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Supplementary Figures: 

 

 

Supplementary Figure 1. Probability distributions (top) and corresponding cw-EPR spectra (bottom) 

of the three calculated model datasets model 1 (left), model 2 (center) and model 3 (right). 

 

 

Supplementary Figure 2. Exemplary representation of normalized EPR spectra of kernel 𝐴. To 

generate the kernel, the magnetic field axis is discretized into 𝑛 steps and the parameter axis is 

discretized into 𝑘 steps. The color gradient shows exemplary cw-EPR spectra from 𝜆 =  0 (black) to 

𝜆 =  0.33 (red) in steps of 0.03. The following parameters were used: 𝑆´ =  1/2, 𝑔𝑥  =  𝑔𝑦  =  2.00, 

𝑔𝑧  =  2.03, and an intrinsic linewidth of 1 mT. All simulations were performed using the EasySpin 

algorithm pepper1.   
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Supplementary Figure 3. Results of Tikhonov regularization of model 1, 2 and 3 using the different 

regularization operators 𝐿0, 𝐿1 and 𝐿2. The theoretical distribution functions  𝑃Theo(𝜆) are shown as 

green areas. The optimal results of the regularization 𝑃(𝜆), using a Gaussian noise model with a S/N of 

20, are depicted as black curves. 𝛼Opt was determined using the GCV method.  
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Supplementary Figure 4. Comparison of regularization results of models 1, 2 and 3 with and without 

Osher-Bregman iteration. Either a Gaussian noise model with a S/N of 20 (upper panels), or a 1/𝑓noise 

model with a S/N of 20 (lower panels) were applied. 𝐿2 was used as regularization operator, 𝛼𝑂pt was 

determined using the GCV method.  𝑃Theo(𝜆) is shown as green areas, and 𝑃(𝜆) as black curves. 
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Supplementary Figure 5. 𝜌(lwpp) of models 1, 2 and 3 is plotted against lwpp. Each model was 

analyzed with a Gaussian noise model and a S/N of 20 and 200, respectively. The true intrinsic linewidth 

is lwpp =  1 mT (black dot). Red and blue dots correspond to a linewidth of 0.2 mT and 2.0 mT. The 

corresponding probability distributions and spectra are plotted in Supplementary Figures 7, 9 and 10, 

and are compared with  𝑃Theo(𝜆). Even a low S/N of 20 yields to a very good agreement between the 

minimum of 𝜌(lwpp) and the true linewidth. 
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Supplementary Figure 6. 𝜌(lwpp) of models 1, 2 and 3 is plotted against lwpp. Each model was 

analyzed with a 1/f noise model and a S/N of 20 and 200, respectively. The true intrinsic linewidth is 

lwpp =  1 mT (black dot). Red and blue dots correspond to a linewidth of 0.2 mT and 2.0 mT, 

respectively. The corresponding probability distributions and spectra are plotted in Supplementary 

Figures 7, 11 and 12, and are compared with  𝑃Theo(𝜆). Even a low S/N of 20 yields to a very good 

agreement between the minimum of 𝜌(lwpp) and the true linewidth. 
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Supplementary Figure 7. Normalized probability distributions of models 1, 2, and 3. Each model was 

analyzed with a Gaussian noise and a S/N of 20 and 200, respectively. The black curve shows the result 

of the regularization for the true linewidth (1.0 mT), the red curve for a linewidth that is too small 

(0.2 mT) and the blue curve for a linewidth that is too large (2.0 mT). The theoretical distribution 

 𝑃Theo(𝜆) is shown as green areas.  
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Supplementary Figure 8. Normalized probability distribution of models 1, 2, and 3. Each model was 

analyzed with a 1/f noise and a S/N of 20 and 200, respectively. The black curve shows the result of the 

regularization for the true linewidth (1.0 mT), the red curve for a linewidth that is too small (0.2 mT) 

and the blue curve for a linewidth that is too large (2.0 mT). The theoretical distribution  𝑃Theo(𝜆) is 

shown as green areas.  
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Supplementary Figure 9. Comparison of the calculated cw-EPR spectra of models 1, 2 and 3 with the 

results of the regularization. The correct spectra were calculated with a Gaussian noise (S/N = 20) and 

a linewidth of 1.0 mT (green curves). The black spectra display the regularization result for a correct 

linewidth of 1.0 mT, the red spectra for a too small linewidth of 0.2 mT and the blue spectra for a too 

large linewidth of 2.0 mT. 
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Supplementary Figure 10. Comparison of the calculated cw-EPR spectra of models 1, 2 and 3 with the 

results of the regularization. The correct spectra were calculated with a Gaussian noise (S/N = 200) 

and a linewidth of 1.0 mT (green curves). The black spectra display the regularization result for a correct 

linewidth of 1.0 mT, the red spectra for a too small linewidth of 0.2 mT and the blue spectra for a too 

large linewidth of 2.0 mT. 
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Supplementary Figure 11. Comparison of the calculated cw-EPR spectra of models 1, 2 and 3 with the 

results of the regularization. The correct spectra were calculated with a 1/f noise (S/N = 20) and a 

linewidth of 1.0 mT (green curves). The black spectra display the regularization result for a correct 

linewidth of 1.0 mT, the red spectra for a too small linewidth of 0.2 mT and the blue spectra for a too 

large linewidth of 2.0 mT. 
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Supplementary Figure 12. Comparison of the calculated cw-EPR spectra of models 1, 2 and 3 with the 

results of the regularization. The correct spectra were calculated with a 1/f noise (S/N = 200) and a 

linewidth of 1.0 mT (green curves). The black spectra display the regularization result for a correct 

linewidth of 1.0 mT, the red spectra for a too small linewidth of 0.2 mT and the blue spectra for a too 

large linewidth of 2.0 mT. 
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Supplementary Figure 13. Results of the Grid-of-Error method for models 1, 2 and 3 with different 

noise models and S/N ratios. The theoretical distribution functions  𝑃Theo(𝜆) are shown as green areas, 

the black curves are the optimal results of the grid-of-error method.  
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Supplementary Figure 14. Experimental cw-EPR spectra (black) 2 of freeze-quenched Azotobacter 

vinelandii nitrogenase complexes during turnover before (left) and after (middle) low-temperature blue 

light irradiation. Results from regularization are shown in red. Right: Corresponding probability 

distributions obtained from regularization before (blue) and after blue light illumination (magenta). The 

dashed lines are the λ-values which were computed from the effective 𝑔-values given by Lukoyanov et. 

al. 2. The data sets were kindly provided by Prof. Brian Hoffman. A baseline correction and a data point 

interpolation was applied to reduce regularization artifacts.  
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Supplementary Figure 15. Experimental cw-EPR spectra (black) of nitrogenase from Azotobacter 

vinelandii (AvI, left) and from Clostridium pasteurianum (CpI, right), recorded at three different pH 

values. Data were taken from 3, the results from regularization are depicted in red. Fourth row: The 

probability distributions obtained by the regularization at different pH values (black: pH 8.0, magenta: 

pH 6.5 and blue: pH 5.0). Dashed lines represent the published λ-values 3. A baseline correction was 

applied to all data sets to reduce regularization artefacts.     
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Supplementary Figure 16. Full-range X-Band cw-EPR spectra of samples (A) AvI-WT, (B) AvI-S, 

(C) AvI-33S, (D) AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-Se-C2H2, (G) AvI-Se-low, (H) AvI-
77Se2B, (I) AvI-S-remigration. Spectra were measured with a microwave power of 37.7 mW at T = 5 K. 

Experimental details and parameters can be found in the Experimental section of the main text. 
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Supplementary Figure 17. Intensity comparison of the cw-EPR spectra of the differently prepared 

FeMo cofactors. To eliminate effects of the individual samples, all spectra were normalized to their 

respective protein concentration as well as to their sample volume, and a baseline was subtracted before 

and after each integration step while keeping all other parameters identical. The respective cw-EPR 

spectra are shown on the left, the integrated spectra in the center and the doubly integrated spectra are 

shown on the right side. This double integral corresponds to the total spin concentration of the respective 

spectrum. The individual samples are as follows: AvI-WT (black), AvI-Se2B-1 (magneta), AvI-77Se 

(red), AvI-33S (blue), AvI-Se-low (cyan) and AvI-Se-C2H2 (green). Experimental details and parameters 

can be found in the Experimental section of the main text. 
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Supplementary Figure 18. X-band cw-EPR spectra of samples AvI-WT and AvI-Se2B-1 in the range 

of the resonances of the upper Kramers Doublet (𝑔𝑧
3/2

≈ 6 = ≈ 110 mT). In the top panel the sample 

AvI-WT is shown at 6 K, and in the other two panels the sample AvI-Se2B-1 is shown at 6 K and at 

15 K, respectively. Experimental details and parameters can be found in the Experimental section of the 

main text. 
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Supplementary Figure 19. Exemplary 𝜌(lwpp) graphs of samples (A) AvI-WT, (B) AvI-S, (C) AvI-
33S, (D) AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-Se-C2H2, (G) AvI-Se-low, (H) AvI-77Se2B, (I) 

AvI-S-remigration, calculated from cw-EPR spectra measured with a microwave power of 0.095 mW 

at T = 6 K. Experimental details and parameters can be found in the Experimental section of the main 

text. 
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Supplementary Figure 20. X-Band cw-EPR spectra (black) of samples (A) AvI-WT, (B) AvI-S, (C) 

AvI-33S, (D) AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-Se-C2H2, (G) AvI-Se-low, (H) AvI-77Se2B, 

(I) AvI-S-remigration, measured with a microwave power of 0.095 mW at T = 6 K. Calculated spectra 

obtained from regularization using a linewidth of 2.5 mT are depicted in red. Experimental details and 

parameters can be found in the Experimental section of the main text. 
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Supplementary Figure 21. X-Band cw-EPR spectra (black) of samples (A) AvI-WT, (B) AvI-S, (C) 

AvI-33S, (D) AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-Se-C2H2, (G) AvI-Se-low, (H) AvI-77Se2B, 

(I) AvI-S-remigration, measured with a microwave power of 0.095 mW at T = 9 K. Calculated spectra 

obtained from regularization using a linewidth of 3 mT are depicted in red. Experimental details and 

parameters can be found in the Experimental section of the main text. 
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Supplementary Figure 22. X-Band cw-EPR spectra (black) of samples (A) AvI-WT, (B) AvI-S, (C) 

AvI-33S, (D) AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-Se-C2H2, (G) AvI-Se-low, (H) AvI-77Se2B, 

(I) AvI-S-remigration, measured with a microwave power of 0.095 mW at T = 12 K. Calculated spectra 

obtained from regularization using a linewidth of 3.5 mT are depicted in red. Experimental details and 

parameters can be found in the Experimental section of the main text. 
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Supplementary Figure 23. Normalized probability distributions obtained from regularization of all cw-

EPR spectra at 6 K (black), 9 K (red) and 12 K (blue) using a microwave power of 0.095 mW. 

Linewidths of 2.5, 3.0 and 3.5 mT were used for temperatures 6, 9 and 12 K, respectively. The samples 

are as follows: (A) AvI-WT, (B) AvI-S, (C) AvI-33S, (D) AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-

Se-C2H2, (G) AvI-Se-low, (H) AvI-77Se2B, (I) AvI-S-remigration. Experimental details and parameters 

can be found in the Experimental section of the main text. 
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Supplementary Figure 24. Normalized probability distributions obtained from regularization of cw-

EPR spectra at 5 K using different microwave powers (from 0.025 to 39.4 mW). An intrinsic linewidth 

of 2.0 mT was used for the regularization. The samples are as follows: (A) AvI-WT, (B) AvI-33S; (C) 

AvI-Se2B-1; (D) AvI-Se-low; (E) AvI-Se-C2H2; (F) AvI-Se-77Se. Experimental parameters: Modulation 

amplitude 0.6 mT, microwave frequency 9.37 GHz, conversion time 163.84 ms, time constant 335.54 

ms. 
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Supplementary Figure 25. 2-dimensional representation of the probability distribution P(𝜆,lwpp) 

obtained by the grid-of-errors method at a temperature of T = 5 K and a microwave power of 0.377 mW. 

The intensity of the distribution is shown in shades of color (from blue via green to yellow). The samples 

are as follows: (A) AvI-WT, (B) AvI-S, (C) AvI-33S, (D) AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-

Se-C2H2, (G) AvI-Se-low, (H) AvI-77Se2B, (I) AvI-S-remigration. Experimental details and parameters 

can be found in the Experimental section of the main text. 
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Supplementary Figure 26. Quantification of individual Se-species with a Multi-Gaussian fit. 

Regularizations taken from Figure 3 (black) of samples AvI-Se2B-1, Av1-Se2B-lowflux, AvI-77Se2B, 

AvI-Se-C2H2, AvI-Se-low, and AvI-S-remigration were analyzed using up to five Gaussian functions 

(red dashed lines).  

 

  



27 
 

 

 

Supplementary Figure 27. Light-induced experiments of samples AvI-Se2B-1 (left) and AvI-Se-low 

(right). Samples were recorded in the dark (black), after 10 min of blue light illumination (red), after 16 

h of cryo-annealing (blue), and after a second round of blue light illumination subsequent to cryo-

annealing (magenta). Cw-EPR spectra are shown in the upper panels, normalized distributions obtained 

by regularization are shown in the lower panels. For experimental details, see Methods section. 
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Supplementary Figure 28. Transient nutation experiments at B0 = 660 mT using a microwave 

frequency of 33.8 GHz. The samples are depicted as follows: (A) AvI-WT, (B) AvI-S, (C) AvI-33S, (D) 

AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-Se-C2H2, (G) AvI-Se-low, (H) AvI-77Se2B, (I) AvI-S-

remigration. Experimental details and parameters can be found in the Experimental section of the main 

text. 
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Supplementary Figure 29. Magnetic field dependence of 𝑇M
eff for samples (A) AvI-WT, (B) AvI-S, (C) 

AvI-33S, (D) AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-Se-C2H2, (G) AvI-Se-low, (H) AvI-77Se2B, 

(I) AvI-S-remigration. Experimental details and parameters can be found in the Experimental section of 

the main text. 
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Supplementary Figure 30. Magnetic field dependence of 𝑇1
eff for samples (A) AvI-WT, (B) AvI-S, (C) 

AvI-33S, (D) AvI-Se2B-1, (E) AvI-Se2B-lowflux, (F) AvI-Se-C2H2, (G) AvI-Se-low, (H) AvI-77Se2B, 

(I) AvI-S-remigration. Experimental details and parameters can be found in the Experimental section of 

the main text. 
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Supplementary Figure 31. Magnetic-field dependent 3P-ESEEM experiments recorded at Q-band 

(microwave frequency 33.8 GHz). The samples are shown as follows: (A) AvI-WT, (B) AvI-S, (C) AvI-
33S, (D) AvI-Se2B-1, (E) AvI-77Se2B. The intensities are depicted as a color gradient from low (blue) 

via green to high intensity (yellow/orange). In order to better visualize the intensities and couplings, 

each 3P-ESEEM spectrum was normalized to the respective maximum for each magnetic field point. 
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Supplementary Tables:  

 

Supplementary Table 1. 𝜆-mean values, standard deviations 𝜎𝑖, and weighting 𝑤𝑖 of each Gaussian 

distribution of the three model systems. The theoretical distribution 𝑃Theo is then given by: 

𝑃Theo(𝜆) = ∑ 𝑤𝑖𝑔𝑖(𝜆)𝑖        (Eq. 1) 

with 

𝑔𝑖(𝜆) =
1

√2𝜋𝜎𝑖
2

exp (−
(𝜆−𝜆𝑖)

2

2𝜎𝑖
2 )      (Eq. 2) 

   

model 1 model 2 model 3 

𝜆-mean 

value 

 

𝜆𝑖 

standard 

deviation 

𝜎𝑖 

statistical 

weight  

𝑤𝑖  

𝜆-mean 

value 

 

𝜆𝑖 

standard 

deviation 

𝜎𝑖 

statistical 

weight 

𝑤𝑖  

𝜆-mean 

value 

 

𝜆𝑖 

standard 

deviation 

𝜎𝑖 

statistical 

weight  

𝑤𝑖 

0.03 0.010 0.4 0.02 0.005 0.20 0.02 0.010 0.20 

0.15 0.025 0.3 0.05 0.005 0.40 0.05 0.010 0.40 

0.28 0.020 0.6 0.08 0.010 0.60 0.08 0.015 0.60 

   0.12 0.015 0.40 0.12 0.025 0.40 

   0.17 0.020 0.65 0.17 0.030 0.65 

   0.23 0.022 0.45 0.23 0.035 0.45 

   0.25 0.010 0.50 0.25 0.020 0.50 

 

 

 

Supplementary Table 2. Multi-Gaussian Fitting of the probability distributions of Se-modified samples 

using a fit with 5-Gaussian functions. The statistical weights 𝑔𝑘 are listed on the right side of the Table. 

 𝝀𝒌- from fit 𝒘𝒌- from fit: × 𝟏𝟎−𝟒 

Sample 𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒 𝝀𝟓 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓 𝒘𝐭𝐨𝐭 

Av1-Se2B-1 0.032 0.056 0.078 0.114 0.181 0.572 0.854 1.159 1.784 0.599 4.968 

Av1-Se2B-lowflux 0.033 0.058 0.087 0.112 0.183 0.736 1.745 0.935 1.531 0.148 5.094 

Av1-77Se2B 0.031 0.056 0.081 0.114 0.192 0.700 1.004 0.527 1.870 0.871 4.972 

Av1-Se-C2H2 0.034 0.059 0.084 0.119 0.188 0.969 1.053 1.126 1.691 0.219 5.058 

Av1-Se-low 0.033 0.058 0.079 0.119 0.191 1.223 0.424 1.110 1.963 0.327 5.048 

Av1-S-remigration 0.033 0.057 0.085 0.112 0.137 0.205 1.541 2.001 0.601 0.609 4.958 
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Supplementary Notes:  

 

Theoretical background of the regularization and grid-of-errors methods.  

Protein-cofactor interactions modulate selectively the properties of (metal) cofactors, leading to an 

inhomogeneous broadening of their magnetic parameters. Such effects can be approximated by a random 

distribution of the EPR parameters, especially the 𝑫-tensor and the 𝒈-tensor, simply by using Gaussian 

distributions, so-called strain models4-7. These simple strain models are valid as long as the width of the 

distribution is small compared to its magnitude. 

On the other hand, zero-field splitting strains on high-spin systems are often large with respect to their 

magnitude and hence, their correct description is crucial for a correct analysis of EPR data sets8. If the 

distribution of an EPR relevant parameter is broad and/or of unknown distribution, strain models cannot 

reproduce experimental datasets correctly and hence, other approaches become necessary. In this study, 

the EPR spectra of various Se- and S-exchanged FeMo cofactors were analyzed by two independent 

methods: A Tikhonov regularization and the grid-of-error approach8 were utilized to analyze the 

complicated splitting patterns and the result compared in terms of accuracy and speed. Grid methods 

can be very time-consuming if more than one parameter is modelled, but they are highly potent for 

obtaining unknown parameter distributions. Both methods are introduced in the next paragraph. 

 

Spin-Hamiltonian of the FeMo-Cofactor.  

The EPR spectra of a high-spin system (𝑆 >  1/2) can be described by the following Hamiltonian: 

𝐻 = 𝐻Zee + 𝐻ZFS = 𝜇B𝑺𝒈𝑩𝟎 +   𝑺𝑫𝑺. Here, 𝐻Zee is the electron Zeeman Hamiltonian and 𝐻ZFS =

𝐷 (𝑆z
2 −

𝑆(𝑆+1)

3
) + 𝐸(𝑆x

2 − 𝑆y
2) = 𝐷 (𝑆z

2 −
𝑆(𝑆+1)

3
± 𝜆(𝑆x

2 − 𝑆y
2))  describes the zero-field-Hamiltonian 

with 𝐷 as the zero-field splitting parameter and 𝜆 = |𝐸/𝐷| as the rhombicity (0 ≤ 𝜆 ≤
1

3
) 9. The 

Hamiltonian of a zero-field splitting together with the electronic Zeeman Hamiltonian can be solved for 

the magnetic field along the principal 𝒈-tensor axes10. For the resting state of FeMo cofactor in Av1, 

typical zero-field splitting parameters are 𝐷 ≈ 180 GHz, 𝜆 ≈ 0.05 and a total spin quantum number of 

S = 3/2. This leads to a splitting of the energy levels (𝑚𝑠 = ±
1

2
 and 𝑚𝑠 = ±

3

2
) of Δ = 2𝐷√1 + 3𝜆2 ≈

360 GHz11,12. (For small 𝜆-values, Δ ≈ 2𝐷 can be assumed). As the electron Larmor frequency, defined 

by the external magnetic field 𝐵0, is much smaller than the zero-field splitting, |Δ| ≫ |𝜇𝐵𝐵0𝑔| = 𝑓MW, 

both Kramers doublets can be treated separately and each doublet can be described by a fictitious 𝑆’ =

 1/2 spin system with effective 𝑔′-tensor components. In this case the effective principal 𝑔′-values can 

be determined from the energy levels of the separated Kramers duplets10,13,14: 

𝑔′z
1/2

= 𝑔z [
2

√1+3𝜆2
− 1] 𝑔′z

3/2
= 𝑔z [

2

√1+3𝜆2
+ 1]  

𝑔′y
1/2

= 𝑔y [
1+3𝜆

√1+3𝜆2
+ 1]  𝑔′y

3/2
= 𝑔y [

1+3𝜆

√1+3𝜆2
− 1]   (Eq. 3) 

𝑔′x
1/2

= 𝑔x [
1−3𝜆

√1+3𝜆2
+ 1]  𝑔′x

3/2
= 𝑔x [−

1−3𝜆

√1+3𝜆2
+ 1]  
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The superscripts 1/2 and 3/2 denote the lower and upper Kramers doublet, respectively, and the 

subscript denotes the principal axis of the respective 𝒈-tensor. The equations clearly show that the 

principal values of the 𝒈′-tensor are functions of 𝜆. In case of Δ > 0, the Kramers doublet 𝑚𝑆 = ±1/2 

is lower in energy than the Kramers doublet 𝑚𝑆 = ±3/2, and thus the lower Kramers doublet dominates 

the EPR spectrum of the FeMo cofactor in its resting-state. Please note that the Kramers doublet 𝑚𝑆 =

±1/2 obeys the selection rule Δ𝑚𝑠 = ±1, while the Kramers doublet 𝑚𝑆 = ±3/2 obeys Δ𝑚𝑆 = ±3 

and thus is an unlikely transition. 

 

Tikhonov regularization.  

A data set of a cw-EPR spectrum, 𝑦(𝐵0), is assumed. This data set with 𝑛 data points can be described 

by a statistical probability distribution density 𝑝(𝜆) and can be written as a Fredholm integral 𝑦 =

𝑦(𝐵0) = ∫ 𝑎(𝜆, 𝐵0)𝑝(𝜆)d𝜆
𝑏2

𝑏1
 with 𝑎(𝜆, 𝐵0) being the kernel15. By discretization of the distribution 𝑝(𝜆) 

in 𝑘 steps, the integral can be approximated by 𝒚 ≈ 𝑨 ⋅ 𝑷 with 𝑨 being a 𝑛 × 𝑘 matrix and 𝑷 = 𝑷(𝜆) a 

vector of length 𝑘16,17. This matrix equation 𝒚 = 𝑨 ⋅ 𝑷 leads to an ill-posed problem, which can be solved 

by regularization16,18-22. In principle, such a problem is similar to the determination of probability 

distributions in PELDOR/DEER data sets, and therefore, Tikhonov regularization can be applied15,23,24. 

Its solution is20-22: 

𝑷̂(𝜆) = argmin
𝑃(𝜆)≥0 

(
1

2
‖𝑨𝑷 − 𝒚‖2

2 +
𝛼2

2
 ‖𝑳𝑷‖2

2)     (Eq. 4) 

with ‖… ‖2 being the Euclidian metric and 𝑳 the regularization operator. The constraint 𝑷(𝜆) ≥ 0 is 

necessary as 𝑷(𝜆) is a positive probability distribution. Usually, the identity operator (𝑳 = 𝑳0 = 𝐢𝐝), 

the first (discrete) derivative (𝑳 = 𝑳1) or the second (discrete) derivative (𝑳 = 𝑳2) are used22:  

𝑳0 = (

1 0
0 ⋱

… 0
⋱ ⋮

⋮ ⋱
0 …

⋱ 0
0 1

) ;  𝑳1 = (

−1 1
0 ⋱

 0
⋱  

 ⋱
0  

⋱ 1
0 −1

) ; 𝑳2 = (

−2 1
1 ⋱

 0
⋱  

 ⋱
0  

⋱ 1
1 −2

) (Eq. 5) 

The parameter 𝛼 is the regularization parameter. Overly large values of 𝛼 lead to over-smoothing of the 

results, while too small 𝛼 values lead to artifacts due to ill-posed problems16. The determination of the 

optimal 𝛼 value (𝛼Opt) is thus of high importance to find the best solution of 𝑷̂(𝜆). Several established 

methods were used to determine 𝛼Opt
21,22. First, the L-curve criterion22,25 was used:  

𝛼Opt = argmin
𝛼

{(
𝜌−𝜌min

𝜌max−𝜌min
)

2
+ (

𝜂−𝜂min

𝜂max−𝜂min
)

2
}     (Eq. 6) 

with 𝜌 = log (‖𝑨𝑷̂ − 𝒚‖
2

2
) and 𝜂 = log (‖𝑳𝑷̂‖

2

2
). Second, the generalized cross validation (GCV) 

method was used22,26,27:  

𝛼Opt = argmin
𝛼

{
‖𝑨𝑷̂−𝒚‖

2

2

(1−
tr(𝑯𝛼)

𝑘
)

2}        (Eq. 7) 
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with 𝑯𝛼 = 𝑨(𝑨T𝑨 + 𝛼2𝑳T𝑳)
−1

𝐴T, tr(… ) is the trace of the matrix and 𝑘 as the rank of the matrix 𝐻𝛼, 

while  T denotes the transposed matrix. Moreover, the robust GCV method (rGCV) was tested22,28: 

𝛼Opt = argmin
𝛼

{
‖𝑨𝑷̂−𝒚‖

2

2

(1−
tr(𝑯𝛼)

𝑘
)

2 [𝛾 + (1 − 𝛾)tr (
𝑯𝛼

2

𝑘
)]}     (Eq. 8) 

with 𝛾 = 0.8. Finally, two information criterion techniques, the Akaike information criterion (AIC)29 

and the Bayesian information criterion (BIC)30, were tested21,22: 

𝛼Opt = argmin
𝛼

{𝑘ln (
‖𝑨𝑷̂−𝒚‖

2

2

𝑘
) + 𝑏tr(𝑯𝛼)}      (Eq. 9) 

𝑏 = 4 was used for AIC and 𝑏 = 2ln(𝑘) for BIC. 

To solve the ill-posed problem, Eq. 4 can be transformed into a quadric programming problem by using 

‖𝒙‖2
2: =< 𝒙, 𝒙 > = 𝒙T𝒙: 

𝑃̂(𝜆) = argmin
𝑃(𝜆)≥0 

(
1

2
𝑷T𝑯𝑷 + 𝒇T𝑷)       (Eq. 10) 

with 𝑯 = 𝑨T𝑨 + 𝛼2𝑳T𝑳 and 𝒇T = −𝑨T𝒚. (The constant term 𝒚𝑇𝒚 in Eq. 10 can be ignored for the arg-

minimization). This quadric programming problem can be solved, i.e., by using the Matlab algorithm 

“quadprog” from the Optimization toolbox. 

Beside the regularization in Eq. 4, we implemented an iterative Osher-Bregman iteration31,32 as 

recommended in Ref. 21 in the context of the analysis of DEER data sets. This method is given by an 

iterative form21,31: 

𝑷̂𝑖+1(𝜆) = argmin
𝑷(𝜆)≥0 

(
1

2
‖𝑨𝑷 − 𝒚‖2

2 +
𝛼2

2
 ‖𝑳𝑷‖2

2+< 𝑷, 𝝓𝑖 >)   (Eq.11) 

with 𝝓𝑖 = 𝝓𝑖−1 + 𝑨𝑇(𝑨𝑷̂𝑖 − 𝒚) and 𝝓0 = 𝟎 as starting condition. The iteration stops when the 

standard deviation 𝜎(𝒚 − 𝑨 𝑷̂𝑖) approximately reaches the noise level 𝜎N: (𝜎(𝒚 − 𝑨 𝑷̂𝑖) ≈ 𝜎N). 

 

Model systems.  

To determine the quality of the regularization, a number of theoretical model distributions and resulting 

EPR spectra were calculated. Three different models (model 1, model 2 and model 3) with arbitrary 

probability distributions 𝑷Theo(𝜆) were tested. We always used a multi-Gaussian distribution with up 

to seven independent Gaussian functions of different width and height (Supplementary Figure 1 and 

Supplementary Table 1). From these 𝑷Theo(𝜆) distributions, the respective X-band cw-EPR model 

spectra were calculated using the EasySpin algorithm “pepper”1. For each 𝜆-value the cw-EPR spectrum 

𝑆(𝜆) was calculated using an 𝑆 = 3 2⁄  spin system with 𝐷 = 180 GHz and 𝑔𝑥 = 𝑔𝑦 = 2.00 and 𝑔𝑧 =

2.03, and a fixed line shape. 𝜆 was discretized in 667 steps. The microwave frequency was set to 9.4 GHz 

and each spectrum was simulated in a range from 30 to 550 mT with 𝑛  = 8192 data points assuming a 

temperature of 𝑇 =  5 K. The theoretical spectrum is given by: 𝒚Theo = ∑ 𝑃Theo(𝜆)𝑺(𝜆)𝜆 . Noise was 

added afterwards to each theoretical spectrum. A 1/𝑓- and a Gaussian-noise model were used, each with 
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a signal-to-noise ratio (S/N) of 20 or 200. For regularization, the kernel matrix 𝐴 (see Supplementary 

Figure 2 for EPR spectra of exemplary 𝜆 values) was calculated with the fictitious 𝑆′ = 1/2 spin system 

of the lower Kramers doublet (Eq. 3). To compare the results of the regularization 𝑃̂ with 𝑃Theo the 𝑅2 

coefficient was used21: 

𝑅2 = 1 −
∑ (𝑃Theo(𝜆)−𝑃̂(𝜆))

2
𝜆

∑ (𝑃̂(𝜆)−〈𝑃̂〉)2
𝜆

       (Eq. 12) 

Here, 〈𝑃̂〉 is the average of 𝑃̂(𝜆). 

As described above, the 𝛼Opt value was calculated by the L-curve criterion, the GCV, the rGCV, the 

AIC and the BIC methods. Additionally, all three regularization operators 𝑳0, 𝑳1 and 𝑳2 were tested. 

The regularization was performed with and without the Osher-Bregman iteration22,31. By comparing the 

regularization result 𝑃̂ with the theoretical distribution 𝑃Theo, a number of conclusions, mostly in line 

with published analyses of simulated DEER data sets22, could be drawn: 

First, the operators 𝑳1 and 𝑳2 gave comparable results, while the results using operator 𝐿0 were 

significantly worse (Supplementary Figure 3).  

Second, the GCV, the rGCV and the AIC methods (Eq. 7-9) were able to determine good values of 

𝛼Opt, while the L-curve method (Eq. 6) and the BIC method (Eq. 9) tended to lead to an over-smoothing 

of the results. 

Finally, the Osher-Bregman iteration shows an improvement of the regularization result for a Gaussian 

noise model (Supplementary Figure 4), in particular for a low S/N of 20 (in line with reference 21). 

However, the iteration showed more artifacts, if a 1/𝑓-noise model with a low S/N of 20 was used 

(Supplementary Figure 4).  

 

Regularization and linewidth parameters.  

So far, we assumed that the EPR spectra of nitrogenases are only dominated by an arbitrary distribution 

of the 𝜆 parameter, and have ignored other parameters that can influence the shape of an EPR spectrum. 

However, “intrinsic” line shapes may be affected, for example, by relaxation, field inhomogenities, non-

resolved hyperfine couplings, and/or other small strains such as hyperfine- and/or 𝑔-strains. A simple 

method was implemented to take these influences into account: The kernel 𝐴 is calculated for different 

intrinsic peak-to-peak line shapes (lwpp). Now the regularization is performed as described above for 

each kernel 𝐴lwpp by solving: 

𝑷̂(𝜆) = argmin
𝑃(𝜆)≥0 

(
1

2
‖𝑨lwpp𝑷 − 𝒚‖

2

2
+

𝛼2

2
 ‖𝑳𝑷‖2

2)    (Eq. 13) 

Afterwards, the graph 

𝜌(lwpp) = log (‖𝑨lwpp𝑷̂ − 𝒚‖
2

2
)      (Eq. 14) 

is plotted against lwpp. The minimum of this function should represent the optimal intrinsic line shape. 

This procedure was tested using the calculated spectra of models 1, 2 and 3. All regularizations were 
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performed using operator 𝐿2 without Osher-Bregman iteration, and 𝛼Opt was determined by the GCV 

method. The parameter lwpp was discretized in 0.2 mT steps. Supplementary Figures 5 and 6 shows 

the 𝜌(lwpp) curves for the case of an intrinsic Lorentzian linewidth of 1 mT, the respective probability 

distributions are depicted in Supplementary Figures 7 and 8, and the respective cw-EPR spectra in 

Supplementary Figures 9–12. This method provides very good results for high S/N of 200 and 

accurately reveals the chosen linewidth. Only at low signal-to-noise ratios (S/N =  20) the minima of 

the 𝜌(lwpp) curves become wider and shallower. As the experimental cw-EPR spectra analyzed in this 

study do have sufficiently high signal-to-noise ratios, this procedure is an easy and promising approach 

for determining the intrinsic linewidth. 

 

Tikhonov regularization of selenium- and sulfur-labeled FeMo cofactors.  

First, the cw-EPR spectrum of the resting state FeMo cofactor was simulated to determine the effective 

principal values of 𝑔𝑥
′ 1/2

= 3.664, 𝑔𝑦
′ 1/2

= 4.309, 𝑔𝑧
′ 1/2

= 2.012. From these values the real principal 

values (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) were calculated by solving 𝐸𝑞. 1 and assuming 𝑔𝑥 = 𝑔y. By doing so, 𝑔𝑥 = 𝑔𝑦 =

2.00 and 𝑔𝑧 = 2.03 were obtained in good agreement with literature values12. These values were kept 

fixed in all following calculations. The parameter 𝜆 was discretized in 667 steps (0 ≤ 𝜆 ≤
1

3
), and the 

resulting EPR spectrum was calculated for each 𝜆 value. For the 𝜌(lwpp) graph, Lorentzian peak-to-

peak linewidths were tested from 0.5 mT to 9 mT in 0.5 mT steps (Supplementary Figure 19).  

As baseline artifacts can strongly influence the quality of the regularization, a baseline correction of all 

cw-EPR spectra was performed according to the following procedure. A cw-EPR spectrum of the buffer 

recorded under otherwise identical experimental conditions was subtracted from each cw-EPR 

spectrum. Afterwards, a polynomial baseline was manually subtracted and the resulting spectrum was 

integrated. From the integrated spectrum, a second baseline was subtracted and the spectrum was 

differentiated again. Before regularization, all spectra were truncated at 𝐵0 > 283 mT as resonator 

background artifacts in the region of 𝑔 ≈ 2 reduced the quality of the regularization results, in particular 

at low microwave powers. 

For regularization of experimental datasets, the GCV method was used for determining the 𝛼Opt value. 

As a control, the 𝛼Opt value was checked independently by visual inspection of the L-curve. 𝑳2 without 

Osher-Bregman iteration was used as regularization operator, as all cw-EPR spectra have a good S/N, 

so iteration hardly leads to improvements.  

 

Grid-of-errors method.  

Analysis of EPR spectra using the grid-of-errors method was first described by Azarkh and Groenen 8 

and is used here to analyze our experimental EPR data sets via a second, independent method. The 

method was implemented as a Matlab algorithm and can be described as follows for two parameters 𝑎 

and 𝑏8: Given the spectrum 𝒚exp, which can be described by a (unknown) density probability distribution 
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of two parameters 𝑎 and 𝑏. The distribution is given by: 𝑃(𝑎, 𝑏) = 𝑃(𝑎)𝑃(𝑏). Both parameters can be 

discretized (𝑎 in 𝑘 steps and 𝑏 in 𝑚 steps), which leads to a probability distribution 𝑃(𝑖, 𝑗) =

𝑃𝑎(𝑖)𝑃𝑏(𝑗) with 𝑖 ∈ {1, … , 𝑘} and 𝑗 ∈ {1, . . . , 𝑚}  For each tuple (𝑖, 𝑗) the EPR spectrum can be 

calculated as a 𝑘 × 𝑚 grid 𝐺(𝑖, 𝑗). An initial probability distribution 𝑃0(𝑖, 𝑗) = 𝑃𝑎,0(𝑖)𝑃𝑏,0(𝑗) is 

assumed, which can be a simple Gaussian distribution for each parameter. The first spectrum can now 

be calculated as 

𝑺0 = ∑ 𝑮(𝑖, 𝑗)𝑃0(𝑖, 𝑗)𝑖,𝑗         (Eq. 15) 

with an error of 

𝜒0 = √(𝒚exp − 𝑺0)
2
.        (Eq. 16) 

A refinement parameter 𝑐0 is given. Now the grid-of-error is calculated as: 

𝜒𝑖,𝑗
± = √(𝑺0 ± 𝑐0𝑮(𝑖, 𝑗) − 𝒚exp)

2
      (Eq. 17) 

If 𝜒𝑖,𝑗
± < 𝜒0, an improvement of the fit is expected. In this case a new probability distribution is obtained: 

𝑃1(𝑖, 𝑗) = 𝑃0(𝑖, 𝑗) ± 𝑐0. To ensure that the probability is positive, the subtraction is only done if 

𝑃0(𝑖, 𝑗) ≥ 𝑐0. Afterwards the new spectrum 

𝑺1 = ∑ 𝑮(𝑖, 𝑗)𝑃1(𝑖, 𝑗)𝑖,𝑗         (Eq. 18) 

and the new error 

𝜒1 = √(𝒚exp − 𝑺1)
2
        (Eq. 19) 

are calculated. This process can be iterated until no significant improvement is achieved. The grid-of-

error method can be extended to an arbitrary number of parameters. 

We have applied the grid-of-error method to the same model spectra already analyzed with the 

regularization method to compare the results of the grid-of-error with the regularization for a single 

parameter distribution 𝑃(𝜆) (Supplementary Figure 13). In this case, the grid 𝐺 is identical to the kernel 

matrix 𝐴.  

If 𝜒𝑛 < 𝜒𝑛+1, 𝑐0 is set to 𝑐0/2 (start value 𝑐0 = 5 ∙ 10–4) to improve the refinement. The algorithm 

should stop if 
|𝜒𝑛−𝜒𝑛+1|

𝜒𝑛 < 𝜖 with 𝜖 = 10–6. 

 

Grid-of-errors analysis of the selenium- and sulfur-labeled FeMo cofactors.  

Cw-EPR spectra using the grid-of-error method were analyzed as follows: The parameter 𝜆 was 

discretized in 223 steps with 0 ≤ 𝜆 ≤ 1/3. The parameter lwpp was discretized in 249 steps with 0 ≤

lwpp ≤ 25 mT. For the initial probability distribution 𝑃0(𝑖, 𝑗) = 𝑃0,𝜆(𝑖)𝑃0,lwpp(𝑗) a Gaussian 

distribution was assumed for both 𝑃0,𝜆 and 𝑃0,lwpp. The experimental data sets were baseline-subtracted 

the same way as has been done using the regularization method.  
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Simulation software. All spectra simulations were performed by using the Easyspin algorithm “pepper” 

1 together with Matlab 2019. The angle grid for the powder spectra was chosen so that no artifacts occur. 

The angle grid was usually set to 0.5°.  
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Multi-Gaussian fitting of the probability distributions of the Se-modified FeMo cofactor. 

The results of the regularization of the measurements at: T = 5 K, P = 0.37 mW, modulation amplitude 

= 0.6 mT and an intrinsic linewidth of 2.5 mT (Figure 3, blue lines). A multi-Gaussian fit was used to 

calculate the areas of the individual species:  

Gaussian𝑛(𝑥) = ∑ 𝑤𝑘
1

√2𝜋𝜎𝑘
2

𝑛
𝑘=1 exp (−

(𝑥−𝑥0,𝑘)
2

2𝜎𝑘
2 )    (Eq. 20) 

In this case is the area of each Gaussian function: 𝐴𝑖 = 𝑤𝑘. The total area is: 𝑤tot = ∑ 𝑤𝑘𝑘=1 . The 

results of the regularization and the corresponding multi-Gaussian fits are shown in Supplementary 

Figure 26 and Supplementary Table 2. 
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