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Supporting Material: The Larmor frequency shift of a white matter magnetic 
microstructure model with multiple sources 

 

Here we present the derivation of the mesoscopic Larmor frequency shift ( )Ω R , Equation (1), from 

our white matter magnetic microstructure model. This entails finding the total Lorentzian tensor L , 

Equation (3), which consist of three main parts: (A1) the induced frequency shift in cylinders from 

cylinders, (A2) the induced frequency in spheres from the spheres, (A3) the induced frequency in 

either cylinders or spheres from the magnetized spheres or cylinders, respectively. All these 

contributions will be considered in turn.  

Integrals are evaluated using the tables in Gradshteyn and Ryzhik1, validated numerically and 

reproduced in supplementary material. References to equations are given as GR(X), where X 

corresponds to the number of the identity in the original tables. 

 

Supporting simulation for derivation 
Each of the analytically derived frequency shifts derived below are presented with a simple computer 

simulation to demonstrate the results. Figure S1 gives an overview of the microstructure used for the 

simulation. We constructed a multilayer cylinder in a 3D grid with dimensions 3 3L 600=  grid units. 

The cylinder consisted of four layers with radii 1 2 3 430, 50, 70, 90R R R R= = = = grid units and 

cylinder length L . Randomly positioned dots (diameter of 1 grid units) were placed in each of the 

three water compartments, with a total density ε  ranging from approximately 1% to 20%. Using the 

discrete Fourier transform with periodic boundary conditions, we computed the k-space indicator 

function for the cylinder, and for each population of spheres. Using Eqs. (3)-(4) we could numerically 

compute a ground truth Lorentzian tensors L  from combinations of indicator functions and magnetic 

susceptibility in k-space. These results were compared with the analytical results derived below to 

validate our results. 
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Figure S1 - Simulation of multi-layer cylinder and spheres: A 4-layers cylinder are packed in a 3D grid, with 
uniformly packed dots in all its compartments. Extra-cylindrical dots are shown here in orange, bilayers in purple and 
intra in cyan. While the dots are uniformly distributed in each compartment, they are still restricted by the presence of 
the cylinder, which generates a structural anisotropy in their positions.  

 

S1) Contribution from cylinders with orientation dispersion and susceptibility 
anisotropy χ∆  

Here we focus on deriving the Lorentzian tensor L  (cf. Eq. (3)), purely from the population of 

infinitely long cylinders with arbitrary orientations. Their directions are assumed to be independent 

of their size and randomly positioned. Each cylinder consists of multiple concentric shells with an 

associated axially symmetric microscopic susceptibility tensor Cχ  which describes the microscopic 

content of lipid-protein chains, phospholipid channels etc. as written in Eq. (11).  

The Lorentzian tensor L , where we implicitly know that cylinders are both target and source is 

 
( )

( ) ( )3W

1 .
2
d

ζ π
= − ∫L Γk k kϒ  (S1) 

Here Wζ  denotes the total water volume fraction outside of all inclusion types (cylinders of total 

volume fraction Cζ  and spheres with a total volume fraction Sζ ). Equation (S1) depends on the 

tensor-valued cross-correlation tensor ( )Γ k  for cylinders  
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 ( ) ( ) ( ) ( ) ( )
C C

3 C C-
2 ,

v
π ζ δ= −

χ
Γ χ

k k
k k


(cylinder correlation function), (S2) 

where ( )Cv k  and ( )Cχ k  is the structural indicator function and magnetic susceptibility of all the 

cylinders in k-space, and Cχ  is the mesoscopically averaged magnetic susceptibility tensor. The first 

step in computing L  is to determine ( )Γ k , Eq. (S2), by finding its constituents. We start by re-

visiting2 the k-space indicator function ( )Cv k  and its mean Cζ , and then proceed to derive the 

magnetic susceptibility ( )Cχ k  and mesoscopically averaged (bulk) susceptibility Cχ . 

 

Indicator function of cylinders ( )Cv k  

Positions r  within an infinitely long cylinder solid cylinder with radius R  displaced ˆuu = u  from the 

origin can be parametrized by 2 

 ( )( ) ( )ˆcos s ,ˆin ˆu r r sφφ= + + +r u v n  (S3) 

where ˆ  n  is a unit vector along the cylinder axis and v̂ , n̂  and û  are mutually perpendicular. Hence, 

( , ,r sφ ) become local cylinder coordinates (listed here for later convenience). We have previously 

derived the indicator function for an infinitely long solid cylinder2,3. The indicator function ( )v k  of 

a single infinitely long solid cylinder is found previously to be 

 ( ) ( ) ( )

( ) ( )
 

2D

2

1 

,

ˆ4 ,  

2 ˆ

i

i

e RJ Rk
k

e v k

πν δ

πδ

⋅

⋅

= ⋅

= ⋅

k u

k u

k k n

k n
(infinitely long cylinder), (S4) 

where 

 ( ) ( ) 
2D

1 

2 RJ Rk
k

v k π
=  (S5) 

is the 2D indicator function of the cylinder cross-section. R  denotes the radii of the cylinder. The 

volume fraction of the infinite cylinder is understood as 2
1 2 / ,LR Lζ π= →∞ , given as the limit 
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of a cylinder of length 2L going to infinity. The indicator function ( )Cv k  of all cylinders is then 

simply the sum ( ) ( )C
qq

v v=∑k k  over all individual cylinders labelled by the index q. 

 

Magnetic susceptibility of a cylinder ( )Cχ k  

Consider a lipid forming part of the myelin associated with the cylinder. The lipid is perpendicular to 

n̂  and form an angle φ  to û . The direction of the lipid is ( ) ( )1̂ ˆ ˆcos sinφ φ=v u + v . Hence, 1̂v  is the 

eigenvector of χ  associated with parallel susceptibility χ   in Eq. (11), whereas the perpendicular 

vectors to the lipid ( ) ( )2ˆ ˆ ˆsin cosφ φ= − +v u v  and n̂  are the eigenvectors corresponding to χ⊥ . Thus, 

the susceptibility of a lipid inside a cylinder placed at origo is 

( ) ( )
( ) ( ) ( ) ( )( )( )

T T T
1 1 2 2

2 T 2 T T T

ˆ ˆ ˆ ˆ ˆ ˆ

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin
3

C

φ χ χ

χ χ χ φ φ φ φ

⊥= + +

 = − ∆ + ∆ + + + 
 

χ

I

v v v v nn

uu vv vu uv



(cylinder frame) 

  (S6) 

where we introduced 

 ( )C 2 1 Tr
3 3

χ χχ χ
⊥+

≡ =


 and χ χ χ⊥∆ = − . (S7) 

It will prove convenient to rewrite ( )χ φ  as 

 ( ) { } ( )2 2
0 2 0 2

1Re . .
2

i ie e c cφ φφ = + = + +χ χ χ χ χ  (S8) 

Where c.c. denotes the complex conjugation of the second complex term, and 0 2,χ χ are the only 
non-zero coefficient matrices of ( )φχ  Fourier series 

 T
0

1 1 ˆ ˆ
2 3

Cχ χ  = + ∆ − 
 

χ I I nn  (S9) 

and 

 ( )( )T T T T
2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ-

2
iχ∆

= −χ uu vv uv + vu . (S10) 
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Having obtained the susceptibility for a single lipid in the myelin sheath, the magnetic susceptibility 

of the whole myelin sheath ( )Cχ k  can be determined by multiplying Eq. (S8) with the cylinder 

indicator function ( )v k , Eq. (S4). For a solid cylinder, the susceptibility in k-space becomes 

 ( ) ( ) ( ) { }( )ˆ
2

2
0 2

0 0

cosC ˆ2   Rei k iiu
R

ee d d e
π

ψ φ φρπδ ρρ φ −⋅= ⋅ +∫ ∫χ χ χk uk nk . (S11) 

Here we used ( )ˆ ˆ cos ψ⋅ =k u , ( )ˆ ˆ sin ψ⋅ =k v . The radial integral of Eq. (S11) is 

 

( ) ( ) ( )

( )

( ) ( )
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k
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φ ρ φ ψ ψ π

ψ
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ρρ φ π

π

ξ
π

ξ

+ − − /=


== 

− − = ±
=≡  = ±

∫ ∫ ∫

 (S12) 

Here we see that ( ) ( )2D
02 Rkv πξ=k . Having established all the components of ( )Cχ k , the k-

space magnetic susceptibility of a solid cylinder becomes 

 ( ) ( ) ( ) { } ( )2
C 22

20
C ˆ4 Re iv e kRψπ δ ξ= ⋅− χχ χ k nk k , (solid cylinder). (S13) 

Finding the magnetic susceptibility for a cylinder displaced u , consisting of multiple concentric 

shells is straightforward, as it follows directly from the shift theorem of the Fourier transform and the 

superposition principle, respectively, where positions ρ  within the q’th layer are denoted by the layer 

radii q qr Rρ< < : 

 
( ) ( ) ( ) ( )( )

{ } ( ) ( )( )

0 0

2
2 2

C 2

2

0

R

ˆ

e

4 i

q
q q

i
q q

q

kR kr

e kR kr

e

ψ

ξ ξ

ξ ξ

π δ ⋅ = ⋅ 






−

− −∑

∑χ

χ

χk uk nk
, (multi-layered cylinder). (S14) 

Similarly, we can sum Eq. (S14) for multiple cylinders with different orientations n̂  and 
distributions of radii, assumed to be independent of each other. The mean (bulk) susceptibility Cχ of 
Eq. (S14) within   is given by its value at 0k =   
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 ( )C
0 1

C1 0k ζ= = =χχ χ


. (S15) 

Contribution to Lorentzian tensor from autocorrelation of cylinders 

For simplicity we start by calculating the contribution to the Lorentzian tensor L  from the 

autocorrelation of two cylinders, describing the mean of the self-generated Larmor frequency shift 

 

( ) ( ) ( ) ( ) ( ) ( )( )

{ } ( ) ( )( )
( )

' '2
0

2

1 ' 1 ' 0 0W 3
' ' '

2
2 2 2

1 0

(2 )

Re

1 ˆ 8

4

q qR r
q q q q

q qq q

i
q q

q

J kR J kr kR kr
R r

e kR kr

d

k
k

ψ

ξδ π

δ
π

ζ ζ
ξ

ζ

ξ

ζ

π

ξ

− ⋅


− 



    − ⋅ −      


− − 


∫ ∑ ∑

∑

χ

χ

χ

kkk nϒ

  (S16) 

The volume fraction Rζ  is of a solid cylinder with radius R . Eq. (S16) consists of three parts, where 

the second part depends on ψ . We start by looking at the first and third contribution as they are 

exactly what was considered in our previous study2, but here we have the tensor susceptibility 0χ

instead of a scalar. The first and third term are thus 

 
( ) ( )T

W
1 1 1 1 T T

0 W

1 11 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ1
2 3 2 1 33

1
2

Cζ ζ
ζ

ζ
χ χ

ζ
ζ
− −     − = − +    

    
 − ∆  
 

II I Iχnn nn nn . (S17) 

Left to solve is the ψ -dependent term in Eq. (S16). The angular integration can be carried out by 
rewriting the dipole kernel into trigonometric functions in the eigenspace of the cylinder  

 ( ) ( ) ( ) ( )( ) { } ( )2 T 2 T T T 2 T
2

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos sin co .ˆs sin Re
3 2

id e ψ χψ ψ ψ ψ
π
ψ ∆ − − − = − 
 ∫ I χ Iuu vv u nnvu + v

  (S18) 

What is left to calculate is the radial integral for a single cylinder defined as 1λ  

 ( ) ( ) ( ) ( )( )' '

1 1 ' 1 ' 2 2W
, ' ' '

6 q qR r
q q q q

q q q q
C dk J kR J kr kR kk r

R r

ζ ζ
λ ξ ξ

ζζ
 

− −  


≡ −


∫ ∑ . (S19) 
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The parameter 1λ  describes the layer geometry of the cylinder. We have added -6 to ensure 1λ  is 

positive and so its contribution to the Lorentzian tensor is weighted similar to Eq. (S17). Using Eq. 

(S12) for 2ξ  and the integral expressions (which follows from GR(6.533.3) and GR(6.573.(1-2))) 

 ( )( ) ( ) ( )0 1
1 2

,2 l

0,

2 n yx y x
d k

J k y
k J x x

y

y k J ky

x
k

   >  
 



− −
=

≤
∫  (S20) 

we obtain 

 ( )' '1 W

6 ln ln .
q q q

q q
R r rC

q q qq q

R R
r r

λ ζ ζ ζ
ζζ ′>

    
= − − −            

∑ ∑  (S21) 

Collecting all the results we obtain for the auto-correlation contribution to L from a single cylinder 

 
( ) ( )T1 1

1 1W
T T1 1 ˆ

12
ˆ

3
1 1 1ˆ ˆ ˆ ˆ

2 123
Cζ ζ χχ χ ζ λ

ζ
−   − − + −  

  

∆ − ∆ − 
 

I I II n nnn n n , (single cylinder).

  (S22) 

  

Contribution to Lorentzian tensor from cross-correlation of cylinders 

Left to consider is the contribution to the Lorentzian tensor, Eq. (S1), from cross-correlations between 

a pair of different cylinders, i.e., the mean frequency shift inside a cylinder generated by a neighboring 

cylinder.  Fortunately, we have previously shown that such a contribution can be neglected when the 

magnetic susceptibility of the cylinders is scalar. Second, it is well known from previous studies4,5 

that the functional form of the induced field from a cylinder with a radially symmetric tensor 

susceptibility anisotropy, as described by Eq. (S6), does not change external to the cylinders. This 

means that our previous results on considering the contribution from cross-correlations are valid here, 

as two cylinders are always external to each other. We can therefore neglect an explicit calculation 

(however, we did calculate it explicitly to verify this). 

 

Total Lorentzian tensor from cylinders as targets and sources 
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Summing over N cylinders, and using Tˆ ˆ /
j

N=∑T nn is the fODF scatter matrix of the cylinders, 

and impose the distribution of orientations is independent of their distribution in size, we find the 

Lorentzian tensor from all the cylinders being targets and sources to be 

( ) ( )
C C

C C
W

1 1
12 3 12

1 1 1
2 3

C χχ χ
ζ

ζ λ
ζ

ζ
∆ − ∆

−   = − − +  − −


 



  

I I IL T I T T , (multiple cylinders).

  (S23) 

Here we defined 1NCζ ζ=  as N times the average cylinder volume fraction 1ζ , and similar 

1NCλ λ= .  

 

S2) Lorentzian tensor from spherical inclusions 
Next, we derive the mesoscopic contribution from different populations of solid spherical inclusions. 

For simplicity, we assume that every cylindrical water compartment, i.e., extra-axonal (E), bi-layers 

(M) and intra-axonal (A), contains a population of spherical inclusions whose size are independent 

of their positions, The total indicator function of all spheres in k-space is denoted ( )Sv k , their volume 

fraction E M ASζ ζ ζ ζ= + + , and their total magnetic susceptibility 

( ) ( ) ( ) ( )S A M Eχ χ χ χ= + +k k k k .  We assume that each population is uniformly positioned within 

each compartment. Hence, they are positionally restricted by the cylinders especially when their 

volume fraction increases. Since Sχ  is a scalar, we only have to consider the demagnetization tensor 

N   

 
( )

( ) ( )3W

1
2
d

ζ π
= Γ∫N k k kϒ , (S24) 

which depends on the scalar-valued structure-structure correlation function ( )Γ k  of all spheres 

 ( ) ( ) ( )S Sv v −
Γ =

k k
k


. (S25) 

For spheres we do not need to care about the singular point of ( )Γ k  at 0k = , as this term integrates 

to zero. The generic indicator function ( )v k  for a single sphere of radius R  positioned at ˆuu  from 

the origin can be found using the following vector r  on a spherical surface of radius r   
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 ( ) ( )ˆˆ ˆ ˆ ., ,r u r r rsinϕ ϑ ϑϑ θ ϕ= + + +r u r φ  (S26) 

Here ( )ˆ ˆ, ˆ,ϑr φ  is the unit spherical vectors so ( , ,r ϑ ϕ ) become local coordinates in the sphere. The 

indicator function ( )v k  becomes 

 ( ) ( ) ( )( )22

0 0 0
sin φ ˆˆ ˆˆ ,

R
v dr r d d u rr r r sin

π π
ϑ ϑ δ ϑϑ θ ϕ′ ′ ′ ′ ′= − − − −∫ ∫ ∫ rr u φ  (S27) 

and in k-space 

 
( ) ( ) ( )( )

( ) ( )

22

0 0 0

2 1

ˆ ˆ

single sphere .

ˆsin φ

4 , 

R

i

v d e dr r d d r r r sin

j kR
e R

k

π π
ϑ ϑ δ ϑϑ θ ϕ

π

⋅

⋅

′ ′ ′ ′ ′= − − − −

=

∫ ∫ ∫ ∫ik r

k u

k k r u r φ
 (S28) 

Notice that the indicator function for a single sphere only has angular dependence in the exponential 

describing its positions u . This means that the autocorrelation function in k-space ( ) ( ) /v v −k k   

of a sphere has no angular dependence, since the exponentials cancel. Therefore, when calculating 

the contribution to N from sphere’s autocorrelations, the angular integration in Eq. (S28) is 

exclusively over the dipole kernel, which integrates to zero, i.e. 

 ( ) 0ˆ ˆd =∫ k kϒ . (S29) 

Hence, no frequency shift is associated with autocorrelation from the spheres.  

Left to consider is the contribution to N  from cross-correlations ( ) ( )1 2 /v v −k k   between all 

possible pairs of spheres in every population. For simplicity, consider the contribution to N  from the 

cross-correlation between two distinct spheres with radius 1R  and 2R  separated a distance 

` 2∆ −u = u u  

 ( ) ( ) ( ) ( )2
1 2 1 1 1

W
2

2

1 2 iR R j k kR
ed

R j
kζ π

⋅∆∫ k uk kϒ


, (two spheres). (S30) 

As the angular dependence of Eq. (S30) is captured only by the displacement ie ⋅∆k u , it is convenient 
to rewrite it in terms of a plane wave expansion6 

 ( ) ( ) ( )* Y ˆ .ˆ4 Y
l

i l m m
l l l

l m l
e i j k uπ⋅∆

=−

= ∆ ∆∑∑k u u k  (S31) 
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Furthermore, it will be convenient to rewrite the dipole kernel (k-space) and dipole field (real space) 

in terms of spherical harmonics 2Ym  and STF tensors 2m  7 

 ( ) ( )
2

2 2
2

8 Y
15

ˆm
m

m

π
=−

= − ∑k kϒ  , (k-space),    ( ) ( )
2

2 23
2

1
5

ˆY
1
6 m

m
mr =−

= ∑r rϒ  , (real space). (S32) 

Using the orthonormality of spherical harmonics, the angular integral of Eq. (S30) is  

 
( ) ( ) ( ) ( ) ( )

( )

2 2
*

2 ' 2
2

T
2

32ˆ ˆˆY Y Y
15

ˆ ˆ .

ˆ ˆ

14
3

l
i l m m m

m l l l
m l m l

d e i j k u d

j k uπ

π ′⋅∆

′=− =−

 =

= − ∆ ∆

∆ ∆ ∆ − 
 

∑ ∑ ∑∫ ∫

I

k uk u k k

u u

k kϒ 
 (S33) 

Using GR(6.573.1), the radial integration of Eq. (S30) is 

 ( ) ( ) ( )
3

1 1 1 2 12 26
1j kR j kR j k ud R R
u

k π  ∆ =  ∆ ∫  (S34) 

Combining Eqs. (S32)-(S34), the contribution to N  from the cross-correlations between two distinct 

spheres are 

 ( )1 2
W

VV
ζ

∆=N uϒ


, (two spheres), (S35) 

where 3
1 14 / 3V Rπ=  is the first sphere’s volume and ( )∆uϒ  is the dipole field in real space. Eq. (S35) 

tells us that the mean field induced in a sphere from a neighboring sphere is proportional to the 

elementary dipole field and scaled by the volumes of the spheres. This is luckily expected since the 

only non-zero term of the multipole expansion of the field from a sphere is the dipolar term.  

The next step is to sum over all these dipolar fields between every sphere in  . However, it is in 

general highly impractical to sum Eq. (S35), whenever spheres are not Poissonian distributed in the 

whole mesoscopic region  . To proceed, assumptions must be made about the restrictions in 

positions of spheres in correspondence with the desired model picture. If the spheres are uniformly 

positioned in a given water compartment, we do not need to account for every position of the spheres, 

so long as the spheres are smaller than the size of the water compartments - only the shape of the 

compartment in which they reside. This allows us to smooth the positions of the spherical inclusions 
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(similar to what is done in QSM on the macroscopic scale). We therefore represent a discrete sum of 

spheres in a given water compartment by an indicator function ( )v r  for the whole occupying space 

 ( ) ( ) ,v v ε→r r  (Coarse grained indicator function), (S36) 

where /ε ζ ζ=   is the density of spheres that normalizes the indicator function so upon integration 

it has the original volume fraction ζ  of the spheres, instead of the volume fraction ζ  occupied by 

the coarse-grained indicator function ( )v r . For example, the sum over all intra-axonal spheres are 

represented by the indicator function describing the whole intra-axonal compartment and then scaled 

by the density of intra-axonal spheres. In fact, this approximation is exactly what we employed when 

defining the indicator function of the lipid chains forming the cylinders. There, the density factor was 

just absorbed into the microscopic susceptibility tensor Cχ , Eq. (11), for the cylinder layers.  Hence, 

when considering the contribution to N  from the cross-correlations between two populations of 

spheres, we make the approximation 

 
( )

( ) ( ) ( )

( )
( ) ( ) ( )

''
3

'

1 2

W

1 2
W 3

2

2

qq q q

q q

v v

v v

d

dε

ζ

ζ

ε ε

π

ε
π

−

−

=∑ ∫

∫

N
kk

k

k
k

k k
k

ϒ

ϒ
 







, (two populations of spheres). (S37) 

Here ( )1v k  is understood as the coarse-grained indicator function of the first population with density 

1ε  etc. When ( ) ( )1 2v v=k k  , we can think of Eq. (S37) as an autocorrelation between the two 

populations of spheres (not to be confused with autocorrelation between distinct spheres). All the 

coarse-grained compartments can be written in terms of cylindrical indicator functions, which makes 

it easy to calculate N , Eq. (S37). For example, the coarse-grained indicator function of extra-axonal 

spheres can be written as ( ) ( )SC1v v= −r r , i.e. determined by the indicator function of all the 

cylinders (here assumed to be solid and thus indicated by ( )SCv r  with volume fraction SCζ  to 

distinguish from hollowed cylinders).  

The demagnetization tensors describing the cross contributions between the same population of 

spheres are 
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 1

1
W

2
1 1 1 1

2 3
ζ ζ
ζ ζ

 − 
 

−
=N T I





, (identical populations) (S38) 

Figure S2 shows a good agreement between Eq. (S38) to our simulation (see description in the 

beginning of the supporting material) for each demagnetization tensor contribution between identical 

populations of  intra-axonal spheres (A), spheres in MW (M) or extra-axonal spheres (E), respectively. 

Similarly, the demagnetization tensors from cross contributions between different populations of 

spheres are 

 2
W

1 11
2 3

ζ ζ
ζ

 = − − 
 

N T I , (different populations). (S39) 

Figure S3 shows a good agreement between Eq. (S39) to our simulation (see description in the 

beginning of supporting material) for each demagnetization tensor contribution between different 

populations of  intra-axonal spheres (A), spheres in MW (M) or extra-axonal spheres (E), respectively. 

 

 

Figure S2 - Demagnetization tensor eigenvalues from cross-correlations between identical populations of spheres: 
Here the target and source are from the same population of spheres. The left figure shows the average perpendicular 
eigenvalue λ⊥ , and the right figure shows the parallel λ



, wrt. to the axes of the cylinder. The x-axis shows the density
ε of spheres in a given water compartment. 
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Figure S3 - Demagnetization tensor eigenvalues from cross-correlations between different populations of 
spheres: Here the target and source are different populations of spheres. The left figure shows the average 
perpendicular eigenvalue λ⊥ , and the right figure shows the parallel λ



, wrt. to the axes of the cylinder. The x-axis 
shows the densityε of spheres in a given water compartment. 

 

S3) Lorentizian tensor from cross-correlations between spherical and cylindrical 
inclusions 

In this section we derive the contribution from cross-correlations between cylindrical and spherical 

inclusions. Since the cylinders have susceptibility anisotropy, the cross-correlation differs from the 

induced field from spheres and averaged within the cylinders. We therefore start by considering the 

demagnetization tensor N  for when spherical inclusions are sources and the cylinders are targets, 

and then vice versa.  
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Demagnetization tensor from spherical sources and cylindrical targets 

Consider the demagnetization tensor from a single cylinder layer with radii 1r , 1R  and a sphere of 

radius 2R  placed at the origin. The cylinder is considered as the target and the sphere generates the 

field. This demagnetization tensor is described by the scalar-valued cross-correlation function ( )Γ k   

 
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )

2
cos 1 2

0 1 0 1 22  
2

2
1 2

12 ˆ

ˆ
4

iku j kR
e R k r k

k R

k
k

ψ π ξ ξ ζ δ

δ δ
π ζ ζ

Γ −= ⋅

⋅
−

k

k n

k n
, (cylinder target, sphere source),

  (S40) 

where ( )cosku ψ⋅ =k u . The corresponding contribution to the demagnetization tensor is 

 
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

cos2
0 1 0 1 1 2

2

2
1

W

2

ˆ 1 ˆ3
2

ˆ

ˆ
4

ikuR k r k jk kR e
R

k

dd
k

k

ψζ ξ ξ δ

δ
ζ

ζ π

δ
π ζ









− ⋅

⋅
−

∫ ∫
k k k n

k n

ϒ

,  

  (cylinder target, sphere source).  

    (S41) 

We start by calculating the first ψ -dependent term of Eq. (S41). Rewriting ( )k̂ϒ  in terms of 

trigonometric functions in the basis of the cylinder layer, the angular integral of Eq. (S41) is found to 

be 

 
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

2 T 2 T T T co

T T T
1

s

0

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆcos sin cos sin
2 3

1 1ˆ ˆ ˆ ˆ ˆ ˆ
3

iku

u

d

J

e

k
k

uJ ku

ψψ ψ ψ ψψ
π
 − − − 
 

 = − + − 
 

∫ I

I

uu vv vu + uv

uu uu vv
. (S42) 

The radial integral left to solve is 

 ( ) ( )( ) ( ) ( ) ( ) ( )T
0 1 1

T T
0 10 1 2

1 1 1ˆ ˆ ˆ ˆ ˆ ˆ .
3

d R k r k
u

k J J k
k k

j kR ku uξ ξ   − + −   
−

 
∫ I uu uu vv  (S43) 
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To proceed, we must consider the integrals in two separate cases: where spheres are either inside the 

intra-axonal space (i.e. 2 1u R r+ < , 2 1R r< ) or outside the cylinder in the extra-axonal space (i.e. 

2 1R R u+ < ).  

 

Sphere inside cylinder 2 1u R r+ <  and 2 1R r<  

When the sphere resides inside the cylinder layer, the two types of radial integrals in Eq. (S43) adds 

to zero (which follows from GR(6.573.2)), i.e. 

 ( ) ( ) ( ) ( )( )0 3 2 0 1 0 13 
2 22

1 0,
2

dk J ku J kR R k r k
R k

π ξ ξ− =∫  (S44) 

and 

 ( ) ( )( ) ( ) ( )0 3 15
2

0 1 1 2
2

1 0.R k rdk J ku
k

k J kRξ ξ =−∫  (S45) 

Hence no cross-contribution is associated with spheres inside the cylinder layers. This is sensible as 

this contribution can be seen as the induced frequency at a point (here a sphere) inside a cylindrical 

shell, which is known to be 0. 

 

Spheres outside cylinder 2 1R R u+ <  

For the case where the sphere resides outside the cylinder, only one of the two unique integrals yields 

zero, i.e. 

 ( ) ( ) ( ) ( )( )0 1 2 0 1 0 1 

1 0.dk J ku j kR R k r k
k

ξ ξ− =∫  (S46) 

The first term in Eq. (S43), for a single layer and sphere is thus (cf. GR6.578.1)

 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

1
T T

3 15W
22

1 T T

2
0 1 0 2

2

2 2
12

2W

3 ˆ

1
2

1 ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

R k r k

u

dk J ku
u

J kR
R

R
k

r

ξ
ζ

ζ

ζ ξ

ζ

−

−

−

= −

∫ uu vv

uu vv

, 
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  (S47) 

If we rotate the cylinders an angle φ along n̂ (rotation axis), Eq. (S47) becomes 

 ( ) ( ) ( )( ) ( )( )( )T T T T
2 2

1 12
2W

ˆ ˆ ˆ1 ˆ ˆ ˆ ˆc n ˆos 2 si 2
2

R r
u

φ φ
ζ
ζ

− +
−

uu vv u + uvv , (cylinder target, sphere source).  

  (S48) 

Due to the symmetry of ( )Γ k  for one layer and external sphere, Eq. (S48) corresponds to the well-

known result for the local microscopic field outside a cylinder shell, as expected4. If we consider Eq. 

(S48) and sum over all external spheres for each spherical population and all spheres in both the 

cylinder bilayers and extra-axonal space assuming they are positioned axially symmetric to the layer, 

the contribution cancels out.  

 

Looking at the last term of Eq. (S41), and summing over both multiple layers, cylinders and spheres, 

the only contribution left from the cross-correlation between field inducing spheres and reporting 

cylinders to the Lorentzian tensor χ= −L N  from all spherical sources is 

 
( )C M M A E

W

A E 1 ,
2 3
1ζ χ ζ χ ζ

ζ

ζ χ  − 
 

+ +
=L T I (cylinder targets and sphere sources). (S49) 

Figure S4 shows a good agreement between Eq. (S49) to our simulation (see description in the 

beginning of supporting material) for each demagnetization tensor contribution between the cylinder 

as target and intra-axonal spheres (A), spheres in MW (M) or extra-axonal spheres (E) as sources, 

respectively. 

Typically, C W/ 0.5ζ ζ   which means that this contribution can only be neglected if the spheres’ 

bulk susceptibilities are sufficiently low.  
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Figure S4 - Demagnetization tensor eigenvalues from cross-correlation between spheres and cylinders: Here from 
a population of spheres induced in the surrounding cylinder layers. The left figure shows the average perpendicular 
eigenvalue λ⊥ , and the right figure shows the parallel λ



, wrt. to the axes of the cylinder. The x-axis shows the density
ε of spheres in a given water compartment. 

 

 

Demagnetization tensor from cylindrical sources and spherical targets 

We now consider the cross-contribution to the frequency shift inside a reporting sphere of radius 1R  

and volume fraction 1ζ  placed at the origin generated by a single cylinder layer with radii 2r , 2R  and 

volume fraction 2ζ  positioned at u . Its contribution is described by the tensor-valued cross-

correlation function ( )Γ k  and is given by Eqs. (S14) and (S28) 

 

( ) ( ) ( ) ( ) ( )( ){

{ } ( ) ( )( )}
( ) ( )

0
1 12

1 0 2 2

2
2 2 2 2 2

2
2 1 0

0
1

ˆ12

Re

ˆ
4

i

i j kR
e

kR

k
k

kR kr

e kR krψ

π ξ ξ

ξ ξ

π
δ δ

ζ

δ ζ

ζ

⋅= −

−

⋅

− −

⋅

Γ

χ

χ

χk uk nk

k n

, (sphere target and cylinder source).

  (S50) 
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The first and third term in Eq. (S50) is equivalent to the previously considered cross-contribution 

between cylinders as the target and spheres the sources (cf. Eq. (S40)). Here we found that only the 

third contributes to the Lorentzian tensor L  after summing over cylinders and spheres. This means 

we need only to consider the second and third terms. We start by considering the contribution to the 

Lorentzian tensor from the second ψ -dependent term of ( )Γ k  

 ( ) ( ) { } ( ) ( )( ) ( )21
2 2 2 2 2W

1
1 1

3 ˆ Reˆ i idk d e kR ke j kRr
R

ψζ ξ ξ
π ζ

δ ⋅⋅ −∫ ∫ χk uk k k nϒ . (S51) 

The angular integral of Eq. (S51) is  

 
( ) ( ) { }

( ) ( ) ( ) ( )

2
2

T T T
0 2

1 ˆ Re

1ˆ ˆ ˆ ˆ ˆ ˆ
2 6

ˆ i id e

J k

e

u J ku

ψ

π

χ

δ ⋅

∆  = − − − 


⋅



∫ χ

I

k uk k

nn uu v

k

v

nϒ

 (S52) 

Plugging Eq. (S52) into Eq. (S51) yields the angular integral (excluding some front factors)  

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )T T T
0 2 2 2 12 2 1 .1ˆ ˆ ˆ ˆ ˆ ˆ

6
dk J ku J ku kR k kr j Rξ ξ − − − − 

 ∫ Inn uu vv  (S53) 

Again, Eq. (86) has to be considered separately, for a sphere inside or outside the cylinder. 

 

Sphere outside cylinder 1 2R R u+ <  

The first radial integral including ( )0J ku  in Eq. (S53) is zero which follows from GR(6.573.1), and 

the independence of ( )0 2J kr  and ( )0 2J kR  in the integrand for such combinations of Bessel functions 

and powers8,9 

 ( ) ( ) ( )( ) ( )0 2 2 2 2 1 1 ,0d jkJ ku kR Rkr kξ ξ− =∫  (S54) 

The last integral in Eq. (S53) relating to ( )2J ku  also integrates to zero, which follows from 

GR(6.573.2) and GR(9.180.4) 

 ( ) ( ) ( )( ) ( )1
2 2 2 2 2W 1 1

1

0.1 1
2

dkJ k u kR k R
R

kr jζ ξ ξ
ζ

∆ =−∫   (S55) 
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Hence, Eq. (S53) is zero.  

 

Sphere inside cylinder 1 2u R r+ <  and 1 2R r<  

The last to consider is contributions from spheres residing within the cylinder (i.e. 1 2u R r+ < , 1 2R r<

). The only non-zero radial integral of Eq. (S53) comes from ( )0J ku  (which follows from 

GR(6.573.1)), which is independent of ( )0J ku  8,9. Using GR(6.577.2), Eq. (S53) becomes 

 
( )

( ) ( ) ( )( )2

3 1
2

2
2

0 1  2
2

2
1

1 ln .
2 3

k
J kR

rdk J ku R
R Rk

R krξπ ξ = −−∫  (S56) 

Here we only considered a cylinder made up of a single layer.  This means that we first have to sum 

over spheres inside a single cylinder, either being in the intra-axonal space or in the MW bilayers. 

Summing over all intra-axonal spheres and cylinder layers constituting the multi-layered cylinder of 

the single cylinder we can define a new lambda parameter A
1λ  

 A A
1 W

2
1 n6 l q

q q

r
R

λ
ζ ζ

ζ
 

=   
 

∑ , (intra-axonal spheres), (S57) 

which acts as a correction to the previously derived 1λ  parameter, Equation (S21), for the cylinders. 

Here A
1ζ  is understood as the total volume of spheres in the intra-axonal space of a single cylinder. A 

similar correction arise from spheres within the MW bilayers, where we use M
q

ζ  to indicate the total 

volume fraction of the spheres inside the q’th MW layer 

 'MM
1 W

'2 '

6 ln
q

q

q q q

r
R

λ
ζ

ζ
ζ >

 
=   

 
∑ , (myelin water spheres). (S58) 

Left to do is summing over N cylinders in Eqs. (S57) and (S58). For this we define a combined 

parameter ( )MS A
1

A
1

Mλ λ λ λ λ≡ + = Ν + . Since A Mλ λ+  has an opposite sign of Cλ , the presence 

of spherical inclusions within the intra-axonal space and MW bilayers effectively reduce the Larmor 

frequency shift caused by susceptibility anisotropy χ∆ . This makes sense as it reduces the water 

fraction reporting the Larmor frequency shift from within that compartment.  
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Using Eqs. (S49), (S53) and Sλ , we obtain for the Lorentzian tensor from cylindrical sources and 

spherical targets  

 ( )
S

S C
W

1 1 1
12 2 3 12 3
χ ζ χλ χ

ζ
∆  ∆    = − − + − − +        

L T I T I T I , (S59) 

(Cylinder sources, sphere targets). 

Figure S5 shows a good agreement between Eq. (S59) to our simulation (see description in the 

beginning of the supporting material) for each Lorentzian tensor contribution between the cylinder 

source and intra-axonal spheres (A), spheres in MW (M) or extra-axonal spheres (E) as target, 

respectively. 

 

Figure S5 - Lorentzian tensor eigenvalues from cross-correlation between cylinders and spheres: Here from 
cylinders with susceptibility set to unity C 1χ χ∆ = = , induced in a population of spheres. The ground truth signal 
was made from simulations, where every cylinder layer was associated a magnetic susceptibility tensor, which was 
computed using ( )C φχ , cf. Eq. (S6). The left figure shows the average perpendicular eigenvalue λ⊥ , and the right 

figure shows the parallel λ


, wrt. to the axes of the cylinder. The x-axis shows the densityε of spheres in a given water 
compartment. 
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S4) Lorentzian tensor from relaxed myelin water 
Last to consider is the cross-contribution to the frequency shift when MW is fully relaxed. If MW is 

not relaxed, then W 1ζ ζ= − , i.e. equal to the negated volume fraction of the whole magnetized 

structure. In that case, no additional frequency contributions must be considered. However, when 

MW is fully relaxed, then W MW1ζ ζ ζ= − − , where MWζ  is the volume fraction of all the water in 

the MW compartment. In addition, this gives rise to two additional Lorentzian tensors which must be 

subtracted from our earlier results, since they include the frequency shift in MW:  The first describes 

the frequency shift induced inside MW from cylinders with magnetic susceptibility Cχ , and the 

second describes the frequency shift induced inside MW from all spheres with total magnetic 

susceptibility Sχ . Its contribution to the mesoscopic frequency shift is however easy to deduce, at it 

is basically the same frequency contribution as for the spheres in MW – the only difference is, that 

upon coarse-graining this MW compartment, the density now relates to the water content MWζ  and 

not sphere content Mζ . In total we get the Lorentzian tensor from MW 

 
( )

( ) ( )

W

MW A EM
M

M
MW

W

MW A E
W

C
W

1 1 1
12 2 3 12 3

1 1 1 .11
22 3 3

Cχ ζ

ζ

χλ χ
ζ

ζ

ζ χ χχ ζ ζ ζ
ζ

ζ

∆  ∆    = − − + − − +     

−
+

−

  

   − − 


− − +  
  

− −

L T I T I T I

T I T I

 (S60) 

where 

 ( )W
'M

1
'2 '

MW MW MW
1

6 ln .N ,
q q q

qC C
R r

q q q

R
r

λ ζλ λ
ζ

ζ ζ
ζ >

 
= −= −   

 
∑  (S61) 

The single cylinder parameter MW
1λ  describes the correction for all myelin water within a single 

cylinder of volume fraction 2ζ .  

 

S5) Total Mesoscopic frequency shift MesoΩ  
Combining all contributions to the total mesoscopic frequency shift within our model picture of 

spherical and cylindrical inclusions, we get the total frequency shift associated with magnetic 

microstructure within the mesoscopic sphere  

 Meso T
0
ˆ ˆBγΩ = B LB , (S62) 
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where 

 

( ) ( )

( )A
MW C A E

A

A

C
MW C A E

C M
0

0 W
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C
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1 1
3

1B 1
2 12 3

1

1B
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1B 1
3

1

1
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ζ
ζ ζ ζ ζ
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ζ
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χχ χ γ λ

ζ ζ ζ ζ
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 − 
 

−
 − 





  − −      
 −
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 
 +

 
+ + − 


+

L T

T

T

T









. (S63) 

When MW is fully relaxed, we get the following effective lambda parameter 

 ( )A M MW
1 1 1 1 1N N Cλ λ λ λ λ λ= = + + +  (S64) 

where 

 W
1 W

1

A
1 ln6 .q

q q

r
R

λ
ζ ζ

ζ
 

= −   
 

∑  (S65) 

The volume fraction AW
1ζ  denotes the intra-axonal water fraction inside a single cylinder of volume 

fraction 1ζ . The largest contribution from the magnetic susceptibilities Eχ  and Aχ  scale as 

C W/ 0.5ζ ζ  , but if the susceptibilities are small, then we may neglect the last two terms of Eq. 

(S63). When MW is fully relaxed, MWχ contributes to MesoΩ  in an equal footing as Cχ .  
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Figure S6 – Mesoscopic frequency shift MesoΩ from a multilayer cylinder and external spheres: A shows MesoΩ  
from a 2-layer cylinder with radii and volume fraction shown above. The frequency shift was simulated on 3800 grid 

units. The black line shows MesoΩ  without spheres, and the colored lines indicate different volume fractions Cζ of 
external spheres. The different lines for each color represent different radii of the spheres. B shows the same as A, but 
for a single layer cylinder. 

 

Since our result for Eq. (S63) does consider any effects associated with a finite sphere radii, as the  

distribution of spheres in every water compartment was coarse grained (see A2), we include here an 

additional validation of Eq. (S63) for different sphere radii. Figure 15 shows Meso C
0/ Bγ χΩ  where 

C S 0χ χ χ= ∆ = − <  for a single cylinder of one and two layers, with radii iR  and volume fraction 

Cζ  described in Figure S6. The frequency shift was simulated on a grid of dimensions 3800 , similar 

to the supporting simulation . The volume fraction Sζ  of spheres external to the cylinder was varied 

from 0.01 to 0.2 which is indicated by different colored lines. The black line indicates no spheres. For 

each volume fraction Sζ , the sphere radii were varied from 8 to 40 grid units and can be seen as the 

multiple lines for each color. We find that our model agrees with the simulations, not only for 
Meso C

0/ Bγ χΩ from the cylinder alone (black line), but also the overall effect from the spheres. A 

small variation can be seen for each color from varying the radii, but this uncaptured dependence on 

sphere radius is small compared to the overall magnitude of Meso C
0/ B .γ χΩ  
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S6) Macroscopic contribution ( )MacroΩ R  

Last to consider is the macroscopic contribution from nearby voxels in the limit of a slowly varying 

magnetic microstructure on the macroscale. We previously found2 this to be 

 ( ) ( ) ( )Macro T
0
ˆ ˆB .γ

′

′ ′Ω = −∑
R

R B R R χ R BΥ  (S66) 

Using Eq. (S15) for the coarse-grained magnetic susceptibility of a cylinder and summing over them 

all including the bulk susceptibility across all spheres we get 

 ( ) ( ) ( ) ( )( ) ( ) ( )Macro T C S
0

1ˆ ˆB
2 3

χ
γ χ χ

′

′∆  ′ ′ ′ ′Ω = − + − −  
  

∑
R

R
R B R R R R I T R I BΥ . (S67) 

S7) Integrals and identities 
Here we list all the non-trivial integrals and identities used from the table by Gradshteyn and Ryzhik 
1, seventh edition. Equation numbers corresponds to the table numbers in their book. Identities have 

also been validated numerically.  

( ) ( ) ( ) ( ) ( ) ( )1
1 /1

2 2
0

, [ , 1], GR(5.521.1)
J x J x J x J x

dxxJ x J x ν ν ν ν
ν ν

β β α α α β
α β α β ν

α β
− −

= ≠ > −
−∫  

 

( ) ( )1 0
0

1 , GR(6.511.7)
a

dxJ x J a= −∫  

 

( ) ( ) ( )1 2 , GR(8.471.1)xJ x xJ x xJ xν ν ν− +1+ =  

 

( )( ) ( )0 12 2
0

1 2 ln , [0 ]
1 41 , GR(6.533.3)
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4

b a b a
bdx J ax J bx

x a a b
b

∞

   − + < <      − = 
 − < <

∫  
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( )( ) ( ) ( )
2
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where 4F  is the Appell hypergeometric series of two variables  

( ) ( ) ( )
( ) ( )

( ) ( )

4
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0
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∏
 

and ( )m
α  is the Pochhammer symbol. 
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S8) Supplementary figures for simulation b) 
 

 
Figure S7 – Simulation (b): Susceptibility fitting maps. Fitting maps for various numbers of sample orientations and a 
fixed SNR=50 and maximum tilt angle of 90 degrees. 
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Figure S8 – Simulation (b): Susceptibility fitting maps. Fitting maps for various maximum tilt angles and a fixed 
SNR=50 and 21 sample orientations. 
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