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ABSTRACT

This thesis presents the development and the application of a software tool
ADAPTREF with which to automatically control the accuracy of simulation
results obtained by finite element (FE) computations. It is especially designed to
meet the requirements that are present when simulating micro-electro-mechanical
systems (MEMS). The software tool aims to improve the solution accuracy of the
computed fields from the coupled electrical, thermal and mechanical domains.

The coupled electro-thermo-mechanical fields obey (non-linear) partial differen-
tial equations and are derived by a thermodynamic formalism. By taking micro-
and thus quantum statistics as a starting point one obtains, in the thermodynamic
limit, the constitutive relations which together with the conservation equations
yield the coupled electro-thermo-mechanics partial differential equations.

We then provide a review of functional analytical tools which allow us to refor-
mulate the differential equations in a weak form. As its name says, the weak form
is less restrictive with respect to the function space the solution is sought in and
thus is amenable to a formulation that allows that the solution be sought by com-
puting machines, which is done here using the finite element method. Besides a
finite element formulation for simple thermal or electrostatic problems we give a
more general presentation also comprising coupled thermo-electro-mechanical
multi-layered plate problems, thereby demonstrating the extensibility of the con-
cepts.

Even though computational resources have been boosted tremendously during the
last years, one has to bear in mind that the complexity of the problems to be solved
has increased, too. Therefore, dealing economically with the computational
resources, and speaking in terms of memory requirements and computational
time, we are bound to choose the number of computational nodes as small as pos-
sible. This can be achieved by the software tool ADAPTREF. It adaptively intro-
duces new nodes into the computational finite element (FE) mesh which describes
the device geometry. The adaptivity is carried out according to the requirement to




reduce the error of the computed solution. The main tool in doing so is error esti-
mation with which we can localize the magnitude of the errors introduced by the
discretization of the physical problem and which, for multi-physically active thin
structures, is derived on the basis of a functional analytical framework. In addi-
tion, a refinement strategy and a geometrical split pattern are required in order to
be able to implement a reliable and stable software tool with which to control the
accuracy of the solution fields.

By choosing an Object-Oriented architecture and implementation (C++), we
assure a flexible extensibility of the software module ADAPTREF into a great
range of directions. By providing a proper interface it can be used with virtually
any finite element tool, or more general, with any numerical tool that requires a
mesh modification in order to improve the computed solutions.

Towards the end of the thesis, the power of the ADAPTREF is illustrated by sim-
ulations of a selected set of microsystems.




Z USAMMENFASSUNG

Die vorliegende Dissertation beschreibt die Entwicklung, die Implementierung
und die Anwendungsmadglichkeiten eines Werkzeuges zur effizienten numeri-
schen Simulation von Mikrosystemen. Basierend auf elementaren quantenstatisti-
schen Beziehungen wird zunachst die Herleitung einer thermodynamischen For-
mulierung der Kontinuumsmechanik vorgenommen. Diese beinhaltet die fir die
Mikrosystemtechnik wichtigen physikalischen Effekte der Elektro-Thermome-
chanik, welche durch gekoppelte partielle, und im allgemeinen nichtlineare Dif-
ferentialgleichungen beschrieben werden. Fir die Geometrie des betrachteten
Mikrosystems sind diese unter Bertcksichtigung von Randbedingungen dann zu
|6sen, um Kenntnis der unterschiedlichen Feldgréf3en zu erlangen.

Die Losung dieser Differentialgleichungen gestaltet sich fir Geometrien, wie sie
fur Mikrosysteme typisch sind, auf analytischem Wege schwierig und nicht selten
aussichtslos. Deshalb greift man auf numerische Werkzeuge zurlck, von welchen
die Finiten-Element (FE) Programme die bedeutendsten sind. Nachdem ein fur
die Mikromechanik relevantes Plattenmodell vorgestellt wird, wird der Weg von
den partiellen Differentialgleichungen zu einer allgemeinen Formulierung der
Finite Element Methode auf funktionalanalytischer Basis skizziert. Die mittels der
numerischen Werkzeuge erzielten Losungen der Differentialgleichungen sind im
allgemeinen umso besser, je gro3er die Anzahl der Rechenknoten gewahlt wird,
konnen aber, bedingt durch die diskrete Struktur der Rechenmethode, das Konti-
nuum nie erreichen.

Wenngleich die Rechnerkapazitaten in den vergangen Jahren bedeutend gestiegen
sind, so werden deren Grenzen bei der Simulation immer komplizierterer Gerat-
schaften dennoch immer wieder erreicht. Es ist deshalb unabdingbar, eine intelli-
gente Software einzusetzen, welche das Rechengitter der berechneten Losung
anpasst und damit in einem weiteren Schritt deren Genauigkeit zu verbessern
erlaubt. In dieser Arbeit haben wir ein sich in diesem Sinne selbst korrigierendes
Software-Modul entwickelt, welches einen solchen Einsatz bei der Simulation
von Mikrostrukturen erlaubt. Das Verfahren einer sich selbst korrigierenden Soft-




ware ist in diesem Falle auch unter dem Namen der adaptiven Finite Element
Methoden bekannt. Bisher jedoch beschréankt sich deren Behandlung im wesent-
lichen auf theoretische Aspekte, in kommerziell erhaltlichen Programmen sind,
wenn tUberhaupt, nur ausserst reduzierte und oft nicht nachvollziehbare Methoden
implementiert.

Wir geben, nach einer griindlichen mathematischen Vorbereitung, die Herleitung
einer Fehlerschatzung fir die multiphysikalischen, mehrlagigen Plattengleichun-
gen, welche es erlaubt, auf der Grundlage der hierdurch lokalisierbaren Fehler,
Strategien und geometrische Methoden einzusetzen, die eine lokale Modifikation
des Rechengitters ermdglichen. Diese Methoden sind in dem hier entwickelten
Werkzeug ADAPTREF zusammengefasst, einem Programm, dessen Einsatz
zusammen mit einem Finite Element Werkzeug unter groé3t moglicher Schonung
der Rechnerkapazitaten eine optimale Genauigkeit der zu berechnenden numeri-
schen LOsung erlaubt. Bei der Entwicklung des Werkzeugs ADAPREF wurde
eine Objekt-Orientierte Design-Methode und Programmiersprache, C++, fur die
Implementierung gewahlt, um eine flexible Erweiterbarkeit zu gewéhrleisten.
Schliel3lich werden die Mdglichkeiten von ADAPREF mittels ausgewahlter
Simulationsbeispiele von Mikrosystemen illustriert.




1.1 Microsystems and Simulation

1 INTRODUCTION

This thesis presents the development and the implementation of ADAPTREF, a
multi-physics simulation tool with which to control and improve the results of
solutions obtained from numerical microsystem analysis. It is primarily designed

to be used in conjunction with a finite element tool which serves as the computa-
tional kernel and thus ADAPTREF acts as a driver program. Virtually any finite
element tool could be used as soon as the interfaces between the two modules are
well defined. We have used object-oriented technology to design and implement
this flexible and extensible device simulation tool.

1.1 Microsystems and Simulation

Microsystems are a combination of packaged microelectronics and sensor and
actuator transducers at the micrometer to millimeter scale. As for the case of IC
development, circuit simulation tools have proven to facilitate the designer’s work
in many aspects. First, by making the design process more efficient, and, second,
by making it possible to learn about the physical models underlying our assump-
tions in an organized manner that is “close” to reality [1]. The scope of circuit sim-
ulation, however, is limited to the electrical domain. When it comes to simulate
microsystems in general, including sensors and actuators, multiple domains of
physics come into play. Thermal, electrical, piezo-electrical, mechanical and flu-
idic effects must be considered, and also the coupling among domains has to be
taken into account.

It turns out that these phenomena are well described by continuum models that
appear in the form of coupled differential equations. Including this aspect, three
fundamental issues must be addressed [2]:




1 Introduction

* How are physical phenomena modeled using differential equations?
* What are the properties of solutions of differential equations?

* How are approximate solutions of differential equations computed and how can the accu-
racy of the approximations be controlled?

As far as the first point is concerned, a vast literature flourished
[3],[4],[5].[6].[71,[8],[9],[10],[11],[12],[13]. Especially for thin structures, which

are central to MEMS, many models have been presented, of which historically
[14],[15] are the most significant. More recently, [16],[17],[18],[19],[20] and
[22],[23],[24],[25],[26],[27],[28],[29] are only a few of the most important.
Models also including analytical solutions for simple geometries are presented in
[31],[32],[33],[34]. In general, all models presented in the literature up to now
only cover the treatment of simple geometries or are restricted to models that only
include a small part of the physically possible material crystal classes.

Properties of differential equations’ solutions and their approximation are well
established from the theoretical point of view for many phenomena and as well
when it comes to the commercialization of simulation software tools [35],[36], the
guality control of numerical solutions is still a question at issue in many aspects
such that, to our knowledge no commercially available software exists that allows
to control the accuracy of differential equations’ solutions reliably.

1.2 Accuracy control and adaptive methods

Numerical computations require that the domain which is to be analyzed by means
of partial differential equations and boundary conditions is given some discrete
structure in order to be accessible to “discrete” computing machines. One usually
assumes that the solution gets more accurate the denser the computational mesh
covers the domain at issue. In fact, under certain preliminaries this is true, how-
ever, if the mesh would be refined uniformly the limits of the computational
resources are reached very quickly, depending on the complexity of the problem
to solve.

A major task therefore is to develop a method with which to gain control of the
accuracy of the computed solutions by locally detecting errors and improving the
accuracy at a minimum cost by only locally refining the mesh. Itis often sufficient




1.3 Major Results

to take a rather coarse mesh as a starting point for the simulation cycle. Based on
the pioneer works of [37],[39],[40],[41],[43],[43] several other works have been
published treating a wide range of physical problems [44],[45],[46],[47] and
[48],[49],[50],[51],[52],[53],[54],[55]. In general, for parabolic problems the
theory is not as well developed as for elliptic problems, and for hyperbolic prob-
lems the field is still in its infancy [46].

For plate-like problems, one usually still refers to the classic Zienkiewicz paper
[57], the Reissner-Mindlin approach to plate bending structures. For conforming
Kirchhoff-Love plates however, only a basic, albeit mathematically sound, adap-
tive approach is given in [46], restricting the physical problem to the impractical
case of single-layered, isotropic and uncoupled bending-only membranes. Only in
recent years sound finite element models suited for multi-layered multi-physically
active thin structures have been presented [58],[59],[60] on the basis of the Kirch-
hoff-Love theory, and accuracy control for these models has not been mentioned.
A tool which incorporates an accuracy controlled treatment of such thin structure
models therefore is highly desirable. ADAPTREF efficiently manages accuracy
control of thin structure simulation and its performance is demonstrated in con-
junction with the finite element software FEMEngine [61],[62],[63], an in-house
simulation program.

1.3 Major Results

THERMODYNAMICAL APPROACH TO ELECTRO -THERMO -MECHANICS

Based on equilibrium thermody- .

i . . ( Dlsplacemen)
namics continuum relations are

. : : A

established out of a microscopic
treatment which, by using a (“strain
Lagrangian formulation, lead to
the partial differential equations
of electro-thermo-mechanics.
This is done chapter 2.

(1 Entropb
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1 Introduction

ERROR ESTIMATION AND ACCURACY CONTROL

On the basis of functional analyt-
ical methods we have developed
error estimations for coupled
multi-physically active multi- U=y SCJ% "+ (")’
layered thin structures which are TTS

presented in chapter 3. The
sources of error are separated intg
components that are useful from
an engineering design viewpoint.

| MPLEMENTATION

We have implemented a novel

software tool ADAPTREF tham — Refinement Strategy|
can be used in conjunction with
virtually any finite element tool
in order to control and improve
the accuracy of the solutions of a
wide range of physical problems
by locally modifying the compu-
tational mesh and thus saving
resources. The MEMS designer
is thus relieved of the burden of
finite element mesh design. Thanks to its Object-Oriented design it can be flexibly
extended to cover even a broader range of problems. The architecture of ADAP-
TREF is presented in chapter 4.

Split Pattern

PDE

Error Estimator |

| Element P




1.3 Major Results

APPLICATIONS

The new simulation tool is

applied to general structureﬁ
which are typical for MEMS

devices as well as to real-life
microsystems. The examples
show how, from a merely coarse
grid, highly accurate solutions
can be obtained, while keeping
the computational effort at a min-
imum. The results of the simulations are presented in chapter 5.
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2.1 Continuum Mechanics

2 MODELING

The objective of this chapter is to give a conceptual formulation of continuum
mechanics as well as to illustrate the basic assumptions and models it is founded
on. Inrecent years a vast literature has flourished illuminating continuum mechan-
ics from broader and broader perspectives [3],[13],[28],[64]. While the work of
Cauchy brought a temporary end to the mechanics of continuous solids in the
middle of the nineteenth century, strong efforts in basic research have been made
during and after the Second World War in order to meet the technical require-
ments at issue. With the immense growth of computer hardware resources during
the last few years increasingly complex problems of continuum mechanics can be
targeted.

2.1 Continuum Mechanics

Continuum mechanics is a phenomenological field theory. Mathematical models
at a macroscopic level are established for the mechanical behaviour of matter
based on experience. The behaviour includes effects introduced by extra-mechan-
ical agencies such as electrical, thermal, or chemical resources. It is well known
from physics that all matter has a discrete structure and its behaviour under exter-
nal influences may be described by considering the interactions between atoms or
molecules.

Quantum mechanics serves as a basis for phenomenological theories . In the con-
text of many particle systems it is also known as quantum statistical mechanics
[65],[110] taking into consideration the quantum behaviour of the small particles
which we are dealing with. Utilizing this method one can derive a wide range of
phenomena consistently which from a classical viewpoint do not seem to be con-
nected, such as elasticity or magnetic effects. It is not in the scope of this work to
give a consistent derivation of a complete set of phenomena. However, we will
give an outline of the derivation of effects that are most important for the purpose
of thin structure modeling. We start our exposition with a description of equilib-

11



2 Modeling

rium [66]. Here, a quantum mechanical state, described by the density ogerator
is conserved and thuip/dt = 0 orin other words, the Hamiltonian operator com-
mutes with the density operator

[H.p] = 0. (2.1)

If we virtually partition the systenz,, spatially into two (almost) not interacting
subsystems, ang, we can expectindependence and thus

P12 = P1P2 (2.2)
which is equivalent to
logp,, = logp, +logp,. (2.3)
It follows thatlogp is a linear function of the conserved quantities,

logp = constant 43H ,

B denoting another constant. This is obvious in the light of the fact that extensive
guantities such as energy and the number of particles sum up for separated sys-
tems. Using theoartition function Zas a scaling factor in order to assure that
Trace(p) = 1, we can rewrite the density matrix as

p = 2" (2.4)
and thus
Z = Tracee ™. (2.5)
The value of the parametgr , which can be shown to egig@)™ k; , denoting

the Boltzmann constant anidthe absolute temperature, is fixed by the require-
ment that the expectation value of the Hamiltonian adopts a certain value:
[HO= E. The spectrum of the density operagor is purely discrete. The eigen-
states are the stat¢)|s0  ldfsuch thatH |E;0= E;|E;0 . We only consider the case
where the system is not extended infinitely but is spatially concentrated and thus

12



2.1 Continuum Mechanics

assuring its equilibrium. In turn, such systems possess discrete spectra. We there-
fore rewrite the density operator

p = ZWi|EiD]]£i| (2.6)
wherew, is the occupation probability of theh state. Equivalently we have
1 -BE,

b = ZIZ|Ei[u1£i|e P (2.7)
with z = S e~ and

Wi

_ 1 _-BE

=Ze (2.8)

e denoting the Boltzmann factor. The energy and the partition function are
related by

E=-Y9nz. (2.9)

op

We now introduce the concept of entrdpnto the system by means of

S = —kgy winw,. (2.10)

It can be shown that entropy, a measure for the lack of knowledge of the micro
state, increases monotonously with time and represents another extensive property
of the system. With this concept of statistical mechanics the complete thermody-
namics of a system can now be obtained. The expectation value of the energy
E =% wE may be subject to the following variations:

|

* A change of the occupation probability

* AchangedE; ofthe energy eigenvalugs . This can be realized by varying external pa-
rametersX, in the Hamiltonian such as external magnetic fields or a change of the sys-
tem’s volume whereby the system’s mechanism is changed.

The one-form of the energy eigenvalues towards equilibrium is then given by

13



2 Modeling

oE
= dX 2.11
S ox (2.11)
such that the one-form of the energy reads
dE = § dwE; + S w,dE, (2.12)
IZ | Iz | 1
OE;
= deiEi+ZwiZﬁan = 5 dwE + 5 &,dX,
| | a | a
where for abbreviation we have introduced
oE
=Sw, 3% (2.13)
|
The change of entropy in (2.10) is derived as
S
dD D— —d wlnw = -S dw(Inw; +1) = =S dw Inw, (2.14)
SR >

sinceZdwi vanishes identically. Introducing the distribution (2.8) we obtain
|

dEkSE BY dwiE,. (2.15)

Recalling thaB = 1/(kgT) we end up with
dE = —dS+ za dX, = TdS+ Za dX, (2.16)

which is also known as the Gibbs fundamental form. When incorporating the
change of particle numbers one has to refer to the grand partition function as a
starting point. The result is similar, only differing from the latter by the addition
of the particle number and the chemical potential as conjugate pair of variables,
the first being an extensive and the latter an intensive variable. As we will see later
in this section, a set of additional thermodynamic parameters may be specified

14



2.1 Continuum Mechanics

such as the elastic strain or the electrical displacement. Once the partition function
is known, a Gibbs function can be derived and thus the foundations for thermody-
namics are laid [66]. Besides the internal eneEgyauxiliary thermodynamic
potentialsmight be defined such as the Helmholtz free energy

F=E-TS (2.17)

Recovering the energy can be achieved by means of a Legendre transformation

oF

E=F-To. (2.18)
Dependencies between the different thermodynamic parameters are collected in a
class of relations which are known as Maxwell relations. We point out that the first
derivatives of the corresponding thermodynamic potentials lead to the corre-
sponding energy conjugated system variables. In addition to the relations among
system variables, one can also derive parameters which measure the response of a
system variable to a change in a second system variable and thus are called
response functions or susceptibilities [67]. As an example, we will demonstrate
how to derive the most important response functions, namely the heat capacities
C,, A denoting the quantity that is kept at a constant value when meagsdring
When the system volume, the number of particles and the other variables consid-
ered are kept constant we can introduce

C_0S(T, V, NAL.)  _0°F(T,V,NA,L)
cy=T o =T — , (2.19)

the heat capacity at constant volume. Since for constant volume the Gibbs funda-
mental form reads

dE = TdS (2.20)
Therefore, the heat absorbed is identical to the change of energy and thus

_OE(T, V, NA;..)

Cy — . (2.21)

15



2 Modeling

By virtue of (2.9) the last identity can be recast into

_ 90 _ B o 1 9°
Cv = 31ap"D = Fragap(n2) = k_Tza_BZ(InZ)' (2.22)

The fact that the susceptibilities only depend on the partition function, and thus on
the hamiltonian of the system, becomes even more obvious when we rewrite equa-
tion (2.22) in the form

1 Mo’z 1pzf0_ 1, .2 1
c, = —E25-=0F- = (o H) = —Var(H). 2.23
Y kT2§682 20805 ™ o =l (2.29)

We clearly see that the heat capacity depends linearly on the variance of the hamil-
tonian.

ELASTIC ENERGY DENSITIES

Without referring to quantum mechanics one can derive an expression for the
stored energy in a solid. We closely follow the exposition in [95]. In a crystal the
ions are assumed to perform harmonic oscillations about an equilibrium position
R of a Bravais lattice site. The position of the ion, at any given time may be written
as

r(R) = R+ u(R), (2.24)

whereu(R) isthe ion’s deviation from equilibrium. We assume the amount of the
deviations to be small compared to inter-ionic distances. We further consider
internal forces to be present inside the lattice such that the overall potential field
Is composed of a set of pairpotentials, each being identical. In the case that each
atom remained fixed at its Bravais lattice site this would read

N

U= > ViR-R) = %EV(RI_Rk)' (2.25)
k=1 ,
| <k

16



2.1 Continuum Mechanics

This expression, however, has to be replaced when we allow for a movement of
the atoms to a general positiofR) # R by

U = %;V(r(RO—r(Rk)) - %;V(R|—RK+U(RI)_U(RK))_ (2.26)

We further assume that the quantitie®,) —u(R,) are small such that we can
expand the potential into a Taylor series about the equilibrium posijerr, :
which for a general functiomin multiple dimensions reads

v(x+h) = v(x)+0Ov(x)h + %hTHess(v(x))h +0(h?, (2.27)

2
whereHesqv(x)) = %% Is the Hessian matrix of the field Applying this
to (2.26) we have = ' 14|

U = %EV(Rl ~R, +U(R) —U(Ry))

= %EV(FQ —R)+ %é(u(Ro —u(RY))HesgV (R - RY))(u(R) —u(R,)) (2.28)
+O((u(R) ~u(RY)")

since per definition of the equilibrium the potential is at a minimum and thus the
gradient term vanishes. When envisaging the Lagrangian function which we will
return to subsequently, it is obvious why this method also is denoted as a linear-
ization about the equilibrium: the potential is bilinear in the displacement and thus
the equations of motion form a linear system (the kinetic energy also is bilinear in
the first time derivatives of the displacement such that the equations of motion in
fact are linear. Moreover the constant term on the right hand side of (2.28) need
not to be considered in the further analysis since it does not effect the equations of
motion for the system. We therefore are left with the bilinear term which usually
is referred to as thiearmonic potential

gharm - %;(u(Rl) —u(RY) HesgV(R —R))(U(R) —u(Ry)). (2.29)

17



2 Modeling

The harmonic potential as derived here also forms the basis for the concept of
phonons describing the lattice dynamics from a microscopical and thus quantum
mechanical point of view. As a next step we consider only displacements whose
variations are small along, - R, and which do not vary rapidly within the range
of the pair potential, such that the displacement may be approximated linearly

U(R)) = u(Ry) +Du(r)], - (R=Ry), (2.30)

Du(r)], _g, denoting the Jacobian matrix wkt positionr = R, .

Inserting this into (2.29) we end up with
gham = %; (DU(RY(R —Ry) HesKV(R —R))(DURI(R —Ry))  (2.31)

and, after reordering the sum, we obtain the following expression for the harmonic
potential

" = %Z(Du(Rk)T)%Z(R'—Rk)THess(V(R|—Rk»(Rl—Rk)EDu(RKL (2.32)
U

where we have adopted tensor notation for the sake of readability, see A.1. The
interior bracket forms a tensor of fourth raﬁ@?k) , Which, devided by the volume
of the primitive lattice celly, is the elastic tensor . Since the displacements are
slowly varying, the sum may be expressed as an integral

yharm - %ZJ’(Du(r))T:C(R):Du(r)dr

1 0 P
=§ Z J.%Fuu(r)gbourv[mbr_vut(r)%jr.

R, optv g

(2.33)

The elastic tensdC possesses a range of symmetries that mainly emerge from the
fact that every Bravais lattice has inversion symmetry and since the harmonic
potential is represented by a quadratic form which also is symmetric. Finally, the
number of independent components can be reduced from 81 to 21. Further depen-
dencies of the elastic constants turn up when taking into account crystal symme-

18



2.1 Continuum Mechanics

tries. These symmetries give rise to a convenient notation of the tensor compo-
nents often seen in engineering literature and therefore is called engineering nota-
tion. This representation can be obtained by virtue of an index mapping where a
pair of indexes is collapsed into one:

11
22
33

23,32- 4

-1
- 2

-3 (2.34)

31, 13- 5
12,21 6.

As an example, Figure 2.1. displays the symmetry relations among the tensor
components for two of the crystal classes, the isotropic (cubic system) and the
6mmclass (hexagonal system, the crystal type of ZnO).

C

isotropic

o—IDDD_
BE
0o0o

OO00me 00
ERERERER NN

_DDDDD\._

U
)
—o

° Ooaao
S looo
oo o [] ][]
O0ood 0 O

ODoO0% O
00000 .|

C6mm =

zero component
non-zero component
equal components

2(cy;—Cq3p)

Figure 2.1. Symmetries of the elastic tensor exemplarily for two crystal classes,
the isotropic andmm The latter describing the crystal properties of
ZnO or PZT-4, materials used for piezoelectrically active MEMS.
The full representation for all crystal classes can be found in [97].

In the isotropic case only two independent compounds are left, these are known

as the Lamé constants apd

ulusE and the Poisson number

, Or, as a combination of these, the Young’s mod-

for which the relation

19



2 Modeling

_ M(3A +2p) _ A
E = W vV = 2()\+“) (235)

holds.

2.2 Thermomechanics

With the concept of thermodynamic state variables introduced earlier in this chap-
ter we derive the thermomechanics equations of motion using a Lagrangian field
formalism for thermodynamic potentials and the associated state variables [58].
Having defined the second order symmetric strain tensor as

LouowT (2.36)

- St =
e = (Ou) +2

being a non-linear function afiu , the Helmholtz free energy dersity  depends
on the strain and on the temperature and the following Gibbs relations hold [68]

dE = TdS+c:de (2.37)
dF = -SdT +o:de

where we have introducesl as the energy conjugate state variable to the strain
and thus subject to the relation

™

(2.38)

&

The state variables here appear in terms of densities for the same reason as we
have introduced the continuum limit into the harmonic potential for crystal lattices
earlier in this chapter. The identification scheme relating classical mechanical
methods and thermodynamics is well known since [69], and was resurrected in
[70], [71], or [58]. The analogy then suggests to identify the Lagrangian density

L with the negative of the free energy density plus the kinetic contribution. Recov-
ering the internal energy density and the other potentials then of course can be
achieved by means of a Legendre transform as it is the case when interchanging

20



2.2 Thermomechanics

between Hamiltonian and Lagrangian densities. We thus can write, denoting the
mass density,

L(a 4 00) = Spi2-F(e T), (2.39)

having merged the time primitive  of the temperature and the displacement field
together into the vectog = (u,8) . Hamilton’s principle then states that the
motion of the system from timg t9 is such that the integral

| = det, (2.40)

ty

whereL is the Lagrange function associated to the Lagrange density, has a station-
ary value for the correct path of the motion [72]. In other words, the variation of
the line integral has to vanish:

3fLat = 6J'£I:dxdt = 0. (2.41)

Carrying out the variational derivative for (2.41) yields the Euler-Lagrange equa-
tions

dln, ool o ol _
@t Petg0 ag - ° (2.42)

which applied to the Lagrangian density results in a system of PDEs

Q... oF O
u-—UO0—=—r=0
o ouC (2.43)
U R
0 S=0.

The second equation expresses the fact that the entropy density is conserved, the
process is isentropic, no irreversible processes have been considered yet. The first
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2 Modeling

equation gives evidence of conservation of momentum and can be further resolved
by using the identity

oF JF 0¢
D—ﬁ-g = 68k|6uk| = [o Q1+ 0u)]; (2.44)

such that the first part of (2.43) reads
pli—0 o 1+ 0u)] = 0, (2.45)

which is a non-linear equation with respect to the displacement fields. An equiv-
alent expression for the entropy density change can be obtained by taking its total
time derivative

. A 2,\
: 05:,09S.. _0S: oF .. _0S: 0o,
SeT = 57T+5 €= 571 370 aT! “oT ¢ (2.46)
where we have used that second derivatives are interchangeable. The first addend
can be further simplified by using a thermodynamic susceptibility, the heat capac-

ity, here, the heat capacity at constant strain derived by virtue of (2.18)

_0E| _ oF 68 S

and (2.37). Equation (2.46) then reads

N C..
S T) = fT—g_‘;:é. (2.48)

When considering heat conduction, which is an irreversible process, entropy is
produced according to Fourier’'s law

S = EE(_K?D_]L) , (2.49)
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2.3 Electro-thermo-mechanics

x denoting the heat conductivity tensor. The entropy generation rate is due to an
irreversible flux of heat from a hotter part of the solid to a colder part. Thus, in the
presence of heat conduction, the second equation of (2.43) becomes

CET—Tg—flj_: e—0Qx[IT) = 0. (2.50)
In the absence of material compression or extension the second addend vanishes
and we are left with the well known heat conduction equation. Moreover, in case
some externally driven heat generation is present within the solid, equation (2.50)

reads

CST—TS—?I_: e-0 Qx [OT) = f (2.51)
wheref is the density of the local heat source. In general, many effects can
explained when considering the time dependent (and thus non-equilibrium)
behaviour of thermodynamical systems as it was done here. Introducing general-
ized forces and fluxes by means of transport equations one can gain knowledge of
various transport phenomena of which we only mention the Peltier or the Seebeck

effect [73].

2.3 Electro-thermo-mechanics

Going back to thermodynamically irreversible changes of states we may introduce
additional properties of solids and their connexions to those previously intro-
duced. That is to say, we discuss properties that may be measured with the crystal
in equilibrium with its surroundings, so that neither the state of the crystal nor that
of its surroundings changes with time [97]. The quantities we shall be concerned
with are the temperatufg the electrical fielde and the mechanical stress . The
relations between these properties is sketched in Figure 2.2. A more specific infor-
mation about the coupling between the fields is given in Figure 2.3., there, the
field’s names are replaced by their symbols. The free energy dehsity then
depends on the temperature, the strain and the electrical field [74]
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F = F(T, & E). (2.52)
The differential form folf then reads
dF = —SdT-D ME + o:de, (2.53)

whereD is the electrical displacement. The total linear differential of the indepen-
dent variablege, E, T) can be expressed as [97]

0 inverse thermal
E elasticity piezoelectricity  expansion
9%in 9%in Badln
s D et + = + =

édou ogyE, TdskI LOE L, TdEk o7 e
O
E direct
O piezoelectricity  permittivity  pyroelectricity
O (2.54)
Dd . = Eﬁm de.. + GED dE. + GED dT
E ! QEJKDE Kk @EjD&T I 0TH
5
0 piezocaloric electrocaloric heat
E effect effect capacity
0 & _ m9Sp 9So SO

= == L+ = T s .
0 ds Q)siqu,ngu @EiD&TdE' BT0, EdT

This is a total of 13 equations, each index ranging from one to three. Each of the
differential coefficients represents the dependence of the thermodynamic state
variables and therefore describes a physical effect. Including higher order deriva-
tives than the linear ones would give rise to additional effects [74], such as electro-
optical effects (non-linear optics), piezo-optical effects such as electrostriction or
even elastic moduli of higher order. The coefficients on the leading diagonal of
the equations (2.54) measure the principal effects while the others measure the
coupled effects. When deriving symmetries of the coefficients representing the
various effects we refer to equation (2.53) which can be rewritten as

OF0 g1+ 20 g+ 2P0 e, . (2.55)

df = 25 4
LT e LEL + Log;L 1
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2.3 Electro-thermo-mechanics

Comparing the coefficients in both equations (2.53) and (2.55) yields

PF0  _ ¢ _ . FOD _
3H.=-5 - D =g, (2.56)

pF
LOEL ¢ ' Coe;LE ¢ !

.

Exploiting the second derivatives of the free energy density provides the follow-
ing Maxwell relations

00°F O _ o 90y
O =D .~ he = Thj 2.57
g0 g EH ¢ Moglg ¢ < ( )
and similarly
0o O _ oy _ moSg .
e0T0,  DoTCLe  [ogky O (2.58)
and
Do’f O _ 0 _ m8n _ . (2.50)
i .

When comparing the last three sets of equations, (2.57)-(2.59), we state that the
matrix defined by the right hand side of the system (2.54) is symmetric. In detail,
the following results have been established:

» the absolute values af for the inverse and the direct piezoelectric effect are numerically
equal

» the coefficientsx for the piezocaloric effect are the same as those for the thermal expan-
sion except for the sign; the thermal expansion coefficient in this case refers to the thermal
stress, the same symbol (here denoted)@a®metimes is used for the thermal expansion
without directly relating it to the thermal stress in the way C: a

» the coefficientgp describing the pyroelectric effect are identical with those describing the
electrocaloric effect

The constitutive relations now can be displayed as the integrated form of (2.54)
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0 = Cijii € — T By + 0 AT
D; = €+ X;iEj + BAT (2.60)
AS = —ayg; + PE; +(Ce/T)AT .

where we haven taken into account that changes of states and thus of the variables
representing them are dependent on the temperature only in case a temperature
change occurs.

We would like to point out that the values of the susceptibilities in general could
be derived beginning with a microscopic view of the world. As we saw earlier in
this section, an equilibrium state is fully determined as soon as the partition func-
tion is deduced. In other words, the knowledge of the hamiltonian operator is suf-
ficient for the complete description of the macro physical equilibrium state. How-
ever, evaluation of the partition function is possible only for the most simple cases
and usually one has to rely on approximations. As an example, the coefficients of
thermal expansiom are due to an auxiliary anharmonic term in the potential of
the Hamiltonian describing the ionic interaction energy in a solid.

DIFFERENTIAL EQUATIONS FOR ELECTRO -THERMOMECHANICAL SOLIDS

With the thermodynamical framework developed up to now, we are able to extend
the equations of motion derived in (2.43). Therefore we introduce the stress of
(2.60) into the first part of (2.43) in order to obtain

pli—O0C:e—n [E+aAT(1+0u)] = f (2.61)

wheref is a three dimensional source function, in the engineering literature often
referred to as a volume force acting within a solid and caused by, for example, a
gravitational field. Introducing the relation for the strain, (2.36), and the fact that
the electric field can be expressed as the negative gradient of a scalar electric
potential, the equation of motion can be recast into

oii— 0 E[c : Houys+ %Du qOu) B+’ e+ aaT Q1+ Du)} =f. (2.62)
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Displacement

Permittivity [2]

Elasticity [4]

"\ Heat Capacity [0]
O

[

emperature
Thermoelastic effects [2]

@
®
(7))
(7))

MECHANICAL THERMAL

Figure 2.2. The relations between different physical domains, namely the electri-
cal, thermal and mechanical. The tensor rank of the susceptibilities is
shown in square brackets whereas the tensors connecting the proper-
ties is given in index notation. Note that the intensive and extensive
thermodynamic variables are situated on the lower and upper level of
the prism, respectively.

Of course, we also take into account the electrostatic Gauss law [75] for the elec-
trostatic displacement

0 = p, (2.63)
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Figure 2.3. Coupling effects between the fields. For clarity principal effects have
been omitted in this Figure, for those refer to Figure 2.2. The fields
are expressed in terms of their symbols.

p in this context denoting the electrical charge density. Replacing the displace-
ment by the expression derived in (2.36), (2.63) yields

1
DEH::%DU)S+§DU E(Du)TE+XED(p+ pATEz p. (2.64)

This is a generalized equation of electrostatics, also comprising piezoelectric and
pyroelectric effects. Analogously one could consider the rate of entropy change
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2.3 Electro-thermo-mechanics

with the additional independent varialiferepresenting the electrical field such
that (2.46) reads

A B a_:g a_:g ) a_:g

Se, T,E) = L 3 e+-=E. (2.65)
This identity could further be used in order to derive a more general heat conduc-
tion equation also comprising thermo-electrical effects. Making the solution of
equations (2.62), (2.64) and (2.65) possible by means of a computer is the topic of
the next chapter.
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3.1 Mathematical preliminaries

3 ACCURACY CONTROL FOR
THIN STRUCTURE
SIMULATION

In this chapter, we consider the numerical solution of the partial differential equa-
tions derived in the previous chapter. The reason for choosing numerical methods
in deriving the physical fields simply is that the geometries of MEMS structures
usually are too complex to be amenable to analytical solutions. However, when
applying numerical methods one should care about the fact that these are approx-
imation methods and thus errors are introduced inevitably. We begin this chapter
by presenting the basic mathematical tools which allow for a reformulation of the
partial differential equations and the corresponding boundary value problems
(BVP) in a weak sense. Therefore we introduce a set of mathematical notions and
techniques with which to correctly formulate the physical problems at a high level
of abstraction. By doing so, we provide a wide range of physical models that can
be dealt with numerically. The approximative solution method will be that of the
finite elements which can be well established with the preparatory work. On the
basis of this formulation we then are able to carry out a sound error analysis and
propose methods with which these errors can be reduced at a minimum cost in
terms of computational resources.

3.1 Mathematical preliminaries

A proper understanding of the theory of boundary value problems requires some
background in functional analysis. In fact, many simulation techniques such as,
for example, finite elements, do not require, at first sight, deeper understanding of
functional analytical methods. But some background in functional analysis is an
essential prerequisite for those who wish to gain a proper insight of qualitative
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3 Accuracy Control for thin structure simulation

aspects of BVPs, or of aspects of the finite element method such as those that lead
to the development of error estimates. In this section, by following the exposition
of [76] we provide the basic facts about functional analysis which lead a reason-
able in-depth study of BVPs describing MEMS physics and their approximation.

3.1.1 Inner Product Spaces and Linear Operators

The idea of a vector space with the well known objects and operations and its gen-
eralization can be viewed as a starting point for functional analysis. Given a vector
spaceX one can easily fix an inner prodygtv) upf O X which satisfies the
following axioms, for allu, v, wO X andx,BOC € denoting the set of complex
numbers:

e Al: (u,v)OC (the inner productis complex valued)

« A2: (u,v) = (v, u) (the operation is Hermitian)

o A3: (au+pBv,w) = a(u, w) + (v, w) (the inner product is linear in the first slot)

* A4: (u,u)=0 and(u,u) = 0 ifand only ifu = O (the inner product is positive defi-

nite)

Analogously one can define an inner product space on a real valued vector space
with the slight change that hermiticity turns into symmetry in the second axiom.
A standard example of an inner product space, besides the conventional or Euclid-
ean scalar product is the space of square-integrable funatfgas) on an inter-
val (a, b) and is defined as follows:

b

(u,v) = Iv(x)rx)dx. (3.1)

An important property of vectors, or, at this stage of abstraction, of elements of a
more general inner product space is that of orthogonality. Two vectors (or func-
tions) are said to baerthogonalif

(u,v) = 0. (3.2)

Another important characteristic that holds in any inner product space is the
Cauchy-Schwarz inequality
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3.1 Mathematical preliminaries

1/2

[(u, V)| < (u, u)™ (v, v)l/2 (3.3)

where| | denotes the absolute value.

By drawing an analogy with the notion of the length of a vector we can introduce
the concept of @orm Again we start from scratch with an arbitrary vector space
X and declare an operation which we aatirm || | on X and which satisfies the
following axioms for any membersv & , and scalars (real or complex)

e NI |ju| OR .
e N2 |ul=0and |u|] =0 ifandonlyifu = 0 (positive definiteness)
e N3: |aul| = |al|lul (positive homogeneity).

e N4 u+V <|ul + v (triangle inequality).

A vector spacex which is equipped with a norm is calletbemed spaceEven
though the norm is a primitive concept and does not require for its definition the
existence of an inner product, one usually uses the inner product in orgento
erate the norm

lul = J/(u, ). (3.4)
Norms are an integral part of this work and are presented during the next sections.

The first norm is defined for any member belonging to the space L’
1< p<w, of functionsf for which the integral

b

J'| f (x)|Pdx

exists or, in other words, is smaller than infinity. The standard normon s
defined by

Jul » = [ 3Uu(x)ﬁ’olx}”", (3.5)

whereQ denotes some measurable, for practical purpose some bounded open set
in IR". Usually one simply writefu|,  instead mLp to make things handier.
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3 Accuracy Control for thin structure simulation

Considering the space’(Q) of bounded measurable functions, i.e. functions
that satisfylu(x)| < const almost everywhere (a.e.) @n  we can define the norm

Il . by

||u||Loo = inf{k: |u(x)|<ka.e}, (3.6)

the greatest lower bound of the constakts that bgund almost everywhere.
Since for any given vector space the definition of a norm is not unique, the concept
of equivalence of normis useful. Two alternative normjs|, amdg; aresaidto
be equivalent to each other if there are positive constants Mand  such that

M ul p < llullg < MJuf 5 - (3.7)

The equivalence of norms is a helpful property with which to master extensive
estimations much more easier, as we will see in section 3.3.1. Normed spaces that
are complete in the sense that every Cauchy sequence converges are given a spe-
cial name, namelBanach spaced special kind of a Banach space isldbert
spacethe inner product space which is complete. Every Hilbert space is a Banach
space since every inner product induces a norm. For the hierarchies of the differ-
ent spaces see Figure 3.1.

4 )
/" Inner Product Space I
7~ Hilbert Space Banach |\
Space
Sobolev Space
N
kNormed Space\ //

Figure 3.1 The different function subspaces.
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3.1 Mathematical preliminaries

Another fundamental concept in functional analysis is that of a mappinger

ator from one space to another. Operators that map members of a specified space
into the real or complex numbers are dendtetttionalswhereas linear operators

that map pairs of elements into the real or complex numbers are dalieear

forms The former two types of operators play a central role in the study of linear
boundary value problems and thus are inevitable when sophisticated numerical
simulation methods have to be developed.

A linear operatorT is a mapping from a vector space , the domain, into some
other space and which is

e additive:T(u+Vv) = T(u)+T(v) forallu,vOX; and
* homogenousT(au) = aT(u) ,where is either real or complex valued.

We say that a linear operatar X - Y is bounded, if it is possible to find a
numberk >0 such that

[Tul < K|dl foralluin X. (3.8)

Foru#0 we define the norm of alinear operator by taking the least upper bound
of all K > |Tu|/|lul, taken over all membetsof X. That is,

ITIl = sup{ I Tul/llul, uz 0} . (3.9)

Linear operators that map elements of a vector space into the set of the real or
complex numbers (in the following we will restrict ourselves to the case of the real
numbers since they are sufficient for our purpose) are called linear functionals

I: X - IR.

Since the set of all bounded linear operators of a normed sp&cea normed
spaceY is itself a normed space with the norm defined above in (3.9) we can intro-
duce a special vector spacex,R) , the space of bounded linear functionéls on
This space also is called the dual space and is denoted by

X" = L(X,R) . (3.10)
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From the boundedness of the linear functionals, that is, of each membe
we have

LW = 1(W)] < K|u]l foralluin X (3.11)

with some constarif. The action of such a functional on an elemenisually is
denotedn,ud instead dfu) . Referring to the definition of an operator’'s norm in
(3.9), we see that the norm of a linear functional is given by

o = sud%u V0. (3.12)

A well known example of a non-trivial linear functional is the Dirac delta “func-
tion” occurring in many fields of physics and engineering as an important concept.
Here one usually refers to a quantity which is zero everywhere except at the origin
where it takes the value infinity, thatig(x) = 0 far0 aBtk) -~ xat 0
Moreover,s is assumed to have the following property

d(x)u(x)dx = u(0) (3.13)
|

for any continuous function. Itis, in fact, impossible to construct a function with
these properties in the ordinary sense. To overcome this difficulty the Dirac delta
function is better and more correctly defined as a bounded linear functional acting
on the space of continuous functioabga ) [a b denoting a real interval,

5 C([aH) - IR, 0B uld= u(0). (3.14)

Having introduced the concept in this way, there is no difficulty in dealing with
the Dirac delta. It is simply an operator acting on the set of continuous functions
and samples the value at the origin. With the definition of a dual space above we
see that the Dirac delta is a member of the dual of the continuous functions on an
interval, 5 0 C([aH)"” . A common physical interpretation of the delta function is

a pointlike heat source acting within a given region or a located mechanical point
force acting on some solid. The usefulness of this concept is evident when it
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3.1 Mathematical preliminaries

comes to the numerical simulation of systems where such types of interactions
occur.

The most important operators when dealing with linear multiphysics problems
and their related boundary value problems are the ones which map a pair of ele-
ments to the real numbers and which are linear in both argumentbilihear

forms For vector spacex andY,we may define a bilinear forrato be an oper-
atora: XxY - IR with the following properties:

a(au+pBv,w) = aa(u, w) +Ba(v,w) uwlX, vOOY (3.15)
a(u, av+pw) =aa(u, v) + Ba(u, w) uld X, vywiyY

wherea ,3 are real numbers.

Bilinearforms will turn out to be closely related to partial differential equations
and their numerical solutions. Itis, in a certain sense, essential that bilinear forms
possess a characteristic callsahtinuityfor the problem which they describe to

be well-posed. A bilinear form is said to be continuous if there is a conkstanth

that

la(u, V)| <KJull|M forall uOX, vOY, (3.16)

whereX andY are normed vector spaces. We mention another property of bilinear
forms which is calledH-ellipticity. Given an inner product spattand a bilinear
forma: H xH - IR we say thaa is H-elliptic if there is a constani , the elliptic-
ity-constant, such that

a(v, vy 2a|v|® forall vOH. (3.17)

In other words, ami-elliptic bilinear form always is non-negative @ositive def-

inite.

With the abstract framework of functional analytical tools which we have set up
by now, we are able to state a result that has turned out to be a cornerstone in sci-
ence and engineering [2], theax-Milgram theoremThe power of abstraction

guarantees that some basic models of science including electrostatic problems or
linear elasticity have a satisfactory mathematical form and may be solved by
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appropriate numerical methods. Under the assumption that a given bilinear form
a, operating on a Hilbert space,H xH - IR is continuous BEelliptic and that
there is any given bounded linear functiohah H, there exists a unique element
uin H such that

a(u v) = O,vO forall vOH. (3.18)

It seems advisable to anticipate that the bilinear famapresents the energy of a
linear physical system, if there is an energy principle, and the linear functional has
the meaning of some external source function. So, in other words, the Lax-Mil-
gram theorem states that for a given external excitation there is a unique state that
is adopted by the linear physical system by means of its energy. Equivalently one
could formulate this fact via a minimization problem where the minimum energy

Is sought [77].

3.1.2 Sobolev Spaces

In the previous chapter we derived partial differential equations which from a
mathematical point of view require their solutions to be as smooth as the highest
order of the acting differential operator indicates. This is often a drawback when
modeling effects such as point forces acting on some elastic structures and, a sim-
ilar example, a point-like heatsource in heat conduction. Some other physical
problems may well require that data be modeled representing discontinuous mate-
rial properties as it is the case for composite materials. Whereas the classical, i.e.
partial differential formulation does not permit a treatment of such problems, the
variational formulation offers a natural setting, since here we work in larger
spaces. In this section we address ourselves to the task of developing a framework
of a mathematically sound formulation of variational boundary value problems
(VBVP).

The central concept will be that of Sobolev spaces, since these provide a means of
characterizing the degree of smoothness of functions. And, probably the most
important fact about Sobolev spaces is that numerical approximation methods
such as the finite element method are most conveniently and correctly formulated
in machine computable finite dimensional subspaces of Sobolev spaces.
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We start the exposition by introducing the term of Wixeak derivativeof a func-
tion. We call a functior0®u the weak derivative of the functioifithe following
relation holds:

J;D“u(x)cp(x)dx = (1) ru(x) D% p(x)dx. (3.19)

Recall that for the multi index notatioa| = a,+... +a, Wwhete= (a,,...,qa,)
Thetest functiony is chosen to be from the spacg(Q) of infinitely differentia-
ble functions with compact support. In cases sufficiently smooth to belong to
c™(Q), Q denoting the closure of the open set , then its weak derivatiVes
coincide with its classical derivatives fga| = m . To illustrate the concept of a
weak derivative we refer to the following example. The funcior) = |x| is con-
tinuous inthe interval-1,1] , thatis, it belongs®g[-1,1]) . Its classical derivative
does not exist in the sense that it is not defined at the origin. The weak derivative,
however, is the function

U= O-1 for -1<x<0
51 for 0<x<1

as sketched in Figure 3.2, since the equation

1 1
J’u'(pdx = —I ugdx
-1 -1

holds.

The fundamental difference between the classical derivative of a function and the
weak derivative is that the former is defined pointwise, i.e. for each point of its
domain, whereas the latter only requires to be integrable. A function to be differ-
entiable in the classical sense at least has to be continuous. The condition of weak
differentiability thus invokes that a functiondiffering from a weak derivative of

u on a set of measure zero is itself a weak derivativa.dne could guess that

this concept is quite useful as soon as it comes to the numerical simulation of sys-
tems that posses discontinuities in their constitutive properties.
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Figure 3.2 The functionu which is not differentiable in the conventional sense,
whereas its weak derivative  exists.

TheSobolev spacef orderm, denoted byH™(Q) mbeing a non negative integer,

Is defined to be the space of all functions that are square integrable, i.e. that are in
L%(Q), together with all their weak partial derivatives up to and including those of
orderm, belong toL*(Q) :

H™(Q) = {u: D*u0 L%Q) foralla such thafa] <m}. (3.20)

With that, we may define an inner product space with the Sobolev inner product
(, )Hm as follows:

(UN), :zE Z (D“u)(Dv)dx for u,vOH™Q). (3.21)
[a[<m

As we saw earlier an inner product generates a norm, here it is called the Sobolev
norm defined by:

. = ) .= (D%u)’dx. (3.22)
H H J;aém

This relation can be recast into

Jul? = > [o%ul> = o™ =0u%; + ... + D =, (3.23)
[a[<m

L2
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When written out in full for the case = 1 , as it occurs when dealing with second
order problems such as the Poisson equation, the Sobolev norm reads

2 2
o’y = [+ o+ oo e, (3.24)

A concept that is quite similar to that of a norm for Sobolev spaces is that of a
semi- norm. A seminorm | satisfies all the norm axioms stated in section 3.1.1
except that of positive definiteness, meaning thiat 0 Ut 0 does not nec-
essarily imply that alsa vanishes. The seminorm &1'(Q)  is defined as

P = z[ z (D%u)°dx. (3.25)

Infact,| | ., isaseminorm, however, itis not a norm since if the weak derivatives
vanish fora = m this does not mean foto vanish itself.

Obviously we have the relation

L2(Q) = H%Q) OHY(Q) OH4Q).... (3.26)

There are, in fact, properties of Sobolev spaces that highly depend on the dimen-
sion of the domain where its functions are defined on. As one would expect, for a
real interval[a,j the functions im*([a]) are continuous. However, this is not
the case anymore foi*  -functions defined on an open subset  in a space with a
dimension higher than one as the following example clarifies. We consider the
functionu(x) = r@ ,a<1/2 whergx|2=r2 = x2+y2+72 an@ is aball contain-

ing the origin. Then

s = O+ (Q0)2)de = [+ (O(A-) )

which, when introducing spherical coordinates yields

Il = [FCIXI7 + o2lx|-22-2) x| 2sin6d8dr .
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Now, sincea has been assumed to be smaller than one half, we clearly see that
the integral is bounded whereas the functiois singular at the origin. A more
general statement is given by tBebolev embedding theoraevhich gives a result

for a bounded domai® dR' with a boundary that is smooth enough (that is
“Lipschitz” to be more correctly). Then, ih—k>n/2 , every function i1'(Q)
belongs toc*(@) . Taking into account this fact becomes of prominent importance
when dealing with functions which represent physical fields in a more general
sense, including the occurrence of singularities. Therefore, some care has to be
exercised in the approximation of such fields by approximation functions that usu-
ally are taken to be non-singular. We will pick this up in section 3.3.2.

3.1.3 Elliptic Boundary Value Problems

As we have pointed out previously, the aim is that a desired solution of a physical
boundary value problem is not necessarily required to be continuously differentia-
ble, that is, in the space®™(Q) whePenis the order of the partial differential
equation but in a less restrictive spatgQ) of a certain andAnd in turn, to

make the calculation accessible to computing machines, only a subspace of
H™(Q) is desired. In this section we show the connection with the originally stated
partial differential equations in chapter 2 and the corresponding variational
boundary value problems. As having stated earlier, the shape of the simulation
domain is expected to be reasonable in the sense that it is bounded and that its
boundary is enough smooth. The shape of the linear partial differential equation
with operatorL is basically of the shape

Lu = % (-1)™D%(aga(x)DPu) = f inQ (3.27)
lal, IBT<m

and of the ordem The set of boundary conditions can be partitioned into two
subsets: Thessential boundary conditiormse those which are of orderm and
thenatural boundary conditionare those of ordeem . In the case that there are
mixed boundary conditions specified, that is, the boundary condition opesator
contains differential operators of more than one order, the type of boundary con-
ditions are to be determined by the highest order differential operator involved.
The boundary conditions read as follows:
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Bou =0 O
[ .

. [0 (essential)

B,_u=0 E
(3.28)

Bpu = 0p %

0 (natural)
- O
Bn_1U = On_1 0

We would like to remark that further on we confine ourselves to the case of
homogenous essential boundary conditions. But this is not a real restriction since
it is a straightforward matter to convert any problem with non-vanishing boundary
values to one whose boundary conditions are homogenous: For simplicity we con-
sider a PDE of the same structure as in (3.27) which is of order two:

Lu=f inQ
u=g onodQ.

Then, assuming that there is a functiofin Q which coincides gitn the
boundary we defineg=u-u, antli=f-Lu, forwhich

Lw = f; in Q
0 onodQ

w

holds. We shall point out that up to now we have restricted ourselves to the case
where only scalar valued functions are treated. However, the physical fields of
practical interest often are vector-valued as for example, the mechanical displace-
ment fields. Moreover, there are sets of coupled fields, such as the temperature
field caused by a mechanical displacement as we saw in the first chapter. In these
cases the precedent formulations first have to be modified in terms of the notation:
vector valued functions will be represented in bold case,u.e., . The multi-physi-
cal fieldsin turn are merged into= (u,w) , avector valued field with a dimension
according to the dimension of its components.

A crucial step then is to define a spaXef admissible functions in which the solu-
tion of the variational boundary value problem is to be sought. For the above prob-
lem (3.27) and (3.28) this space is defined by
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X ={vOHYQ): Bj=0 on T, j=1,..p-1}, (3.29)

I representing the part of the boundary where essentiddjrazhlet boundary
conditions are specified, or in other words

X = {vO H™(Q): v satisfies all essential boundary conditipns (3.30)

We shall emphasize that only essential boundary conditions are taken care of by
the requirement that the solution sought for be in the spa&obolev spaces that
directly handle sets of homogenous essential boundary conditions ore often
denoted byH;'(Q) . Natural or Neumann boundary conditions are to be treated in
another way which will be demonstrated below. The transition from the classical
BVP to the VBVP then is performed by multiplying both sides of (3.27) by an
arbitrary functionv from X, integrating and using Green'’s theorem to further
reduce the expression to one of the form

a(u,v) = O,v0 (3.31)

In the case of a Dirichlet problem for the Poisson equation with a given source
functionf that is square integrable, i.e0 L%(Q)

Du=f inQ (3.32)
u=0 onrl. (3.33)
the first step results in
—J;(Dzu)vdx = J:fvdx (3.34)
where the order of the Sobolev space has to be fixed as%cf;(le) , taking into

account that first order derivatives must be square integrable. Then, partial inte-
gration gives

—1[(n [(Tu)vdr +£Du (Mvdx = £fvdx. (3.35)
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wheren denotes the surface normal vector pointing to the outside of the domain.
Now, the reason why boundary conditions involving derivatives of ondare
called natural becomes quite clear: They arise in a natural way when performing
the transition from the classical boundary value problem to the variational prob-
lem. Sincev was chosen to be from the spagg(Q) the first integral on the left
hand side vanishes and we are left with

J;Du [Mvdx = ZEfvdx (3.36)

which can be recast into
a(u,v) = 0O,v0 (3.37)

when the bilinear form is defined as

a(u, v) EJ;DU [Tvdx (3.38)

and the linear function&lby

0, vO= z[ fvdx. (3.39)

In the case where non vanishing natural boundary conditions such as
nMu=g only (3.40)

are specified on a part of the domain boundagy  with a non-vanishing function
g that is square integrable, the linear form has to be modified accordingly:

d, szifvdx+J’gvdF = [I,vD+J’gvdF. (3.41)

N N

With that, the boundary value problem reads

a(u v) = O,v0 (3.42)
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Recall that, since we are dealing with spaces that are a special kind of those intro-
duced in section 3.1.1 existence and uniqueness of a solution turn out under the
same conditions oX-ellipticity and continuity that have to be met by the bilinear
form and the continuity of the linear functional. This follows from the Lax-Mil-
gram theorem.

3.1.4 The Galerkin Method

Except for problems involving very simple PDEs and geometries, it is quite
impossible to obtain exact solutions in either the classical or variational formula-
tions. The idea then is tapproximatethe solution. The idea of the Galerkin
approximation method, that later on leads to finite element methods is quite sim-
ple, when disposing of the framework established in the previous sections. We
would like to emphasize that the nomination of this section’ s method by no means
is uniformly handled in the literature. Again, we follow the notation of the authors
of [78] or [76]. Consider the variational boundary problem of finding a solution
u0V that satisfies

a(u v) = O,vO foralvOV (3.43)

whereV is some subspace of a Hilbert spateThe difficulty when searching a
solution, however, is that the spa¢éés infinite-dimensional with the result that it

is impossible to set up a practical method to solve (3.43). Therefore one chooses
a finite dimensional subspacg,  of the spatehere the solution has to be
sought for. Thus, a basis ®,  has to be fixed which spans any functiep in . In
other words, a finite numbe¥ of linearly independent functiong are chosen
such that

vV,OVv and sparv{(p,}Ni:1 = V,. (3.44)

The indexh of the spacev,, in that sense refers to the term of an approximation
or more correctly a discretization parameter as it gets smaller as Miayad thus

the number of basis functions gets. One would expect that the approximation is
the better the higher the dimensionality of the discrete subspace  is taken. In
other words, when taking the limit &f tending towards zero one expests  to
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approachv . Disposing of the spagg , problem (3.43) is now posedin  instead
of v. Thus, we try to a find a functiow, O Vv,  that satisfies

a(u, vy,) = O,v,0 forallv, OV,. (3.45)

The ansatz for solving far, is as follows; amgd must be linear combinations
of the basis functions of,,

N N

Uy = 5 @ and v, = % djg. (3.46)

i=1 ji=1

Inserted into (3.45) this yields

ON N N
aDz G, z d. (p]D = O, z d;,0 for any coefficients; (3.47)
j=1 j=1
or
Z Z a(g, 9)cd; = Z O, ¢;08;  for any coefficientsd, (3.48)
i=1j=1 ji=1
where the linearity df and the bilinearity o& has been used. Defining
Kij = a(g,¢) and F; = 0, ¢0 (3.49)
(3.48) can be recast into
0 -
Z d. Dz Kijci—F; D = 0 for any coefficientsi; (3.50)
j=1 =
which is equivalent to
Z Ky¢ =F;, j=1..N (3.51)

i=1
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or in the classical finite element matrix-vector notation,
Kt =F (3.52)

representing a set of simultaneous linear equations. The desired field’s approxi-
mation is obtained by inserting the linear equations’ solution into (3.46).

The fact that we only have approximated the solution sought in (3.43) in a natural
way leads to the question how to characterize the enrdroduced by the approx-
imation,

e=u-y,. (3.53)

We exploit the property o/, being a subspacevof , soin (3.43) we can choose
v to be from that subspace/1 Vv,  and considering that by denoting this member
by v, yields

a(u ) = O,v,0 forallv,OV,. (3.54)

The problem (3.45), in the following also referred to as the discrete problem, when
subtracted from (3.54),

a(u, w)—a(u, vy, = O,v,(-0,v,0 forallv,OV,, (3.55)
results in
a(u—u,vy) = a(e ) =0 forallv,OV,, (3.56)

having used the bilinearity of the form This property commonly is labelled as
the orthogonality of the erroto V,, in accord with the geometrical interpretation
of orthogonality of inner products in the event tha symmetric.

When assuminy-ellipticity and continuity of the bilinearforra and taking into
account thati—u, also lies M, we have the estimate
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afu—uy| <a(u-y, u-u,)
= a(u— W, U—U,—V,+Vp) (3.57)
= a(u-u,u—-v,)—a(e y,—v,) .

Then, applying the continuity of the bilinearform and considering that the error is
orthogonal tov,, gives

aflu—uy| a(u—y, u=wv) < Mjju—upfu=wy - (3.58)

This estimate can be expressed as
u—ul = M inf u-v, (3.59)
Ju—un] =5 infy ov Ju-vi -

which is also known as Céa’s lemma. Therefore, determining how big the error is,
can be transformed into the question of estimating the distangé o the sub-
spacev, . We will see later that this result can be substantiated in that sense that
convergence becomes more obvious when the dimension of the subgpace is
increased.

3.1.5 The Finite Element Method (FEM)

The practical aspects of the Galerkin method lead to the finite element method.
Central to this technique is that it provides for types of basis functions suitable for
domains with virtually arbitrary shape. These are piecewise polynomials that are
non-vanishing only on a small part of the simulation domain, their support s local
and overlaps only with few of the other basis functions’ supports. The aim of this
section is provide for the methods with which to construct those special bases.

Starting point is the decompositi@of the domainQ into a finite numbear of
non-overlapping subdomais, Q.,, ..., Q, , that cozer

Y

Q,nQ, =0 for Ay, ElQ“ = Q.
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Here, the symboll just stands for a set of measure zero in the space considered.
We assume the domain boundary to be polygonal if the domain is in a more than
one dimensional real space. That is, the domain boundary is made up of piecewise
polygons, inQ OIRF  they are straight lines. Thus, the entire domain can be cov-
ered by polygonal elements, as illustrated in Figure 3.3.

Figure 3.3 Admissible subdivision of a domain into triangular elements.

Further criteria which we shall impose on the subdivision of the 2D domain into
triangles or quadrilaterals include the following:

« if the intersection of two elemen@, n Qu consists of exactly one point, then this is a
corner point both of2, an@,,

« if the intersection of two elemen@, n Q, farZ  consists of more than one point,
thenQ, n Q, isanedge d@, as well as@f

» a subdivisionS sometimes is called shape regular, if there exists a constartl such
that each of the elemen@s,  contains a circle of ragiys ~ and

hg

>_
P K

holds,h, = max{|x-yl, x,y0Q,} denoting the diameter Of

An admissible triangulation therefore does not allow for hanging or dangling
nodes, as sketched in Figure.3.4

Bearing in mind that the basis functions span a subspace of the solutionXpace
that satisfies all essential boundary conditions we are now ready to describe how
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Figure 3.4 An inadmissible triangulation. The open circle indicates the hanging
node.

the finite element basis functiomssdi}i”: , hdenoting the dimension of the finite
element subspace, in general are formed.

« The functionsN; are bounded and belong to a subspace of the continuous functions on
Q, that is,

N, 0 C(Q) (3.60)

« The functionsN; are piecewise polynomials, that is, the restridtlf)eﬁ N.of toanele-
mentQ, is a polynomial with degrée

=N® N0 (Q,) forsomek=1. (3.61)

Ni|Qe

The N{® are called local basis functions since they are defined in order to have
local (elementwise) support

suppN‘® = {x, N®(x)z0}. (3.62)

Therefore the Matrix (3.51) has only few non-vanishing components. In the case
where theQ, are triangles amd= 1, that is, the polynomials are linear, the basis
functions are defined as

N(x;) = & (3.63)

ij !
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5; denoting the Kronecker delta, and  the geometrical nodes such that each
basis function’s support consists of all triangles containing npde

Finite elements are said to lsenformingif the basis functions are contained in
the space in which the variational problem is posed. The task of finding the degree
of the elementwise polynomials suited for conforming treatment of a given varia-
tional boundary value problem is not a trivial matter. It is facilitated by the result
that for a functioru: Q - IR which is piecewise arbitrarily often differentiable the
following equivalence holds:

uOHYQ) = ud CH@). (3.64)
In other words, when dealing with the Poisson equation which represents a second
order problem and thus, according to section 3.1.3, the desired spaceis
The polynomials therefore only have to be continuous, i®G(Q) , for the
ansatz to be conforming. This is not true any longer for forth order problems rep-
resenting a part of the plate equations. Since second order weak derivatives must
be square integrable the appropriate spaeg(g) and thus the polynomials must
be continuously differentiable, i.e. belongadQ)

Having established the mechanisms used to set up finite elements we will now
present the main approximation results also knowa @siori error estimates
which for a given choice of finite elements specify how far in some sense, the dis-
tance from the weak VBVP solution to the approximate or computed solution is.
We define the interpolant of some continuous function on an element by

N
lh C(Qp) = Xy 1= 3 VOON]” (3.65)

i=1

wherex, = span{N{”} and\{" are the local basis functions restricted to the ele-
mentsQ,, . Recalling that in (3.59) we have established a Galerkin error estimate
which now can be reduced to investigating the convergence of interpolates. With
the choice (3.65) inequality (3.59) can be extended to

M .
Ju—ui =5 infy, oxJu=v < Clu=1pv - (3.66)
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Then, assuming the domain is decomposed into triangles according to the criteria
given above, the standard error estimation reads

||Dr(u—Ihv)”Lz(T)sch$+l_r||Dq+1u|| 2 (3.67)

Lo(T)
whereu has to be smooth enough, il H**(T) andr <q g denoting the
polynomial degree of the interpolaniv . The quantiy is the diameter of the
elementT. Recall thatd" denotes the weak derivative operator using the multi
index notation. This estimate of course can be substantiated further. Setting to
zero and choosing the elements to be linear, that is, setting the polynomial degree
to one, we are left with

Ju- lhv||L2(T) < ch%”Dzu”Lz(T) : (3.68)

If a bound for second order derivatives wtould be determined in some way,
which is often done in regularity theorems, see for example [77], [78], or [80],
then the convergence goes with the square of the triangle diameter. Interpolating
with higher order polynomials naturally yields higher order convergence. How-
ever, this is only the case when the weak solution is smooth enough, see 5.2. This
IS a quantitative explanation of the well known and widely used practice of
improving simulation results by either refining the mesh geometrically or increas-
ing the polynomial order of the approximation space. We won't go into further
details but want to state that this relation also holds globally, that is, on the whole
domain

(3.69)

||Dr(u—lhv)||L2(Q)schq+1_r||Dq+lu||Lz(Q)
whereh denotes the maximum diameter of all elements. A detailed study of con-
vergence results is found for example, in [78]. Summing up the results we can
identify three factors bounding the error. Having fixed the order of the weak deriv-
ative,r, the power ot depends only on the degree of the polynomials and indi-
cates the rate of convergence as the mesh is refined. This effect might be well
observed in practical numerical studies. The constamiinly depends on the
geometrical shape of the elements and its nodal parameters. It increases as ele-
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ments get worse, that is, tend to have small angles and high aspect ratios. The
reason for choosing a highly regular mesh in the above specified sense now
becomes quite obvious from a quantitative point of view. The third factor reflects
the properties of the problem itself: the degree to which the solution is smooth and
therefore easy to approximate accurately.

3.2 Modeling thin structures

3.2.1 Linear Elements for Thermal Problems

In chapter 2 we derived the partial differential equations for heat conduction
(2.51). In the following we assume the heat transfer to be stationary and the
mechanical stress not to be dependent on the temperature such that the heat equa-
tion reads

OOk MT(x Y 3) = f, (3.70)

which is also valid for several other physical problems described by a Poisson
equation, such as, e.g. electrostatical problems (when symbols are exchanged
accordingly). Within the sound mathematical framework established in the begin-
ning of this chapter it is only a short way to obtain numerical results of practical
interest.

We begin by defining the simulation domaindIR®  describing the device geom-
etry, which is three dimensional. Boundary conditions that usually are applied
comprise Dirichlet boundary conditions as well as Neumann boundary conditions.
The latter are natural BCs and describe some thermal flux across the domain
boundary. If these are zero the boundary part where they are specified is thermally
insulated. The former are essential BCs and reflect the fact that some constant
temperature reservoir is in contact with the device. We state these conditions as

T(x ¥ =Ty onlp, (3.71)
nGcOT(X Y, 2=9y only,
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wherex denotes the thermal conductivity. We fix the solution spéaes the
Sobolev space containing all functions belongingitoQ) that satisfy the essen-
tial boundary conditions

V={T(x % 20HYQ): T(xy2=T, onlp} (3.72)

such that we may rewrite (3.38) as

a(T, U) Ez[DT [k COUdX (3.73)

and the right hand side source term (3.41) as

ET,UDEZ[fUdX+JgNUdF. (3.74)

N

The continuous weak problem of finding the temperature distribution then reads

a(T,U) = O,U0 forallUOV. (3.75)

By applying the galerkin method 3.1.4, the next step would be, according to 3.1.5,
choosing a discretization of the domain, a shape regular triangulation for example.
Moreover we have to fix the finite dimensional subspace of the solution 3pace
to be the space of piecewise polynomials, that is,

0
V, = 0,0 CAQ), Ty| O IPL Ty =Toh (3.76)
O T o 0

and thus each polynomial is a linear function on each element. A convenient way
for practical implementation issues of finite elements is first to transform an ele-

ment to a reference element, in the two dimensional simplicial case this is the tri-
angleT((0, 0), (1, 0), (0, 1)), sketched in Figure 3.5., by virtue of the affine map-

ping

f(€) = TCE+b = x. (3.77)
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Here we have merged the coordinates in the reference framé mt(, n) and
Z\ Z A
1] n

145 @\

@ @ .

Figure 3.5 The reference triangl& of a triangular finite element mesh (striped)
and the shape function,  (dotted). The mapiagts from the ref-
erence triangle to the triangle considered. Additionally we have num-
bered the nodes in the reference triangle on the left hand side. For
each of the nodes a shape function is clearly defined (3.78).

analogously in the mapped domain. The local basis functions on the reference ele-
ment forv,, must satisfy (3.63) and therefore read

Ni(&) = 1-&-n
Na(§) = & (3.78)
N3(€) =n.

The contribution of triangld to theij-component of the system matrix has to be
evaluated as

KD = J’D(Nio £~ G (N o )| DetDf | dE dn
T

(3.79)
= ‘[DNi(x) Gic CUN; (x)dxdy ,
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where we have made use of the integral transformation theorem which holds since
f is diffeomorphic [115]. Each component of the global stiffness matrix then is the
sum over all elements for which theh andj-th nodal shape function’s support
intersection does not vanish

K. = S K. (3.80)

i
{T, supp(N;) n supp(Nj)vt 0}

The right hand sidé& of the algebraic equation that has to be set up to form a
vector and is determined by the distribution of the heat sdurce

F, = lf(x)Ni(x)dx (3.81)

{T, supp(N,) =0}

plus the contribution due to the prescribed flux on a part of the boundary

Fi= Fi+ | InOON; () (3.82)
ory n supp(N;)

Thus, the linear system to be solved reads

K =F, (3.83)

wherec consists of the approximated nodal temperature values and thus represents
the solution of our discrete problem. There are various methods of solving linear
systems, ranging from classical Gaussian elimination algorithms (slow and
memory consuming) to the more sophisticated iterative methods such as precon-
ditioned conjugate gradient method (pcg) or the generalized minimal residual
[81],[82] while the discussion of the advantages of linear system solvers is beyond
the scope of this work. Yet, since the order of the equation system increases with
the number of nodes, it is mandatory to bear in mind that computational resources
always are limited, and, especially for very large systems equally distributed com-
putational nodes would be too costly. The overall temperature field is, not surpris-
ingly, locally linear (since the shape functions have been chosen in that way) and
therefore can be formulated as
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Number of Nodes
Th(x) = Z ciNi(x). (3.84)

i=1

We want to point out that by referring to 3.1.2, equation (3.70) does not allow for
discontinuities in the heat conductivity tensor . The reason is that the divergence
operator requires global differentiability of the heat fkux0OT  , a condition, which
of course, for a discontinuous heat conductivity is violated. Formulation (3.75)
therefore is the only setting by which composite materials can be properly mod-
eled.

3.2.2 Multi-Layer Plate Models

Mechanical models derived from theories where the dimensionality of the prob-
lem has been reduced from three to two are called plate models. The general
assumption here is that when a solid’s lateral dimension exceeds its thickness by
far, in other words, a high aspect ratio is present within the structure, then the
effects along the thickness dimension can be neglected. Among others [27],[28],
a key virtue of these lower-dimensional theories is their far better amenability to
numerical computations. A vast literature has been flourished proposing plate the-
ories, and their justifications. While some numerical approximations are by now
on essentially safe theoretical grounds, there remains an abundance of challenging
open problems mainly concerning existence results for various plate equations
[28]. For a detailed survey of the matter we refer to the monographs of Ciarlet
given in the reference list.

As in section 3.2.1 we introduce a weak or variational formulation of three dimen-
sional elasticity based on the equations derived in chapter 2. In particular, we con-
sider the time independent and linearized equation (2.59)

O = f (3.85)

having reassembled the constitutive relationships into the overall mechanical
stresse . We now apply the procedure developed in section 3.1.3 for the stress
field for which a vector-valued differential equation holds. We identify the differ-
ential equation (3.85) with (3.27) in each of its components and fix a test function
space coinciding with the solution space as in (3.30) to be
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X = {de0 (HO(Q))S: d¢ satisfies all essential boundary conditipns  (3.86)

The variablede denotes the variational strain and emerges in a natural way when
considering the deformation virtual work of an elastic body caused by internal
stresses [68]. Furthermore, the primitive of the strain is the displacement field
itself such that the former only requires to be integrable, i2°(Q) = LAQ)
Allowing surface traction on a part of the boundary

oclh=1f, only (3.87)

as a set of natural boundary conditions like in (3.28) and integrating (3.85) after
multiplying it with a test function belonging to (3.86) results in a variational
boundary problem analogously to (3.42)

a(o,8¢) = Df,éuD+IJ’ fdudr, (3.88)
N

the second addend denoting a surface integral along the boundary where surface
traction is specified. This weak formulation of electro-thermo-mechanics is taken
as the starting point for the derivation of our plate model by re-introducing the
non-linear relations such that (3.88) turns into the non-linear virtual work

W = (0,8¢) = Df,6UD+rJ‘ fdudr . (3.89)
N

Our plate models are obtained as the asymptotic case for one of the dimensions of
the solid vanishing. In the asymptotic case for plates, the unknown field is
assumeda priori, to have a polynomial dependence with respect to the transverse
variablez . The degree of this polynomial is specified but does not have to be the
same for all components of the unknown field. In general, each component is
interpolated using a finite set of linearly-independent functions as in the ansatz

Wap(X, 2) = Zi Wi(X)Vi(2) - (3.90)
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Across the plate thickness, the field is interpolated with the set of shape functions
v;. Their coefficientsw, vary depending on the position of their projection on
the middle-plate surface. Increasing the number of these functions (i.e., increasing
the degree in the case of polynomials) yields a hierarchy of models of increasing
order, whence the name hierarchic plate theories [24], in a very similar fashion to
hierarchic finite elements [105]. The Kirchhoff-Love theory, [14],[98],[99], rep-
resents the lowest level of this hierarchy, as the transverse displacement is kept
constant across the thickness and the in-plane displacement is taken with a linear
dependency oz . Additionally, it is necessary to satisfy the constraint that the
coefficient ofz be the opposite of the gradientwf , expressing the geometrical
statement that lines normal to the middle plane keep their orthogonality in the
deformed state. The ansatz for the three-dimensional displacement is

Ugp = {u(x)—sz(x)} _ (3.91)

w(X)

For Reissner-Mindlin plates, the through-thickness behavior is assumed as given
by

Usp = {u(x)—zﬁ(x)} (3.92)

W(x)

which differs from the Kirchhoff-Love model, [15],[100],[101],[102], in the inde-
pendence of thecoefficient of the in-plane displacement. The Reissner-Mindlin-
based plate model has received much attention because, contrary to Kirchhoff
plate theory,C? -continuity is sufficient to formulate finite element discretiza-
tions. This approximation requires a reduced-order integration to retain proper
flexibility for the plate. This means that, instead of using a Gaussian quadrature
over the element, where the order of the quadrature is chosen to give exact results
for the highest polynomial degree of the shape functions, a quadrature that guar-
antees exact results only for a lower polynomial degree is chosen, thus suppress-
ing higher-order displacement behaviour. Indeed, without uniform or selective
reduced integration, elements incur “locking”, a phenomenon in which the
normal-integratedc® -element fails to reproduce the Kirchhoff solution expected
in the thin-plate limit. However, wider computing experience with the reduced-
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integration elements disclosed ill-conditioned behavior that is erratically depen-
dent on element shapes and mesh patterns, which is an undesirable characteristic
for elements intended for use in general-purpose software. Consequently, a rich
literature has flourished suggesting several methods to overcome these problems.
On the other hand, the common place that the Reissner-Mindlin theory is “better”
than the Kirchhoff-Love theory, is not yet fully substantiated [28].

Another significant argument to choose the Kirchhoff-Love model is the fact that
the expressions for the displacement field can be found without resorting to the
Kirchhoff-Love hypothesis mentioned above, which is actuallyagpriori
assumption of geometrical nature. This is achieved by applying asymptotic meth-
ods and expanding the three-dimensional solution in a formal power series [27].

Therefore, when using the more sophisticated finite elements ofclass  applied
to the simpler Kirchhoff-Love theory which is mathematically sounder, a higher
degree of reliability of the simulated results can be expected. Additionally, a con-
forming ansatz for this model has the advantage that error estimators are much
simpler to formulate and thus adaptive computations are much faster and more
effective in terms of memory requirement. This is in direct contrast to the suppos-
edly efficient non-conforming approaches where the treatment of consistency
errors becomes necessary [44],[46].

THE 3D THEORY IN THE LANGUAGE OF PLATES

Describing the three-dimensional geometry of the plate as in Fig. 3.6, or

Figure 3.6 The three-dimensional geometry of a plate
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3 Accuracy Control for thin structure simulation

Q= Qp=wx[-h/2,h/2] ={(x,2)|x Dw,-h/2<sz< W2}, (3.93)

theL2 product for an arbitrary pair of fieldsv  on the solid plate is decomposed
as

(u,v)QgD = J’Z/Zz(u,v)w dz. (3.94)

Henceforth the subscripi  for the inner product and the integration exttenza
shall be omitted where there is no ambiguity. The boundary of the solid plate is
decomposed as

0Q= 0Q,; = wx{-h/2} Dwx{h/2} Odwx[-h/2,h/2], (3.95)

l.e., into its lower and upper planes and its perimeter wall. For any tensor field
A(x, 2) defined on the solid plate, we define its n-th order moment by

A(X) = J'ZnA(X, 2) dz. (3.96)

For a body force decomposed in its transverse and in-plane components as
fap = (f,g) the virtual work reads

Wg = (f3D’6u3D)Q3D
= (fv- zDv)QgD + (g,v)QSD

= (If dz,v)—(sz dz0v) + (Ig dzv)
= (fov) = (f,0V) +(gqV) .

(3.97)

where we have introduced the variation of the displacement field
dugp = (vy, vy, V) = (v, v) . Recall that the (Green-St. Venant) three-dimensional
strain is defined as

£ = (Du)s+%(Du 0w, (3.98)

Using the displacement decomposition, we rewrite (regroup) the strain as
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_ e y/2
= , 3.99
€3D L’T /2 833:| ( )

where the terms are defined as follows

g = (Ou)®+ (Ow)(Ow)/ 2 —z00Ow + (Ou) Q0u) /2 - (z00w)?2 (3.100)
y = (Ou-z0O0Ow) (Mw (3.101)
€55 = (OW)°. (3.102)

This decomposition is useful in keeping the notation compact, and aids in the
interpretation of terms later on.

TAKING THE PLATE LIMIT

In the limit case, where the plate thickness vanishes, the in-plane strain reduces to

e = (Ou)®+ (Ow)(Ow)/2—z00w (3.103)
which, at the plate’s middle plane, gives
g, = (Ou)®+ (Ow)(Ow)/2. (3.104)
The variational field of the in-plane strain is
5 = (Ov)°+ (Ow)(Ov) —z00v. (3.105)
We now impose the additional condition that the elastic reaction vanishes in the

transverse direction of the plate. This implies that only the in-plane components
of the stress can be different from zero, so that we may write that

_1c0
Gap = {O 0} . (3.106)
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3 Accuracy Control for thin structure simulation

A tensor reduction here has to be taken into account such that a reduced constitu-
tive relation, see A.2, holds

oc=AE (3.107)

which becomes clear when rearranging the tensor components in matrices by
means of a mapping often referred to as the engineering notation (2.34),

w0 e 108
o(.,d Cy1 Gyl |E,

Condition (3.106) requires the componentsof which have an index ‘3’ to vanish
and therefore the plane stresd, 2) in the first set of equations in (3.108) can be
expressed in terms of the in plane strajn  only. The reduced elastic #&ttsen

is composed by the;  sub-matrices. We give a more detailed exposition of tensor
reduction in the appendix. Unless otherwise stated the following tensor quantities
denote those for the reduced case. Next we form the elastic virtual work which

coincides with the previously defined bilinear form in case linear relations are
assumed, using the definitions (3.103), (3.105) and (3.106), to get

We = (GSD'583D)93D

= (6,(Dv)%QsD —(zo,0 Dv)Q?’D + (Ow [b’DV)Qso

(3.109)
= (J'G dz,(0Ov)S) — (J’ZO' dz,O00v) + (Ow EIG dz,0v)
= (0,(0V)S) = (6,,00V) + (Ow [5,,0v)
which, by introducing the in-plane stress-strain relation,
6= Ag+c™ (3.110)

whereA is the reduced elastic tensor aii the externally impressed prestress,
yields
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ext

We = (Ag: g— A OOW+ 6, ,(0v)S)
—(Ay g, — A, OOW+6S00V) (3.111)

ext

(Ow Ay gn—A;: OOW+ 0, ),0v) .

L INEARIZATION

The elastic virtual work (3.111) is non-linear. This means that the variational
problem resulting by adding it to the body force virtual work is also a non-linear
expression. The linearization acts on the in-plane strain at the middle surface,
and on the third row of equation (3.111):

We o = (A (Ou)S—A,: OOw+ oS (Ov
E, lin ( 0 ( ) 1 GO ( )% (3112)

ext ext

—(Ay: (Ou)S—A,: 00w +o, ,00v) + (0w o, ,0v) .

The resulting weak formulation for the mechanical plate is then given by equating
the elastic and body-force (or external) virtual work terms

W = Wy. (3.113)

The linearity of (3.113) depends on the elastic virtual wark only. Explicitly,
the linearized virtual work is

ext ext

(Ow 55 0V) + (Ag: (D)3 Ay: OO +65°(0v)9) (3.114)

ext

— (A (Ou)S—A,: DOw+o; ,00v) = Of o, v Of 5, OvO+ g, v
The left-hand side (LHS) of (3.114) forms a bilinear form in the space

X = HY(w) x H(w) x H(w) (3.115)

suchthatt belongs te'(w) xH'(w) and belongstiw) |, as will be detailed
below. So far, we have only considered constant external siféss . When disas-
sembling the extended constitutive relation for the stress in (3.85)
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3 Accuracy Control for thin structure simulation

6=C:e-n [E+aAT (3.116)

which also can be subjected to the tensor reduction detailed in the appendix we
can rewrite the plane stress (3.107) in terms of

6= A:é-7' [E+@GAT. (3.117)
The weak plate equations (3.114) therefore can be extended Businglo , to
(Ow &' e+ &AT)o,0v) (3.118)

+(Ay: (Ou)S— A, OOw+ (&' )0 + (GAT)o,(0V)S)
—(A;: (Ou)S—A,: OOw+ (&' @)1+ (&AT)1,00v)
= Of o, vO= Of §, OvO+ [, VO

if there are no additional sources considered such as charge sources or heat
sources. However, this equation is only the mechanical part of the coupled phys-
ical problem. The purely thermal part has been discussed in 3.2.1 whereas the
electrical part has to be set up according to the procedure in section 3.1.3 using the
generalized Gauss law (2.64). Besides the purely electrostatical terms the direct
piezo-electric contribution has to be considered as in (2.60) which with the linear-
ized in-plain strain (3.103) and using the reduced quantities (see Appendix A.2)
yields

D = #:((0u)°-z00w) + X (E (3.119)
such that another bilinear form can be defined

a(w’D)‘f . . (3.120)

= (OYP,r : (Ou)S—zr : OOw—yx [OY)g
having neglected the electrocaloric terms and thus the contribution of a tempera-
ture change to the electrical displacement. The right hand side linear functional
comprises the charge density and some prescribed electrical displacement on a
part of the surface[D = h
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0, p0= £pL|JdX+Jhl]Jd|_. (3.121)
N

It is important to note that for the extended Gauss law integration is taken over the

whole three-dimensional domain whereas the mechanical part is fully restricted to

the plate’s middle plane. The reason is obvious since one should be able to specify
boundary conditions of electrical nature also on the top and the bottom face of the

plate. Merging the displacement fields, the temperature and the electrostatic
potential together into one field = (u,w, T,9) together with its variation

V = (v,v, S @) we may rewrite the linear plate equations in the form

a(u,V) = 0,V0] (3.122)

where on the left hand side all terms we collected from the linearized forms of
(3.73), (3.118) and (3.120) in order to define a new extensive bilinear form. In
detail it reads

(r M+ aAT)e0v),,
— (A (Ou)S— A : OOw+ (&' Tg)o+ (GAT)o,(OV)S),
(A (Ou)S—Ay: OOw+ (&' Me)1+ (GAT)1,00V),
(OY,m : (Ou)S—zr : OOw—¢ @) g (3.123)
(0T, x I9)g
[ o v, — OOf oy, OV + (8, VL,
+ [p, YL + Df,S%+ [h,qu,

+

+

=+

+ [y, SO

N, elctrical N, thermal

where the right hand side represents the source terms as well as the natural bound-
ary conditions. The temperature difference contains the temperature field by
means ofAT = T-T, T, being a reference temperature. The first three addends
on both sides represent an integral extending over the two dimensional domain
whereas the others extend over the whole three dimensional domain. The space in
which problem (3.123) is posed is given by

X = {U 0 (HY(w))’ x H¥(w) x HY(Q) x HY(Q), U satisfies all essential BEs (3.124)
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3 Accuracy Control for thin structure simulation

Obviously, the in-plane displacement field requires only that its first derivatives
be square integrable whereas the out-of-plane displacement field requires that also

its second derivatives be square integrable and therefore belotfgdp LAsitis
well known, the temperature and the electrostatic field obey second order differ-
ential equations and thus, as we have detailed in 3.1.3, belaig . Existence

and uniqueness of the solutidh which has to be sought for is guaranteed by
virtue of the ellipticity and continuity of the sub-problems.

For the linear problem (3.88), the former can be proven by Korn’s inequality
which holds as soon as a pure rigid body motion is excluded by applying Dirichlet
boundary conditions on a part of the boundary that has not measure zero [77]. For
the slightly more complicated (pure) plate case the solution’s existence is proved
in [103] and that of the coupled piezoelectrical plate case for example in [30]. For
the second order problems treating electrostatics and thermo-statics the well
known Poincaré -Friedrichs inequality is used to show the existence of solutions,
see [76] or [77].

FINITE ELEMENTS FOR THERMOMECHANICAL PLATES

Equation (3.114) is discretized using finite elements by interpolating the fields
andw with a set of shape functions, and according to the Galerkin method, using
each of these shape functions as the test functions vand . For the transverse dis-
placement the unknown field is interpolated as

u(x) = iniNi(X) : (3.125)

As we have seen, the terfa,: OOw,00v) |, containing the transverse displacement
requires that second derivatives also must be square integrable,. el3(w) .In
order to have a conforming discretization, the shape functions must also be ele-
ments ofH%w) and thus the shape functions must be of cdags according to
(3.64). This can be achieved by implementing the Argyris element [104], see

Fig. 3.7.

The Argyris element can be represented by a fifth order polynomial and is also
used to interpolate the in-plane displacement fields, although the solution has to
be found in the “less restrictive” space of (3.115). A review of the Argyris element

is given in [106]. In case an additional temperature field has to be computed
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Figure 3.7 The Argyris Element [104]

(neglecting electrostatic effects) the plate equations (3.123) can be decoupled in
that sense that the mechanical problem can be solved after a solution for the tem-
perature field has been obtained. We would like to point out that thermal effects
across the thickness are neglected, see Appendix, and therefore the temperature
field can be interpolated on the same 2D domain as the mechanical displacement
fields. As usual when treating a dimensionally reduced thermal problem, the
zeroth order moment of the (reduced) heat conductivity tekgor  has to be con-
sidered.

FINITE ELEMENTS FOR PIEZO -ELECTRICAL PLATES

The situation turns more delicate when an electrical field comes into play. Inspect-
ing equation (3.123), we realize that this field is defined over the full three-dimen-
sional domain whereas the mechanical field is defined on some midplane. A new
element therefore has been proposed [59],[60] which is called the Argyris prism.
It takes into account that each of the displacement fields are interpolated continu-
ously differentiable on a two dimensional domain whereas the electrostatic field
has to be interpolated only continuously, but on a three dimensional domain.
Figure 3.8 shows the setup of this combined element. Since the plate model allows
for the treatment of multi-layer stacks we make the arrangement that for a given
composite multilayer structure the prisms’ electrical nodes are located in a plane
for both the top and the bottom surface. The height of all prisms is determined by
the largest stack extension present within the multilayer plate. The nodes for the
electrical field for that largest stack then coincide with its vertical margins, as
sketched in Figure 3.9.
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3 Accuracy Control for thin structure simulation

/ «a—— Argyris triangle

o Interpolation of electrical potential

Figure 3.8 The Argyris Prism finite element [59]. An Argyris triangle is placed
exactly on the half way through the thickness of the structure. The
electrical field is placed at the outmost vertical ends of the structure
and thus allows for the specification of boundary conditions that
differ at either the top or the bottom.

Again, we can define a reference prism with the nodes and the shape functions as
listed in Table 3.1. The polynomial then to be built for each prism then is of the

Table 3.1 Shape functions for the reference priem

Hode Node coordinates  Shape function
umber

0 0, 1,-1) %(1—x—y)(1—z)
1 (1,0,-1) %x(l—z)

2 (0.1,-1) 2y(1-2)

3 (0,0, 1) %(1—x—y)(1+ 2)
4 (1,0 1) %x(1+ 2)

general shape
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3.3 Error Estimation for second order problems

P(X Y, D = ag+ayX+ay +az+axz+ ayz. (3.126)

Figure 3.9 Arrangement of the computational nodes in prisms which interpolate
the electrical field. The prismatic mesh stretches over a composite
multilayer structure which is typical in MEMS. In case layerstacks
occur that have different vertical dimensions i.e. are variably high,
the prisms have to be ‘filled’ with the air gaps. The middle plane of
the structure where the displacement fields are interpolated is not
shown for the sake of clarity.

3.3 Error Estimation for second order problems

3.3.1 Abstract error estimation

The central difficulty that one has to face when obtaining solutions by numerical
methods such as those presented up to now is the fact that these solutions are noth-
ing but approximations. One could overcome this problem by simply approaching
the continuous world, but the discrete structure of the computer can not be circum-
vented and moreover, in contrast to mathematically taking the limit, computer
resources in fachre limited. To be on the safe side all the same, errors can be
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3 Accuracy Control for thin structure simulation

computed and reduced at least locally. To make the point clear we reconsider the
difference of two fields, the first field defined by (3.43), the weak form expressed
by means of a bilinear form and a linear functional and the second field repre-
sented by its discretized form (3.45)

u—u] - (3.127)

This is an error, a measure of how good the approximation and thus the computed
solution is. The way in which we measure the error, namely by an integral norm,
emerges from the fact that we want to obtain information about how the error is
distributed over the simulation domain. Disposing of such a distribution one can
decide where the domain geometry should be modified. The smallest units where
the pointwise errors can be averaged are the elements themselves such that a
local element error estimate might be stated as

Jlu=uq|+ <n+(uy) - (3.128)

What we would like to find is an expression as on the right hand slielgending

only on the computed solution itsathich bounds the error. For the derivation of
such an a posteriori error estimation we use section 3.1 and start with a given con-
tinuous, elliptic and symmetric bilinearfora(the left hand side of the weak
form) and a Hilberspack with scalar prodygt), and the corresponding Norm

IVl = J(v.v)y - (3.129)

For X, the space the weak solution has to be sought for, we can define its dual as
in (3.10), X" = L(X,R) with the duality pairing

O, Oouy: XOxX - 1R (3.130)
0,vO g, = 1(V) OroxdvOX. (3.131)
We have seenthat has to be defined as some Sobolev space or the product space

of Sobolev spaces of appropriate order. We now can define a differential operator
associated to the bilinear form acting as follows:
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L: X - XO (3.132)

Ow, Vi, 5 = a(W,V) Ow, vO X. (3.133)

By means of the bilinear form we define a norm also known as the energy norm
(and thus representing the internal energy of a system multiplied by a factor of
two)

Ml = va(v V). (3.134)

The assumptions made on the bilinear form, namely that it be continuous (3.16)
and elliptic (3.17) will enable us to deal with the different norms in a straightfor-
ward manner: the Hilbertspace norm and the energy norm then are equivalent,

alviz < IMIP<K|vi .- (3.135)

The continuous FE-problem then can be formulated in the following way: for a
given source functiorn 0 XU we are looking for the solution Xin  such that

a(wy) = OF, v, OvO X, (3.136)
or, making use of (3.133),

Lu=f in X0 (3.137)

The existence and uniqgueness of solutions are then assured by functional analyti-
cal results such as the Lax-Milgram Theorem, for example, as we have seenin 3.1.
Discretizing the problem (3.136) means choosing a finite dimensional subspace
X;, of X, and looking for any, irX;, where

a(upvp) = OF, vl o o Ov, O X, (3.138)

This formulation of the FE-problem forms the basis of the following abstract a
posteriori error analysis. When rewriting (3.136) with u,, instead of we have
for anyv O X by virtue of (3.133) and the differential equation (3.137)
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a(u—uw,v) = L(u—u,),v= Of-Luy, v[l (3.139)

For anyw O X, w£0 we can write

1 1
[wdll = annz = ) = a(w,ﬁ)ssumx,vzla(w,v). (3.140)

Combining the last two equations yields the estimate
Ilu—ufl| € SUR, g x v = 18(U= UyV) = SUR, g x v = 1 F —Lup, VL (3.141)

Inequality (3.141) is an abstract a posteriori error estimation: only known data are
required to compute an upper bound for the etrew, in the energy norm. The
term f-Lu,, defines the residual of the strong form of the partial differential equa-
tion. Error estimation based on these techniques thus is known as residual error
estimation. The aim now is to find upper bounds of the RHS of inequality (3.141)
which are local, that is, may be expressed elementwise and invoke only the com-
puted solution field and known data. How to explicitly derive a computable
expression in the following is demonstrated for a second order problem.

3.3.2 Error estimation for a Poisson equation

By choosing a Poisson-type equation to derive an error estimator we gain insight
into a mathematical technique without demanding too much formal expenses as it
would be the case for the rather complicated coupled plate equations. Later then
we are able to treat the plate case just by drawing analogies to the steps which
allow of it. We refer to 3.2.1 and introduce the weak form of a general Poisson
problem

a(u\) = iDu[kEDvdx = [f, vO= Df,vD+JngdF OvO X, (3.142)

N

whereQ is a bounded domain with polygonal boundary. The part of the boundary
where Dirichlet boundary conditions are specified is expected to be non-empty
whereas normal fluxeg, across the domain border are specified on the part of
the boundary which is denoted &g . By discretizing the domain according to

3.1.5 we can state the finite element problem as
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a(u,Vvy,) = ifvhdx+ J’ g Vidr Ov, O X, (3.143)

N

assuming that given sources coincide with their interpolations, in other words,
f=1, and gy = Oy, p- (3.144)

Before we apply the abstract a posteriori error estimation of the previous section
to this problem, we introduce the jump of some function along anedge by

[w(x)] = lims _ qw(x +dnp) —limg _ qw(x—dn;) (3.145)

wheren, is a fixed outward normal of a given triangle’s edge. The scalar product
in the RHS of (3.141) can be recast as

O —Lup, vO= CF—Lu,, v—y, 0 (3.146)
sinceX, 0 X and thus the errorv, is orthogonaldp  as we have seen earlier
in (3.49). Making use of the definition af in (3.133) and the definitioraof in
(3.142) together with partial integration turns (3.146) into

Df—Luh, v—yv,UJ

F, v—vO-a(u, v-v,) (3.147)
f, V_VhD_g{DUh Ok [TV —v,)dx .

The reason for having introduced the tevmv, instead of is the fact that we
have to estimate the interpolation errof v, in a stronger norm than inthe -
norm which will be explained later in detail. Partial integration and domain

decompositior§, Q = [] T, then yields the expression
TOS

~

OF—Lup, v—v,0 (3.148)

= DF,v—th— % a—D [k[l]uh(v—vh)dx+al'n Ek[l]uh(v—vh)daTE :
TTS T
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Using definition (3.142) and taking into account that integration over edges in
the domain interior occurs twice the above equation becomes

Df—Luh,v—th: T% E[(f + 0 Oe Muy,) (v—v;,) dx
S

+ED;0Q%£[nE[kEDuh](v—vh)dr (3.149)

O
+ BZ l(gN—nE Lk (Muy)(v=v)dr 0.
EOJTnIy O

Applying the Cauchy-Schwarz inequality yields

Of —Lu,, v— Vv, [< f+ 0 Gc Mu V-V,
wWE 3 o V=

1
+ =|[ng Gc Mu V—V,
¥ lne el o V- 2 (3.150)

U
+ —Ng [k [(Tu V-V 0.
ED@ZO N||9N E h||L2(E)|| h||Lz(E)D

We now have to introduce estimates for the terms

v—wl o and v,

wherev, denotes some interpolant. As a first difficulty we have already men-
tioned that the interpolation error has to be estimated in a stronger norm than in
the L? -norm due to (3.141) which means that alsdivativesof the error have to

be measured. Moreover we have to cope with the fact that functigns in ~ are not
necessarily continuous so that the usual Lagrange interpolation is not valid: point-
wise evaluation does not make sense anymore for a field with possible singulari-
ties as we have seen in section 3.1.2 on Sobolev spaces. We avoid this by intro-
ducing a special interpolation operatgr  named after Clément [107]. Setting
v,, = I,v we then have the following interpolation estimates:

76



3.3 Error Estimation for second order problems

=il <Pl 2 (3.151)

and

V=il 2, )<ch§/2||m e (3.152)

wherec denotes some constant and  the patch of all triangles whose intersec-
tion with T is non empty as sketched in Figure 3.10.

Figure 3.10The domainso; anay,

A main tool in deriving equation (3.152) is a trace theorem. Applying these esti-
mates to (3.150) and making use of the Cauchy-Schwarz inequality once more
yields

F-Lu, vﬁ<cD% %f+D[kEDuh||L 20r)

T 1]
+ED§E allne D ol 2e) (3.153)

+ gn—Ne Ok (U %% 10|12 O
EDSZEI I'N” o h” e - (wT)D
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whereh;, hz denote the triangle diameter and the edge length respectively.

We then note that
T%Sn Dv||2Lz(wT) < c||Dv||2L2(Q) (3.154)

and consider the fact that the -norm in the space is equivalent to the energy
norm of the problem as we saw in (3.135). Thus we can take the supremum of the
estimate (3.153) which yields the following local element error estimator

2

r]T(uh) = |f+00kc D]uh” . (T)

f e @ena glne O (T e (3.155)

+ gn—Ne k u
EDSZDFN” NOE h” & (E)

only depending on the computed solution ~ and the given data of the problem.
Thus we have shown the a posteriori error estimation

/2
[lu=ug SCB% rﬁ(uh)E1 (3.156)
TS

for the energy norm of the error which is reliable and computable. The conrstant
depends mainly on the smallest angle occurring in the triangulaion . The first
term on the RHS of (3.155) specifies an element residual with respect to the strong
form of the problem. In case there is zero load specified, i.e. no heat source or elec-
tric charge density is specified only the second addend has to be considered. If in
addition linear polynomials are chosen to interpolate the field , the element
residual vanishes completely since second order derivatives of linear functions are
identically zero. The second term describes jumps of the gradient across a given
edge in the domain interior and might be viewed as a measure of the “smoothness”
of the solution whereas the last term considers an error introduced by the deviation
of the approximated from the prescribed normal flux along non-essential bound-
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aries. It will be shown in the next section that the error estimator (3.155) not only
is reliable in the sense of (3.156), but also efficient which means that it is bounded
from above by the real error.

3.3.3 Efficiency of the Error Estimator

In the previous chapter we have shown the error estimgator,) to be reliable,
in other words, that there really is an upper bound for the quantity which we
denote as the error, and that this bound, to some extend, also is computable. How-
ever, we still do not know hogoodthis bound is, meaning it could be undesirably

far away from the true error. To make the problem clear we mention that arbi-
trarily high values also could be a bound of the error, although not useful for prac-
tical purpose. In fact, the error estimator itself can be proved to be bounded by the
real error

Nr(up) < cfu— | - (3.157)

We show this by displaying the most significant steps. For more details, see for
example [46],[56],[77].

We start by defining bubble functions that are polynomials and have local support.
The reason why these functions are given that special name becomes clear when
looking at Figure 3.11. Consider for each triangjlef the triangulatiorSits bary-

centric coordinates, 1, A, ,A; 1 . For any poiRf these are defined to be the
weights,; ,i = 1,...3, such that, when applied to three given arbitrary points
P.,i = 1,...3, P is the centre of mass of the triangle generatedhy = 1, ...3

For the reference triangle, see Figure 3.5, these coincide with the shape functions
(3.78). Thetriangle bubble functiothen is defined as a third order polynomial

[R7A 1(X)A, 1(X)A5 1(x) for xOT
T=04

(3.158)
m[o forxOT

and the edge bubble function as
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Figure 3.11The triangle and the edge bubble functigns  @pd respectively.
The triangle bubble function (left) is displayed for the reference tri-
angleT , whereas the edge bubble function (right) is displayed for the
edge which bounds the reference triangle and its reflection triangle
along the y-axis. Both bubble functions have local support, see the
text for more details.

2
%4 |_| A 1(x) forxdT
E j=0,j#k
Ve =0 2 . (3.159)
%M |_| Aj () forxOT
0 i=0i
[0 for x O Q\wg

where coordinates’ numbering is in accordance with the sketch in Figure 3.5. Itis
found that these functions are continuous on the domain and each function’s range
Is between zero and one. An additional mapping is required that carries out a con-
tinuation of a function defined on an edge to one that is defined also on the neigh-
bouring trianglesr: L*(E) - L*(wg) . We set for any polynomial  of degree

Y(a(x)) = o(x) forxOT (3.160)
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3.3 Error Estimation for second order problems

andx' being a point on E such that (x) = A; (x) , ang; one of the two
coordinate functions that are non-constant along the Edger polynomialss we
then have the following relations:

172
T R P, (3.161)
[Wrvl 2y <M 2, (3.162)
(B 2, ||v|| (3.163)
)
172
lve"%0] 2, 2 clol 2 (3.164)
1/2 1/2
lof 2., < [WeY(@)] 2, <™ ol 2 (3.165)
1
-1
[DWeY(@)] 2, S S [WeY(O)] 2, Sch ’lo ol 2g, - (3.166)

The first relation follows from the fact that norms on finite dimensional spaces are
equivalent () is a polynomial) and by bidirectional transformatiom of onto the
reference triangle. The second inequality takes into accounpthat  is bounded by
one. Relation (3.163) is an inverse inequality [77], together with (3.162). The last
three inequalities can be shown in a similar fashion, see for example, [46]. We
then define the element residuum

rr(uy) = f+0 Gc Muy, (3.167)
and the edge residuum
ng Oc [Muy] EOATNQ
re(uy,) = EgN—(nEEijuh) EOATn My (3.168)
E 0 else
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3 Accuracy Control for thin structure simulation

In order to keep the presentation clear we define an ope@@teér'(Q) - IR that
is related to the element and edge residuals as

] g‘rh‘[rT(Uh)VdX + EgaTlrE(Uh)Vdr

gT‘[(f+DEkEDuh)vdx+ ; l[nEEkD]uh]vdF
T, EOOTNQ

G(v)

+

—(ng Ok Muy,))vdlr
ED&Zﬂ er(gN (Ne )

= z[fvolx— ; a(—m [ [(u, )vdx + ; l(nE [ [(u,,)vdr
T h EO nQ
0
- gnvdr O
EDGZm er g

= ifvdx— gT J;(DVEKEDuh)dx+[J’gNVdF
T, \

Tg'ThIQ Ov Ge M(u—u,)dx

(3.169)

a(u—u, V)

where partial integration has been applied for the transformation. The element
error estimator then can be expressed as

N7 (uy) = CEIPZF”rT(Uh)”zLZ(T)'F ga hT”rE(uh)HZLZ(T)E- (3.170)
Efror

Noting that the element bubble functian  defined above has local support we
choose

v = Wrro(uy) (3.171)

which is identically zero outside the interior ®f Then, taking into account that
r+(u,) is polynomial, estimate (3.161) yields
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3.3 Error Estimation for second order problems

> | rT(uh)||i2(T) (3.172)

L%(T)

G(Wr(uy) = le 2 () = o 2 )

where we have used the fact that the second integral vanishes since it extends over
the element edges. This inequality is recast into

elrr(un)l?y

< G(LIJTrT(uh))

(3.173)
= ‘[D(UJTrT(Uh)) Gie [H(u — uy,)dx

<c|O -
<¢| (LIJTrT(uh))||L2(T)||Iu ully
using the definition (3.169) and the continuity of the bilinear fartdence

2 1
olrr (U] 2., < llu= e fre(un)] 5 (3.174)

by virtue of (3.163). Dividing the last inequality by-(u)| , . squaring the
result and multiplying both sides khfz yields the estimate '

W2 Jrr (U], <cllu-ulf. (3.175)
L(T)
An estimate for the edge residual is derived in a similar fashion. We therefore set
v = PeY(re(uy,) (3.176)

such thatw vanishes outside the interior of the patsh . Then, by picking out the
relevant elements from (3.169) we have
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3 Accuracy Control for thin structure simulation

G(YeY(rg(uy)) = ; er(Uh)lIJEY(fE(Uh))dX+£ré(uh)LIJEdr
TUw

172

- TngrT<uh>wEY<rE<uh>>dx+IIwE relze,  (3177)

2
> ) ;mE‘[rT(uh)mEY(rE(uh))dx + c|| rE(uh)|| 2

sincerg(u,) onlyis defined on the edgeand vanishing elsewhere. The inequality
is a direct result of (3.164). Reorganizing (3.177) yields

2
clre(ul’,

< |G(YeY(re(un))| + ) ;mE”rT(uh)”Lz(_l_)”LIJEY(rE(uh))”Lz(_l_) (3.178)

1/2
s |G('~|JEY(rE(Uh)))| + ”rT(Uh)” Lz(wE)hT ”rE(uh)” L2(E)

exploiting the Cauchy-Schwarz inequality and relation (3.165). For the first
addend in (3.178) we have

|G(WeY(re(uy))

= a(u=ty WeY(re(up)) < f|u= | [WeYTren)] 2, (3.179)
E

due to the continuity of the bilinearforen Applying (3.166) to the above inequal-
ity yields

(GWeY(re(u)| < chr” *Jju=ulg, Ire(un)] 5 - (3.180)

L°(E)

Then, combining (3.178) and (3.180) the estimate for the edge residual turns into

84



3.4 Error Estimation for multi-layer thin structures

2
hT”rE(uh)”Lz(E)

< el g + el 2, 5 (3.181)
2
= cf|u-ull e

where (3.178) has been devided|by(uy)| , using (3.180) for the second addend.
The result thus has been squared and multipliedby . To get the second inequal-
ity in (3.181) we use the estimate (3.175). Hence, the final estimate is obtained by
returning to (3.170) and simply applying both estimates (3.175) and (3.181)

r]'zr(uh) < caq.zr”rT(uh)nsz(T) + EgaThT”rE(Uh)HZLZ(TE (3.182)

2
< cfju=ul g -

This is exactly (3.157), a bound for the error estimator has been established. The
computable expressiom(u,)  not only represents a bound for the solution error
but itself is bounded by the true error. The undesirable case that the error estimator
Is too far away from the real error is thus avoided.

3.4 Error Estimation for multi-layer thin structures

The complete a posteriori error analysis for electro-thermomechanically coupled
multi-layer thin plate finite element simulations takes the weak form (3.122) as its
basis. Merging together the source functions and the natural boundary conditions
of the different physical domains, namely the mechanical, the thermal and the
electrical sources into one fiefd, (3.122) can be rewritten as

a(U,Vv) = OF,vd 0OvVOX (3.183)

whereX is the space of admissible solutions as in (3.124)

X ={uO (Hl(m))2 x H(w) x HY(Q) x HY(Q), U satisfies all essential BEs (3.184)
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3 Accuracy Control for thin structure simulation

Since the thermal problem can be fully decoupled from the electromechanical
problem, that is, one first could solve the heat equation and then insert the calcu-
lated temperature field into the electromechanical part, we restrict our analysis to
the equation where only the displacement fields and the electrostatical field is
unknown. The error estimator for the temperature field then is exactly identical to

that which we derived in the previous section 3.3. We now redefire(u, w, @)

and its variatiornv = (v,v, ¢) such that the remaining variational problem reads

(Ow Doy 0v),,
— (A (Ou)S—A;: OOw+ (ﬁ:T [(Tp)o + coth,(Dv)%w
+ (Ag (ODu)S—A,: DOw+ (&' )1 +0,"00v),, (3.185)
+ (Oy,x: (Ou)S—zr: O0Ow—% M) o
= DfO’ Vq.g_ Dfl’ DV%+ DQO’ una + q)’ UJQ) + Eh’ wq-N,elctrical '
Here we have introduced a couple of modifications of which the most important
is the conversion of the temperature dependent thermal expansion into a constant
stress terms™  which is widely known as thermal prestress and is of immense
importance when dealing with microstructures [88]. When it comes to a simula-
tion where temperature dependent behaviour is required one could just replace the
constant prestress by the thermal expansion tensor contracted with the previously
calculated temperature. As another change we have omitted the electrostatic term
in the first addend of (3.185) which is a remnant of the non-linear theory, see
(3.111) and (3.112), and therefore could be neglected if non-linear effects mod-

eled by this term do not play a dominant role [59]. With these changes of the vari-
ational form the solution space changes accordingly,

X ={uO (Hl(oo))2 x H(w) x H'(Q), U satisfies all essential BEs (3.186)

We further extend (3.185) by introducing a set of natural boundary conditions for
the out-of-plane displacement field , only involving derivatives at least of order
two, which for thin plate problems can be stated as follows:

np OA:00Ow = M, on Iy (3.187)
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3.4 Error Estimation for multi-layer thin structures

whereM, are the vector-valued bending moments imposed on a part of the bound-
ary r, ,00Q . Having fixed second order derivatives on a part of the domain
boundary we may specify the bending moments with regard to the moment order
of the elastic tensor in the following way:

np CA,:00W =My, , on Iy, (3.188)
and
nr OA:00w = My, 4 on Iy - (3.189)
The scalar valued normal shear forces imposed on another part 0Q of the

boundary are given by
np [0 OA,:00w) = Fy on g ,. (3.190)

In fact, there are some additional choices of imposing natural boundary conditions
to the thin plate problems. Since most of them are of less practical interest we
assume them to be homogenous. As far as the in plane displacement field is con-
cerned we only assume either exclusively essential boundary conditions or essen-
tial boundary conditions combined with homogenous natural boundary condi-
tions. We thus can fix some part of the boundary where we define natural bound-
ary conditions for the in-plane displacement fields , independently of the type of
boundary condition for the out-of plane displacement. The homogeneous bound-
ary condition then read

n DA, (Ou)® = 0 on I, (3.191)
and
n0A;:(Ou)® = 0 on I, (3.192)
where the RHS of the both equations describes the imposed zero normal stress

couples. Additionally we may specify homogeneous bending moments for the in-
plane displacement field
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3 Accuracy Control for thin structure simulation

nOOOA:(OW)) =0 onTy, (3.193)

taking into account, ,Or, ,00Q and. 0T, ,#0Q .We shouldhave noticed
that homogenous boundary conditions of the kind (3.187) and (3.190) correspond
to completely free edges of a plate. We now are able to set up the RHS of (3.183)

F,VO= [F,VI+ [ Mpvdr + [ Fovdr (3.194)
r

rb,w S, W

thus enabling us to state the variational problem

a(U,Vv) = [F,vO 0OVOX. (3.195)

Having fixed a finite dimensional sub-space Xxof as

U,0(CH@)°, Uyl O (Py(e))’x Py(Q),

U,, satiesfies all essential BCs

X, = (3.196)

[ |
[

such that every displacement field is interpolated by piecewise fifth order polyno-
mials [103],[104] and the electrical potential field by trilinear polynomials as
defined in Table 3.1. The in-plane displacement field, of course, does not require
to be interpolated as smooth as the flexwre . However, since the convergence rate
of the solution in the context of (3.67) is determined by the lowest polynomial
degree that occurs, it seems advisable to choose the in-plane approximation in a
similar order as the out-of plane approximation [103]. We can reformulate the
finite element problem (3.138)

a(U,V,) = [F,v,0 0OV, 0X,. (3.197)

Making use of the ellipticity of the bilinear-forra  and recalling the abstract def-
inition of the operator in (3.132) and (3.133) we now can state the error estima-
tion of the thin plate problem

U= Ul = supy o x vy =180 = UpV) = SUBR, g x vy = 1 F-LUp VO
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3.4 Error Estimation for multi-layer thin structures

where the energy norm here again is induced by the bilinear-form

[U=Uy|* = au,v). (3.198)

We obtain the counterpart of equation (3.147) according to the definition of the
bilinear forma

(F-LU, V-V, 0= R+ F", vM —v™o
—£(AO: (Ouy,)S— A,z O0Ow, + 650 (0(vV - v,))Sdx

t (3.199)
+£(A1: (Oup,)S— A, 00w, + 63 )(O0(v—v,))dx

~_Ow, oo (V- v, )dX .

To keep the exposition reasonably clear with respect to the number of terms
describing different kinds of error contributions we confine ourselves to only a
part of the problem for the time being. This is realized by means of splitting the
linear form into a purely mechanical part and a part involving the piezo-electric
effects

~ ~M M, M M M ~P P P ,P P
F-LU,,v-Vv i=0OF -L'U nV -V q+F -L UnV -V
" " ., (3.200)

=FV o MuM, v oM o RP

denoted as the piezoelectric residgal . Afterwards it will be clear in which way
the contributions due to the piezoelectrical effects have to be set up. We make the
following definitions to further simplify the exposition:

o, = Ay (Oup)S o, = A (Oup)S
0,1 = Ay 00w, Oyp = Ay 00w, . (3.201)
e, = (V—-Vv,) e, = (Vv—Vv,)

Assuming that the domaia is decomposed into a shape regular triangulation and
partially integrating equation (3.199) yields
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3 Accuracy Control for thin structure simulation

F-LU, V-V,0= R+ F" vM-vMio- % %—{((D [5,,) [B,)dx +
TUS

5I’n (6,0 [B,d0T + ‘[D [b,,, By dx — 5[ n [6,,, (&,d0T +
T T

Jn (5, (8,doT — J n Co§ " B, doT + 5[ (n MO0 [b,,))e,ddT -
T T T

(3.202)
Jn [6,, (e, doT +I(D (o [bwz)eth—J (nb,,)e,doT +
T T

ext ext

J’n (6,,, (e, doT —J n o, [Le,doT —‘[D {Ow, Loy )e,dx +
T T

J(n (Dw, Cog)e,doT .
|

Further expanding equation (3.202) and making use of the fact that integration
over interior edges occurs twice results in
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3.4 Error Estimation for multi-layer thin structures

F-LU, V-V,d= R + % a(f0+DEbu0) [, dx
TUS

> [in eydr -3 > IRESDES
EDOT nw EOO mFC’u

- [0 s +3 > REMEL
EOON N w

NI

+% Z 1[(” (61 + My, 1) LEpdl —% ; 1[[” (5] Tyl
EDOTATg EOOTNQ

WICEE 5,0))endx — 3 > [Intoler
EOOTnw

-3 3. [mwedr +3 S [(n Do) meyar
EO0T Ty, EOOT nw

(3.203)
+ (n0 Loy, —fy)e,dl
Eljgn am[ ! 1

+ 3. (D) T+ [(Gy=0 0 o) ey
ecofrr,,

3 ][(FS+(nED[b'W2)ehdF+% > [in (D ol
EO ﬂrs EO nw

) (M, o= (1 0, Ty +3 > [0 o] ey
E0OTnTy EOJT n 0w

1 ext ext

3 ; 1[[no'1 ] (e, dr +‘[DDWh (6, €,dx
EddlTnw

_% ; l[n (Dw, (55 Je,dr .
EOOT nw

External stresses are assumed to be constant on each triangle and the following
element integrals

‘[(D g g,dx = 0 (3.204)

and
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'[D Q0 5 )e,dx = 0 (3.205)

and the boundary integral

Jl‘(n Mo e dr = 0 (3.206)
!

vanish. The last sum of equation (3.203) only adopts non zero values when the

edge considered bounds two triangle elements associated with different material
stacks since the gradient of the approximate out-of plane displacement field is

continuous across element borders and thus does not contribute to a jump term.
Applying the Cauchy-Schwarz inequality and rearranging the addends into ele-

ment contributions and sums over internal and boundary edges separately then
yields
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[F-LU,, V-V, 0=

EEN(ERR¢; Ulo f
3 A0 =l o o 2 10 T Tl 2

T

A0 00 B 5 e o +10 Bl o el 2,

000 ext 1 0
S EECTE-S TN RS D J: Lk CL W Y P

I ol 2 100 o * I 0wl o [
Hn Houwl L2(E)||Deh”L 2(E) +nHE [6“1]”L2(E)”eh”L %e)
t
I oall o el 2, + 0 1, 5 ol (3.207)
ext ext
+|n o X]”L 2 h” ” [[Glx]”L g7, 2 26 0
+ n[o,,+F e M nlo e
~ ; 1 delze 3 (o2 Bl 108 5,

M
Hn BBua Mo 5 €l 2 ) +EDaZmrcu(lln Budl 20 1%l 2,

o Sl |7 )

0
FoS InDul el o O
Enofar, (E)

EDGZ 5 ||n 0 EtSul 1)” 2 ”eh”
now

L2E)" ML 2E)

L (E)D

In order to perform a similar estimation as in (3.153) for the interpolation terms

V- Vh|| we need some additional results fof ~ -functions  which are given for
example in [107]

2
- = 2
=l 2,  CPTI2 (3.208)

and
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||w—wh||L2( )<ch3|;/2||W|| %) (3.209)

and for the first order derivatives along edges

|Ew—w)] o, < che el - (3.210)

For theH -interpolation which is required for the in plane displacement field we
refer to the above mentioned results in (3.151) and (3.152). Introducing these esti-
mates and applying the Cauchy-Schwarz inequality once more gives an expres-
sion for an error estimatoﬁ" for the pure mechanical part associated to each ele-
mentT of the triangulation

4

n'r (U h) = ”D Q0 [o,,) - go” L2(T) hy

+|0 Coyo + | h

h + |0 0O Go,0)|° 2 2y

L2m T

+|0 o) 2, by + |0 T OW, T8

L4(T) ” LZ(T)hT

1
+= n 0 6,,,] no,.,]
4ED§0 Q@ "2 ” L (E) ” "2 ” L(E) e

+[n Doyl ||n Toull’ 2 e

+n o4l 2

LZ(E)

+||n E[D [bul]” LZ(E)

e (3.211)

+||n 0w, to eXt]” L (E)h +||n Togp" ” L (E)h +||n o eXt]” L(E) EE

2 3
+ Z nMdCo,,+Fdl" 2 _hg+ E (M, ,—nlo
EOJTAT | w2t Fd U® g, ner” 2 W2” L) e

2 3 2 3
H[n o + M o 2, 1E) + Emz (In Boud| ", 2, e
N

c,u

2
+n D] 2 g, ) +Emaz r |n 00 oy 2 2
b, u

+ n0 o, — f he
EDaZnaw” 1 ut 1)”LZ(E) E

3
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3.4 Error Estimation for multi-layer thin structures

The first five addends describe errors introduced by the deviation of external loads
from the computed loads and are thus closely connected to the element residual of
the strong form of the differential equations of the plate problem. The first term
measures the difference between the bi-laplacian of the out-of plane displacement
field from some imposed pressure difference or gravitational force. This element
residual for single-layer plates consisting of an isotropic material reads

DA*wW— g, (3.212)

D denoting the plate’s flexural rigidityp = (En*)/(12(1-v?) in terms of
Young’'s ModulusE and the Poisson number , and  the well known bi-lapla-
cian operator.

The sum over all internal edges measures the jumps of higher order field deriva-
tives across edges. The first term in this sum considers the jumps of the shear
forces whereas the second one measures the jump error of the bending moments.
Terms containing the in-plane displacement field take into account the jumps of
the stress couples. In those cases where all elements consist of the same material
stack, the terms involving the external prestresses only then do not vanish when
the prestress tensor is non constant.

The last four terms measure errors introduced by the deviation of the computed
from the prescribed normal essential boundary values. In case there are non-van-
ishing essential boundary conditions imposed on the in-plane displacement field,
the error estimator has to be extended accordingly. Finally, we obtain the global
error estimator, which is composed of locally computable error terms and requires
only the computed solution and the known mesh as input data together with the
contribution stemming from the piezoelectrical effects

|U =U| < suppy zl(F—LUh,V)st% (U’ + (R (3.213)
TUS

and yet is to be determined.
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Analogously to the purely mechanical part we analyze the natural boundary con-
ditions. Again, these re-arise in a natural way when partially integrating the vari-

ational form. Obviously, we can define an electrical current across the domain
borders

nxMe=h onl,, (3.214)

M., being a part of the domain’s three-dimensional boundaryratiterefore is
the three-dimensional surface normal. Moreover, we can specify a set of surface
tractions and bending moments evoked by the inverse piezoelectric effect,

N, & =0 and n,, xRt Me=0 and n,y M, &' Me=0  (3.215)

on a part of the boundary. We assume them to be zero, but in case these become
physically relevant they may be included into the error estimation as was demon-
strated for the various natural mechanical BCs. The set stemming from the direct
piezoelectric effect can be expressed as

Ngp @ :(Ou)S) = 0 and ngpQza: O0Ow) =0 . (3.216)
Each of the terms has the meaning of an electrical displacement applied on a part

of the domain boundary. Analogously to (3.201) we introduce the following
abbreviations with which the exposition becomes clearer:

Opy = -y Mo Dpy = ©:00w
Dpy = #:(0u)S  Dp, = & (¢ (3.217)
e, = (V=) e, =(Vv-Vv,) ey = (W—yy) .

With that we only pick the piezoelectrical part of (3.185) and partially integrate in
order to obtain
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F-LPuP, vP-vPio= R°
- " vP-vPio

_ % EJ Nyp DOpg EéhdaP—l(DzD [bp,,) CBydx
PLS gp

P

P

(3.218)
P
P

P

To make clear whether we deal with 2D or 3D quantities we have provided sub-
scripts for the appropriate symbols. In contrast to (3.202) the domain integration
here is partitioned into prisnf& Taking the sources and the fluxes into consider-
ation results in

F LU, VP - VvPhD
= P%ﬁ(mzo [Bp,) [B,dX + !DZD [{0yp [Z6pg) e, dx
+1[(D3D EDPu)qudX‘l(De,D EZDPw)qudX—l(Dw [(Dp, + p)eydx
] 100 n,p Dop,] Ce,dOP
w202l 0 (3.219)
—J[ [N ,5 (Z0p,] [Te,dP + J [N 55 Myp [26p,]€,doP
P P

P P P

+ Z J(nSDEDP(p+h)e¢daP.
0P n e10P

The interpolation estimates (3.151) and (3.152) also hold in three dimensions such
that, after applying the Cauchy-Schwarz inequality in order to separate the inter-
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3 Accuracy Control for thin structure simulation

polation errore from the other expressions by means.df  -norms, the former can
be used together with the Cauchy-Schwarz inequality for sums to yield an expres-
sion similar to that of (3.153). The error estimator which finally can be identified
then reads:

2
NT(U)" = [Ogp [6P<P||2L2(P3D)hg +[[B20 K20 DZGP¢)||2L2(P3D) :

2

2 2 2
+|Uzp (Dpy hp +||Uzp LZDpy| hp

L3 (P4p) L(P4p)

2 2
+|03p ey * 0| L(py0) P
1 2 4 2 2
* 2 e Bl e etlinz orll’ e e (3.220)
2
020 Mo gl 2 e*|Ingo Dl 2 e

5 2 1l
+([n3p CZDpy ]| L2(E3D)hE+”[n3D (Dpgyl| LZ(EsD)hED
+ n D +h 2 2 h

ED P,Zn Fe1” v | ") "

such that the overall error estimation can be stated as

U= U] s%/ % (™’ + (")’ (3.221)
TOS

The error estimator’s efficiency can be proved by the same methods which we
have used in section 3.3.3. It should be pointed out that the second addend in
(3.220) vanishes identically because third order derivatives are acting on a trilin-
ear polynomial which interpolates the electrical potential. Inspecting the addends
that contain jumps of the according quantities across the prism-boundaries we see
that L? -integration has to be taken over rectangles. When computing these terms
one has to take into account that the neighbouring layers usually are not justified
and therefore the integrands change as soon as another layer appears on either side
of the boundary when crossing the stack across the thickness. Figure 3.12 illus-
trates the situation by two opened prisms. Of course, managing this task is one of
the software problems in this work which will be discussed in the next chapter.
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Figure 3.12Computation of jump terms across prism boundaries. The prisms are
the finite elements covering the layerstacks of the device. For illus-
tration, two neighbouring prisms are opened along the rectangular
edge which they share. Integration has to performed piecewise since
the jump quantities depend on both, the material properties and the

approximation functions. In this example, 4 different integrands have
to be treated.
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4.1 Object Oriented (OO) Analysis and Design

4 OBJECT ORIENTED
| MPLEMENTATION

Making the theoretical results available in terms of a computer program is a major
task of this work. It is evident that assembling the various methods and tools with
which to efficiently simulate microsystem components leads to a complex soft-
ware system. Among the many software analysis and design methods the object
oriented method seems to be the most appropriate for a flexible and extensible
architecture of the simulator. This chapter describes the procedure with which the
numerical tools are merged into a stable and effective software tool ADAPTREF.

4.1 Object Oriented (OO) Analysis and Design

An object oriented view of the world of microsystem components, in contrast to
the traditional structured analysis, emphasizes the creation of real-world models.
According to [83], the method examines the requirements from the perspective of
the classes and objects found in the vocabulary of the problem domain. The prod-
ucts of object oriented analysis (OOA) serve as the models from which an object
oriented design (OOD) might be started. Then, in turn, the design products can be
used as schemes for completely implementing a system using object oriented pro-
gramming methods (OOA). The software system developed here, ADAPTREF, is
implemented in C++.

The tool can be viewed as an entity of collaborating objects and each object is
associated, in the sense of the OO paradigm, to a real world microsystem or
numerical or physical object. The names are given accordingly and a typical
example of an object is a physical field such as the temperature or the mechanical
displacement field. A blueprint of an early stage OOA is sketched in Figure 4.1.

Objects like partial differential equations and a geometry obviously hold a key
position in the whole software system. We further assume that an object can be
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4 Object Oriented Implementation

identified by having a state, behaviour and identity. These properties are defined
in a class common to all objects of that type. The state of an object incorporates
all the static properties of an object and the dynamic values of these properties. A
property is an inherent characteristic, quality or feature that contributes to making
an object uniquely that object. According to [83] the identity of an object may be
defined as the property of an object which distinguishes it from all other objects.
In order to avoid many kinds of errors in object-oriented programming such as,
the occurrence of dangling pointers, it is immensely important to retain control of
handling the objects’ identities properly.

An operation is a part of the behaviour of an object and represents its outwardly
visible and testable activity. In other words, it is some action that one object per-
forms upon another in order to elicit a reaction. As an example we consider the
features of an object described in the class “field”. A physical field is active on a
certain part of a device and it may adopt certain values. Moreover it has an identity
such as, temperature, electrostatical potential or mechanical displacement. A field
may also act on other fields, due to coupling effects. Figure 4.2 represents a class
diagram of the class “field”, a common graphical aid during the OOD phase.

Problem Domain

I_
Microdevices I Physics I

( Geometry ) ( Fields }

( Materials ) ( PDEs )

C Structures ) ( Boundary Conditions )

Figure 4.1 Blueprint of an early stage OOA. The objects are taken from the real
world problem domain.
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Field <« Class Name
type - Data stored per
value instance
GetType()

GetValue(coordinates) <«—————— Operations
CouplingTo(otherField)

Figure 4.2 An example class “Field”

The operations of a field thus comprise

* passing of the type
» obtain the field’s value at given device coordinates
» enforcing the coupling to an other field (other fields)

The individual data like the field’s type and the field’s value are stored inside each
instance or object of the class. The terms instance and object are used interchange-
ably as well as the terms message and operation. Message passing is one part of
the equation that defines the behaviour of an object; on the other hand the state of
an object affects the behaviour of an object as well.

The purpose of identifying classes and objects is to establish the boundaries of the
problem at hand, namely a tool for controlling the accuracy of simulation results.
Additionally, this activity is the first step in devising an object oriented decompo-
sition of the system under development. A parallel operation is dealing with the
guestion of classification which is fundamentally a problem of clustering, that is,
seeking to group things that have a common structure or exhibit a common behav-
iour. Classification helps us to identify generalization, specialization, and aggre-
gation hierarchies among classes. Modularization is the property of a system that
has been decomposed into a set of cohesive and loosely coupled modules. This
property of the software system also can be viewed as a result of classification. A
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4 Object Oriented Implementation

major difficulty when it comes to classification is the fact that a given set of
objects may be classified in many equally proper ways. As an example we con-
sider the simple geometrical class of a tetrahedron. A question to be posed then is
whether it shall be directly grouped with triangles and lines, since these are also
simplicial geometrical objects and thus share a couple of properties, or, if it should
preferably be grouped with other three dimensional objects such as prisms or
cuboids. A powerful tool of object oriented analysis is the description of scenar-
l0s. It it closely related to identifying mechanisms between the different objects,
the mechanisms are the means whereby objects collaborate to provide some
higher level behaviour.

All these processes of developing software are done iteratively. At the beginning

a system with a simplified architecture and only the most basic features is imple-

mented and tested. Then, new requirements turn up and are implemented into
classes whereas existing ones are improved and so the first architecture is
extended. The aimthen s to iterate in order to conform the requirements at the end
of the process. The next sections focus on the software system ADAPTREF itself,

including the classes, their relationships and their interactions in terms of the more

abstract framework presented in this section.

4.2 Design of the simulator tool ADAPTREF

4.2.1 Overall structure

The software developed in this work either can be viewed as a stand alone module
serving as a geometry manipulating tool, or it can be used in conjunction with a
numerical simulation tool such as a finite element tool. Figure 4.3 shows a possi-
ble application and how it may interact with other software systems. When using
it together with a mesh generator only, i.e. a software that generates a geometrical
mesh on a prescribed domain, it serves as a device with which to modify the mesh
according to certain criteria such as, for example, the maximum size of each mesh
constituent. Additionally, the software-system ADAPTREF emerges as a natural
driver for finite element programs. The latter generally lack of the control of the
accuracy of the computed solution of the physical fields. On the basis of the
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4.2 Design of the simulator tool ADAPTREF

numerical framework developed in chapter 3 we now are able to overcome this
long existing incompleteness in microsystem simulation. Figure 4.4 illustrates
how the software system ADAPTREF can be put over a finite element software.
Together with properly defined interfaces, its core operations consist of three

ADAPTREF

Mesh-tool FE-tool I

Figure 4.3 Configuration of the global use-cases of the software system ADAP-
TREF

blocks:

» Error estimation of the solution computed by the FE-program

* Refinement strategy that manages the decision where the computational mesh has to be
modified

» Split patterns which perform the geometrical modification of the mesh

The interfaces mainly serve as transfer gates for solution data and geometry data
respectively. The architecture of the software system ADAPTREF is kept flexible
such that it serves as a driver program for virtually any FE-tool or meshing tool as
soon as the interfaces can be clearly defined. Moreover, the application of ADAP-
TREF is not restricted to the usage of numerical finite element programs, other
numerical solvers such as, boundary element tools, can be used as well. The global
architecture in terms of classes and their collaboration is displayed in Figure 4.5.
The notation for documenting the classes and their relationships are taken from
[83]. A straight line represents an association between classes. In C++ this means
that in one class there is a reference of an object or an object is instantiated by its
value from the other class and vice versa. The full bullet represents the fact that
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ADAPTREF

Refinement Strategy

ulaned nids

Error Estimation

< Data FE-tool < Mesh

Figure 4.4 Using the software system ADAPTREF as an overhead to existing
finite element tools. Major operations consist of error estimation,
applying refinement strategies and applying split patterns. The most
significant interfaces consist of solution data transfer from- and mesh
data transfer to the FE-tool.

one class “has” an object of the other class, in the Booch terminology also known
as aggregation. In C++ two classes are related by aggregation if one class has
stored an object of the other class by instance. The third relationship is illustrated
by an empty bullet and stands for the fact that one class uses another class. The
class being used usually serves as a parameter of an operation of the other class.
Central to the system is the class Mesh describing the geometry of the MEMS-
device and serving as a framework for numerical simulation of multi-physical
effects by a finite element tool. The mesh in turn is composed of a set of elements,
by the notation introduced, there is an aggregation between the mesh and the ele-
ments. Each element then uses an error estimator based on the numerical solution
of a PDE that is generated by the FE-Application class. The error estimator, of
course, can not be set up without the knowledge of the PDE it corresponds to, it
therefore uses the same PDE as the finite element application did before. The
refinement strategy and the split pattern classes associated to the mesh, operate on
the latter in such a way that it is modified. The full understanding of what is hap-
pening during the application of an ADAPTREF run can be obtained when con-
sidering an interaction diagram, sketched in Figure 4.10. Initially, elements are
created such that a finite element mesh is set up representing the device geometry.
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Of course, material properties are assigned within the geometry but this operation
for clarity has been omitted in the figure. This point will be detailed later in section
4.4. At the same time a finite element application is instantiated which calls the
mesh and the PDE in terms of the type and the boundary conditions.

A run of the finite element tool is performed resulting in a set of solution data
which then are passed over to the mesh. This might be well substantiated since a
one to one relationship between physical field values and the geometry can easily
be established. The object PDE remains until the object error estimator obtains
knowledge of the partial differential equation and the boundary conditions asso-
ciated to it (for simplicity we here assume the PDE to contain the boundary con-
ditions as well, effectively there is a separate class for each of them). In the con-
trary, the lifetime of the FE-Application ends as soon as the solution data are
passed to the Mesh which in turn hands it over to each of its constituents.

Along with the destruction of the FE-Application comes the instantiation of the
element error estimators which compute each element’s error value based on the
PDE and the approximated physical field values now attached to the mesh constit-
uents. The geometrical mesh data and the physical field data are separated in dif-
ferent classes as will be detailed below. Then, a refinement strategy object is
evoked, calling the elements’ error estimators and applying the information of
their distribution to the mesh. In other words, regions within the mesh are identi-
fied to have higher or lower error values and thus the local element error informa-
tion is made available globally. In the end of the cycle a SplitPattern is instantiated
updating the old mesh by applying its geometrical routines to the mesh and thus
generating a modified one. The cycle may be repeated until a stop condition is
imposed. The major operations of the software system ADAPTREF sketched in
Figure 4.10 are operations of the software system’s main object AdaptrefApplica-
tion itself. Figure 4.6 displays the class diagram and the example code of how to
apply the software on the highest level.

4.3 Mesh and Mesh Modification

The core of the ADAPTREF is the geometrical mesh and its constituents. We only
have implemented simplicial elements and their extensions, that is, lines, trian-
gles, tetrahedrons and prisms although the overall structure supports the imple-
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4 Object Oriented Implementation

mentation of any kind of polytopes in a straightforward manner. A design has
been chosen to conform memory and speed requirements on the one hand and on
the other hand the need to make mesh modifying easy has been met. Figure 4.7
shows the class hierarchy and the class relationships. The head of the hierarchy is
represented by the class Listltem, a vector-type structure needed to assure fast
access to the objects stored within the list. Moreover memory leakage is avoided
if objects are stored in accurately defined blocks. A major issue when it comes to

FE-Application Refinement Strategy

Split Pattern

Mesh PDE

Element 0—— Error Estimator

O

Figure 4.5 Major classes and their relations of the ADAPTREF software system.

the classification of the elements is how to ensure fast access to each single object
and how to make the splitting of the geometrical object simple. By introducing an
inheritance relationship between the two dimensional simplices, the triangles/tet-
rahedrons, and the parent class BinaryTree we are able to arrange the whole mesh
in a binary tree structure. This in turn guarantees quick access to and generation
of new mesh hierarchies when bisecting triangles or tetrahedrons. The single trees
then are stored as list object such that a 2D or 3D simplicial mesh is represented
as a list of binary trees. The reason for choosing that combination of binary trees
and linear lists is closely related to the issue of keeping shape regularity of the
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4.3 Mesh and Mesh Modification

mesh as we have seen in Figure 3.4. A more general design would evoke the ques-
tion of how to deal with constraints such as the interpolation on hanging nodes
which was discussed in earlier works [63], [84].

Matters are not as simple anymore when dealing with prismatic elements since
simple bisection usually generates hanging nodes and thus a binary tree structure
would be useless. For thin structure simulation we only have to handle one-lay-
ered prismatic meshes such that bisection of elements does not result in the pro-
duction of hanging nodes. Supporting the axiom of re-usage of existing classes we
have combined the classes triangle and prism without imposing an inheritance
structure on the latter into a class SuperTriangle. It will later turn out that this class
is perfectly suited for the treatment of the mixed dimensional piezoelectrically
active membrane structure where two dimensional triangles and three dimen-
sional prisms are combined to form a single element. Of course, lower level

AdaptrefApplication RefinementStrategy myStrategy;

SplitPattern mySplitPattern;

Refinement Strategy
AdaptRefApplication myAppl(
SplitPattern

myStrategy,
Read/Write(FE-Application) mySplitPattern),
Run(FE-Application) myAppl.Run( FE-Application);

Figure 4.6 Highest level object and example high level source code application

objects, such as Nodes and Edges are also stored in linear lists and these are related
to the higher level geometrical objects by aggregation. To keep the illustration
clear, the aggregation relations for the tetrahedron have been omitted. Besides the
relations of the geometrical objects sketched above we should point out that there
has to be introduced another connection between certain objects in order to per-
form the mesh modification properly: these are the neighbouring relationships.
When splitting a simplex along its longest edge one or more neighbour simplices
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4 Object Oriented Implementation

have to be accessed in order to avoid the introduction of hanging nodes. The
number of neighbours of a triangle is limited to exactly one while in three dimen-
sions there is no limit for the numbers of simplices of a tetrahedron as shown in
Figure 4.11. Therefore the mesh constituents have to be designed to allow access
to all of their neighbours.

This is realized by assigning to each of the bounddg-simplices theD-simplex

itself, D denoting the dimension of the simpldd=2,3. Each of the boundindX-
1)-simplices thus has at least one and at most Bysimplices depending on
whether it is on the domain boundary or not. Figure 4.10 shows the Booch nota-
tion of this important aspect of mesh representation. Note that a triangle’s role is

Listltem
| |
BinaryTree SuperTriangle
| ||
Tetrahedron Triangle

3 ®3

Edge P— Node

Figure 4.7 Class hierarchy and class relationship between major mesh constitu-
ents. The arrow denotes inheritance relationship according to the
Booch notation. Aggregation relationships for the tetrahedron class
are omitted for clarity reasons.
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Tetrahedron

GetNeighbour(Face n):Tetrahedron

I4
2 (1)

Edge

2(1) 3 Triangle

|' ‘GetNeighbour(Edge n):Triangle

GetNeighbour():Triang1e GetNeighbour():Tetrahedron

Figure 4.8 Class diagram displaying the relation of the simplicial geometrical

twofold: in the first case it is an element itself and in the second case it only serves
as a part of the boundary of a tetrahedron. The operation GetTetrahedron of course

objects. Since accessing neighbouring elements quickly is essential to

the software tool ADAPTREF, not only are edges attached to trian-

gles and are triangles attached to tetrahedrons but also the converse is

true: depending whether the simplex under consideration is on the

domain boundary or not it is assigned one or two of the higher dimen-

sional one, respectively.

Is disabled when the mesh is only two dimensional.

4.4 Materials and Thin Structures

The design of the material database basically follows the one described in [63]. In
the case that other FE-simulation tools than FEMEngine are used as a computa-
tional kernel, an appropriate interface has to be implemented without changing the
structure of ADAPTREF’s material database. Simulating microsystem compo-

nents requires the following tasks to be met:

* material properties are scalars or tensors

» one selected material usually has many properties

* modeling and simulation of thin structures requires support for multi-material layers
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The architecture of the material database is shown in Figure 4.9. The responsibil-
ities of each class are:

Structure A structure is a composite material. Within a structure each mate-
rial component is assumed to be immobile with regard to the other
materials, in other words, the components are supposed to be
glued together. The main application of structures are multi-lay-
ered plates, membrane-like devices consisting of different mate-
rial stacks with different thicknesses sandwiched together. The
class Structure contains a set of Material objects which can be re-
quested by the class user. Also the class offers information about
component thicknesses and positions within the structure. A chief
feature of the class is the computation of material tensor moments
of a certain order across its vertical dimension such that a material
property can be returned as if the structure consisted of only one
material.

Material This class is central to the material database. It is the representant
ofasingle materialand comprisesallthose propertiesthathave been
specified. In turn these properties can be accessed by the class us-
er. An error is reported if for a given physical problem a certain
property has not been defined. A key feature of the material class
is its ability to determine the reduced values of a specified prop-
erty. This is required when dealing with thin structures, aswe saw
in chapter 3.

MaterialPropertyType  This is an enumeration type and is used to identify one particular
MaterialProperty such as heat conductivity or thermal expansion.
When requesting the value of a material property from a material
object a MaterialPropertyType is passed to state the type of prop-
erty that is requested.

MaterialPropery This class denotes the value of one particular property of the ma-
terial. The associated MaterialPropertyType enables the user of
the class to determine what kind of property this object is.

The material data are made available to the numerical error estimating modules by
the elements. The elements are assigned either one particular material or one par-
ticular structure. Itis also possible to extend the material database to environment
dependent material properties, for example a Young’s modulus which is temper-
ature dependent [63].
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1 1
Material o Structure
GetProperty(MaterialPropertyType) GetMaterial(layerNumber)
T m
1
MaterialProperty MaterialPropertyType

GetValues(): Tensor

Figure 4.9 Class relationship of the material database. A material might possess
different material properties such as thermal expansion or thermal
conductivity. A structure consists of a stack of different Materials of
which each has a certain position within the stack identified by the
layerNumber. An element, the building block of a device geometry,
may be either assigned a structure or a material.

4.5 Fields and Boundary Conditions

A major difference between a common finite element tool and the software
module ADAPTREF presented here is the fact that the mesh is dynamic in the
latter case. An important aspect thus is how to prolongate persistent information
from a previous mesh to a new one. To illustrate this we take the example of an
element which is split: Here the material properties of the new elements simply
obtain those adherent to the parent element. Or, consider, by way of illustration, a
spatially defined source function, such as a heat source, which also has to be
present at the same spatial positions in a new mesh.

The situation is quite similar when it comes to treating boundary conditions. As
soon as a new node is introduced on the domain boundary the correct boundary
conditions have to be assigned to it. This is easy when the new node’s old neigh-
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bours share the same conditions for a given field (as a convention we assume that
boundary conditions in many finite element tools are defined on nodes). However,
things turn more complicated when the neighbouring old nodes do not share the
same conditions for a particular field, for instance the first one is assigned natural
BCs whereas the second one has essential BCs. The management of difficulties of
that kind is left to the class Comp(utational)Node and its associates as illustrated
in Figure 4.12. A CompNode includes all the information the split pattern needs
to equip newly generated nodes with the new boundary conditions on the one hand
and with information concerning predefined regions a certain set of nodes belong
to, on the other hand. It is noteworthy that, while the relation between the bound-
ary condition class and the CompNode class is one to one, there is an aggregation
between the CompNodes and the geometrical nodes such that several CompNodes
may be attached to one single node. This is because different boundary conditions
associated to different physical fields are specified at the same geometrical posi-
tion. In the following we give a listing of the individual class items and the tasks
they have been assigned.

CompNode Derived from the expression computational node the class serves
as an interface class between the persistent physical properties de-
fined within specified spatial regions and the evolving mesh
structure. It it thus responsible for the correct prolongation of
boundary data and information about regions a node may belong
to. Major operations consist of passing the field type and the
boundary conditions the CompNode is linked with to the user of
this class, mainly the geometrical split pattern.

Field An instance of this class denotes one particular physical field such
as the temperature or one of the displacement fields. A field is one
to one related with a boundary condition and thus with a CompN-
ode. For each node it has a defined value.

FieldType An enumeration type needed when a field is requested from a
CompNode object.

BoundaryCondition The class boundary condition represents the boundary values
specified for a given physical problem at a certain part of the de-
vice geometry’s boundary. It is thus closely related to a set of
nodes (in case the finite element tool requires BCs to be specified
at nodes) which are combined on their part in an object of the
class Region. A boundary condition has one particular field type
and it is aggregated to one region which means that all nodes in
that region share the same boundary condition. Since it is con-
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nected to exactly one field type the main issue of an object of this
class is passing the BC's value.

BoundaryConditionType An enumeration type needed to decide whether we deal with nat-
ural BCs or essential BCs for a given node. Neumann or Dirichlet
Boundary Conditions are BoundaryConditionTypes for instance.
Some difficulties arise when introducing a new node into the
mesh in between two old nodes having different BoundaryCondi-
tionTypes for a given field. Natural conditions then are chosen as
a default for the new node in case the edge’s first old node has nat-
ural BCs whereas the second old node has essential BCs for a giv-
en field.

Region The region class usually serves as a container for a set of nodes
which share some specific properties. It is not restricted to nodes
that share a certain boundary condition nor is it restricted to nodes
as such: also elements might be collected within an instance of
this class. Creating new nodes and elements requires them to be
assigned the regions (by the appropriate identifiers) in order to
provide a correct interface for the finite element application.

We finally want to point out that when new mesh constituents are generated in the
split pattern all the important properties connected with boundary conditions and
regional information are transferred automatically to the new nodes. This is why
the split pattern not only uses the pure geometrical information of the nodes but
as well has to be aware of the data which we collected in the CompNodes. Imple-
mentation of this procedure in a sophisticated way presented here thus releases the
program end user from tediously writing program macros for the prolongation of
data, a common but poorly way in commercial software tools such as ANSYS
[35].

4.6 Error Estimators and Mesh Refinement

The main feature of the software system ADAPTREEF is its ability to automati-
cally modify a mesh describing a device geometry. The mesh modification is
solely based on the optimization of the accuracy of the physical field to be com-
puted. And at the same time, computational resources such as processor time and
memory requirements are kept at a minimum. This can only be achieved by
exploiting the interaction of a system pillared by three classes, namely the refine-
ment strategy class, the split pattern class and the class responsible for setting up
contributions to the element’s error estimator, denoted by Comp(utational)Ele-
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Figure 4.10Interaction diagram of the major objects used during a simulation run
cycle. The lifetime of each object(s) is highlighted by an empty
thicker bar.
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Figure 4.11Accessing neighbours of simplicial elements along a predefined edge
(bold): An issue of OO software design.

ment. The latter class takes into account that an element has two sets of responsi-
bilities: first, the element is the building block of the geometry of the device being
simulated. Second, the element is used as a finite element and thus it must provide
for a convenient representation of finite dimensional function spaces.

While finite elements in the conventional sense require the support for shape func-
tions, we here only need a representation of polynomials of different orders. This
means that an element, before some error can be retrieved, has to be equipped with
solution data representing some field’s values by a finite dimensional functional
object, in our case, a polynomial. To one and the same geometrical element there
might be attached several polynomials each representing a different physical field.
The polynomials and the operations that are in charge of setting up the elements
error contribution are collected in the class CompElement.

Disposing of element error values we are able to set up some refinement strategy,
a conception to decide where the mesh should be modified. Finally, a split pattern

can be instantiated that performs the mesh modification from a geometrical point

of view, see also Figure 4.10. Figure 4.13 describes the mechanisms with which

these classes collaborate. The responsibilities of each class are as follows:

CompeElt This is the class which comprises the non- geometrical aspects of
the finite element. In contrast to the conventional finite element
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RefinementStrategy

tools fields are just represented by polynomials which in turn are
reconstructed by the finite element definition and the field’s val-
ues. This requires the solution of a linear system which is at most
21x21 for the highly sophisticated Argyris triangle. Moreover, an
instance of this class sets up the individual error contribution for
the field it is (non-ambiguously) associated to. An object of the
class element has as many CompElts as there are fields defined
for it. Thus, when calculating the element’s entire error contribu-
tion each CompElt is requested to hand over its part. For instance,
the CompElement “LinearTriangle” associated to the field Tem-
perature has to provide for the jump errors of the heat flux,

Lk LOT
||[n h]”Lz(E)

across the element interfaces. Each CompElt, independently of
which field it is associated to, has member functions that provide
for different differential operators acting on the functions which
represent the field. The elements do not need to know of which
kind the CompElts are, as an example of polymorphism, the cor-
rect operation for every CompElt is determined not until runtime.
The class CompeElt is a base class to its children classes ranging
from linear tetrahedrons over to Argyris triangles to linear prisms.

An instance of the class RefinementStrategy operates on the geo-
metrical elements and determines whether they should be split or
not. Usually this is done on the basis of an element error estimator
computed by the CompElements. Of course, global strategies are
allowed to be applied where no error estimator is required.
Among others, a common strategy is the maximum strategy, and
is done in the following way [46]: Suppose that for a given mesh
a solution and an error estimator for each element has been com-
puted. Put

n: = maxr gy

andsplitanelemert i >{n whem& isaprescribed thresh-
old, 0<{<1. This strategy, applied iteratively, would continue
indefinitely. A halting condition is simple to add: stop if

N < Naceepe FTOM heuristic arguments we know that among all
partitions of a linear finite element discretization, that one is opti-
mal which equilibrates the error. Il.e., the errors in all elements
should be made equal. This can be achieved by the maximum
strategy. All different types of strategies are predefined by the
program user and require the enum-t@eategyType
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SplitPattern

This class is responsible for the methods how to modify the mesh
from a geometrical point of view. The way in which the refine-
ment process is performed, from a geometrical point of view, de-
pends on the kind of elements present in the mesh. Difficulties
arise from keeping shape regularity and from handling hanging
nodes. Many rules have been established for the splitting of sim-
plicial mesh constituents, such as e.g. the “red”, “green” or “blue”
refinement for triangles. We use a recursive algorithm for trian-
gles which is based on the longest edge bisection. It has been
shown that only a finite number of different angles occur during
the refinement process and therefore shape regularity is guaran-
teed [111],[112],[113]. The algorithm is shown in Figure 4.14,
whereas the splitting of a 2D triangular patch is displayed in
Figure 4.15. As for the RefinementStrategy a SplitPAttern has to
be declared by the program user by an enumPgternType.
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We would like to point out that a recursive split pattern has also been implemented

1
CompNode F Boundary Condition
I 1 . 91 €71 1
Field
T 1
@)
SplitPattern _
® FieldType BCType
Displacement Dirichlet
Temperature Neumann
E-Static Potential Mixed
n
Node ﬂ Region
m n

Figure 4.12Information that has to be prolongated during the adaptive refinement
procedure is stored in a class called Comp(utational)Node. One par-
ticular geometrical Node may carry many different CompNodes
according of the numbers of the physical fields defined on it. A major
task of the CompNodes is to handle the boundary conditions by enter-
ing them into the split pattern.

for tetrahedral grids, but here one has to encounter the difficulty that convergence
of the algorithm is restricted to a small class of geometries the tetrahedrons are
embedded in, see [114]. This in turn means that the variety of such applications is
limited. Nevertheless we present a thermal analysis of an elbow in the next chapter
where the recursive split pattern for tetrahedrons has been applied.
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4.6 Error Estimators and Mesh Refinement

RefinementStrategy O— ——( SplitPattern

SetSplitindicato(Element Split(Element)

T

StrategyType PatternType

Element

Fori=1...n:

SetUpElementErraiCompElt(i))
:ErrorEstimator

? m

1
CompElt b Field
SetUpErrorTerm§

I

LinearPrism | |ArgyrisTriangle | |LinearTriangle ||LinearTetrahedron

Figure 4.13Relationships among classes representing the numerical core of the
software on the one hand and the impact of the mesh manipulating
classes on the other hand. The generation of each element’s error esti-
mator is a nice illustration of an OO-feature called polymorphism: An
element does not need to know what special kind of CompElts it is
dealing with, at run time each of them hands over its own contribution
to the total element error autonomously.
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4 Object Oriented Implementation

recursiveRefine(triangle_element)

{
do
if neighbour has non-compatible
refinement- edge
recursiveRefine(neighbour)
tuntil neighbor has compatible refinement-edge
bisect both triangles at the refinement-edge
}

Figure 4.14Recursive refinement algorithm for triangular grids.

Outer Mesh Boundary
Outer Mesh Boundary e . outerMe

sh Boundary

Figure 4.15The elementary mesh at the left consists of 4 triangles. The shaded tri-
angle is marked to be split along its longest edge. The longest edges
of each triangle are marked by thick lines in the center figure. The
dashed lines at the right show how the recursive bisection algorithm
produces new triangles, continuing through the neighbourhood until
a first edge can be split (in the worst case, this happens only when the
boundary edge is reached), then backtracking. The boxed numbers
label the order in which new edges are introduced on the return path
of the recursive algorithm (depth 4).
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5.1 Thermal Analysis and typical singularities

5 SMULATION

This chapter is dedicated to present the areas of application of the software module
ADAPTREF. It serves as a tool with which to accurately simulate the physical
behaviour of microsystem components. Through its ability to perform auto-cor-
rection in the sense that it adapts the computational mesh to the physical fields that
are desired, it relieves the MEMS designer of the burden of finite element mesh
design. Moreover, with this software at our disposal we overcome the general
drawback when using common finite element tools such as [35],[36]. These dis-
regard field singularities introduced by the mere shape of the device or such that
are due to material interfaces. We demonstrate the action of ADAPTREF and thus
the accuracy controlled MEMS simulation procedure starting with thermal prob-
lems and closing with a piezo-electrically driven membrane problem.

5.1 Thermal Analysis and typical singularities

It is well known that simulation domains with concave corners give rise to field
singularities [78],[2]. We will use this fact in order to provide an illustrative entry

into what the adaptive finite element tool ADAPTREF is able to perform. We con-
sider a general wedge shaped dontain  as sketched in Figure 5.1. We assume that
there is no heat source within the domain and the Poisson equation describing the
temperature distribution reduces to a Laplace equation for which we fix the fol-
lowing boundary conditions:

—(O0MT) =-AT =0 onQ ={(r,0): 0<sr<1, 0<B<g@}

0 O<sr<1

T(r,0) = T(r, @)

T(1,0) = sing—seg 0<B<o .

(5.1)

Since for the function
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5 Simulation

Tt

T(r,0) = r(_psinggeg (5.2)

Figure 5.1 A wedge shaped domain for thermal analysis. The apgle is a vari-
able and thus the domain gives rise to field singularities in the very
corner of the domain.

the equation

A, oT(1,8) = Q_Tflg_ﬂlz"_z
or ror r-006 (53)
_ M LOve-2_. [T, TTve-2_. [Tl [T, We-2_. [Ta0l_
= —-=-1 sin=0=+ —r Sin=0=—==r sin=0==0
oltp % D o Cp 0 Cpdd LD

holds for anyp we see, together with the boundary conditions, that the harmonic
function (5.2) is a solution to problem (5.1). However, difficulties arise when one
wants to approximate the temperature field by the governing PDE and the bound-
ary conditions in the context of (3.68) where it was assumed that a bound for the
linear interpolation error is given by somé  -integral of the function’s second
derivatives. In our case, the derivatives of the function considered become singu-
lar at the origin as soon @s exceeds the value of since then
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5.1 Thermal Analysis and typical singularities

T 1

9 _ e Mg = 07 i 0
arT(r, 8) = (pr Sm[tpeD s st:peD (5.4)

with A <0. Still, first derivatives are square-integrable and thus the function is in

H'(Q), as we saw for example in 3.1.2, but second derivatives are not square inte-
grable anymore since

21

H _O%Drdedr DIrz(mp_z)rdr = I :OrE_ dr (5.5)

does not exist for values @f exceeding

Although the a priori error estimation fails we can perform some a posteriori error
estimation for the poisson equation with a zero heat source according to 3.3.2.
Since the interpolation functions which we choose are linear, the error estimator
(3.155) only consists of terms involving jumps of the heat flux across element
edges and deviations from the prescribed flux at the Neumann boundary

1
T =5 Fllne SO g
EO oQ

+ SZ ||gN—nEEkD]Th|| ,
EOS EOM,

(5.6)

T, denoting the interpolated temperature field. One should note that this type of
error also could be interpreted as discontinuities of thermal fluxes, or when deal-
ing with an electrostatic problem, jumps of the electrical field which both are for-
bidden by the laws of physics.

Figure 5.3 displays the thermal analysis for a simple L-shaped single material
geometry with different Dirichlet boundary conditions applied on the outward
edges and the inward edges respectively. The absolute values of the field gradients
and thus the jumps of the thermal fluxes across element boundaries are displayed
in the last row. The initial triangulation shows large jumps of the gradient values
between interelement borders. During the refinement process the gradient value
field is smoothed and thus jump errors are reduced. Although some values seem
to be high we can state that the error contribution also takes into account the
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5 Simulation

dimension of the elements, see (5.6). Therefore, the connection between the strat-
egy to equidistribute the element’s errors and the mesh refinement can be clearly
identified.

Another important type of singularities emerges when different types or values of
boundary conditions meet. As an example we consider the polygonal boundary of
some domain which has been assigned different boundary conditions: essential
BCs directly border on natural BCs at a given point of the triangulation. This dif-
ficulty evokes the treatment @jpen setsn a mathematical sense since it would
have no meaning specifying both natuaald essential BCs in one single point.
The matter becomes of a tremendous importance when it comes to the prolonga-
tion of boundary data during the refinement process. Which type of boundary con-
ditions should be applied to newly created node® as in Figure 5.27?

essential BCs natural BCs

Figure 5.2 Singularities due to the coincidence of different BCs. According to
ADAPTREF's convention the new nodewill have the same essen-
tial BCs as the corner nodes onthe edge . The newly created node
B however, is assigned natural BCs, so the €gjge  is treated as an
open set.
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5.1 Thermal Analysis and typical singularities

The software tool ADAPTREF has an internal definition of open and closed sets
and rules how to treat them during the refinement process as we have detailed in
section 4.5. By default, natural boundary conditions always correspond to open
sets unless otherwise stated. The reason simply is that natural boundary conditions
enter the finite element formulation by an integral to be taken over the boundary
whereas essential boundary conditions directly influence the finite dimensional
ansatz-space which is defined via the nodal values.

We illustrate this topic by a coaxial-shaped structure having constant temperature
on the inner boundary circle and another constant temperature on the most part of
the outer circle except a closure where no heat flux is allowed and thus homoge-
nous Neumann BCs apply, as can be seen in Figure 5.4. Besides the singularities
caused by concave corners we can observe two other singularities at the points
where different BCs meet. During the refinement process the temperature jump
gets steeper and steeper in the vicinity of the nodes under consideration. This is
for the reason that mathematically the natural BC forms an open set that extends
to the essential BC node infinitely close. When looking at the triangulation of the
simulation domains in Figure 5.4 we observe that the mesh quality improves
remarkably by means of the smallest angles which occur. This is due to the usage
of the recursive splitting algorithm presented in Figure 4.14.

A recursive splitting algorithm is also used for adaptive mesh refinement in three
dimensions, displayed in Figure 4.11. The splitting procedure, however, is much
more complicated since for a given tetrahedron’s longest edge there might be an
arbitrary number of other tetrahedrons which form the neighbours at that given
edge. We present the results for the same thermal problem as we already did in
this chapter’s first example together with an extension into the third dimension.
Here we have to deal with the difficulty that a part of the boundary is assigned nat-
ural BCs although all of its corner nodes are determined to have essential BCs.
This is the case for the upper left triangular face being a part of the elbow’s ther-
mally insulated face as can be seen in Figure 5.5. Not surprisingly, major refine-
ment occurs at the re-entrant corner, or, more precisely, along the straight line that
represents the 3D-version of the concave corner. A major drawback when it comes
to the refining of three dimensional simplicial grids is the fact that the recursive
algorithm presented in Figure 4.14 which is smart in the sense that it keeps shape
regularity and avoids hanging nodes, only terminates for a small class of initial tri-
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angulations [114]. One could overcome this difficulty by carefully choosing the
initial discretization of the device. This can be achieved for example by embed-
ding the tetrahedrons into cubes which requires the rather restrictive decomposi-
tion of the domain into equally sized cubes.

Another way how to handle the refinement of simplicial meshes in three dimen-
sions would be the enormously time consuming re-meshing of the whole device
geometry as it is done for example in [35]. With these considerations it comes in
handy that certain aspects of structural behaviour can be analyzed by using the
reduced two-dimensional thin plate model presented above.

5.2 Balancing error contributions

The choice of the finite elements has to meet the following fundamental require-
ments:

» they have to be in the same space in which the variational problem is posed
» physical conservation principles must not be violated

When it comes to the simulation of thermo-electro-mechanically active thin struc-
tures one has to encounter the difficulty that on the one hand elements oftlass
have to be used in order to match the conforming requirements of the Kirchhoff-
Love plate model. This model is perfectly suited for very thin structure bending
behaviour and thus a priori avoids the locking phenomenon. On the other hand,
when using for example, the Argyris triangle, or the Bell triangle, first and second
order derivatives are enforced to be continuous at the element nodes. Computing
the temperature field on a 2D domain by using the Argyris element -what would
be breaking a fly on the wheel- therefore would enforce continuous temperature
gradients which at a material interfals# would violate the principle of thermal

flux conservation since there the relation

K OTy| #1007 (5.7)

holds,x; ,x, denoting the heat conductivities of the different materials. Neverthe-
less, the residual error estimator presented in the previous chapter can cope with
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5.2 Balancing error contributions
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Figure 5.3 Thermal analysis on a domain geometry with a re-entrant, concave
corner. Both columns display the interpolated temperature field as a
projection of the field into the plane, a 3D graph, and a plot of the gra-
dient jJumps across inter-element boundaries, from top to bottom. The
left column represents the starting coarse mesh and the right column

the highly refined mesh.
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log(|OT4)

Figure 5.4 Thermal analysis on a coaxial shaped domain. Besides singularities
caused by concave corners the major errors occur in regions where
different BCs meet. The adaptive procedure “resolves” these singu-
larities as can be seen in the bottom right graph. To clearly display the
temperature in the vicinity of one boundary singularity a part of the
refined mesh has not been displayed.
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5.2 Balancing error contributions

Figure 5.5 3D-thermal analysis of an elbow. Dirichlet BCs have been applied on
the outer and on the inner boundaries whereas homogenous Neumann
BCs apply on the back face and on the front face. On the left the initial
temperature distribution and the underlying coarse mesh is displayed.
On the right hand side the field and the corresponding tetrahedral
mesh after 9 refinement steps is shown.

errors introduced by elements which are too smooth. We demonstrate this for a
simple Dirichlet thermal problem where constant temperature&arid K are
applied on the left and the right hand side of a rectangular 2D domain which con-
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sists of two different materials and has a length of 2he exact solution is
sketched in Fig. 5.6

T(x 9,
1
Ky O<x<1
K= ]
K, 1<x<2
X

Figure 5.6 Exact solution of a symmetric 2D thermal problem. The temperature
field’s gradient is discontinuous at the material interface.

and is piecewise linear

@Ekl'il}(z—l%ﬂ 0<x<1

Txy =0~ ) (5.8)
P 1 jexs<2
0 KitK= Ktk

This exact solution can be obtained by linear triangular elements. Since function
(5.8) is identical with the one sought in the VBVP (3.73) given by the bilinear
form

a(T, U)Ei[DTEkEDde = (OT,x dU), = 0 (5.9)

there is no difference between the weak solution and the approximated solution
and thus the error estimator vanishes.

Matters are different when this problem is approximated by the continuously dif-
ferentiable Argyris triangle. Asin (5.7), errors are introduced by imposing discon-
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5.2 Balancing error contributions

tinuous fluxes at the material interface nodes and across elements. The detection
of the error and how the solution is improved is displayed in Figure 5.7.

A Th(¥) A Th(X)
1 1
0.8 0.8
0.6 0.6
Kl = ]__\lv_
0.4 mK 0.4
w
0.2 Ko = 01— 0.2
2 mK
0 i G s 0.5 i 15 > >
X X

Figure 5.7 Temperature along a cross section of the rectangular domain interpo-
lated with smooth Argyris triangles. The left curve is obtained by a
coarse grid and the right curve is the temperature after 10 refinement
steps.

Not only the temperature field itself but also the first order derivatives tend
towards the exact solution during the refinement process. The thermal fluxes,
which according to (5.8) are supposed to be constant over the whole domain, and
the temperature gradients are displayed for different refinement steps in
Figure 5.8. One should note that in the same way in which the continuous temper-
ature gradient is attempted to be eliminated, the jump of the heat flux reduces to a
set of measure zero. The main error contributions in this case are inner element
force deviations

|0 G OT|? (5.10)

L3m)’

since, in contrast to linear elements, second order derivatives of the fifth order
polynomial do not vanish. These error contributions are displayed in Figure 5.9.

Another example where physical continuity requirements are violated by ele-
ments too smooth can be demonstrated by a cantilever, clamped at the left end and
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Figure 5.8 Temperature gradients (left) and thermal fluxes (right) along the rect-
angular domain’s cross sectionyat 0 . The curves display the fields
In the starting triangulation and after 5 and 10 steps, from top to bot-
tom. The initial thermal flux misleadingly is discontinuous and is
squeezed into the correct continuity in the refinement limit.

consisting of two different materials which is deformed due to a constant pressure
difference acting in vertical direction. When computing the displacement field by
conforming Argyris triangles, the imposed continuity of second order derivatives
at the triangles’ corners results in discontinuities of bending moments that physi-
cally are not allowed. However, the adaptive mechanism of ADAPTREF based on
residual error estimation tries to balance the errors caused by discontinuities in
order to yield the optimal solution. The displacement of the cantilever is displayed
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—
y

\
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step O step 5 step 10

Figure 5.9 Inner element force deviations for the thermal Dirichlet problem for
different refinement steps. The error values are highest for the initial
mesh (reddish) and are reduced during the refinement process (blu-
ish).

in Figure 5.10. The second order derivatives of the out-of-plane displacement
field are continuous whereas the corresponding bending moments have jumps as
displayed in Figure 5.11. In the limit of the adaptive refinement however, the
approximated bending moments tend towards that of the local analytical solution.
The latter, on a one dimensional domain can be obtained by imposing the appro-
priate boundary conditions and continuity requirements to a fourth order polyno-
mial which obeys a bi-laplacian equation. Its second order derivatives and the cor-
responding bending moments are sketched in the last row of Figure 5.11. We
finally want to point out that besides the previously discussed singularities also
those inconsistencies can be handled that originate from finite element subspaces
which are too smooth. Therefore the user of the software ADAPTREF also is
relieved from the burden of thinking about the smoothness of the finite element
polynomials as soon as conformity is guaranteed.
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Y, Material 1 Material 2

E 1.5E11 Pa 5.0E9 Pa
0.04

Vv 0.17 0.46

h 0.001m 0.001m

Dom (0, 1) (1,2

ain  *(0,025 x(0,029

Pres- 1.0E-1 Pa 1.0E-1 Pa
sure
Diff.

Figure 5.10Deflection of a beam consisting of two materials which is clamped at
one side. The computation of the deflection is made on the mesh
obtained after the 14th refinement step. The table shows the corre-
sponding material properties.

5.3 Mechanical Analysis

Thin structures are central to micro-electro-mechanical systems. For example the
micromachined complementary metal oxide semiconductor (CMOS) Atomic
Force Microscope (AFM) beam [85], formed from the dielectric layers and some
silicon, undergoes minute deflections. The stress caused by the deflections is
detected in piezo-resistors at the beam’s base. A typical example of thin structures
widely used in MEMS-technology is given schematically in Figure 5.12. Multi-
physically active thin structures here are fabricated by a CMOS process together
with an etching step in order to release the beam or the membrane structure
[86],[87].
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Figure 5.11Second order derivatives of the out-of-plane displacement fiedd in

direction along a cross section of the cantilever ato

, left, in the

Oth, 5th and 14th refinement step and the analytical result, from top
to bottom. The right column represents the corresponding bending

moments.
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Nitride Passivation
‘)? CVD Oxide (Dielectric)

T ‘4 Metal (Al)
T VD Oxide
\ Polysilicon
Field Oxide
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Figure 5.12Schematic view of a released beam/membrane structure fabricated by
a CMOS process together with an etching step.

Typical layer thicknesses of the different layers are summarized in Table 5.1.

Table 5.1 Typical thicknesses of layers resulting from a CMOS process.

Layer Thickness
Field Oxide 0.55um
Polysilicon 0.3um
Metal (Al) 0.6— 1.Qum
Passivation 1.0um
Thicknesses of the oxide layers typically vary betwe@®s— 1.qum . The resulting

thin plate structures to simulate then have an aspect ratio of the ortié of ~ when
assuming a lateral dimension of the same order of magnitude in microns. The
mechanical deflections are in the order of the thickness and thus the linear plate
model presented in chapter 3 fits excellent [27]. In the following we are going to
examine the accuracy control for different deformation behaviour of such multi-
layer structures.
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5.3 Mechanical Analysis

5.3.1 The stretched membrane

As a first example, we consider a homogenous single-layered rectangular mem-
brane which is partly prestressed in its center region. Fig. 5.13 shows the
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Figure 5.13Exaggerated deformation of a membrane together with the x-compo-
nentu, of the in-plane displacementfiald . The membrane is under
constant horizontal surface traction at the left and the right side of the
structure, before (left) and after (right) 13 cycles of adaptive mesh
refinement. The upper and lower edges are completely free. The
center region is under tensile prestress. Significantly refined regions
are visible at the transition from the prestressed to the non-pre-
stressed region and where the vertical constraints are applied.

deformed structure modeled by the initial triangulation and the same structure
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after 13 mesh refinement cycles. Constant surface traction is applied on the right
and left boundary of the membrane (note that the surface in our flat model is
reduced to a one dimensional line) and no load acts in the vertical direction. Since
the structure is single-layered, all error terms appearing in (3.211) which include
first order moments of the reduced elastic constants or prestresses, such as for
example

In lI[csul]”2 = ||n E[Al:(Duh)S]”sz(E) =0 (5.11)

L*(E)
identically vanish. This is because the first order moments are obtained by inte-
grating an odd-ordered function over a transverse domain centered at the z-direc-
tion’s origin. Moreover, as there is no force which causes the out-of-plane dis-
placement to be nonzero, all terms involving the vertical displacement vanish
identically. So we are left with terms which contain only derivatives of the in-
plane displacement field, contracted with zero order moments of the elasticity
tensor and the jumps of the zeroth order prestress:

o g u + 2,
In E[AO:(Duh)s]”ZLz(E) (5.12)

||n [[08)“] ||2L2(E) .

Taking into account that the horizontal displacement field is interpolated by the
Argyris-polynomials and thus is continuously differentiable in the domain
(u, O c'(w)) no jumps along interior edges occur. The only non-vanishing error
contributions in this case then are in-plane bending errors in the element interiors,
and these decrease when we move from the starting coarse mesh to the level 13
refined mesh, see Fig. 5.14.

The errors due to deviations of computed boundary values from prescribed values
at natural boundaries (situated at the top and the bottom of the membrane) are
shown for mesh level 0 and 9 in Fig. 5.15. The errors due to jumps across the pre-
stressed zone edges are shown in Fig. 5.16. The decrease of the total error (which
is the sum of the single contributions) during the refinement process is illustrated
in Fig. 5.17.
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5.3 Mechanical Analysis

Figure 5.14Reduction of inner-element in-plane bending moment errors during
the refinement process. For each triangle we assign one error colour
of the specified quantity. Red shading denotes high error values
whereas bluish denotes zero element errors. The adapted mesh plot at
the right clearly shows the tendency of the refinement strategy to
equilibrate the element errors when combined with the other error
contributions. For clarity only a part of the underlying mesh is dis-
played.

5.3.2 Fully clamped membrane

Error contributions due to different material stacks and inconsistencies in approx-
imating the out-of-plane displacement field are best demonstrated when a trans-
verse pressure difference acts on a fully clamped membrane. The membrane con-
sists of different material stacks which, for simplicity, we assume to be single-lay-
ered to make the first order moments of the in-plane tensors vanish. Slightly
modified, this material configuration is often found in pressure sensor MEMS
[90]. Fig. 5.18 shows the deformation of the membrane before and after 14 refine-
ment cycles.

The in-plane displacement is assumed to be zero. Thus terms in (3.210) which
containu,, are neglected. Since no prestress is specified, the corresponding terms
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Figure 5.15Decrease of stress-couple errors across element edges up to refine-
ment step 9. For each triangle we assign three error colours located at
the triangle's edges and representing the jumps of the specified quan-
tities across the edge. Here, only errors at the non-essential bound-
aries are non-zero.

Figure 5.16Decrease of prestress jumps along the transition region of prestress to
the non-prestress part of the membrane up to refinement step 9. For
each triangle we assign three error colours located at the triangle's
edges and representing the jumps of the specified quantities across
the edge. Here, only errors at the transition edges are non-zero (red-
dish).

also vanish. We are left with terms involving second order moments of the elas-
ticity tensor contracted with the derivatives of the transverse displacement field.
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Figure 5.17Decay of the total estimated error during the refinement process of
the partly prestressed membrane of Fig. 5.13.

Clearly, contributions from edge-jumps of the bending moments and the shear
forces (which physically are not permitted and hence spurious) are biggest in the
region where the different material stacks meet. The error terms we are required
to include are the element force deviations,

000 0A5: 00w ~ o] 2,7, (5.13)
and the bending moment jumps and shear force jumps:
In A 00w ]| 2,
- ® (5.14)

In E[D(AZ:DDWh)]”ZLz(E) .
Fig. 5.19, Fig. 5.20 and Fig. 5.21 show these contributions at the start and for the
refined mesh after the specified number of adaptivity cycles. The decrease of the
computed energy error estimator during the adaptivity cycles is shown in
Fig. 5.22.
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Figure 5.18Exaggerated deformation of a single-layered membrane consisting of
two different materials under constant vertical surface pressure
before (top-left), during, (top-right, step 5; bottom-left, step 9) and
after 14 refinement cycles (bottom-right). Major refinement occurs at
the material transition interface. We should note that the displace-
ment field is interpolated bg' -functions whereas the graphical
interpolation is linear.

Figure 5.19The fully clamped membrane: Inner element force errors in the start-
Ing coarse mesh and after a refinement iteration of depth 14.
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Figure 5.20The fully clamped membrane: Errors due to discontinuities of shear
forces along element interfaces. After the 14th refinement step jumps
in the inner region are almost extinguished (greenish).

Figure 5.21Reduction of the bending moment errors. These are largest at the
material transitions in the starting coarse mesh and remain so in the
refined mesh.

5.3.3 Double-layer stretched membrane

The third example serves to demonstrate the influence of the coupling of in-plane
displacement and out-of-plane displacement fields on the solution errors. This
only occurs for multi-layered structures, due to the fact that only then do first order
moments of stresses take on non-zero values. As in the first example, a membrane
IS subjected to constant surface traction at two opposite boundary edges. A double
layer structure is embedded in the membrane (see Fig. 5.23).
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Figure 5.22Reduction of the total error of the clamped membrane. The error is
displayed versus the number of elements during the refinement pro-
cess.

Here, the out-of-plane displacement does not vanish and we are left with the fol-
lowing contributions: inner-element deviations of the computed forces from the
prescribed forces where the latter are zero for both the transversal and horizontal
displacement fields

2
|0 0 OA,:O0w,))| 21y
[& [(Ao:(Duh)S)”ZLz(T) , (5.15)

S\ |12
Joao oA @u )| 2,
and the sum of the jump terms
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5.3 Mechanical Analysis

Figure 5.23Exaggerated deformation of a membrane with a double layer struc-
ture embedded in the center region. While the in-plane displacement
is small and is hard to distinguish in the figure, we clearly see that
out-of-plane displacement occurs in both the positive and the nega-
tive directions.

As mentioned before, terms involving first order derivatives of the in-plane dis-
placement field only then do not vanish, when material properties across elements
change. Jumps of first order moment stress-couples, i.e.,

”n E[Alz(Duh)S]Hsz(E) (5.17)

obviously only exist along the layer-stack interface. Exemplarily we show some
terms contributing to the total error of the FE-approximation of the figld in
Fig. 5.24 and Fig. 5.25.
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Figure 5.24Error of inner-element bending moments. Contributions in the same
regions decrease at a similar rate, from reddish to greenish.

Figure 5.25Bending moment error contributions due to the coupling of the in-
plane and out-of-plane fields. The only contributions occur where
first order moments of the elasticity tensor exist. The highest contri-
butions occur in the regions where second order derivatives of the z-
displacement field are highest, also see Fig. 5.23.

5.3.4 Comparison of uniform and adaptive Refinement

In this section we demonstrate how valuable in terms of computational resources,
that is to say, memory requirements and computational time, the error adaptive
procedure is. We thus compare the estimated error for a mesh that is uniformly
refined, such that all elements present in the mesh are of the same size, and a mesh
that is adaptively refined to gain a better accuracy. The BVP under consideration
is a membrane-like structure consisting of two different material stacks, the stiffer
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located in the center of the device. A surface traction is applied on the left and the
right hand side both of the same magnitude but different directions. The upper and
the lower side of the membrane are completely free. Figure 5.26 shows the meshes
of uniform refinement and the adaptive refinement together with the deformed
domain. The left column displays three adaptive meshes during the refinement
cycle whereas the right column shows the membrane deformation with underlying
uniform meshes. Even though in each row the number of elements are approxi-
mately the same for both the uniform and the adaptive refinement, the estimated
error values corresponding to each mesh vary considerably, see Figure 5.27. We
also see from that figure that in an early stage of the adaptive refinement process
the results are much more accurate as if a uniform mesh with the same number of
elements had been taken.

5.3.5 AFM-Beams

We demonstrate adaptive mesh refinement on two atomic force microscope
(AFM) cantilevers [116],[117]. The basic operation of an AFM is dependent on
the atomic forces that are exerted on the tip of a probe being sufficient to cause
measurable deflection of the cantilever on which the probe is placed. Cantilevers
for this purpose arise in a great variety of shapes [85], [91], [92]. Rectangular
beams or cantilevers in simplified models, that is, only considering horizontally
isotropic material properties, still are accessible by analytical solutions, even in
the case of piezoelectrically sensing and actuating thin MEMS devices [33]. Com-
plex geometry and horizontally non-homogenous material properties exceed the
capabilities of the analytical approaches by far and even highly sophisticated com-
mercial simulation software tools do not allow for appropriate consideration of the
singularities of the computable (weak) solution.

A widely used atomic force microscope cantilever or beam which we consider
here is V-shaped and reported of in [91] and [92]. The starting material is a SOI
wafer, which is a buried oxide wafer. Fabrication of the AFM cantilevers with
integrated Piezo-Resistive sensors consists of KOH etching of the SOI substrate
in order to create a membrane, where the AFM cantilevers will be located. After
the Piezo-Resistive are implanted on the cantilevers, the back thin silicon film is
removed by reactive ion etching. Finally, the AFM cantilevers are released by
buffered HF etching silicon dioxide on the cantilever and in the SOI wafer such
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Figure 5.26 The deformation of the doubly stretched membrane computed by
varying triangulations. Below the initial meshing the adaptive mesh
Is shown in the left column for 220, 1176 and 3208 elements. The
right column displays the uniform refinement for 288, 1250 and 3200
elements. Although in each row the number of elements is approxi-

mately the same, the estimated energy error differs considerably, see
Figure 5.27.
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that a typical cantilever thickness af-3um  results. The cantilever’s typical
dimension is about 200 microns length and 80 microns width. Many efforts have
been made to accurately model the mechanical behavior of such cantilevers [91],
but lack of generality in case more sophisticated geometries will be designed.

Log(Estimated Energy Error)

154
14~
13 |
E * . Uniform

127 ° . .
111 Adaptive*

P ., Number of

g . Elements [x 1000]
1 2 3 4 5 6 . 7

Figure 5.27Comparison of the error reduction for uniform and adaptive refine-
ment for the bi-material structure under tension. Already at early
stages of the refinement cycle the adaptive procedure shows its
advantages.

We have simulated the bending of the probe which is subject to a vertical force
and clamped at the beam’s ends. Fig. 5.28 shows the exaggerated deflection of the
beam computed on the initial mesh as well as that computed on a mesh after 26
refinement steps.

Another AFM cantilever which we consider here is presented in [85]. It is fabri-
cated in CMOS-technology and consists of a one micron thick silicon dioxide and
silicon nitride bi-layer. The cantilever is typically caoo- 50um long and
80— 10um wide. We have again simulated the bending of the probe, which is sub-
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ject to a vertical force in the tip-region and is clamped at the beam’s ends.
Fig. 5.29 shows the bending behaviour and the error reduction for the initial
coarse mesh (134 elements) and the refined mesh consisting of 266 elements.

Figure 5.28Exaggerated deflection of a V-shaped AFM tip computed by the ini-
tial mesh and after a refinement of 26 cycles. Major singularities
occur at the re-entrant corner and at the free boundaries. Below the
error distribution of the overall error is displayed.
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CMOS Chip

Estimated Global —

134 Elements 266 Elements S
Energy Error
[106]]

Figure 5.29Reduction of inner-element force errors (purpled) during the refine-
ment cycle. Re-entrant corners and the clamped part of the beam are
identified as regions where highest errors occur (red). The strategy
equidistributes the error over the mesh. The total estimated error is
plotted versus the number of elements.
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5.3.6 A thermo-mechanical cantilever

A main operation principle for thin structure MEMS devices is that of a thermally
actuated beam [93]. Usually the beam represents a multi-layer, or multimorph
structure which is clamped at one end. When heated it bends into the vertical
direction by virtue of the different thermal expansion coefficients of each layer.
This becomes clear when inspecting equation (3.118), which can be recast, when
the non-linear remainder and the piezo-electrical influences are neglected as

(Ag: (Ou)S—A: O0OwW+ (GAT)(OV)S)
—(A;: (Ou)S—A,: O0Ow+ (6AT),,00v) (5.18)
= Of o, v3-00f 4, OV [, VO .

Allowing only vertical displacement and assuming that no external force acts on
the structure, we can rewrite (5.18) as

(A,: DOw+ (aAT),, O0v) = 0. (5.19)

The temperature differencay , together with the thermal expamsion only then
do not vanish if their first order moment across the thickness exist. The smallest
structure to fulfil this condition is, as expected, a bimorph. Alternatively, when the
temperature difference is not due to an additional VBVP, the {&aT), can be
viewed as some external prestress caused during the fabrication process. We dem-
onstrate the case of a widely used bimorph structure that is clamped at one end,
meaning the essential boundary condition

w = n[Ow = 0, (5.20)

and which adopts a temperature distribution decreasing linearly from the clamped
end to the other as displayed in Figure 5.30. As a typical physical dimension we
chose200u as length and an overall thickness of two microns for each layer. In
this way a thermomechanical actuator can be modeled that is heated in the region
of the beam’s clamped end. The adaptive procedure here takes into account errors
due to jumps of shear forces and bending moments as well as inner element force
deviations. The errors caused by jumps of the heat fluxes across element bound-
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aries are identically zero since the temperature field decreases linearly from the
left to the right beam’s ends.

FuIIy Clampe

AT = 20K

0 2001

Figure 5.30Deflection (exaggerated) of a thermo-mechanically actuated rectan-
gular flap and the linear temperature distribution.

We display the decrease of the shear force errors during the refinement cycle in
Figure 5.31, where as well the elements’ stored enefgy  in terms of

= =(A,: OOw,, OO 5.21
( 2- W, Wh)LZ(T) ( )

is shown, which during the refinement cycle approximately remains constant
independently of the elements’ sizes. As can be clearly seen, the major refinement
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occurs at the clamped end of the structure whereas at the opposite end up to step
24 no new nodes are introduced.

10—13

Step O

J
o -

10293

Step 24

Figure 5.31The mechanical energy (left) does not vary remarkably during the
refinement process whereas the reduction of the shear force errors can
be observed in the right column.

5.3.7 A piezo-electro-mechanical membrane

A wide range of micro-electro-mechanical systems use piezo-electrically active
components as their sensing or actuating elements [89]. We simulate the coupled
electrical and mechanical behaviour of a circular membrane which is clamped and
which has a piezo-electrically active layer on top of it. Among others, the working
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principle might be that of a pressure sensor or that of a pump when used as an actu-

ator. This could be realized by applying different electrical potentials on the top
and on the bottom of the layer as sketched in Figure 5.32.

o 0=60V

U=(uw) =0 [ —
nllw =20

A\ g=-ov

Figure 5.32Boundary conditions for a circular membrane actuated by a piezo-
layer on top of it.

In many applications the piezo-electrically active layers are of6thencrystal
class such as, for example, ZnO or PZT-4. The unreduced, three-dimensional
piezoelectric tensad , given in units©f N, then has the form

0 0 0 0dj0
d={0 0 0dyg 00 (5.22)
d31 d31 d33 0 0

where we have used the engineering notation (2.34) for the last two indices of the
third rank piezo-tensor. When also taking into account the numbers of non-zero
and independent elastic coefficients for the crystal class under consideration as in
Figure 2.1., the tensor reduction (see A.2) yields a piezoelectric tensor that only

has two independent components, which finally turn out to be identical since
A1 = Ay,
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0 0 0
= 0 0 0 : (5.23)
d31(Agg+ Ayy) dgg(Agp+ Ayy) 0

A;; denoting the components of the reduced elastic tensor. The membrane’s defor-
mation behaviour is shown in Figure 5.33.

eR/ v
N
TN

Figure 5.33Exaggerated deformation and vertical displacement of a membrane
which has a piezo-disc on top of it. The principle of actuation is due
to a potential difference between the top and the bottom surface. The
left column shows the results for the starting coarse mesh while the
right column represents the results after a refinement of 12 steps.

Prisms, where the electrical field is interpolated on, are shown sche-
matically.
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Errors according to (3.220) are biggest where the two different layers meet and in
the membrane’s center. Exemplarily we have displayed two types of the errors
which occur in (3.220). The element force errors shown in the left column of
Figure 5.34,

|0a0 ,,)|% 2 ht (5.24)

L%(T)
together with other errors involving the out-of-plane displacement represent the
principal contribution to the total estimated error, varying with the structure
parameters such as the magnitude of the BCs, material properties, or the layer-
thicknesses. The contributions due to the stress caused by the inverse piezo-elec-
tric effect,

[in,p " tg] | hg = (N30 Dpol]? h? (5.25)

L%(Ep) L%(Eyp) B

generally are smaller. We should, however, mention, that these only do not vanish
where the structure has more than one piezoelectrically active layer, namely in the
center region. Although the potential’s gradient does not vanish identically out-
side the center circle, no jumps of the quantities of (5.25) have to be encountered
there since the bottom-layer’s piezo-tensor is assumed to vanish identically. The
contributions of the direct piezoelectric effect are identically zero in the case we
deal with the hexagonal crystal symmetry cléssm.The error contributions due

to the direct piezoelectric effect are of the general shape, see (3.220),

|E3p Ot D0 = |Egp Tapueg| (5.26)

whereg,, either denotes the three-dimensional divergence operator or the three
dimensional face normal vector. Derivatives of the in-plane or the out-of-plane
displacement fields are abbreviated iy, with the common two-index notation
[20], greek indices ranging from one to two, latin indices ranging from one to
three. Then, since the only non-vanishing components of are in its last row,
(5.26) is zero for two possible reasons: either the prism’s horizontal face normal’s
z-component vanishes or the electrical displacenigqb does not depend on
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Step O

Step 6

Step 12

Figure 5.34Error distribution for the clamped piezo-electrically actuated mem-
brane. The left column shows the reduction of the inner-element force
errors, a purely mechanical contribution, whereas the right column
shows how the error due to the stress jumps caused by the inverse
piezoelectric effect are reduced.

the z-coordinate and thus its partial derivative representeg,by vanishes iden-
tically.
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6 CONCLUSION AND
OUTLOOK

Finite element (FE) models and tools enable the MEMS designer to analyze the
thin structures’ physical behaviour even for complicated device geometries. How-
ever, singularities arising from different natures deteriorate the quality of the

approximated solution fields and thus a method to control the accuracy is highly
desirable.

We have presented a method implemented in the tool ADAPTREF with which we
can accurately simulate the thermo-electro-mechanical behaviour of prestressed
multi-layer structures by minimizing the error at a minimum of computational
cost. Based on a sound functional analytical framework, a thin plate model is used
which covers thermal, electrical, mechanical and their coupling effects in thin
multi-layered structures.

The aim of controlling the accuracy was to find, for a given choice of a FE-Model,

I.e ageometry and a load case, together with several kinds of boundary conditions,
an adapted mesh whose error is reduced to a minimum. We therefore applied
residual error estimation techniques to the weak form of the coupled plate equa-
tions in order to get the several error contributions mainly consisting of inner-ele-
ment force residuals and jumps of stress couples, bending moments and shear
forces across element edges when only mechanical analysis is desired. In case
thermo- or electro-mechanical actuated thin structures are under consideration
other sources of errors have to be taken into account such as jumps of heat fluxes
or jumps of the electrical displacement. We have shown how these different con-
tributions influence the way in which the mesh is refined. The decrease of the esti-
mated energy error proves the reliability of the theoretically derived error estima-
tion. A maximum strategy is used for all meshes treated, by which we aim to
reduce the computational error by equidistributing it over the whole structure. A
recursive refinement algorithm turned out to be most efficient to split both two-
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dimensional (2D) and three-dimensional (3D) simplicial elements from a geomet-
rical viewpoint in order to preserve shape regularity and to avoid hanging nodes.
The software tool ADAPTREF allows of treating mixed 2D and 3D finite ele-
ments at one time which are required to adequately simulate piezo-electrically
active MEMS. The performance of the method developed and implemented is
demonstrated for several thin multi-layer structures under different thermo-elec-
tro-mechanical load cases such as, for example, micro-machined AFM-beams or
piezo-electrically driven micro-membranes.

The main driving force behind choosing the object-oriented approach for the
architecture of the tool ADAPREF was to guarantee that it could be flexibly
extended to a wider range of applications. Since its basis is formed by purely geo-
metrical objects which can operate independently, virtually any numerical method
based on domain discretization is suited to be used in conjunction with ADAP-
TREF in order to improve its performance. First, the variety of the polyhedronal
or polygonal mesh constituents could be easily increased. This in turn evokes that
new splitting techniques are implemented. Another challenge is the extension to
the handling of time dependent and non-linear problems where also mesh coars-
ening techniques are required and the hierarchical mesh data structure can be fully
re-used.

Another extension would be to provide interfaces to the most common commer-
cially used finite element tools which in general do not dispose of methods to con-
trol the accuracy. As soon as the command structure, the physical models, the ele-
ment types and the solution output data structure of the program are known
ADAPTREF could be accordingly extended.

The task of adding physical models probably is the most frequent request by
microsystem designers. Therefore, a scheme has to be provided how to add partial
differential equations to the system. Since all the physical fields are represented
by functions with a finite dimension, all the desired information can be made
available just by implementing the type and the order of the discrete functions, e.g.
the polynomial order, and the kind of differential operators the field obeys.
Hereby a great amount of re-use of existing code is assured since many differential
operators acting on many kinds of fields are already available.
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APPENDIX

A.1 Tensor operations

In this thesis, we confine ourselves to the common notation for quantities that in
the engineering language are denoted as tensors. The operations come in a handy
size when using the notation of [96]:

Operation Definition
Contraction (ADB) ji.m = ZAi...jkBkl...m
Double contraction (A:B)i jm..n = ;Ai__jk,Bk.mmn
Tensor Product (AB)i jk.1 = %Ai...jBk...l
Transposition (AN = Aji
Symmetrization (A%)j = (A +A)/2
Gradient (OA)j .k = A« = A ki
Divergence (O0A) « = IzaiAij...k = IzAij...k,i
L%(Q) inner product zE'ZAi"'jBi"'jdx

i
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A.2 Tensor Reduction for Plates

For reasons of symmetry, the stress tensor has only six independent components

0, O 05

Og 0, Og

that can be arranged into two three-dimensional vectors

0, O3
61 = 0'2 62 = 0'4 . (A.2)
Og Og

Also for the strain, its six independent components

€ €g/265/2
€= |gg/2 €, £4/2 (A.3)
€5/2€4/2 &4

can be arranged into two three-dimensional vectors

€ €3
él = 82 éz = 84 . (A.4)
€6 €5

Consequently, the 21 independent components of the elastic tensor can be
arranged into four three-dimensional matricgs
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C11 C1p Cye C13C14 Cys
C11 = |Cy1 Cpp Cpg Ci12 = |Cy3Cp Cps
Ce1 Co2 Ces Ce3 Co4 Cos
- ] - _ (A.5)
C31 C3 Cs6 C33 C34 Css
C21 = |Cy1 Csp Cyg C22 = |Cy3Chy Cys
Cs1 Csp Cog Cs3 Cs4 Cog

relating the vectors;  with the vectdrs

|:0'(1, 2)} _ |CuaCypo € (A.6)

o(.,3 Ca1 Cof €2

In cases is composed of mechanical stress and thermal stress (thermal expansion
tensora given in units of 1/K) we have

A A U
{0'(1, 2)} _ |C11 Cp2 ijl _ "j‘l AT%, (A.7)
o(.,3 Co1 CogE2 |%2] O
or
{0(1, 2)} _ |C11€1+ Cpy|  |Cpya; + Cpoay AT. (A.8)
c(.,d Cp1€1+ Cpofy|  |Cora3+Cpoay

The Kirchhoff-Love theory requires that
6(.,3 = (033 023 613) = (03,0405 =0 (A.9)
such that (A.8) yields
Cpy(8; —a,AT) = Cpopa, AT = —Cypify (A.10)

or,
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8, AT = —C3Cypy(€1 — a,AT). (A.11)
Inserting this relation into the plane stregs, 2) yields

6, = Cypy(8; —a,AT) + Cy,(e2—a,AT)
~ -1 ~
-1 " '
= (C11—C1,C55C,) (81 —ayAT)
A(€, —a,AT)= tAig—aAT

wherea has been defined &s= Aa;  and the reduced elasticity tare®(the
3x3 matrix)

A = Cy;—C1,C0sCor. (A.13)

For an isotropic material, the elasticity tensor can be expressed in terms of the
Lamé constants such that

- , -
ANp + 4u 2\l
A1111 A11o 0 A+2u A+2u
A= A1 Az 0 | = oAn AAp+ap® | (A.14)
0 0 A A+2u A+2u
.0 0 K
When introducing the piezoelectric charge constaats [d.ds] (unit
C/N =m/V) as
A dy; dyp dig A dy3dyy dis
d1 = 1dyy dyp o d2 = 1dy3dyy dos (A.15)
d3; d3p dag dag d3y das

the situation is similar since the stress then is given in terms of
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~ ~T| [
H - [C“ C”] E‘E] %€ (A.16)
) Ca1 Coy ey dy| O
The relation for the plane stress analog to (A.12) then reads
~ ~T ~ AT
o, = A(§;-d1E)=Ag-n [E (A.17)
having defined the reduced piezo tensor as
T AT
= Ad;. (A.18)

The equation for the electrical displacement uses reduced quantities, too:

D= [a . 82} [Cll 012] H +%E (A.19)

where the piezoelectric charge constants are related to the piezoelectric stress
coefficientst by

n = d: C. (A.20)

Introducing the relation for the stra  obtained from (A.16) by the requirement
thato, vanishes turns (A.19) into

_ .1lc,C €

D = |:d1 d2:| 11712 1 AT AT . +xE (A.21)

such that the dependence is onlyépn . Further calculation yields
N ~T A ~T ~ N AT

which, when defining
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" A AT - ~T A AT A ~T
X=E (d2C22d2 + d2C21d1 ) — (d1C12d2 + dl(Cll_ A)dy) + X (A23)
can be recast into

D= #lE+§E. (A.24)
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ABBREVIATIONS AND
SYMBOLS

2D
3D

A

a
AFM
BVP
C
c™(Q)

C

T

C = (O = (O

C++

CMOS

1 E|1 |E

O

T m m m S U U

two-dimensional
three-dimensional
Reduced elastic tensor
thermal expansion tensor
atomic force microscope
boundary value problem
set of complex numbers

space of functions aft-fold continuously differentiable
functions in domaim

heat capacity at a constant value of
4th rank elasticity tensor
C++ programming language

complementary metal-oxide semiconductor, a logic fam-
ily and the related process technology

electrical displacement

flexural rigidity of a plate

piezoelectric strain coefficients, usually in unitafN
electric field

internal enrgy, energy eigenvalues, energy eigenstates
Young’s modulus

Helmholtz free energy
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density of the Helmholtz free energy
prescribed shear force

body force density vector field

heat source

finite element method

surface electrical displacement
simplex diameter, edge length
Hamiltonian, Hamilton operator
Sobolev space of ordar on domain
integrated circuit

stiffness matrix

Boltzmann constant

left hand side

Lagrangian, linear differential operator
Lagrangian density

space of bounded measurable, space of square integrable
functions

micro-electro-mechanical systems
prescribed bending moments

i-th basis function or shape function
surface normal vector

object oriented analysis

object oriented design

space of polynomials of degree
partial differential equation

pyroelectric tensor
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RHS

-4 - 4

- (U, W)

c c -
|

c

set of real numbers

right-hand side

entropy, entropy density

transformation matrix from reference element to element
time

temperature

reference simplex

plate displacement field

potential

in-plane displacement field in 2D,
also used for 3D mechanical displacement

potential energy,
also used to designate several function spaces

volume

variation of plate displacement field
variation of in-plane displacement field
(non-linear) elastic virtual work
out-of-plane displacement

occupation probability of i-th state
partition function

position vector in space

thermal expansion coefficient tensor

(kBT)‘l, inverse of product of Boltzmann constant and
temperature

Neumann boundary
Dirichlet boundary

Laplacian differential operator
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Kronecker delta symbol

strain tensor

dielectric constant

element error estimator

time primitive of the temperature
heat conductivity tensor

Lamé constant

barycentric coordinates

Lamé constant

Poisson number

piezoelectric tensor, reduced piezoelectric tensor

electrical charge density
mass density
also used for quantum mechanical density operator

stress tensor

electrostatic potential

electrical permittivity

variation of electric potential

triangle-, edge bubble function

(open) 3D , 2D domains and closures
boundary of the domain

empty set
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A

a posteriori error

Atomic Force Microscope
B

Banach spaces
bilinear forms
BinaryTree

boundary value problems (BVP)

Bravais lattice

C

Cauchy-Schwarz inequality
conforming

continuity

crystal classes

D
Dirichlet boundary conditions

E

elastic tensor
equivalence of norms
essential boundary conditions

=

flexural rigidity
Fourier's law
functionals

G
Gibbs fundamental form

H

Hamilton’s principle
Hamiltonian

harmonic potential
H-ellipticity

Helmholtz free energy
hermodynamic potentials
Hilbert space

74
136

34
35
108
31
16

32
52
37

19

44

18
34
42

95
22
35

14

21
12
17
37
15
15
34

I

inner product

inner product space
K

Kirchhoff-Love theory

L

Lagrangian
Lax-Milgram theorem
Legendre transformation

M
Maxwell relations

N

natural boundary conditions
norm

O

OOA

OOD

open sets

orthogonal

orthogonality of the error

P

partition function
positive definite

R

reference triangle
Reissner-Mindlin
residual error estimation

S

shape regular

Sobolev embedding theorem
Sobolev space
square-integrable functions
susceptibilities

32
32

60
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15
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42
33

101
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32
48
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37
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