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Abstract

Increasingly available spaceborne sensors provide unprecedented opportunities

for large-scale, timely and continuous tree species diversity (TSD) monitoring.

However, given differences in spectral and spatial resolutions, the choice of sen-

sor is not always straightforward. In this work, we investigated the effects of

spatial and spectral resolutions for four spaceborne sensors (RapidEye, Landsat-

8, Sentinel-2 and PlanetScope) on TSD mapping in an area of approximately

4000 km2 within the Black Forest, Germany. We employed a random forest

(RF) regression model to predict Shannon–Wiener diversity based on seven

types of spectral heterogeneity metrics (texture, coefficient of variation, Rao’s

Q, convex hull volume, spectral angle mapper, convex hull area and spectral

species diversity) and a full survey dataset from 135 one-ha sample plots. We

compared the RF model’s performance across sensors and spatial resolutions.

Our results demonstrated that the Sentinel-2-based TSD model achieved the

highest accuracy (mean R2: 0.477, mean root-mean-square error (RMSE):

0.274). The RapidEye-based TSD model produced lower accuracy (mean R2:

0.346, mean RMSE: 0.303), but it was better than the PlanetScope- and

Landsat-based TSD models. The 10 m (for Sentinel-2 and RapidEye) and 15 m

(for PlanetScope) were the best spatial resolutions for predicting TSD. The NIR

band was the most favourable spectral band for predicting TSD. Texture met-

rics and Rao’s Q outperformed the other spectral heterogeneity metrics. Our

results highlighted that spaceborne optical imagery (especially Sentinel-2) can

be successfully used for large-scale TSD mapping but that the choice of sensors

can significantly affect the resulting mapping accuracy in temperate montane

forests.

Introduction

Forest biodiversity has an essential role in the provision

of a variety of forest ecosystem services such as water

retention and supply, nutrient use and conversion, and

carbon storage (Huang et al., 2003; Song et al., 2021). As

the most fundamental element of forest ecosystems, forest

trees provide habitat and resources for a large number of

plant and animal species (Huang et al., 2003; Mallinis

et al., 2020). Tree species diversity (TSD) is regarded as a

particularly significant indicator of forest ecosystem health

and stability (Gyamfi-Ampadu et al., 2021). However,

TSD is under threat due to habitat destruction, fire,

pollution, human activities, climate change and invasive

alien species (Wang, Qiu, et al., 2022). Therefore, timely

and accurate information on the magnitude and distribu-

tion of TSD is essential for implementing appropriate

conservation strategies and management plans to prevent

or mitigate losses (Torresani et al., 2021). Following the

rapid advances in remote sensing technology in recent

decades, especially the improvement in spectral, spatial,

radiometric and temporal resolutions of sensors, as well

as the significant reduction in the associated costs of

remote sensing data acquisition and analysis, remote sens-

ing methods exhibit unprecedented and unique advan-

tages over any traditional methods in providing

ª 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and

distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

463

https://orcid.org/0000-0002-2152-2532
https://orcid.org/0000-0002-2152-2532
https://orcid.org/0000-0002-2152-2532
https://orcid.org/0000-0001-7895-702X
https://orcid.org/0000-0001-7895-702X
https://orcid.org/0000-0001-7895-702X
https://orcid.org/0000-0003-1616-9639
https://orcid.org/0000-0003-1616-9639
https://orcid.org/0000-0003-1616-9639
mailto:liu.xiang@felis.uni-freiburg.de
mailto:liu.xiang@felis.uni-freiburg.de
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frse2.383&domain=pdf&date_stamp=2024-02-19


consistent and spatially explicit measurements of TSD

(Mallinis et al., 2020).

Ground-based or airborne hyperspectral images, which

can provide rich and detailed spectral, spatial and textural

information on tree canopies, have been well-received in

the research community for TSD mapping (Wang, Qiu,

et al., 2022; Zhao et al., 2018). However, the limited and

sparse coverage and high cost of these data hinder their

use in long-term and large-scale TSD mapping (Gyamfi-

Ampadu et al., 2021; Mallinis et al., 2020). While

unmanned aerial vehicles (UAVs) or airborne aerial mul-

tispectral images have significantly reduced the cost, they

have similar disadvantages of limited coverage (Chrysafis

et al., 2020; Gyamfi-Ampadu et al., 2021). In this context,

spaceborne imagery offers tremendous merits in terms of

area coverage, operating costs and data availability, mak-

ing them a popular choice for broad-scale TSD mapping

(Gyamfi-Ampadu et al., 2021).

For landscape-level TSD mapping, the most popular

strategy is to first employ machine learning (or deep

learning) based classification algorithms to classify tree

species in the image. The species diversity indices (e.g.,

Shannon diversity) are then computed based on the

derived classification products (Grabska et al., 2020).

However, this two-step strategy requires a considerable

amount of time and effort to collect sufficient labelled

training data (Zhao et al., 2018). Moreover, classification

methods often overlook uncommon or rare species due

to insufficient training data (Fassnacht et al., 2022). To

overcome these problems, spectral diversity-based

methods building upon the Spectral Variability Hypothe-

sis (Palmer et al., 2002) provide an alternative solution

for predicting species diversity. The Spectral Variability

Hypothesis states that the spectral variance of a given area

is positively related to species diversity (Palmer et al.,

2002; Rocchini et al., 2017). Based on this hypothesis,

species diversity in different ecosystems has been esti-

mated directly using spaceborne optical sensors such as

Quickbird (Rocchini, 2007), IKONOS (Nagendra

et al., 2010), WorldView-2 (Mallinis et al., 2020; Wang,

Qiu, et al., 2022), RapidEye (Gyamfi-Ampadu et al., 2021;

Mallinis et al., 2020), Sentinel-2 (Chrysafis et al., 2020;

Gyamfi-Ampadu et al., 2021) and Landsat (Mallinis

et al., 2020; Nagendra et al., 2010).

The accuracy of existing TSD predictions varies among

studies greatly due to differences in forest ecosystems,

spatial and spectral resolutions of the spaceborne imagery

and the spectral heterogeneity metrics used. Image spatial

resolution is an important factor affecting the relationship

between TSD and spectral diversity. Studies have shown

that if the spatial resolution is too fine relative to the

crown diameter of a species, a correspondingly large

intra-species spectral variance will overestimate species

diversity, while images with too coarse spatial resolution

will be insensitive to inter-species spectral variance and

thus underestimate species diversity (Fassnacht et al.,

2022; Rocchini, 2007). As such, finding the optimal spa-

tial resolution is essential for the accurate mapping of

TSD. Spectral resolution is another key factor in deter-

mining how accurately a satellite image can predict TSD.

Higher spectral resolution images capture more spectral

information from tree canopies and will therefore better

differentiate tree species (Rocchini, 2007). Given the dif-

ferent instrumental characteristics of satellite sensors,

assessing the performance of multiple sensors and deter-

mining the optimal performance are conducive to

informing long-term and large-scale TSD prediction and

mapping applications. However, very few studies to date

have compared the performance of different spaceborne

sensors in predicting TSD (e.g., Gyamfi-Ampadu

et al., 2021; Mallinis et al., 2020), and knowledge on how

spectral and spatial resolutions affect TSD in montane

temperate forests is lacking entirely.

The choice of spectral heterogeneity metrics also affects

species diversity predictions (Torresani et al., 2021). To

date, many spectral heterogeneity metrics have been pro-

posed for estimating species diversity, such as convex hull

area (CHA) (Gholizadeh et al., 2018), Rao’s Q

(Rao, 1982; Rocchini et al., 2017), convex hull volume

(CHV) (Cornwell et al., 2006), texture metrics (Haralick

et al., 1973), spectral angle mapper (SAM) (Kruse

et al., 1993), and coefficient of variation (CV). Among

these spectral heterogeneity metrics, the recently proposed

Rao’s Q performed well in many studies because it con-

siders both the abundance of pixels and their pairwise

distances (Rocchini et al., 2017; Torresani et al., 2019).

However, applications of the Rao’s Q metric for mapping

forest biodiversity have been limited to a few forest eco-

systems (Torresani et al., 2021; Wang, Qiu, et al., 2022).

Furthermore, a recent study reported contradictory results

in a heterogeneous temperate forest, where they found

that Rao’s Q had no significant effect on predicting TSD

(Hoffmann et al., 2022). Overall, no single spectral het-

erogeneity metric was found to be highly applicable to all

cases of species diversity predictions, as different spectral

heterogeneity metrics quantify image heterogeneity in dif-

ferent ways (Torresani et al., 2021). Therefore, it is essen-

tial to use different spectral heterogeneity metrics to

properly assess the ability of different spaceborne images

in mapping TSD.

In this research, we evaluated the potential of four

spaceborne optical images (i.e., RapidEye, Landsat-8,

Sentinel-2 and PlanetScope) for large-scale TSD mapping

in temperate montane forests. Specifically, we addressed

the following questions: (i) Which spaceborne sensor pro-

vides the best prediction accuracy for TSD mapping?
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(ii) What is the best spatial resolution for TSD mapping?

(iii) Which spectral bands are most important for TSD

mapping? (iv) How do different spectral heterogeneity

metrics perform in mapping TSD?

Materials and Methods

Study area

The research region covers about 4000 km2 in the southern

Black Forest of Baden-Württemberg, Germany (Fig. 1).

The elevation of the region ranges from 208 m (Rhine Val-

ley) to 1493 m (the highest peak of the Feldberg mountain)

(Frey et al., 2018). This region is characterized by a moder-

ate maritime climate with an average annual precipitation

of approximately 1205 mm and an average annual temper-

ature of around 6.9°C (Storch et al., 2020). The climate in

the region is influenced by the altitudinal gradient, with a

difference in yearly average temperature of up to 6.4°C
between the highlands and lowlands (Storch et al., 2020).

The research area is predominantly covered by coniferous

and mixed forests with high age variability (Frey

et al., 2020). Norway spruce (Picea abies L.), silver fir (Abies

alba Mill.) and European beech (Fagus sylvatica L.) are the

dominant tree species covering over 70% of the forest area.

Less common tree species are mainly Acer pseudoplatanus

L., Pseudotsuga menziesii Mirbel., Pinus sylvestris L., Larix

decidua Mill., Quercus robur L. and Betulus pendula L.

(Storch et al., 2020).

Field data

Our study is part of the ‘Conservation of Forest Biodiver-

sity in Multiple-Use Landscapes of Central Europe (Con-

FoBi)’ project, which encompasses 135 1 ha (100 × 100 m)

sample plots. To ensure a comprehensive representation

of various forest types, vegetation communities and topo-

graphic features while minimizing potential biases, the

plot selection process centred on two essential factors:

landscape-scale forest connectivity and forest structure

(Storch et al., 2020). For the evaluation of forest connec-

tivity, the proportion of forest within a 25 km2 area sur-

rounding each plot was quantified based on a raster map

of 25 × 25 m resolution (Table S1.1). This analysis

resulted in the classification of plots into three distinct

levels of forest cover (\50, 50–75% and ≥75%). Regard-

ing forest structure, plots with varying levels of old or

dead trees rich in microhabitats were considered. As a

result, the plots were categorized into three classes: low,

medium and high structure categories, based on the num-

ber of standing dead trees associated with forest structure.

Taking these two factors into account, the study area was

divided into nine distinct strata with random sampling

plots selection in each stratum. The minimum distance

between plots is 750 m to ensure the spatial independence

of each sample plot.

Tree species data were collected in the 135 sample plots

during a comprehensive forest inventory between October

2016 and February 2018 (Fig. 1). The ConFoBi project

Figure 1. Location of the study area and distribution of the 135 sample plots. The Sentinel-2 and digital elevation model images are utilized as

backgrounds in the left and right panels, respectively.

ª 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 465

X. Liu et al. Multi-Sensor Based Tree Species Diversity Mapping

 20563485, 2024, 4, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.383 by A

lbert-L
udw

igs-U
niversitaet, W

iley O
nline L

ibrary on [29/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



team measured and recorded diameter at breast height

(DBH), species names and heights for all trees with a

DBH≥ 7 cm in each sample plot. In addition, we inven-

toried all plots in 2017/2018 and 2019/2020 with a multi-

rotor UAV (Frey et al., 2020). By visually inspecting the

collected UAV images for each sample plot in 2017/2018

and 2019/2020, we found that five sample plots had sig-

nificant tree mortality between 2018–2019. Therefore, we
removed these five sample plots in subsequent analyses.

For the remaining 130 plots, we calculated the Shannon–
Wiener diversity (H0) indicator for each plot. We chose

this indicator as a proxy of TSD because it can take into

account both species richness and evenness, which

together determine the environmental heterogeneity of a

region (Morris et al., 2014).

H0 ¼ �∑
n

i¼1

pi ln pi (1)

where pi is the proportion of the basal area for the ith

species relative to the total basal area of all tree species

found within a sample plot.

Remote sensing data and pre-processing

Because the timing of data acquisition has a strong influ-

ence on spectral variability (Wang, Gamon, Cavender-

Bares, et al., 2018), we selected data with the three main

considerations in mind: (1) consistency of data acquisi-

tion timing; (2) data availability and high quality (e.g.,

cloud-free) and (3) vegetation phenology. After inspecting

all images from the four satellite sensors between May

and October for the years 2016–2019, we selected the

images acquired in October, as cloud-free images were

available for all four sensors only during this period.

October imagery is also ideal because it captures leaf dis-

colouration and senescence, which are important pheno-

logical events for distinguishing individual tree species

(Grabska et al., 2020; Hościło & Lewandowska, 2019).

Landsat-8 has 9 spectral bands, which cover the visible

to shortwave infrared (SWIR) spectral regions, having a

spatial resolution of 15 m (Panchromatic) to 30 m

(Fig. 2). We used only the 30 m spectral bands and

excluded the Cirrus and Coastal aerosol bands. We down-

loaded Landsat-8 OLI Collection 2 Level-2 surface reflec-

tance data acquired on 10 October 2019, from the United

States Geological Service (https://earthexplorer.usgs.gov/).

Further processing was undertaken to convert the pixel

value to surface reflectance using the scale factor of

0.0000275 and an offset of �0.2. The Sentinel-2 has 13

spectral bands also spanning from the visible to the SWIR

regions (Fig. 2). We used the 10 m (i.e., Blue, Green, Red,

and NIR1) and 20 m (Red-edge1, Red-edge2, Red-edge3,

NIR2, SWIR1 and SWIR2) spectral bands and excluded

the Cirrus, Water vapour and Coastal aerosol bands. Two

tiles of Sentinel-2 (TMT and UMU) level-1C images cov-

ering the whole study area captured from 12 October

2018, which were downloaded from the Copernicus Open

Access Hub of the European Space Agency (ESA) (https://

scihub.copernicus.eu/). We first performed an atmo-

spheric correction for the Sentinel-2 level-1C images

using the Sen2Cor in SNAP (ESA, 2020) and then

resampled all 20 m bands to 10 m using the cubic convo-

lution method.

High spatial resolution PlanetScope and RapidEye

imagery were acquired at 3 and 5 m resolution, respec-

tively, and were provided by the Planet Labs under the

Education and Research Program (https://www.planet.

com/markets/education-and-research/). The PlanetScope

has four basic spectral bands (i.e., Blue, Green, Red and

NIR), while RapidEye includes an additional Red-edge

band (Fig. 2A). We downloaded the Level-3A products of

PlanetScope and RapidEye images acquired on 14 and 15

October 2018, respectively. Both PlanetScope and Rapi-

dEye data were geometrically, radiometrically and atmo-

spherically corrected and can therefore be used directly in

practical applications. All data were mosaiced for the

entire study region.

Based on the original spectral bands, we computed sev-

eral vegetation indices (VIs) (see Table S1.2 for more

details).

Methodology

We developed a four-phase workflow to assess the

impacts of satellite sensors, spatial and spectral resolu-

tions and spectral heterogeneity metrics on forest TSD

mapping (Fig. 3). Details on the phases are described in

Sections 3.1–3.5.

Resampling of satellite imagery

Because the four satellite images have different spatial res-

olutions, direct comparisons of these data may be prob-

lematic for accurately exploring the effects of spatial

resolution on TSD mapping due to their differences in

spectral bands and spectral ranges (Fig. 2). Other discrep-

ancies, such as the imaging time, view geometry and

image quality of the satellite data, may also affect impar-

tial comparisons. Therefore, we not only directly com-

pared the performance of different satellite images in TSD

mapping but considered the mapping capability of indi-

vidual images at various spatial resolutions. To do so, we

resampled each satellite imagery from original (fine) to

coarser spatial resolutions utilizing the nearest neighbour

resampling algorithm. As shown in Figure 3, we
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considered seven (3, 5, 10, 15, 20, 25 and 30 m), six (5,

10, 15, 20, 25 and 30 m), five (10, 15, 20, 25 and 30 m)

and one (30 m) spatial grains for the PlanetScope, Rapi-

dEye, Sentinel-2 and Landsat-8, respectively. We con-

ducted assessments on three frequently employed

resampling methods: nearest neighbour, bilinear interpo-

lation and cubic interpolation. None of these methods

displayed significant differences in the final result

(Appendix S2).

Whereas PlanetScope data have only four basic spectral

bands, the Sentinel-2, RapidEye and Landsat-8 data all

possess additional spectral bands (Red-edge or SWIR). To

investigate the role of these additional spectral bands on

TSD mapping, we also created a 4-band-based dataset for

Sentinel-2, RapidEye and Landsat-8 data (i.e., containing

only the four bands (Blue, Green, Red and NIR) and their

associated VIs), and compared their performance with the

all-band-based dataset (all bands and VIs) at different

spatial resolutions.

Image feature extraction

Since the reliability of the Spectral Variability Hypothesis

varies with the spectral heterogeneity metric used and

Figure 2. Details of the spatial and spectral resolutions of Sentinel-2, RapidEye, PlanetScope and Landsat-8 images (A) and an example sample

plot (Plot 134) on the UAV and the four satellite images (B). B, blue; R, red; G, green; RE, red-edge; NIR, near-infrared; SWIR, shortwave infrared;

PAN, panchromatic.
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currently no consensus is reached on the preference of a

specific spectral heterogeneity metric for remotely sensed

TSD estimates (Wang, Gamon, Schweiger, et al., 2018;

Wang, Qiu, et al., 2022), we calculated seven types of

commonly used spectral heterogeneity metrics including

Rao’s Q, CV, CHV, CHA, SAM, spectral species diversity

(SSD), and texture metrics (Table 1). More information

on the calculation of each spectral heterogeneity metric

and its corresponding formula can be found in

Appendix S3. Additionally, we also included the average

(AVG) values of the base variables (i.e., bands and VIs)

corresponding to each sample plot to maximize the possi-

bility of mining all the information in favour of TSD

mapping. This would be also more conducive to an unbi-

ased assessment of the mapping potential of various satel-

lite sensors.

All spectral heterogeneity metrics were calculated for

each satellite sensor at each spatial resolution. Apart from

SSD, which is usually computed based on categorical data

(i.e., classified images), all other metrics can be calculated

directly based on spectral bands or VIs, and their higher

values indicate greater spectral diversity in theory (Gholi-

zadeh et al., 2018; Rocchini et al., 2017). In this research,

we calculated the Rao’s Q and CV for all bands and VIs

of four satellite sensors. The CHV and SSD were com-

puted using the first three principal components

Figure 3. Flowchart for assessing the impact of the sensors, spatial and spectral resolutions and spectral heterogeneity metrics on tree species

diversity mapping. VI, vegetation index; CV, cross-validation; ANOVA, analysis of variance; RF-RFE, random forest-based recursive feature

elimination.
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transformed from multiple spectral bands. The CHA and

SAM were calculated using all spectral bands.

We calculated eight commonly used texture metrics in

a single direction (vertical 90°) based on the Gray-Level-

Co-Occurrence-Matrix method (Haralick et al., 1973) (see

Appendix S3 for more details). The texture metrics were

computed for all spectral bands and VIs of the satellite

imagery using the Co-occurrence Measures function in

the ENVI 5.5 software.

TSD modelling

The TSD modelling consists of three steps: feature selec-

tion, model construction and calibration, and accuracy

assessment. We performed a feature selection to remove

redundant and highly collinear variables. To do this, we

first calculated the importance values for all predictor var-

iables by training a random forest (RF) (Breiman, 2001)

regression model using the field data and all predictor

variables. We used the IncNodePurity metric from the RF

model to estimate feature importance. In cases where var-

iables exhibited a high degree of correlation (Pearson

r≥ 0.8), we applied a filtering process to exclude those

with lower importance values. To further refine our vari-

able selection, we employed an RF-based recursive feature

elimination (RF-RFE) algorithm to eliminate unimportant

variables. The RF-RFE process initiated with fitting the

RF model with all the remaining predictors. Each predic-

tor variable was then ranked based on its importance

value as determined by the RF model. Subsequently, the

algorithm iteratively removed one unimportant predictor

variable at each step until only one predictor remained as

input. During each iteration, the importance of every pre-

dictor variable was recalculated using the RF model in the

context of the retained feature set. Following this, the

model was retrained, and prediction accuracy was

assessed. This evaluation procedure employed a 10-fold

cross-validation method, with each iteration repeated

three times to ensure robustness and reliability. The pre-

diction accuracy achieved in each iteration was then com-

pared, and the final set of predictors was determined

based on this comparative analysis. This feature selection

procedure was performed for all four sensors across all

spatial resolutions (Table 2 and Table S1.3).

In the second step, we applied the RF algorithm to model

TSD using the selected predictor variables from the first step

and the field data. As a non-parametric machine learning

method, RF has been widely used for various prediction

tasks (Grabska et al., 2020; Gyamfi-Ampadu et al., 2021;

Mallinis et al., 2020). We tuned the main parameter mtry

from 1 to 8 and set the ntree as default (i.e., 500). We

employed a grid search combined with a 5-fold cross-

validation method to select the optimal parameters.

In the third step, we evaluated the model performance

using a 5-fold cross-validation method. We randomly split

the field data (n= 130) into five folds and conducted five

iterations. In each iteration, we used the four folds

(� 80%) to train the RF model and the remaining 1-fold

(� 20%) to calculate the coefficient of determination (R2)

and root-mean-square error (RMSE). The mean values of

R2 and RMSE over the five iterations were used to quantify

the model performance. We repeated the above procedure

10 times to reflect the variability in model performances.

Statistical analysis

Based on the accuracy results from 10 replications, we

used the one-way ANOVA with Tukey multiple-

comparison to examine the statistical significance of dif-

ferences in prediction accuracy among satellite datasets.

Additionally, we calculated Pearson correlation coeffi-

cients between different spectral heterogeneity metrics

Table 1. Information on the image features (spectral heterogeneity and non-heterogeneity metrics) from the four satellite sensors.

Metrics (Abbreviation) Base variable used for the calculation

Number of predictors

PS RE S2 L8

Spectral angle mapper (SAM) All spectral bands 1 1 1 1

Convex hull area (CHA) All spectral bands 1 1 1 1

Spectral species diversity (SSD) The first three principal components 1 1 1 1

Convex hull volume (CHV) The first three principal components 1 1 1 1

Rao’s Q Each spectral band and each VI 8 10 16 11

Coefficient of variation (CV) Each spectral band and each VI 8 10 16 11

Texture metrics Each spectral band and each VI 64 80 128 88

Average (AVG)a Each spectral band and each VI 8 10 16 11

PS, PlanetScope; L8, Landsat-8; RE, RapidEye; S2, Sentinel-2.
aNon-heterogeneity metrics.
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and field-measured H0 index to explore the ability of indi-

vidual spectral metrics in predicting TSD at different spa-

tial resolutions across sensors.

TSD map creation and analysis

In the final phase of the workflow, we employed the top-

performing model from each satellite sensor to make pre-

dictions for TSD across the entire study area. After gener-

ating the maps, we evaluated variations in predictions

across sensors at various geographic locations by comput-

ing the coefficient of variance for each pixel across the

four maps. Subsequently, we conducted an analysis to

examine the spatial distribution pattern of TSD in rela-

tion to forest type and elevation.

Results

Model performance

Model performance was affected by the satellite sensor,

spatial resolution and spectral band. Sentinel-2 data

(10 m) obtained the highest prediction accuracy (mean

R2= 0.477; mean RMSE= 0.274), followed by RapidEye

(10 m) (mean R2= 0.346; mean RMSE= 0.303) and Pla-

netScope (15 m) (mean R2= 0.337; mean RMSE= 0.304),

while Landsat-8 (30 m) (mean R2= 0.316; mean

RMSE= 0.309) performed the worst on the TSD predic-

tions (Fig. 4). The all-band-based Sentinel-2 dataset per-

formed the best in all spatial resolution scenarios. In

contrast, PlanetScope data performed the worst at almost

all spatial resolutions except for a few spatial resolutions

(15, 20 and 25 m) (Fig. 4). The highest accuracy for

Sentinel-2 was achieved at 10 m. However, for high spatial

resolution images RapidEye and PlanetScope, the highest

prediction accuracy was not achieved at their original spa-

tial resolution (3 and 5 m), but at 15 and 10 m, respec-

tively. Furthermore, for the Sentinel-2, a significantly

higher accuracy in predicting TSD can be obtained for its

all-band-based dataset than for the 4-band-based dataset

at almost all spatial resolution scenarios (except for the

15 m resolution) (P\ 0.05) (Fig. 4). For RapidEye and

Landsat-8, the prediction accuracy of their all-band-based

datasets was only slightly higher than that of the 4-band-

based datasets (P [ 0.05).

Variable importance

Among the spectral heterogeneity metrics, texture features

showed very high importance for all the best models (Fig. 5).

Rao’s Q played an important role in the best models for Pla-

netScope, RapidEye and Landsat but was not involved in the

best Sentinel-2 model. Rao’s Q was excluded from the best

Sentinel-2 model most likely due to its high correlation with

the texture metrics (Figure S1.1), and thus being removed

during the feature selection process. CV contributed moder-

ately to the best Sentinel-2 model but showed low impor-

tance to the other best models for PlanetScope, RapidEye

and Landsat-8. AVG also contributed to the best model for

RapidEye and Landsat-8 but did not participate in the best

model for PlanetScope and Sentinel-2. All the other spectral

heterogeneity metrics, except the CHV, which showed the

highest importance to the best Landsat-8 model (Fig. 5D),

did not contribute to the best models.

Overall, the spectral heterogeneity metrics calculated

based on the NIR bands contributed much more to the best

models than those derived from the other spectral bands

(Fig. 5). In contrast, the Red band-derived spectral heteroge-

neity metrics contributed consistently low to the best

models. Although the Red-edge band related VI (i.e.,

RNDVI) contributed to both the best RapidEye and

Sentinel-2 models, its role in the Sentinel-2 model was more

important. The SWIR bands and their associated VIs con-

tributed to the best Sentinel-2 and RapidEye models, but

they were much more important for the best Landsat-8

model. The importance values of the other spectral bands

were not consistent across sensors. The blue band had high

importance for the best RapidEye model but contributed far

less to the best Seninel-2 and PlanetScope models. The green

band showed a low importance value to the best models for

Table 2. The number of variables selected by the feature selection method for different satellite sensors at different spatial and spectral

resolutions.

Sensor Dataset

Total number of variables

at each spatial resolution

Number of selected variables at different spatial resolutions

3 m 5m 10m 15m 20m 25m 30m

PlanetScope All-band 92 15 2 12 6 11 10 10

RapidEye All-band 114 – 10 9 6 15 11 5

4-band 92 – 11 3 3 20 2 5

Sentinel-2 All-band 180 – – 11 20 8 18 15

4-band 92 – – 13 15 9 20 8

Landsat-8 All-band 125 – – – – – – 16

4-band 92 – – – – – – 15
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PlanetScope and Sentinel-2, but its associated VI contrib-

uted moderately to the best models for RapidEye and

Landsat-8. In addition to the spectral bands, the VIs, espe-

cially EVI and MSAVI, played significant roles in the best

model of the four satellite sensors.

Correlations between TSD and spectral
heterogeneity metrics

Since the spectral metrics that were based on the NIR band

were the most relevant to the H0 index (Figure S1.2), we

Figure 4. Prediction accuracies (R2 and RMSE) of RF models applied on different datasets at different spatial resolutions. All bands and 4 bands

denote the derived variables from all spectral bands and only 4 spectral bands, respectively. The mean values of R2 and RMSE over 10 replicates

are shown near the boxplot. Different colours represent different sensors. Letters on the rightmost side of the boxplot show statistically significant

differences (P< 0.05) in prediction accuracy between datasets at the same spatial resolution using ANOVA with Tukey multiple-comparison tests.

Any two groups that have the same letter (e.g., a and ab) indicate no significant difference between the two groups (P≥ 0.05).
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only displayed results for the NIR band-derived texture,

Rao’s Q, CV and AVG metrics. Results demonstrated that

the Spectral Variability Hypothesis held true for all satel-

lites. However, the spectral–species diversity relationship

varied among the spectral heterogeneity metrics (Fig. 6B).

Of the eight spectral metrics, the Rao’s Q and texture met-

rics have the highest correlation with the H0 index, followed
by SSD and CHA; the SAM showed the worst correlation

with the H0 index. The most commonly used CV showed a

moderate correlation with the H0 index. Although the CHV

performed similarly to the CHA on the PlanetScope and

RapidEye, it performed much worse on the Landsat and

Sentinel-2 images. On the other hand, the spectral–species
diversity relationship was affected by spatial resolution.

Generally, the largest correlation coefficients between spec-

tral metrics and the H0 index were shown at 15 m resolu-

tion for the PlanetScope imagery and 10 m for the

RapidEye and Sentinel-2 imagery (Fig. 6A). Resampling the

images to a coarser resolution did not significantly change

the correlation between the spectral AVG and the H0 index.

Landscape maps of TSD

In general, all the best models tended to overestimate the

low TSD values and underestimate the high TSD values

(Fig. 7). In addition, the predictive accuracy of each

model was influenced by the forest type (Figure S1.3).

The predicted TSD values of four maps were character-

ized by a distribution of low diversity in the middle high

elevations and of high diversity in the surrounding low-

lands (Fig. 8A–D and Figure S1). Furthermore, the pre-

dicted TSD in the broad-leaved and mixed forests was

higher than that in the coniferous forests (Fig. 8A–E and

Figure S1.4A). The TSD values predicted by the four sat-

ellite images were relatively consistent, with the CV less

than 10% in most areas (Fig. 8F). The areas with large

differences in predictions were mainly located in the cen-

tral high altitude (Fig. 8F and Figure S1.4B) and the

southwest corner of the mixed forest areas (Fig. 8F).

Discussion

Spatial resolution

Our results suggest that the optimal spatial resolution for

TSD mapping is 10 or 15 m. For high spatial resolution

images (i.e., PlanetScope and RapidEye), a higher spatial

resolution was not more favourable for predicting the

TSD. This is in line with the findings of other studies

(e.g., Nagendra et al., 2010; Rocchini, 2007). Many studies

have shown that high spatial resolution imagery has a rel-

atively high spectral variation within a single tree crown

because its pixels can cover various portions of the can-

opy, such as shaded foliage, sunlit foliage and even the

understory and forest floor (Fassnacht et al., 2016; Ghosh

et al., 2014; Nagendra et al., 2010). The higher spectral

variation within a tree species may lead to lower spectral

separability between tree species (Fassnacht et al., 2016).

Figure 5. Variable importance of the best model for PlanetScope (A), RapidEye (B), Sentinel-2 (C) and Landsat-8 (D). Predictor abbreviations

follow the rule: metric _ base variable. TexT 1–8 are texture metrics mean, variation, homogeneity, contrast, dissimilarity, entropy, second

moment and correlation, respectively; CV, coefficient of variation; CHV, convex hull volume; AVG, average; RedE, red-edge.
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For PlanetScope and RapidEye, resampling the pixel size

from the original to a lower one improved the prediction

accuracy. Moreover, the correlation between species diver-

sity and spectral heterogeneity was improved with such a

resample process (Fig. 6). However, when resampled

pixels reach a certain size, the prediction accuracy

decreased. This suggests that when image spatial resolu-

tion exceeds a certain threshold the spectral signatures of

different species may become overgeneralized and the

effect of intra-pixel spectral mixing is enhanced, thus

reducing the spectral separability of different tree species

(Ghosh et al., 2014). Our study found that 10 or 15 m is

an appropriate pixel size for TSD mapping, which is

generally in agreement with the results of some other

studies. For instance, Gyamfi-Ampadu et al. (2021) found

Sentinel-2 10 m can produce the highest accuracy for

TSD predictions in an Afromontane subtropical forest.

Ghosh et al. (2014) found that 8 m is the best resolution

for tree species mapping in a temperate forest using

hyperspectral data. It is important to note that the opti-

mal spatial resolution for TSD predictions may vary

across different application scenarios. This variability may

arise from factors such as the composition of forest

stands, the diversity of species and various structural

parameters on the one hand, and the choice of remote

sensing data and sample plot sizes on the other.

Figure 6. Correlations between in-situ measured Shannon–Wiener diversity indicator and the selected spectral metrics from the PlanetScope,

RapidEye, Sentinel-2 and Landsat-8 satellite images at different spatial resolutions. Boxplots (A) reflect the distribution ranges of the correlation

coefficients between the selected spectral metrics and Shannon–Wiener diversity at different spatial resolutions. The following bubble plots (B)

detail the correlation coefficients between the selected spectral metrics and Shannon–Wiener diversity at different spatial resolutions. The Rao’s Q,

texture, CV and AVG metrics for various sensors presented here are derived from their respective NIR bands. Abbreviations of different metrics

are explained in Table 1 and Appendix S3.
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Spectral resolution

Our results showed that higher spectral resolution led to

higher mapping accuracy. However, most of the high

spatial resolution satellite images, for instance, IKONOS,

GeoEye-1, PlanetScope (DOVE-R) and SPOT-6/7, only

offer the four basic spectral bands. The lower spectral res-

olution of the PlanetScope data resulted in relatively

lower prediction accuracy than the Sentinel-2 and

RapidEye imagery. Similar results were found in several

studies of TSD estimation in other forest ecosystems

(Gyamfi-Ampadu et al., 2021; Mallinis et al., 2020;

Nagendra et al., 2010). The correlation analysis results

showed that the most relevant spectral bands for TSD

were the Red-edge and NIR bands (Figure S1.2). The

NIR and Red-edge bands-derived spectral metrics also

Figure 7. Scatterplots between the tree species diversity (TSD) measured from 130 sample plots and the predicted TSD of 5-folds cross-validation

from the four best models. The best prediction accuracy over the 10 repetitions for each sensor-based model is shown in the figure.

Figure 8. Landscape maps of Shannon–Wiener diversity from PlanetScope (A), RapidEye (B), Sentinel-2 (C) and Landsat-8 (D). (E) The forest type

map. (F) The distribution of the coefficient of variation of Shannon–Wiener diversity values predicted by the four spaceborne sensors.
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played essential roles in the best TSD models. The impor-

tance of NIR and Red-edge bands has been pointed out

in many studies of tree species classification (Bhattarai

et al., 2021; Grabska et al., 2020; Immitzer et al., 2019).

While numerous studies have emphasized the significance

of SWIR bands in mapping tree species (Bhattarai

et al., 2021; Hościło & Lewandowska, 2019; Immitzer

et al., 2019), it is important to note that the correlations

between TSD and SWIR bands are comparatively lower

than those between TSD and NIR and Red-edge bands,

underscoring the significance of the latter bands.

Satellite sensor type

Our results demonstrated that the Sentinel-2 data can

better predict TSD than the other three sensors, as also

suggested by Gyamfi-Ampadu et al. (2021). We confirmed

that the moderate spatial resolution (10 m) and the spec-

tral resolution (particularly three additional Red-edge

bands) are indeed the main reason for the superior per-

formance over other satellite sensors. Moreover, we have

emphasized that Sentinel-2’s 4-band-based dataset con-

sistently outperforms other satellite imagery across spa-

tial resolutions ranging from 10 to 25 m. This

observation brings to light an important consideration:

the use of very high spatial resolution imagery may

introduce a significant amount of noise into the data.

Although resampling methods can alleviate the noise

effects to some extent, they still impact the accuracy of

predictions. Furthermore, the result underscores the sig-

nificance of Sentinel-2’s unique bandwidth characteris-

tics, characterized by narrower RGB bands and broader

NIR bands, in contributing to its superior performance

relative to the other satellite sensors. This finding aligns

with similar outcomes observed when using Sentinel-2

and Landsat-8 imagery for predicting forest structure or

classifying tree species (Astola et al., 2019; Wang, Zheng,

et al., 2022).

Unlike Sentinel-2, where the images are sourced from a

single satellite, both RapidEye and PlanetScope are con-

stellations of several satellites. Therefore, subtle differences

between different satellites (e.g., the timing of image

acquisition and solar altitude angle) may also affect the

prediction performance. In contrast, although Landsat-8

also has a large swath width, the worst prediction accu-

racy of Landsat-8 is likely due to its coarse spatial resolu-

tion. However, several studies found that Landsat-8

performed equally or slightly better than high spatial res-

olution imagery (e.g., Quickbird, RapidEye and IKONOS)

for predicting TSD (Mallinis et al., 2020; Nagendra

et al., 2010; Rocchini, 2007). Notably, all these studies

compared the high spatial resolution imagery directly

with Landsat-8 data without considering the effect of

spatial resolution. We also had the same result when the

Landsat-8 was compared with the PlanetScope at the orig-

inal spatial resolution (Figure S1.5). However, resampling

spatial resolution to a coarser resolution improved the

predictive accuracy of PlanetScope, which was even higher

than that of Landsat-8 images. Therefore, it may be nec-

essary to consider TSD predictions at multiple spatial res-

olutions for high spatial resolution images to properly

evaluate their performance.

Spectral heterogeneity metrics

Our results revealed that the spectral–species diversity

relationship was sensitive to the selection of the spectral

heterogeneity metrics as well. Although all spectral hetero-

geneity metrics were positively correlated with the H0

indicator, the differences in the spectral heterogeneity

they characterized were significant. The maximum differ-

ences in the correlation coefficients (r) with the H0 index
between the different spectral heterogeneity metrics

reached 0.39, 0.45, 0.37 and 0.39 on PlanetScope, Rapi-

dEye, Sentinel-2 and Landsat-8, respectively (Fig. 6B).

These results suggest that selecting a suitable metric is

important for the validation of Spectral Variability

Hypothesis. Among the spectral heterogeneity metrics,

Rao’s Q and texture had significantly higher correlations

with the H0 index than the others did. The better perfor-

mance of the Rao’s Q is due to its consideration of both

pixel abundance and pairwise distances (Rocchini

et al., 2017), which therefore may be less sensitive to

extremes and outliers caused by background effects (e.g.,

bare and sparse soil). Texture metrics have been shown to

have the ability to characterize the structural complexity

of plants and provide complementary information about

the heterogeneity of plant components (Farwell et al.,

2021; Hoffmann et al., 2022). These properties of texture

explain their high performance in predicting TSD in our

case. Moreover, unlike other spectral heterogeneity met-

rics, texture metrics can be computed in different ways

(e.g., homogeneity, variance and entropy), thus enabling

quantify spectral heterogeneity differently (Farwell et al.,

2020).

CV and CHV had a much lower correlation with the

H0 index than the Rao’s Q and texture metrics did. More-

over, their correlation coefficients also varied widely

across sensors. This implies that the CV and CHV might

be susceptible to the effects of spectral noise and illumi-

nation geometry, bare soil and dead biomass (Gholizadeh

et al., 2018; Rossi et al., 2021). The SAM had the worst

performance, probably due to the fact that it assigned the

same weight to each spectral band. Yet, the correlation

analysis result showed that not all spectral bands were

beneficial in predicting TSD. Compared to the CV, CHV
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and SAM, the CHA and SSD also had a higher and more

stable relationship with the H0 index across different sen-

sors and spatial resolutions. The CHA comes with the

function of feature selection, which may be the reason for

its superiority over CHV and SAM (Gholizadeh

et al., 2018; Liu et al., 2023). SSD has proven to be much

less sensitive to extremes than the CV and CHV (Rossi

et al., 2021).

Although the texture and Rao’s Q showed a high corre-

lation with TSD, neither of them consistently maintained

the highest correlation coefficient with the H0 index across

different satellite sensors and spatial resolutions. There-

fore, to maximize the spectral–species diversity relation-

ship, we recommend comparing and testing multiple

spectral heterogeneity metrics. Moreover, using multiple

metrics is also beneficial to avoid underestimating the

ability of a particular dataset to map TSD.

Method consideration and outlook

Our study demonstrated the potential of using spectral

diversity-based methods combined with machine learning

techniques to estimate and map large-scale TSD in a

montane temperate forest. Compared to image classifica-

tion methods, spectral diversity-based approaches do not

require consideration of the representativeness and bal-

ance of pre-classified samples of individual tree species

(Wang, Qiu, et al., 2022). They thus have better general

applicability to large areas. To date, gaps still remain in

the tree species distribution maps used to estimate TSD

in the Black Forest region. Although the first national-

scale tree species distribution map was published very

recently, it classified only seven dominant species and

used training samples from the 2012 national survey

inventory (Welle et al., 2022). Therefore, such a product

may not estimate TSD accurately and there is still an

urgent need for effective methods to accurately map TSD

to provide continuous and timely information on TSD

distribution. Our study illustrated the feasibility of opera-

tional spaceborne imagery for large-scale TSD mapping,

which is a good signal for future TSD mapping on a

national and even global scale.

To fairly compare the mapping capabilities of different

satellite images, we chose images acquired during the veg-

etation senescence period (i.e., October), when temperate

forest tree species are usually easier to distinguish by

remote sensing methods than during the peak vegetation

season (Grabska et al., 2019; Persson et al., 2018). We

achieved the highest accuracy with a mean R2 of 0.477

and a mean RMSE of 0.274, which was comparable to

that of many other studies using Sentinel-2 imagery

(Hoffmann et al., 2022; Mallinis et al., 2020; Wang, Qiu,

et al., 2022). However, we assume that the accuracy can

be further enhanced by applying multi-temporal analysis,

which has proven to be effective in improving prediction

accuracy in many studies (Chrysafis et al., 2020; Madon-

sela et al., 2021; Torresani et al., 2021).

Furthermore, some factors that may influence the

spectral–species diversity relationship were not taken into

consideration. For instance, previous studies have shown

that backgrounds (e.g., bare soil) can augment spectral

heterogeneity, potentially weakening the spectral–species
diversity relationship (Gholizadeh et al., 2018; Wang, Qiu,

et al., 2022). Therefore, future studies should take into

account these background effects, particularly when using

high spatial resolution images. Additionally, since differ-

ent species diversity indicators quantify diversity in

diverse ways, the selection of a particular indicator may

also influence the spectral–species diversity relationship

(Gyamfi-Ampadu et al., 2021). Future studies should

explore the performance of satellite sensors in predicting

other species diversity indicators (e.g., Simpson diversity).
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