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Establishing connectivity through
microdissections of midbrain
stimulation-related neural circuits
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Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating
the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects
of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted suc-
cessfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is
not fully understood.

Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tracto-
graphy and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates
in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and
prefrontal cortex, which is implicated in the treatment of obsessive—compulsive disorder, major depressive disorder,
Alzheimer’s disease, cluster headaches and aggressive behaviours.
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Introduction

The ventral tegmental area (VTA) is a midbrain region containing a
diverse population of dopamine-, glutamate- and GABA-releasing
neurons.’ Apart from synaptic neurotransmitter release, VTA neu-
rons have demonstrated the ability to release neurotransmitters
from their cell bodies and dendrites to modulate dopamine-
dependent behaviours.? The VTA supports limbic, motor and high-
order functions, and its activity is orchestrated by reward- and
social-related stimuli.>” Over the past two decades, the VTA has
been used successfully as a deep brain stimulation (DBS) target for
neuropsychiatric diseases.® Nonetheless, neither the connections
of the human VTA nor the underlying circuits enabling the neuro-
modulatory effects of DBS of the region are fully understood.®*°

The prevalent substrate suggested to facilitate therapeutic out-
comes of VTA region DBS is the superolateral medial forebrain bun-
dle (sIMFB).”**"*® The sIMFB has been reported as a segment of the
medial forebrain bundle (MFB) interconnecting the VTA, nucleus
accumbens (NAc) and prefrontal cortex (PFC).** Human data re-
garding the sIMFB originate from diffusion MRI (dMRI) studies and
are inconsistent in terms of its connectivity.'® Animal studies report
more extensive connectivity of the MFB with regions such as globus
pallidus (GP), amygdala, hippocampal region and entorhinal cortex.™
Cross-species MFB discrepancies, in the absence of human histo-
logical evidence, have led to criticism of the sIMFB'® and have raised
questions regarding the underlying pathways facilitating VTA DBS.’

Detailed anatomical knowledge is crucial for selection of DBS
targets related to improved outcomes and precise lead place-
ment.'® Here, we used high-resolution dMRI datasets and aver-
aged templates from multiple databases of a total nx1100
healthy subjects and cadaveric brains [Duke, Massachusetts
General Hospital (MGH), Human Connectome Project (HCP) devel-
opmental, HCP healthy adult, HCP ageing] to elucidate further the
organization of circuits related to DBS of the VTA region through
high-definition fibre tractography guided by cadaver fibre microdis-
sections. We hypothesized that the tracts we characterized are im-
plicated in midbrain and diencephalic DBS. Hence, we used
Lead-DBS to analyse previously reported DBS parameters and iden-
tify DBS targets implicating the tracts we characterized.

Materials and methods

This study comprised multiple layers (Fig. 1). Initial characteriza-
tion of VTA-related fibre tracts was performed through stepwise
microdissections of cadaveric hemispheres. Fibre tractography
through a single VTA region of interest (ROI) approach was per-
formed in multiple databases guided by the results of our

microdissections. Multiple fibre-tracking studies were performed
per subject/averaged template. We used a two-ROI approach for
confirmation of our fibre-tractography results: the first ROI was
placed on the VTA and the second was used for all identified ter-
mination points. A connectivity-driven parcellation of the VTA
was performed on an averaged template generated from data of
1065 healthy adults. Lead-DBS was used to study the relationship
between the tracts we characterized anatomically and the previ-
ously used DBS targets. The fibre-microdissection study has re-
ceived approval from the Bioethics Committee of University of
Athens (protocol number: 118/21.05.2019).

Ten normal adult cadaveric formalin-fixed hemispheres were trea-
ted according to the Klingler’s preparation and subsequently stud-
ied using the white matter microdissection technique. Fibre
microdissections were performed with the use of surgical micro-
scopes (OPMI Carl Zeiss, Leica M320) and micro-neurosurgical tools
as previously described.’®® The VTA was delineated as the region
bounded by the midline medially, substantia nigra anteriorly, red
nucleus posteriorly and laterally, subthalamic nucleus superiorly
and laterally, and pons inferiorly.?®

We used the MGH single subject 100 micron MRI dataset?’ and Duke
single brainstem/diencephalon 50/200 ym MRI dataset® to delin-
eate the ROIs for the VTA, raphe nuclei, hypothalamus, mammil-
lary bodies, septal nuclei, bed nucleus of stria terminalis (BNST),
nucleus basalis of Meynert (NBM), caudate, putamen, GP and NAc,
according to the VTA atlas by Trutti et al.?° and the Allen human
brain reference atlas®® (Supplementary Figs 1 and 2). Two analyses
were conducted to evaluate the quality of the manually segmented
VTA. In the first step, a second rater manually reconstructed a VTA
ROI independently using the same manual reconstruction protocol
as the first rater. The inter-rater agreement was then assessed
using the dilated Dice score, a suitable reliability measure for small
and complex shapes, such as the VTA, as previously described.?
The dilated Dice score indicated substantial overlap between the
masks of the two raters (left =0.851; right =0.896).

In a second step, the manually reconstructed ROIs by the first
rater were compared with a previously published probabilistic atlas
of the VTA.?° The atlas was thresholded at 30% to eliminate
low-probability voxels, then binarized. The comparison revealed
agreement between the manual VTA masks and the VTA atlas, as
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Figure 1 Illustration of the methods followed in this study. Initial characterization of ventral tegmental area (VTA)-related fibre tracts and their ter-
mination points was achieved through stepwise microdissections in cadaveric hemispheres. Regions of intetest (ROIs) were reconstructed manually
for the VTA and recorded termination points. Reconstruction of the VTA tract was achieved through microdissection-guided fibre tractography in mul-
tiple databases. A connectivity-driven parcellation of the VTA was performed in an averaged template generated from data of 1065 healthy adults.
Lead-DBS was used to study the relationship between the tracts we characterized anatomically and the previously used deep brain stimulation

(DBS) targets.

evidenced by a dilated Dice score of 0.741 for the left VTA and 0.710
for the right VTA. All analyses were performed in ICBM 2009b
Nonlinear Asymmetric space,?® using the ‘nighres.statistics.seg-
mentation_statistics’ toolbox (v.1.4.0) from nighres®® in Python
(v.3.8.12).

We used DSI Studio, a proprietary software package for dMRI devel-
oped by F.-C.Y.,%® to generate fibre-tracking results. We performed
fibre tracking on a brainstem database of high-resolution diffusion-
weighted imaging datasets to trace and reconstruct fibre bundles of
the VTA using the VTA as an ROL?? Imaging data were acquired for
a total of 208 h using a total of 120 diffusion sampling directions
with a b-value of 4000s/mm? The in-plane resolution was
0.2 mm and slice thickness 0.2 mm. The b-table was checked by
an automatic quality-control routine to ensure its accuracy.”
The restricted diffusion was quantified using restricted diffusion
imaging.?® Diffusion data were reconstructed using generalized
q-sampling imaging”® with a diffusion sampling length ratio
of 0.4. A deterministic fibre-tracking algorithm®® was used. A
manually reconstructed ROI was placed at the VTA. The default
quantitative anisotropy threshold was randomly selected within
a range of 0.5-0.7. The angular threshold was randomly selected
from 15° to 90°. The step size was 0.5 mm. Tracks with length <9
or >100 mm were discarded. The tracking process terminated
when a total of 5000 seeds were reached.

We performed fibre tracking on the HCP-1065,° a human
population-averaged diffusion MRI template, which was generated

from imaging data of 1065 subjects obtained from the HCP*!
(WashU consortium) and individual data®? using DSI Studio. The
diffusion data were acquired with b-values of 1000, 2000 and
3000 s/mm?. The number of diffusion sampling directions was 90,
90 and 90, respectively. The in-plane resolution and slice thickness
were both 1.25 mm. To ensure accuracy, the b-table underwent
scrutiny through an automatic quality-control routine.”
Subsequently, the diffusion data were reconstructed in the
Montreal Neurological Institute (MNI) space using g-space diffeo-
morphic reconstruction®? to obtain the spin distribution function,*
with a diffusion sampling length ratio of 1.7. The process of quan-
tifying restricted diffusion involved the application of restricted dif-
fusion imaging techniques.?® The ROI used for fibre tracking was
the VTA, and tract reconstruction was guided by our white matter
dissection findings.

Tractography results derived from dMRI data necessitate validation
using cadaveric data, as emphasized in prior literature.>* Fibre mi-
crodissection in cadaveric hemispheres constitutes a pivotal tech-
nique for studying the anatomy of fibre tracts in the human brain
andis regarded as the ‘gold standard’ for validating dMRI findings.>*
Accordingly, we qualitatively evaluated the detailed trajectory
and connectivity of the generated tractography results in the
context of our microdissection results, as previously described.>>3¢
Throughout the fibre microdissections, meticulous stepwise ana-
tomical descriptions were recorded, accompanied by multiple
photographs at each dissection stage, enabling evaluation of the
tractography results and qualitative comparison with microdissec-
tion results on a ‘slice-by-slice’ basis. This evaluation was
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conducted in DSI Studio, wherein the detailed trajectory of the tract
in 3D space was assessed relative to adjacent structures, such as
cortical structures, white matter tracts, fissures, sulci and deep nu-
clei, along the route of the dMRI streamlines. We superimposed our
fibre-tract reconstructions on sections of the 100 ym MGH?' and
50 um Duke?” datasets, renowned for their histology-like reso-
lution, facilitating a thorough examination of tract trajectory and
comparison with histological findings. The comparisons between
generated tractography results and microdissection findings were
meticulously conducted on a ‘slice-by-slice’ basis, with direct com-
parisons facilitated by using dual screens for a more immediate and
precise analysis. Streamlines deviating from the trajectory or con-
nectivity observed in microdissections were deemed erroneous or
false positives and consequently removed (Supplementary Figs 3
and 4). Our findings were documented visually through photo-
graphs, which were then juxtaposed with the tractography results
under similar angles to facilitate a sequential sectional analysis and
comparison. The correspondence between tractography and dis-
section underwent a qualitative evaluation through sequential sec-
tional analysis by seven senior raters independently (V.A.C., L.B,,
F.-CY.,AH, MK, AML. and AK.).

Our fibre-microdissection studies revealed a consistent topological
organization pattern of VTA fibres within the VTA. Specifically, dur-
ing our medial to lateral stepwise dissections, we observed fibres
interconnecting different regions of the brain in a sequential order.
Based on the specific pattern revealed by our microdissections, we
hypothesized that the VTA is organized topologically and can be
parcellated according to the location of the fibres within the VTA.
Therefore, we isolated VTA fibre tracts according to their connect-
ivity with different brain regions and outlined the space occupied
by each tract within the VTA as previously described.?” DSI Studio
enabled us to avoid manual outlining of each fibre tract using an
automated fibre tract-to-ROI conversion function (Supplementary
Fig.5). After reconstructing each fibre tract using the HCP-1065 tem-
plate, we trimmed the streamlines of the fibre tract outside the VTA
to keep the streamlines of the fibre tract within the volume of the
VTA ROIL We then converted the trimmed fibres into a ROI. We re-
peated this process for all fibre tracts and assigned different colours
to each generated ROL. Finally, we overlayed all the generated ROIs
and visualized them in 3D.

To determine the potential clinical relevance of the tracts identified
within the VTA, we carried out a strategic analysis of targeted hot-
spots and coordinates derived from prior research on the efficacy of
DBS in the treatment of various neurological and psychiatric dis-
eases. We conducted a comprehensive literature review to identify
relevant studies published in the last 20 years. Search terms and in-
clusion criteria in terms of participants, interventions, compari-
sons, outcomes, studies (PICOS) are outlined in Supplementary
Tables 1 and 2. Specifically, we focused on the ventral tegmentum
and ventral diencephalon, which represent frequent targets
in the management of obsessive-compulsive disorder (OCD) and
major depressive disorder (MDD), cluster headache, aggression or
self-injurious behaviour and Alzheimer’s disease. Anterior commis-
sure-posterior commissure coordinates were converted into MNI
coordinates as described previously®® and visualized as electrode
trajectories in Lead-DBS.* The defined coordinates represented
the centre of the most distal contact along these trajectories. By
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following reported strategies and visualizations from the respective
source publications, we then reconstructed lead trajectories.

To evaluate the spatial relationship between lead trajectories
and the identified VTA tracts and to determine the extent of tract
recruitment at each contact, we performed stimulation volume
modelling. This involved estimating stimulation volumes in MNI
space, using a modified version of the SimBio/Fieldtrip pipeline as
introduced by Vorwerk et al.** and implemented in Lead-DBS
v.2.** Through finite element modelling, we solved the Laplace
equation within a discretized domain represented by a four-
compartment mesh, including grey matter, white matter and the
metallic and insulating parts of the electrode. Binary stimulation
volumes were then generated by applying a heuristic E-field thresh-
old of 0.2 V/mm, following the method proposed by Astrém et al.*
This approach allowed us to model the dose-response relationship
between stimulation amplitude and extent of fibre recruitment for
each contact in a monopolar manner, using stimulation currents
from 1.0 to 10.0 mA. For each stimulation volume, we calculated
the percentage overlap with each identified tract of interest to iden-
tify the contact associated with maximal overage of each tract. The
dose-response relationship at the optimal contact of each lead was
then plotted for each tract.

Results

Following the resection of the ependymal and subependymal layers
lining the intraventricular surface of the third ventricle (Fig. 2A), fi-
bres running between the VTA and basal forebrain were visualized
medial to the mammillothalamic tract (MTT). These fibres fan out
as they reach the post-commissural fornix. Some of the fibres curve
superiorly either to blend with the post-commissural fornix or to
continue towards the septal nuclei, while the inferior-most fibres
were visualized to curve inferiorly towards the medial hypothal-
amus (Fig. 2). Following the dissection process laterally, the MTT
can be visualized, and fibres running between the VTA and septal
region are recorded lateral to the MTT (Supplementary Fig. 6).
These fibres fan out anterior to the MTT. Some of the fibres curve
superiorly and either blend with the post-commissural fornix or
enter the region of substantia innominata/NBM, while the inferior-
most fibres were visualized to curve inferiorly towards the lateral
hypothalamus (Supplementary Fig. 6). Further stepwise dissection
reveals the ventral mammillotegmental tract interconnecting the
VTA with the mammillary body (Supplementary Fig. 7). Resection
of the ventral mammillotegmental tract, MTT and fornix exposes
a group of fibres interconnecting the VTA with the BNST and NBM
(Fig. 3). Fibres interconnecting the VTA with the median raphe nu-
clei were also recorded during this step. Removal of these fibres ex-
poses the hypothalamic nuclei and the paraterminal gyrus. At this
point, no more fibres are observed to run in an anteroposterior dir-
ection, i.e. connecting areas of the basal forebrain with the VTA.
Stepwise dissection of fibres from the VTA reveals fibres intercon-
necting the VTA with the anterior insula, hippocampus, dorsal den-
tate gyrus, amygdala and entorhinal cortex (Fig. 4). Following
resection of the optic tract, hypothalamus, anterior commissure,
ansa peduncularis, diagonal band, paraterminal gyrus, cingulate
cortex, prefrontal cortex, underlying u-fibres, callosal radiations
(forceps minor) and cingulum fibres, the shell of the ventral stri-
atum is exposed along with fibres of the anterior limb of the intern-
al capsule (ALIC) penetrating the shell of the ventral striatum, fibres
of the inferior occipitofrontal fasciculus and fibres of the uncinate
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Figure 2 VTA fibres running medial to the mammillothalamic tract. (A) Medial view of a left hemisphere. The ependymal/subependymal layer has
been removed to expose fibres running between the VTA, medial hypothalamus, fornix and septal region. (B) Magnified view of the area de-
picting the trajectory of the fibres highlighted in red and mammillothalamic fibres highlighted in pale blue. (C) Coronal section at the level
of the termination points depicting septal nuclei highlighted in red. (D) Tractography depicting the VTA fibres in red and mammillothalamic
tract in pale blue. (E) Brainstem ex vivo tractography depicting VTA fibres. (F) Coronal section depicting fibres of the VTA within the septal nu-

clei. VTA =ventral tegmental area.

fascicle. Meticulous resection of the shell of the ventral striatum and
cortical microdissection along the medial part of the head of caudate
nucleus (CN) reveals a group of fibres running between the PFC and
thalamus, along with fibres running between the VTA and basal gan-
glia, specifically the GP, putamen and NAc (Fig. 5). Resection of these
fibres, along with further cortical microdissection of the CN and NAc,
reveals the anterior thalamic radiations and fibres between the VTA
and PFC contributing to the ALIC (Fig. 6). Resection of these fibres re-
veals more anterior thalamic radiations and fibres of the VTA ter-
minating in Brodmann area (BA) 10, 11 and 47/12. At this level,
further isolation of VTA fibres was not possible owing to the very
dense criss-crossing pattern of fibres at the ALIC level.

Tractography

We successfully reconstructed connections of the VTA through fi-
bre tractography. Our extracted results were consistent with the
structure, trajectory and connectivity of VTA fibres recorded during
our microdissections. The VTA was connected to the raphe nuclei,
hypothalamus, mammillary bodies, fornix septal nuclei, BNST,
NBM, putamen, GP, insula, amygdala, hippocampus, dentate gyrus,
NAc, entorhinal cortex, BA10, BA11 and BA12. Our connectivity-
derived parcellation approach allowed us successfully to convert
the fibre tracts within the VTA into ROIs and overlay them, thus cre-
ating a map representing the volume of each fibre tract within the
VTA with a different colour (Supplementary Fig. 8). Fibres intercon-
necting the basal forebrain occupied the medial, anterior and su-
perior regions of the VTA, fibres interconnecting the PFC, NAc and
basal ganglia occupied lateral inferior and posterior regions of the

VTA, and fibres interconnecting the insula and temporal lobe re-
gions resided between them (Supplementary Fig. 8).

Analysis of deep brain stimulation targets

We identified 10 representative clinical studies that met our
inclusion criteria.**>? These studies provided target coordinates,
electrode trajectories or hotspots either in MNI space or relative to
the anterior commissure-posterior commissure line. Moreover,
the selected studies featured cohorts comprising >10 patients to en-
sure an adequate sample size. We successfully reconstructed elec-
trode trajectories and our characterized VTA tracts in MNI space
by using our fibre-tractography data and previously reported DBS
data (Fig. 7). Reconstruction of the lead trajectories and character-
ized tracts allowed us to evaluate the dose-response relationship
between stimulation amplitude and fibre recruitment (Fig. 8).

In terms of stimulation outcomes, all identified tracts were
modulated by leads implanted within the ventral tegmentum/ven-
tral diencephalon. Among these, the VTA-BF, VTA-NAc and
VTA-PFC tracts showed the most extensive coverage. Notably, the
VTA-NAc demonstrated the most efficient recruitment, character-
ized by the highest ratio of percentage tract overlap to stimulation
amplitude. Investigation of lead trajectories revealed that the tar-
gets determined by Nowacki et al.>?> (VTA stimulation in chronic
cluster headache), Meyer et al.** (sIMFB stimulation in OCD),
Jiménez et al.*’ [stimulation of the inferior thalamic peduncle
(ithp) in OCD], Greenberg et al.** (NAc DBS in OCD), and Coenen
et al.>* (sIMFB DBS in MDD and OCD) exhibited the most compre-
hensive coverage, recruiting streamlines associated with all
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Figure 3 VTA fibres implicating raphe nuclei, NBM and BNST. (A) Medial view of a left hemisphere. The ventral mammillotegmental tract and mam-
millary body have been removed, exposing fibres running between the VTA, raphe nuclei, NBM and BNST. (B) Magnified view of the area, depicting the
fibres highlighted in red. (C) Coronal section at the level of the termination point of VTA and stria terminalis fibres, depicting the BNST bounded by the
anterior commissure inferiorly, the globus pallidus internus laterally, lateral ventricle medially and caudate nucleus superiorly. (D) Tractography
showing VTA fibres in red. (E) Brainstem ex vivo tractography. (F) Coronal section, revealing tractography fibres within the BNST. BNST =bed nucleus
of stria terminalis; NBM = nucleus basalis of Meynert; VTA = ventral tegmental area.

investigated fibre tracts. The targeting approach defined by
Nowacki et al.>? yielded the most potent recruitment of VTA tracts
among the evaluated implantations sited, indicating a significant
interaction of electrical stimulation with the dopamine system.
This was followed by lead trajectories reconstructed from the stud-
ies of Meyer et al.*® and Jiménez et al.,*” underscoring the recruit-
ment of common fibre tracts across variable implantation sites.

Discussion

Using both cadaveric microdissection and in vivo fibre-tractography
approaches, the VTA was consistently found to be interconnected
with the raphe nuclei, hypothalamus, mammillary bodies, fornix, sep-
tal nuclei, BNST, NBM, the caudate, the putamen, GP, extended amyg-
dala, insula, amygdala, hippocampus, dorsal dentate gyrus, NAc,
entorhinal cortex and PFC. The VTA is an integral hub of an extended
network including circuits that facilitate memory consolidation® and
global cognitive recovery following stroke®* and are implicated in the
pathophysiology of Parkinson’s disease, MDD, post-traumatic stress
disorder, schizophrenia, neurocognitive symptoms in epilepsy and af-
fective behaviours.>>>° Qur VTA parcellation informs personalized
DBS approaches, aiming at symptom relief and prevention of side ef-
fects by targeting or avoiding specific connections. DBS of the VTA re-
gion hasbeen performed for cluster headaches, OCD, MDD, aggressive
behaviour, atypical facial pain and anorexia nervosa.? Preclinical stud-
ies have proposed the VTA as a potential DBS target for seizure con-
trol.°>¢? Our findings provide a structural substrate apprising DBS in
the VTAregion based on direct human structural data. By reconstruct-
ing reported lead trajectories, we were able to evaluate the

relationship between patient-specific DBS targets and the identified
VTA tracts. Although clinical conclusions cannot be drawn, this quali-
tative assessment allowed us to appreciate that the tracts we charac-
terized are modulated during DBS for OCD, MDD, Alzheimer’s disease,
aggression and cluster headaches.

Tractography studies can reveal altered brain connectivity when
compared with normal circuits and are the principal method for the
identification of neural circuits implicated in DBS targets.®®%
However, tractography is prone to false positives, and results should
be validated through cadaveric studies.?* Our fibre-microdissection-
guided results contribute to the exploration of VTA-related neural cir-
cuits and altered connectivity by aiding in the differentiation of po-
tential false-positive connections. Moreover, our findings can
inform dMRI studies and help to guide tractography-guided DBS.
This approach is key to identify both treatment-related and side
effect-related circuits to enhance preoperative DBS planning and im-
prove postoperative outcomes.** Normative connectomes constitute
the main source for characterizing these circuits; nevertheless, they
are prone to false-positive connections.®*-** Structural knowledge
of the normal circuitry can facilitate individualized target selection
according to individual symptoms and imaging characteristics.®*
These circuits could be leveraged to help tailor DBS in patients
through open-loop and closed-loop approaches. Symptom- and
biomarker-specific approaches can be implemented through differ-
ential tractography for the identification of fibre tracts that are altered
in patients and targeting of fibre tracts that are related to individual
symptoms.®® Accordingly, knowledge of VTA-related circuits could
help to optimize detailed lead placement in closed-loop approaches
and the selection of stimulation parameters that could exploit
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Figure 4 Temporo-insular fibres. (A) Medial view of a left hemisphere, showing fibres running between the VTA and insula highlighted in red.
(B) Tractography, showing fibres running between the VTA and insula. (C) Coronal section at the level of the termination points, depicting the anterior
insula. (D) Tractography, coronal section, revealing fibres within the insula. (E) Medial view of a left hemisphere following removal of insular fibres.
Fibres running between the VTA and hippocampal region can be visualized arching laterally and posteriorly. (F) Tractography, showing fibres running
between VTA and hippocampal area in red. (G) Coronal section at the level of the termination points, depicting the hippocampal area. (H) Tractography;
coronal section, revealing fibres within the hippocampal area. (I) Medial view of a left hemisphere, showing fibres running between the VTA and amyg-
dala/entorhinal cortex. (J) Tractography, showing the trajectory of the fibres between the amygdala/entorhinal cortex and VTA. (K) Coronal section of
the contralateral hemisphere at the level of the termination points, depicting amygdala and entorhinal cortex. (L) Coronal section tractography, reveal-

ing VTA fibres within the amygdala. VTA = ventral tegmental area.

symptom-specific networks. Our DBS hotspot analysis results al-
lowed us to assess the anatomical relationship between VTA tracts
and established DBS targets, suggesting that this network is indeed
modulated during DBS for OCD, MDD, Alzheimer’s disease, cluster
headaches and aggressive behaviours. Recent intracranial recording
studies have sought to identify neurophysiological characteristics in
patients with psychiatric disorders.®® Our findings can inform poten-
tial targets for intracranial recordings and facilitate sampling of rele-
vant circuits.

Efferent fibres of the raphe nuclei synapsing within the VTA com-
prise the main afferent neuron populations synapsing with

GABA- and glutamate-releasing VTA neurons and are involved in
aversive stimuli-related outcomes.®® The role of serotonin and the
raphe nuclei has been established in the pathophysiology of
MDD.%”:%® The therapeutic effects of VTA DBS in patients with
MDD have been attributed to fibres interconnecting the VTA, NAc
and PFC.' Here, we provide human evidence demonstrating that
stimulation of the VTA implicates a direct pathway between the
VTA and raphe nuclei that might facilitate the therapeutic effects
of DBS for MDD. Preclinical studies have demonstrated that VTA
neurons modulate the activity of dorsal raphe nucleus serotonergic
neurons.®® This direct connection is likely to explain the increase of
serotonin levels measured within the PFC following MFB self-
stimulation in a preclinical model of induced depression.”® Given
that raphe nuclei are involved in the pathophysiology of
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Figure 5 GP and NAc. (A) Medial view of a left hemisphere, showing fibres running between the VTA and basal ganglia region. (B) Coronal section at the
level of the anterior termination points, showing the NAc. (C) Coronal section at the level of the posterior termination points, showing the GP.
(D) Tractography, showing the trajectory of the fibres running between the VTA and NAc. (E) Tractography, coronal section, depicting VTA fibres within
the NAc. (F) Tractography, coronal section, depicting VTA fibres within the GP. GP = globus pallidus; NAc = nucleus accumbens; sIMFB = superolateral

medial forebrain bundle; VTA = ventral tegmental area.

Alzheimer’s disease, this pathway might have further clinical im-
plications in the diagnosis and treatment of patients with
Alzheimer’s disease.”’ The strong correlation of Parkinson’s dis-
ease with raphe nuclei’?”? and the robust degeneration localized
within regions we found connected to the VTA, namely the ventral
striatum, CN, GP, insula and PFC,”* suggests that the VTA might
present a promising stimulation target for Parkinson’s disease.
The distinct connections we identified might facilitate early diag-
nosis and symptom-specific phenotyping of Parkinson’s disease.

Hypothalamus and basal forebrain

Projections of the lateral hypothalamus to the VTA have been stud-
ied comprehensively for over a half-century owing to their signifi-
cance in appetitive, reward and goal-directed behaviour.”>”’’
Notably, this pathway interconnecting the hypothalamus
and VTA has been described as the MFB in animals and
humans.”®#" According to animal studies, this pathway carries
VTA-originating axons that co-release glutamate and GABA, in
addition to GABAergic hypothalamic neurons.®® These connections
are very likely to contribute to autonomic cardiac side effects re-
lated to DBS of the VTA region.®? Although stimulation of the hypo-
thalamic region has been suggested to modulate the sIMFB,®* the
effects of hypothalamic modulation through VTA stimulation
have not been assessed thoroughly. We found that VTA fibres ter-
minating in the hypothalamus would consistently occupy medial
and superior regions within the VTA (Fig. 8). Electrode placement

in more posterolateral locations within the VTA might minimize
stimulation of these fibres; therefore, reducing autonomic-related
side effects. Efferents of the lateral hypothalamus to the VTA in-
hibit GABA-releasing VTA neurons, resulting in increased dopa-
minergic NAc activity.®® Animal studies have shown that
hypothalamus-pituitary—adrenal axis alterations related to chronic
stress modulate dopamine transmission through the VTA.#
Aberrant stress responses are a common component of OCD and
MDD, conditions which have been treated successfully with VTA
DBS.® Recent preclinical studies suggest that neuromodulation of
VTA neurons involved in hypothalamic circuitry might provide
treatment of anxiety disorders.®® Animal studies report connec-
tions of the VTA with the medial hypothalamus via the MFB.%%8
The neural circuit involving the VTA and medial hypothalamus
has further implications in the regulation of progesterone and adre-
nocorticotrophic hormone®°° and plays a key role in aggression.’*
VTA DBS has been performed successfully for aggressiveness.® Our
findings indicate that the VTA is connected to the medial hypothal-
amus; therefore, these fibre tracts might mitigate the therapeutic
effects of VTA DBS for aggressiveness.

Although animal studies have characterized two parallel path-
ways interconnecting the mammillary body to the dorsal and ven-
tral tegmentum,® the connectivity of the mammillotegmental
tract in humans has not been clarified. Our findings demonstrate
that fibres interconnect the VTA with the mammillary body
through distinct a ventral mammillotegmental tract, which is sepa-
rated from the mammillotegmental tract by the red nucleus and

20z Jaquiajdag 90 uo Jesn Bianqiai AusioAun Aq Z9€¥89./€80€/6/Lt | /910E/UleIq/woo"dno dlWspede//:sd)ly Woij papeojumoq



Midbrain stimulation-related circuits

BRAIN 2024: 147; 3083-3098 | 3091

B&rminalis

P T halamic

ons

nate
asciculus

Figure 6 VTA PFC fibres (BA10, BA11 and BA47/12). Medial view of a left hemisphere, depicting fibres running within the ALIC between the VTA and
BA10. Top left inset: magnification of the fibres implicating the VTA highlighted in red. Bottom right inset: tractography, showing fibres between the VTA
and Brodmann areas 10, 11 and 47/12. ALIC = anterior limb of the internal capsule; BA = Brodmann area; PFC = prefrontal cortex; sl-MFB = superolateral

medial forebrain bundle; VTA = ventral tegmental area.

adjacent structures (Supplementary Fig. 4). In animals, the mam-
millary body and VTA are interconnected through the MFB.*9%%
This ventral pathway is essential in supporting memory.* Hence,
the ventral mammillotegmental tract might be implicated in
Korsakoff’s syndrome and other dementias as a biomarker for early
diagnosis or prediction for DBS response. The pathway involving
the VTA and fornix has important implications in memory and
modulates the activity of neurons interconnecting the VTA and
PFC.°®” The therapeutic effects of fornix DBS for Alzheimer’s dis-
ease have been attributed, in part, to indirect connections of the
fornix to the VTA through the connectivity of the mammillary
body and VTA.?® Here, we provide data showing the direct connect-
ivity of the fornix and VTA, and demonstrate that the VTA is direct-
ly connected to areas that have been targeted successfully for
Alzheimer’s disease with DBS, such as the entorhinal cortex, ven-
tral striatum and NBM.?® Thus, the VTA might offer a more potent
DBS target modulating multiple regions involved in the patho-
physiology of various dementias.

The bidirectional pathway interconnecting septal nuclei with
the VTA modulates the activity of both the VTA and septal nu-
clei.® In the rat, this pathway contains a population of orexin neu-
rons.’® More recent studies have shown that glutamate-releasing
VTA efferents to the septal nuclei modulate anxiety behaviours.’*?
Moreover, dopamine-releasing VTA efferents to the septal nuclei
have an inhibitory effect on GABA neurons and modulate aggres-
sive behaviours.’®® Modulation of the connections we character-
ized between VTA and septal nuclei might mitigate aggressive
behaviours following VTA DBS.® The pathway interconnecting the
VTA and NBM carries cholinergic afferents to dopaminergic VTA
neurons, afferents to GABAergic VTA neurons, and afferents to glu-
tamatergic NBM neurons, involving motor, stress and depressive

behaviours.'*% Although the VTA and the NBM exhibit abnormal
function in Parkinson’s disease and Alzheimer’s disease, this path-
way has not been identified in the human brain.'®”-'% Therefore,
further studies should elucidate its role as a potential DBS target
or biomarker for early diagnosis of Parkinson’s disease and
Alzheimer’s disease. Fibres interconnecting the VTA with BNST
carry GABAergic BNST efferent neurons and are modulated by
chronic stress, chronic pain and alcohol withdrawl. **?-*?
Additionally, the VTA-BNST circuit regulates reward, anxiety, pun-
ishment and maladaptive behaviours.’*? The BNST has been used
successfully as a DBS target for OCD and MDD.>'"* This raises the
question of whether therapeutic effects of BNST and VTA DBS for
affective disorders are both facilitated through the pathway we
identified. Our findings can help the symptom/side-effect charac-
terization of this tract.

We found robust connections in the hippocampus/dorsal dentate
gyrus, amygdala and entorhinal cortex. Clinical data demonstrate
elevated mesial temporal lobe metabolism in treatment-resistant
depression patients who have undergone MFB DBS in the VTA re-
gion, thereby supporting the connectivity of these regions.'** The
structural connectivity between the hippocampus and VTA has
been reported recently in humans; nevertheless, the authors used
only indirect dMRI data to study this connection and did not report
data regarding the anatomy, trajectory or directionality of the
tract.'™ VTA neurons connecting the entorhinal cortex encode for
memory and learning.’'® The connectivity between the VTA and
hippocampus supports memory and plays a major role in the
pathophysiology of Alzheimer's disease.”"'*® Fibre tracts
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Figure 7 Overview of VTA-related fibre tracts and DBS targets analysed. Overview of DBS targets,*>> indications and electrode placements relative to

VTA tracts that we characterized. Fibre tracts are denoted as follows: VTA temp, fibre tracts interconnecting the VTA with the insula, hippocampus,
dorsal dentate gyrus, amygdala and entorhinal cortex; VTA-BF, fibre tracts interconnecting VTA with hypothalamus, fornix (fx), septal region, nucleus
basalis of Meynert, mammillary body, raphe nuclei and bed nucleus of stria terminalis; VTA-PFC, VTA-PFC fibres; VTA-ExAmg, fibre tracts intercon-
necting the VTA with the GP and extended amygdala; and VTA-NAc, fibre tracts interconnecting the VTA with the nucleus accumbens (NAc). DBS
=deep brain stimulation; ithp = inferior thalamic peduncle; MDD = major depressive disorder; OCD = obsessive-compulsive disorder; PHA = posterior
hypothalamus; VC/VS = ventral capsule/ventral striatum; VTA = ventral tegmental area.

interconnecting the amygdala and VTA regulate anxiety-related
behaviours,'*® underscoring the potential implications of the tract
we report as an efficacious stimulation target and biomarker for
early diagnosis of anxiety-related disorders.

The insula supports sensory, emotional and higher-order pro-
cessing."®° It is implicated in psychiatric disorders and has been
suggested as a promising brain stimulation target for addiction.**
Dopamine and 5-hydroxytryptamine type 1a receptors are overex-
pressed in the insula.’®® Optogenetic stimulation of the VTA in-
duces dopamine release in the insula and modulates memory.'*?
Administration of renin-angiotensin system-targeting drugs in hu-
mans attenuates the functional connectivity between the VTA and
insula in response to social punishment, suggesting that renin-
angiotensin system-targeting drugs reduce the aversive emotional
effect of social punishment feedback on the insula.'** The role of
the insula in the pathophysiology of addiction and its relationship
to the VTA is supported further by a recent study reporting lower
fractional anisotropy values in insula-NAc and VTA-NAc fibres in
long-term heroin abstinence subjects.’?® The functional connectiv-
ity between the VTA and insula plays a key role in a network impli-
cating the PFC, anterior insula, amygdala and VTA, which is
activated during self-efficacy belief formation.**® Maladaptive self-
efficacy beliefs leading to feelings of worthlessness constitute a
phenotypic hallmark in MDD.'” MDD patients exhibit attenuated
functional connectivity between the VTA and insula during reward
anticipation compared with healthy individuals.**® Chronic alcohol
exposure significantly alters the structural and functional

connectivity between insula and VTA." In a recent study investi-
gating neural circuits implicated in prosocial behaviour, the VTA
and insula were involved in making choices for oneself and not in
choices that benefit others, underscoring the unique role of this
pathway in higher-order function.'*® As such, abnormal connectiv-
ity between the insula and VTA might be related to self-belief and
social dysfunction symptoms of psychiatric disease, and VTA DBS
targeting the pathway connecting the VTA to the insula might spe-
cifically attenuate these symptoms.

Globus pallidus and extended amygdala

GP DBS has been reported to alleviate symptoms for patients with
OCD.*#'*! Our analysis indicated that four different DBS targets
(sIMFB, ithp, BNST and GP internus) successfully used for the treat-
ment of OCD modulate the same set of fibre tracts interconnecting
the VTA with the GP and extended amygdala (Fig. 8). This pathway
was recently shown to be implicated in anxiety associated with co-
caine withdrawal."*? The extended amygdala plays a significant role
in processes related to fear, anxiety and addiction'** and receives in-
puts from the rostral zona incerta,*** which was recently suggested as
a potential DBS target for OCD. DBS directly to the extended amygdala
has improved emotional, social and cognitive symptoms of autism
and self-injury.’* Future studies on patients with Parkinson’s disease
should explore whether VTA DBS or tractography-guided DBS of the
fibres interconnecting the VTA with the GP might offer alleviation
of cognitive and affective symptoms with fewer side effects.
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Figure 8 Relationship between VTA tracts and established DBS targets. (A) Fibre tracts interconnecting the VTA with the insula, hippocampus, dorsal
dentate gyrus, amygdala and entorhinal cortex (VTA-temp) exhibited the highest ratio of percentage tract overlap to stimulation amplitude with ithp,
sIMFB, fornix and GPi DBS targets.*’**%! (B) Fibre tracts interconnecting the VTA with the hypothalamus, fornix, septal region, nucleus basalis of
Meynert, mammillary body, raphe nuclei and bed nucleus of stria terminalis (VTA-BF) exhibited the highest ratio of percentage tract overlap to stimu-
lation amplitude with ithp, SIMFB, fornix and NAc DBS targets.***#>>1 (C) Fibre tracts interconnecting the VTA with the BA10, BA11 and BA47/12
(VTA-PFC) exhibited the highest ratio of percentage tract overlap to stimulation amplitude with VTA, sIMFB and posterior hypothalamus DBS
targets.*>°9>2 (D) Fibre tracts interconnecting the VTA with the GP and extended amygdala (VTA-ExAmg) exhibited the highest ratio of percentage tract
overlap to stimulation amplitude with fornix, GPi and NAc DBS targets.***¥*%°! (E) Fibre tracts interconnecting the VTA with the NAc (VTA-NACc) ex-
hibited the highest ratio of percentage tract overlap to stimulation amplitude with BNST, NAc, ithp and sIMFB DBS targets.***¢*">! BNST = bed nucleus
of stria terminalis; DBS = deep brain stimulation; GPi = globus pallidus internus; ithp = inferior thalamic peduncle; NAc = nucleus accumbens; sSIMFB =
superolateral medial forebrain bundle; VTA = ventral tegmental area.
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Connections between the VTA and NAc are intricately related to
the VTA-hypothalamus circuit, a network which is modulated by lep-
tin and supports reward feedingbehaviours.*® Moreover, this connec-
tions plays a key role in chronic emotional stress and anxiety-related
behaviours.’ In humans, the fibre tract interconnecting the VTA
with the NAc has been associated with impulsivity.’*® VTA efferents
to the PFC are modulated by chronic stress, which induces different
structural and functional sex-dependent changes.*

The connectivity between the VTA and PFC is facilitated by a fi-
bre tract that runs in the ALIC, replicated by many previous imaging
studies, that has been named the sIMFB.**° The sIMFB has been a
matter of controversy regarding its connectivity and its name.®
Arguments regarding inappropriate nomencalcture are based on
animal studies that refer to the internal capsule and MFB as ana-
tomically distinct structures.” Notably, animal studies have re-
ported a tight anatomical relationship or overlap between the
MFB and internal capsule.**"**> However, our study does not aim
to resolve any nomenclature-related controversies. Our results re-
garding the trajectory and structure of the tract connecting the
PFC with VTA are aligned with previous descriptions of the
sIMFB.™° Our study defined a detailed 3D reconstruction of the
tract, supporting previous imaging data through white matter mi-
crodissection evidence, for the first time, and validating our micro-
dissection results through a two-ROI fibre-tractography approach.
PFC glutamatergic efferents running within the sIMFB have recent-
ly been reported in a large non-human primate study.'** DBS of the
sIMFB has been associated with high treatment response rates in
patients with MDD and OCD.** Structural alterations of the
sIMFB have been associated with alcohol use disorder, bipolar dis-
order, MDD and psychosis disorders.*¢42

Despite the thorough investigation conducted in this study, the in-
herent limitations of both Klingler’s technique and tractography
should be always taken into consideration. Both methodologies
are susceptible to yielding false negatives, particularly in regions
characterized by high white matter density and an abundance of
kissing and crossing fibres.’®3¢ Tractography is prone to false-
positive results and should be validated by histological data.**
However, the comparison between histological and imaging data
can only be achieved qualitatively. Despite these challenges,
Klingler’s technique remains the sole available approach for exam-
ining fibre tracts directly within the human brain.?* Future studies
should focus on the technological developments that will allow the
quantitative comparison between histological and imaging data in
a common space. Moreover, our connectivity-derived parcellation
of the VTA is based on delineating the volumes occupied by the dif-
ferent fibre tracts within the VTA using an averaged template cre-
ated from 1065 healthy subjects. Consequently, our findings can
only suggest a generalized topology template of the fibre-tract or-
ganization within the VTA. However, it is crucial to consider the in-
dividual imaging characteristics of each patient meticulously in the
clinical setting and during tractography-guided neuromodulation
procedures. Furthermore, our study encountered challenges in dis-
cerning fibres within the internal capsule and potentially failed to
capture connections with other regions of the human brain.
Additionally, the distinction of fibres connecting the VTA with glo-
bus pallidus internus, globus pallidus externus and external amyg-
dala proved elusive. Moreover, it is important to note that the

G. P. Skandalakis et al.

fibre-microdissection technique used herein is unable to distin-
guish the origin versus termination of a tract.

Conclusions

Our microdissection and tractography findings converge, indicat-
ing that the VTA is connected to the raphe nuclei, hypothalamus,
mammillary bodies, fornix, septal nuclei, NBST, NBM, caudate,
putamen, GP, insula, amygdala, dorsal hippocampus/dentate
gyrus, NAc, entorhinal cortex, BA10, BA11 and BA12. The VTAis in-
tegral to limbic, striatal, basal forebrain and prefrontal circuits. Our
findings demonstrate that the VTA is an integral hub of an extended
network involving the serotonergic pontine nuclei, limbic system, ba-
sal forebrain, basal ganglia and PFC, which modulates action, reward,
memory, drug-seeking, addiction, aggression and anxiety-related be-
haviours. Accordingly, the VTA offers a promising sophisticated DBS
target for neuropsychiatric disorders such as Korsakoff syndrome,
Parkinson’s disease and Alzheimer’s disease and should be assessed
through future preclinical studies. Connections of the VTA exhibit a
topographical organization within the VTA according to their con-
nectivity with: (i) the hypothalamus and basal forebrain; (ii) insula
and temporal lobe; and (iii) NAc and PFC.
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