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Abstract
Background Isocitrate dehydrogenase (IDH)1/2 wildtype (wt) astrocytomas formerly classified as WHO grade II or III have 
significantly shorter PFS and OS than IDH mutated WHO grade 2 and 3 gliomas leading to a classification as CNS WHO 
grade 4. It is the aim of this study to evaluate differences in the treatment-related clinical course of these tumors as they are 
largely unknown.
Methods Patients undergoing surgery (between 2016–2019 in six neurosurgical departments) for a histologically diagnosed 
WHO grade 2–3 IDH1/2-wt astrocytoma were retrospectively reviewed to assess progression free survival (PFS), overall 
survival (OS), and prognostic factors.
Results This multi-center study included 157 patients (mean age 58 years (20–87 years); with 36.9% females). The pre-
dominant histology was anaplastic astrocytoma WHO grade 3 (78.3%), followed by diffuse astrocytoma WHO grade 2 
(21.7%). Gross total resection (GTR) was achieved in 37.6%, subtotal resection (STR) in 28.7%, and biopsy was performed 
in 33.8%. The median PFS (12.5 months) and OS (27.0 months) did not differ between WHO grades. Both, GTR and STR 
significantly increased PFS (P < 0.01) and OS (P < 0.001) compared to biopsy. Treatment according to Stupp protocol was 
not associated with longer OS or PFS compared to chemotherapy or radiotherapy alone. EGFR amplification (P = 0.014) and 
TERT-promotor mutation (P = 0.042) were associated with shortened OS. MGMT-promoter methylation had no influence 
on treatment response.
Conclusions WHO grade 2 and 3 IDH1/2 wt astrocytomas, treated according to the same treatment protocols, have a similar 
OS. Age, extent of resection, and strong EGFR expression were the most important treatment related prognostic factors.
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Introduction

IDH wildtype (wt) astrocytomas, despite being consid-
ered as WHO grade II or III based on histologic criteria 
alone (e.g., no microvascular proliferation or necrosis), 
have poorer overall survival (OS) when compared with 
IDH mutated astrocytomas WHO grade II or III [1–4]. The 
aggressive clinical course of these tumors can be almost 
equal to or slightly better than IDH wt glioblastomas, clas-
sified as glioblastomas according to histologic criteria [1].

In the 2016 WHO classification of CNS tumors, 
molecular markers, in addition to histologic criteria, 
were included for the first time to type and grade glio-
mas [5]. Subsequently, the Consortium to Inform Molecu-
lar and Practical Approaches to CNS Tumor Taxonomy 
(C-IMPACT NOW initiative) increasingly precise cat-
egorized CNS tumors based on more specific molecular 
markers, facilitating more adequate prognostic assess-
ments [6]. Since the publication of the third update of the 
Consortium to Inform Molecular and Practical Approaches 
to CNS Tumor Taxonomy (cIMPACT-NOW Update 3) 
in 2018, a subset of gliomas, which showed magnetic 
resonance imaging (MRI) characteristics and histologi-
cal findings consistent with diffuse astrocytomas grade II 
and III were classified as grade 4 tumors with molecular 
features of glioblastoma. This classification was based on 
the detection of one or more of the following markers: (i) 
telomerase reverse transcriptase (TERT) promoter muta-
tion, (ii) a combined complete gain of chromosome 7 and 
loss of chromosome 10 (+ 7/ − 10), and (iii) epidermal 
growth factor receptor (EGFR) amplification [1]. These 
tumors account for approximately 12% of all gliomas [7]. 
Due to the significantly more aggressive tumor behavior 
resembling that of glioblastoma, practitioners tended to 
apply high-grade glioma treatment regimens [2–4, 8–10]. 
According to the recent 2021 WHO classification, these 
tumors of histologically lower grade tumors are now being 
categorized as "glioblastoma IDH-wildtype (CNS WHO 
grade 4)" [5]. Despite this re-classification, their clinical 
course appears to be similar but not identical to classic 
glioblastomas [11]. Therefore, the postoperative treatment 
of diffuse IDH wt astrocytomas poses challenges and find-
ings from retrospective studies primarily involve small 
cohorts and allow no firm conclusions while prospective 
study data are scarce. The randomized, open-label, phase 
3 CATNON trial offers evidence that temozolomide adju-
vant but not concurrent to a radiotherapy is associated 
with a survival benefit in non 1p/19q co-deleted anaplastic 
glioma with IDH1/2 mutation, however, not effective in 
IDH1/2 wildtype tumors [12, 13].

Therefore, the main objective of this study was to evalu-
ate progression free and overall survival (PFS and OS) 

after surgery and adjuvant treatment of tumors formerly 
classified as diffuse IDH wt astrocytomas WHO grade II 
or III in the largest cohort so far.

Methods

Patient samples, study design, and outcome 
measures

A retrospective multi-center database analysis of diffuse 
IDH wt astrocytomas included surgically treated consecu-
tive patients from six neurosurgical university departments 
in Germany and Austria over four years (2016–2019).

Inclusion criteria: Newly diagnosed diffuse IDH wt astro-
cytomas histologically graded as WHO grade II or III in 
patients ≥ 18 years at the time of diagnosis and at least one 
postoperative follow-up ≥ 3 months after surgery. Demo-
graphic and clinical data such as sex, age at surgery, tumor 
location, tumor size, the extent of tumor resection, neuro-
pathological parameters, postoperative adjuvant treatment, 
follow-up duration, progression rates and survival were 
assessed.

Postoperative follow-up was performed by clinical inves-
tigation and evaluation of neuroimages either from magnetic 
resonance imaging (MRI) or, if not available/contraindi-
cated, computed tomography (CT) scans. Progression/ recur-
rence was recorded when tumor regrowth was observed in 
follow-up imaging according to RANO criteria.

Pathological diagnosis was based on 2016 WHO crite-
ria for CNS tumor classification, and the c-IMPACT NOW 
Update 3 [1, 7]. Tumor marker analysis was performed using 
established and validated methods based on the preference 
of the participating center.

Volumetric analysis of tumor size and extent of resection 
was performed on T2-weighted images, T2-weighted fluid 
attenuation inversion recovery images, and T1-weighted 
MRI images before and after applying intravenous con-
trast agent using a navigation planning software (iPlan 2.1, 
Brainlab, München, Germany). GTR was defined as resec-
tion of > 95% of the tumor. Extent of resection was assessed 
by two independent observers. In uncertain cases, a third 
observer was involved for the decision.

Molecular analysis

Molecular analysis was performed as part of the routine 
diagnostic according to the current standards of diagnostics 
for brain tumors informed by the cIMPACT-now updates.

All hospitals used methylation-specific PCR (MSP) for 
MGMT-promotor methylation analysis. Negative MGMT 
methylation levels for qMSP were below the cut-off point 
of 0.35. IDH-mutation status and ATRX expression were 
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analyzed using immune-staining. Additionally, IDH and 
TERT were analyzed using Sanger Sequencing of genomic 
DNA from formalin-fixed, paraffin-embedded samples, 
quantitative Real-Time PCR for EGFR amplification 
analysis.

Statistical analysis

Analyses were performed using SPSS for Windows, Version 
24.0. For statistical data evaluations, a descriptive analysis 
was conducted. Categorical data were described by absolute 
and relative frequency, and continuous data were described 
by the mean, standard error (SE), and range. PFS was 
defined as the time from surgery to tumor regrowth detec-
tion by imaging.

In univariate analyses, age, sex, contrast enhancement, 
tumor multifocality, WHO grade, molecular tumor markers 
(loss of nuclear ATRX, EGFR amplification, MGMT pro-
moter methylation, and TERT promoter mutation), extent 
of resection, patient performance, and perioperative com-
plications were assessed as potential risk factors for OS and 
PFS. A backward conditional method using all statistically 
significant factors from univariate regression analyses was 
used to select significant factors for multivariate regression 
analyses. A p-value < 0.05 was considered statistically sig-
nificant. Adjustment for multiple testing was not performed.

Results

Demography

Our analysis included 157 patients. The mean age at the 
diagnosis was 58 years (range = 20–87 years), and 36.9% 
were female. The median follow-up was 12.5  months 
(standard deviation (SD) = 14.0, range = 0–65  months). 
Tumor locations were: temporal (29 patients; 18%), fol-
lowed by frontal (28 patients; 18%), parietal (18 patients; 
11%), insular (8 patients; 5%), posterior fossa and brain-
stem (7 patients; 4%), thalamic (6 patients; 4%), and occipi-
tal (1 patient; 1%). Three lobes and more were infiltrated 
in 33 patients (21%), and a bilobular location was found 
in 27 patients (17%). The median ECOG-score remained 
unchanged from the time of admission (1; SD = 0.90) to 
discharge (1; SD = 1.1). GTR (> 95%) was achieved in 59 
patients (37.6%), subtotal resection in 45 patients (28.7%), 
and 53 patients (33.8%) underwent a biopsy only (Table 1).

Survival data

Median progression free survival of the whole cohort 
was 12.5 ± 1.2  months, median overall survival 
27.0 ± 2.9 months.

Univariate analyses of predictors of PFS and OS were 
performed by categorizing patients according to age, sex, 
ECOG status at admission and discharge, molecular mark-
ers, extent of resection, WHO grade, and adjuvant treat-
ment. Age significantly influenced tumor progression and 
OS (PFS: Hazard ratio (HR) 1.02 (1.004 – 1.04) and OS: 
HR = 1.04 (1.02 – 1.06) for every additional year of age). 
Patients > 60 years had a significantly shorter PFS by univar-
iate analysis (n = 74; HR: 1.688, 95% CI: 1.1 – 2.6, P = 0.02) 
when compared with patients < 60 years (n = 83).

Patients with ring-enhancing lesions had similar PFS but 
and OS compared with patients without contrast enhance-
ment (HR: 2.34, 95% CI: 0.98–5.57; P = 0.056 and HR: 2.01, 
95% CI: 0.59 – 6.84, P = 0.266, respectively). Functional 
performance was a significant influencing factor for PFS 
and OS (HR: 1.55, 95% CI: 1.20 – 1.99; P = 0.001 and HR: 

Table 1  Baseline demographics and histopathology

All patients

Patients, n 157
Age, mean (SD) 58.3 (13.8)
Female (%) 36.9
ECOG at admission, median (SD) 1 (0.9)
ECOG at discharge, median (SD) 1 (1.1)
Tumor localization (%)

  Unifocal 73.9
  Multifocal 26.1

Extent of resection (%)
  GTR 37.6
  STR 28.7
  Biopsy 33.8

PFS in months, median (SE) 12.5 (1.2)
OS in months, median (SE) 27.0 (2.9)
MGMT promoter (%)

  Analyzed in total 137 (87.3)
  Methylated 55 (35.0)
  Unmethylated 82 (52.2)

TERT, n (%)
  Analyzed in total 40 (25.4)
  Mutated 28 (17.8)
  Wild-type 12 (7.6)

ATRX, n (%)
  Analyzed in total 127 (80.8)
  Retained 115 (73.2)
  Lost 12 (7.6)

EGFR, n (%)
  Analyzed in total 38 (24.2)
  Negative 15 (9.6)
  Weakly positive 3 (1.9)
  Moderately positive 7 (4.5)
  Strongly positive 13 (8.3)
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1.55, 95% CI: 1.23 – 1.95, P < 0.001, for 1-point increase in 
ECOG score). Tumor multifocality was not relevant regard-
ing PFS but was associated with a shorter OS (HR: 2.32, 
95% CI: 1.40 – 3.90, P = 0.001) (Tables 1, 2).

WHO grade and molecular markers

In 123 patients (78.3%), the predominant histology was 
anaplastic astrocytoma WHO grade III, followed by diffuse 
astrocytomas WHO grade II in 34 patients (21.7%). WHO 
grade was not associated with PFS or OS (HR: 0.82, 95% CI: 
0.49 – 1.38, P = 0.459 and HR: 0.59, 95% CI: 0.31 – 1.11, 
P = 0.103, respectively) (Fig. 1a).

Not all molecular markers were assessed on a routine 
basis in the participating centers. In 41 patients, the TERT 
promoter was analyzed, with 28 (17.8%) mutated. EGFR 
amplification was examined in 38 patients; 15 (9.6%) were 
negative, 3 (1.9%) were weakly positive, 7 (4.5%) were 
moderately, and 13 (8.3%) were strongly positive. Nuclear 
ATRX loss was analyzed in 127 patients (80.8%); expres-
sion was retained in 1156 (73.2%) but lost in 12 patients 
(7.6%). MGMT-promoter methylation was examined in 
137 patients; data were not available in 20 patients (12.7%), 

while 55 (35.0%) had a methylated MGMT promoter and 
82 (52.2%) a non-methylated MGMT promoter (Table 1). 
Among all molecular markers, only strong EGFR expression 
was associated with a shorter PFS (HR: 3.39, 95% CI:1.24 
– 9.28, P = 0.017) and OS (HR: 6.26, 95% CI:2.11 – 18.59, 
P = 0.001) (Fig. 1b). Patients with nuclear ATRX expres-
sion loss had a slightly longer PFS (HR: 0.43, 95% CI: 0.17 
– 1.07, P = 0.07). TERT promoter mutation had no influence 
on PFS (P = 0.34) but was associated with shortened OS 
(23.5 (SE = 3.6) vs. 35.0 (SE = 3.0) months; HR: 7.84, 95% 
CI: 1.03 – 59.7, P = 0.047). MGMT promoter methylation 
did not result in significant changes of PFS (HR: 0.78, 95 CI: 
0.49—1.24, P = 0.29) or OS (HR: 0.93, 95% CI: 0.55–1.58, 
P = 0.78). (Fig. 1c, Table 2).

Extent of resection

The extent of tumor resection was a significant factor for 
progression and patient survival. Both GTR and STR pro-
longed PFS (HR: 0.28, 95% CI: 0.16 – 0.47, P < 0.001 and 
HR: 0.44, 95% CI: 0.25 – 0.74, P = 0.002, respectively) and 
OS (HR: 0.15, 95% CI: 0.08 – 0.30 P < 0.001 and HR: 0.29, 
95% CI: 0.16–0.54, P < 0.001, respectively) when compared 

Table 2  Association of patient- and tumor characteristics with progression-free and overall survival (univariate analysis)

Cox regression, asterisk marks statistically significant variables.

PFS OS
HR (95% CI) HR (95% CI)

Age, years*(for every additional year) 1.02 (1.004–1.04), P = 0.014 1.04 (1.02–1.06), P < 0.001
Sex (male vs. female) 1.24 (0.80–1.91), P = 0.345 1.40 (0.82–2.40), P = 0.213
ECOG at admission* (for 1-point increase in grade) 1.55 (1.20–1.99), P = 0.001 1.55 (1.23–1.95), P < 0.001
Extent of resection

  GTR vs. biopsy* 0.28 (0.16–0.47), P < 0.001 0.15 (0.08–0.30), P < 0.001
  STR vs. biopsy* 0.44 (0.25–0.74), P = 0.002 0.29 (0.16–0.54), P < 0.001
  GTR vs. STR 0.64 (0.38–1.07), P = 0.088 0.53 (0.26–1.07), P = 0.077

Radiology
  Ring-enhancement vs. no 2.34 (0.98–5.57), P = 0.056 2.01 (0.59–6.84), P = 0.266

Midline shift 1.02 (0.66–1.57), P = 0.933 0.81 (0.48–1.37), P = 0.432
Multifocal tumor* 0.83 (0.51–1.36), P = 0.454 2.32 (1.40–3.90), P = 0.001
WHO Grade

  WHO grade II vs. III 0.82 (0.49–1.38), P = 0.459 0.59 (0.31–1.11), P = 0.103
Molecular markers

  MGMT methylated vs. unmethylated 0.78 (0.49–1.24), P = 0.293 0.93 (0.55–1.58), P = 0.784
  ATRX lost vs. retained 0.43 (0.17–1.07), P = 0.070 0.48 (0.15–1.56), P = 0.224
  EGFR expression
    No vs. strong 0.44 (0.15–1.24), P = 0.120 0.22 (0.07–0.70), P = 0.011
    No-moderate vs. strong* 0.30 (0.11–0.81), P = 0.017 0.16 (0.05–0.47), P = 0.001
    TERT mutation vs. wild-type* 1.65 (0.59–4.63), P = 0.34 7.85 (1.03–59.7), P = 0.047

Treatment
  Radiochemotherapy, according to Stupp vs. other treatment 0.98 (0.51–1.91), P = 0.960 0.79 (0.39–1.58), P = 0.498

Perioperative complication* 1.42 (0.75–2.69), P = 0.281 2.49 (1.39–4.47), P = 0.002
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with biopsy alone (Fig. 2a) (Table 2). However, no signifi-
cant difference was observed in survival between GTR and 
STR. Perioperative complications were also associated with 
a shorter OS (HR: 2.49, 95% CI: 1.39 – 4.47, P = 0.002).

Non‑surgical treatment data

Adjuvant treatment was performed in 132 patients (84.1%), 
while 111 patients received radio-chemotherapy according 
to the Stupp regimen (70.7%) [11], three patients (1.9%) 
had sequential treatment (radiotherapy followed by chemo-
therapy), nine patients (5.7%) had radiotherapy alone, and 
the same number of patients (5.7%) had chemotherapy alone 
[14, 15]. Treatment decisions were made at local interdis-
ciplinary tumor conferences based on clinical status, the 
extent of resection, and histopathological findings, includ-
ing molecular markers. Radiation treatment or chemotherapy 
alone with temozolomide was applied more often than con-
comitant therapy in patients with high ECOG and older age. 
The decision for radiotherapy or chemotherapy was stratified 
according to MGMT-promoter methylation status. Seven out 
of 9 patients undergoing chemotherapy alone had a meth-
ylated MGMT-promoter (the promotor methylation status 
was unavailable in 2 patients), while the majority (7/9) of 
patients undergoing radiotherapy alone had an unmethylated 

MGMT-promoter. The patients selected for combined 
radio-chemotherapy differed between 53 and 100% among 
the centers (Supplement Table  1). Tumor recurrence 
was observed in 86 (54.4%) patients. The median PFS 
was 12.5 months (SE = 1.2 months) and OS 27.0 months 
(SE = 2.9 months). PFS rate at 6 months was 84%. Treatment 
according to the Stupp regimen did not influence PFS when 
compared with other treatment regimens at different WHO 
grades (WHO II: P = 0.809; WHO III: P = 0.908) (Fig. 2b). 
When considering different WHO grades regarding OS 
and treatment regimens, the Stupp regimen was not associ-
ated with a longer OS in WHO grade II or III tumors either 
(WHO II: P = 0.495; WHO III: P = 0.221).

Multivariate analysis

Variables associated with statistically significant differences 
in PFS or OS in univariate analyses (patient age, ECOG 
performance status, extent of resection, tumor multifocal-
ity, TERT mutation, EGFR expression, and the presence of 
perioperative complications) as well as several putatively 
clinically significant variables (WHO grade and treatment 
according to Stupp) were included in a multivariate survival 
analysis.

Fig. 1  Progression-free survival and overall survival curves (a: WHO grade; b: EGFR expression; c: MGMT promotor methylation)
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The extent of resection—GTR vs. biopsy (HR: 0.23, 95% 
CI: 0.13–0.42, P =  < 0.001), STR vs. biopsy (HR: 0.51, 
95% CI: 0.29–0.90, P = 0.021), and strong EGFR expres-
sion (HR: 6.15, 95% CI: 2.15–17.60, P = 0.001) remained 
statistically significant factors for PFS. The 2-year PFS was 
23.7% (SE = 4.4%) for the entire cohort when different WHO 
grades were considered: WHO II: 24.9% (SE = 9.2%), WHO 
III: 23.3% (SE = 5.0%) (Table 3).

Similarly, OS was mainly influenced by the extent of 
resection—GTR vs. biopsy (HR: 0.16, 95% CI: 0.08–0.31, 
P =  < 0.001), STR vs. biopsy (HR: 0.37, 95% CI: 0.19–0.71, 
P = 0.03), the WHO grade II versus III (HR: 0.35; 95% 
CI:0.18–0.70, P = 0.003), strong EGFR expression (HR: 7.33, 

95% CI: 2.21–24.35, P = 0.001), TERT promoter mutation 
(HR: 13.58, 95% CI 1.69–109.04, P = 0.014) and the perio-
perative complication rate (HR: 2.00, 95% CI: 1.05–3.79, 
P = 0.034). The 2-year OS was 57.4% (SE = 4.9%) for the 
entire cohort when different WHO grades were considered: 
WHO II: 71.9% (SE = 9.3%), WHO III: 53.1% (SE = 5.7%).

Discussion

Diffuse IDH1/2 wt gliomas are a heterogeneous group 
of tumors, which in most cases will now be classified as 
glioblastomas, IDH-wildtype (CNS WHO grade 4) after 

Fig. 2  Progression-free survival and overall survival curves (a: Extent of resection (EOR); b: adjuvant treatment Stupp vs. other
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performing the required molecular diagnostic workup 
according to the current WHO classification 2021 [5, 16]. 
Although clinicians have identified high recurrence rates, 
imaging features of these tumors are similar to low-grade 
gliomas, with histological criteria of WHO grade IV tumors 
such as microvascular proliferation and necrosis not detected 
[17–20]. In recent decades, increased knowledge of molecu-
lar profiling has provided more precise tumor information 
and explained more aggressive tumor behaviors. Certain 
molecular markers have been extensively studied in recent 
years; in 2018, the cIMPACT-NOW initiative implemented 
three of these markers- namely EGFR amplification, a com-
bined gain of chromosome 7/ loss of chromosome 10, or 
TERT promoter mutation, in routine clinical diagnostics [1, 
9, 10].

In this tumor group, clinicians have recorded higher 
recurrence rates and more aggressive growth patterns [2–4, 
21, 22]. Therefore, treatment strategies have shifted towards 
treatment regimens for high-grade gliomas. However, the 
findings describing the course of this specific tumor sub-
group are primarily derived from retrospective studies. 
Adjuvant treatment data that support treatment guidelines 
are simply unavailable – study cohorts are small, which ham-
per outcomes and conclusions [17–19]. Therefore, our remit 
was to assess the influence of treatment regimens by analyz-
ing the clinical course of a large cohort of IDH1/2 wt diffuse 
astrocytoma patients from six neurosurgical sites treated in 
the 2016–2019 period. Despite the retrospective nature of 
our study, ours is the largest multi-center study consisting 
of 158 patients to analyze PFS, OS, and prognostic factors 
in these new glioblastomas.

The mean age of 58 years was consistent with other clas-
sical glioblastoma reports [18, 19, 23]. Age distribution of 
IDH1/2 wt diffuse astrocytomas have been reported to vary 
among different WHO grades. While patients with WHO 
grade II and III are younger (45 years), those with WHO 
grade IV tumors tend to be older (IDH1/2 wt astrocytoma 
with molecular features of a WHO grade IV tumor: 58 years; 
IDH1/2 wt glioblastomas: 55 years) [17, 24]. IDH1/2 wt 
astrocytomas, with TERT mutation only, have the highest 
age of onset (62 years) [17, 24]. The presented cohort fits 
into the expected age of onset while being on the upper end 
of age distribution. TERT mutation analysis was performed 
in 25.9% of all patients. Therefore, undiagnosed IDH1/2 wt 
astrocytomas with TERT mutation only might impact our 
cohort's tendency towards a higher age of onset. Tumors 
occurred slightly more often in males (62.7%). Traditionally, 
diffuse gliomas are non-sex-specific, and malignant gliomas 
occur more frequently in males [11, 17]. Since many of these 
tumors between WHO grade II-III included in our study are 
now considered as glioblastomas, IDH-wildtype CNS WHO 
grade 4, this might explain our cohort's tendency toward the 
male sex. ECOG performance status was univocally good 
and remained unaltered prior to (ECOG 1) and post-surgery 
(ECOG 1) in our data set. Similar good performance indices 
are reported in other cohorts with lower WHO grades that 
perform better after resection than WHO grade IV glioblas-
tomas [17, 24]. As recommended in the most recent EANO 
guidelines, immunohistochemistry for mutant IDH1 R132H 
protein or IDH1 and IDH2 sequencing in cases with lack of 
IDH1 R123H immunopositivity as well as nuclear expres-
sion of ATRX should be performed routinely in the diagno-
sis of diffuse astrocytic gliomas [25]. MGMT methylation is 
recommended both for glioblastoma and diffuse hemispheric 
glioma assessment [25]. Loss of nuclear ATRX expression 
should prompt additional investigations to exclude dif-
fuse hemispheric glioma, H3.3 G34-mutant (CNS WHO 
grade 4). All of the tumors were regularly assessed across 
all centers in our cohort (100%, 81%, and 87.3%, respec-
tively). According to EANO, combined + 7/–10 signature, 
EGFR amplification, and TERT promoter mutation status 
should be included in IDH wt diffuse astrocytic gliomas 
with retained nuclear ATRX expression lacking histological 
features of WHO grade IV (microvascular proliferation and 
necrosis) to allow for a diagnosis of IDH wt glioblastoma [6, 
21, 25]. However, although without explicitly testing the 3 
genetic parameters (TERT promoter mutation, EGFR gene 
amplification, combined + 7/ − 10 signature) in formerly 
WHO grade II and III IDH-wildtype astrocytomas which 
have been deleted in the current WHO classification, the 
resulting diagnostic failure should be small. A diffuse and 
astrocytic IDH-wildtype tumor without microvascular pro-
liferation and/or necrosis and without one of the 3 molecular 
glioblastoma defining markers mentioned above and after 

Table 3  Association of patient- and tumor characteristics with sur-
vival (multivariate analysis)

Multivariate Cox Proportional Hazards Regression analysis, back-
ward conditional selection method used, step 6 is displayed for PFS 
and step 4 for OS.

HR (95% CI) P value

Progression-free survival
  Multifocality 1.74 (1.00–3.02) 0.049
  Extent of resection
    Gross-total vs. biopsy 0.23 (0.13–0.42)  < 0.001
    Subtotal vs. biopsy 0.51 (0.29–0.90) 0.021
    Strong EGFR expression 6.15 (2.15–17.60) 0.001

Overall survival
  Extent of resection
    Gross-total vs. biopsy 0.16 (0.08–0.31)  < 0.001
    Subtotal vs. biopsy 0.37 (0.19–0.71) 0.03
    WHO Grade, II vs. III 0.35 (0.18–0.70) 0.003
    Strong EGFR expression 7.33 (2.21–24.35) 0.001
    Perioperative complication 2.00 (1.05–3.79) 0.034
    TERT mutated vs. wild-type 13.58 (1.69–109.04) 0.014
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excluding diffuse hemispheric or midline gliomas (with also 
poor clinical prognosis) would be strictly spoken unclas-
sifiable according to the current WHO classification 2021 
[16]. Clearly, comprehensive additional workup of these 
rare cases would be performed and sometimes a surpris-
ing diagnosis may evolve. Nevertheless, these cases will be 
very rare and should not significantly influence the results 
of our study.

The WHO grade was not associated with PFS and OS 
between WHO grades II and III. Mean PFS and OS were 
12.5 and 27 months, respectively. The OS in our data set 
is slightly longer than the reported survival of IDH1/2 wt 
astrocytomas (23.8 months) in a cohort of 67 patients and 
considerably shorter than the OS of IDH1/2 wt astrocytomas 
WHO II (59 months) [1, 17, 26, 27]. Regarding PFS and 
OS IDH1/2 wt astrocytomas, WHO III behave like WHO 
grade IV tumors [1, 17, 26]. With only 21.5% of all patients 
in our cohort being WHO grade II and 78.5% WHO grade 
III, the tendency for a higher recurrence rate and a lower 
OS reflects the importance and accuracies of the cIMPACT-
NOW update to the WHO classification of CNS tumors [1, 
5, 6, 16]. Consensus has been reached that EGFR amplifica-
tion or combined complete + 7/ − 10 chromosome signature 
or TERT promoter mutation constitute the minimal molec-
ular criteria for identifying an aggressive IDH wt diffuse 
astrocytic glioma whose clinical course would follow that of 
an IDH wt grade 4 tumor, despite appearing histologically 
as a WHO grade II or III [1]. It is thought that these three 
molecular features are associated with shorter survival and 
outcomes similar to IDH wt glioblastoma [8, 9, 21, 28–30]. 
These molecular associations were confirmed in our cohort 
by a TERT mutation or strong EGFR amplification, which 
were linked to shortened survival in univariate analysis. 
However, in a multivariate analysis, only EGFR focal high-
level copy number gains remained statistically significant. 
As TERT promotor mutation analysis was only performed 
in a subset of patients, small numbers might account for 
differing results. Concurring with other data, low-level 
EGFR copy number gains are insufficient to qualify a tumor 
as EGFR-amplified and did not impact PFS or OS in our 
cohort [31].

Response to chemotherapy with alkylating substances 
is significantly better in IDH wt glioblastoma when the 
MGMT promoter is methylated [32]. Promoter methylation 
is detected in about 40% of all patients across IDH wt grade 
II-III tumors and glioblastomas [27, 33]. To date, there is 
only limited data suggesting a prognostic role of MGMT 
promoter methylation in IDH 1/2 wt astrocytomas for chem-
otherapy response and overall survival [27]. The outcomes 
from the randomized, open-label, phase III CATNON trial 
in patients with 1p/19q non–co-deleted anaplastic gliomas 
indicated futility of concurrent temozolomide with radia-
tion and adjuvant temozolomide in patients with IDH 1/2 

wildtype tumors. Benefit was restricted to adjuvant treat-
ment in IDH-mutant tumors. [12, 13] A post-hoc analysis 
from the CATNON study population, identifying 159 IDH 
1/2 wt tumors with molecular features of a glioblastoma, 
similarly revealed no additional benefit of temozolomide in 
regard to PFS and OS compared to radiotherapy alone [34]. 
MGMT promoter methylation provided no clinical benefit 
with either concurrent or adjuvant temozolomide [12, 13]. 
This observation falls in line with our data adding prove that 
MGMT methylation status does not have similar prognostic 
significance for response to therapy and survival as known 
from glioblastoma.

Some studies showed that older age was associated with 
earlier tumor recurrence and a shorter OS [35]. As expected, 
age markedly impacted PFS and OS in our study. We 
observed that older patients (> 60 years) had a significantly 
shorter PFS. The cut-off date for older age and increased risk 
of shortened survival differs between 40 and 64 years of age 
[17, 24, 36]. Age is also a known and recognized negative 
prognostic factor in glioblastoma [37]. With age, the burden 
of comorbidity and frailty also increases. Both proved to be 
predictors of poor OS in patients with glioblastoma [37–39]. 
However, frailty is not limited to older age and is thought 
to be independently associated with a worse prognosis [38]. 
A rising number of studies confirmed that age per se is a 
lesser influential factor for survival, but that performance 
status and frailty are crucial for survival prediction [38, 40]. 
The impact of frailty on IDH 1/2 wt astrocytoma is largely 
unknown, and it remains to be seen whether lessons learned 
from glioblastoma can be extrapolated to other entities [39].

The role of surgical resection in IDH wt astrocytomas 
is still a matter of debate and has not been addressed in 
larger studies. We observed a significant difference between 
PFS after GTR, STR, and biopsy. The extent of resection 
indicated that approximately 40% of patients had a GTR 
independent of the treating center. Patients who underwent 
biopsy alone had a significantly lower PFS, which was asso-
ciated with markedly reduced OS rates. Most studies agree 
that GTR generates much lower tumor recurrence rates than 
STR [41–44]. This supports primary surgical treatment rec-
ommendations in terms of GTR. This analysis substanti-
ates the importance of surgical resection improving time to 
recurrence and overall survival independent of WHO grade, 
molecular markers, age, or other factors. However, GTR was 
not superior to STR in terms of PFS and OS. In accordance 
with our findings, a systematic review and meta-analysis 
of > 12,000 patients concluded that the only factor increas-
ing PFS in elderly patients with high-grade gliomas was a 
GTR [45].

Unlike the extent of resection, the decision for adjuvant 
treatment did not differ across the six participating centers. 
Although treatment regimens for glioblastoma have been 
homogenized, there are no clear treatment guidelines for 
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IDH wt diffuse astrocytomas with molecular features of 
glioblastoma [25]. This underlines the requirement for more 
clinical trials to generate more comprehensive evidence. 
Although a clear advantage of concurrent radio-chemother-
apy in terms of PFS and OS is missing in this cohort, the 
data suggests that treatment according to Stupp protocol 
should be considered as a valuable option for patients with 
IDH wt astrocytoma.

Limitations of this study

Although this is the largest series of IDH1/2 wt grade II and 
III gliomas, our study harbors drawbacks. First, because of 
the inherent retrospective design, it was impossible to con-
trol for treatment regimens after surgery that might affect 
progression-free and overall survival. Because the original 
clinical diagnoses were included without central neuropatho-
logical review, the data was not homogenized for specific 
diagnostic algorithms but instead represent the clinical inter-
pretation of current EANO and WHO diagnostic criteria. 
Finally, because our cohort represents the combined data 
from 6 different medical centers, treatment decisions based 
on local practice may influence outcome data.

Conclusion

This study showed that the clinical course of patients with 
WHO II and III IDH1/2 wt astrocytomas is similar. No dif-
ferences in PFS for WHO grade II and III IDH1/2 wt astro-
cytomas was evident under the same treatment regimens. 
Persistent nuclear ATRX expression and high EGFR ampli-
fication were associated with a worse prognosis, whereas 
MGMT methylation status did not affect treatment response 
and survival. The main prognostic factors were the surgical 
resection, age, and presence of EGFR amplification.
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