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Introduction

Abstract

Increasingly available spaceborne sensors provide unprecedented opportunities
for large-scale, timely and continuous tree species diversity (TSD) monitoring.
However, given differences in spectral and spatial resolutions, the choice of sen-
sor is not always straightforward. In this work, we investigated the effects of
spatial and spectral resolutions for four spaceborne sensors (RapidEye, Landsat-
8, Sentinel-2 and PlanetScope) on TSD mapping in an area of approximately
4000 km* within the Black Forest, Germany. We employed a random forest
(RF) regression model to predict Shannon—-Wiener diversity based on seven
types of spectral heterogeneity metrics (texture, coefficient of variation, Rao’s
Q, convex hull volume, spectral angle mapper, convex hull area and spectral
species diversity) and a full survey dataset from 135 one-ha sample plots. We
compared the RF model’s performance across sensors and spatial resolutions.
Our results demonstrated that the Sentinel-2-based TSD model achieved the
highest accuracy (mean R* 0.477, mean root-mean-square error (RMSE):
0.274). The RapidEye-based TSD model produced lower accuracy (mean R*:
0.346, mean RMSE: 0.303), but it was better than the PlanetScope- and
Landsat-based TSD models. The 10 m (for Sentinel-2 and RapidEye) and 15m
(for PlanetScope) were the best spatial resolutions for predicting TSD. The NIR
band was the most favourable spectral band for predicting TSD. Texture met-
rics and Rao’s Q outperformed the other spectral heterogeneity metrics. Our
results highlighted that spaceborne optical imagery (especially Sentinel-2) can
be successfully used for large-scale TSD mapping but that the choice of sensors
can significantly affect the resulting mapping accuracy in temperate montane
forests.

pollution, human activities, climate change and invasive
alien species (Wang, Qiu, et al., 2022). Therefore, timely

Forest biodiversity has an essential role in the provision
of a variety of forest ecosystem services such as water
retention and supply, nutrient use and conversion, and
carbon storage (Huang et al., 2003; Song et al., 2021). As
the most fundamental element of forest ecosystems, forest
trees provide habitat and resources for a large number of
plant and animal species (Huang et al., 2003; Mallinis
et al., 2020). Tree species diversity (TSD) is regarded as a
particularly significant indicator of forest ecosystem health
and stability (Gyamfi-Ampadu et al., 2021). However,
TSD is under threat due to habitat destruction, fire,

and accurate information on the magnitude and distribu-
tion of TSD is essential for implementing appropriate
conservation strategies and management plans to prevent
or mitigate losses (Torresani et al., 2021). Following the
rapid advances in remote sensing technology in recent
decades, especially the improvement in spectral, spatial,
radiometric and temporal resolutions of sensors, as well
as the significant reduction in the associated costs of
remote sensing data acquisition and analysis, remote sens-
ing methods exhibit unprecedented and unique advan-

tages over any traditional methods in providing
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consistent and spatially explicit measurements of TSD
(Mallinis et al., 2020).

Ground-based or airborne hyperspectral images, which
can provide rich and detailed spectral, spatial and textural
information on tree canopies, have been well-received in
the research community for TSD mapping (Wang, Qiu,
et al., 2022; Zhao et al., 2018). However, the limited and
sparse coverage and high cost of these data hinder their
use in long-term and large-scale TSD mapping (Gyamfi-
Ampadu et al., 2021; Mallinis et al., 2020). While
unmanned aerial vehicles (UAVs) or airborne aerial mul-
tispectral images have significantly reduced the cost, they
have similar disadvantages of limited coverage (Chrysafis
et al., 2020; Gyamfi-Ampadu et al., 2021). In this context,
spaceborne imagery offers tremendous merits in terms of
area coverage, operating costs and data availability, mak-
ing them a popular choice for broad-scale TSD mapping
(Gyamfi-Ampadu et al., 2021).

For landscape-level TSD mapping, the most popular
strategy is to first employ machine learning (or deep
learning) based classification algorithms to classify tree
species in the image. The species diversity indices (e.g.,
Shannon diversity) are then computed based on the
derived classification products (Grabska et al., 2020).
However, this two-step strategy requires a considerable
amount of time and effort to collect sufficient labelled
training data (Zhao et al., 2018). Moreover, classification
methods often overlook uncommon or rare species due
to insufficient training data (Fassnacht et al.,, 2022). To
overcome these problems, spectral diversity-based
methods building upon the Spectral Variability Hypothe-
sis (Palmer et al., 2002) provide an alternative solution
for predicting species diversity. The Spectral Variability
Hypothesis states that the spectral variance of a given area
is positively related to species diversity (Palmer et al.,
2002; Rocchini et al., 2017). Based on this hypothesis,
species diversity in different ecosystems has been esti-
mated directly using spaceborne optical sensors such as
Quickbird  (Rocchini, 2007), IKONOS (Nagendra
et al, 2010), WorldView-2 (Mallinis et al., 2020; Wang,
Qiu, et al.,, 2022), RapidEye (Gyamfi-Ampadu et al., 2021;
Mallinis et al., 2020), Sentinel-2 (Chrysafis et al.,, 2020;
Gyamfi-Ampadu et al., 2021) and Landsat (Mallinis
et al., 2020; Nagendra et al., 2010).

The accuracy of existing TSD predictions varies among
studies greatly due to differences in forest ecosystems,
spatial and spectral resolutions of the spaceborne imagery
and the spectral heterogeneity metrics used. Image spatial
resolution is an important factor affecting the relationship
between TSD and spectral diversity. Studies have shown
that if the spatial resolution is too fine relative to the
crown diameter of a species, a correspondingly large
intra-species spectral variance will overestimate species
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diversity, while images with too coarse spatial resolution
will be insensitive to inter-species spectral variance and
thus underestimate species diversity (Fassnacht et al.,
2022; Rocchini, 2007). As such, finding the optimal spa-
tial resolution is essential for the accurate mapping of
TSD. Spectral resolution is another key factor in deter-
mining how accurately a satellite image can predict TSD.
Higher spectral resolution images capture more spectral
information from tree canopies and will therefore better
differentiate tree species (Rocchini, 2007). Given the dif-
ferent instrumental characteristics of satellite sensors,
assessing the performance of multiple sensors and deter-
mining the optimal performance are conducive to
informing long-term and large-scale TSD prediction and
mapping applications. However, very few studies to date
have compared the performance of different spaceborne
sensors in predicting TSD (e.g, Gyamfi-Ampadu
et al., 2021; Mallinis et al., 2020), and knowledge on how
spectral and spatial resolutions affect TSD in montane
temperate forests is lacking entirely.

The choice of spectral heterogeneity metrics also affects
species diversity predictions (Torresani et al., 2021). To
date, many spectral heterogeneity metrics have been pro-
posed for estimating species diversity, such as convex hull
area (CHA) (Gholizadeh et al, 2018), Rao’s Q
(Rao, 1982; Rocchini et al., 2017), convex hull volume
(CHV) (Cornwell et al., 2006), texture metrics (Haralick
et al, 1973), spectral angle mapper (SAM) (Kruse
et al., 1993), and coefficient of variation (CV). Among
these spectral heterogeneity metrics, the recently proposed
Rao’s Q performed well in many studies because it con-
siders both the abundance of pixels and their pairwise
distances (Rocchini et al., 2017; Torresani et al., 2019).
However, applications of the Rao’s Q metric for mapping
forest biodiversity have been limited to a few forest eco-
systems (Torresani et al., 2021; Wang, Qiu, et al., 2022).
Furthermore, a recent study reported contradictory results
in a heterogeneous temperate forest, where they found
that Rao’s Q had no significant effect on predicting TSD
(Hoffmann et al., 2022). Overall, no single spectral het-
erogeneity metric was found to be highly applicable to all
cases of species diversity predictions, as different spectral
heterogeneity metrics quantify image heterogeneity in dif-
ferent ways (Torresani et al., 2021). Therefore, it is essen-
tial to use different spectral heterogeneity metrics to
properly assess the ability of different spaceborne images
in mapping TSD.

In this research, we evaluated the potential of four
spaceborne optical images (i.e., RapidEye, Landsat-8,
Sentinel-2 and PlanetScope) for large-scale TSD mapping
in temperate montane forests. Specifically, we addressed
the following questions: (i) Which spaceborne sensor pro-
vides the best prediction accuracy for TSD mapping?
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(ii) What is the best spatial resolution for TSD mapping?
(iif) Which spectral bands are most important for TSD
mapping? (iv) How do different spectral heterogeneity
metrics perform in mapping TSD?

Materials and Methods

Study area

The research region covers about 4000 km? in the southern
Black Forest of Baden-Wiirttemberg, Germany (Fig. 1).
The elevation of the region ranges from 208 m (Rhine Val-
ley) to 1493 m (the highest peak of the Feldberg mountain)
(Frey et al., 2018). This region is characterized by a moder-
ate maritime climate with an average annual precipitation
of approximately 1205 mm and an average annual temper-
ature of around 6.9°C (Storch et al., 2020). The climate in
the region is influenced by the altitudinal gradient, with a
difference in yearly average temperature of up to 6.4°C
between the highlands and lowlands (Storch et al., 2020).
The research area is predominantly covered by coniferous
and mixed forests with high age variability (Frey
et al., 2020). Norway spruce (Picea abies L.), silver fir (Abies
alba Mill.) and European beech (Fagus sylvatica L.) are the
dominant tree species covering over 70% of the forest area.
Less common tree species are mainly Acer pseudoplatanus
L., Pseudotsuga menziesii Mirbel., Pinus sylvestris L., Larix
decidua Mill., Quercus robur L. and Betulus pendula L.
(Storch et al., 2020).
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Field data

Our study is part of the ‘Conservation of Forest Biodiver-
sity in Multiple-Use Landscapes of Central Europe (Con-
FoBi)’ project, which encompasses 135 1 ha (100 X 100 m)
sample plots. To ensure a comprehensive representation
of various forest types, vegetation communities and topo-
graphic features while minimizing potential biases, the
plot selection process centred on two essential factors:
landscape-scale forest connectivity and forest structure
(Storch et al., 2020). For the evaluation of forest connec-
tivity, the proportion of forest within a 25km? area sur-
rounding each plot was quantified based on a raster map
of 25Xx25m resolution (Table S1.1). This analysis
resulted in the classification of plots into three distinct
levels of forest cover (<50, 50-75% and >75%). Regard-
ing forest structure, plots with varying levels of old or
dead trees rich in microhabitats were considered. As a
result, the plots were categorized into three classes: low,
medium and high structure categories, based on the num-
ber of standing dead trees associated with forest structure.
Taking these two factors into account, the study area was
divided into nine distinct strata with random sampling
plots selection in each stratum. The minimum distance
between plots is 750 m to ensure the spatial independence
of each sample plot.

Tree species data were collected in the 135 sample plots
during a comprehensive forest inventory between October
2016 and February 2018 (Fig. 1). The ConFoBi project
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Figure 1. Location of the study area and distribution of the 135 sample plots. The Sentinel-2 and digital elevation model images are utilized as

backgrounds in the left and right panels, respectively.
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team measured and recorded diameter at breast height
(DBH), species names and heights for all trees with a
DBH >7 cm in each sample plot. In addition, we inven-
toried all plots in 2017/2018 and 2019/2020 with a multi-
rotor UAV (Frey et al., 2020). By visually inspecting the
collected UAV images for each sample plot in 2017/2018
and 2019/2020, we found that five sample plots had sig-
nificant tree mortality between 2018-2019. Therefore, we
removed these five sample plots in subsequent analyses.
For the remaining 130 plots, we calculated the Shannon—
Wiener diversity (H') indicator for each plot. We chose
this indicator as a proxy of TSD because it can take into
account both species richness and evenness, which
together determine the environmental heterogeneity of a
region (Morris et al., 2014).

H/:—ﬁ:lpilnpi (1)

where p; is the proportion of the basal area for the ith
species relative to the total basal area of all tree species
found within a sample plot.

Remote sensing data and pre-processing

Because the timing of data acquisition has a strong influ-
ence on spectral variability (Wang, Gamon, Cavender-
Bares, et al., 2018), we selected data with the three main
considerations in mind: (1) consistency of data acquisi-
tion timing; (2) data availability and high quality (e.g.,
cloud-free) and (3) vegetation phenology. After inspecting
all images from the four satellite sensors between May
and October for the years 2016-2019, we selected the
images acquired in October, as cloud-free images were
available for all four sensors only during this period.
October imagery is also ideal because it captures leaf dis-
colouration and senescence, which are important pheno-
logical events for distinguishing individual tree species
(Grabska et al., 2020; HoScito & Lewandowska, 2019).
Landsat-8 has 9 spectral bands, which cover the visible
to shortwave infrared (SWIR) spectral regions, having a
spatial resolution of 15m (Panchromatic) to 30m
(Fig. 2). We used only the 30m spectral bands and
excluded the Cirrus and Coastal aerosol bands. We down-
loaded Landsat-8 OLI Collection 2 Level-2 surface reflec-
tance data acquired on 10 October 2019, from the United
States Geological Service (https://earthexplorer.usgs.gov/).
Further processing was undertaken to convert the pixel
value to surface reflectance using the scale factor of
0.0000275 and an offset of —0.2. The Sentinel-2 has 13
spectral bands also spanning from the visible to the SWIR
regions (Fig. 2). We used the 10 m (i.e., Blue, Green, Red,
and NIR1) and 20 m (Red-edgel, Red-edge2, Red-edge3,

X. Liu et al.

NIR2, SWIRI and SWIR2) spectral bands and excluded
the Cirrus, Water vapour and Coastal aerosol bands. Two
tiles of Sentinel-2 (TMT and UMU) level-1C images cov-
ering the whole study area captured from 12 October
2018, which were downloaded from the Copernicus Open
Access Hub of the European Space Agency (ESA) (https://
scihub.copernicus.eu/). We first performed an atmo-
spheric correction for the Sentinel-2 level-1C images
using the Sen2Cor in SNAP (ESA, 2020) and then
resampled all 20 m bands to 10 m using the cubic convo-
lution method.

High spatial resolution PlanetScope and RapidEye
imagery were acquired at 3 and 5m resolution, respec-
tively, and were provided by the Planet Labs under the
Education and Research Program (https://www.planet.
com/markets/education-and-research/). The PlanetScope
has four basic spectral bands (i.e., Blue, Green, Red and
NIR), while RapidEye includes an additional Red-edge
band (Fig. 2A). We downloaded the Level-3A products of
PlanetScope and RapidEye images acquired on 14 and 15
October 2018, respectively. Both PlanetScope and Rapi-
dEye data were geometrically, radiometrically and atmo-
spherically corrected and can therefore be used directly in
practical applications. All data were mosaiced for the
entire study region.

Based on the original spectral bands, we computed sev-
eral vegetation indices (VIs) (see Table S1.2 for more
details).

Methodology

We developed a four-phase workflow to assess the
impacts of satellite sensors, spatial and spectral resolu-
tions and spectral heterogeneity metrics on forest TSD
mapping (Fig. 3). Details on the phases are described in
Sections 3.1-3.5.

Resampling of satellite imagery

Because the four satellite images have different spatial res-
olutions, direct comparisons of these data may be prob-
lematic for accurately exploring the effects of spatial
resolution on TSD mapping due to their differences in
spectral bands and spectral ranges (Fig. 2). Other discrep-
ancies, such as the imaging time, view geometry and
image quality of the satellite data, may also affect impar-
tial comparisons. Therefore, we not only directly com-
pared the performance of different satellite images in TSD
mapping but considered the mapping capability of indi-
vidual images at various spatial resolutions. To do so, we
resampled each satellite imagery from original (fine) to
coarser spatial resolutions utilizing the nearest neighbour
resampling algorithm. As shown in Figure 3, we

466 © 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

85U8017 SUOLILLIOD 3A 181D 3|ced!dde 8y Aq pausenob a1 ol VO ‘88N JO Sa|NJ o} Akeid18UIIUO /8|1 UO (SUORIPUOD-PUR-SLUIBILIOD" 3| 1M AleIq Ul |UO//:SdNL) SUORIPUOD PUe SWe | 8U188S *[7202/80/62] Uo AriqiTauliuo A1 ‘BerseAlun-sBimpn-1ed|v Aq £8€Z8S1/200T 0T/I0p/woo" A8 M Akeiq1puluo'suoiieat|qndsz//:sdny wouy papeojumod ‘v ‘v20Z ‘S8re9s02


https://www.sciencedirect.com/topics/earth-and-planetary-sciences/surface-reflectance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/surface-reflectance
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://www.planet.com/markets/education-and-research/
https://www.planet.com/markets/education-and-research/

X. Liu et al. Multi-Sensor Based Tree Species Diversity Mapping
(A)
60m- I Coastal I: Water vapour |> Cirrus
B G R NIR
wl  fEEE b ome [l e
5 Coastal Aerosol 7 DRE3
= 20m1 E*? i fh NIR2 B swir: B s
=}
E
S 15m+
e
=
= 10m+
o
[75]
s 0 Landsat-8
I Sentinel-2
[0 RapidEye
3m+ [ PlanetScope
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Wavelength (nm)
(B) 8°19'0"E 8°192"E 8°19'3"E 8°19'5"E
Z [T s T - Z
a1 3
N 2
2 g
Z
=
foN
o
[ee)
=
Z
o
[*)}
=]
o0
<
0 0.0275 0.055 0 0.0275 0.055
km [ — T

8°19'0"E 8°19'2"E 8°I9'3'E 8°19'5"E

Figure 2. Details of the spatial and spectral resolutions of Sentinel-2, RapidEye, PlanetScope and Landsat-8 images (A) and an example sample
plot (Plot 134) on the UAV and the four satellite images (B). B, blue; R, red; G, green; RE, red-edge; NIR, near-infrared; SWIR, shortwave infrared;

PAN, panchromatic.

considered seven (3, 5, 10, 15, 20, 25 and 30 m), six (5,
10, 15, 20, 25 and 30 m), five (10, 15, 20, 25 and 30 m)
and one (30 m) spatial grains for the PlanetScope, Rapi-
dEye, Sentinel-2 and Landsat-8, respectively. We con-
ducted assessments on three frequently employed
resampling methods: nearest neighbour, bilinear interpo-
lation and cubic interpolation. None of these methods
displayed significant differences in the final result
(Appendix S2).

Whereas PlanetScope data have only four basic spectral
bands, the Sentinel-2, RapidEye and Landsat-8 data all
possess additional spectral bands (Red-edge or SWIR). To

investigate the role of these additional spectral bands on
TSD mapping, we also created a 4-band-based dataset for
Sentinel-2, RapidEye and Landsat-8 data (i.e., containing
only the four bands (Blue, Green, Red and NIR) and their
associated VIs), and compared their performance with the
all-band-based dataset (all bands and VIs) at different
spatial resolutions.

Image feature extraction

Since the reliability of the Spectral Variability Hypothesis
varies with the spectral heterogeneity metric used and
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Figure 3. Flowchart for assessing the impact of the sensors, spatial and spectral resolutions and spectral heterogeneity metrics on tree species
diversity mapping. VI, vegetation index; CV, cross-validation; anova, analysis of variance; RF-RFE, random forest-based recursive feature

elimination.

currently no consensus is reached on the preference of a
specific spectral heterogeneity metric for remotely sensed
TSD estimates (Wang, Gamon, Schweiger, et al, 2018;
Wang, Qiu, et al, 2022), we calculated seven types of
commonly used spectral heterogeneity metrics including
Rao’s Q, CV, CHV, CHA, SAM, spectral species diversity
(SSD), and texture metrics (Table 1). More information
on the calculation of each spectral heterogeneity metric
and its corresponding formula can be found in
Appendix S3. Additionally, we also included the average
(AVG) values of the base variables (i.e., bands and VIs)
corresponding to each sample plot to maximize the possi-
bility of mining all the information in favour of TSD

mapping. This would be also more conducive to an unbi-
ased assessment of the mapping potential of various satel-
lite sensors.

All spectral heterogeneity metrics were calculated for
each satellite sensor at each spatial resolution. Apart from
SSD, which is usually computed based on categorical data
(i.e., classified images), all other metrics can be calculated
directly based on spectral bands or VIs, and their higher
values indicate greater spectral diversity in theory (Gholi-
zadeh et al., 2018; Rocchini et al., 2017). In this research,
we calculated the Rao’s Q and CV for all bands and VIs
of four satellite sensors. The CHV and SSD were com-
puted wusing the first three principal components
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Table 1. Information on the image features (spectral heterogeneity and non-heterogeneity metrics) from the four satellite sensors.

Number of predictors

Metrics (Abbreviation) Base variable used for the calculation PS RE S2 L8
Spectral angle mapper (SAM) All spectral bands 1 1 1 1
Convex hull area (CHA) All spectral bands 1 1 1 1
Spectral species diversity (SSD) The first three principal components 1 1 1 1
Convex hull volume (CHV) The first three principal components 1 1 1 1
Rao’s Q Each spectral band and each VI 8 10 16 1"
Coefficient of variation (CV) Each spectral band and each VI 8 10 16 1M
Texture metrics Each spectral band and each VI 64 80 128 88
Average (AVG)® Each spectral band and each VI 8 10 16 1

PS, PlanetScope; L8, Landsat-8; RE, RapidEye; S2, Sentinel-2.
“Non-heterogeneity metrics.

transformed from multiple spectral bands. The CHA and
SAM were calculated using all spectral bands.

We calculated eight commonly used texture metrics in
a single direction (vertical 90°) based on the Gray-Level-
Co-Occurrence-Matrix method (Haralick et al., 1973) (see
Appendix S3 for more details). The texture metrics were
computed for all spectral bands and VIs of the satellite
imagery using the Co-occurrence Measures function in
the ENVI 5.5 software.

TSD modelling

The TSD modelling consists of three steps: feature selec-
tion, model construction and calibration, and accuracy
assessment. We performed a feature selection to remove
redundant and highly collinear variables. To do this, we
first calculated the importance values for all predictor var-
iables by training a random forest (RF) (Breiman, 2001)
regression model using the field data and all predictor
variables. We used the IncNodePurity metric from the RF
model to estimate feature importance. In cases where var-
iables exhibited a high degree of correlation (Pearson
r>0.8), we applied a filtering process to exclude those
with lower importance values. To further refine our vari-
able selection, we employed an RF-based recursive feature
elimination (RF-RFE) algorithm to eliminate unimportant
variables. The RF-RFE process initiated with fitting the
RF model with all the remaining predictors. Each predic-
tor variable was then ranked based on its importance
value as determined by the RF model. Subsequently, the
algorithm iteratively removed one unimportant predictor
variable at each step until only one predictor remained as
input. During each iteration, the importance of every pre-
dictor variable was recalculated using the RF model in the
context of the retained feature set. Following this, the
model was retrained, and prediction accuracy was

assessed. This evaluation procedure employed a 10-fold
cross-validation method, with each iteration repeated
three times to ensure robustness and reliability. The pre-
diction accuracy achieved in each iteration was then com-
pared, and the final set of predictors was determined
based on this comparative analysis. This feature selection
procedure was performed for all four sensors across all
spatial resolutions (Table 2 and Table S1.3).

In the second step, we applied the RF algorithm to model
TSD using the selected predictor variables from the first step
and the field data. As a non-parametric machine learning
method, RF has been widely used for various prediction
tasks (Grabska et al., 2020; Gyamfi-Ampadu et al., 2021;
Mallinis et al., 2020). We tuned the main parameter mtry
from 1 to 8 and set the ntree as default (i.e., 500). We
employed a grid search combined with a 5-fold cross-
validation method to select the optimal parameters.

In the third step, we evaluated the model performance
using a 5-fold cross-validation method. We randomly split
the field data (n=130) into five folds and conducted five
iterations. In each iteration, we used the four folds
(~ 80%) to train the RF model and the remaining 1-fold
(~20%) to calculate the coefficient of determination (R?)
and root-mean-square error (RMSE). The mean values of
R? and RMSE over the five iterations were used to quantify
the model performance. We repeated the above procedure
10 times to reflect the variability in model performances.

Statistical analysis

Based on the accuracy results from 10 replications, we
used the one-way ANOVA with Tukey multiple-
comparison to examine the statistical significance of dif-
ferences in prediction accuracy among satellite datasets.
Additionally, we calculated Pearson correlation coeffi-
cients between different spectral heterogeneity metrics

© 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 469

85U8017 SUOLILLIOD 3A 181D 3|ced!dde 8y Aq pausenob a1 ol VO ‘88N JO Sa|NJ o} Akeid18UIIUO /8|1 UO (SUORIPUOD-PUR-SLUIBILIOD" 3| 1M AleIq Ul |UO//:SdNL) SUORIPUOD PUe SWe | 8U188S *[7202/80/62] Uo AriqiTauliuo A1 ‘BerseAlun-sBimpn-1ed|v Aq £8€Z8S1/200T 0T/I0p/woo" A8 M Akeiq1puluo'suoiieat|qndsz//:sdny wouy papeojumod ‘v ‘v20Z ‘S8re9s02



Multi-Sensor Based Tree Species Diversity Mapping

X. Liu et al.

Table 2. The number of variables selected by the feature selection method for different satellite sensors at different spatial and spectral

resolutions.
) Number of selected variables at different spatial resolutions
Total number of variables

Sensor Dataset at each spatial resolution 3m 5m 10m 15m 20m 25m 30m
PlanetScope All-band 92 15 2 12 6 11 10 10
RapidEye All-band 114 - 10 9 6 15 1M 5

4-band 92 - 11 3 3 20 2 5
Sentinel-2 All-band 180 - - 1 20 8 18 15

4-band 92 - - 13 15 9 20 8
Landsat-8 All-band 125 - - - - - - 16

4-band 92 - - - - - - 15

and field-measured H' index to explore the ability of indi-
vidual spectral metrics in predicting TSD at different spa-
tial resolutions across sensors.

TSD map creation and analysis

In the final phase of the workflow, we employed the top-
performing model from each satellite sensor to make pre-
dictions for TSD across the entire study area. After gener-
ating the maps, we evaluated variations in predictions
across sensors at various geographic locations by comput-
ing the coefficient of variance for each pixel across the
four maps. Subsequently, we conducted an analysis to
examine the spatial distribution pattern of TSD in rela-
tion to forest type and elevation.

Results

Model performance

Model performance was affected by the satellite sensor,
spatial resolution and spectral band. Sentinel-2 data
(10m) obtained the highest prediction accuracy (mean
R’=0.477; mean RMSE =0.274), followed by RapidEye
(10m) (mean R?=0.346; mean RMSE =0.303) and Pla-
netScope (15m) (mean R?=0.337; mean RMSE = 0.304),
while Landsat-8 (30m) (mean R?=0.316; mean
RMSE =0.309) performed the worst on the TSD predic-
tions (Fig. 4). The all-band-based Sentinel-2 dataset per-
formed the best in all spatial resolution scenarios. In
contrast, PlanetScope data performed the worst at almost
all spatial resolutions except for a few spatial resolutions
(15, 20 and 25m) (Fig. 4). The highest accuracy for
Sentinel-2 was achieved at 10 m. However, for high spatial
resolution images RapidEye and PlanetScope, the highest
prediction accuracy was not achieved at their original spa-
tial resolution (3 and 5m), but at 15 and 10 m, respec-
tively. Furthermore, for the Sentinel-2, a significantly
higher accuracy in predicting TSD can be obtained for its
all-band-based dataset than for the 4-band-based dataset

at almost all spatial resolution scenarios (except for the
15m resolution) (P < 0.05) (Fig. 4). For RapidEye and
Landsat-8, the prediction accuracy of their all-band-based
datasets was only slightly higher than that of the 4-band-
based datasets (P > 0.05).

Variable importance

Among the spectral heterogeneity metrics, texture features
showed very high importance for all the best models (Fig. 5).
Rao’s Q played an important role in the best models for Pla-
netScope, RapidEye and Landsat but was not involved in the
best Sentinel-2 model. Rao’s Q was excluded from the best
Sentinel-2 model most likely due to its high correlation with
the texture metrics (Figure S1.1), and thus being removed
during the feature selection process. CV contributed moder-
ately to the best Sentinel-2 model but showed low impor-
tance to the other best models for PlanetScope, RapidEye
and Landsat-8. AVG also contributed to the best model for
RapidEye and Landsat-8 but did not participate in the best
model for PlanetScope and Sentinel-2. All the other spectral
heterogeneity metrics, except the CHV, which showed the
highest importance to the best Landsat-8 model (Fig. 5D),
did not contribute to the best models.

Overall, the spectral heterogeneity metrics calculated
based on the NIR bands contributed much more to the best
models than those derived from the other spectral bands
(Fig. 5). In contrast, the Red band-derived spectral heteroge-
neity metrics contributed consistently low to the best
models. Although the Red-edge band related VI (ie.,
RNDVI) contributed to both the best RapidEye and
Sentinel-2 models, its role in the Sentinel-2 model was more
important. The SWIR bands and their associated VIs con-
tributed to the best Sentinel-2 and RapidEye models, but
they were much more important for the best Landsat-8
model. The importance values of the other spectral bands
were not consistent across sensors. The blue band had high
importance for the best RapidEye model but contributed far
less to the best Seninel-2 and PlanetScope models. The green
band showed a low importance value to the best models for
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Figure 4. Prediction accuracies (R and RMSE) of RF models applied on different datasets at different spatial resolutions. All bands and 4 bands
denote the derived variables from all spectral bands and only 4 spectral bands, respectively. The mean values of R* and RMSE over 10 replicates
are shown near the boxplot. Different colours represent different sensors. Letters on the rightmost side of the boxplot show statistically significant
differences (P < 0.05) in prediction accuracy between datasets at the same spatial resolution using ANOVA with Tukey multiple-comparison tests.
Any two groups that have the same letter (e.g., a and ab) indicate no significant difference between the two groups (P> 0.05).

PlanetScope and Sentinel-2, but its associated VI contrib-
uted moderately to the best models for RapidEye and
Landsat-8. In addition to the spectral bands, the VIs, espe-
cially EVI and MSAVI, played significant roles in the best

model of the four satellite sensors.

Correlations between TSD and spectral
heterogeneity metrics

Since the spectral metrics that were based on the NIR band
were the most relevant to the H' index (Figure S1.2), we
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Figure 5. Variable importance of the best model for PlanetScope (A), RapidEye (B), Sentinel-2 (C) and Landsat-8 (D). Predictor abbreviations
follow the rule: metric _ base variable. TexT 1-8 are texture metrics mean, variation, homogeneity, contrast, dissimilarity, entropy, second

moment and correlation, respectively; CV, coefficient of variation; CHV, convex hull volume; AVG, average; RedE, red-edge.

only displayed results for the NIR band-derived texture,
Rao’s Q, CV and AVG metrics. Results demonstrated that
the Spectral Variability Hypothesis held true for all satel-
lites. However, the spectral-species diversity relationship
varied among the spectral heterogeneity metrics (Fig. 6B).
Of the eight spectral metrics, the Rao’s Q and texture met-
rics have the highest correlation with the H' index, followed
by SSD and CHA; the SAM showed the worst correlation
with the H' index. The most commonly used CV showed a
moderate correlation with the H' index. Although the CHV
performed similarly to the CHA on the PlanetScope and
RapidEye, it performed much worse on the Landsat and
Sentinel-2 images. On the other hand, the spectral-species
diversity relationship was affected by spatial resolution.
Generally, the largest correlation coefficients between spec-
tral metrics and the H' index were shown at 15 m resolu-
tion for the PlanetScope imagery and 10m for the
RapidEye and Sentinel-2 imagery (Fig. 6A). Resampling the
images to a coarser resolution did not significantly change
the correlation between the spectral AVG and the H' index.

Landscape maps of TSD

In general, all the best models tended to overestimate the
low TSD values and underestimate the high TSD values
(Fig. 7). In addition, the predictive accuracy of each
model was influenced by the forest type (Figure S1.3).
The predicted TSD values of four maps were character-
ized by a distribution of low diversity in the middle high

elevations and of high diversity in the surrounding low-
lands (Fig. 8A-D and Figure S1). Furthermore, the pre-
dicted TSD in the broad-leaved and mixed forests was
higher than that in the coniferous forests (Fig. 8A-E and
Figure S1.4A). The TSD values predicted by the four sat-
ellite images were relatively consistent, with the CV less
than 10% in most areas (Fig. 8F). The areas with large
differences in predictions were mainly located in the cen-
tral high altitude (Fig. 8F and Figure S1.4B) and the
southwest corner of the mixed forest areas (Fig. 8F).

Discussion

Spatial resolution

Our results suggest that the optimal spatial resolution for
TSD mapping is 10 or 15m. For high spatial resolution
images (i.e., PlanetScope and RapidEye), a higher spatial
resolution was not more favourable for predicting the
TSD. This is in line with the findings of other studies
(e.g., Nagendra et al., 2010; Rocchini, 2007). Many studies
have shown that high spatial resolution imagery has a rel-
atively high spectral variation within a single tree crown
because its pixels can cover various portions of the can-
opy, such as shaded foliage, sunlit foliage and even the
understory and forest floor (Fassnacht et al., 2016; Ghosh
et al., 2014; Nagendra et al., 2010). The higher spectral
variation within a tree species may lead to lower spectral
separability between tree species (Fassnacht et al., 2016).
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Figure 6. Correlations between in-situ measured Shannon-Wiener diversity indicator and the selected spectral metrics from the PlanetScope,
RapidEye, Sentinel-2 and Landsat-8 satellite images at different spatial resolutions. Boxplots (A) reflect the distribution ranges of the correlation
coefficients between the selected spectral metrics and Shannon-Wiener diversity at different spatial resolutions. The following bubble plots (B)
detail the correlation coefficients between the selected spectral metrics and Shannon-Wiener diversity at different spatial resolutions. The Rao’s Q,
texture, CV and AVG metrics for various sensors presented here are derived from their respective NIR bands. Abbreviations of different metrics

are explained in Table 1 and Appendix S3.

For PlanetScope and RapidEye, resampling the pixel size
from the original to a lower one improved the prediction
accuracy. Moreover, the correlation between species diver-
sity and spectral heterogeneity was improved with such a
resample process (Fig. 6). However, when resampled
pixels reach a certain size, the prediction accuracy
decreased. This suggests that when image spatial resolu-
tion exceeds a certain threshold the spectral signatures of
different species may become overgeneralized and the
effect of intra-pixel spectral mixing is enhanced, thus
reducing the spectral separability of different tree species
(Ghosh et al.,, 2014). Our study found that 10 or 15m is
an appropriate pixel size for TSD mapping, which is

generally in agreement with the results of some other
studies. For instance, Gyamfi-Ampadu et al. (2021) found
Sentinel-2 10m can produce the highest accuracy for
TSD predictions in an Afromontane subtropical forest.
Ghosh et al. (2014) found that 8 m is the best resolution
for tree species mapping in a temperate forest using
hyperspectral data. It is important to note that the opti-
mal spatial resolution for TSD predictions may vary
across different application scenarios. This variability may
arise from factors such as the composition of forest
stands, the diversity of species and various structural
parameters on the one hand, and the choice of remote
sensing data and sample plot sizes on the other.
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Figure 7. Scatterplots between the tree species diversity (TSD) measured from 130 sample plots and the predicted TSD of 5-folds cross-validation
from the four best models. The best prediction accuracy over the 10 repetitions for each sensor-based model is shown in the figure.

Spectral resolution

Our results showed that higher spectral resolution led to
higher mapping accuracy. However, most of the high
spatial resolution satellite images, for instance, IKONOS,
GeoEye-1, PlanetScope (DOVE-R) and SPOT-6/7, only
offer the four basic spectral bands. The lower spectral res-
olution of the PlanetScope data resulted in relatively

lower prediction accuracy than the Sentinel-2 and
RapidEye imagery. Similar results were found in several
studies of TSD estimation in other forest ecosystems
(Gyamfi-Ampadu et al, 2021; Mallinis et al, 2020;
Nagendra et al., 2010). The correlation analysis results
showed that the most relevant spectral bands for TSD
were the Red-edge and NIR bands (Figure S1.2). The
NIR and Red-edge bands-derived spectral metrics also

Figure 8. Landscape maps of Shannon-Wiener diversity from PlanetScope (A), RapidEye (B), Sentinel-2 (C) and Landsat-8 (D). (E) The forest type
map. (F) The distribution of the coefficient of variation of Shannon-Wiener diversity values predicted by the four spaceborne sensors.
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played essential roles in the best TSD models. The impor-
tance of NIR and Red-edge bands has been pointed out
in many studies of tree species classification (Bhattarai
et al.,, 2021; Grabska et al., 2020; Immitzer et al., 2019).
While numerous studies have emphasized the significance
of SWIR bands in mapping tree species (Bhattarai
et al., 2021; Hoscito & Lewandowska, 2019; Immitzer
et al., 2019), it is important to note that the correlations
between TSD and SWIR bands are comparatively lower
than those between TSD and NIR and Red-edge bands,
underscoring the significance of the latter bands.

Satellite sensor type

Our results demonstrated that the Sentinel-2 data can
better predict TSD than the other three sensors, as also
suggested by Gyamfi-Ampadu et al. (2021). We confirmed
that the moderate spatial resolution (10 m) and the spec-
tral resolution (particularly three additional Red-edge
bands) are indeed the main reason for the superior per-
formance over other satellite sensors. Moreover, we have
emphasized that Sentinel-2’s 4-band-based dataset con-
sistently outperforms other satellite imagery across spa-
tial resolutions ranging from 10 to 25m. This
observation brings to light an important consideration:
the use of very high spatial resolution imagery may
introduce a significant amount of noise into the data.
Although resampling methods can alleviate the noise
effects to some extent, they still impact the accuracy of
predictions. Furthermore, the result underscores the sig-
nificance of Sentinel-2’s unique bandwidth characteris-
tics, characterized by narrower RGB bands and broader
NIR bands, in contributing to its superior performance
relative to the other satellite sensors. This finding aligns
with similar outcomes observed when using Sentinel-2
and Landsat-8 imagery for predicting forest structure or
classifying tree species (Astola et al., 2019; Wang, Zheng,
et al., 2022).

Unlike Sentinel-2, where the images are sourced from a
single satellite, both RapidEye and PlanetScope are con-
stellations of several satellites. Therefore, subtle differences
between different satellites (e.g., the timing of image
acquisition and solar altitude angle) may also affect the
prediction performance. In contrast, although Landsat-8
also has a large swath width, the worst prediction accu-
racy of Landsat-8 is likely due to its coarse spatial resolu-
tion. However, several studies found that Landsat-8
performed equally or slightly better than high spatial res-
olution imagery (e.g., Quickbird, RapidEye and IKONOS)
for predicting TSD (Mallinis et al., 2020; Nagendra
et al., 2010; Rocchini, 2007). Notably, all these studies
compared the high spatial resolution imagery directly
with Landsat-8 data without considering the effect of
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spatial resolution. We also had the same result when the
Landsat-8 was compared with the PlanetScope at the orig-
inal spatial resolution (Figure S1.5). However, resampling
spatial resolution to a coarser resolution improved the
predictive accuracy of PlanetScope, which was even higher
than that of Landsat-8 images. Therefore, it may be nec-
essary to consider TSD predictions at multiple spatial res-
olutions for high spatial resolution images to properly
evaluate their performance.

Spectral heterogeneity metrics

Our results revealed that the spectral-species diversity
relationship was sensitive to the selection of the spectral
heterogeneity metrics as well. Although all spectral hetero-
geneity metrics were positively correlated with the H’
indicator, the differences in the spectral heterogeneity
they characterized were significant. The maximum differ-
ences in the correlation coefficients (r) with the H' index
between the different spectral heterogeneity metrics
reached 0.39, 0.45, 0.37 and 0.39 on PlanetScope, Rapi-
dEye, Sentinel-2 and Landsat-8, respectively (Fig. 6B).
These results suggest that selecting a suitable metric is
important for the validation of Spectral Variability
Hypothesis. Among the spectral heterogeneity metrics,
Rao’s Q and texture had significantly higher correlations
with the H' index than the others did. The better perfor-
mance of the Rao’s Q is due to its consideration of both
pixel abundance and pairwise distances (Rocchini
et al., 2017), which therefore may be less sensitive to
extremes and outliers caused by background effects (e.g.,
bare and sparse soil). Texture metrics have been shown to
have the ability to characterize the structural complexity
of plants and provide complementary information about
the heterogeneity of plant components (Farwell et al.,
2021; Hoffmann et al., 2022). These properties of texture
explain their high performance in predicting TSD in our
case. Moreover, unlike other spectral heterogeneity met-
rics, texture metrics can be computed in different ways
(e.g., homogeneity, variance and entropy), thus enabling
quantify spectral heterogeneity differently (Farwell et al.,
2020).

CV and CHV had a much lower correlation with the
H’ index than the Rao’s Q and texture metrics did. More-
over, their correlation coefficients also varied widely
across sensors. This implies that the CV and CHV might
be susceptible to the effects of spectral noise and illumi-
nation geometry, bare soil and dead biomass (Gholizadeh
et al.,, 2018; Rossi et al., 2021). The SAM had the worst
performance, probably due to the fact that it assigned the
same weight to each spectral band. Yet, the correlation
analysis result showed that not all spectral bands were
beneficial in predicting TSD. Compared to the CV, CHV
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and SAM, the CHA and SSD also had a higher and more
stable relationship with the H' index across different sen-
sors and spatial resolutions. The CHA comes with the
function of feature selection, which may be the reason for
its superiority over CHV and SAM (Gholizadeh
et al., 2018; Liu et al., 2023). SSD has proven to be much
less sensitive to extremes than the CV and CHV (Rossi
et al., 2021).

Although the texture and Rao’s Q showed a high corre-
lation with TSD, neither of them consistently maintained
the highest correlation coefficient with the H' index across
different satellite sensors and spatial resolutions. There-
fore, to maximize the spectral-species diversity relation-
ship, we recommend comparing and testing multiple
spectral heterogeneity metrics. Moreover, using multiple
metrics is also beneficial to avoid underestimating the
ability of a particular dataset to map TSD.

Method consideration and outlook

Our study demonstrated the potential of using spectral
diversity-based methods combined with machine learning
techniques to estimate and map large-scale TSD in a
montane temperate forest. Compared to image classifica-
tion methods, spectral diversity-based approaches do not
require consideration of the representativeness and bal-
ance of pre-classified samples of individual tree species
(Wang, Qiu, et al, 2022). They thus have better general
applicability to large areas. To date, gaps still remain in
the tree species distribution maps used to estimate TSD
in the Black Forest region. Although the first national-
scale tree species distribution map was published very
recently, it classified only seven dominant species and
used training samples from the 2012 national survey
inventory (Welle et al., 2022). Therefore, such a product
may not estimate TSD accurately and there is still an
urgent need for effective methods to accurately map TSD
to provide continuous and timely information on TSD
distribution. Our study illustrated the feasibility of opera-
tional spaceborne imagery for large-scale TSD mapping,
which is a good signal for future TSD mapping on a
national and even global scale.

To fairly compare the mapping capabilities of different
satellite images, we chose images acquired during the veg-
etation senescence period (i.e., October), when temperate
forest tree species are usually easier to distinguish by
remote sensing methods than during the peak vegetation
season (Grabska et al., 2019; Persson et al., 2018). We
achieved the highest accuracy with a mean R® of 0.477
and a mean RMSE of 0.274, which was comparable to
that of many other studies using Sentinel-2 imagery
(Hoffmann et al., 2022; Mallinis et al., 2020; Wang, Qiu,
et al.,, 2022). However, we assume that the accuracy can
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be further enhanced by applying multi-temporal analysis,
which has proven to be effective in improving prediction
accuracy in many studies (Chrysafis et al., 2020; Madon-
sela et al., 2021; Torresani et al., 2021).

Furthermore, some factors that may influence the
spectral-species diversity relationship were not taken into
consideration. For instance, previous studies have shown
that backgrounds (e.g., bare soil) can augment spectral
heterogeneity, potentially weakening the spectral-species
diversity relationship (Gholizadeh et al., 2018; Wang, Qiu,
et al.,, 2022). Therefore, future studies should take into
account these background effects, particularly when using
high spatial resolution images. Additionally, since differ-
ent species diversity indicators quantify diversity in
diverse ways, the selection of a particular indicator may
also influence the spectral-species diversity relationship
(Gyamfi-Ampadu et al,, 2021). Future studies should
explore the performance of satellite sensors in predicting
other species diversity indicators (e.g., Simpson diversity).
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