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Abstract

Data-driven fatigue strength predictions are gaining popularity. Nevertheless,

many machine learning models lack trustworthiness due to their limited

decision-making transparency which often hinders their practical application.

In this investigation, we assess the expressiveness of the model-agnostic

explainable AI method known as SHapley Additive exPlanations (SHAP) for

data-driven fatigue strength prediction. Our study demonstrates that the SHAP

feature sensitivity analysis underpins known physical relations from materials

processing and fatigue theory. This even applies in view of the high-

dimensional, cross-correlated fatigue feature space and despite data heteroge-

neity (different steels, component designs, and loads). For instance, SHAP

indicates a fatigue strength increase with higher solid solution-strengthening

element concentrations, such as chromium and nickel. SHAP identifies corre-

lations rather than causality. Thus, data science and domain knowledge should

be closely linked during the SHAP assessment. If this is satisfied, plausible

causal relations can be inferred, and spurious ones arising from confounding

variables can be discarded.
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Highlights

• Fatigue strength prediction used an extended feature space (including

specimen design).

• We showcase the benefit of SHapley Additive exPlanations (SHAP) inter-

pretability over standard exploratory data analysis.

• The SHAP values extract cause–effect trends which are aligned with fatigue

literature.

• An ideal future explainable AI (XAI) method meeting the material fatigue

requirements is discussed.
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1 | INTRODUCTION

Metal fatigue refers to the progressive degradation of
metallic components caused by cyclic loading, leading to
structural failure. Designing fatigue-resistant structural
components requires the consideration of numerous
influencing factors. Fatigue has an inherent multiscale
characteristic where component geometry, applied load,
surface quality, and microstructure characteristics jointly
dictate the cyclic accumulation of plasticity at a micro-
scopic scale, crack nucleation at the atomic scale, and
different crack growth regimes at the microscopic, meso-
scopic, and macroscopic scale. Capturing the underlying
relations in constitutive equations to predict fatigue
strength demands significant modeling and computa-
tional efforts1–6. Addressing this complexity comprehen-
sively through conventional physics-motivated methods
to date is challenging because of computational con-
straints and the lack of complete mechanistic knowledge.
Data-driven approaches have emerged as a popular alter-
native for predicting fatigue strength, which marks a par-
adigm change in the fatigue modeling approach7–13.
Many machine learning (ML) techniques can capture,
autonomously extract, and represent intricate patterns in
data that are difficult to identify through exploratory data
analysis and encode in constitutive models. For instance,
the universal approximation theorem14 describes the
representation power of artificial neural networks. By
leveraging datasets and applying advanced ML techniques,
the fatigue performance can be estimated efficiently
and accurately without the extensive computational
and modeling burden required by traditional physics-
motivated methods. The rising popularity of data-driven
approaches offers promising avenues for enhancing the
design and optimization of components made from metal,
ultimately leading to safer and more reliable engineering
solutions.

However, data scarcity is a major concern in mate-
rials science and engineering. Moreover, model generaliz-
ability is considered another major limitation in applying
ML techniques in various specialized domains. In natural
science and engineering domains where the ambition for
a holistic causal understanding is deeply ingrained, data-
driven approaches have further been viewed critically
due to nonphysical, black box function mapping, and the
lack of traceability of the decision-making process.

Moreover, the available data in the domain of fatigue
modeling are often particularly scarce, heterogeneous, and
incomplete due to time and cost-intensive characterization
efforts with different underlying testing standards. Cross-
correlated features are common in materials science
applications (e.g., quenching rate, hardness, and yield
strength), which can be challenging in ML applications

and especially in explainability analysis. Removing fea-
tures based on such cross-correlations is nontrivial since
fatigue prediction is an extreme value statistics problem
where even fluctuations in weakly associated features can
matter. Specifically, such features might contain informa-
tion about the occurrence of critical defects in microstruc-
tures which dictate failure. Aside from these aspects, the
unknown data quality compromises the trust in AI-models
for fatigue prediction where reliability is of utmost impor-
tance. This drives the demand for explainable AI (XAI)
methods in data-driven fatigue modeling.

1.1 | Related work

Several publications have addressed data-based fatigue
modeling and fatigue strength predictions7–13, differing in
the applied AI methods. He et al10 and Xiong et al13 used
symbolic regression to derive an analytical expression of
the fatigue limit to impose a white-box model that can be
physically interpreted. Unfortunately, symbolic regression,
an evolutionary algorithm, is limited to a few explanatory
variables, and the complexity of the derived analytical
expression increases significantly due to complex feature
interactions.15 Weichert et al12 used a Gaussian process
regression (GPR) with a modified kernel function, which
considers the relation of hardness and fatigue strength for
determining the fatigue strength of stainless steels. GPR is
a powerful ML method but similar to symbolic regression,
limited to a small number of explanatory variables due to
the curse of dimension.16 Thomas et al17 use the inte-
grated gradients (IG) method on graph convolutional
networks to derive a feature importance analysis for
local fatigue damage prediction in a specific material.
Kolyshkin et al11 sequentially add features to train a ran-
dom forest (RF) model to determine the most important
features for fatigue strength prediction. The associated
decrease in root-mean-squared error (RMSE) was utilized
as a scoring function to include specific features. Agrawal
and Choudhary7 determine the most important features of
an RF model with the decrease of impurity, a model
internal metric, among the different trees in an ensemble.
Still, neither the methods proposed by Agrawal and
Choudhary,7 nor Kolyshkin et al11 can explain how a par-
ticular feature contributes to the fatigue strength predic-
tion, as the applied methods only indicate a feature
importance ranking. Determining the importance of a fea-
ture in fatigue prediction is not enough for thorough
model validation and gaining insights into learned rela-
tions. Instead, partial dependence plots are required that
show how a particular feature contributes to the overall
prediction and how its contribution varies depending on
other features.
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Thus, the development of advanced XAI methods has
gained increased importance in recent years.18 XAI
methods can be separated into local and global interpret-
ability methods.19 Local methods explain how the
model's output is derived for a particular prediction.
Global interpretability approaches seek to understand the
overall structure behind the black box model to validate
the global model behavior. Depending on the application,
both method categories require domain knowledge
for validation. Two of the most popular XAI methods
for supervised ML models are LIME (Local Interpretable
Model-agnostic Explanations)20 and SHAP (SHapley
Additive exPlanations).21

In this work, SHAP has been implemented for two rea-
sons: First, it provides local and global interpretation anal-
ysis. Secondly, in contrast to LIME, SHAP has a solid
theoretical foundation. Specifically, SHAP is based on the
Shapley values, initially developed in the context of game
theory, where the Shapley values provide a fair way to
determine the contribution of each player to distribute a
profit.22 One downside of the Shapely values is the compu-
tational effort, especially for large datasets or deep learning
models. For most applications, however, since materials
science data are usually scarce to date, this might not be of
significant concern. Several SHAP extensions have been
developed to reduce the computational effort.23 One disad-
vantage in the context of fatigue life prediction comes from
the underlying assumption that features are independent.
Therefore, the applicability of SHAP to identify feature
contributions (e.g., chemical composition, heat treatment
parameters, loading conditions) on fatigue lifetime will be
investigated in detail. The importance of complying with
the feature independence assumption will be investigated
in this work. Our contributions are as follows:

• We analyze the performance of different feature com-
binations for fatigue strength prediction using a RF
model and derive suggestions for future data collec-
tions to improve the predictive quality further.

• We apply the popular XAI, SHAP, to the RF model to
investigate and discuss the data-based results from a
physical/engineering perspective on multiple scales.

• We identify and discuss assumptions and limitations of
current XAI methods in data-driven fatigue strength
applications.

This study's outcomes contribute significantly to adopt-
ing XAI methods in material informatics and particularly
fatigue strength prediction. The research emphasizes the
importance of transparent AI models in addressing
complex multiscale engineering challenges by providing
valuable insights for engineers and data scientists. The
integration of XAI methods empowers engineers to

optimize material selection and design, enhancing the reli-
ability and durability of critical structural components in a
wide range of engineering applications.

2 | FUNDAMENTALS AND
METHODOLOGY

The methodology section is split into four subsections.
The first subsection describes the database and its compo-
sition (2.1). The subsection Material properties and fatigue
behavior (2.2) introduces the fatigue strength influencing
factors in steel components, which we seek to analyze
with the SHAP values in Section 3. Based on this, the fol-
lowing subsection 2.3 explains the selection of the rele-
vant features. The last subsection 2.4 covers the applied
ML techniques and SHAP methodology.

2.1 | Database

The dataset utilized for training data-driven approaches
comprises a combination of Bosch's internal datasets and
publicly available open-access datasets. These primary
sources of data are as follows:

• National Institute for Materials Science (NIMS)24

• Datenbank und Auswertesystem Betriebsfestigkeit
(DaBef)25 (Database for fatigue strength)

• Robert Bosch internal database26

The gathered database encompasses 1250 S-N curve
experiments conducted on roughly 30,000 specimens
unevenly distributed among 58 different types of steel, all
tested under varying conditions. The database consists of
carbon, CrMo, CrNiMo, Mn, carburized, stainless, CrNi,
Cr, and spring steels, where NIMS is the primary data
source, providing around 90% of database entries. All
steels experienced only a single tempering step. Each S-N
curve experiment is extensively detailed within this
tabulated database with up to 70 distinct attributes,
including information on chemical composition, proces-
sing methods, forming techniques, heat treatment spe-
cifics, finishing details, static test results, applied loads,
and geometric parameters during testing.

2.2 | Material properties and fatigue
behavior

Several factors influence the material fatigue strength of
a specimen or component. The influencing factors can
be grouped into the material's chemical composition,

2754 FRIE ET AL.

 14602695, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.14315 by A

lbert-L
udw

igs-U
niversitaet, W

iley O
nline L

ibrary on [04/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



process parameters, loading conditions, the component's
geometry, and environmental conditions. As this work
focuses on steel materials, the process parameters are
reduced to heat treatment steps, surface finishing, and
surface treatment. Aside from the material's inherent
characteristics, the applied load and component geometry
are essential for reliable component design. The environ-
mental conditions, such as temperature and corrosion,
significantly affect the fatigue properties in the compo-
nents application27–31 but are neglected in this study as
they are not represented in the database.

2.2.1 | Influence of tensile strength and
hardness

The chemical composition and heat treatment determine
the material's microstructure and, thus, the macroscopic
mechanical properties of metallic materials. Higher ten-
sile strength is typically accompanied by higher fatigue
strength. The necessity of the steel's purity increases with
rising tensile strength to avoid nonmetallic inclusions
that can cause volume failure. Thus, the correlation is
linear until approximately 1200 MPa tensile strength,
where the predominant fatigue damage mechanism
changes from surface to volume-induced failure.32 Differ-
ent strengthening mechanisms exist to control the tensile
strength of metallic materials, especially solid-solution
strengthening, Hall–Petch strengthening, and strengthen-
ing through martensitic transformation are essential
mechanisms for increasing the tensile strength.33 These
strengthening mechanisms are typically induced by alloy-
ing and thermomechanical treatments with nuanced pro-
cess control. The Hollomon–Jaffe parameter34

Hp ¼ 273:15þTtemp

1000
� ðConstþ log10ðTtimeÞÞ ð1Þ

is a phenomenological model used in this work to relate
the effect of a diffusion-controlled heat treatment step
with the material's hardness. The Hollomon–Jaffe equa-
tion is based on the Arrhenius equation that describes
the kinetics of diffusion processes within a heat treat-
ment step.34 Different time and temperature combina-
tions can result in the same Hollomon–Jaffe parameter
determining a certain hardness. Thus, the Hollomon–
Jaffe parameter Hp determines the effect of tempering on
the hardness as a function of tempering time and temper-
ature, where Ttemp is the tempering temperature in �C
and Ttime is the tempering time in minutes. Const is a
dimensionless constant that depends on the steel type.
Fritz35 showed that the Hollomon–Jaffe parameter could
also be applied to the austenitization heat treatment step

by replacing the tempering temperature and time with
the corresponding austenitization temperature and time
since austenitization is also a diffusion-controlled heat
treatment step34,35. Thus, this physics-motivated phe-
nomenological equation can estimate the effects of the
austenitization and tempering on the hardness through a
single value for each process step.

2.2.2 | Influence of stress concentration

Any localized stress concentration can be the source of
crack nucleation in a fatigue application. The stress con-
centration can be caused by notches in the component
design or microstructural/process-induced characteristics,
such as elastic and plastic incompatibilities at grain bound-
aries, increased surface roughness through slip bands,
scratches, nonmetallic inclusions, and segregations32,36–39.

2.2.3 | Influence of specimen size

Gudehus and Zenner28 show that smaller loaded volumes
generally increase fatigue strength. We use the V90Mises

parameter as a feature to determine the effect of the spec-
imen size. V90Mises is the component volume in which
90% of the maximum Von-Mises stress is exceeded. Kloos40

distinguishes four aspects of how the component size
affects the fatigue properties. These are explained in the
following. The first influencing effect is the technology fac-
tor, which describes all specimen size-dependent changes
in the material condition through material manufacturing
processes, such as heat treatments. The surface factor char-
acterizes the limited hardening depth for case-hardened
steels. The stress or geometry factor describes the material
support of high-stress gradients due to stress reduction at
notches through plastic deformation. Thus, fewer large
areas have to withstand the maximum stress in smaller
components than in the case of a flatter stress gradient or
homogeneous loading, which results in higher fatigue
strength for smaller components. Lastly, the statistical
chance of encountering a nonmetallic inclusion critical to
fatigue increases with higher loaded volumes, effectively
decreasing the fatigue strength28,40. The effect of stress and
geometry factors on fatigue strength becomes even more
complex under different loading conditions.

2.2.4 | Influence of loading type and
stress ratio

Bending applies an inhomogeneous loading where, from
a macroscopic point of view, the load diminishes towards

FRIE ET AL. 2755
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the neutral plane, which inhibits crack growth and
reduces the highly loaded volume. In contrast, axial load-
ing exhibits a uniaxial homogeneous load, resulting in a
lower fatigue strength comparatively28,41. Torsional load-
ing is known to cause the lowest fatigue strength com-
pared to the other loading types. This can be ascribed to
the induced multiaxial shear stress state, which alters dis-
location dynamics as well as crack initiation and growth
mechanisms compared to normal stresses.42 The relation-
ship between the different loading types has been quanti-
tatively investigated. According to Radaj and Vormwald,41

the relation between shear and normal stress load for the
fatigue limit for steel materials at a stress ratio Rratio ¼�1
is given by

τw ¼ð0:55�0:6Þσw: ð2Þ

This relation has been shown to approximate data by
other sources29,43,44. Generally, tensile stresses have a
negative influence, and compressive stresses positively
affect fatigue strength.

2.2.5 | Influence of testing frequency

A variety of influencing factors and different frequency-
induced secondary factors have been discussed in the lit-
erature, such as time-dependent effects of dislocation
movement or diffusion mechanisms (corrosion, oxida-
tion), temperature development at ultrahigh frequencies
which can lead to thermal-activated dislocation move-
ment, and testing conditions28,45–51. These factors are typ-
ically superimposed, and the influence of each factor
varies depending on the material condition. As a result,
universally valid conclusions about cause–effect relation-
ships cannot be made. Furthermore, different testing
conditions, such as the type of testing machines, the fre-
quency, load control type, and the applied load signal,
have been shown to influence the resulting fatigue
strength significantly28,29,49,52.

All the above factors influence the fatigue strength,
and the effect can vary depending on the material, the
manufacturing process, and the component design.

2.3 | Feature selection

In this work, various distinct features are chosen from the
aforementioned database for fatigue strength Sd50%,2E7

prediction and interpretability analysis as listed in
Table 1, based on the above-mentioned factors influenc-
ing fatigue lifetime. These features were chosen based on
the availability in the database, selected features in other

publications7,11,53,54, and the generally known influenc-
ing factors on the fatigue strength29,30,41. For further
analysis, three feature sets are composed of specific fea-
ture categories. Each category contains different informa-
tion throughout the processing chain. For instance,
Feature Set 1 contains all features that are consistently
available in the database. In contrast, Feature Set 2
ignores the chemical composition and the heat treatment
parameters. Feature Set 3 includes the chemical composi-
tion and heat treatment parameters but leaves out the
mechanical properties.

2.4 | ML

Breiman55 proposed the RF that has become a popular
ML method. It is a tree-based ensemble approach that is
simple to train but can still model complex regression
and classification tasks.56 Borisov et al57 and Grinsztajn
et al58 showed that ML methods, such as the RF, outper-
form deep learning methods for supervised regression
learning of heterogeneous tabular data regarding the
RMSE. Therefore, the RF is a simple, fast-to-train bench-
mark model for XAI methods.

SHAP trains a surrogate interpretable model, such
as a linear regression, a logistic regression, or a deci-
sion tree model, to approximate the uninterpretable
black box model locally. To achieve that goal, the orig-
inal model input vector xi is sampled to create a new
input vector x0i from which the black box model and the
surrogate model make a prediction. A loss function
assesses the surrogate model's prediction compared
with the black box model. This loss function is optimized
concerning the surrogate model parameters ϕ to approxi-
mate the original model locally. In its simplest form,
a linear regression model g is used as a surrogate model
to explain the prediction of a ML model f with model
input xi,

gðz0Þ ¼ϕ0þ
XMFeat

j¼1

ϕjz
0
j, ð3Þ

where MFeat is the number of features, z0 is a sampled
coalition subset used as surrogate model input with
z0 � f0,1gMFeat and ϕj �ℝ. An entry of 0 in z0 means that
the feature is absent in x0i and an entry of 1 corresponds
to the present/original feature. However, the ML model f
cannot handle the binary values in z0 as they do not rep-
resent valid ML model inputs. Thus, it requires a map-
ping function hxðz0Þ : f0,1gMFeat !ℝMFeat that maps 1's in
z0 to the original feature value and takes the feature's
mean value across the entire dataset for 0's.

2756 FRIE ET AL.

 14602695, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.14315 by A

lbert-L
udw

igs-U
niversitaet, W

iley O
nline L

ibrary on [04/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In contrast to LIME, SHAP weighs the prediction for
an instance z0 with a weighting kernel of the corrupted/
permutated instance x0i with

πx0 ðz0Þ ¼ ðMFeat�1Þ
ðMFeat choose z0j jÞ z0j jðMFeat� z0j jÞ , ð4Þ

to relate how close the instance z0 is to the original model
input xi since the entries of z0 are 1's for the original fea-
ture values and 0's for absent feature values, respectively.
The number of original features in z0 is denoted by z0j j.
Lundberg and Lee21 showed that the coefficients ϕ corre-
spond to the SHAP values when utilizing this weight ker-
nel while minimizing the loss function. The loss function
LSHAPðf ,g,πx0 Þ of the weighted linear model

LSHAPðf,g,πx0 Þ ¼
X

z0 �MData

fðhxðz0ÞÞ�gðz0Þ½ �2πx0 ðz0Þ ð5Þ

is minimized concerning the coefficients ϕ. The loss
function is the sum of all sampled modified feature
subsets z0 in the dataset MData. The resulting coefficients
ϕj after minimizing the loss function of the linear regres-
sion models gðz0Þ are the SHAP values. Thus, when
explaining the scalar-valued prediction ŷi �ℝ of a single
dataset entry, vector xi is now given by the local accuracy
property

ŷi ¼ fðxiÞ¼ϕ0þ
XMFeat

j¼1

ϕj ð6Þ

TABLE 1 Feature descriptions for the selected Features and the feature sets utilized for further analysis.

Category Description
Feature
symbol Data type

Feature
set 1

Feature
set 2

Feature
set 3

Chemical composition wt% of carbon C Numeric ✓ ✓

wt% of silicon Si Numeric ✓ ✓

wt% of manganese Mn Numeric ✓ ✓

wt% of phosphorus P Numeric ✓ ✓

wt% of sulfur S Numeric ✓ ✓

wt% of chromium Cr Numeric ✓ ✓

wt% of nickel Ni Numeric ✓ ✓

wt% of molybdenum Mo Numeric ✓ ✓

Heat treatment Normalizing temperature in �C Ntemp Numeric ✓ ✓

Carburization temperature in �C Ctemp Numeric ✓ ✓

Carburization time in min Ctime Numeric ✓ ✓

HP for hardening (Equation (1)) in Kh HP,Hard Numeric ✓ ✓

Cooling rate for through
hardening �C/min

THQCr Numeric ✓ ✓

Temperature of the cooling medium
in �C

QmTemp Numeric ✓ ✓

HP for tempering (Equation (1)) in Kh HP,Temp Numeric ✓ ✓

Cooling rate for tempering �C/min TCr Numeric ✓ ✓

Mechanical properties 0.2% proof stress in MPa Rp02 Numeric ✓ ✓

Tensile strength in MPa Rm Numeric ✓ ✓

Elongation at fracture in % A5 Numeric ✓ ✓

Vickers hardness HV20 on surface HV20 Numeric ✓ ✓

Component design, load,
and testing

90% of Maximum loaded volume
according to Wächter et al44 in mm3

V90Mises Numeric ✓ ✓ ✓

Stress concentration factor Kt Numeric ✓ ✓ ✓

Loading type LType Categorical ✓ ✓ ✓

Stress ratio Rratio Numeric ✓ ✓ ✓

Surface roughness in μm Rz Numeric ✓ ✓ ✓

Testing frequency in Hz f test Numeric ✓ ✓ ✓

FRIE ET AL. 2757
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of the SHAP values. A consequence of the chosen weight
kernel in Equation (4) is that ϕ0 ¼E½fðxÞ� represents the
expected model output for all predictions of the given
dataset and features. ϕ0 can be interpreted as taking the
mean of each feature to make a prediction. The predic-
tion ŷi of a single model input vector xi of the black box
model f becomes now explainable since the prediction
was locally approximated by a linear regression model
who's coefficients are interpretable. Therefore, the SHAP
values describe the average contribution of a feature to
the prediction among different feature coalitions. A
global model interpretation can be achieved by aggregat-
ing the SHAP values of multiple single predictions to
derive an overview of the average contribution of a fea-
ture value in different predictions.21,22

2.5 | Data preprocessing, ML training,
and SHAP values estimation

Database entries were removed if any feature in Table 1
was missing, resulting in a remaining dataset size (MData)
of 853 entries. Figure 1 illustrates the distribution of
Vickers hardness at the surface. The database captures a
wide range of low- to high-strength steels, with the NIMS
database providing almost 90% of the dataset entries.

The raw experimental data were fitted using the
maximum-likelihood approach, following the methodol-
ogy described in Köder59 on fatigue strength verification
to determine the fatigue strength for a 50% failure proba-
bility at 2 ∗ 107 cycles, referred to as Sd50%,2E7. It is impor-
tant to note that specimens enduring beyond 2 ∗ 107

cycles without failure are considered run-out specimens in
all collected databases24–26. Consequently, the ultrahigh-
cycle fatigue regime remains outside the scope of this anal-
ysis. The Hollomon–Jaffe parameter is calculated for the
austenitization and tempering heat treatment step to

aggregate the effect of temperature and time to single
values. This simplifies the feature importance analysis for
the heat treatment since the temperature and time cannot
be analyzed independently as both characterize the micro-
structural changes. The Const in Equation (1) was chosen
20 and 30 for low and high alloyed steels, respectively.34

Steels with an accumulated alloying element concentra-
tion greater than 5 wt% are considered as high alloyed
steels while providing a concentration less than 5 wt%
are labeled as low alloyed steels. This simplified binary
classification is used for a proof of concept and has been
used by other publications60,61, as it requires experimen-
tal effort to reliably determine the Const.62

The dataset is stratified into 10 equal-sized partitions,
where each partition includes the same portion of steel
types. From the ten partitions, nine are used as a training
dataset and one for testing the model's performance on
an unseen testing dataset to predict the fatigue strength
Sd50%,2E7. This procedure is repeated 10 times, where
each partition constitutes the testing dataset once. This
strategy is generally known as cross-validation. The
features were directly processed without further normali-
zation or standardization. The RF regressor from scikit-
learn63 was used with default hyperparameter values,
which are listed in Appendix A (Table A1). Its perfor-
mance on the testing datasets concerning the RMSE and
the R2-Score is calculated to evaluate the model's perfor-
mance. Subsequently, the SHAP values for each feature
for every test data instance are computed by minimizing
the loss in Equation (5). The cross-validation procedure
permits extracting a SHAP value for each instance and
each feature in the dataset at testing time. This results in
a SHAP value matrix with the same size as the entire
database (MData�MFeat). The SHAP values were deter-
mined by the SHAP Python package.64 The prediction of
each instance can be calculated by summing up each
SHAP value across the feature dimension, as described in
Equation (6).

3 | RESULTS AND DISCUSSION

The results section is partitioned into four subsections.
The first subsection Performance Comparison of Three
Feature Sets (3.1) compares the RF performance for
the three feature sets from Table 1. The second sub-
section Feature Set Choice for Feature Importance Analy-
sis (3.2) discusses the choice of one of the three feature
sets for further SHAP value analysis. The following sub-
sections 3.3–3.5 address the capability of the SHAP values
to identify physical and engineering-based mechanisms
and characteristics on different material scales. Lastly,
subsection 3.6 discusses the implication of an ideal XAI

FIGURE 1 Distribution for Vickers hardness (HV20) at the

surface for the steel materials in the database, including marks for

the median, the 25%, and 75% quartiles. The whiskers are located at

1:5� the interquartile range. Database entries exceeding these

boundaries are marked as diamonds. [Colour figure can be viewed

at wileyonlinelibrary.com]
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method for data-driven fatigue applications considering
the SHAP value results from subsections 3.3–3.5.

3.1 | Performance comparison of three
feature sets

Table 2 shows the performance of the RF for the three
feature sets from Table 1. The performance values for the
RMSE and R2-Scores are symbolized with the mean and
standard deviation of the 10-fold cross-validation.

The performance for all three feature sets for the
RMSE, as well as the R2-Score, is comparable with
the results of other publications predicting the fatigue
strength7,12,65. However, this work utilizes an extended
database, additionally considering component design fea-
tures such as different load and specimen geometry
parameters. These additional features are required in the
component design process to reliably assess the design
against fatigue failure, as in industrial applications, dif-
ferent component geometries and loads appear. Such
modeling prospectively could allow for enhancing the
data quantity by joining materials and component-level
testing data for fatigue analyses. Despite this increase in
complexity by additionally considering different loads
and geometries, we still achieve high prediction fidelity.
When all available features are considered in the RF
training (Feature Set 1), the best RMSE and R2-scores are
achieved. Specifically, the RMSE reduces by 5MPa, and
the R2-score increases marginally (see Table 2). Thus,
considering chemical composition, heat treatment, and
quasi-static mechanical properties together in Feature Set
1, even though a causal relation exists between these fea-
tures, enhances the predictive quality significantly.
Slightly worse predictive quality is attained using both
reduced feature sets (Feature Set 2 and Feature Set 3).
Furthermore, those two models score similarly despite
being trained with different features.

In principle, these results are plausible from a physi-
cal point of view since there is a strong linkage between
the chemical composition and the heat treatment param-
eters with the mechanical properties. However, despite
their cross-correlations, all features carry some unique
information that should be preserved. The microstructure

and, by extension, the component mechanical properties
in Feature Set 2 are an amalgamation of the whole
manufacturing process history and thus encode corre-
sponding information to some degree. In principle, this
even entails processes that are not represented through
the heat treatment features, for example, machining pro-
cesses that affect residual mechanical stresses. Further-
more, the mechanical properties are not subject to error
propagation through the whole process chain and are
related (and correlated) to fatigue properties in a rather
direct fashion32,38. In contrast, the long-range relations
between fatigue properties and the nominal values of
chemical composition/heat treatment are governed by
intricate mechanisms that might be difficult to learn
comprehensively with the given training signal and
data distribution. While the quasi-static macromechanical
material behavior is relevant to fatigue damage
(e.g., plasticity onset), fatigue failure is a more complex
and microstructure-sensitive phenomenon. Thus, solely
considering the quasi-static mechanical properties is insuf-
ficient. In this regard, Feature Set 3 provides a remedy
through the chemical composition and heat treatment
parameters that determine the microstructure. Thus, indi-
rectly, information about the microstructural properties is
provided to the model, which is critical to fatigue damage
formation. We assume that the higher performance of Fea-
ture Set 1 is ascribed to the fact that the model can exploit
these feature interactions and complementary multiscale
information. It is noted that solely considering the compo-
nent design, load, and testing features is not sufficient for
predicting the fatigue strength as these features do not
hold any information about the tested material. Thus, sup-
plementing at least one of the feature subsets chemical
composition, heat treatment, and mechanical properties is
crucial to cover the material-induced variance.

3.2 | Feature set choice for feature
importance analysis

Combining the heat treatment parameters and the
mechanical properties improves the model's perfor-
mance. However, the SHAP values on this combined fea-
ture set can be deceiving and lead to inappropriate

TABLE 2 Performance comparison of the three feature sets represented with the mean prediction and standard deviation of the 10-fold

cross-validation for the RMSE and R2-score.

Feature set 1 Feature set 2 Feature set 3

RMSE in MPa 29:00�4:29 34:26�5:03 35:18�4:75

R2-score 0:97�0:010 0:96�0:013 0:96�0:014

Abbreviation: RMSE, root-mean-squared error.
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feature importance results. When analyzing the SHAP
values for Feature Set 1, features related to the mechani-
cal properties dominated the outcome due to their strong
correlation with the target variable ruling out the feature
importance analysis of other features. Under those cir-
cumstances, the effect of alloying elements and the heat
treatment parameters are nonidentifiable, as will be
further discussed in the heat treatment section (3.4).
Moreover, the feature independence assumption from the
SHAP value theory was significantly harmed due to
the mechanical property's dependence on the heat treat-
ment parameters, resulting in nonreliable feature impor-
tance. The layer-wise relevance propagation method
(LRP)66–68 or integrated-gradients (IG) method69 could be
alternative methods for understanding the model's behav-
ior, as it does not rely on the feature independence
assumption. However, both methods apply only to neural
networks, which require more modeling effort and data
science knowledge due to the increased choice of hyper-
parameters to receive a similar model performance.57

While these methods can provide importance rankings
and qualitative feature effects on target variables, they
do not facilitate quantitative decomposition of feature
contributions66–69. In this work, the feature importance
analysis is conducted on Feature Set 3 rather than Feature
Set 2, as we want to explore whether models can deduce
realistic relations under the challenging conditions of
(i) sparse data population, (ii) mapping alloying, and pro-
cessing characteristics directly to fatigue properties, that is,
without considering mechanical property features, which
hold information about the microstructural state and are
strongly correlated to fatigue strength, as an intermediate
support. Feature Set 3 uses the chemical composition and
the heat treatment parameters, which are also not inde-
pendent as cross-correlations between these features exist.
For instance, different chemical elements stabilize certain
phases and can also significantly influence the starting
temperature of the martensitic transformation, which in
turn affects the volume fraction of martensite and, there-
fore, the steel's hardness and fatigue properties. Despite
these dependencies, the regressor based solely on chemical
composition and heat treatment parameters falls slightly
short of full features (see Table 2), rendering it a feasible
choice for interpretability analysis.

3.3 | Feature importance analysis for
component design, load, and testing
features

Figure 2 illustrates the feature partial dependence plots
of different component designs and testing features. The
ordinate marks the SHAP value in MPa of a given feature

with its corresponding feature value on the abscissa.
The loading type of the specific dataset entry colors
the points. A single subplot illustrates the SHAP value
distribution of all dataset entries for a particular feature.
We opted for this since the model performance for
Feature Set 3 in Table 2 shows minor standard deviations
for the RMSE and R2-score. This indicates that the model
performance is independent of the training and testing
dataset sampling, and the RF achieves high predictive
performance for all datasets. Thus, all SHAP values can
be illustrated aggregated to investigate the learned rela-
tions and the impact of a specific feature on the output
globally. Higher SHAP values indicate a rise in fatigue
strength, while lower values are associated with reduced
fatigue strength. Typically, when feature importance
studies are concerned, relative feature importance is con-
sidered where features are ranked against each other.
One potential ranking criterion is the range between a
feature's minimum and maximum SHAP value (SHAP
range). This criterion is used to arrange the subplots in
Figure 2 according to their relative feature importance.
We first describe and study all subplots in Figure 2 quali-
tatively, followed by quantitative analysis.

Figure 2A illustrates the influence of the specimen
size (V90Mises) on the fatigue strength. The transition area
for the change of SHAP values is sharp and could be
approximated with a horizontal and vertical line with an
angle of 90 ∘ . This curve progression stands out among all
SHAP distribution plots. The shape could be associated
with the concept of representative volumes. The likeli-
hood of encountering a fatigue-critical defect increases
if the highly loaded volumes exceed a specific size
threshold. The volume threshold could be characteristic
of engineering alloys and degrees of purity typically
encountered. In fatigue loading, the sensitivity to micro-
structural extremes is especially pronounced, which
could cause this sharp shape. Due to the specimen size
range in the dataset, we exclude the possibility of a mech-
anistic change, such as surface-dominated dislocation
dynamics commonly observed in thin films. Typically,
standardized specimens are tested, reducing the database
variability. Expanding the database with more entries of
different specimen sizes could be beneficial to clarify the
effect of different V90Mises on the fatigue strength.

The SHAP values indicate rising fatigue strength with
increasing frequency f test in Figure 2B. This trend has
been observed for many materials and summarized in a
survey by Hong et al.70 The increase in fatigue strength
can be attributed to the inability of dislocation motion
to follow the high strain rates imposed during high-
frequency loading for most steel components despite
existing contrary effects, such as thermal-induced
dislocation movement45,48. Additionally, the frequency

2760 FRIE ET AL.

 14602695, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.14315 by A

lbert-L
udw

igs-U
niversitaet, W

iley O
nline L

ibrary on [04/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



sensitivity is higher for lower frequencies as indicated by
higher scatter in the low-frequency regime, which has
also been found by Takeuchi et al.71 The database con-
sists of a few different surface roughness Rz where a
reduction of the fatigue strength can be observed for
higher surface roughness values in Figure 2C. An
increased surface roughness Rz constitutes microscopic
notches at which stresses concentrate and fatigue damage
can occur. Thus, higher surface roughness reduces the
fatigue strength, which fits the trend learned by the RF
model and can be explained with the SHAP values.

The database only contains three different stress
ratios Rratio, which are displayed in Figure 2D. Still, fully
reversed loading (Rratio ¼�1) shows a higher fatigue
strength compared to tension–tension settings which are
aligned with theory, where alternating cyclical loads with
increasing portion of tension stresses open cracks and
permit crack propagation which in turn reduces the
fatigue strength.

The decreasing effect on the fatigue strength from
higher stress concentration factors Kt can be observed in

Figure 2E. Even though only a few notched specimens
exist in the dataset, the decreasing fatigue strength effect
can be observed. Stress concentrates at notches, causing
fatigue crack initiation and failure.

Lastly, Figure 2F illustrates the influence of different
loading types LType on the fatigue strength. We anticipate
reducing fatigue strength, that is, gradually decreasing
SHAP values when changing the loading type from rota-
tion bending to axial and particularly torsion. The SHAP
values mirror this behavior.

We conclude that the SHAP values can qualitatively
reflect the influence of the component design, load, and
testing features on the fatigue strength in all subplots of
Figure 2. In principle, the SHAP values can extract
the quantitative contribution toward a prediction.21

The SHAP values for each feature of a dataset entry can
be added sequentially to achieve the overall fatigue
strength prediction as shown in Equation (6). Thus, the
SHAP value on the ordinate is supposedly directly linked
to the change in the fatigue strength. The validity of
quantitative SHAP value analysis for our task will be

FIGURE 2 (A–F) Influence of the component design, load & testing features on the fatigue strength based on the SHAP values for

Feature Set 3 (see Table 1). Maximum SHAP ranges are reported in MPa and utilized to rank the features against each other. All subplots

except of subplot F are colored according to the legend in subplot A. The dotted line is the zero reference line. [Colour figure can be viewed

at wileyonlinelibrary.com]
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examined based on an example in the following. The low-
est fatigue strength in the database for the failure proba-
bility of one part per million at 2�107 cycles corresponds
to σa,10�4%,2E7 = 951MPa. When changing the load from
bending to torsion for Rratio ¼�1, the anticipated fatigue
strength reduction will be between 523 and 570MPa
according to Equation (2). The maximum SHAP value
reduction of the fatigue strength for different loading
types for an Rratio ¼�1 is the entire range from the high-
est bending to the lowest torsion SHAP value, which is
approximately 50MPa and thus one magnitude smaller
than the reduction of 523MPa according to the result
from Equation (6). This example shows that a quantita-
tive analysis of the SHAP value does not correctly repre-
sent the fatigue strength reduction for different loading
types. This observation can have multiple reasons. SHAP
measures the feature's importance to the trained model
rather than the real-world problem. However, the under-
lying dataset covers a range of distinct materials that are
difficult to represent collectively through a single model.
At the same time, publicly available fatigue data are
scarce, do not capture the entire feature space, and
are afflicted with data bias since certain materials and
standard geometries are more often available. Further-
more, the feature independence assumption is violated to
some degree in our setting where, for instance, the load-
ing type is correlated with V90Mises. Thus, hereafter, we
will analyze the influence of the material and heat treat-
ment parameters qualitatively only, without relying on
quantitative analysis. The quantitative analysis, in partic-
ular, needs to be performed with great care and demands
domain expertise to avoid unrealistic interpretations.
Consequently, the ranking of the features according to
their relative importance in Figure 2 should also be trea-
ted with care, as the quantitative analysis is not reliable.

3.4 | Feature importance analysis of heat
treatment features

The SHAP values for the heat treatment parameters are
aggregated the same way as the SHAP values for the
component design parameters in Figure 2. However,
the carburized steels are excluded from this heat treat-
ment analysis as the carburization process step, and the
follow-up heat treatment steps of hardening and temper-
ing significantly alter the microstructure at the surface.
Thus, the microstructural changes of carburized and non-
carburized steels should not be analyzed together. At the
same time, analyzing the carburized steels separately is
not feasible since the database only consists of 80 carbu-
rized steel entries (solely case-hardening experiments
with few standardized geometries), which does not

provide the basis for drawing statistically sound conclu-
sions. Each SHAP value in Figure 2 is colored according
to the corresponding specimen size (V90Mises) of that
database entry since the component size influences the
time and temperature of each process step. The larger the
specimen size, the longer usually a soaking time has to be
to achieve the desired results across the whole cross-section,
which is why the Hollomon–Jaffe parameter is a useful
feature. The same image with binary coloring for distin-
guishing whether the heat treatment occurred is illustrated
in Figure C3 in the appendix. Generally, the hardening
process is restricted to martensitic transformations.

The heat treatment process starts with the materials'
normalization. Normalizing is an annealing step to
homogenize the microstructure, often contributing to a
higher fatigue strength of materials exhibiting pro-
nounced segregation. The normalization time is not
included in Figure 3A as there is only a single time value
if normalization is conducted. This information does not
provide additional information to the RF model when the
temperature is already supplied. The SHAP values indi-
cate that conducting no normalization systematically
reduces the fatigue strength, while in the case of normali-
zation, the fatigue strength can increase and decrease
with high variation. If normalization occurs, the fatigue
strength increases with the normalization temperature
until 1000�C. Therefore, data scientists could conclude
that higher normalization temperatures result in higher
fatigue strength. In contrast, engineers who are familiar
with materials processing might know that it is not pri-
marily the normalization temperature that gives rise to
the higher fatigue strength but that there is rather a spu-
rious correlation at play, which is caused by the different
alloying of the steels. Higher alloyed steels tend to have
higher fatigue strength and typically require higher aus-
tenitization temperatures.31 Thus, the higher fatigue
strength is not attributed to the normalization tempera-
ture but rather to higher alloying. The normalization
temperature above 1000�C belongs to the group of stain-
less steels, which are known to have lower fatigue
strength and, therefore, reduced SHAP values. The SHAP
values for hardening HP,Hard using the Hollomon–Jaffe
parameter in Figure 3B show an increasing behavior
until reaching a maximum, followed by a decrease but
staying on a high level. HP,Hard describes the austenitiza-
tion progress. Presumably, the diffusion-based transfor-
mation from ferrite to austenite has not been completed,
and the remaining ferrite does not transform to martens-
ite for low HP,Hard values. As a result, the hardness
decreases. Murakami32 showed a strong correlation
between hardness and fatigue strength. A decreasing hard-
ness and material fatigue strength for too high HP,Hard

values could be associated with the disadvantageous
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coarsening of the martensitic substructures. At the maxi-
mum SHAP values, presumably, an optimal fine martens-
ite morphology is achieved.34,35

The SHAP values for the hardening cooling rate
THQCr show a convex-shaped curve progression in
Figure 3C. If the cooling rate is too low, the martens-
itic starting temperature will not be reached without
some transformation to ferrite and pearlite. Internal
stresses and warping induced by too high-temperature
gradients can cause crack initiation and reduce fatigue
strength.

The effect of the temperature of the cooling medium
QmTemp in Figure 3D on the fatigue strength is similar
to the hardening cooling rate THQCr, which is also indi-
cated by the SHAP values. If the quenching medium is
too cold, the thermally induced stresses can initiate
cracks, effectively reducing the fatigue strength. Addi-
tionally, the temperature of the quenching medium
depends on the kind of medium itself. Water is often used
at room temperature and generally has the most inten-
sive quenching properties. Quenching oils are usually
used at temperatures of 60�C and above, and salt baths
are mainly operated at temperatures above 160�C27,31.

Figure 3E illustrates the SHAP values for tempering
HP,Temp step and shows similar behavior as the ones for
hardening HP,Hard except for the significant SHAP value
drop beyond the maximum for the tempering. The steel
remains hard and brittle for too low HP,Temp values,
which reduces the fatigue strength, indicated by smaller
SHAP values. The steel becomes more ductile and loses
hardness with increasing HP,Temp values as carbon dif-
fuses out of the metastable martensite and forms car-
bides. An optimum for the fatigue strength exists that
provides the ideal trade-off between ductility and hard-
ness.34 Furthermore, for precipitation hardening steels,
optimal strengthening is determined by ideal precipitate
sizes, spacing, and interface characteristics, which coin-
cide with intermediate processing times. In the under-
aged state, particles fail to impede dislocation motion as
they can be easily sheared. In the overaged state, precipi-
tates are too coarse and dispersed to interact with disloca-
tions effectively.33

Lastly, the SHAP values for TCr in Figure 3F show
increased fatigue strength for higher cooling rates, while
low cooling rates reduce fatigue strength. The classes of
low cooling rates and no cooling, where annealing was

FIGURE 3 (A–F) Influence of each heat treatment step on the fatigue strength depending on the specimen size (V90Mises) for Feature

Set 3 (see Table 1). Maximum SHapley Additive exPlanations (SHAP) ranges are reported in MPa and utilized to rank the features against

each other. The subplots are ordered according to the process route. The dotted line is the zero reference line. [Colour figure can be viewed

at wileyonlinelibrary.com]
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not conducted, overlap in Figure 3. For a better distinc-
tion between treated and nontreated groups, we refer to
Figure C3 in the appendix, where the same illustration is
colored in a binary fashion. There is a broad scatter for
instances in which no tempering is evident. These
instances correspond to stainless and carbon steels. Low
cooling rates might not stop the carbon diffusion and cul-
minate in reduced material hardness. Thus, high cooling
rates enhance mechanical properties adjusted during
tempering or annealing.31

All subplots in Figure 3 are colored according to the
specimen size (V90Mises). A significant effect of different
sizes on the fatigue strength concerning different heat
treatment steps cannot be observed though. Presumably,
the difference in specimen size regarding the database is
too small to observe a relation between the heat treat-
ment steps and specimen size.

The different heat treatment steps in Figure 3 are
ordered chronologically and show increasing impor-
tance along the manufacturing process chain. High
importance is observed for the features associated with
processes that are carried out later such as the quench-
ing speed and the Hollomon–Jaffe parameter for tem-
pering. Indeed, these processes are more directly related
to the fatigue properties than those situated at the
beginning of the process chain.

We conclude that the SHAP values can explain the
effect of each heat treatment step on the fatigue strength
for Feature Set 3. Thus, the influence of heat treatment
parameters can be discerned despite their existing inter-
actions with the chemical composition.

Figure C2 in the appendix illustrates the SHAP value
analysis for the heat treatment parameters of Feature Set
1. Especially the SHAP values for NTemp and HP,Hard

show unrealistic results. Specifically, the plots spuriously
imply that conducting normalization reduces the fatigue
strength and that it is irrelevant whether austenitization
is performed during the hardening process (since many
SHAP values are clustered around zero). Evaluators with-
out a materials engineering background could conclude
that hardening does not affect fatigue strength. An ideal
XAI method is discussed in subsection 3.6.

3.5 | Feature importance analysis of
chemical composition features

Lastly, we analyze the SHAP values for the chemical
composition to investigate their influence on fatigue
strength. Figure 4 provides an overview of the different
SHAP distributions. Stainless steels are not covered in
this study. The chemical composition of stainless steels
differs significantly from the other steel classes since

stainless steels are characterized by a considerably higher
Cr and Ni percentage. Jointly depicting such high values
with the other steels would compromise the assessment
of the feature sensitivity. Generally, we did not observe a
positive or negative impact on SHAP values for an
increased or decreased Cr or Ni concentration for stain-
less steels. The reason may lie within the unbalanced
dataset where stainless steels represent less than 10%.
Thus, their effect on the SHAP values might be oversha-
dowed by the other steels. Surface hardening through
carburization significantly changes the fatigue properties
as described in subsection 3.4. Thus, the effect of different
alloying elements can be different depending on whether
carburization was conducted or not. Whether the steel is
carburized or not is captured through a binary color-
coding in Figure 4.

The SHAP values for chromium show increasing
fatigue strength with an increasing amount of Cr content
in Figure 4A). The slope reduces around 0.5% Cr of chro-
mium but remains positive. Fatigue strength reduction
can be observed beyond 1.5% Cr content for carburized
steels. In general, chromium reduces the critical cooling
rate for martensite formation and increases, the harden-
ing depth. The reduction of fatigue strength for carbu-
rized steels for high Cr concentration could be explained
by the increased potential of surface oxidation, which
causes local stress concentrations72,73. The change of
slope around 0.5% Cr for noncarburized steels can be
explained by different alloying systems. Steel materials
are made of specific alloying element combinations and
concentrations. Clustered steel groups containing certain
concentrations of chromium and molybdenum can be
observed in Appendix D.4. Since this information is com-
pounded, independent consideration of the main alloying
elements for increasing the hardening depth, Cr,Ni,Mo,
and Mn,31 and their individual contribution to the fatigue
strength described by the SHAP values cannot be investi-
gated in detail.

The SHAP values and, thus, the fatigue strength of
the steel component increase linear with increasing
amount of carbon in Figure 4B for noncaburized steels.
The slope for noncarburized steels reduces around 0.4 wt
% of carbon but remains positive. The starting carbon
concentration for carburized steels, which is plotted, is
initially lower compared with noncarburized steels. The
SHAP values also increase linearly with the carbon con-
centration but stop around 0.2 weight percentage of car-
bon. Carbon is the most critical element as it dictates the
diffusionless transformation of austenite into martensite,
increasing the steel's hardness.31 Presumably, the change
of slope indicates the change of lath martensite to a mix-
ture of lath and plate martensite, which is assumed to be
around 0.5% of carbon31 for noncarburized steels. The
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initial carbon concentration for carburized steel is signifi-
cantly lower to facilitate carbon absorption during the
carburization process while maintaining the cores' ductil-
ity. The amount of carbon is increased at the surface
through the carburization step, resulting in a hard sur-
face layer.31 Nonetheless, higher initial carbon contents
seem beneficial for fatigue strength in the low carbon
range of carburized steels (blue).

The fatigue strength reduces significantly with
increasing phosphorus concentration for carburized
steels in Figure 4C, while there is only a weak trend for
some noncarburized steels. Phosphorus contaminates
steel components, and a decrease in fatigue strength is
expected with rising phosphorus concentration. Phospho-
rus is known to segregate in steel microstructure,
especially at grain boundaries, and reduce the fatigue

FIGURE 4 (A–H) Influence of each alloying element on the fatigue strength for Feature Set 3 (see Table 1). Maximum SHAP ranges are

reported in MPa and utilized to rank the features against each other. All subplots are colored according to the legend in subplot h) to

distinguish between carburized and noncarburized steels. The dotted line is the zero reference line. [Colour figure can be viewed at

wileyonlinelibrary.com]
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strength31,74. Information about the underlying micro-
structure, failure mechanisms, or fracture analysis is una-
vailable. Thus, it remains speculative why the correlation
between phosphorus and the fatigue strength decrease is
not stronger for noncarburized steels.

The SHAP values for manganese decrease with
increasing Mn concentration in Figure 4D. Manganese
Mn increases similar to Ni,Cr, and Mo the hardening
depth.31 Thus, an increase in fatigue strength would be
expected with rising Mn concentration, which is not
reflected within the SHAP values. However, the effect of
manganese is not as strong as for the other alloying ele-
ments, which might explain why no significant increase
in fatigue strength is observed. The SHAP value decreases
with higher manganese concentration, which could be
explained by manganese sulfide inclusions, which often
act as crack initiation sites.74 However, a correlation with
the amount of sulfur S was not found within the dataset.
Also, an embrittlement effect and thus reduced fatigue
strength due to diffusion of primary austenite grains for
higher temperatures during tempering cannot be reliably
detected in the manganese and tempering temperature
dependence plot in Appendix D.5.

The SHAP values for molybdenum and nickel increase
with rising Mo and Ni concentration in Figure 4E,G,
respectively. Both elements increase the hardenability of
steel and the hardening depth for carburized steels, which
is beneficial for the fatigue strength of both steel types.31

Further interpretations about different or changing slopes
cannot be reliably determined due to the dependency
on the alloying system as discussed in Figure 4A.

The SHAP values for silicon increase for some
noncarburized steels with higher silicon content in
Figure 4F, while most noncarburized steels are clustered
at low silicon concentration and SHAP values around
zero. In contrast, the SHAP values for carburized steels
show a large scatter at low silicon concentrations. Silicon
is a solid solution-strengthening element essential for
spring steels and increases yield strength.31 Crack initia-
tion in fatigue is highly correlated with irreversible dislo-
cation movement and persistent slip band formation
within grains.33 Increasing the critical resolved shear
stress increases the required stress for dislocation move-
ment, which increases the fatigue strength. Additionally,
silicon contributes to form retained austenite (RA) due to
its low solubility in cementite75,76. RA can close cracks
due to transformation-induced plasticity (TRIP) and thus
increase the fatigue strength in case of fine dispersion.77

Interesting SHAP values can be observed for the influ-
ence of silicon on carburized steels. Schmiedhofer78

found that silicon significantly reduces the carbon diffu-
sion depth for carburized steels and thus reduces the
fatigue strength. Silicon is also known for promoting

surface oxidation by forming silicon dioxide SiO2. Surface
oxides can be incorporated into the bulk during cyclic
loading, affecting the fatigue properties due to an
increased local stress concentration73,79. These aspects
favor a reduction of fatigue strength. However, contrary
to the expectation, the SHAP values increase for some
carburized steels. One reason could be finely dispersed
RA that hinders crack growth. Another reason could be
that not all process steps are documented within the
database. Razim73 reported that removing the surface oxi-
dated layer can increase the fatigue strength by 20%.
Since the information on whether the oxidated layer was
removed and microstructural and/or fractural analysis
are not available, a conclusive statement about the silicon
influence on carburized steels cannot be made.

Lastly, a correlation of the SHAP values with increas-
ing sulfur S concentration cannot be observed in
Figure 4H. Even though corresponding empirical evi-
dence exists—especially the interplay with manganese to
form manganese sulfide inclusions.74 Each subplot in
Figure 4 was colored depending on the steel class, carbu-
rized or noncarburized. A significant difference for both
steel classes can only be observed for phosphorus and sili-
con content. There could be multiple reasons for that:
The effect of specific alloying elements on the fatigue
strength is affected by the following heat treatment
procedure and can also not be investigated completely
independently due to the different alloying systems. Fur-
thermore, even from a physical point of view, it is yet not
clear whether and how the fatigue damage mechanisms
potentially change concerning alloying elements (see dis-
cussion on silicon in Figure 4F.

The relative importance analysis shows on one hand
high importance of carbon followed by the hardening
depth increasing alloying elements such as manganese
and molybdenum and great importance for steel contam-
ination like phosphorus and silicon. However, the high
importance of chromium cannot be explained here and
requires further investigation.

We conclude that the SHAP values can reflect the
effect on the fatigue strength for most alloying elements,
while especially the high effect of chromium and manga-
nese sulfide inclusions induced failure cannot be observed.

3.6 | Implications of interpretability
analysis for materials science and
engineering

In our study, some results cannot be explained or
observed with the underlying database, such as the not
feasible quantitative analysis of the component design,
load and testing features, and the contamination effects
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of phosphorus/sulfur. Collecting more component
design, load, and testing features could resolve this issue.
However, these data are usually limited, expensive to
generate and often limited to standard geometries which
restricts their expressiveness. It is unclear if increasing
the database could resolve the problem of the chemical
composition features, as an increased concentration of
phosphorus and sulfur increases the chance of causing
fatigue damage but is not necessarily the source of crack
initiation. This could be the reason for not detecting a
decrease in SHAP values with increasing Si content and
only a weak trend for increasing P content for noncarbur-
ized steels. As additional microstructural/fracture analy-
sis is unavailable, the hypotheses can not be validated
conclusively. Microstructure information is often used as
a foothold to bridge the large gap between composition/
processing and properties as well as to attain interpret-
ability and generalization. The composition-process
design space is high-dimensional and exhibits many
interactions where even minute changes in the proces-
sing pipeline can culminate in notable property changes.
On this end, the microstructure allows validation and
capturing fluctuations throughout the process chain. This
role is also partially fulfilled by the recorded macroscopic
properties. Despite the need for microstructural informa-
tion and more specimen geometry data, we conclude
based on the results and discussions from the previous
subsections 3.3–3.5 that the SHAP values based on linear
regression surrogates and the reduced feature set show
physically reasonable trends and presumably can explain
the fatigue influencing effects among the different scales.
This even holds despite the existing cross-correlations
between the alloying elements, the heat treatment
parameters, and the component design parameters which
harms the SHAP feature independence assumption. The
study's experimental design, that is, the utilized broad
steel data distribution and the framing of the prediction
task, affects the deducible relations to a major extent.
Specifically, the setting presented here facilitates the
identification of first-order relations, which tend to apply
to a wide range of steel materials. It thus is relevant for
materials selection. When exploration of mechanisms for
materials optimization through microstructure engineer-
ing is the objective, the data range needs to be confined
to a specific material, and local microstructure represen-
tations could be applied as proposed by Thomas et al.17

Future work should consider collecting more microstruc-
tural, fractural information and specimen geometries to
enhance and extend fatigue databases for data-driven
causal analysis and potentially increase the expressive-
ness of XAI methods. The need for XAI methods and
their expressiveness beyond standard data exploration
tools such as correlation and variance analyses is

discussed in the following. While the detailed assessment
of these techniques is beyond the scope of this work, we
perform a simple comparison between a Sd50%,2E7ðf testÞ
scatter plot and the corresponding SHAP plot, which are
both provided in the appendix in Figure B1. Notably, the
positive impact of higher frequency on the endurance
limit, which is ubiquitous in literature70 and clearly con-
firmed by SHAP, cannot be easily deduced from the data
scatter plot. This behavior holds for many of the influenc-
ing factors. It is presumably ascribed to the superposition
of many influencing factor contributions, which yet can
be effectively decomposed through SHAP. This simple
investigation justifies the usage of XAI methods in fatigue
analysis. While the SHAP value showed reliable results
for most investigated fatigue influencing factors, their
limitation due to the feature independence assumption
cannot be aligned with the complex fatigue failure pro-
cess. More advanced XAI methods should be used in the
Future. A proposal is described in the following.

Generalizability, scalability, and transparency are
desired properties of XAI methods to understand the
decision-making of the arbitrary black box models. In
materials and engineering applications, a graph represen-
tation that holistically and symbolically describes the rea-
soning path and interdependencies between features and
targets would be a desired representation. This could
potentially enable validating known relations, capturing
unknown patterns, and ultimately inverting the way of
materials exploration, development, and design. To date,
however, neither those XAI methods nor the required
material science data to train such data-driven models
exist. New research movements such as causal deep
learning80 propose new XAI methods to address this
demand. For instance, feature interactions can be repre-
sented through a directed acyclic graph whose adjacency
matrix is learned.81 In terms of data availability, several
large-scale materials digitalization initiatives have formed
which prospectively will improve data sustainability and
thereby fuel such data-driven exploration82–84.

The aim of acquiring new fatigue data should be to
preserve all relevant information. Aside from capturing
all defining processes and their metadata, one crucial
aspect is information on the sequence in which the pro-
cesses were performed. This information is neither
retrievable from most databases nor can it be considered
by the standard ML models. To address both limitations,
we advocate a more integrated approach—modeling the
process chain data through knowledge graphs, which not
only preserves the sequence information but also enables
neurosymbolic AI using knowledge graph embeddings.
This could not only help to infuse background knowledge
but also, by extension, improve the model's range of
generalization.

FRIE ET AL. 2767
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4 | CONCLUSION

This work compared different feature combinations for
data-driven predictions of fatigue strength with a RF
model. We further analyzed the RF model with the SHAP
values, which is one of the most popular XAI methods, to
achieve insights into the RF black box model and under-
stand how predictions are made and how each feature
contributes to that prediction. Incorporating chemical
composition, heat treatment parameters, mechanical
properties, and component design parameters achieves
the best predictive performance. Collecting more mean-
ingful data, such as hardening depth, residual stresses,
inclusion size, and distribution, could improve prediction
fidelity and facilitate new insights through interpretabil-
ity analysis.

Suitable feature selection, where quasi-static mechan-
ical properties were discarded, enabled a meaningful
SHAP analysis. The SHAP values represent the effect of
macroscopic influencing factors such as the component
design parameters and different loading conditions cor-
rectly. Furthermore, the SHAP values could identify
trends associated with microscopic influencing factors
conforming to the literature. For instance, solid-solution
strengthening through elements like nickel and molybde-
num and different martensite morphologies depending
on the carbon concentration is implied. Thus, SHAP can
validate and build trust in fatigue strength predictions
and identify first-order influencing factors irrespective of
size scale.

We conclude that for qualitative assessments, it is not
required to strictly fulfill SHAP's feature independence
assumption, as the analysis depicts meaningful results
despite the cross-correlation of chemical composition and
the heat treatment parameters. Nonetheless, the feature
independence assumption is a major drawback, and alter-
native methods that avoid such methodological constraints
while comprehensively and symbolically describing the
reasoning path and feature interdependencies would be
preferable.

Materials science applications, especially fatigue
prediction, often exhibit intricate and multiscale feature
interactions. Moreover, scarce, heterogeneous, and
incomplete data in this domain poses major challenges.
These properties render extracting causal relations diffi-
cult. Materials engineering domain knowledge is indis-
pensable for the reliable assessment of XAI results to
identify spurious correlations, limitations, and advan-
tages. At the same time, a data scientist's expertise is
required to select or develop appropriate methods that
handle the aforementioned challenges. Therefore, our
study underpins the importance of thoughtful integration
of domain-specific knowledge and advanced data science

techniques to ensure the accurate and reliable application
of data-driven approaches in fatigue strength prediction
and promoting successful outcomes in engineering
applications85–87.
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FIGURE B1 Comparison of SHapley

Additive exPlanations (SHAP) value analysis

from the frequency compared with the

explorative data analysis of fatigue range and

frequency. [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE A1 Scikit-learns'63 random forest regressor default

hyperparmeters with version=1.3.0.

Hyperparameter Entry

n_estimators 100

max_depth None

min_samples_split 2

min_samples_leaf 1

min_weight_fraction_leaf 0.0

max_Features 1.0

max_leaf_nodes None

min_impurity_decrease 0.0
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FIGURE C2 (A–F) Influence of each heat treatment step on the fatigue strength depending on the specimen size (V90Mises) for Feature

Set 1 (see Table 1). Maximum SHapley Additive exPlanations (SHAP) ranges are reported in MPa and utilized to rank the features against

each other. The subplots are ordered according to the process route. The dotted line is the zero reference line. [Colour figure can be viewed

at wileyonlinelibrary.com]
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FIGURE C3 (A–F) Influence of each heat treatment step on the fatigue strength classified whether the heat treatment was present or

absent based on the SHapley Additive exPlanations (SHAP) values for Feature Set 3 (see Table 1). Maximum SHAP ranges are reported in

MPa and utilized to rank the features against each other. The subplots are ordered according to the process route from (A) to (F). All

subplots are colored according to the legend in subplot F. Null values indicate that the process step was not conducted while Present values

denote the presence of this step. The dotted line is the zero reference line. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE D4 Illustration of clustered steel groups due to

different alloying systems of chromium and molybdenum colored

by the fatigue strength. [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE D5 Illustration of the effect of the tempering

temperature and manganese concentration on the fatigue strength.

[Colour figure can be viewed at wileyonlinelibrary.com]
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