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A B S T R A C T   

Background and Purpose: In patients requiring prophylactic cranial irradiation (PCI) or whole-brain radiotherapy 
(WBRT) for brain metastases (BMs), hippocampal avoidance (HA) has been shown to preserve neurocognitive 
function and quality of life. Here, we aim to estimate the incidence of hippocampal and perihippocampal BMs 
and the subsequent risk of local undertreatment in patients undergoing hippocampal sparing radiotherapy. 
Materials and Methods: MEDLINE, Embase, and Scopus were searched with the terms “Hippocampus”, “Brain 
Neoplasms”, and related terms. Trials reporting on the incidence of hippocampal and/or perihippocampal BMs or 
hippocampal failure rate after PCI or WBRT were included. 
Results: Forty records were included, encompassing a total of 5,374 patients with over 32,570 BMs. Most trials 
employed a 5 mm margin to define the HA zone. In trials reporting on BM incidence, 4.4 % (range 0 − 27 %) and 
9.2 % (3 − 41 %) of patients had hippocampal and perihippocampal BMs, respectively. The most common risk 
factor for hippocampal BMs was the total number of BMs. The reported failure rate within the HA zone after HA- 
PCI or HA-WBRT was 4.5 % (0 − 13 %), salvageable with radiosurgery in most cases. SCLC histology was not 
associated with a higher risk of hippocampal failure (OR = 2.49; p = 0.23). In trials comparing with a con
ventional (non-HA) PCI or WBRT group, HA did not increase the hippocampal failure rate (OR = 1.90; p = 0.17). 
Conclusion: The overall incidence of hippocampal and perihippocampal BMs is considerably low, with a subse
quent low risk of local undertreatment following HA-PCI or HA-WBRT. In patients without involvement, the 
hippocampus should be spared to preserve neurocognitive function and quality of life.   

Introduction 

Recent advancements in systemic therapies have led to improved 
overall survival in cancer patients [1]. Along with wider availability of 
improved high-resolution imaging techniques, this has resulted in an 
increased relative diagnostic incidence of brain metastases (BMs) [2]. 

Depending on the primary tumour histology (e.g. small-cell lung cancer 
[SCLC]), BM rates can rise up to 80 % over the course of the disease, 
even justifying prophylactic cranial irradiation (PCI) in most cases 
[3–5]. Patients developing BMs often require whole-brain radiotherapy 
(WBRT) to prevent further neurological morbidity and mortality. 
Several trials have demonstrated significant neurocognitive impairment 
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following PCI or WBRT, linked particularly to radiation-induced injury 
of the hippocampus and damage to the radiosensitive progenitor cells in 
the dentate gyrus, hampering hippocampal neurogenesis [6–8]. A 
feasible method to preserve neurocognitive function is employing hip
pocampal avoidance (HA) PCI or WBRT, achieving > 80 % mean dose 
reduction to the HA zone (most commonly defined as a 5 mm margin 
around the hippocampus) using linac-based intensity-modulated radio
therapy, while maintaining adequate target coverage and homogeneity 
[9–11]. In randomised trials, this conformal avoidance has led to sus
tained preservation of both memory and quality of life, while main
taining oncological outcomes [12–16]. Even though advances in 
radiation treatment technique and delivery have allowed for more tar
geted approaches by means of stereotactic radiotherapy (SRT) or radi
osurgery (SRS), yielding superior outcomes in terms of local control, 
neurocognition, and quality of life, WBRT remains the first-line treat
ment for the majority of patients, as comparative prospective trials are 
still largely lacking [17,18]. 

A question that remains, is the risk of potential local undertreatment 
(hippocampal failure) in those cases where the hippocampus is spared 
(HA-PCI or HA-WBRT), i.e. the likelihood of subclinical microscopic 
disease in the hippocampus or HA zone at the time of radiation treat
ment. Several trials have investigated the incidence of BMs in these re
gions. Herein, we aim to comprehensively review the literature on this 
topic in order to estimate the incidence of hippocampal and peri
hippocampal BMs and to determine the subsequent risk of hippocampal 
failure following HA-PCI or HA-WBRT, as well as potential risk factors 
associated with it. 

Materials and methods 

Search strategy 

Using PubMed as the primary search engine, we performed a 
comprehensive literature search of the MEDLINE database. All available 
records up until November 21st, 2023 matching the Medical Subject 
Headings (MeSH) “Hippocampus” and “Brain Neoplasms” were screened 
independently based on title and abstract and without language re
striction by two authors (S.W. and C.S.D.). Trials reporting on either (1) 
the incidence of hippocampal and/or perihippocampal BMs (regardless 
of radiation) or (2) hippocampal failure rate (i.e. BM development or 
relapse rate in the HA zone after previous HA-PCI or HA-WBRT, 
respectively), were included. In the event of a discrepancy, a third 
party (G.R.S.) was consulted. To further extend the literature search, 
additional records were identified by cross-searching the already 
included articles’ references and by using related search terms in both 
Embase and Scopus. Case reports and letters to the editor were screened 
for additional references, but excluded from the final analysis. Literature 
research and selection were performed according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
statement (Fig. 1) [19]. 

Data collection and analysis 

Following inclusion, all manuscripts, supplements, and trial pro
tocols (where available) were screened. To ensure accuracy, relevant 

Fig. 1. Flowchart of literature research and selection according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. HC 
= hippocampus; HA = hippocampal avoidance zone. 
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information was extracted by two reviewers separately (S.W. and C.S. 
D.). The following parameters were collected: authors, year of publica
tion, geographic region, nature of the trial (single or multicenter; retro- 
or prospective), total number of patients, total number of BMs, histology 
of the primary tumour and proportion of patients with SCLC, employed 
margin to define the HA zone, number of patients with hippocampal 
and/or perihippocampal BMs, number of hippocampal and/or peri
hippocampal BMs, risk factors for hippocampal and/or perihippocampal 
involvement, and dosimetric information. In trials investigating the HA 
failure rate, this was also collected, along with nature of the intervention 
(i.e. HA-PCI or HA-WBRT), follow-up time, time to HA failure, and 
subsequent salvage treatment. 

Mean, median, standard deviation (SD), and range were calculated 
for all applicable data. Proportions of HA involvement and failure were 
pooled after taking the respective sample size into account. In those 
cases where data on a certain endpoint were not available, said trials 
were omitted from the respective analyses. Pooled effect sizes were 
estimated by calculating the odds ratio (OR) with a 95 % confidence 
interval (CI), using a random effects model. Results were summarised in 
a forest plot and the heterogeneity between studies was assessed by 
calculating Cochran’s Q test and I2, with cut-offs as defined by Higgins 
et al. [20]. A p-value < 0.05 was considered as statistically significant. 
All data were managed using Microsoft Excel version 16 (Microsoft, 
Redmond, WA, USA) and the analysis was carried out using R version 
4.1.2 (R Foundation for Statistical Computing, Vienna, Austria). 

Results 

Of 621 records screened, 40 were included in the final analysis (2 
prospective and 38 retrospective). Of these, 24 answered the incidence 
question (Table 1), whereas 16 estimated the failure risk after treatment 
(Table 2). A 5 mm margin around the hippocampus was the most 
common way to define the HA zone (85 % of trials). Three trials (8 %) 
did not provide information on this margin and only reported on the 
incidence of BMs in the hippocampus itself. 

The 24 included trials encompassed a total of 5,374 patients with 
32,570 BMs. Overall, 4.4 % (196/4,426) of patients had BMs in the 
hippocampus (range 0 − 27 % for individual trials; Fig. 2a) and 9.2 % 
(388/4,206) in the HA zone (defined as hippocampus plus a 5 mm 
margin; range 3 − 41 %; Fig. 2b). Of all BMs, 0.8 % (227/27,361) were 
located within the hippocampus itself (range 0 − 2.6 %; Fig. 2c) and 2.0 
% (435/22,165; Fig. 2d) in the HA zone (range 0.6 − 4.9 %). 

In total, 25.5 % (1,198/4,696) of the included patients had been 
diagnosed with SCLC. Here, the incidence of hippocampal and peri
hippocampal BMs ranged from 0 − 18 % and 0 − 27 %, respectively. 

Several trials (15/24; 63 %) investigated risk factors for hippocampal 
and/or perihippocampal BMs. The most common risk factor was the 
total number of BMs (7 trials; 47 %), followed by their total volume and 
non-oligometastatic disease (3 trials each; 20 %), and younger age, SCLC 
histology, and presence of extracranial metastases (2 trials each; 13 %). 

In total, 16 trials reported on the risk of hippocampal failure after 
radiation treatment: 5 after HA-PCI, 5 after HA-WBRT, 4 after HA-WBRT 
with simultaneous integrated boost (SIB), and 2 trials included both HA- 
PCI and HA-WBRT patients. Overall, the failure rate in the HA zone was 
4.5 % (42/937), ranging from 0 − 13 % for individual trials. 

In patients experiencing intracranial failure, SCLC histology was not 
associated with a higher risk of hippocampal failure (8 trials; OR = 2.49; 
95 % CI 0.63 − 9.77; p = 0.23). Data on laterality (i.e. whether the left or 
right HA zone was involved in the case of hippocampal failure), were 
insufficient for statistical analysis. Seven trials reported on the use of 
salvage SRS upon the development of BMs in the HA zone, with radia
tion doses ranging from 13 − 18 Gy. Subsequent treatment response was 
documented in a single trial only [21]. 

Six trials compared the risk of hippocampal failure with a conven
tional PCI or WBRT group (i.e. not receiving HA). Overall, HA was not 
associated with an increased risk of hippocampal failure (OR = 1.90; 95 

% CI 0.75 − 4.83; p = 0.17; Fig. 3). 

Discussion 

WBRT remains the first-line treatment in many patients. The recog
nition of radiation-induced hippocampal injury as a major cause of 
neurocognitive decline has led to the development of hippocampal 
sparing radiation techniques, which preserve neurocognition by limiting 
the radiation dose to the HA zone. On the other hand, however, this 
approach poses a risk of local undertreatment, as subclinical micro
scopic disease might be present in this region at the time of radiation 
treatment, not receiving adequate dose coverage to yield disease con
trol. In this large dataset of > 5,000 patients with > 30,000 BMs, the 
overall incidence of hippocampal and perihippocampal BMs was 
considerably low, with a subsequent acceptable risk of undertreatment 
following HA-PCI or HA-WBRT, not different from non-HA PCI or 
WBRT. This further consolidates the role of HA in preserving neuro
cognitive function and quality of life and adding to the evidence that 
BMs may not be randomly distributed across the brain [22]. In those 
cases with hippocampal failure, salvage irradiation with SRS is possible 
in patients with isolated or limited local failure. 

This is the first comprehensive review investigating the overall 
incidence of hippocampal and perihippocampal BMs. Another recently 
published systematic review and meta-analysis by Leskinen et al. sum
marised the evidence on the impact of HA on neurocognitive function, 
reporting significant differences in overall cognitive function, memory, 
and verbal learning if HA was used, at variable follow-up times after 
radiation [23]. This trial also partly investigated the risk of hippocampal 
failure after radiotherapy and yielded similar results (overall effect size 
= 0.04; 95 % CI 0.03 − 0.05). Across five included trials comparing with 
a non-HA group, there was no significant difference in hippocampal 
relapse rates (risk difference = 0.01; 95 % CI − 0.02 − 0.03; p = 0.63) 
[13,21,24–26]. 

NRG CC001, the landmark trial that randomized patients between 
WBRT + memantine and HA-WBRT + memantine, showed that the 
latter leads to sustained preservation of cognitive function and 
continued prevention of patient-reported cognitive symptoms [13,14]. 
Additionally, treatment arms did not differ significantly in overall sur
vival, intracranial progression-free survival, or toxicity after mature 
follow-up, justifying its use as the standard of care for patients with good 
performance status who are scheduled to receive WBRT. In a recently 
published secondary analysis, the benefit of HA-WBRT + memantine on 
decreasing neurocognitive function failure was seen only in patients 
living ≥ 4 months (HR = 0.75; p = 0.03), thus implying a differential 
neuroprotective response [27]. Furthermore, those with lower baseline 
patient-reported cognitive impairment (HR = 0.64; p = 0.002) and those 
with primary lung histology (HR = 0.58; p = 0.0007) derived signifi
cantly greater benefit, implying a heterogeneity of the neuroprotective 
treatment effect of HA-WBRT. This in turn offers useful insights for 
future clinical trials aimed at a more nuanced understanding of the ef
fects of HA-WBRT among different patient subgroups. 

The debate on control versus cognition in the context of radiation 
treatment for BMs is ongoing, juxtaposing WBRT and SRT/SRS, 
respectively. Historically, WBRT was the only treatment option for pa
tients developing BMs [17]. Its addition to (radio-)surgery of a limited 
number of BMs led to reduced intracranial relapses and neurologic 
deaths, however, failed to improve the duration of functional indepen
dence or overall survival and posed a greater risk of a significant decline 
in learning and memory function, both in the definitive and adjuvant 
setting [28–31]. Continued research efforts gradually led to the further 
optimization of targeted approaches such as SRT and SRS, with superior 
oncological outcomes and improved preservation of neurocognition and 
quality of life in many cases [18]. These techniques have now become 
widely adopted as the sole cranial treatment for patients with adequate 
performance status and a limited number of BMs. In patients with SCLC, 
who are at high risk of developing BMs, implementation of stereotactic 
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Table 1 
Overview of included trials reporting on the incidence of hippocampal and/or perihippocampal brain metastases, regardless of treatment. All trials are retrospective, apart from those marked with γ. BMs = brain 
metastases; N/A = not available; SCLC = small-cell lung cancer; HA = hippocampal avoidance; HC = hippocampus.  

number authors 
[reference] 

year of 
publication 

region total 
patients 
(n) 

total 
BMs 
(n) 

histology SCLC 
(%) 

HA 
margin 
(mm) 

patients 
with BM 
in HC (n) 

patients 
with BM 
in HA 
(n) 

patients 
with BM 
in HC 
(%) 

patients 
with BM 
in HA 
(%) 

number 
of BM in 
HC (n) 

number 
of BM in 
HA (n) 

BM 
in 
HA 
(%) 

BM 
in 
HC 
(%) 

SCLC 
patients 
with BM 
in HC 
(%) 

SCLC 
patients 
with BM 
in HA 
(%) 

1 Ghia 
et al. [43] 

2007 US 100 272 mixed 10 5 0 8 0 8 0 9 0 3.3 0 12.5 

2 Gondi 
et al. [44] 

2010 US 371 1,133 mixed 10 5 0 32 0 8.6 0 34 0 3 0 10.5 

3 Marsh 
et al. [45] 

2010 US 107 697 mixed N/A N/A N/A N/A N/A N/A 16 N/A 2.3 N/ 
A 

N/A N/A 

4 Harth 
et al. [46] 

2013 Germany 100 856 mixed 11 5 3 8 3 8.0 3 8 0.4 0.9 18.2 27.3 

5 Wan 
et al. [47] 

2013 China 488 2,270 mixed 9 N/A 7 N/A 1.4 N/A 7 N/A 0.3 N/ 
A 

N/A N/A 

6 Hong γ 
et al. [48] 

2014 Australia/ 
NZ/ 
UK/ 
Norway 

77 116 melanoma 0 5 0 4 0 5.2 0 N/A 0 N/ 
A 

N/A N/A 

7 Kundapur 
et al. [49] 

2015 US 59 359 SCLC 100 5 2 3 3.4 5.1 2 3 0.6 0.8 3.4 5.1 

8 Wu (1) 
et al. [50] 

2015 China 632 6,064 mixed 8 5 26 35 4.1 5.5 31 37 0.5 0.6 N/A N/A 

9 Sun B. 
et al. [51] 

2016 China 314 1,678 breast 0 5 13 28 4.1 8.9 20 38 1.2 2.3 N/A N/A 

10 Wu (2) 
et al. [52] 

2016 China 192 1,356 breast 0 5 7 14 3.6 7.3 7 N/A 0.5 N/ 
A 

N/A N/A 

11 Chen 
et al. [53] 

2017 China 345 1,621 lung N/A 5 16 16 4.6 4.6 42 45 2.6 2.8 N/A N/A 

12 Guo 
et al. [54] 

2017 China 180 1,594 SCLC 100 5 9 22 5 12.2 23 45 1.4 2.8 5 12.2 

13 Han 
et al. [55] 

2017 China 226 1,080 mixed N/A 5 N/A 7 N/A 3.1 N/A N/A N/ 
A 

N/ 
A 

0 0 

14 Kirakli 
et al. [56] 

2017 Turkey 54 446 SCLC 100 5 8 9 14.8 16.7 10 10 2.2 2.2 14.8 16.7 

15 Zhao 
et al. [57] 

2017 China 238 1,511 SCLC 100 5 14 N/A 5.9 N/A 15 N/A 1 N/ 
A 

5.9 N/A 

16 Effeney 
et al. [58] 

2018 Australia 120 754 SCLC 100 5 22 N/A 18.3 N/A N/A 23 N/ 
A 

3.1 18.3 N/A 

17 Kazda 
et al. [59] 

2018 Czech 
Republic 

260 2,595 mixed 13 5 20 47 7.7 18.1 35 127 1.3 4.9 N/A N/A 

18 Sun Q. 
et al. [60] 

2019 China 116 565 mixed 16 5 2 11 1.7 9.5 2 11 0.4 1.9 N/A N/A 

19 Yanagihara 
et al. [61] 

2019 US 277 2,757 mixed 8 5 N/A 14 N/A 5.1 1 18 0 0.7 N/A N/A 

20 Lee γ 
et al. [62] 

2020 US 34 438 mixed 0 5 9 14 26.5 41.2 6 17 1.4 3.9 N/A N/A 

21 Ly 
et al. [63] 

2020 Australia 335 N/A NSCLC 0 5 8 30 2.4 9 N/A N/A N/ 
A 

N/ 
A 

N/A N/A 

22 Wang 
et al. [25] 

2021 China 215 1,033 SCLC 100 N/A N/A N/A N/A N/A 7 10 0.7 1 N/A N/A 

23 Ahn 
et al. [64] 

2022 South 
Korea 

123 N/A NSCLC 0 5 N/A 18 N/A 14.6 N/A N/A N/ 
A 

N/ 
A 

N/A N/A 

24 Xie 
et al. [65] 

2022 China 411 3,375 mixed 26 5 30 68 7.3 16.5 N/A N/A N/ 
A 

N/ 
A 

18.1 2.9  
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Table 2 
Overview of included trials reporting on the risk of hippocampal failure after irradiation. All trials are retrospective. HA = hippocampal avoidance; WBRT = whole-brain radiotherapy; PCI = prophylactic cranial 
irradiation; SIB = simultaneous integrated boost; SCLC = small-cell lung cancer; N/A = not available.  

number authors 
[reference] 

year of 
publication 

region intervention total 
radiation 
dose (Gy) 

mean 
hippocampal 
Dmax (Gy) 

total 
patients 
(n) 

histology SCLC 
(%) 

HA 
margin 
(mm) 

patients 
with HA 
failure (n) 

patients 
with HA 
failure (%) 

median 
follow-up 
(months) 

median time 
to HA failure 
(months) 

1 Gondi 
et al. [12] 

2014 US HA-WBRT 30 < 16 100 mixed 0 5 3 3 N/A N/A 

2 Lin 
et al. [66] 

2015 Taiwan HA-WBRT/ 
HA-PCI 

30 N/A 25 mixed 12 5 0 0 N/A N/A 

3 Redmond 
et al. [67] 

2017 US HA-PCI 25 N/A 20 SCLC 100 5 1 10 16.7 23.3 

4 Kim 
et al. [68] 

2018 South Korea HA-WBRT +
SIB 

25 (SIB 35 −
55) 

< 17 42 mixed N/A 5 1 2.4 10 10.6 

5 Nielsen 
et al. [69] 

2019 Denmark HA-WBRT/ 
HA-PCI 

25 − 30 N/A 15 mixed 93.3 5 0 0 10 N/A 

6 Brown 
et al. [13] 

2020 US HA-WBRT 30 < 16 261 mixed 0 5 11 4.2 7.9 N/A 

7 Lebow 
et al. [70] 

2020 US HA-WBRT +
SIB 

30 (SIB 37.5) N/A 32 mixed 9.4 0 − 12 4 12.5 11.3 N/A 

8 Popp 
et al. [24] 

2020 Germany HA-WBRT +
SIB 

30 (SIB 42 −
51) 

N/A 66 mixed 0 5 5 7.6 8.5 5.8 ** 

9 Vees 
et al. [71] 

2020 Switzerland HA-PCI 25 < 10 42 SCLC 100 2 0 0 12 N/A 

10 Westover 
et al. [72] 

2020 US HA-WBRT +
SIB 

20 (SIB 40) < 16 − 17 49 mixed 0 5 1 2 10.5 ** 5 

11 Belderbos 
et al. [73] 

2021 Netherlands/ 
Belgium 

HA-PCI 30 < 17 84 SCLC 100 5 5 6 26.6 N/A 

12 Cho 
et al. [74] 

2021 South Korea HA-PCI 25 N/A 48 SCLC 100 5 2 4.2 18 10 ** 

13 Rodríguez de 
Dios 
et al. [75] 

2021 Spain HA-PCI 25 < 16 − 17 69 SCLC 100 5 3 4.3 40.4 N/A 

14 Wang 
et al. [76] 

2021 China HA-WBRT 25 16 * 27 NSCLC 0 5 1 3.7 N/A N/A 

15 Yang 
et al. [26] 

2021 Taiwan HA-WBRT 30 < 20 33 mixed N/A 5 3 9.1 12.4 N/A 

16 Shieh 
et al. [77] 

2022 Taiwan HA-WBRT 25 − 30 17 24 mixed 17 5 2 8.3 N/A 17.5 **  

* Median instead of mean. 
** Mean instead of median. 
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approaches has been slower, as robust data are generally lacking. Large 
retrospective samples indicate that the primary trade-offs in this setting 
are probably no different to those in which SRS has already been 
established, i.e. inferior time to central nervous system progression with 
similar if not superior overall survival [32–34]. Ongoing prospective 
randomised trials (e.g. ENCEPHALON [NCT03297788] and NRG CC009 
[NCT04804644]) will further elucidate the role of SRS in SCLC patients 
with limited (≤ 10) BMs. 

HA approaches to preserve long-term neurocognition have also been 
investigated in the context of primary brain tumours, which also 
commonly require radiation treatment. Across different entities, results 
have been conflicting, however. In primary central nervous system 
lymphoma, HA is not feasible, whereas (peri-)hippocampal failures are 
uncommon in paediatric medulloblastoma and glioblastoma, where HA 
might limit neurocognitive toxicity while maintaining clinical outcomes 
in selected patients [35–38]. Retrospective dosimetric analyses have 
demonstrated the feasibility of clinical target volume reduction in 
glioblastoma, reducing radiation dose to the limbic circuit, with a low 

likelihood of altering the pattern of local recurrence after primary 
therapy [39,40]. Prospective trials are needed to validate these results. 

The current systematic review is not without limitations. Firstly, not 
all included trials comprehensively described the hippocampus delin
eation protocol (e.g. which imaging modality or which sequence was 
used) or HA margin. Studies have established high interobserver varia
tion in hippocampus delineation, without violating common dose con
straints [41]. Furthermore, trials investigating the hippocampal failure 
rate were heterogeneous in terms of intervention (HA-PCI or HA-WBRT), 
radiation dose, HA margin, and patients included, which limited further 
statistical analysis (e.g. differences between left and right HA zone 
recurrence, as left hippocampal atrophy is thought to be more involved 
in neuropsychological deficits) [42]. Due to the inherent nature of the 
underlying diseases, most studies reporting on the hippocampal failure 
rate were hampered by loss to follow-up. 

Fig. 2. A ¡ d. Incidence of hippocampal (a, c) and perihippocampal (b, d) brain metastases as a proportion of total number of patients (a, b) and brain metastases 
(c, d). Bubble size indicates the number of patients or brain metastases, respectively. Bubble colours correspond to the histology (orange = SCLC; blue = no SCLC; 
green = mixed). Range for a and b 34 − 632 patients, range for c and d 116 − 6,064 brain metastases. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 3. Forest plot of the individual and pooled effect sizes of hippocampal failure between PCI and/or WBRT with or without hippocampal avoidance. Error bars 
indicate the 95 % confidence intervals. 
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Conclusion 

In this large and comprehensive review, the overall incidence of 
hippocampal and perihippocampal BMs was low, with a subsequent low 
and acceptable risk of undertreatment following HA-PCI or HA-WBRT. 
In patients without hippocampal involvement, regardless of the pri
mary tumour, the hippocampus should be spared in order to preserve 
neurocognitive function and quality of life. 
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