so werden deren Grenzen bei der Simulation immer komplizierterer G
schaften dennoch immer wieder erreicht. Es ist deshalb unabdingbar, eine in
gente Software einzusetzen, welche das Rechengitter der berechneten L
anpasst und damit in einem weiteren Schritt deren Genauigkeit zu verbe
erlaubt. In dieser Arbeit haben wir ein sich in diesem Sinne selbst korrigiere
Software-Modul entwickelt, welches einen solchen Einsatz bei der Simula
von Mikrostrukturen erlaubt. Das Verfahren einer sich selbst korrigierenden S
3
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ware ist in diesem Falle auch unter dem Namen der adaptiven Finite Ele
Methoden bekannt. Bisher jedoch beschränkt sich deren Behandlung im we
lichen auf theoretische Aspekte, in kommerziell erhältlichen Programmen s
wenn überhaupt, nur äusserst reduzierte und oft nicht nachvollziehbare Meth
implementiert.

Wir geben, nach einer gründlichen mathematischen Vorbereitung, die Herle
einer Fehlerschätzung für die multiphysikalischen, mehrlagigen Plattengleic
gen, welche es erlaubt, auf der Grundlage der hierdurch lokalisierbaren Fe
Strategien und geometrische Methoden einzusetzen, die eine lokale Modifik
des Rechengitters ermöglichen. Diese Methoden sind in dem hier entwick
Werkzeug ADAPTREF zusammengefasst, einem Programm, dessen Ei
zusammen mit einem Finite Element Werkzeug unter größt möglicher Scho
der Rechnerkapazitäten eine optimale Genauigkeit der zu berechnenden n
schen Lösung erlaubt. Bei der Entwicklung des Werkzeugs ADAPREF wu
eine Objekt-Orientierte Design-Methode und Programmiersprache, C++, fü
Implementierung gewählt, um eine flexible Erweiterbarkeit zu gewährleis
Schließlich werden die Möglichkeiten von ADAPREF mittels ausgewäh
Simulationsbeispiele von Mikrosystemen illustriert.
4



1.1 Microsystems and Simulation
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1 INTRODUCTION

This thesis presents the development and the implementation of ADAPTRE
multi-physics simulation tool with which to control and improve the results
solutions obtained from numerical microsystem analysis. It is primarily desig
to be used in conjunction with a finite element tool which serves as the comp
tional kernel and thus ADAPTREF acts as a driver program. Virtually any fin
element tool could be used as soon as the interfaces between the two modu
well defined. We have used object-oriented technology to design and imple
this flexible and extensible device simulation tool.

1.1 Microsystems and Simulation

Microsystems are a combination of packaged microelectronics and senso
actuator transducers at the micrometer to millimeter scale. As for the case
development, circuit simulation tools have proven to facilitate the designer’s w
in many aspects. First, by making the design process more efficient, and, se
by making it possible to learn about the physical models underlying our assu
tions in an organized manner that is “close” to reality [1]. The scope of circuit s
ulation, however, is limited to the electrical domain. When it comes to simu
microsystems in general, including sensors and actuators, multiple domai
physics come into play. Thermal, electrical, piezo-electrical, mechanical and
idic effects must be considered, and also the coupling among domains has
taken into account.

It turns out that these phenomena are well described by continuum model
appear in the form of coupled differential equations. Including this aspect, t
fundamental issues must be addressed [2]:
5
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• How are physical phenomena modeled using differential equations?

• What are the properties of solutions of differential equations?

• How are approximate solutions of differential equations computed and how can the
racy of the approximations be controlled?

As far as the f irst point is concerned, a vast l i terature f lourish
[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13]. Especially for thin structures, which
are central to MEMS, many models have been presented, of which histori
[14],[15] are the most significant. More recently, [16],[17],[18],[19],[20] an
[22],[23],[24],[25],[26],[27],[28],[29] are only a few of the most important
Models also including analytical solutions for simple geometries are present
[31],[32],[33],[34]. In general, all models presented in the literature up to n
only cover the treatment of simple geometries or are restricted to models that
include a small part of the physically possible material crystal classes.

Properties of differential equations’ solutions and their approximation are
established from the theoretical point of view for many phenomena and as
when it comes to the commercialization of simulation software tools [35],[36],
quality control of numerical solutions is still a question at issue in many asp
such that, to our knowledge no commercially available software exists that al
to control the accuracy of differential equations’ solutions reliably.

1.2 Accuracy control and adaptive methods

Numerical computations require that the domain which is to be analyzed by m
of partial differential equations and boundary conditions is given some disc
structure in order to be accessible to “discrete” computing machines. One us
assumes that the solution gets more accurate the denser the computationa
covers the domain at issue. In fact, under certain preliminaries this is true,
ever, if the mesh would be refined uniformly the limits of the computatio
resources are reached very quickly, depending on the complexity of the pro
to solve.

A major task therefore is to develop a method with which to gain control of
accuracy of the computed solutions by locally detecting errors and improving
accuracy at a minimum cost by only locally refining the mesh. It is often suffici
6



1.3 Major Results
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to take a rather coarse mesh as a starting point for the simulation cycle. Bas
the pioneer works of [37],[39],[40],[41],[43],[43] several other works have be
published treating a wide range of physical problems [44],[45],[46],[47] a
[48],[49],[50],[51],[52],[53],[54],[55]. In general, for parabolic problems th
theory is not as well developed as for elliptic problems, and for hyperbolic p
lems the field is still in its infancy [46].

For plate-like problems, one usually still refers to the classic Zienkiewicz pa
[57], the Reissner-Mindlin approach to plate bending structures. For conform
Kirchhoff-Love plates however, only a basic, albeit mathematically sound, a
tive approach is given in [46], restricting the physical problem to the impract
case of single-layered, isotropic and uncoupled bending-only membranes. O
recent years sound finite element models suited for multi-layered multi-physic
active thin structures have been presented [58],[59],[60] on the basis of the K
hoff-Love theory, and accuracy control for these models has not been mentio
A tool which incorporates an accuracy controlled treatment of such thin struc
models therefore is highly desirable. ADAPTREF efficiently manages accu
control of thin structure simulation and its performance is demonstrated in
junction with the finite element software FEMEngine [61],[62],[63], an in-hou
simulation program.

1.3 Major Results

THERMODYNAMICAL APPROACH TO ELECTRO -THERMO -MECHANICS

Based on equilibrium thermody-
namics continuum relations are
established out of a microscopic
treatment which, by using a
Lagrangian formulation, lead to
the partial differential equations
of electro-thermo-mechanics.
This is done chapter 2.

MECHANICAL THERMAL

ELECTRICAL

Displacement

EntropyStrain

Temperature

E-Field

Stress

Displacement

E-Field
7



1 Introduction

xibly
AP-
ERROR ESTIMATION AND ACCURACY CONTROL

On the basis of functional analyt-
ical methods we have developed
error estimations for coupled
multi-physically active multi-
layered thin structures which are
presented in chapter 3. The
sources of error are separated into
components that are useful from
an engineering design viewpoint.

IMPLEMENTATION

We have implemented a novel
software tool ADAPTREF that
can be used in conjunction with
virtually any finite element tool
in order to control and improve
the accuracy of the solutions of a
wide range of physical problems
by locally modifying the compu-
tational mesh and thus saving
resources. The MEMS designer
is thus relieved of the burden of
finite element mesh design. Thanks to its Object-Oriented design it can be fle
extended to cover even a broader range of problems. The architecture of AD
TREF is presented in chapter 4.

U Uh– c ηM
T

2

T S∈
∑ ηP

T
2

+≤U Uh– c ηT
M( )

2

T S∈
∑ ηT

P( )
2

+≤

PDE

Error Estimator

Mesh

Element

Refinement Strategy

Split Pattern

n

FE-Application
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1.3 Major Results
APPLICATIONS

The new simulat ion tool is
applied to general structures
which are typical for MEMS
devices as well as to real-life
microsystems. The examples
show how, from a merely coarse
grid, highly accurate solutions
can be obtained, while keeping
the computational effort at a min-
imum. The results of the simulations are presented in chapter 5.
9
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2.1 Continuum Mechanics
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2 MODELING

The objective of this chapter is to give a conceptual formulation of continu
mechanics as well as to illustrate the basic assumptions and models it is fou
on. In recent years a vast literature has flourished illuminating continuum mec
ics from broader and broader perspectives [3],[13],[28],[64]. While the work
Cauchy brought a temporary end to the mechanics of continuous solids i
middle of the nineteenth century, strong efforts in basic research have been
during and after the Second World War in order to meet the technical req
ments at issue. With the immense growth of computer hardware resources d
the last few years increasingly complex problems of continuum mechanics ca
targeted.

2.1 Continuum Mechanics

Continuum mechanics is a phenomenological field theory. Mathematical mo
at a macroscopic level are established for the mechanical behaviour of m
based on experience. The behaviour includes effects introduced by extra-me
ical agencies such as electrical, thermal, or chemical resources. It is well kn
from physics that all matter has a discrete structure and its behaviour under e
nal influences may be described by considering the interactions between ato
molecules.

Quantum mechanics serves as a basis for phenomenological theories . In th
text of many particle systems it is also known as quantum statistical mech
[65],[110] taking into consideration the quantum behaviour of the small parti
which we are dealing with. Utilizing this method one can derive a wide rang
phenomena consistently which from a classical viewpoint do not seem to be
nected, such as elasticity or magnetic effects. It is not in the scope of this wo
give a consistent derivation of a complete set of phenomena. However, we
give an outline of the derivation of effects that are most important for the purp
of thin structure modeling. We start our exposition with a description of equi
11
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rium [66]. Here, a quantum mechanical state, described by the density opera
is conserved and thus or in other words, the Hamiltonian operator c
mutes with the density operator

. (2.1)

If we virtually partition the system spatially into two (almost) not interacti
subsystems  and  we can expect independence and thus

(2.2)

which is equivalent to

. (2.3)

It follows that  is a linear function of the conserved quantities,

,

denoting another constant. This is obvious in the light of the fact that exten
quantities such as energy and the number of particles sum up for separate
tems. Using thepartition function Zas a scaling factor in order to assure th

, we can rewrite the density matrix as

(2.4)

and thus

. (2.5)

The value of the parameter , which can be shown to equal , deno
the Boltzmann constant andT the absolute temperature, is fixed by the requi
ment that the expectation value of the Hamiltonian adopts a certain va

. The spectrum of the density operator is purely discrete. The eig
states are the states ofH such that . We only consider the cas
where the system is not extended infinitely but is spatially concentrated and

ρ
dρ dt⁄ 0=

H ρ[ , ] 0=

Σ12

Σ1 Σ2

ρ12 ρ1ρ2=

ρ12log ρ1 ρ2log+log=

ρlog

ρlog constant +βH=

β

Trace ρ( ) 1=

ρ 1
Z
---e

βH–
=

Z Tracee
βH–

=

β kBT( ) 1–
kB

H〈 〉 E= ρ
Ei| 〉 H Ei| 〉 Ei Ei| 〉=
12
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assuring its equilibrium. In turn, such systems possess discrete spectra. We
fore rewrite the density operator

(2.6)

where  is the occupation probability of thei-th state. Equivalently we have

(2.7)

with  and

, (2.8)

denoting the Boltzmann factor. The energy and the partition function
related by

. (2.9)

We now introduce the concept of entropyS into the system by means of

. (2.10)

It can be shown that entropy, a measure for the lack of knowledge of the m
state, increases monotonously with time and represents another extensive pr
of the system. With this concept of statistical mechanics the complete therm
namics of a system can now be obtained. The expectation value of the en

 may be subject to the following variations:

• A change of the occupation probability

• A change of the energy eigenvalues . This can be realized by varying externa
rameters in the Hamiltonian such as external magnetic fields or a change of the
tem’s volume whereby the system’s mechanism is changed.

The one-form of the energy eigenvalues towards equilibrium is then given b

ρ wi Ei| 〉 Ei〈 |
i

∑=

wi

ρ 1
Z
--- Ei| 〉 Ei〈 |e

βEi–

i
∑=

Z e
βEi–

i
∑=

wi
1
Z
---e

βEi–
=

e
βEi–

E
β∂

∂
Zln–=

S kB wi wiln
i

∑–=

E wiEi
i

∑=

dEi Ei
Xα
13
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, (2.11)

such that the one-form of the energy reads

(2.12)

where for abbreviation we have introduced

. (2.13)

The change of entropy in (2.10) is derived as

(2.14)

since  vanishes identically. Introducing the distribution (2.8) we obtain

. (2.15)

Recalling that  we end up with

(2.16)

which is also known as the Gibbs fundamental form. When incorporating
change of particle numbers one has to refer to the grand partition function
starting point. The result is similar, only differing from the latter by the additi
of the particle number and the chemical potential as conjugate pair of varia
the first being an extensive and the latter an intensive variable. As we will see
in this section, a set of additional thermodynamic parameters may be spec

dEi Xα∂
∂Ei dXα

α
∑=

dE dwiEi
i

∑ widEi
i

∑+

dwiEi
i

∑ wi Xα∂
∂Ei dXα

α
∑

i
∑+ dwiEi

i
∑ ξαdXα

α
∑+

=

= =

ξα wi Xα∂
∂Ei

i
∑=

S
kB
----- 

 d d wi wiln
i

∑ 
 – dwi wiln 1+( )

i
∑– dwi wiln

i
∑–= = =

dwi
i

∑

S
kB
----- 

 d β dwiEi
i

∑=

β 1 kBT( )⁄=

dE
1

kBβ
---------dS ξαdXα

α
∑+ TdS ξαdXα

α
∑+= =
14
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such as the elastic strain or the electrical displacement. Once the partition fun
is known, a Gibbs function can be derived and thus the foundations for therm
namics are laid [66]. Besides the internal energyE, auxiliary thermodynamic
potentials might be defined such as the Helmholtz free energy

. (2.17)

Recovering the energy can be achieved by means of a Legendre transform

. (2.18)

Dependencies between the different thermodynamic parameters are collecte
class of relations which are known as Maxwell relations. We point out that the
derivatives of the corresponding thermodynamic potentials lead to the co
sponding energy conjugated system variables. In addition to the relations a
system variables, one can also derive parameters which measure the respon
system variable to a change in a second system variable and thus are
response functions or susceptibilities [67]. As an example, we will demons
how to derive the most important response functions, namely the heat capa

, denoting the quantity that is kept at a constant value when measurinC.
When the system volume, the number of particles and the other variables co
ered are kept constant we can introduce

, (2.19)

the heat capacity at constant volume. Since for constant volume the Gibbs fu
mental form reads

. (2.20)

Therefore, the heat absorbed is identical to the change of energy and thus

. (2.21)

F E TS–=

E F T
∂F
∂T
-------–=

CΛ Λ

CV T
∂S T V N Λ1…, , ,( )

∂T
--------------------------------------------- T

∂2
F T V N Λ1…, , ,( )

∂T
2

-------------------------------------------------–= =

dE TdS=

CV

∂E T V N Λ1…, , ,( )
∂T

----------------------------------------------=
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By virtue of (2.9) the last identity can be recast into

. (2.22)

The fact that the susceptibilities only depend on the partition function, and thu
the hamiltonian of the system, becomes even more obvious when we rewrite
tion (2.22) in the form

. (2.23)

We clearly see that the heat capacity depends linearly on the variance of the h
tonian.

ELASTIC ENERGY DENSITIES

Without referring to quantum mechanics one can derive an expression fo
stored energy in a solid. We closely follow the exposition in [95]. In a crystal
ions are assumed to perform harmonic oscillations about an equilibrium pos
Rof a Bravais lattice site. The position of the ion, at any given time may be wri
as

, (2.24)

where is the ion’s deviation from equilibrium. We assume the amount of
deviations to be small compared to inter-ionic distances. We further cons
internal forces to be present inside the lattice such that the overall potential
is composed of a set of pairpotentials, each being identical. In the case that
atom remained fixed at its Bravais lattice site this would read

. (2.25)

CV T∂
∂

β∂
∂

Zln( )– ∂β
∂T
-------– β∂

∂
β∂

∂
Zln( ) 1

kT
2

--------- ∂2

∂β2
--------- Zln( )= = =

CV
1

kT
2

--------- 1
Z
---∂2

Z

∂β2
--------- 1

Z
2

------ ∂Z
∂β
------ 

  2
–

 
 
  1

kT
2

--------- H
2〈 〉 H〈 〉2

–( ) 1

kT
2

---------Var H( )= = =

r R( ) R u R( )+=

u R( )

U Vlk Rl Rk–( )
l k, 1=

l k<

N

∑ 1
2
--- V Rl Rk–( )

l k,
∑= =
16
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This expression, however, has to be replaced when we allow for a moveme
the atoms to a general position  by

. (2.26)

We further assume that the quantities are small such that we
expand the potential into a Taylor series about the equilibrium position
which for a general functionv in multiple dimensions reads

, (2.27)

where is the Hessian matrix of the fieldv. Applying this
to (2.26) we have

(2.28)

since per definition of the equilibrium the potential is at a minimum and thus
gradient term vanishes. When envisaging the Lagrangian function which we
return to subsequently, it is obvious why this method also is denoted as a li
ization about the equilibrium: the potential is bilinear in the displacement and
the equations of motion form a linear system (the kinetic energy also is biline
the first time derivatives of the displacement such that the equations of motio
fact are linear. Moreover the constant term on the right hand side of (2.28)
not to be considered in the further analysis since it does not effect the equatio
motion for the system. We therefore are left with the bilinear term which usu
is referred to as theharmonic potential

. (2.29)

r R( ) R≠

U
1
2
--- V r Rl( ) r Rk( )–( )

l k,
∑ 1

2
--- V Rl Rk– u Rl( ) u Rk( )–+( )

l k,
∑= =

u Rl( ) u Rk( )–

Rl Rk–

v x h+( ) v x( ) v x( )h∇ 1
2
---h

T
Hess v x( )( )h O h3( )+ + +=

Hess v x( )( ) ∂2
v

∂xi∂xj
----------------

 
 
 

ij

=

U
1
2
--- V Rl Rk– u Rl( ) u Rk( )–+( )

l k,
∑=

1
2
--- V Rl Rk–( ) 1

4
--- u Rl( ) u Rk( )–( )THess V Rl Rk–( )( ) u Rl( ) u Rk( )–( )

l k,
∑+

l k,
∑=

+O u Rl( ) u Rk( )–( )3( )

U
harm 1

4
--- u Rl( ) u Rk( )–( )THess V Rl Rk–( )( ) u Rl( ) u Rk( )–( )

l k,
∑=
17
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The harmonic potential as derived here also forms the basis for the conce
phonons describing the lattice dynamics from a microscopical and thus qua
mechanical point of view. As a next step we consider only displacements w
variations are small along and which do not vary rapidly within the ran
of the pair potential, such that the displacement may be approximated linea

, (2.30)

 denoting the Jacobian matrix ofu at position .

Inserting this into (2.29) we end up with

(2.31)

and, after reordering the sum, we obtain the following expression for the harm
potential

, (2.32)

where we have adopted tensor notation for the sake of readability, see A.1
interior bracket forms a tensor of fourth rank , which, devided by the volu
of the primitive lattice cell is the elastic tensor . Since the displacements
slowly varying, the sum may be expressed as an integral

(2.33)

The elastic tensorC possesses a range of symmetries that mainly emerge from
fact that every Bravais lattice has inversion symmetry and since the harm
potential is represented by a quadratic form which also is symmetric. Finally
number of independent components can be reduced from 81 to 21. Further d
dencies of the elastic constants turn up when taking into account crystal sym

Rl Rk–

u Rl( ) u Rk( ) Du r( )
r Rk=

Rl Rk–( )+=

Du r( )
r Rk=

r Rk=

U
harm 1

4
--- Du Rk( ) Rl Rk–( )( )THess V Rl Rk–( )( ) Du Rk( ) Rl Rk–( )( )

l k,
∑=

U
harm 1

2
--- Du Rk( )T( ): 1

2
--- Rl Rk–( )

l
∑

T
Hess V Rl Rk–( )( ) Rl Rk–( )

 
 
 

:Du Rk( )
k
∑=

C̃ Rk( )
vc C

U
harm 1

2
--- Du r( )( )T:C R( ):Du r( ) rd∫

R
∑=

1
2
---

r σ∂
∂

uµ r( ) 
  Cσµτν r ν∂

∂
uτ r( ) 

  rd∫
R σµτν,

∑= .
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tries. These symmetries give rise to a convenient notation of the tensor co
nents often seen in engineering literature and therefore is called engineering
tion. This representation can be obtained by virtue of an index mapping wh
pair of indexes is collapsed into one:

(2.34)

As an example, Figure 2.1. displays the symmetry relations among the te
components for two of the crystal classes, the isotropic (cubic system) an
6mmclass (hexagonal system, the crystal type of ZnO).

In the isotropic case only two independent compounds are left, these are k
as the Lamé constants and , or, as a combination of these, the Young’s
ulusE and the Poisson number , for which the relation

Figure 2.1. Symmetries of the elastic tensor exemplarily for two crystal class
the isotropic and6mm. The latter describing the crystal properties o
ZnO or PZT-4, materials used for piezoelectrically active MEMS
The full representation for all crystal classes can be found in [97

11 1→
22 2→
33 3→

23 32, 4→
31 13, 5→
12 21, 6 .→

Cisotropic

● ● ● ❑ ❑ ❑

● ● ● ❑ ❑ ❑

● ● ● ❑ ❑ ❑

❑ ❑ ❑ ■ ❑ ❑

❑ ❑ ❑ ❑ ■ ❑

❑ ❑ ❑ ❑ ❑ ■

C6mm

● ● ● ❑ ❑ ❑

● ● ● ❑ ❑ ❑

● ● ● ❑ ❑ ❑

❑ ❑ ❑ ● ❑ ❑

❑ ❑ ❑ ❑ ● ❑

❑ ❑ ❑ ❑ ❑ ■

==

❑ zero component

● non-zero component

● ● equal components

■ 2 c11 c12–( )

λ µ
ν
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(2.35)

holds.

2.2 Thermomechanics

With the concept of thermodynamic state variables introduced earlier in this c
ter we derive the thermomechanics equations of motion using a Lagrangian
formalism for thermodynamic potentials and the associated state variables
Having defined the second order symmetric strain tensor  as

(2.36)

being a non-linear function of , the Helmholtz free energy density depe
on the strain and on the temperature and the following Gibbs relations hold

(2.37)

where we have introduced as the energy conjugate state variable to the
and thus subject to the relation

. (2.38)

The state variables here appear in terms of densities for the same reason
have introduced the continuum limit into the harmonic potential for crystal latti
earlier in this chapter. The identification scheme relating classical mecha
methods and thermodynamics is well known since [69], and was resurrect
[70], [71], or [58]. The analogy then suggests to identify the Lagrangian den

with the negative of the free energy density plus the kinetic contribution. Re
ering the internal energy density and the other potentials then of course c
achieved by means of a Legendre transform as it is the case when intercha

E
µ 3λ 2µ+( )

λ µ+
----------------------------= ν λ

2 λ µ+( )
---------------------=

ε

ε ∇u( )S 1
2
---∇u ∇u( )T⋅+=

∇u F̂

dÊ TdŜ σ:dε+=

dF̂ ŜdT– σ:dε+=

σ

σ
ε∂

∂
F̂=

L̂
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between Hamiltonian and Lagrangian densities. We thus can write, denotin
mass density,

, (2.39)

having merged the time primitive of the temperature and the displacement
together into the vector . Hamilton’s principle then states that
motion of the system from time  to  is such that the integral

, (2.40)

whereL is the Lagrange function associated to the Lagrange density, has a st
ary value for the correct path of the motion [72]. In other words, the variation
the line integral has to vanish:

. (2.41)

Carrying out the variational derivative for (2.41) yields the Euler-Lagrange eq
tions

(2.42)

which applied to the Lagrangian density results in a system of PDEs

(2.43)

The second equation expresses the fact that the entropy density is conserv
process is isentropic, no irreversible processes have been considered yet. Th

ρ

L̂ q q̇ ∇q, ,( )
1
2
---ρu̇2 F̂ ε T,( )–=

θ
q u θ,( )=

t1 t2

I L td

t1

t2

∫=

δ L td

t1

t2

∫ δ L̂ xd
Ω
∫ td

t1

t2

∫ 0= =

td
d ∂L̂

∂q̇
------ 

  ∂L̂
∂∇q
---------- 

 ∇ ∂L̂
∂q
------–+ 0=

ρ u̇̇ ∇ ∂F̂
∂∇u
----------- 

 ⋅– 0=

Ŝ
˙

0 .=




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equation gives evidence of conservation of momentum and can be further res
by using the identity

(2.44)

such that the first part of (2.43) reads

, (2.45)

which is a non-linear equation with respect to the displacement fields. An eq
alent expression for the entropy density change can be obtained by taking its
time derivative

(2.46)

where we have used that second derivatives are interchangeable. The first a
can be further simplified by using a thermodynamic susceptibility, the heat ca
ity, here, the heat capacity at constant strain derived by virtue of (2.18)

(2.47)

and (2.37). Equation (2.46) then reads

. (2.48)

When considering heat conduction, which is an irreversible process, entro
produced according to Fourier’s law

, (2.49)

∂F̂
∂∇u
----------- 

 
ij

∂F̂
∂εkl
---------

ui j,∂
∂εkl σ 1 ∇u+( )⋅[ ]ij= =

ρ u̇̇ ∇ σ 1 ∇u+( )⋅[ ]⋅– 0=

Ŝ
˙ ε T,( )

∂Ŝ
∂T
-------Ṫ

∂Ŝ
∂ε
------ : ε̇+

∂Ŝ
∂T
-------Ṫ

∂2
F̂

∂T∂ε
------------ : ε̇–

∂Ŝ
∂T
-------Ṫ

T∂
∂σ

: ε̇–= = =

Cε
∂Ê
∂T
-------

ε

∂F̂
∂T
------- Ŝ T

∂Ŝ
∂T
-------+ + T

∂Ŝ
∂T
-------= = =

Ŝ
˙ ε T,( )

Cε
T
------Ṫ

T∂
∂σ

: ε̇–=

Ŝ
˙ ∇ κ ∇T⋅( )⋅

T
-----------------------------=
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denoting the heat conductivity tensor. The entropy generation rate is due
irreversible flux of heat from a hotter part of the solid to a colder part. Thus, in
presence of heat conduction, the second equation of (2.43) becomes

. (2.50)

In the absence of material compression or extension the second addend va
and we are left with the well known heat conduction equation. Moreover, in c
some externally driven heat generation is present within the solid, equation (
reads

(2.51)

wheref is the density of the local heat source. In general, many effects
explained when considering the time dependent (and thus non-equilibr
behaviour of thermodynamical systems as it was done here. Introducing gen
ized forces and fluxes by means of transport equations one can gain knowled
various transport phenomena of which we only mention the Peltier or the See
effect [73].

2.3 Electro-thermo-mechanics

Going back to thermodynamically irreversible changes of states we may intro
additional properties of solids and their connexions to those previously in
duced. That is to say, we discuss properties that may be measured with the c
in equilibrium with its surroundings, so that neither the state of the crystal nor
of its surroundings changes with time [97]. The quantities we shall be conce
with are the temperatureT, the electrical fieldE and the mechanical stress . Th
relations between these properties is sketched in Figure 2.2. A more specific
mation about the coupling between the fields is given in Figure 2.3., there
field’s names are replaced by their symbols. The free energy density
depends on the temperature, the strain and the electrical field [74]

κ

CεṪ T
T∂

∂σ
: ε̇– ∇ κ ∇T⋅( )⋅– 0=

CεṪ T
T∂

∂σ
: ε̇– ∇– κ ∇T⋅( )⋅ f=

σ

F̂
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The differential form for  then reads

, (2.53)

whereD is the electrical displacement. The total linear differential of the indep
dent variables  can be expressed as [97]

(2.54)

This is a total of 13 equations, each index ranging from one to three. Each o
differential coefficients represents the dependence of the thermodynamic
variables and therefore describes a physical effect. Including higher order de
tives than the linear ones would give rise to additional effects [74], such as ele
optical effects (non-linear optics), piezo-optical effects such as electrostrictio
even elastic moduli of higher order. The coefficients on the leading diagona
the equations (2.54) measure the principal effects while the others measu
coupled effects. When deriving symmetries of the coefficients representing
various effects we refer to equation (2.53) which can be rewritten as

. (2.55)

F̂ F̂ T ε E, ,( )=

F̂

dF̂ ŜdT– D dE⋅– σ:dε+=

ε E T, ,( )

                            inverse               thermal
elasticity           piezoelectricity      expansion

dσij

∂σij

∂εkl
--------- 

 
E T,

dεkl

∂σij

∂Ek
--------- 

 
ε T,

dEk

∂σij

∂T
--------- 

 
ε E,

dT+ +=

direct
piezoelectricity     permittivity      pyroelectricity

dDi

∂Di

∂ε jk
---------- 

 
E T,

dε jk

∂Di

∂Ej
--------- 

 
ε T,

dEj

∂Di

∂T
--------- 

 
ε E,

dT+ +=

piezocaloric          electrocaloric    heat
effect                       effect               capacity

dŜ
∂Ŝ
∂εij
-------- 

 
E T,

dεij
∂Ŝ
∂Ei
-------- 

 
ε T,

dEi
∂Ŝ
∂T
------- 

 
ε E,

dT .+ +=





















dF̂
∂F̂
∂T
------- 

 
ε E,

dT
∂F̂
∂Ei
-------- 

 
ε T,

dEi
∂F̂
∂εij
-------- 

 
E T,

dεij+ +=
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Comparing the coefficients in both equations (2.53) and (2.55) yields

. (2.56)

Exploiting the second derivatives of the free energy density provides the fol
ing Maxwell relations

(2.57)

and similarly

(2.58)

and

. (2.59)

When comparing the last three sets of equations, (2.57)-(2.59), we state th
matrix defined by the right hand side of the system (2.54) is symmetric. In de
the following results have been established:

• the absolute values of for the inverse and the direct piezoelectric effect are numer
equal

• the coefficients for the piezocaloric effect are the same as those for the thermal e
sion except for the sign; the thermal expansion coefficient in this case refers to the th
stress, the same symbol (here denoted asa) sometimes is used for the thermal expansi
without directly relating it to the thermal stress in the way

• the coefficients describing the pyroelectric effect are identical with those describin
electrocaloric effect

The constitutive relations now can be displayed as the integrated form of (2

∂F̂
∂T
------- 

 
ε E,

Ŝ–=
∂F̂
∂Ei
-------- 

 
ε T,

Di–=
∂F̂
∂εij
-------- 

 
E T,

σij=

∂2
F̂

∂εij ∂Ek
------------------

 
 
 

T

∂σij

∂Ek
--------- 

 
ε T,

∂Dk

∂εij
---------- 

 –
E T,

πkij= = =

∂2
F̂

∂εij ∂T
----------------

 
 
 

E

∂σij

∂T
--------- 

 
ε E,

∂Ŝ
∂εij
-------- 

 –
E T,

αij= = =

∂2
F̂

∂Ei∂T
----------------

 
 
 

ε

∂Di

∂T
--------- 

 –
ε E,

∂Ŝ
∂Ei
-------- 

 –
ε T,

pi–= = =

π

α

α C : a=

p
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(2.60)

where we haven taken into account that changes of states and thus of the va
representing them are dependent on the temperature only in case a tempe
change occurs.

We would like to point out that the values of the susceptibilities in general co
be derived beginning with a microscopic view of the world. As we saw earlie
this section, an equilibrium state is fully determined as soon as the partition f
tion is deduced. In other words, the knowledge of the hamiltonian operator is
ficient for the complete description of the macro physical equilibrium state. H
ever, evaluation of the partition function is possible only for the most simple c
and usually one has to rely on approximations. As an example, the coefficien
thermal expansion are due to an auxiliary anharmonic term in the potenti
the Hamiltonian describing the ionic interaction energy in a solid.

DIFFERENTIAL EQUATIONS FOR ELECTRO -THERMOMECHANICAL SOLIDS

With the thermodynamical framework developed up to now, we are able to ex
the equations of motion derived in (2.43). Therefore we introduce the stres
(2.60) into the first part of (2.43) in order to obtain

(2.61)

where is a three dimensional source function, in the engineering literature
referred to as a volume force acting within a solid and caused by, for examp
gravitational field. Introducing the relation for the strain, (2.36), and the fact
the electric field can be expressed as the negative gradient of a scalar el
potential, the equation of motion can be recast into

. (2.62)

σij Cijkl εkl πkijEk αij ∆T+–=

Di πijkε jk χij E j pi∆T+ +=

∆Ŝ αij εij– piEi Cσ T⁄( )∆T .+ +=

α

ρ u̇̇ ∇ C : ε πT E⋅ α∆T+– 1 ∇u+( )⋅[ ]⋅– f=

f

ρ u̇̇ ∇ C : ∇u( )S 1
2
---∇u ∇u( )T⋅+ 

  πT φ∇⋅ α∆T+ + 1 ∇u+( )⋅⋅– f=
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Of course, we also take into account the electrostatic Gauss law [75] for the
trostatic displacement

, (2.63)

Figure 2.2. The relations between different physical domains, namely the ele
cal, thermal and mechanical. The tensor rank of the susceptibilitie
shown in square brackets whereas the tensors connecting the pr
ties is given in index notation. Note that the intensive and extens
thermodynamic variables are situated on the lower and upper leve
the prism, respectively.
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in this context denoting the electrical charge density. Replacing the disp
ment by the expression derived in (2.36), (2.63) yields

. (2.64)

This is a generalized equation of electrostatics, also comprising piezoelectri
pyroelectric effects. Analogously one could consider the rate of entropy ch

Figure 2.3. Coupling effects between the fields. For clarity principal effects ha
been omitted in this Figure, for those refer to Figure 2.2. The fiel
are expressed in terms of their symbols.
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ct

Heat of

polarization

σ

Piezocaloric effect

Pyroelectric effect

Heat of deformation

E

ρ

∇ π: ∇u( )S 1
2
---∇u ∇u( )T⋅+ 

  χ φ∇⋅ p∆T+ + 
 ⋅ ρ=
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with the additional independent variableE representing the electrical field suc
that (2.46) reads

. (2.65)

This identity could further be used in order to derive a more general heat con
tion equation also comprising thermo-electrical effects. Making the solutio
equations (2.62), (2.64) and (2.65) possible by means of a computer is the to
the next chapter.

Ŝ
˙ ε T E, ,( )

∂Ŝ
∂T
-------Ṫ

∂Ŝ
∂ε
------ : ε̇ ∂Ŝ

∂E
------- Ė+ +=
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3 ACCURACY CONTROL FOR

THIN STRUCTURE

SIMULATION

In this chapter, we consider the numerical solution of the partial differential eq
tions derived in the previous chapter. The reason for choosing numerical me
in deriving the physical fields simply is that the geometries of MEMS structu
usually are too complex to be amenable to analytical solutions. However, w
applying numerical methods one should care about the fact that these are ap
imation methods and thus errors are introduced inevitably. We begin this ch
by presenting the basic mathematical tools which allow for a reformulation of
partial differential equations and the corresponding boundary value prob
(BVP) in a weak sense. Therefore we introduce a set of mathematical notion
techniques with which to correctly formulate the physical problems at a high l
of abstraction. By doing so, we provide a wide range of physical models tha
be dealt with numerically. The approximative solution method will be that of
finite elements which can be well established with the preparatory work. On
basis of this formulation we then are able to carry out a sound error analysis
propose methods with which these errors can be reduced at a minimum c
terms of computational resources.

3.1 Mathematical preliminaries

A proper understanding of the theory of boundary value problems requires s
background in functional analysis. In fact, many simulation techniques suc
for example, finite elements, do not require, at first sight, deeper understandi
functional analytical methods. But some background in functional analysis i
essential prerequisite for those who wish to gain a proper insight of qualita
31
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aspects of BVPs, or of aspects of the finite element method such as those tha
to the development of error estimates. In this section, by following the expos
of [76] we provide the basic facts about functional analysis which lead a rea
able in-depth study of BVPs describing MEMS physics and their approxima

3.1.1 Inner Product Spaces and Linear Operators

The idea of a vector space with the well known objects and operations and its
eralization can be viewed as a starting point for functional analysis. Given a ve
space one can easily fix an inner product of which satisfies
following axioms, for all and , denoting the set of comple
numbers:

• A1:  (the inner product is complex valued)

• A2:  (the operation is Hermitian)

• A3:  (the inner product is linear in the first slot)

• A4: and if and only if (the inner product is positive defi
nite)

Analogously one can define an inner product space on a real valued vector
with the slight change that hermiticity turns into symmetry in the second axi
A standard example of an inner product space, besides the conventional or E
ean scalar product is the space of square-integrable functions on an
val  and is defined as follows:

. (3.1)

An important property of vectors, or, at this stage of abstraction, of elements
more general inner product space is that of orthogonality. Two vectors (or f
tions) are said to beorthogonal if

(3.2)

Another important characteristic that holds in any inner product space is
Cauchy-Schwarz inequality

X u v,( ) u v, X∈
u v w, , X∈ α β Cl∈, Cl

u v,( ) Cl∈
u v,( ) v u,( )=

αu βv+ w,( ) α u w,( ) β v w,( )+=

u u,( ) 0≥ u u,( ) 0= u 0=

L
2

a b,( )
a b,( )

u v,( ) v x( )u x( ) xd

a

b

∫=

u v,( ) 0.=
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(3.3)

where  denotes the absolute value.

By drawing an analogy with the notion of the length of a vector we can introd
the concept of anorm. Again we start from scratch with an arbitrary vector spa

and declare an operation which we callnorm on and which satisfies the
following axioms for any members  of , and scalars (real or complex)

• N1: .

• N2: and  if and only if  (positive definiteness).

• N3: (positive homogeneity).

• N4:  (triangle inequality).

A vector space which is equipped with a norm is called anormed space. Even
though the norm is a primitive concept and does not require for its definition
existence of an inner product, one usually uses the inner product in order togen-
erate the norm:

(3.4)

Norms are an integral part of this work and are presented during the next sect

The first norm is defined for any member belonging to the space
, of functions  for which the integral

exists or, in other words, is smaller than infinity. The standard norm on
defined by

(3.5)

where denotes some measurable, for practical purpose some bounded op
in . Usually one simply writes  instead of  to make things handier

u v,( ) u u,( )1 2⁄
v v,( )1 2⁄≤

X X

u v, X α

u lR∈
u 0≥ u 0= u 0=

αu α u=

u v+ u v+≤

X

u u u,( ).=

X L
p

=

1 p≤ ∞< f

f x( ) p
xd

a

b

∫

L
p

u
L

p u x( ) p
xd

Ω
∫

1 p⁄
,=

Ω
lR

n
u p u

L
p
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Considering the space of bounded measurable functions, i.e. functio
that satisfy almost everywhere (a.e.) on we can define the n

 by

, (3.6)

the greatest lower bound of the constants that bound almost everyw
Since for any given vector space the definition of a norm is not unique, the con
of equivalence of normsis useful. Two alternative norms and are said
be equivalent to each other if there are positive constants  and  such th

. (3.7)

The equivalence of norms is a helpful property with which to master exten
estimations much more easier, as we will see in section 3.3.1. Normed space
are complete in the sense that every Cauchy sequence converges are given
cial name, namelyBanach spaces. A special kind of a Banach space is aHilbert
space, the inner product space which is complete. Every Hilbert space is a Ba
space since every inner product induces a norm. For the hierarchies of the d
ent spaces see Figure 3.1.

Figure 3.1 The different function subspaces.

L
∞ Ω( ) u

u x( ) const≤ Ω

L
∞

u
L

∞ inf k: u x( ) k a.e.≤{ }=

k u

A B

m M

m u A u B M u A≤ ≤

Normed Space

Inner Product Space

Hilbert Space Banach
Space

Sobolev Space
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Another fundamental concept in functional analysis is that of a mapping oroper-
ator from one space to another. Operators that map members of a specified
into the real or complex numbers are denotedfunctionalswhereas linear operator
that map pairs of elements into the real or complex numbers are calledbilinear
forms. The former two types of operators play a central role in the study of lin
boundary value problems and thus are inevitable when sophisticated num
simulation methods have to be developed.

A linear operator is a mapping from a vector space , the domain, into s
other space and which is

• additive:  for all and

• homogenous: , where  is either real or complex valued.

We say that a linear operator is bounded, if it is possible to fin
number  such that

(3.8)

For we define the norm of a linear operator by taking the least upper bo
of all , taken over all membersu of X. That is,

. (3.9)

Linear operators that map elements of a vector space into the set of the re
complex numbers (in the following we will restrict ourselves to the case of the
numbers since they are sufficient for our purpose) are called linear function

.

Since the set of all bounded linear operators of a normed spaceX to a normed
spaceY is itself a normed space with the norm defined above in (3.9) we can in
duce a special vector space , the space of bounded linear functionalsX.
This space also is called the dual space ofX and is denoted by

. (3.10)

T X

T u v+( ) T u( ) T v( )+= u v, X;∈
T αu( ) αT u( )= α

T: X Y→
K 0>

Tu K u for all u in X.≤

u 0≠ T

K Tu u⁄≥

T sup Tu u u 0≠,⁄{ }=

l : X lR→

L(X,lR)

X
✳

L(X lR),=
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From the boundedness of the linear functionals, that is, of each memberl of
we have

(3.11)

with some constantK. The action of such a functional on an elementu usually is
denoted instead of . Referring to the definition of an operator’s norm
(3.9), we see that the norm of a linear functional is given by

(3.12)

A well known example of a non-trivial linear functional is the Dirac delta “fun
tion” occurring in many fields of physics and engineering as an important conc
Here one usually refers to a quantity which is zero everywhere except at the o
where it takes the value infinity, that is, for and at
Moreover,  is assumed to have the following property

(3.13)

for any continuous functionu. It is, in fact, impossible to construct a function wit
these properties in the ordinary sense. To overcome this difficulty the Dirac d
function is better and more correctly defined as a bounded linear functional a
on the space of continuous functions ,  denoting a real interval,

(3.14)

Having introduced the concept in this way, there is no difficulty in dealing w
the Dirac delta. It is simply an operator acting on the set of continuous funct
and samples the value at the origin. With the definition of a dual space abov
see that the Dirac delta is a member of the dual of the continuous functions o
interval, . A common physical interpretation of the delta function
a pointlike heat source acting within a given region or a located mechanical p
force acting on some solid. The usefulness of this concept is evident wh

X
✳

l u( ) l u( )= K u for all u in X≤

l u,〈 〉 l u( )

l
X

✳ sup
l u,〈 〉
v

---------------- v 0.≠=

δ x( ) 0= x 0≠ δ x( ) ∞→ x 0=

δ

δ x( )u x( ) xd

∞–

∞

∫ u 0( )=

C a b[ , ]( ) a b[ , ]

δ: C a b[ , ]( ) lR δ u,〈 〉,→ u 0( ).=

δ C a b[ , ]( )✳∈
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comes to the numerical simulation of systems where such types of interac
occur.

The most important operators when dealing with linear multiphysics probl
and their related boundary value problems are the ones which map a pair o
ments to the real numbers and which are linear in both arguments: thebilinear
forms. For vector spacesX andY,we may define a bilinear forma to be an oper-
ator  with the following properties:

(3.15)

where ,  are real numbers.

Bilinearforms will turn out to be closely related to partial differential equatio
and their numerical solutions. It is, in a certain sense, essential that bilinear f
possess a characteristic calledcontinuityfor the problem which they describe t
be well-posed. A bilinear form is said to be continuous if there is a constantK such
that

, (3.16)

whereX andYare normed vector spaces. We mention another property of bilin
forms which is calledH-ellipticity. Given an inner product spaceH and a bilinear
form we say thata is H-elliptic if there is a constant , the elliptic
ity-constant, such that

. (3.17)

In other words, anH-elliptic bilinear form always is non-negative or,positive def-
inite.

With the abstract framework of functional analytical tools which we have se
by now, we are able to state a result that has turned out to be a cornerstone
ence and engineering [2], theLax-Milgram theorem. The power of abstraction
guarantees that some basic models of science including electrostatic proble
linear elasticity have a satisfactory mathematical form and may be solve

a: X Y× lR→

a αu βv+ w,( ) αa u w,( ) βa v w,( ) u w, X, v Y∈∈+=

a u αv, βw+( ) αa u v,( ) βa u w,( ) u X, v w, Y∈∈+=

α β

a u v,( ) K u v for all u X, v Y∈∈≤

a: H H× lR→ α

a v v,( ) α v
2

for all v H∈≥
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appropriate numerical methods. Under the assumption that a given bilinear
a, operating on a Hilbert space, is continuous andH-elliptic and that
there is any given bounded linear functionall onH, there exists a unique elemen
u in H such that

. (3.18)

It seems advisable to anticipate that the bilinear forma represents the energy of
linear physical system, if there is an energy principle, and the linear functiona
the meaning of some external source function. So, in other words, the Lax-
gram theorem states that for a given external excitation there is a unique stat
is adopted by the linear physical system by means of its energy. Equivalently
could formulate this fact via a minimization problem where the minimum ene
is sought [77].

3.1.2 Sobolev Spaces

In the previous chapter we derived partial differential equations which fro
mathematical point of view require their solutions to be as smooth as the hig
order of the acting differential operator indicates. This is often a drawback w
modeling effects such as point forces acting on some elastic structures and,
ilar example, a point-like heatsource in heat conduction. Some other phy
problems may well require that data be modeled representing discontinuous
rial properties as it is the case for composite materials. Whereas the classic
partial differential formulation does not permit a treatment of such problems
variational formulation offers a natural setting, since here we work in lar
spaces. In this section we address ourselves to the task of developing a fram
of a mathematically sound formulation of variational boundary value proble
(VBVP).

The central concept will be that of Sobolev spaces, since these provide a me
characterizing the degree of smoothness of functions. And, probably the
important fact about Sobolev spaces is that numerical approximation met
such as the finite element method are most conveniently and correctly formu
in machine computable finite dimensional subspaces of Sobolev spaces.

a: H H× lR→

a u v,( ) l v,〈 〉 for all v H∈=
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We start the exposition by introducing the term of theweak derivativeof a func-
tion. We call a function the weak derivative of the functionu if the following
relation holds:

. (3.19)

Recall that for the multi index notation where
Thetest function is chosen to be from the space of infinitely differenti
ble functions with compact support. In caseu is sufficiently smooth to belong to

, denoting the closure of the open set , then its weak derivatives
coincide with its classical derivatives for . To illustrate the concept o
weak derivative we refer to the following example. The function is co
tinuous in the interval , that is, it belongs to . Its classical derivat
does not exist in the sense that it is not defined at the origin. The weak deriva
however, is the function

as sketched in Figure 3.2, since the equation

holds.

The fundamental difference between the classical derivative of a function an
weak derivative is that the former is defined pointwise, i.e. for each point o
domain, whereas the latter only requires to be integrable. A function to be di
entiable in the classical sense at least has to be continuous. The condition of
differentiability thus invokes that a functionv differing from a weak derivative of
u on a set of measure zero is itself a weak derivative ofu. One could guess tha
this concept is quite useful as soon as it comes to the numerical simulation o
tems that posses discontinuities in their constitutive properties.

D
α
u

D
α
u x( )φ x( ) xd

Ω
∫ 1–( ) α

u x( )Dαφ x( ) xd
Ω
∫=

α α1 … αn+ += α α1 … αn, ,( )=

φ C0
∞ Ω( )

C
m Ω( ) Ω Ω D

α
u

α m=

u x( ) x=

1– 1[ , ] C 1– 1[ , ]( )

u'
1 for    -1 x 0<≤–

1 for     0 x 1<≤



=

u'φ xd

1–

1

∫ uφ' xd

1–

1

∫–=
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TheSobolev spaceof orderm, denoted by ,mbeing a non negative integer
is defined to be the space of all functions that are square integrable, i.e. that

, together with all their weak partial derivatives up to and including those
orderm, belong to :

(3.20)

With that, we may define an inner product space with the Sobolev inner pro
 as follows:

. (3.21)

As we saw earlier an inner product generates a norm, here it is called the So
norm defined by:

. (3.22)

This relation can be recast into

. (3.23)

Figure 3.2 The functionu which is not differentiable in the conventional sens
whereas its weak derivative  exists.
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When written out in full for the case , as it occurs when dealing with sec
order problems such as the Poisson equation, the Sobolev norm reads

. (3.24)

A concept that is quite similar to that of a norm for Sobolev spaces is that
semi- norm. A seminorm satisfies all the norm axioms stated in section 3
except that of positive definiteness, meaning that but does not
essarily imply that alsou vanishes. The seminorm on  is defined as

. (3.25)

In fact, is a seminorm, however, it is not a norm since if the weak derivat
vanish for  this does not mean foru to vanish itself.

Obviously we have the relation

. (3.26)

There are, in fact, properties of Sobolev spaces that highly depend on the d
sion of the domain where its functions are defined on. As one would expect,
real interval the functions in are continuous. However, this is
the case anymore for -functions defined on an open subset in a space w
dimension higher than one as the following example clarifies. We conside
function , where and is a ball contain
ing the origin. Then

which, when introducing spherical coordinates yields

.

m 1=

u
H

1
2

u
2

x∂
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 

2
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2
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α
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u∇( )2+( ) xd
Ω
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Now, since has been assumed to be smaller than one half, we clearly se
the integral is bounded whereas the functionu is singular at the origin. A more
general statement is given by theSobolev embedding theoremwhich gives a result
for a bounded domain of with a boundary that is smooth enough (th
“Lipschitz” to be more correctly). Then, if , every function in
belongs to . Taking into account this fact becomes of prominent importa
when dealing with functions which represent physical fields in a more gen
sense, including the occurrence of singularities. Therefore, some care has
exercised in the approximation of such fields by approximation functions that
ally are taken to be non-singular. We will pick this up in section 3.3.2.

3.1.3 Elliptic Boundary Value Problems

As we have pointed out previously, the aim is that a desired solution of a phy
boundary value problem is not necessarily required to be continuously differe
ble, that is, in the space where2m is the order of the partial differentia
equation but in a less restrictive space of a certain ordern. And in turn, to
make the calculation accessible to computing machines, only a subspa

is desired. In this section we show the connection with the originally sta
partial differential equations in chapter 2 and the corresponding variatio
boundary value problems. As having stated earlier, the shape of the simul
domain is expected to be reasonable in the sense that it is bounded and t
boundary is enough smooth. The shape of the linear partial differential equ
with operatorL is basically of the shape

(3.27)

and of the order2m. The set of boundary conditions can be partitioned into t
subsets: Theessential boundary conditionsare those which are of order an
thenatural boundary conditionsare those of order . In the case that there a
mixed boundary conditions specified, that is, the boundary condition operato
contains differential operators of more than one order, the type of boundary
ditions are to be determined by the highest order differential operator invol
The boundary conditions read as follows:

α

Ω lR
n

m k– n 2⁄> H
1 Ω( )

C
k Ω( )

C
2m Ω( )

H
n Ω( )

H
m Ω( )

Lu 1–( )m
D

α
aαβ x( )Dβ

u( )
α β, m≤

∑ f in Ω= =

m<
m≥

Bj
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(3.28)

We would like to remark that further on we confine ourselves to the cas
homogenous essential boundary conditions. But this is not a real restriction
it is a straightforward matter to convert any problem with non-vanishing bound
values to one whose boundary conditions are homogenous: For simplicity we
sider a PDE of the same structure as in (3.27) which is of order two:

Then, assuming that there is a function which coincides withg on the
boundary we define  and  for which

holds. We shall point out that up to now we have restricted ourselves to the
where only scalar valued functions are treated. However, the physical field
practical interest often are vector-valued as for example, the mechanical disp
ment fields. Moreover, there are sets of coupled fields, such as the temper
field caused by a mechanical displacement as we saw in the first chapter. In
cases the precedent formulations first have to be modified in terms of the nota
vector valued functions will be represented in bold case, i.e., . The multi-ph
cal fields in turn are merged into , a vector valued field with a dimens
according to the dimension of its components.

A crucial step then is to define a spaceXof admissible functions in which the solu
tion of the variational boundary value problem is to be sought. For the above p
lem (3.27) and (3.28) this space is defined by

B0u 0=

…
Bp 1– u 0= 






(essential)

Bpu gp=

…
Bm 1– u gm 1–= 






(natural)

Lu f in Ω=

u g on Ω∂ .=

u0 in Ω
w u u0–≡ f 1 f Lu0–≡

Lw f 1 in Ω=

w 0 on Ω∂=

u

U u w,( )=
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representing the part of the boundary where essential, orDirichlet boundary
conditions are specified, or in other words

. (3.30)

We shall emphasize that only essential boundary conditions are taken care
the requirement that the solution sought for be in the spaceX. Sobolev spaces tha
directly handle sets of homogenous essential boundary conditions ore
denoted by . Natural or Neumann boundary conditions are to be treat
another way which will be demonstrated below. The transition from the class
BVP to the VBVP then is performed by multiplying both sides of (3.27) by
arbitrary functionv from X, integrating and using Green’s theorem to furth
reduce the expression to one of the form

. (3.31)

In the case of a Dirichlet problem for the Poisson equation with a given so
functionf that is square integrable, i.e.

(3.32)

. (3.33)

the first step results in

(3.34)

where the order of the Sobolev space has to be fixed as one, , taking
account that first order derivatives must be square integrable. Then, partial
gration gives

. (3.35)

X v H
m Ω( ): Bj 0 on Γ, j 1 … p 1–, ,==∈{ }=

Γ

X v H
m Ω( ): v satisfies all essential boundary conditions∈{ }=

H0
m Ω( )

a u v,( ) l v,〈 〉=

f L
2 Ω( )∈

∇2
u– f in Ω=

u 0 on Γ=

∇2
u( )v xd

Ω
∫– fv xd

Ω
∫=

H0
1 Ω( )

n ∇u⋅( )v Γd
Γ
∫– u v∇⋅∇ xd

Ω
∫+ fv xd

Ω
∫=
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wheren denotes the surface normal vector pointing to the outside of the dom
Now, the reason why boundary conditions involving derivatives of orderm are
called natural becomes quite clear: They arise in a natural way when perfor
the transition from the classical boundary value problem to the variational p
lem. Sincev was chosen to be from the space the first integral on the
hand side vanishes and we are left with

(3.36)

which can be recast into

, (3.37)

when the bilinear forma is defined as

(3.38)

and the linear functionall by

. (3.39)

In the case where non vanishing natural boundary conditions such as

(3.40)

are specified on a part of the domain boundary with a non-vanishing func
g that is square integrable, the linear form has to be modified accordingly:

. (3.41)

With that, the boundary value problem reads

. (3.42)

H0
m Ω( )

u v∇⋅∇ xd
Ω
∫ fv xd

Ω
∫=

a u v,( ) l v,〈 〉=

a u v,( ) u v∇⋅∇ xd
Ω
∫≡

l v,〈 〉 fv xd
Ω
∫≡

n u∇⋅ g on ΓN=

ΓN

l̃ v,〈 〉 fv xd
Ω
∫ gv Γd

ΓN

∫+≡ l v,〈 〉 gv Γd
ΓN

∫+=

a u v,( ) l̃ v,〈 〉=
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Recall that, since we are dealing with spaces that are a special kind of those
duced in section 3.1.1 existence and uniqueness of a solution turn out und
same conditions ofX-ellipticity and continuity that have to be met by the biline
form and the continuity of the linear functional. This follows from the Lax-M
gram theorem.

3.1.4 The Galerkin Method

Except for problems involving very simple PDEs and geometries, it is q
impossible to obtain exact solutions in either the classical or variational form
tions. The idea then is toapproximatethe solution. The idea of the Galerki
approximation method, that later on leads to finite element methods is quite
ple, when disposing of the framework established in the previous sections
would like to emphasize that the nomination of this section’ s method by no m
is uniformly handled in the literature. Again, we follow the notation of the auth
of [78] or [76]. Consider the variational boundary problem of finding a solut

 that satisfies

(3.43)

whereV is some subspace of a Hilbert spaceH. The difficulty when searching a
solution, however, is that the spaceV is infinite-dimensional with the result that i
is impossible to set up a practical method to solve (3.43). Therefore one cho
a finite dimensional subspace of the spaceV where the solution has to be
sought for. Thus, a basis of has to be fixed which spans any function in
other words, a finite numberN of linearly independent functions are chose
such that

. (3.44)

The indexh of the space in that sense refers to the term of an approxima
or more correctly a discretization parameter as it gets smaller as largerN and thus
the number of basis functions gets. One would expect that the approximati
the better the higher the dimensionality of the discrete subspace is take
other words, when taking the limit ofh tending towards zero one expects

u V∈

a u v,( ) l v,〈 〉 for all v V∈=

Vh

Vh Vh

φi

Vh V and span φi{ }N
i 1=⊂ Vh=

Vh

Vh

Vh
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approach . Disposing of the space , problem (3.43) is now posed in ins
of . Thus, we try to a find a function  that satisfies

. (3.45)

The ansatz for solving for is as follows: and must be linear combinati
of the basis functions of ,

. (3.46)

Inserted into (3.45) this yields

(3.47)

or

(3.48)

where the linearity ofl and the bilinearity ofa has been used. Defining

(3.49)

(3.48) can be recast into

(3.50)

which is equivalent to

(3.51)

V Vh Vh

V uh Vh∈

a uh vh,( ) l vh,〈 〉 for all vh Vh∈=

uh uh vh

Vh

uh ciφi
i 1=

N

∑= and vh d jφ j
j 1=

N

∑=

a ciφi
i 1=

N

∑ djφ j
j 1=

N

∑,
 
 
 

l d jφ j
j 1=

N

∑,〈 〉 for any coefficientsdj=

a φi φ j,( )cid j
j 1=

N

∑
i 1=

N

∑ l φ j,〈 〉dj
j 1=

N

∑ for any coefficientsdj=

Kij a φi φ j,( ) and F j l φ j,〈 〉= =

dj Kij ci F j–
i 1=

N

∑
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
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j 1=

N

∑ 0 for any coefficientsdj=

Kij ci F j=
i 1=

N

∑ , j 1 … N, ,=
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or in the classical finite element matrix-vector notation,

(3.52)

representing a set of simultaneous linear equations. The desired field’s app
mation is obtained by inserting the linear equations’ solution into (3.46).

The fact that we only have approximated the solution sought in (3.43) in a na
way leads to the question how to characterize the errore introduced by the approx-
imation,

. (3.53)

We exploit the property of being a subspace of , so in (3.43) we can ch
v to be from that subspace, and considering that by denoting this mem
by  yields

. (3.54)

The problem (3.45), in the following also referred to as the discrete problem, w
subtracted from (3.54),

, (3.55)

results in

, (3.56)

having used the bilinearity of the forma. This property commonly is labelled a
theorthogonality of the errorto in accord with the geometrical interpretatio
of orthogonality of inner products in the event thata is symmetric.

When assumingV-ellipticity and continuity of the bilinearforma and taking into
account that  also lies inV, we have the estimate

K c⋅ F=

e u uh–=

Vh V

v Vh∈
vh

a u vh,( ) l vh,〈 〉 for all vh Vh∈=

a u vh,( ) a uh vh,( )– l vh,〈 〉 l vh,〈 〉– for all vh Vh∈=

a u uh– vh,( ) a e vh,( ) 0= for all vh Vh∈=

Vh

u uh–
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(3.57)

Then, applying the continuity of the bilinearform and considering that the erro
orthogonal to  gives

. (3.58)

This estimate can be expressed as

(3.59)

which is also known as Céa’s lemma. Therefore, determining how big the err
can be transformed into the question of estimating the distance ofu from the sub-
space . We will see later that this result can be substantiated in that sens
convergence becomes more obvious when the dimension of the subspace
increased.

3.1.5 The Finite Element Method (FEM)

The practical aspects of the Galerkin method lead to the finite element me
Central to this technique is that it provides for types of basis functions suitabl
domains with virtually arbitrary shape. These are piecewise polynomials tha
non-vanishing only on a small part of the simulation domain, their support is l
and overlaps only with few of the other basis functions’ supports. The aim of
section is provide for the methods with which to construct those special bas

Starting point is the decompositionSof the domain into a finite number o
non-overlapping subdomains , that cover :

α u uh– a u uh u uh–,–( )≤

a u uh u uh– vh vh+–,–( )=

a u uh u vh–,–( ) a e uh vh–,( ) .–=

Vh

α u uh– a u uh u vh–,–( ) M u uh– u vh–≤ ≤

u uh–
M
α
----- infvh Vh∈ u vh–=

Vh

Vh

Ω ν
Ω1 Ω2 … Ων, , , Ω

Ωλ Ωµ∩ ∅ for λ µ, Ωµ
µ 1=

ν
∪≠ Ω.= =
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Here, the symbol just stands for a set of measure zero in the space consi
We assume the domain boundary to be polygonal if the domain is in a more
one dimensional real space. That is, the domain boundary is made up of piec
polygons, in they are straight lines. Thus, the entire domain can be
ered by polygonal elements, as illustrated in Figure 3.3.

Further criteria which we shall impose on the subdivision of the 2D domain
triangles or quadrilaterals include the following:

• if the intersection of two elements consists of exactly one point, then this
corner point both of  and .

• if the intersection of two elements for consists of more than one po
then  is an edge of  as well as of .

• a subdivisionS sometimes is called shape regular, if there exists a constant
that each of the elements  contains a circle of radius  and

holds,  denoting the diameter of .

An admissible triangulation therefore does not allow for hanging or dang
nodes, as sketched in Figure 3.4.

Bearing in mind that the basis functions span a subspace of the solution spX
that satisfies all essential boundary conditions we are now ready to describe

Figure 3.3 Admissible subdivision of a domain into triangular elements.

∅

Ω lR
2⊂

Ωλ Ωµ∩
Ωλ Ωµ

Ωλ Ωµ∩ λ µ≠
Ωλ Ωµ∩ Ωλ Ωµ

κ 0>
Ωλ ρΩ

ρΩ
hΩ
κ

------>

hλ max x y– x y, Ωλ∈,{ }= Ωλ
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the finite element basis functions ,n denoting the dimension of the finite
element subspace, in general are formed.

• The functions are bounded and belong to a subspace of the continuous functio
, that is,

(3.60)

• The functions are piecewise polynomials, that is, the restriction of to an
ment  is a polynomial with degreek:

. (3.61)

The are called local basis functions since they are defined in order to
local (elementwise) support

. (3.62)

Therefore the Matrix (3.51) has only few non-vanishing components. In the
where the are triangles and , that is, the polynomials are linear, the b
functions are defined as

, (3.63)

Figure 3.4 An inadmissible triangulation. The open circle indicates the hang
node.

Ni{ }i 1=
n

Ni
Ω

Ni C Ω( )∈

Ni Ni
e( )

Ni
Ωe

Ni Ωe

Ni
e( )≡ , Ni

e( )
lPk Ωe( ) for somek 1≥∈

Ni
e( )

suppNi
e( ) x Ni

e( ) x( ) 0≠,{ }=

Ωe k 1=

Ni x j( ) δij=
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With
denoting the Kronecker delta, and the geometrical nodes such that
basis function’s support consists of all triangles containing node .

Finite elements are said to beconformingif the basis functions are contained i
the space in which the variational problem is posed. The task of finding the de
of the elementwise polynomials suited for conforming treatment of a given va
tional boundary value problem is not a trivial matter. It is facilitated by the re
that for a function which is piecewise arbitrarily often differentiable t
following equivalence holds:

. (3.64)

In other words, when dealing with the Poisson equation which represents a se
order problem and thus, according to section 3.1.3, the desired space is
The polynomials therefore only have to be continuous, i.e., , for
ansatz to be conforming. This is not true any longer for forth order problems
resenting a part of the plate equations. Since second order weak derivatives
be square integrable the appropriate space is and thus the polynomials
be continuously differentiable, i.e. belong to .

Having established the mechanisms used to set up finite elements we will
present the main approximation results also known asa priori error estimates
which for a given choice of finite elements specify how far in some sense, the
tance from the weak VBVP solution to the approximate or computed solutio
We define the interpolant of some continuous function on an element  by

(3.65)

where and are the local basis functions restricted to the
ments . Recalling that in (3.59) we have established a Galerkin error esti
which now can be reduced to investigating the convergence of interpolates.
the choice (3.65) inequality (3.59) can be extended to

. (3.66)

δij x j

xi

u: Ω lR→

u H
k Ω( )∈ u C

k 1– Ω( )∈⇔

H
1 Ω( )

C
0 Ω( )∈

H
2 Ω( )

C
1 Ω( )

Ωh

I h: C Ωh( ) Xh I hv v xi( )Ni
h( )

i 1=

N

∑=,→

Xh span Ni
h( ){ }= Ni

h( )

Ωh

u uh–
M
α
----- infvh Xh∈ u vh–= C u Ihv–≤
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Then, assuming the domain is decomposed into triangles according to the c
given above, the standard error estimation reads

(3.67)

whereu has to be smooth enough, i.e. and ,q denoting the
polynomial degree of the interpolant . The quantity is the diameter of
elementT. Recall that denotes the weak derivative operator using the m
index notation. This estimate of course can be substantiated further. Setting
zero and choosing the elements to be linear, that is, setting the polynomial d
to one, we are left with

. (3.68)

If a bound for second order derivatives ofu could be determined in some way
which is often done in regularity theorems, see for example [77], [78], or [8
then the convergence goes with the square of the triangle diameter. Interpo
with higher order polynomials naturally yields higher order convergence. H
ever, this is only the case when the weak solution is smooth enough, see 5.2
is a quantitative explanation of the well known and widely used practice
improving simulation results by either refining the mesh geometrically or incre
ing the polynomial order of the approximation space. We won’t go into furt
details but want to state that this relation also holds globally, that is, on the w
domain

(3.69)

whereh denotes the maximum diameter of all elements. A detailed study of c
vergence results is found for example, in [78]. Summing up the results we
identify three factors bounding the error. Having fixed the order of the weak de
ative,r, the power ofh depends only on the degree of the polynomials and in
cates the rate of convergence as the mesh is refined. This effect might be
observed in practical numerical studies. The constantc mainly depends on the
geometrical shape of the elements and its nodal parameters. It increases

D
r

u( I hv)–
L

2
T( )

chT
q 1 r–+

D
q 1+

u
L

2
T( )≤

u H
q 1+

T( )∈ 0 r q≤ ≤
I hv hT

D
r

r

u Ihv–
L

2
T( )

chT
2

D
2
u

L
2

T( )≤

D
r

u( I hv)–
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2 Ω( )
ch

q 1 r–+
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q 1+
u

L
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ments get worse, that is, tend to have small angles and high aspect ratios
reason for choosing a highly regular mesh in the above specified sense
becomes quite obvious from a quantitative point of view. The third factor refle
the properties of the problem itself: the degree to which the solution is smooth
therefore easy to approximate accurately.

3.2 Modeling thin structures

3.2.1 Linear Elements for Thermal Problems

In chapter 2 we derived the partial differential equations for heat conduc
(2.51). In the following we assume the heat transfer to be stationary and
mechanical stress not to be dependent on the temperature such that the hea
tion reads

, (3.70)

which is also valid for several other physical problems described by a Poi
equation, such as, e.g. electrostatical problems (when symbols are exch
accordingly). Within the sound mathematical framework established in the be
ning of this chapter it is only a short way to obtain numerical results of pract
interest.

We begin by defining the simulation domain describing the device ge
etry, which is three dimensional. Boundary conditions that usually are app
comprise Dirichlet boundary conditions as well as Neumann boundary condit
The latter are natural BCs and describe some thermal flux across the do
boundary. If these are zero the boundary part where they are specified is ther
insulated. The former are essential BCs and reflect the fact that some con
temperature reservoir is in contact with the device. We state these condition

(3.71)

∇ κ ∇T x y z, ,( )⋅( )⋅ f=

Ω lR
3⊂

T x y z, ,( ) T0 on ΓD= ,

n κ T x y z, ,( )∇⋅ ⋅ gN on ΓN,=
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where denotes the thermal conductivity. We fix the solution spaceV as the
Sobolev space containing all functions belonging to that satisfy the es
tial boundary conditions

(3.72)

such that we may rewrite (3.38) as

(3.73)

and the right hand side source term (3.41) as

. (3.74)

The continuous weak problem of finding the temperature distribution then re

. (3.75)

By applying the galerkin method 3.1.4, the next step would be, according to 3
choosing a discretization of the domain, a shape regular triangulation for exam
Moreover we have to fix the finite dimensional subspace of the solution spaV
to be the space of piecewise polynomials, that is,

, (3.76)

and thus each polynomial is a linear function on each element. A convenient
for practical implementation issues of finite elements is first to transform an
ment to a reference element, in the two dimensional simplicial case this is th
angle , sketched in Figure 3.5., by virtue of the affine ma
ping

. (3.77)

κ
H

1 Ω( )

V T x y z, ,( ) H
1 Ω( ) : T x y z, ,( ) T0 on ΓD=∈{ }=

a T U,( ) T κ U∇⋅ ⋅∇ xd
Ω
∫≡

l̃ U,〈 〉 fU xd
Ω
∫ gNU Γd

ΓN

∫+≡

a T U,( ) l̃ U,〈 〉 for all U V∈=

Vh Th C
0 Ω( ) Th T

lP1 Th ΓD

T0=,∈,∈
 
 
 

=

T 0 0,( ) 1 0,( ) 0 1,( ), ,( )

f ξ( ) T ξ⋅ b+ x= =
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Here we have merged the coordinates in the reference frame into

analogously in the mapped domain. The local basis functions on the referenc
ment for  must satisfy (3.63) and therefore read

(3.78)

The contribution of triangleT to theij -component of the system matrix has to b
evaluated as

(3.79)

Figure 3.5 The reference triangle of a triangular finite element mesh (stripe
and the shape function (dotted). The mappingf acts from the ref-
erence triangle to the triangle considered. Additionally we have nu
bered the nodes in the reference triangle on the left hand side. F
each of the nodes a shape function is clearly defined (3.78).

ξ ξ η,( )=

1

z

1

1

x

y

z

1

1

1

f ξ( ) T ξ⋅ b+=

η

ξ1
2

3

T̂
N1
ˆ

Vh

N̂1 ξ( ) 1 ξ– η–=

N̂2 ξ( ) ξ=

N̂3 ξ( ) η= .

Kij
T( )

N̂i° f 1–( ) κ N̂ j° f 1–( )∇⋅ ⋅∇ DetDf ξd ηd
T̂
∫=

Ni x( ) κ N j x( )∇⋅ ⋅∇ xd yd
T
∫ ,=
56



3.2 Modeling thin structures

since
the
t

a

sents
near
and
econ-
dual
yond
with

urces
om-
pris-
) and
where we have made use of the integral transformation theorem which holds
f is diffeomorphic [115]. Each component of the global stiffness matrix then is
sum over all elements for which thei-th andj-th nodal shape function’s suppor
intersection does not vanish

. (3.80)

The right hand sideF of the algebraic equation that has to be set up to form
vector and is determined by the distribution of the heat sourcef

(3.81)

plus the contribution due to the prescribed flux on a part of the boundary

. (3.82)

Thus, the linear system to be solved reads

, (3.83)

wherecconsists of the approximated nodal temperature values and thus repre
the solution of our discrete problem. There are various methods of solving li
systems, ranging from classical Gaussian elimination algorithms (slow
memory consuming) to the more sophisticated iterative methods such as pr
ditioned conjugate gradient method (pcg) or the generalized minimal resi
[81],[82] while the discussion of the advantages of linear system solvers is be
the scope of this work. Yet, since the order of the equation system increases
the number of nodes, it is mandatory to bear in mind that computational reso
always are limited, and, especially for very large systems equally distributed c
putational nodes would be too costly. The overall temperature field is, not sur
ingly, locally linear (since the shape functions have been chosen in that way
therefore can be formulated as

Kij Kij
T( )

T supp Ni( ) supp N j( )∩ ∅≠,{ }
∑=

Fi f x( )Ni x( ) xd
T
∫

T supp Ni( ) ∅≠,{ }
∑=

Fi
˜ Fi gN x( )Ni x( ) Γd

∂ΓN supp Ni( )∩
∫+=

K c⋅ F̃=
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We want to point out that by referring to 3.1.2, equation (3.70) does not allow
discontinuities in the heat conductivity tensor . The reason is that the diverg
operator requires global differentiability of the heat flux , a condition, wh
of course, for a discontinuous heat conductivity is violated. Formulation (3
therefore is the only setting by which composite materials can be properly m
eled.

3.2.2 Multi-Layer Plate Models

Mechanical models derived from theories where the dimensionality of the p
lem has been reduced from three to two are called plate models. The ge
assumption here is that when a solid’s lateral dimension exceeds its thickne
far, in other words, a high aspect ratio is present within the structure, then
effects along the thickness dimension can be neglected. Among others [27]
a key virtue of these lower-dimensional theories is their far better amenabili
numerical computations. A vast literature has been flourished proposing plate
ories, and their justifications. While some numerical approximations are by
on essentially safe theoretical grounds, there remains an abundance of challe
open problems mainly concerning existence results for various plate equa
[28]. For a detailed survey of the matter we refer to the monographs of Ci
given in the reference list.

As in section 3.2.1 we introduce a weak or variational formulation of three dim
sional elasticity based on the equations derived in chapter 2. In particular, we
sider the time independent and linearized equation (2.59)

(3.85)

having reassembled the constitutive relationships into the overall mecha
stress . We now apply the procedure developed in section 3.1.3 for the s
field for which a vector-valued differential equation holds. We identify the diff
ential equation (3.85) with (3.27) in each of its components and fix a test func
space coinciding with the solution space as in (3.30) to be

Th x( ) ciNi x( )
i 1=

Number of Nodes

∑=

κ
κ T∇⋅

∇ σ⋅– f=

σ
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The variable denotes the variational strain and emerges in a natural way
considering the deformation virtual work of an elastic body caused by inte
stresses [68]. Furthermore, the primitive of the strain is the displacement
itself such that the former only requires to be integrable, i.e.,
Allowing surface traction on a part of the boundary

(3.87)

as a set of natural boundary conditions like in (3.28) and integrating (3.85)
multiplying it with a test function belonging to (3.86) results in a variation
boundary problem analogously to (3.42)

, (3.88)

the second addend denoting a surface integral along the boundary where s
traction is specified. This weak formulation of electro-thermo-mechanics is ta
as the starting point for the derivation of our plate model by re-introducing
non-linear relations such that (3.88) turns into the non-linear virtual work

. (3.89)

Our plate models are obtained as the asymptotic case for one of the dimensi
the solid vanishing. In the asymptotic case for plates, the unknown fiel
assumed,a priori, to have a polynomial dependence with respect to the transv
variable . The degree of this polynomial is specified but does not have to b
same for all components of the unknown field. In general, each compone
interpolated using a finite set of linearly-independent functions as in the ans

. (3.90)

X δε H
0 Ω( )( )

3
: δε satisfies all essential boundary conditions∈{ }=

δε

H
0 Ω( ) L

2 Ω( )=∈

σ n⋅ f s= on ΓN

a σ δε( , ) f δu,〈 〉 f sδu Γd
ΓN

∫+=

WE σ δε( , ) f δu,〈 〉 f sδu Γd
ΓN

∫+= =

z

w3D x z,( ) wi x( )vi z( )
i∑=
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Across the plate thickness, the field is interpolated with the set of shape func
. Their coefficients vary depending on the position of their projection

the middle-plate surface. Increasing the number of these functions (i.e., incre
the degree in the case of polynomials) yields a hierarchy of models of increa
order, whence the name hierarchic plate theories [24], in a very similar fashio
hierarchic finite elements [105]. The Kirchhoff-Love theory, [14],[98],[99], re
resents the lowest level of this hierarchy, as the transverse displacement i
constant across the thickness and the in-plane displacement is taken with a
dependency on . Additionally, it is necessary to satisfy the constraint tha
coefficient of be the opposite of the gradient of , expressing the geomet
statement that lines normal to the middle plane keep their orthogonality in
deformed state. The ansatz for the three-dimensional displacement is

. (3.91)

For Reissner-Mindlin plates, the through-thickness behavior is assumed as
by

, (3.92)

which differs from the Kirchhoff-Love model, [15],[100],[101],[102], in the inde
pendence of thez-coefficient of the in-plane displacement. The Reissner-Mindl
based plate model has received much attention because, contrary to Kirc
plate theory, -continuity is sufficient to formulate finite element discretiz
tions. This approximation requires a reduced-order integration to retain pr
flexibility for the plate. This means that, instead of using a Gaussian quadra
over the element, where the order of the quadrature is chosen to give exact r
for the highest polynomial degree of the shape functions, a quadrature that
antees exact results only for a lower polynomial degree is chosen, thus sup
ing higher-order displacement behaviour. Indeed, without uniform or selec
reduced integration, elements incur “locking”, a phenomenon in which
normal-integrated -element fails to reproduce the Kirchhoff solution expe
in the thin-plate limit. However, wider computing experience with the reduc

vi wi x

w

z

z w

u3D
u x( ) z∇w x( )–

w x( )
=

u3D
u x( ) zϑ x( )–

w x( )
=

C0

C0
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integration elements disclosed ill-conditioned behavior that is erratically de
dent on element shapes and mesh patterns, which is an undesirable charac
for elements intended for use in general-purpose software. Consequently,
literature has flourished suggesting several methods to overcome these prob
On the other hand, the common place that the Reissner-Mindlin theory is “be
than the Kirchhoff-Love theory, is not yet fully substantiated [28].

Another significant argument to choose the Kirchhoff-Love model is the fact
the expressions for the displacement field can be found without resorting to
Kirchhoff-Love hypothesis mentioned above, which is actually ana priori
assumption of geometrical nature. This is achieved by applying asymptotic m
ods and expanding the three-dimensional solution in a formal power series 

Therefore, when using the more sophisticated finite elements of class ap
to the simpler Kirchhoff-Love theory which is mathematically sounder, a hig
degree of reliability of the simulated results can be expected. Additionally, a
forming ansatz for this model has the advantage that error estimators are
simpler to formulate and thus adaptive computations are much faster and
effective in terms of memory requirement. This is in direct contrast to the sup
edly efficient non-conforming approaches where the treatment of consist
errors becomes necessary [44],[46].

THE 3D THEORY IN THE LANGUAGE OF PLATES

Describing the three-dimensional geometry of the plate as in Fig. 3.6, or

Figure 3.6 The three-dimensional geometry of a plate
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ω
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the product for an arbitrary pair of fields on the solid plate is decompo
as

. (3.94)

Henceforth the subscript for the inner product and the integration extrema
shall be omitted where there is no ambiguity. The boundary of the solid pla
decomposed as

, (3.95)

i.e., into its lower and upper planes and its perimeter wall. For any tensor
 defined on the solid plate, we define its n-th order moment by

. (3.96)

For a body force decomposed in its transverse and in-plane componen
 the virtual work reads

(3.97)

where we have introduced the variat ion of the displacement f i
. Recall that the (Green-St. Venant) three-dimensio

strain is defined as

. (3.98)

Using the displacement decomposition, we rewrite (regroup) the strain as

Ω Ω3D ω h 2⁄– h 2⁄,[ ]× x z,( ) x ω∈ h– 2⁄ z h 2⁄≤ ≤,{ }= ==

L2 u v,

u v( , )Ω3D
u v( , )ω dz

h 2⁄–

h 2⁄
∫=

ω h 2⁄±

∂Ω ∂Ω3D ω h 2⁄–{ }× ω h 2⁄{ }× ∂ω h 2⁄– h 2⁄,[ ]×∪ ∪==

A x z,( )

An x( ) znA x z,( ) dz∫=

f 3D f g,( )=

WB f 3D δu3D( , )Ω3D
=

f v z∇v–( , )Ω3D
g v( , )Ω3D

+=

f dz∫ v( , ) zf dz∫ ∇v( , )– g dz∫ v( , )+=

f 0 v( , ) f 1 ∇v( , )– g0 v( , )+= .

δu3D v1 v2 v, ,( )≡ v v,( )≡

ε u∇( )S 1
2
--- u∇ u∇( )T⋅( )+=
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where the terms are defined as follows

(3.100)

(3.101)

. (3.102)

This decomposition is useful in keeping the notation compact, and aids in
interpretation of terms later on.

TAKING THE PLATE LIMIT

In the limit case, where the plate thickness vanishes, the in-plane strain redu

(3.103)

which, at the plate’s middle plane, gives

. (3.104)

The variational field of the in-plane strain is

. (3.105)

We now impose the additional condition that the elastic reaction vanishes in
transverse direction of the plate. This implies that only the in-plane compon
of the stress can be different from zero, so that we may write that

. (3.106)

ε3D
ε γ 2⁄

γ T 2⁄ ε33

=

ε ∇u( )S ∇w( ) ∇w( ) 2⁄ z∇∇w– ∇u( ) ∇u( )T⋅ 2⁄ z∇∇w( )2–+ +=

γ ∇u z∇∇w–( ) ∇w⋅=

ε33 ∇w( )2
=

ε ∇u( )S ∇w( ) ∇w( ) 2⁄ z∇∇w–+=

εm ∇u( )S ∇w( ) ∇w( ) 2⁄+=

δε ∇v( )S ∇w( ) ∇v( ) z∇∇v–+=

σ3D
σ 0

0 0
=
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A tensor reduction here has to be taken into account such that a reduced co
tive relation, see A.2, holds

(3.107)

which becomes clear when rearranging the tensor components in matric
means of a mapping often referred to as the engineering notation (2.34),

. (3.108)

Condition (3.106) requires the components of which have an index ‘3’ to va
and therefore the plane stress in the first set of equations in (3.108) ca
expressed in terms of the in plane strain only. The reduced elastic tensorA then
is composed by the sub-matrices. We give a more detailed exposition of te
reduction in the appendix. Unless otherwise stated the following tensor quan
denote those for the reduced case. Next we form the elastic virtual work w
coincides with the previously defined bilinear form in case linear relations
assumed, using the definitions (3.103), (3.105) and (3.106), to get

(3.109)

which, by introducing the in-plane stress-strain relation,

(3.110)

where is the reduced elastic tensor and the externally impressed pres
yields

σ A: ε̂=

σ 1 2,( )
σ . , 3( )

C11 C12

C21 C22

ε̂1

ε̂2

=

σ
σ 1 2,( )

ε̂1

Cij

WE σ3D δε3D( , )Ω3D
=

σ ∇v( )S( , )Ω3D
zσ ∇∇v( , )Ω3D

– ∇w σ⋅ ∇v( , )Ω3D
+=

σ dz∫ ∇v( )S( , ) zσ dz∫ ∇∇v( , )– ∇w σ dz∫⋅ ∇v( , )+=

σ0 ∇v( )S( , ) σ1 ∇∇v( , )– ∇w σ0⋅ ∇v( , )+= ,

σ A: ε σext
+=

A σext
64



3.2 Modeling thin structures

nal
ear
, ,

ting

ly,

led
isas-
(3.111)

LINEARIZATION

The elastic virtual work (3.111) is non-linear. This means that the variatio
problem resulting by adding it to the body force virtual work is also a non-lin
expression. The linearization acts on the in-plane strain at the middle surface
and on the third row of equation (3.111):

(3.112)

The resulting weak formulation for the mechanical plate is then given by equa
the elastic and body-force (or external) virtual work terms

. (3.113)

The linearity of (3.113) depends on the elastic virtual work only. Explicit
the linearized virtual work is

(3.114)

The left-hand side (LHS) of (3.114) forms a bilinear form in the space

(3.115)

such that belongs to and belongs to , as will be detai
below. So far, we have only considered constant external stress . When d
sembling the extended constitutive relation for the stress in (3.85)

WE A0: εm A1: ∇∇w– σ0
ext

+ ∇v( )S( , )=

A1: εm A2: ∇∇w– σ1
ext

+ ∇∇v( , )–

∇w A0: εm A1: ∇∇w– σ0
ext

+( )⋅ ∇v( , ) .

εm

WE lin, A0: ∇u( )S A1: ∇∇w– σ0
ext

+ ∇v( )S( , )=

A1: ∇u( )S A2: ∇∇w– σ1
ext

+ ∇∇v( , ) ∇w σ0
ext⋅ ∇v( , )+– .

WE WB=

WE

∇w σ0
ext⋅ ∇v( , ) A0: ∇u( )S A1: ∇∇w– σ0

ext
+ ∇v( )S( , )+

A1: ∇u( )S A2: ∇∇w– σ1
ext

+ ∇∇v( , ) f 0 v,〈 〉 f 1 ∇v,〈 〉– g0 v,〈 〉+=– .

X H
1 ω( ) H

1 ω( ) H
2 ω( )××=

u H
1 ω( ) H

1 ω( )× w H
2 ω( )

σext
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(3.116)

which also can be subjected to the tensor reduction detailed in the append
can rewrite the plane stress (3.107) in terms of

. (3.117)

The weak plate equations (3.114) therefore can be extended, using

(3.118)

if there are no additional sources considered such as charge sources o
sources. However, this equation is only the mechanical part of the coupled p
ical problem. The purely thermal part has been discussed in 3.2.1 wherea
electrical part has to be set up according to the procedure in section 3.1.3 usi
generalized Gauss law (2.64). Besides the purely electrostatical terms the
piezo-electric contribution has to be considered as in (2.60) which with the lin
ized in-plain strain (3.103) and using the reduced quantities (see Appendix
yields

(3.119)

such that another bilinear form can be defined

(3.120)

having neglected the electrocaloric terms and thus the contribution of a tem
ture change to the electrical displacement. The right hand side linear funct
comprises the charge density and some prescribed electrical displacemen
part of the surface

σ C : ε πT E⋅ α∆T+–=

σ A : ε̂ π̂T
E⋅ α̂∆T+–=

E ∇φ–=

∇w π̂T φ∇⋅ α̂∆T+( )0⋅ ∇v( , )

A0: ∇u( )S A1: ∇∇w– π̂T φ∇⋅( )0 α̂∆T( )+ 0+ ∇v( )S( , )

A1: ∇u( )S A2: ∇∇w– π̂T φ∇⋅( )1 α̂∆T( )+ 1+ ∇∇v( , )–

+

f 0 v,〈 〉 f 1 ∇v,〈 〉– g0 v,〈 〉+=

D π̂: ∇u( )S
z∇∇w–( ) χ̂ E⋅+=

a ψ D( , )Ω

∇ψ π̂ : ∇u( )S zπ̂ : ∇∇w– χ̂ ∇ψ⋅–( , )Ω=

n D⋅ h=
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It is important to note that for the extended Gauss law integration is taken ove
whole three-dimensional domain whereas the mechanical part is fully restrict
the plate’s middle plane. The reason is obvious since one should be able to s
boundary conditions of electrical nature also on the top and the bottom face o
plate. Merging the displacement fields, the temperature and the electros
potential together into one field together with its variatio

 we may rewrite the linear plate equations in the form

, (3.122)

where on the left hand side all terms we collected from the linearized form
(3.73), (3.118) and (3.120) in order to define a new extensive bilinear form
detail it reads

(3.123)

where the right hand side represents the source terms as well as the natural b
ary conditions. The temperature difference contains the temperature fiel
means of , being a reference temperature. The first three add
on both sides represent an integral extending over the two dimensional do
whereas the others extend over the whole three dimensional domain. The sp
which problem (3.123) is posed is given by

. (3.124)

l̃ ψ,〈 〉 ρψ xd
Ω
∫ hψ Γd

ΓN

∫+=

U u w T φ, , ,( )=

V v v S ψ, , ,( )=

a U V,( ) l̃ V,〈 〉=

π̂ φ∇⋅ α̂∆T+( )0 ∇v( , )ω

A0: ∇u( )S A1: ∇∇w– π̂T φ∇⋅( )0 α̂∆T( )+ 0+ ∇v( )S( , )ω–

+ A1: ∇u( )S A2: ∇∇w– π̂T φ∇⋅( )1 α̂∆T( )+ 1+ ∇∇v( , )ω

+ ∇ψ π̂ : ∇u( )S zπ̂ : ∇∇w– χ̂ ∇φ⋅–( , )Ω

+ T∇ κ S∇⋅,( )Ω

f 0 v,〈 〉ω f 1 ∇v,〈 〉ω– g0 v,〈 〉ω+=

ρ ψ,〈 〉Ω f S,〈 〉Ω h ψ,〈 〉+ ΓN elctrical,
gN S,〈 〉ΓN thermal,

+ ++

∆T T T0–= T0

X U H
1 ω( )( )

2
H

2 ω( ) H
1 Ω( )×× H

1 Ω( )× U satisfies all essential BCs,∈{ }=
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Obviously, the in-plane displacement field requires only that its first derivati
be square integrable whereas the out-of-plane displacement field requires tha
its second derivatives be square integrable and therefore belong to . A
well known, the temperature and the electrostatic field obey second order d
ential equations and thus, as we have detailed in 3.1.3, belong to . Exis
and uniqueness of the solutionU, which has to be sought for is guaranteed
virtue of the ellipticity and continuity of the sub-problems.

For the linear problem (3.88), the former can be proven by Korn’s inequa
which holds as soon as a pure rigid body motion is excluded by applying Diric
boundary conditions on a part of the boundary that has not measure zero [77
the slightly more complicated (pure) plate case the solution’s existence is pr
in [103] and that of the coupled piezoelectrical plate case for example in [30].
the second order problems treating electrostatics and thermo-statics the
known Poincaré -Friedrichs inequality is used to show the existence of solut
see [76] or [77].

FINITE ELEMENTS FOR THERMOMECHANICAL PLATES

Equation (3.114) is discretized using finite elements by interpolating the field
and with a set of shape functions, and according to the Galerkin method, u
each of these shape functions as the test functions and . For the transver
placement the unknown field is interpolated as

. (3.125)

As we have seen, the term , containing the transverse displace
requires that second derivatives also must be square integrable, i.e.,
order to have a conforming discretization, the shape functions must also be
ments of and thus the shape functions must be of class accordi
(3.64). This can be achieved by implementing the Argyris element [104],
Fig. 3.7.

The Argyris element can be represented by a fifth order polynomial and is
used to interpolate the in-plane displacement fields, although the solution h
be found in the “less restrictive” space of (3.115). A review of the Argyris elem
is given in [106]. In case an additional temperature field has to be comp

H
2 ω( )

H
1 Ω( )

u

w

v v

u x( ) ui N i x( )
i∑=

A2: ∇∇w ∇∇v( , )

w H2 ω( )∈

H2 ω( ) C1 ω( )
68



3.2 Modeling thin structures

led in
tem-

ects
rature
ment
the
con-

ect-
en-
new
ism.
tinu-
field
ain.
llows
iven
lane
d by
r the
, as
(neglecting electrostatic effects) the plate equations (3.123) can be decoup
that sense that the mechanical problem can be solved after a solution for the
perature field has been obtained. We would like to point out that thermal eff
across the thickness are neglected, see Appendix, and therefore the tempe
field can be interpolated on the same 2D domain as the mechanical displace
fields. As usual when treating a dimensionally reduced thermal problem,
zeroth order moment of the (reduced) heat conductivity tensor has to be
sidered.

FINITE ELEMENTS FOR PIEZO -ELECTRICAL PLATES

The situation turns more delicate when an electrical field comes into play. Insp
ing equation (3.123), we realize that this field is defined over the full three-dim
sional domain whereas the mechanical field is defined on some midplane. A
element therefore has been proposed [59],[60] which is called the Argyris pr
It takes into account that each of the displacement fields are interpolated con
ously differentiable on a two dimensional domain whereas the electrostatic
has to be interpolated only continuously, but on a three dimensional dom
Figure 3.8 shows the setup of this combined element. Since the plate model a
for the treatment of multi-layer stacks we make the arrangement that for a g
composite multilayer structure the prisms’ electrical nodes are located in a p
for both the top and the bottom surface. The height of all prisms is determine
the largest stack extension present within the multilayer plate. The nodes fo
electrical field for that largest stack then coincide with its vertical margins
sketched in Figure 3.9.

Figure 3.7 The Argyris Element [104]

Field value

Field gradient

Directional
derivative

vector
component

κ0
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Again, we can define a reference prism with the nodes and the shape functio
listed in Table 3.1. The polynomial then to be built for each prism then is of 

Table 3.1 Shape functions for the reference prism .

general shape

Figure 3.8 The Argyris Prism finite element [59]. An Argyris triangle is place
exactly on the half way through the thickness of the structure. Th
electrical field is placed at the outmost vertical ends of the struct
and thus allows for the specification of boundary conditions that
differ at either the top or the bottom.

Node
Number

Node coordinates Shape function

0

1

2

3

4

Interpolation of electrical potential

Argyris triangle

P̂

0 1 1–, ,( ) 1
2
--- 1 x– y–( ) 1 z–( )

1 0 1–, ,( ) 1
2
---x 1 z–( )

0 1 1–, ,( ) 1
2
---y 1 z–( )

0 0 1, ,( ) 1
2
--- 1 x– y–( ) 1 z+( )

1 0 1, ,( ) 1
2
---x 1 z+( )
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3.3 Error Estimation for second order problems

3.3.1 Abstract error estimation

The central difficulty that one has to face when obtaining solutions by nume
methods such as those presented up to now is the fact that these solutions ar
ing but approximations. One could overcome this problem by simply approac
the continuous world, but the discrete structure of the computer can not be cir
vented and moreover, in contrast to mathematically taking the limit, comp
resources in factare limited. To be on the safe side all the same, errors can

Figure 3.9 Arrangement of the computational nodes in prisms which interpol
the electrical field. The prismatic mesh stretches over a compos
multilayer structure which is typical in MEMS. In case layerstack
occur that have different vertical dimensions i.e. are variably hig
the prisms have to be ‘filled’ with the air gaps. The middle plane
the structure where the displacement fields are interpolated is no
shown for the sake of clarity.

p x y z, ,( ) a0 a1x a2y a3z a4xz a5yz+ + + + +=
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computed and reduced at least locally. To make the point clear we reconsid
difference of two fields, the first field defined by (3.43), the weak form expres
by means of a bilinear form and a linear functional and the second field re
sented by its discretized form (3.45)

. (3.127)

This is an error, a measure of how good the approximation and thus the com
solution is. The way in which we measure the error, namely by an integral n
emerges from the fact that we want to obtain information about how the err
distributed over the simulation domain. Disposing of such a distribution one
decide where the domain geometry should be modified. The smallest units w
the pointwise errors can be averaged are the elements themselves such
local element error estimate might be stated as

. (3.128)

What we would like to find is an expression as on the right hand side,depending
only on the computed solution itselfwhich bounds the error. For the derivation o
such an a posteriori error estimation we use section 3.1 and start with a given
tinuous, elliptic and symmetric bilinearforma (the left hand side of the weak
form) and a Hilberspace with scalar product and the corresponding N

. (3.129)

For , the space the weak solution has to be sought for, we can define its du
in (3.10),  with the duality pairing

(3.130)

. (3.131)

We have seen that has to be defined as some Sobolev space or the produc
of Sobolev spaces of appropriate order. We now can define a differential ope
associated to the bilinear form acting as follows:

u uh–

T

u uh– T ηT uh( )≤

X ( , )X

v X v v( , )x=

X

X
✳

L(X,lR)=

,〈 〉 X∗ X× : X∗ X× lR→

l v,〈 〉 X∗ X× l v( )= l X∗∈ v X∈,∀

X

72



3.3 Error Estimation for second order problems

orm
or of

.16)
or-
ent,

r a

nalyti-
n 3.1.
pace

ct a
ve
(3.132)

. (3.133)

By means of the bilinear form we define a norm also known as the energy n
(and thus representing the internal energy of a system multiplied by a fact
two)

. (3.134)

The assumptions made on the bilinear form, namely that it be continuous (3
and elliptic (3.17) will enable us to deal with the different norms in a straightf
ward manner: the Hilbertspace norm and the energy norm then are equival

. (3.135)

The continuous FE-problem then can be formulated in the following way: fo
given source function  we are looking for the solution  in  such that

, (3.136)

or, making use of (3.133),

. (3.137)

The existence and uniqueness of solutions are then assured by functional a
cal results such as the Lax-Milgram Theorem, for example, as we have seen i
Discretizing the problem (3.136) means choosing a finite dimensional subs

 of , and looking for an  in  where

. (3.138)

This formulation of the FE-problem forms the basis of the following abstra
posteriori error analysis. When rewriting (3.136) with instead of we ha
for any  by virtue of (3.133) and the differential equation (3.137)

L: X X∗→

Lw v,〈 〉 X∗ X× a w v( , ) w v X∈,∀=

v a v v( , )=

α v X
2

v
2

K v X
2≤ ≤

f X∗∈ u X

a u v( , ) f v,〈 〉 X∗ X×= v X∈∀

Lu f in X∗=

Xh X uh Xh

a uh vh( , ) f vh,〈 〉
X∗ X×

= vh Xh∈∀

u u– h u

v X∈
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For any  we can write

. (3.140)

Combining the last two equations yields the estimate

. (3.141)

Inequality (3.141) is an abstract a posteriori error estimation: only known data
required to compute an upper bound for the error in the energy norm.
term defines the residual of the strong form of the partial differential eq
tion. Error estimation based on these techniques thus is known as residual
estimation. The aim now is to find upper bounds of the RHS of inequality (3.1
which are local, that is, may be expressed elementwise and invoke only the
puted solution field and known data. How to explicitly derive a computa
expression in the following is demonstrated for a second order problem.

3.3.2 Error estimation for a Poisson equation

By choosing a Poisson-type equation to derive an error estimator we gain in
into a mathematical technique without demanding too much formal expenses
would be the case for the rather complicated coupled plate equations. Late
we are able to treat the plate case just by drawing analogies to the steps
allow of it. We refer to 3.2.1 and introduce the weak form of a general Pois
problem

, (3.142)

where is a bounded domain with polygonal boundary. The part of the boun
where Dirichlet boundary conditions are specified is expected to be non-em
whereas normal fluxes across the domain border are specified on the p
the boundary which is denoted as . By discretizing the domain accordin
3.1.5 we can state the finite element problem as

a u u– h v( , ) L u u– h)( v,〈 〉 f L– uh v,〈 〉= =

w X w 0≠,∈

w
1
w

----------- w
2 1

w
-----------a w w( , ) a w

w
w

-----------( , ) supv X,∈ v 1= a w v( , )≤= = =

u u– h supv X,∈ v 1= a u u– h v( , )≤ supv X,∈ v 1= f L– uh v,〈 〉=

u u– h

f L– uh

a u v( , ) ∇u κ v xd∇⋅ ⋅
Ω
∫ f̃ v,〈 〉 f v,〈 〉 gNv Γd

ΓN

∫+= = = v X∈∀

Ω

gN

ΓN
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assuming that given sources coincide with their interpolations, in other word

. (3.144)

Before we apply the abstract a posteriori error estimation of the previous se
to this problem, we introduce the jump of some function  along an edge

(3.145)

where is a fixed outward normal of a given triangle’s edge. The scalar pro
in the RHS of (3.141) can be recast as

(3.146)

since and thus the error is orthogonal to as we have seen ea
in (3.49). Making use of the definition of in (3.133) and the definition of
(3.142) together with partial integration turns (3.146) into

(3.147)

The reason for having introduced the term instead of is the fact tha
have to estimate the interpolation error in a stronger norm than in the
norm which will be explained later in detail. Partial integration and dom
decompositionS, , then yields the expression

(3.148)

a uh vh( , ) f vh xd
Ω
∫ gNvh Γ vh Xh∈∀d

ΓN

∫+=

f f h= and gN gN h,=

w E

w x( )[ ] limδ 0→ w x δnΓ+( ) limδ 0→ w x δnΓ–( )–=

nΓ

f̃ L– uh v,〈 〉 f̃ L– uh v vh–,〈 〉=

Xh X⊂ v vh– Xh

L a

f̃ L– uh v vh–,〈 〉

= f̃ v vh–,〈 〉 a uh v vh–,( )–

= f̃ v vh–,〈 〉 uh∇ κ v vh–( ) xd∇⋅ ⋅
Ω
∫– .

v vh– v

v vh– L
2

Ω T
T S∈
∪=

f̃ L– uh v vh–,〈 〉

f̃ v vh–,〈 〉 ∇ κ⋅ uh v vh–( ) xd∇⋅–
T
∫ n κ uh v vh–( ) T∂d∇⋅ ⋅

T∂
∫+ 





T S∈
∑– .=
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Using definition (3.142) and taking into account that integration over edges
the domain interior occurs twice the above equation becomes

(3.149)

Applying the Cauchy-Schwarz inequality yields

(3.150)

We now have to introduce estimates for the terms

where denotes some interpolant. As a first difficulty we have already m
tioned that the interpolation error has to be estimated in a stronger norm th
the -norm due to (3.141) which means that alsoderivativesof the error have to
be measured. Moreover we have to cope with the fact that functions in ar
necessarily continuous so that the usual Lagrange interpolation is not valid: p
wise evaluation does not make sense anymore for a field with possible sing
ties as we have seen in section 3.1.2 on Sobolev spaces. We avoid this by
ducing a special interpolation operator named after Clément [107]. Se

 we then have the following interpolation estimates:

E

f̃ L– uh v vh–,〈 〉 f(
T
∫ ∇ κ⋅ uh) v vh–( )dx∇⋅+





T S∈
∑=

+
1
2
--- nE κ uh∇⋅ ⋅[ ] v vh–( ) Γd

E
∫

E T∂ Ω∩∈
∑

+ gN nE– κ uh∇⋅ ⋅( ) v vh–( ) Γd
E
∫

E T∂ ΓN∩∈
∑





.

f̃ L– uh v vh–,〈 〉 f ∇ κ⋅ uh∇⋅+
L

2
T( )

v vh–
L

2
T( )




T S∈
∑≤

+
1
2
--- nE κ uh∇⋅ ⋅[ ]

L
2

E( )
v vh–

L
2

E( )E T∂ Ω∩∈
∑

+ gN nE– κ uh∇⋅ ⋅
L

2
E( )

v vh–
L

2
E( )E T∂ ΓN∩∈

∑




.

v vh–
L

2
T( )
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L

2
E( )

vh

L
2

H
1

I h

vh I hv=
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(3.151)

and

(3.152)

where denotes some constant and the patch of all triangles whose inte
tion with  is non empty as sketched in Figure 3.10.

A main tool in deriving equation (3.152) is a trace theorem. Applying these e
mates to (3.150) and making use of the Cauchy-Schwarz inequality once
yields

(3.153)

Figure 3.10The domains  and .
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where  denote the triangle diameter and the edge length respectively.

We then note that

(3.154)

and consider the fact that the -norm in the space is equivalent to the en
norm of the problem as we saw in (3.135). Thus we can take the supremum o
estimate (3.153) which yields the following local element error estimator

(3.155)

only depending on the computed solution and the given data of the prob
Thus we have shown the a posteriori error estimation

(3.156)

for the energy norm of the error which is reliable and computable. The consta
depends mainly on the smallest angle occurring in the triangulation . The
term on the RHS of (3.155) specifies an element residual with respect to the s
form of the problem. In case there is zero load specified, i.e. no heat source or
tric charge density is specified only the second addend has to be considered
addition linear polynomials are chosen to interpolate the field , the elem
residual vanishes completely since second order derivatives of linear function
identically zero. The second term describes jumps of the gradient across a
edge in the domain interior and might be viewed as a measure of the “smooth
of the solution whereas the last term considers an error introduced by the dev
of the approximated from the prescribed normal flux along non-essential bo
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aries. It will be shown in the next section that the error estimator (3.155) not
is reliable in the sense of (3.156), but also efficient which means that it is boun
from above by the real error.

3.3.3 Efficiency of the Error Estimator

In the previous chapter we have shown the error estimator to be relia
in other words, that there really is an upper bound for the quantity which
denote as the error, and that this bound, to some extend, also is computable.
ever, we still do not know howgoodthis bound is, meaning it could be undesirab
far away from the true error. To make the problem clear we mention that a
trarily high values also could be a bound of the error, although not useful for p
tical purpose. In fact, the error estimator itself can be proved to be bounded b
real error

. (3.157)

We show this by displaying the most significant steps. For more details, se
example [46],[56],[77].

We start by defining bubble functions that are polynomials and have local sup
The reason why these functions are given that special name becomes clear
looking at Figure 3.11. Consider for each triangleT of the triangulationSits bary-
centric coordinates . For any pointP, these are defined to be th
weights , such that, when applied to three given arbitrary po

, P is the centre of mass of the triangle generated by
For the reference triangle, see Figure 3.5, these coincide with the shape fun
(3.78). Thetriangle bubble function then is defined as a third order polynomial

(3.158)

and the edge bubble function as

ηT uh( )

ηT uh( ) c u uh–≤

λ1 T, λ2 T, λ3 T,, ,
λi T, i, 1 …3,=

Pi i, 1 …3,= Pi i, 1 …3,=

ψT

27λ1 T, x( )λ2 T, x( )λ3 T, x( ) for x T∈

0 for x T∉



=
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(3.159)

where coordinates’ numbering is in accordance with the sketch in Figure 3.5
found that these functions are continuous on the domain and each function’s
is between zero and one. An additional mapping is required that carries out a
tinuation of a function defined on an edge to one that is defined also on the n
bouring triangles . We set for any polynomial of degree

(3.160)

Figure 3.11The triangle and the edge bubble functions  and  respectiv
The triangle bubble function (left) is displayed for the reference t
angle , whereas the edge bubble function (right) is displayed for
edge which bounds the reference triangle and its reflection trian
along the y-axis. Both bubble functions have local support, see t
text for more details.
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and being a point on E such that , and one of the t
coordinate functions that are non-constant along the edgeE. For polynomialsv we
then have the following relations:

(3.161)

(3.162)

(3.163)

(3.164)

(3.165)

. (3.166)

The first relation follows from the fact that norms on finite dimensional spaces
equivalent ( is a polynomial) and by bidirectional transformation of onto
reference triangle. The second inequality takes into account that is bound
one. Relation (3.163) is an inverse inequality [77], together with (3.162). The
three inequalities can be shown in a similar fashion, see for example, [46]
then define the element residuum

(3.167)

and the edge residuum

(3.168)
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In order to keep the presentation clear we define an operator
is related to the element and edge residuals as

(3.169)

where partial integration has been applied for the transformation. The ele
error estimator then can be expressed as

. (3.170)

Noting that the element bubble function defined above has local suppor
choose

(3.171)

which is identically zero outside the interior ofT. Then, taking into account tha
 is polynomial, estimate (3.161) yields
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(3.172)

where we have used the fact that the second integral vanishes since it extend
the element edges. This inequality is recast into

(3.173)

using the definition (3.169) and the continuity of the bilinear forma. Hence

(3.174)

by virtue of (3.163). Dividing the last inequality by , squaring th
result and multiplying both sides by  yields the estimate

. (3.175)

An estimate for the edge residual is derived in a similar fashion. We therefor

(3.176)

such thatv vanishes outside the interior of the patch . Then, by picking out
relevant elements from (3.169) we have
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(3.177)

since only is defined on the edgeEand vanishing elsewhere. The inequali
is a direct result of (3.164). Reorganizing (3.177) yields

(3.178)

exploiting the Cauchy-Schwarz inequality and relation (3.165). For the f
addend in (3.178) we have

(3.179)

due to the continuity of the bilinearforma. Applying (3.166) to the above inequal
ity yields

. (3.180)

Then, combining (3.178) and (3.180) the estimate for the edge residual turns
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(3.181)

where (3.178) has been devided by , using (3.180) for the second add
The result thus has been squared and multiplied by . To get the second ine
ity in (3.181) we use the estimate (3.175). Hence, the final estimate is obtaine
returning to (3.170) and simply applying both estimates (3.175) and (3.181)

(3.182)

This is exactly (3.157), a bound for the error estimator has been established
computable expression not only represents a bound for the solution
but itself is bounded by the true error. The undesirable case that the error esti
is too far away from the real error is thus avoided.

3.4 Error Estimation for multi-layer thin structures

The complete a posteriori error analysis for electro-thermomechanically cou
multi-layer thin plate finite element simulations takes the weak form (3.122) a
basis. Merging together the source functions and the natural boundary cond
of the different physical domains, namely the mechanical, the thermal and
electrical sources into one field, (3.122) can be rewritten as

(3.183)

whereX is the space of admissible solutions as in (3.124)

. (3.184)
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Since the thermal problem can be fully decoupled from the electromecha
problem, that is, one first could solve the heat equation and then insert the c
lated temperature field into the electromechanical part, we restrict our analys
the equation where only the displacement fields and the electrostatical fie
unknown. The error estimator for the temperature field then is exactly identic
that which we derived in the previous section 3.3. We now redefine
and its variation  such that the remaining variational problem rea

(3.185)

Here we have introduced a couple of modifications of which the most impor
is the conversion of the temperature dependent thermal expansion into a co
stress term which is widely known as thermal prestress and is of imm
importance when dealing with microstructures [88]. When it comes to a sim
tion where temperature dependent behaviour is required one could just repla
constant prestress by the thermal expansion tensor contracted with the prev
calculated temperature. As another change we have omitted the electrostati
in the first addend of (3.185) which is a remnant of the non-linear theory,
(3.111) and (3.112), and therefore could be neglected if non-linear effects m
eled by this term do not play a dominant role [59]. With these changes of the
ational form the solution space changes accordingly,

. (3.186)

We further extend (3.185) by introducing a set of natural boundary condition
the out-of-plane displacement field , only involving derivatives at least of or
two, which for thin plate problems can be stated as follows:

(3.187)
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nΓ A: w∇∇⋅ M b= on Γb w,
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where are the vector-valued bending moments imposed on a part of the bo
ary . Having fixed second order derivatives on a part of the dom
boundary we may specify the bending moments with regard to the moment o
of the elastic tensor in the following way:

(3.188)

and

. (3.189)

The scalar valued normal shear forces imposed on another part o
boundary are given by

. (3.190)

In fact, there are some additional choices of imposing natural boundary condi
to the thin plate problems. Since most of them are of less practical interes
assume them to be homogenous. As far as the in plane displacement field is
cerned we only assume either exclusively essential boundary conditions or e
tial boundary conditions combined with homogenous natural boundary co
tions. We thus can fix some part of the boundary where we define natural bo
ary conditions for the in-plane displacement fields , independently of the typ
boundary condition for the out-of plane displacement. The homogeneous bo
ary condition then read

(3.191)

and

(3.192)

where the RHS of the both equations describes the imposed zero normal
couples. Additionally we may specify homogeneous bending moments for th
plane displacement field

M b

Γb w, Ω∂⊂

nΓ A⋅ 2: w∇∇ M b 2,= on Γb w,

nΓ A⋅ 1: w∇∇ M b 1,= on Γb w,

Γs w, Ω∂⊂

nΓ ∇ A(⋅ 2: w)∇∇⋅ Fs= on Γs w,

u

n A⋅ 0: u∇( )S 0 on Γc u,=

n A⋅ 1: u∇( )S 0 on Γc u,=
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(3.193)

taking into account and . We should have notic
that homogenous boundary conditions of the kind (3.187) and (3.190) corres
to completely free edges of a plate. We now are able to set up the RHS of (3

(3.194)

thus enabling us to state the variational problem

. (3.195)

Having fixed a finite dimensional sub-space  of  as

(3.196)

such that every displacement field is interpolated by piecewise fifth order poly
mials [103],[104] and the electrical potential field by trilinear polynomials
defined in Table 3.1. The in-plane displacement field, of course, does not re
to be interpolated as smooth as the flexure . However, since the convergenc
of the solution in the context of (3.67) is determined by the lowest polynom
degree that occurs, it seems advisable to choose the in-plane approximatio
similar order as the out-of plane approximation [103]. We can reformulate
finite element problem (3.138)

. (3.197)

Making use of the ellipticity of the bilinear-form and recalling the abstract d
inition of the operator in (3.132) and (3.133) we now can state the error est
tion of the thin plate problem
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where the energy norm here again is induced by the bilinear-form

. (3.198)

We obtain the counterpart of equation (3.147) according to the definition of
bilinear form

(3.199)

To keep the exposition reasonably clear with respect to the number of te
describing different kinds of error contributions we confine ourselves to on
part of the problem for the time being. This is realized by means of splitting
linear form into a purely mechanical part and a part involving the piezo-elec
effects

, (3.200)

denoted as the piezoelectric residual . Afterwards it will be clear in which w
the contributions due to the piezoelectrical effects have to be set up. We mak
following definitions to further simplify the exposition:

. (3.201)

Assuming that the domain is decomposed into a shape regular triangulatio
partially integrating equation (3.199) yields
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ation
(3.202)

Further expanding equation (3.202) and making use of the fact that integr
over interior edges occurs twice results in
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lowing
(3.203)

External stresses are assumed to be constant on each triangle and the fol
element integrals

(3.204)
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(3.205)

and the boundary integral

(3.206)

vanish. The last sum of equation (3.203) only adopts non zero values whe
edge considered bounds two triangle elements associated with different ma
stacks since the gradient of the approximate out-of plane displacement fie
continuous across element borders and thus does not contribute to a jump
Applying the Cauchy-Schwarz inequality and rearranging the addends into
ment contributions and sums over internal and boundary edges separately
yields

∇ ∇( σ⋅ ⋅ 1
ext)eh xd

T
∫ 0=

n σ1
ext∇⋅( )eh Γd

T∂
∫ 0=
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rms
for
(3.207)

In order to perform a similar estimation as in (3.153) for the interpolation te
we need some additional results for -functions which are given

example in [107]

(3.208)
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and for the first order derivatives along edges

. (3.210)

For the -interpolation which is required for the in plane displacement field
refer to the above mentioned results in (3.151) and (3.152). Introducing these
mates and applying the Cauchy-Schwarz inequality once more gives an ex
sion for an error estimator for the pure mechanical part associated to eac
ment  of the triangulation

(3.211)
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The first five addends describe errors introduced by the deviation of external l
from the computed loads and are thus closely connected to the element resid
the strong form of the differential equations of the plate problem. The first t
measures the difference between the bi-laplacian of the out-of plane displace
field from some imposed pressure difference or gravitational force. This elem
residual for single-layer plates consisting of an isotropic material reads

, (3.212)

D denoting the plate’s flexural rigidity, in terms o
Young’s ModulusE and the Poisson number , and the well known bi-lap
cian operator.

The sum over all internal edges measures the jumps of higher order field de
tives across edges. The first term in this sum considers the jumps of the
forces whereas the second one measures the jump error of the bending mo
Terms containing the in-plane displacement field take into account the jump
the stress couples. In those cases where all elements consist of the same m
stack, the terms involving the external prestresses only then do not vanish
the prestress tensor is non constant.

The last four terms measure errors introduced by the deviation of the comp
from the prescribed normal essential boundary values. In case there are non
ishing essential boundary conditions imposed on the in-plane displacement
the error estimator has to be extended accordingly. Finally, we obtain the g
error estimator, which is composed of locally computable error terms and req
only the computed solution and the known mesh as input data together wit
contribution stemming from the piezoelectrical effects

(3.213)

and yet is to be determined.
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Analogously to the purely mechanical part we analyze the natural boundary
ditions. Again, these re-arise in a natural way when partially integrating the v
ational form. Obviously, we can define an electrical current across the dom
borders

, (3.214)

being a part of the domain’s three-dimensional boundary andn therefore is
the three-dimensional surface normal. Moreover, we can specify a set of su
tractions and bending moments evoked by the inverse piezoelectric effect,

(3.215)

on a part of the boundary. We assume them to be zero, but in case these b
physically relevant they may be included into the error estimation as was dem
strated for the various natural mechanical BCs. The set stemming from the d
piezoelectric effect can be expressed as

. (3.216)

Each of the terms has the meaning of an electrical displacement applied on
of the domain boundary. Analogously to (3.201) we introduce the follow
abbreviations with which the exposition becomes clearer:

(3.217)

With that we only pick the piezoelectrical part of (3.185) and partially integrat
order to obtain

n χ̂ φ∇⋅ ⋅ h on Γe1=

Γe1

n2D π̂T φ∇⋅ ⋅ 0 and n2D zπ̂T φ∇⋅ ⋅ 0 and= n2D ∇2D zπ̂T φ∇⋅ ⋅ ⋅ 0==

n3D π̂ : ∇u( )S( )⋅ 0 and n3D zπ̂ : ∇∇w( )⋅ 0= =

σPφ π–̂
T

φ∇⋅= DPw π̂ :∇∇w=

DPu π̂ : ∇u( )S= DPφ χ̂ φ∇⋅=

eh v vh–( )= eh v vh–( )= eψ ψ ψh–( )= .
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To make clear whether we deal with 2D or 3D quantities we have provided
scripts for the appropriate symbols. In contrast to (3.202) the domain integra
here is partitioned into prismsP. Taking the sources and the fluxes into consid
ation results in

(3.219)

The interpolation estimates (3.151) and (3.152) also hold in three dimensions
that, after applying the Cauchy-Schwarz inequality in order to separate the i
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be used together with the Cauchy-Schwarz inequality for sums to yield an ex
sion similar to that of (3.153). The error estimator which finally can be identif
then reads:

(3.220)

such that the overall error estimation can be stated as

. (3.221)

The error estimator’s efficiency can be proved by the same methods whic
have used in section 3.3.3. It should be pointed out that the second adde
(3.220) vanishes identically because third order derivatives are acting on a t
ear polynomial which interpolates the electrical potential. Inspecting the add
that contain jumps of the according quantities across the prism-boundaries w
that -integration has to be taken over rectangles. When computing these
one has to take into account that the neighbouring layers usually are not jus
and therefore the integrands change as soon as another layer appears on eit
of the boundary when crossing the stack across the thickness. Figure 3.12
trates the situation by two opened prisms. Of course, managing this task is o
the software problems in this work which will be discussed in the next chap
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Figure 3.12Computation of jump terms across prism boundaries. The prisms
the finite elements covering the layerstacks of the device. For illu
tration, two neighbouring prisms are opened along the rectangul
edge which they share. Integration has to performed piecewise s
the jump quantities depend on both, the material properties and 
approximation functions. In this example, 4 different integrands ha
to be treated.
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4 OBJECT ORIENTED

IMPLEMENTATION

Making the theoretical results available in terms of a computer program is a m
task of this work. It is evident that assembling the various methods and tools
which to efficiently simulate microsystem components leads to a complex
ware system. Among the many software analysis and design methods the
oriented method seems to be the most appropriate for a flexible and exten
architecture of the simulator. This chapter describes the procedure with whic
numerical tools are merged into a stable and effective software tool ADAPTR

4.1 Object Oriented (OO) Analysis and Design

An object oriented view of the world of microsystem components, in contras
the traditional structured analysis, emphasizes the creation of real-world mo
According to [83], the method examines the requirements from the perspecti
the classes and objects found in the vocabulary of the problem domain. The
ucts of object oriented analysis (OOA) serve as the models from which an o
oriented design (OOD) might be started. Then, in turn, the design products c
used as schemes for completely implementing a system using object oriente
gramming methods (OOA). The software system developed here, ADAPTRE
implemented in C++.

The tool can be viewed as an entity of collaborating objects and each obje
associated, in the sense of the OO paradigm, to a real world microsyste
numerical or physical object. The names are given accordingly and a typ
example of an object is a physical field such as the temperature or the mecha
displacement field. A blueprint of an early stage OOA is sketched in Figure

Objects like partial differential equations and a geometry obviously hold a
position in the whole software system. We further assume that an object ca
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identified by having a state, behaviour and identity. These properties are de
in a class common to all objects of that type. The state of an object incorpo
all the static properties of an object and the dynamic values of these properti
property is an inherent characteristic, quality or feature that contributes to ma
an object uniquely that object. According to [83] the identity of an object may
defined as the property of an object which distinguishes it from all other obje
In order to avoid many kinds of errors in object-oriented programming such
the occurrence of dangling pointers, it is immensely important to retain contr
handling the objects’ identities properly.

An operation is a part of the behaviour of an object and represents its outw
visible and testable activity. In other words, it is some action that one object
forms upon another in order to elicit a reaction. As an example we conside
features of an object described in the class “field”. A physical field is active o
certain part of a device and it may adopt certain values. Moreover it has an ide
such as, temperature, electrostatical potential or mechanical displacement. A
may also act on other fields, due to coupling effects. Figure 4.2 represents a
diagram of the class “field”, a common graphical aid during the OOD phase

Figure 4.1 Blueprint of an early stage OOA. The objects are taken from the r
world problem domain.

Problem Domain

Microdevices Physics

Geometry

Structures

Materials

Fields

PDEs

Boundary Conditions
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Figure 4.2 An example class “Field”

The operations of a field thus comprise

• passing of the type

• obtain the field’s value at given device coordinates

• enforcing the coupling to an other field (other fields)

The individual data like the field’s type and the field’s value are stored inside e
instance or object of the class. The terms instance and object are used interch
ably as well as the terms message and operation. Message passing is one
the equation that defines the behaviour of an object; on the other hand the st
an object affects the behaviour of an object as well.

The purpose of identifying classes and objects is to establish the boundaries
problem at hand, namely a tool for controlling the accuracy of simulation res
Additionally, this activity is the first step in devising an object oriented decom
sition of the system under development. A parallel operation is dealing with
question of classification which is fundamentally a problem of clustering, tha
seeking to group things that have a common structure or exhibit a common be
iour. Classification helps us to identify generalization, specialization, and ag
gation hierarchies among classes. Modularization is the property of a system
has been decomposed into a set of cohesive and loosely coupled modules
property of the software system also can be viewed as a result of classificati

Field

type
value

GetType()

GetValue(coordinates)

Class Name

Data stored per

instance

Operations
CouplingTo(otherField)
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major difficulty when it comes to classification is the fact that a given set
objects may be classified in many equally proper ways. As an example we
sider the simple geometrical class of a tetrahedron. A question to be posed t
whether it shall be directly grouped with triangles and lines, since these are
simplicial geometrical objects and thus share a couple of properties, or, if it sh
preferably be grouped with other three dimensional objects such as prism
cuboids. A powerful tool of object oriented analysis is the description of sce
ios. It it closely related to identifying mechanisms between the different obje
the mechanisms are the means whereby objects collaborate to provide
higher level behaviour.

All these processes of developing software are done iteratively. At the begin
a system with a simplified architecture and only the most basic features is im
mented and tested. Then, new requirements turn up and are implemente
classes whereas existing ones are improved and so the first architectu
extended. The aim then is to iterate in order to conform the requirements at th
of the process. The next sections focus on the software system ADAPTREF i
including the classes, their relationships and their interactions in terms of the
abstract framework presented in this section.

4.2 Design of the simulator tool ADAPTREF

4.2.1 Overall structure

The software developed in this work either can be viewed as a stand alone m
serving as a geometry manipulating tool, or it can be used in conjunction w
numerical simulation tool such as a finite element tool. Figure 4.3 shows a p
ble application and how it may interact with other software systems. When u
it together with a mesh generator only, i.e. a software that generates a geom
mesh on a prescribed domain, it serves as a device with which to modify the
according to certain criteria such as, for example, the maximum size of each
constituent. Additionally, the software-system ADAPTREF emerges as a na
driver for finite element programs. The latter generally lack of the control of
accuracy of the computed solution of the physical fields. On the basis of
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numerical framework developed in chapter 3 we now are able to overcome
long existing incompleteness in microsystem simulation. Figure 4.4 illustr
how the software system ADAPTREF can be put over a finite element softw
Together with properly defined interfaces, its core operations consist of t

blocks:

• Error estimation of the solution computed by the FE-program

• Refinement strategy that manages the decision where the computational mesh ha
modified

• Split patterns which perform the geometrical modification of the mesh

The interfaces mainly serve as transfer gates for solution data and geometr
respectively. The architecture of the software system ADAPTREF is kept flex
such that it serves as a driver program for virtually any FE-tool or meshing too
soon as the interfaces can be clearly defined. Moreover, the application of AD
TREF is not restricted to the usage of numerical finite element programs, o
numerical solvers such as, boundary element tools, can be used as well. The
architecture in terms of classes and their collaboration is displayed in Figure
The notation for documenting the classes and their relationships are taken
[83]. A straight line represents an association between classes. In C++ this m
that in one class there is a reference of an object or an object is instantiated
value from the other class and vice versa. The full bullet represents the fac

Figure 4.3 Configuration of the global use-cases of the software system AD
TREF

FE-toolMesh-tool

ADAPTREF
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one class “has” an object of the other class, in the Booch terminology also kn
as aggregation. In C++ two classes are related by aggregation if one clas
stored an object of the other class by instance. The third relationship is illust
by an empty bullet and stands for the fact that one class uses another clas
class being used usually serves as a parameter of an operation of the other
Central to the system is the class Mesh describing the geometry of the ME
device and serving as a framework for numerical simulation of multi-phys
effects by a finite element tool. The mesh in turn is composed of a set of elem
by the notation introduced, there is an aggregation between the mesh and th
ments. Each element then uses an error estimator based on the numerical s
of a PDE that is generated by the FE-Application class. The error estimato
course, can not be set up without the knowledge of the PDE it corresponds
therefore uses the same PDE as the finite element application did before
refinement strategy and the split pattern classes associated to the mesh, ope
the latter in such a way that it is modified. The full understanding of what is h
pening during the application of an ADAPTREF run can be obtained when c
sidering an interaction diagram, sketched in Figure 4.10. Initially, elements
created such that a finite element mesh is set up representing the device geo

Figure 4.4 Using the software system ADAPTREF as an overhead to existi
finite element tools. Major operations consist of error estimation,
applying refinement strategies and applying split patterns. The m
significant interfaces consist of solution data transfer from- and m
data transfer to the FE-tool.
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Of course, material properties are assigned within the geometry but this oper
for clarity has been omitted in the figure. This point will be detailed later in sec
4.4. At the same time a finite element application is instantiated which calls
mesh and the PDE in terms of the type and the boundary conditions.

A run of the finite element tool is performed resulting in a set of solution d
which then are passed over to the mesh. This might be well substantiated s
one to one relationship between physical field values and the geometry can e
be established. The object PDE remains until the object error estimator ob
knowledge of the partial differential equation and the boundary conditions a
ciated to it (for simplicity we here assume the PDE to contain the boundary
ditions as well, effectively there is a separate class for each of them). In the
trary, the lifetime of the FE-Application ends as soon as the solution data
passed to the Mesh which in turn hands it over to each of its constituents.

Along with the destruction of the FE-Application comes the instantiation of
element error estimators which compute each element’s error value based
PDE and the approximated physical field values now attached to the mesh co
uents. The geometrical mesh data and the physical field data are separated
ferent classes as will be detailed below. Then, a refinement strategy obje
evoked, calling the elements’ error estimators and applying the informatio
their distribution to the mesh. In other words, regions within the mesh are ide
fied to have higher or lower error values and thus the local element error info
tion is made available globally. In the end of the cycle a SplitPattern is instanti
updating the old mesh by applying its geometrical routines to the mesh and
generating a modified one. The cycle may be repeated until a stop conditi
imposed. The major operations of the software system ADAPTREF sketche
Figure 4.10 are operations of the software system’s main object AdaptrefApp
tion itself. Figure 4.6 displays the class diagram and the example code of ho
apply the software on the highest level.

4.3 Mesh and Mesh Modification

The core of the ADAPTREF is the geometrical mesh and its constituents. We
have implemented simplicial elements and their extensions, that is, lines, t
gles, tetrahedrons and prisms although the overall structure supports the i
107
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mentation of any kind of polytopes in a straightforward manner. A design
been chosen to conform memory and speed requirements on the one hand
the other hand the need to make mesh modifying easy has been met. Figu
shows the class hierarchy and the class relationships. The head of the hiera
represented by the class ListItem, a vector-type structure needed to assu
access to the objects stored within the list. Moreover memory leakage is avo
if objects are stored in accurately defined blocks. A major issue when it com

the classification of the elements is how to ensure fast access to each single
and how to make the splitting of the geometrical object simple. By introducing
inheritance relationship between the two dimensional simplices, the triangle
rahedrons, and the parent class BinaryTree we are able to arrange the whole
in a binary tree structure. This in turn guarantees quick access to and gene
of new mesh hierarchies when bisecting triangles or tetrahedrons. The single
then are stored as list object such that a 2D or 3D simplicial mesh is repres
as a list of binary trees. The reason for choosing that combination of binary
and linear lists is closely related to the issue of keeping shape regularity o

Figure 4.5 Major classes and their relations of the ADAPTREF software syst

PDE

Error Estimator

Mesh

Element

Refinement Strategy

Split Pattern

n

FE-Application
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mesh as we have seen in Figure 3.4. A more general design would evoke the
tion of how to deal with constraints such as the interpolation on hanging no
which was discussed in earlier works [63], [84].

Matters are not as simple anymore when dealing with prismatic elements
simple bisection usually generates hanging nodes and thus a binary tree str
would be useless. For thin structure simulation we only have to handle one
ered prismatic meshes such that bisection of elements does not result in th
duction of hanging nodes. Supporting the axiom of re-usage of existing classe
have combined the classes triangle and prism without imposing an inherit
structure on the latter into a class SuperTriangle. It will later turn out that this c
is perfectly suited for the treatment of the mixed dimensional piezoelectric
active membrane structure where two dimensional triangles and three di
sional prisms are combined to form a single element. Of course, lower l

objects, such as Nodes and Edges are also stored in linear lists and these are
to the higher level geometrical objects by aggregation. To keep the illustra
clear, the aggregation relations for the tetrahedron have been omitted. Besid
relations of the geometrical objects sketched above we should point out that
has to be introduced another connection between certain objects in order to
form the mesh modification properly: these are the neighbouring relationsh
When splitting a simplex along its longest edge one or more neighbour simp

Figure 4.6 Highest level object and example high level source code applica

AdaptrefApplication

Refinement Strategy

SplitPattern

Read/Write(FE-Application)

Run(FE-Application)

RefinementStrategy myStrategy;
SplitPattern   mySplitPattern;

AdaptRefApplication myAppl(

myStrategy,
mySplitPattern);

myAppl.Run( FE-Application);
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have to be accessed in order to avoid the introduction of hanging nodes
number of neighbours of a triangle is limited to exactly one while in three dim
sions there is no limit for the numbers of simplices of a tetrahedron as show
Figure 4.11. Therefore the mesh constituents have to be designed to allow a
to all of their neighbours.

This is realized by assigning to each of the boundingD-1-simplices theD-simplex
itself, D denoting the dimension of the simplex,D=2,3. Each of the bounding (D-
1)-simplices thus has at least one and at most twoD-simplices depending on
whether it is on the domain boundary or not. Figure 4.10 shows the Booch n
tion of this important aspect of mesh representation. Note that a triangle’s ro

Figure 4.7 Class hierarchy and class relationship between major mesh con
ents. The arrow denotes inheritance relationship according to th
Booch notation. Aggregation relationships for the tetrahedron cla
are omitted for clarity reasons.

ListItem

BinaryTree SuperTriangle

Tetrahedron Triangle Prism

Edge Node
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4.4 Materials and Thin Structures

rves
ourse

3]. In
puta-
g the
po-

al
ial to
n-
rse is
he
en-
twofold: in the first case it is an element itself and in the second case it only se
as a part of the boundary of a tetrahedron. The operation GetTetrahedron of c
is disabled when the mesh is only two dimensional.

4.4 Materials and Thin Structures

The design of the material database basically follows the one described in [6
the case that other FE-simulation tools than FEMEngine are used as a com
tional kernel, an appropriate interface has to be implemented without changin
structure of ADAPTREF’s material database. Simulating microsystem com
nents requires the following tasks to be met:

• material properties are scalars or tensors

• one selected material usually has many properties

• modeling and simulation of thin structures requires support for multi-material layers

Figure 4.8 Class diagram displaying the relation of the simplicial geometric
objects. Since accessing neighbouring elements quickly is essent
the software tool ADAPTREF, not only are edges attached to tria
gles and are triangles attached to tetrahedrons but also the conve
true: depending whether the simplex under consideration is on t
domain boundary or not it is assigned one or two of the higher dim
sional one, respectively.

Tetrahedron

Edge

Triangle

GetNeighbour():Triangle

GetNeighbour(Edge n):Triangle

GetNeighbour(Face n):Tetrahedron

GetNeighbour():Tetrahedron

3

4

2 (1)

2 (1)
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The architecture of the material database is shown in Figure 4.9. The respon
ities of each class are:

Structure A structure is a composite material. Within a structure each m
rial component is assumed to be immobile with regard to the ot
materials, in other words, the components are supposed to
glued together. The main application of structures are multi-la
ered plates, membrane-like devices consisting of different ma
rial stacks with different thicknesses sandwiched together. T
class Structure contains a set of Material objects which can be
quested by the class user. Also the class offers information ab
component thicknesses and positions within the structure. A c
feature of the class is the computation of material tensor mome
of a certain order across its vertical dimension such that a mate
property can be returned as if the structure consisted of only
material.

Material This class is central to the material database. It is the represe
ofasinglematerialandcomprisesall thosepropertiesthathaveb
specified. In turn these properties can be accessed by the clas
er. An error is reported if for a given physical problem a certa
property has not been defined. A key feature of the material cl
is its ability to determine the reduced values of a specified pro
erty. This is required when dealing with thinstructures,aswes
in chapter 3.

MaterialPropertyType This is an enumeration type and is used to identify one parti
MaterialProperty such as heat conductivity or thermal expans
When requesting the value of a material property from a mate
object a MaterialPropertyType is passed to state the type of pr
erty that is requested.

MaterialPropery This class denotes the value of one particular property of the
terial. The associated MaterialPropertyType enables the use
the class to determine what kind of property this object is.

The material data are made available to the numerical error estimating modu
the elements. The elements are assigned either one particular material or on
ticular structure. It is also possible to extend the material database to environ
dependent material properties, for example a Young’s modulus which is tem
ature dependent [63].
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4.5 Fields and Boundary Conditions

A major difference between a common finite element tool and the softw
module ADAPTREF presented here is the fact that the mesh is dynamic in
latter case. An important aspect thus is how to prolongate persistent inform
from a previous mesh to a new one. To illustrate this we take the example
element which is split: Here the material properties of the new elements sim
obtain those adherent to the parent element. Or, consider, by way of illustrati
spatially defined source function, such as a heat source, which also has
present at the same spatial positions in a new mesh.

The situation is quite similar when it comes to treating boundary conditions
soon as a new node is introduced on the domain boundary the correct bou
conditions have to be assigned to it. This is easy when the new node’s old n

Figure 4.9 Class relationship of the material database. A material might poss
different material properties such as thermal expansion or therm
conductivity. A structure consists of a stack of different Materials
which each has a certain position within the stack identified by th
layerNumber. An element, the building block of a device geomet
may be either assigned a structure or a material.

Material Structure

MaterialPropertyTypeMaterialProperty

Element

GetProperty(MaterialPropertyType)

GetValues():Tensor

GetMaterial(layerNumber)
n

m

1

1 1
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bours share the same conditions for a given field (as a convention we assum
boundary conditions in many finite element tools are defined on nodes). Howe
things turn more complicated when the neighbouring old nodes do not shar
same conditions for a particular field, for instance the first one is assigned na
BCs whereas the second one has essential BCs. The management of difficul
that kind is left to the class Comp(utational)Node and its associates as illust
in Figure 4.12. A CompNode includes all the information the split pattern ne
to equip newly generated nodes with the new boundary conditions on the one
and with information concerning predefined regions a certain set of nodes be
to, on the other hand. It is noteworthy that, while the relation between the bo
ary condition class and the CompNode class is one to one, there is an aggre
between the CompNodes and the geometrical nodes such that several Comp
may be attached to one single node. This is because different boundary cond
associated to different physical fields are specified at the same geometrical
tion. In the following we give a listing of the individual class items and the ta
they have been assigned.

CompNode Derived from the expression computational node the class se
as an interface class between the persistent physical propertie
fined within specified spatial regions and the evolving me
structure. It it thus responsible for the correct prolongation
boundary data and information about regions a node may bel
to. Major operations consist of passing the field type and
boundary conditions the CompNode is linked with to the user
this class, mainly the geometrical split pattern.

Field An instance of this class denotes one particular physical field s
as the temperature or one of the displacement fields. A field is
to one related with a boundary condition and thus with a Comp
ode. For each node it has a defined value.

FieldType An enumeration type needed when a field is requested fro
CompNode object.

BoundaryCondition The class boundary condition represents the boundary v
specified for a given physical problem at a certain part of the d
vice geometry’s boundary. It is thus closely related to a set
nodes (in case the finite element tool requires BCs to be speci
at nodes) which are combined on their part in an object of
class Region. A boundary condition has one particular field ty
and it is aggregated to one region which means that all node
that region share the same boundary condition. Since it is c
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nected to exactly one field type the main issue of an object of t
class is passing the BC’s value.

BoundaryConditionType An enumeration type needed to decide whether we deal with
ural BCs or essential BCs for a given node. Neumann or Dirich
Boundary Conditions are BoundaryConditionTypes for instan
Some difficulties arise when introducing a new node into t
mesh in between two old nodes having different BoundaryCon
tionTypes for a given field. Natural conditions then are chosen
a default for the new node in case the edge’s first old node has
ural BCs whereas the second old node has essential BCs for a
en field.

Region The region class usually serves as a container for a set of n
which share some specific properties. It is not restricted to no
that share a certain boundary condition nor is it restricted to no
as such: also elements might be collected within an instance
this class. Creating new nodes and elements requires them t
assigned the regions (by the appropriate identifiers) in orde
provide a correct interface for the finite element application.

We finally want to point out that when new mesh constituents are generated i
split pattern all the important properties connected with boundary conditions
regional information are transferred automatically to the new nodes. This is
the split pattern not only uses the pure geometrical information of the node
as well has to be aware of the data which we collected in the CompNodes. Im
mentation of this procedure in a sophisticated way presented here thus releas
program end user from tediously writing program macros for the prolongatio
data, a common but poorly way in commercial software tools such as ANS
[35].

4.6 Error Estimators and Mesh Refinement

The main feature of the software system ADAPTREF is its ability to autom
cally modify a mesh describing a device geometry. The mesh modificatio
solely based on the optimization of the accuracy of the physical field to be c
puted. And at the same time, computational resources such as processor tim
memory requirements are kept at a minimum. This can only be achieve
exploiting the interaction of a system pillared by three classes, namely the re
ment strategy class, the split pattern class and the class responsible for sett
contributions to the element’s error estimator, denoted by Comp(utational)
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run
Figure 4.10Interaction diagram of the major objects used during a simulation
cycle. The lifetime of each object(s) is highlighted by an empty

PDE FE-Appl. Mesh Element(s) Error
Estimator
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Calls()
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ment. The latter class takes into account that an element has two sets of res
bilities: first, the element is the building block of the geometry of the device be
simulated. Second, the element is used as a finite element and thus it must p
for a convenient representation of finite dimensional function spaces.

While finite elements in the conventional sense require the support for shape
tions, we here only need a representation of polynomials of different orders.
means that an element, before some error can be retrieved, has to be equippe
solution data representing some field’s values by a finite dimensional functi
object, in our case, a polynomial. To one and the same geometrical element
might be attached several polynomials each representing a different physical
The polynomials and the operations that are in charge of setting up the elem
error contribution are collected in the class CompElement.

Disposing of element error values we are able to set up some refinement stra
a conception to decide where the mesh should be modified. Finally, a split pa
can be instantiated that performs the mesh modification from a geometrical
of view, see also Figure 4.10. Figure 4.13 describes the mechanisms with w
these classes collaborate. The responsibilities of each class are as follows:

CompElt This is the class which comprises the non- geometrical aspec
the finite element. In contrast to the conventional finite eleme

Figure 4.11Accessing neighbours of simplicial elements along a predefined e
(bold): An issue of OO software design.
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tools fields are just represented by polynomials which in turn a
reconstructed by the finite element definition and the field’s va
ues. This requires the solution of a linear system which is at m
21x21 for the highly sophisticated Argyris triangle. Moreover, a
instance of this class sets up the individual error contribution
the field it is (non-ambiguously) associated to. An object of t
class element has as many CompElts as there are fields def
for it. Thus, when calculating the element’s entire error contrib
tion each CompElt is requested to hand over its part. For instan
the CompElement “LinearTriangle” associated to the field Te
perature has to provide for the jump errors of the heat flux,

across the element interfaces. Each CompElt, independentl
which field it is associated to, has member functions that prov
for different differential operators acting on the functions whic
represent the field. The elements do not need to know of wh
kind the CompElts are, as an example of polymorphism, the c
rect operation for every CompElt is determined not until runtim
The class CompElt is a base class to its children classes ran
from linear tetrahedrons over to Argyris triangles to linear prism

RefinementStrategy An instance of the class RefinementStrategy operates on th
metrical elements and determines whether they should be spl
not. Usually this is done on the basis of an element error estim
computed by the CompElements. Of course, global strategies
allowed to be applied where no error estimator is require
Among others, a common strategy is the maximum strategy,
is done in the following way [46]: Suppose that for a given me
a solution and an error estimator for each element has been c
puted. Put

and split an element if where is a prescribed thres
old, . This strategy, applied iteratively, would continu
indefinitely. A halting condition is simple to add: stop i

. From heuristic arguments we know that among
partitions of a linear finite element discretization, that one is op
mal which equilibrates the error. I.e., the errors in all eleme
should be made equal. This can be achieved by the maxim
strategy. All different types of strategies are predefined by
program user and require the enum-typeStrategyType.

n κ Th∇⋅ ⋅[ ]
L

2
E( )

η: maxT S∈ ηT=

T ηT ζη≥ ζ
0 ζ 1< <

η ηaccept≤
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SplitPattern This class is responsible for the methods how to modify the m
from a geometrical point of view. The way in which the refine
ment process is performed, from a geometrical point of view, d
pends on the kind of elements present in the mesh. Difficult
arise from keeping shape regularity and from handling hang
nodes. Many rules have been established for the splitting of s
plicial mesh constituents, such as e.g. the “red”, “green” or “blu
refinement for triangles. We use a recursive algorithm for tria
gles which is based on the longest edge bisection. It has b
shown that only a finite number of different angles occur duri
the refinement process and therefore shape regularity is gua
teed [111],[112],[113]. The algorithm is shown in Figure 4.1
whereas the splitting of a 2D triangular patch is displayed
Figure 4.15. As for the RefinementStrategy a SplitPAttern has
be declared by the program user by an enum typePatternType.
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We would like to point out that a recursive split pattern has also been impleme

for tetrahedral grids, but here one has to encounter the difficulty that converg
of the algorithm is restricted to a small class of geometries the tetrahedron
embedded in, see [114]. This in turn means that the variety of such applicatio
limited. Nevertheless we present a thermal analysis of an elbow in the next ch
where the recursive split pattern for tetrahedrons has been applied.

Figure 4.12Information that has to be prolongated during the adaptive refinem
procedure is stored in a class called Comp(utational)Node. One
ticular geometrical Node may carry many different CompNodes
according of the numbers of the physical fields defined on it. A ma
task of the CompNodes is to handle the boundary conditions by en
ing them into the split pattern.

Field

CompNode Boundary Condition

BCType

Node Region

FieldType

Displacement
Temperature
E-Static Potential

Dirichlet
Neumann
Mixed

SplitPattern

m n

1

1 1 1

1

n
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Figure 4.13Relationships among classes representing the numerical core o
software on the one hand and the impact of the mesh manipulat
classes on the other hand. The generation of each element’s erro
mator is a nice illustration of an OO-feature called polymorphism: A
element does not need to know what special kind of CompElts it
dealing with, at run time each of them hands over its own contribut
to the total element error autonomously.
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SetUpErrorTerms
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:
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Figure 4.14Recursive refinement algorithm for triangular grids.

Figure 4.15The elementary mesh at the left consists of 4 triangles. The shade
angle is marked to be split along its longest edge. The longest ed
of each triangle are marked by thick lines in the center figure. Th
dashed lines at the right show how the recursive bisection algorit
produces new triangles, continuing through the neighbourhood u
a first edge can be split (in the worst case, this happens only when
boundary edge is reached), then backtracking. The boxed numb
label the order in which new edges are introduced on the return p
of the recursive algorithm (depth 4).

recursiveRefine(triangle_element)
{
      do
      {
               if neighbour has non-compatible
                refinement- edge

                      recursiveRefine(neighbour)

       }until neighbor has compatible refinement-edge

        bisect both triangles at the refinement-edge
}

12

3 4

56

7

Outer Mesh Boundary
Outer Mesh Boundary

Outer Mesh Boundary
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5 SIMULATION

This chapter is dedicated to present the areas of application of the software m
ADAPTREF. It serves as a tool with which to accurately simulate the phys
behaviour of microsystem components. Through its ability to perform auto-
rection in the sense that it adapts the computational mesh to the physical field
are desired, it relieves the MEMS designer of the burden of finite element m
design. Moreover, with this software at our disposal we overcome the gen
drawback when using common finite element tools such as [35],[36]. These
regard field singularities introduced by the mere shape of the device or such
are due to material interfaces. We demonstrate the action of ADAPTREF and
the accuracy controlled MEMS simulation procedure starting with thermal p
lems and closing with a piezo-electrically driven membrane problem.

5.1 Thermal Analysis and typical singularities

It is well known that simulation domains with concave corners give rise to fi
singularities [78],[2]. We will use this fact in order to provide an illustrative en
into what the adaptive finite element tool ADAPTREF is able to perform. We c
sider a general wedge shaped domain as sketched in Figure 5.1. We assum
there is no heat source within the domain and the Poisson equation describin
temperature distribution reduces to a Laplace equation for which we fix the
lowing boundary conditions:

(5.1)

Since for the function

Ω

∇ ∇T⋅( )– T∆– 0 onΩ r θ,( ): 0 r 1 0 θ φ< <,<≤{ }= = =

T r 0,( ) T r φ,( ) 0 0 r 1<≤= =

T 1 θ,( ) π
φ
---θ 

  0 θ φ≤ ≤sin= .
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(5.2)

the equation

(5.3)

holds for any we see, together with the boundary conditions, that the harm
function (5.2) is a solution to problem (5.1). However, difficulties arise when o
wants to approximate the temperature field by the governing PDE and the bo
ary conditions in the context of (3.68) where it was assumed that a bound fo
linear interpolation error is given by some -integral of the function’s seco
derivatives. In our case, the derivatives of the function considered become s
lar at the origin as soon as  exceeds the value of  since then

Figure 5.1 A wedge shaped domain for thermal analysis. The angle  is a v
able and thus the domain gives rise to field singularities in the ve
corner of the domain.
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with . Still, first derivatives are square-integrable and thus the function i
, as we saw for example in 3.1.2, but second derivatives are not square

grable anymore since

(5.5)

does not exist for values of  exceeding .

Although the a priori error estimation fails we can perform some a posteriori e
estimation for the poisson equation with a zero heat source according to 3
Since the interpolation functions which we choose are linear, the error estim
(3.155) only consists of terms involving jumps of the heat flux across elem
edges and deviations from the prescribed flux at the Neumann boundary

(5.6)

denoting the interpolated temperature field. One should note that this typ
error also could be interpreted as discontinuities of thermal fluxes, or when d
ing with an electrostatic problem, jumps of the electrical field which both are
bidden by the laws of physics.

Figure 5.3 displays the thermal analysis for a simple L-shaped single mat
geometry with different Dirichlet boundary conditions applied on the outw
edges and the inward edges respectively. The absolute values of the field gra
and thus the jumps of the thermal fluxes across element boundaries are disp
in the last row. The initial triangulation shows large jumps of the gradient va
between interelement borders. During the refinement process the gradient
field is smoothed and thus jump errors are reduced. Although some values
to be high we can state that the error contribution also takes into accoun
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dimension of the elements, see (5.6). Therefore, the connection between the
egy to equidistribute the element’s errors and the mesh refinement can be c
identified.

Another important type of singularities emerges when different types or value
boundary conditions meet. As an example we consider the polygonal bounda
some domain which has been assigned different boundary conditions: ess
BCs directly border on natural BCs at a given point of the triangulation. This
ficulty evokes the treatment ofopen setsin a mathematical sense since it wou
have no meaning specifying both naturaland essential BCs in one single poin
The matter becomes of a tremendous importance when it comes to the prol
tion of boundary data during the refinement process. Which type of boundary
ditions should be applied to newly created nodes,A, B as in Figure 5.2?

Figure 5.2 Singularities due to the coincidence of different BCs. According 
ADAPTREF’s convention the new nodeA will have the same essen
tial BCs as the corner nodes on the edge . The newly created n
B however, is assigned natural BCs, so the edge  is treated a
open set.

EA

essential BCs natural BCs

A B
EB

EA

EB
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The software tool ADAPTREF has an internal definition of open and closed
and rules how to treat them during the refinement process as we have deta
section 4.5. By default, natural boundary conditions always correspond to
sets unless otherwise stated. The reason simply is that natural boundary cond
enter the finite element formulation by an integral to be taken over the boun
whereas essential boundary conditions directly influence the finite dimensi
ansatz-space which is defined via the nodal values.

We illustrate this topic by a coaxial-shaped structure having constant temper
on the inner boundary circle and another constant temperature on the most p
the outer circle except a closure where no heat flux is allowed and thus hom
nous Neumann BCs apply, as can be seen in Figure 5.4. Besides the singul
caused by concave corners we can observe two other singularities at the
where different BCs meet. During the refinement process the temperature
gets steeper and steeper in the vicinity of the nodes under consideration. T
for the reason that mathematically the natural BC forms an open set that ex
to the essential BC node infinitely close. When looking at the triangulation of
simulation domains in Figure 5.4 we observe that the mesh quality impro
remarkably by means of the smallest angles which occur. This is due to the u
of the recursive splitting algorithm presented in Figure 4.14.

A recursive splitting algorithm is also used for adaptive mesh refinement in t
dimensions, displayed in Figure 4.11. The splitting procedure, however, is m
more complicated since for a given tetrahedron’s longest edge there might
arbitrary number of other tetrahedrons which form the neighbours at that g
edge. We present the results for the same thermal problem as we already
this chapter’s first example together with an extension into the third dimens
Here we have to deal with the difficulty that a part of the boundary is assigned
ural BCs although all of its corner nodes are determined to have essential
This is the case for the upper left triangular face being a part of the elbow’s t
mally insulated face as can be seen in Figure 5.5. Not surprisingly, major re
ment occurs at the re-entrant corner, or, more precisely, along the straight lin
represents the 3D-version of the concave corner. A major drawback when it c
to the refining of three dimensional simplicial grids is the fact that the recurs
algorithm presented in Figure 4.14 which is smart in the sense that it keeps s
regularity and avoids hanging nodes, only terminates for a small class of initia
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angulations [114]. One could overcome this difficulty by carefully choosing
initial discretization of the device. This can be achieved for example by em
ding the tetrahedrons into cubes which requires the rather restrictive decom
tion of the domain into equally sized cubes.

Another way how to handle the refinement of simplicial meshes in three dim
sions would be the enormously time consuming re-meshing of the whole de
geometry as it is done for example in [35]. With these considerations it come
handy that certain aspects of structural behaviour can be analyzed by usin
reduced two-dimensional thin plate model presented above.

5.2 Balancing error contributions

The choice of the finite elements has to meet the following fundamental req
ments:

• they have to be in the same space in which the variational problem is posed

• physical conservation principles must not be violated

When it comes to the simulation of thermo-electro-mechanically active thin st
tures one has to encounter the difficulty that on the one hand elements of cla
have to be used in order to match the conforming requirements of the Kirchh
Love plate model. This model is perfectly suited for very thin structure bend
behaviour and thus a priori avoids the locking phenomenon. On the other h
when using for example, the Argyris triangle, or the Bell triangle, first and sec
order derivatives are enforced to be continuous at the element nodes. Comp
the temperature field on a 2D domain by using the Argyris element -what wo
be breaking a fly on the wheel- therefore would enforce continuous temper
gradients which at a material interfaceMI would violate the principle of therma
flux conservation since there the relation

(5.7)

holds, , denoting the heat conductivities of the different materials. Never
less, the residual error estimator presented in the previous chapter can cop

C
1

κ1∇Th MI
κ2∇Th MI

≠

κ1 κ2
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5.2 Balancing error contributions
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Figure 5.3 Thermal analysis on a domain geometry with a re-entrant, conca
corner. Both columns display the interpolated temperature field a
projection of the field into the plane, a 3D graph, and a plot of the g
dient jumps across inter-element boundaries, from top to bottom.
left column represents the starting coarse mesh and the right colu
the highly refined mesh.
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Figure 5.4 Thermal analysis on a coaxial shaped domain. Besides singular
caused by concave corners the major errors occur in regions wh
different BCs meet. The adaptive procedure “resolves” these sin
larities as can be seen in the bottom right graph. To clearly display
temperature in the vicinity of one boundary singularity a part of t
refined mesh has not been displayed.
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5.2 Balancing error contributions
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errors introduced by elements which are too smooth. We demonstrate this
simple Dirichlet thermal problem where constant temperatures of 1K and 0K are
applied on the left and the right hand side of a rectangular 2D domain which

Figure 5.5 3D-thermal analysis of an elbow. Dirichlet BCs have been applied
the outer and on the inner boundaries whereas homogenous Neum
BCs apply on the back face and on the front face. On the left the ini
temperature distribution and the underlying coarse mesh is displa
On the right hand side the field and the corresponding tetrahedr
mesh after 9 refinement steps is shown.
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sists of two different materials and has a length of 2m. The exact solution is
sketched in Fig. 5.6

and is piecewise linear

. (5.8)

This exact solution can be obtained by linear triangular elements. Since fun
(5.8) is identical with the one sought in the VBVP (3.73) given by the biline
form

(5.9)

there is no difference between the weak solution and the approximated sol
and thus the error estimator vanishes.

Matters are different when this problem is approximated by the continuously
ferentiable Argyris triangle. As in (5.7), errors are introduced by imposing disc

Figure 5.6 Exact solution of a symmetric 2D thermal problem. The temperat
field’s gradient is discontinuous at the material interface.
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tinuous fluxes at the material interface nodes and across elements. The det
of the error and how the solution is improved is displayed in Figure 5.7.

Not only the temperature field itself but also the first order derivatives te
towards the exact solution during the refinement process. The thermal flu
which according to (5.8) are supposed to be constant over the whole domain
the temperature gradients are displayed for different refinement step
Figure 5.8. One should note that in the same way in which the continuous tem
ature gradient is attempted to be eliminated, the jump of the heat flux reduce
set of measure zero. The main error contributions in this case are inner ele
force deviations

, (5.10)

since, in contrast to linear elements, second order derivatives of the fifth o
polynomial do not vanish. These error contributions are displayed in Figure

Another example where physical continuity requirements are violated by
ments too smooth can be demonstrated by a cantilever, clamped at the left en

Figure 5.7 Temperature along a cross section of the rectangular domain inte
lated with smooth Argyris triangles. The left curve is obtained by
coarse grid and the right curve is the temperature after 10 refinem
steps.
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consisting of two different materials which is deformed due to a constant pres
difference acting in vertical direction. When computing the displacement field
conforming Argyris triangles, the imposed continuity of second order derivat
at the triangles’ corners results in discontinuities of bending moments that p
cally are not allowed. However, the adaptive mechanism of ADAPTREF base
residual error estimation tries to balance the errors caused by discontinuiti
order to yield the optimal solution. The displacement of the cantilever is displa

Figure 5.8 Temperature gradients (left) and thermal fluxes (right) along the r
angular domain’s cross section at . The curves display the fie
in the starting triangulation and after 5 and 10 steps, from top to b
tom. The initial thermal flux misleadingly is discontinuous and is
squeezed into the correct continuity in the refinement limit.

0.5 1 1.5 2

-0.8

-0.6

-0.4

-0.2

0.5 1 1.5 2

-1

-0.75

-0.5

-0.25

0.25

0.5

0.75

1

0.5 1 1.5 2

-0.6

-0.4

-0.2

0.5 1 1.5 2

-0.00035

-0.0003

-0.00025

-0.0002

-0.00015

-0.0001

0.5 1 1.5 2

-0.00025

-0.0002

-0.00015

-0.0001

0.5 1 1.5 2

-0.00035

-0.0003

-0.00025

-0.0002

-0.00015

-0.0001

∇Th x( ) κ∇Th x( )

y 0=
134



5.2 Balancing error contributions

ent
ps as
the
tion.
ppro-
yno-

cor-
. We
also
paces
o is
ent

for
tial
blu-
in Figure 5.10. The second order derivatives of the out-of-plane displacem
field are continuous whereas the corresponding bending moments have jum
displayed in Figure 5.11. In the limit of the adaptive refinement however,
approximated bending moments tend towards that of the local analytical solu
The latter, on a one dimensional domain can be obtained by imposing the a
priate boundary conditions and continuity requirements to a fourth order pol
mial which obeys a bi-laplacian equation. Its second order derivatives and the
responding bending moments are sketched in the last row of Figure 5.11
finally want to point out that besides the previously discussed singularities
those inconsistencies can be handled that originate from finite element subs
which are too smooth. Therefore the user of the software ADAPTREF als
relieved from the burden of thinking about the smoothness of the finite elem
polynomials as soon as conformity is guaranteed.

Figure 5.9 Inner element force deviations for the thermal Dirichlet problem 
different refinement steps. The error values are highest for the ini
mesh (reddish) and are reduced during the refinement process (
ish).
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5.3 Mechanical Analysis

Thin structures are central to micro-electro-mechanical systems. For examp
micromachined complementary metal oxide semiconductor (CMOS) Ato
Force Microscope (AFM) beam [85], formed from the dielectric layers and so
silicon, undergoes minute deflections. The stress caused by the deflectio
detected in piezo-resistors at the beam’s base. A typical example of thin struc
widely used in MEMS-technology is given schematically in Figure 5.12. Mu
physically active thin structures here are fabricated by a CMOS process tog
with an etching step in order to release the beam or the membrane stru
[86],[87].

Figure 5.10Deflection of a beam consisting of two materials which is clamped
one side. The computation of the deflection is made on the mes
obtained after the 14th refinement step. The table shows the cor
sponding material properties.
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Figure 5.11Second order derivatives of the out-of-plane displacement field ix-
direction along a cross section of the cantilever at , left, in t
0th, 5th and 14th refinement step and the analytical result, from 
to bottom. The right column represents the corresponding bendi
moments.
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Typical layer thicknesses of the different layers are summarized in Table 5.

Table 5.1 Typical thicknesses of layers resulting from a CMOS process.

Thicknesses of the oxide layers typically vary between . The resul
thin plate structures to simulate then have an aspect ratio of the order of w
assuming a lateral dimension of the same order of magnitude in microns.
mechanical deflections are in the order of the thickness and thus the linear
model presented in chapter 3 fits excellent [27]. In the following we are goin
examine the accuracy control for different deformation behaviour of such m
layer structures.

Figure 5.12Schematic view of a released beam/membrane structure fabricate
a CMOS process together with an etching step.
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5.3.1 The stretched membrane

As a first example, we consider a homogenous single-layered rectangular m
brane which is partly prestressed in its center region. Fig. 5.13 shows

deformed structure modeled by the initial triangulation and the same struc

Figure 5.13Exaggerated deformation of a membrane together with the x-com
nent of the in-plane displacement field . The membrane is un
constant horizontal surface traction at the left and the right side of
structure, before (left) and after (right) 13 cycles of adaptive mes
refinement. The upper and lower edges are completely free. The
center region is under tensile prestress. Significantly refined regi
are visible at the transition from the prestressed to the non-pre-
stressed region and where the vertical constraints are applied.
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after 13 mesh refinement cycles. Constant surface traction is applied on the
and left boundary of the membrane (note that the surface in our flat mod
reduced to a one dimensional line) and no load acts in the vertical direction. S
the structure is single-layered, all error terms appearing in (3.211) which inc
first order moments of the reduced elastic constants or prestresses, such
example

(5.11)

identically vanish. This is because the first order moments are obtained by
grating an odd-ordered function over a transverse domain centered at the z-
tion’s origin. Moreover, as there is no force which causes the out-of-plane
placement to be nonzero, all terms involving the vertical displacement va
identically. So we are left with terms which contain only derivatives of the
plane displacement field contracted with zero order moments of the elas
tensor and the jumps of the zeroth order prestress:

(5.12)

Taking into account that the horizontal displacement field is interpolated by
Argyris-polynomials and thus is continuously differentiable in the dom
( ) no jumps along interior edges occur. The only non-vanishing e
contributions in this case then are in-plane bending errors in the element inte
and these decrease when we move from the starting coarse mesh to the le
refined mesh, see Fig. 5.14.

The errors due to deviations of computed boundary values from prescribed v
at natural boundaries (situated at the top and the bottom of the membrane
shown for mesh level 0 and 9 in Fig. 5.15. The errors due to jumps across the
stressed zone edges are shown in Fig. 5.16. The decrease of the total error
is the sum of the single contributions) during the refinement process is illustr
in Fig. 5.17.
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5.3.2 Fully clamped membrane

Error contributions due to different material stacks and inconsistencies in app
imating the out-of-plane displacement field are best demonstrated when a t
verse pressure difference acts on a fully clamped membrane. The membran
sists of different material stacks which, for simplicity, we assume to be single-
ered to make the first order moments of the in-plane tensors vanish. Slig
modified, this material configuration is often found in pressure sensor ME
[90]. Fig. 5.18 shows the deformation of the membrane before and after 14 re
ment cycles.

The in-plane displacement is assumed to be zero. Thus terms in (3.210) w
contain are neglected. Since no prestress is specified, the corresponding

Figure 5.14Reduction of inner-element in-plane bending moment errors dur
the refinement process. For each triangle we assign one error co
of the specified quantity. Red shading denotes high error values
whereas bluish denotes zero element errors. The adapted mesh p
the right clearly shows the tendency of the refinement strategy t
equilibrate the element errors when combined with the other err
contributions. For clarity only a part of the underlying mesh is di
played.

uh
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also vanish. We are left with terms involving second order moments of the e
ticity tensor contracted with the derivatives of the transverse displacement

Figure 5.15Decrease of stress-couple errors across element edges up to re
ment step 9. For each triangle we assign three error colours locate
the triangle's edges and representing the jumps of the specified q
tities across the edge. Here, only errors at the non-essential bou
aries are non-zero.

Figure 5.16Decrease of prestress jumps along the transition region of prestre
the non-prestress part of the membrane up to refinement step 9
each triangle we assign three error colours located at the triangl
edges and representing the jumps of the specified quantities ac
the edge. Here, only errors at the transition edges are non-zero 
dish).
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Clearly, contributions from edge-jumps of the bending moments and the s
forces (which physically are not permitted and hence spurious) are biggest i
region where the different material stacks meet. The error terms we are req
to include are the element force deviations,

(5.13)

and the bending moment jumps and shear force jumps:

(5.14)

Fig. 5.19, Fig. 5.20 and Fig. 5.21 show these contributions at the start and fo
refined mesh after the specified number of adaptivity cycles. The decrease o
computed energy error estimator during the adaptivity cycles is show
Fig. 5.22.

Figure 5.17Decay of the total estimated error during the refinement process
the partly prestressed membrane of Fig. 5.13.
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Figure 5.18Exaggerated deformation of a single-layered membrane consistin
two different materials under constant vertical surface pressure
before (top-left), during, (top-right, step 5; bottom-left, step 9) an
after 14 refinement cycles (bottom-right). Major refinement occurs
the material transition interface. We should note that the displac
ment field is interpolated by -functions whereas the graphical
interpolation is linear.

Figure 5.19The fully clamped membrane: Inner element force errors in the st
ing coarse mesh and after a refinement iteration of depth 14.
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5.3.3 Double-layer stretched membrane

The third example serves to demonstrate the influence of the coupling of in-p
displacement and out-of-plane displacement fields on the solution errors.
only occurs for multi-layered structures, due to the fact that only then do first o
moments of stresses take on non-zero values. As in the first example, a mem
is subjected to constant surface traction at two opposite boundary edges. A d
layer structure is embedded in the membrane (see Fig. 5.23).

Figure 5.20The fully clamped membrane: Errors due to discontinuities of sh
forces along element interfaces. After the 14th refinement step jum
in the inner region are almost extinguished (greenish).

Figure 5.21Reduction of the bending moment errors. These are largest at th
material transitions in the starting coarse mesh and remain so in
refined mesh.
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Here, the out-of-plane displacement does not vanish and we are left with the
lowing contributions: inner-element deviations of the computed forces from
prescribed forces where the latter are zero for both the transversal and horiz
displacement fields

(5.15)

and the sum of the jump terms

(5.16)

Figure 5.22Reduction of the total error of the clamped membrane. The erro
displayed versus the number of elements during the refinement 
cess.
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As mentioned before, terms involving first order derivatives of the in-plane
placement field only then do not vanish, when material properties across elem
change. Jumps of first order moment stress-couples, i.e.,

(5.17)

obviously only exist along the layer-stack interface. Exemplarily we show so
terms contributing to the total error of the FE-approximation of the field
Fig. 5.24 and Fig. 5.25.

Figure 5.23Exaggerated deformation of a membrane with a double layer str
ture embedded in the center region. While the in-plane displacem
is small and is hard to distinguish in the figure, we clearly see th
out-of-plane displacement occurs in both the positive and the ne
tive directions.

n A1: uh∇( )S[ ]⋅
2

L
2

E( )
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5.3.4 Comparison of uniform and adaptive Refinement

In this section we demonstrate how valuable in terms of computational resou
that is to say, memory requirements and computational time, the error ada
procedure is. We thus compare the estimated error for a mesh that is unifo
refined, such that all elements present in the mesh are of the same size, and
that is adaptively refined to gain a better accuracy. The BVP under consider
is a membrane-like structure consisting of two different material stacks, the s

Figure 5.24Error of inner-element bending moments. Contributions in the sa
regions decrease at a similar rate, from reddish to greenish.

Figure 5.25Bending moment error contributions due to the coupling of the in
plane and out-of-plane fields. The only contributions occur wher
first order moments of the elasticity tensor exist. The highest co
butions occur in the regions where second order derivatives of th
displacement field are highest, also see Fig. 5.23.
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located in the center of the device. A surface traction is applied on the left an
right hand side both of the same magnitude but different directions. The uppe
the lower side of the membrane are completely free. Figure 5.26 shows the m
of uniform refinement and the adaptive refinement together with the defor
domain. The left column displays three adaptive meshes during the refine
cycle whereas the right column shows the membrane deformation with under
uniform meshes. Even though in each row the number of elements are app
mately the same for both the uniform and the adaptive refinement, the estim
error values corresponding to each mesh vary considerably, see Figure 5.2
also see from that figure that in an early stage of the adaptive refinement pro
the results are much more accurate as if a uniform mesh with the same num
elements had been taken.

5.3.5 AFM-Beams

We demonstrate adaptive mesh refinement on two atomic force micros
(AFM) cantilevers [116],[117]. The basic operation of an AFM is dependent
the atomic forces that are exerted on the tip of a probe being sufficient to c
measurable deflection of the cantilever on which the probe is placed. Cantile
for this purpose arise in a great variety of shapes [85], [91], [92]. Rectang
beams or cantilevers in simplified models, that is, only considering horizont
isotropic material properties, still are accessible by analytical solutions, eve
the case of piezoelectrically sensing and actuating thin MEMS devices [33]. C
plex geometry and horizontally non-homogenous material properties excee
capabilities of the analytical approaches by far and even highly sophisticated
mercial simulation software tools do not allow for appropriate consideration o
singularities of the computable (weak) solution.

A widely used atomic force microscope cantilever or beam which we cons
here is V-shaped and reported of in [91] and [92]. The starting material is a
wafer, which is a buried oxide wafer. Fabrication of the AFM cantilevers w
integrated Piezo-Resistive sensors consists of KOH etching of the SOI sub
in order to create a membrane, where the AFM cantilevers will be located. A
the Piezo-Resistive are implanted on the cantilevers, the back thin silicon fil
removed by reactive ion etching. Finally, the AFM cantilevers are release
buffered HF etching silicon dioxide on the cantilever and in the SOI wafer s
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Figure 5.26The deformation of the doubly stretched membrane computed b
varying triangulations. Below the initial meshing the adaptive me
is shown in the left column for 220, 1176 and 3208 elements. Th
right column displays the uniform refinement for 288, 1250 and 32
elements. Although in each row the number of elements is appro
mately the same, the estimated energy error differs considerably,
Figure 5.27.
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that a typical cantilever thickness of results. The cantilever’s typi
dimension is about 200 microns length and 80 microns width. Many efforts h
been made to accurately model the mechanical behavior of such cantilevers
but lack of generality in case more sophisticated geometries will be designe

We have simulated the bending of the probe which is subject to a vertical f
and clamped at the beam’s ends. Fig. 5.28 shows the exaggerated deflection
beam computed on the initial mesh as well as that computed on a mesh af
refinement steps.

Another AFM cantilever which we consider here is presented in [85]. It is fa
cated in CMOS-technology and consists of a one micron thick silicon dioxide
silicon nitride bi-layer. The cantilever is typically ca. long an

wide. We have again simulated the bending of the probe, which is s

Figure 5.27Comparison of the error reduction for uniform and adaptive refin
ment for the bi-material structure under tension. Already at early
stages of the refinement cycle the adaptive procedure shows its
advantages.
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ject to a vertical force in the tip-region and is clamped at the beam’s e
Fig. 5.29 shows the bending behaviour and the error reduction for the in
coarse mesh (134 elements) and the refined mesh consisting of 266 eleme

Figure 5.28Exaggerated deflection of a V-shaped AFM tip computed by the
tial mesh and after a refinement of 26 cycles. Major singularities
occur at the re-entrant corner and at the free boundaries. Below
error distribution of the overall error is displayed.

5050µ µ
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Figure 5.29Reduction of inner-element force errors (purpled) during the refin
ment cycle. Re-entrant corners and the clamped part of the beam
identified as regions where highest errors occur (red). The strate
equidistributes the error over the mesh. The total estimated erro
plotted versus the number of elements.
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5.3.6 A thermo-mechanical cantilever

A main operation principle for thin structure MEMS devices is that of a therma
actuated beam [93]. Usually the beam represents a multi-layer, or multim
structure which is clamped at one end. When heated it bends into the ve
direction by virtue of the different thermal expansion coefficients of each la
This becomes clear when inspecting equation (3.118), which can be recast,
the non-linear remainder and the piezo-electrical influences are neglected a

(5.18)

Allowing only vertical displacement and assuming that no external force act
the structure, we can rewrite (5.18) as

. (5.19)

The temperature difference, , together with the thermal expansion only
do not vanish if their first order moment across the thickness exist. The sma
structure to fulfil this condition is, as expected, a bimorph. Alternatively, when
temperature difference is not due to an additional VBVP, the term ca
viewed as some external prestress caused during the fabrication process. W
onstrate the case of a widely used bimorph structure that is clamped at one
meaning the essential boundary condition

, (5.20)

and which adopts a temperature distribution decreasing linearly from the clam
end to the other as displayed in Figure 5.30. As a typical physical dimensio
chose as length and an overall thickness of two microns for each laye
this way a thermomechanical actuator can be modeled that is heated in the r
of the beam’s clamped end. The adaptive procedure here takes into account
due to jumps of shear forces and bending moments as well as inner element
deviations. The errors caused by jumps of the heat fluxes across element b

A0: ∇u( )S A1: ∇∇w– α̂∆T( )0+ ∇v( )S( , )

A1: ∇u( )S A2: ∇∇w– α̂∆T( )1+ ∇∇v( , )–

f 0 v,〈 〉 f 1 ∇v,〈 〉– g0 v,〈 〉+= .

A2: ∇∇w α̂∆T( )1+ ∇∇v,( ) 0=

∆T α̂

α̂∆T( )1

w n ∇w⋅ 0= =

200µ
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aries are identically zero since the temperature field decreases linearly from
left to the right beam’s ends.

We display the decrease of the shear force errors during the refinement cy
Figure 5.31, where as well the elements’ stored energy  in terms of

(5.21)

is shown, which during the refinement cycle approximately remains cons
independently of the elements’ sizes. As can be clearly seen, the major refine

Figure 5.30Deflection (exaggerated) of a thermo-mechanically actuated rec
gular flap and the linear temperature distribution.
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∆T 20K= ∆T 0K=

200µ0
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occurs at the clamped end of the structure whereas at the opposite end up
24 no new nodes are introduced.

5.3.7 A piezo-electro-mechanical membrane

A wide range of micro-electro-mechanical systems use piezo-electrically a
components as their sensing or actuating elements [89]. We simulate the co
electrical and mechanical behaviour of a circular membrane which is clamped
which has a piezo-electrically active layer on top of it. Among others, the work

Figure 5.31The mechanical energy (left) does not vary remarkably during th
refinement process whereas the reduction of the shear force error
be observed in the right column.
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Step 24
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principle might be that of a pressure sensor or that of a pump when used as an
ator. This could be realized by applying different electrical potentials on the
and on the bottom of the layer as sketched in Figure 5.32.

In many applications the piezo-electrically active layers are of the6mmcrystal
class such as, for example, ZnO or PZT-4. The unreduced, three-dimens
piezoelectric tensor , given in units of , then has the form

(5.22)

where we have used the engineering notation (2.34) for the last two indices o
third rank piezo-tensor. When also taking into account the numbers of non-
and independent elastic coefficients for the crystal class under consideration
Figure 2.1., the tensor reduction (see A.2) yields a piezoelectric tensor that
has two independent components, which finally turn out to be identical s

,

Figure 5.32Boundary conditions for a circular membrane actuated by a piez
layer on top of it.

φ 60 V=

φ 0 V=
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, (5.23)

denoting the components of the reduced elastic tensor. The membrane’s
mation behaviour is shown in Figure 5.33.

Figure 5.33Exaggerated deformation and vertical displacement of a membr
which has a piezo-disc on top of it. The principle of actuation is d
to a potential difference between the top and the bottom surface.
left column shows the results for the starting coarse mesh while 
right column represents the results after a refinement of 12 step
Prisms, where the electrical field is interpolated on, are shown s
matically.

π̂
0 0 0

0 0 0

d31 A11 A21+( ) d31 A( 12 A22)+ 0

=

Aij
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Errors according to (3.220) are biggest where the two different layers meet a
the membrane’s center. Exemplarily we have displayed two types of the e
which occur in (3.220). The element force errors shown in the left column
Figure 5.34,

(5.24)

together with other errors involving the out-of-plane displacement represen
principal contribution to the total estimated error, varying with the struct
parameters such as the magnitude of the BCs, material properties, or the
thicknesses. The contributions due to the stress caused by the inverse piezo
tric effect,

, (5.25)

generally are smaller. We should, however, mention, that these only do not v
where the structure has more than one piezoelectrically active layer, namely
center region. Although the potential’s gradient does not vanish identically
side the center circle, no jumps of the quantities of (5.25) have to be encoun
there since the bottom-layer’s piezo-tensor is assumed to vanish identically
contributions of the direct piezoelectric effect are identically zero in the case
deal with the hexagonal crystal symmetry class6mm.The error contributions due
to the direct piezoelectric effect are of the general shape, see (3.220),

(5.26)

where either denotes the three-dimensional divergence operator or the
dimensional face normal vector. Derivatives of the in-plane or the out-of-pl
displacement fields are abbreviated by with the common two-index nota
[20], greek indices ranging from one to two, latin indices ranging from one
three. Then, since the only non-vanishing components of are in its last
(5.26) is zero for two possible reasons: either the prism’s horizontal face norm
z-component vanishes or the electrical displacement does not depe

∇ ∇ σ⋅ w2( )⋅ 2

L
2

T( )
hT

4

n[ 2D π̂T φ∇⋅ ]⋅
2

L
2

E3D( )
hE

4 n[ 2D σPφ ]⋅ 2

L
2

E3D( )
hE

4
=

Ξ3D π̂ υ⋅ ⋅ Ξ3D π̂iαβυαβ⋅=

Ξ3D

υαβ

π̂
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the z-coordinate and thus its partial derivative represented by vanishes
tically.

Figure 5.34Error distribution for the clamped piezo-electrically actuated mem
brane. The left column shows the reduction of the inner-element fo
errors, a purely mechanical contribution, whereas the right colum
shows how the error due to the stress jumps caused by the inve
piezoelectric effect are reduced.
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6 CONCLUSION AND

OUTLOOK

Finite element (FE) models and tools enable the MEMS designer to analyz
thin structures’ physical behaviour even for complicated device geometries. H
ever, singularities arising from different natures deteriorate the quality of
approximated solution fields and thus a method to control the accuracy is h
desirable.

We have presented a method implemented in the tool ADAPTREF with which
can accurately simulate the thermo-electro-mechanical behaviour of prestr
multi-layer structures by minimizing the error at a minimum of computatio
cost. Based on a sound functional analytical framework, a thin plate model is
which covers thermal, electrical, mechanical and their coupling effects in
multi-layered structures.

The aim of controlling the accuracy was to find, for a given choice of a FE-Mo
i.e a geometry and a load case, together with several kinds of boundary condi
an adapted mesh whose error is reduced to a minimum. We therefore ap
residual error estimation techniques to the weak form of the coupled plate e
tions in order to get the several error contributions mainly consisting of inner-
ment force residuals and jumps of stress couples, bending moments and
forces across element edges when only mechanical analysis is desired. In
thermo- or electro-mechanical actuated thin structures are under conside
other sources of errors have to be taken into account such as jumps of heat
or jumps of the electrical displacement. We have shown how these different
tributions influence the way in which the mesh is refined. The decrease of the
mated energy error proves the reliability of the theoretically derived error est
tion. A maximum strategy is used for all meshes treated, by which we aim
reduce the computational error by equidistributing it over the whole structur
recursive refinement algorithm turned out to be most efficient to split both t
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ential
dimensional (2D) and three-dimensional (3D) simplicial elements from a geo
rical viewpoint in order to preserve shape regularity and to avoid hanging no
The software tool ADAPTREF allows of treating mixed 2D and 3D finite e
ments at one time which are required to adequately simulate piezo-electri
active MEMS. The performance of the method developed and implemente
demonstrated for several thin multi-layer structures under different thermo-e
tro-mechanical load cases such as, for example, micro-machined AFM-bea
piezo-electrically driven micro-membranes.

The main driving force behind choosing the object-oriented approach for
architecture of the tool ADAPREF was to guarantee that it could be flexi
extended to a wider range of applications. Since its basis is formed by purely
metrical objects which can operate independently, virtually any numerical me
based on domain discretization is suited to be used in conjunction with AD
TREF in order to improve its performance. First, the variety of the polyhedro
or polygonal mesh constituents could be easily increased. This in turn evoke
new splitting techniques are implemented. Another challenge is the extensi
the handling of time dependent and non-linear problems where also mesh c
ening techniques are required and the hierarchical mesh data structure can b
re-used.

Another extension would be to provide interfaces to the most common com
cially used finite element tools which in general do not dispose of methods to
trol the accuracy. As soon as the command structure, the physical models, th
ment types and the solution output data structure of the program are kn
ADAPTREF could be accordingly extended.

The task of adding physical models probably is the most frequent reque
microsystem designers. Therefore, a scheme has to be provided how to add
differential equations to the system. Since all the physical fields are represe
by functions with a finite dimension, all the desired information can be m
available just by implementing the type and the order of the discrete functions
the polynomial order, and the kind of differential operators the field obe
Hereby a great amount of re-use of existing code is assured since many differ
operators acting on many kinds of fields are already available.
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APPENDIX

A.1 Tensor operations

In this thesis, we confine ourselves to the common notation for quantities th
the engineering language are denoted as tensors. The operations come in a
size when using the notation of [96]:

Operation Definition

Contraction

Double contraction

Tensor Product

Transposition

Symmetrization

Gradient

Divergence

 inner product

A B⋅( )i…jl …m Ai…jkBkl…m
k
∑=

A: B( )i…jm…n Ai…jklBklm…n
kl
∑=

A B( )i…jk…l Ai…jBk…l
kl
∑=

AT( )ij Aji=

AS( )ij Aij Aij+( ) 2⁄=

∇A( )ij …k ∂i Aj…k Aj…k i,= =

∇ A⋅( ) j…k ∂i Aij …k
i

∑ Aij …k i,
i

∑= =

L
2 Ω( ) Ai…jBi…j

i…j
∑ xd

Ω
∫
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A.2 Tensor Reduction for Plates

For reasons of symmetry, the stress tensor has only six independent compo

(A.1)

that can be arranged into two three-dimensional vectors

. (A.2)

Also for the strain, its six independent components

(A.3)

can be arranged into two three-dimensional vectors

. (A.4)

Consequently, the 21 independent components of the elastic tensor c
arranged into four three-dimensional matrices

σ
σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

=

σ̂1

σ1

σ2

σ6

= σ̂2

σ3

σ4

σ5

=

ε
ε1 ε6 2⁄ ε5 2⁄

ε6 2⁄ ε2 ε4 2⁄

ε5 2⁄ ε4 2⁄ ε3

=

ε̂1

ε1

ε2

ε6

= ε̂2

ε3

ε4

ε5

=

Cij
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(A.5)

relating the vectors  with the vectors :

(A.6)

In case is composed of mechanical stress and thermal stress (thermal exp
tensora given in units of 1/K) we have

, (A.7)

or

. (A.8)

The Kirchhoff-Love theory requires that

(A.9)

such that (A.8) yields

(A.10)

or,

C11

C11 C12 C16

C21 C22 C26

C61 C62 C66

= C12

C13 C14 C15

C23 C24 C25

C63 C64 C65

=

C21

C31 C32 C36

C41 C42 C46

C51 C52 C56

= C22

C33 C34 C35

C43 C44 C45

C53 C54 C55

=

σ̂i ε̂ j

σ 1 2,( )
σ . , 3( )

C11 C12

C21 C22

ε̂1

ε̂2

=

σ

σ 1 2,( )
σ . , 3( )

C11 C12

C21 C22

ε̂1

ε̂2

â1

â2

∆T–










=

σ 1 2,( )
σ . , 3( )

C11ε̂1 C12ε̂2+

C21ε̂1 C22ε̂2+

C11a1 C12a2+

C21a1 C22a2+
∆T–=

σ . , 3( ) σ33 σ23 σ13, ,( ) σ3 σ4 σ5, ,( ) 0= = =

C21 ε̂1( a1∆T )– C22a2∆T– C22ε̂2–=
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. (A.11)

Inserting this relation into the plane stress  yields

(A.12)

where has been defined as and the reduced elasticity tensorA as (the
3x3 matrix)

. (A.13)

For an isotropic material, the elasticity tensor can be expressed in terms o
Lamé constants such that

. (A.14)

When introducing the piezoelectric charge constants (u
) as

(A.15)

the situation is similar since the stress then is given in terms of

ε̂2 a2∆T– C– 22
1– C21 ε̂1( a1∆T )–=

σ 1 2,( )

σ1 C11 ε̂1( a1∆T )– C12 ε(ˆ 2 a2∆T )–+=

C11 ε̂1( a1∆T )–= C12C22
1– C21 ε̂1( a1∆T )––

C11 C12C22
1– C21–( ) ε̂1( a1∆T )–=

:A ε̂1( a1∆T ) :A:ε̂ α̂∆T–=–=

α̂ α̂ Aa1=

A C11 C12C22
1– C21–=

A

A1111 A1122 0

A2211 A2222 0

0 0 A1212

4λµ 4µ2
+

λ 2µ+
-------------------------- 2λµ

λ 2µ+
---------------- 0

2λµ
λ 2µ+
---------------- 4λµ 4µ2

+
λ 2µ+

-------------------------- 0

0 0 µ

= =

d d̂1d̂2[ ]=

C N⁄ m V⁄=

d̂1

d11 d12 d16

d21 d22 d26

d31 d32 d36

= d̂2

d13 d14 d15

d23 d24 d25

d33 d34 d35

=
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. (A.16)

The relation for the plane stress analog to (A.12) then reads

(A.17)

having defined the reduced piezo tensor as

. (A.18)

The equation for the electrical displacement uses reduced quantities, too:

(A.19)

where the piezoelectric charge constants are related to the piezoelectric
coefficients  by

. (A.20)

Introducing the relation for the strain obtained from (A.16) by the requirem
that  vanishes turns (A.19) into

(A.21)

such that the dependence is only on . Further calculation yields

, (A.22)

which, when defining

σ1

σ2

C11 C12

C21 C22

ε̂1

ε̂2

d̂1
T

d̂2
T

E–
 
 
 
 

=

σ1 A ε̂1( d̂1
T

E )– A:ε̂ π̂T
E⋅–≡=

π̂T
Ad̂1

T
=

D d̂1 d̂2

C11 C12

C21 C22

ε̂1

ε̂2

χE+=

π

π d: C=

ε̂2

σ2

D d̂1 d̂2

C11 C12

C21 C22

ε̂1

C( 22
1– C21d̂1

T
d̂2

T
)E+ C22

1– C21ε̂1–
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(A.23)

can be recast into

. (A.24)

χ̂ d(ˆ 2C22d̂2
T

d̂2C21d̂1
T

) d(ˆ 1C12d̂2
T

– d̂1 C11 A–( )d̂1
T

) χ+ + +≡

D π̂ ε̂⋅ χ̂ E⋅+=
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2D two-dimensional

3D three-dimensional

Reduced elastic tensor

thermal expansion tensor

AFM atomic force microscope

BVP boundary value problem

set of complex numbers

space of functions ofm-fold continuously differentiable
functions in domain .

heat capacity at a constant value of

4th rank elasticity tensor

C++ C++ programming language

CMOS complementary metal-oxide semiconductor, a logic fam
ily and the related process technology

electrical displacement

flexural rigidity of a plate

piezoelectric strain coefficients, usually in units of .

electric field

, , internal enrgy, energy eigenvalues, energy eigenstates

Young’s modulus
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density of the Helmholtz free energy

prescribed shear force

body force density vector field

heat source

FEM finite element method

surface electrical displacement

, simplex diameter, edge length

Hamiltonian, Hamilton operator

Sobolev space of order  on domain .

IC integrated circuit

stiffness matrix

Boltzmann constant

LHS left hand side

Lagrangian, linear differential operator

Lagrangian density

, space of bounded measurable, space of square integra
functions

MEMS micro-electro-mechanical systems

prescribed bending moments

i-th basis function or shape function

surface normal vector

OOA object oriented analysis

OOD object oriented design

space of polynomials of degreei

PDE partial differential equation

pyroelectric tensor
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f x( )
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hT hE
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set of real numbers

RHS right-hand side

, entropy, entropy density

transformation matrix from reference element to eleme

time

temperature

reference simplex

plate displacement field

potential

in-plane displacement field in 2D,
also used for 3D mechanical displacement

potential energy,
also used to designate several function spaces

volume

variation of plate displacement field

variation of in-plane displacement field

(non-linear) elastic virtual work

out-of-plane displacement

occupation probability of i-th state

partition function

position vector in space

thermal expansion coefficient tensor

, inverse of product of Boltzmann constant and
temperature

Neumann boundary

Dirichlet boundary

Laplacian differential operator
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S Ŝ

T

t

T
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Kronecker delta symbol

strain tensor

dielectric constant

element error estimator

time primitive of the temperature

heat conductivity tensor

Lamé constant

barycentric coordinates

Lamé constant

Poisson number

, piezoelectric tensor, reduced piezoelectric tensor

electrical charge density
mass density
also used for quantum mechanical density operator

stress tensor

electrostatic potential

electrical permittivity

variation of electric potential

, triangle-, edge bubble function

, , , (open) 3D , 2D domains and closures

boundary of the domain

empty set

δij

ε

ε0

ηT

θ

κ

λ

λi

µ

ν

π π̂

ρ

σ

φ

χ

ψ

ψT ψE

Ω ω Ω ω
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