
Width Functions

for

Hypertree Decompositions

Isolde Adler

Dissertation zur Erlangung des Doktorgrades

der Fakultät für Mathematik und Physik

der Albert-Ludwigs-Universität Freiburg im Breisgau
January 2006



Dekan: Prof. Dr. Josef Honerkamp

Gutachter: Prof. Dr. Jörg Flum

Prof. Dr. Martin Grohe

Datum der mündl. Prüfung: 18.04.2006



Contents

Prologue 1

1 Tree-width 3
1.1 Tree decompositions of infinite graphs . . . . . . . . . . . . . . . . . 3
1.2 Simplicial decompositions . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Tree-width and k-trees . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Smooth tree decompositions . . . . . . . . . . . . . . . . . . . 9
1.3.2 k-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 f-hypertree-width of graphs 14
2.1 Definitions and some observations . . . . . . . . . . . . . . . . . . . 15

2.1.1 Hypertree decompositions and width functions . . . . . . . . 15
2.1.2 Application to hypergraphs . . . . . . . . . . . . . . . . . . . 17
2.1.3 Monotone width functions . . . . . . . . . . . . . . . . . . . . 19

2.2 A game for f -hypertree-width . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Robber and cops . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Monotone strategies . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 The homomorphism problem . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Structures with partial functions . . . . . . . . . . . . . . . . 31
2.3.2 A general no-promise algorithm . . . . . . . . . . . . . . . . . 32
2.3.3 A general promise algorithm . . . . . . . . . . . . . . . . . . 36
2.3.4 Conjunctive query evaluation . . . . . . . . . . . . . . . . . . 39

2.4 Related f -invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4.1 Conditions on width functions . . . . . . . . . . . . . . . . . 42
2.4.2 Obstructions: Brambles and tangles . . . . . . . . . . . . . . 44
2.4.3 Branch decompositions . . . . . . . . . . . . . . . . . . . . . 46
2.4.4 Linking all invariants together . . . . . . . . . . . . . . . . . 49

3 Hypergraphs 53
3.1 Definitions and some observations . . . . . . . . . . . . . . . . . . . 54

3.1.1 Hypergraph pairs . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.2 Properties of cH . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.3 cH -hypertree-width is smaller than tree-width . . . . . . . . . 57

3.2 The relation of cH -cw and cH -ghw . . . . . . . . . . . . . . . . . . . 59
3.2.1 Hypergraph pairs . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Implementable hypergraph pairs . . . . . . . . . . . . . . . . 62
3.2.3 Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 The relation of cH -ghw and cH -hw . . . . . . . . . . . . . . . . . . . 64
3.3.1 Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Ultramonotonicity . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3.3 Hypergraph pairs . . . . . . . . . . . . . . . . . . . . . . . . . 71

i



3.4 The hypergraph sandwich problem . . . . . . . . . . . . . . . . . . . 72
3.4.1 Acyclicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Hypergraph pairs and the HSP . . . . . . . . . . . . . . . . . 73

4 Compactness 76
4.1 Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Compactness of f -ghw . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Compactness of cH -ghw . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Non-compactness of cH -hw . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Hypergraph pairs . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 k-decomposability and f -ghw . . . . . . . . . . . . . . . . . . . . . . 84

5 More width functions 86
5.1 Mixed graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Definitions and some observations . . . . . . . . . . . . . . . 87
5.1.2 Translation between hypergraphs and mixed graphs . . . . . 90

5.2 Directed hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.1 Definitions and some observations . . . . . . . . . . . . . . . 94
5.2.2 More on the homomorphism problem for non-relational sig-

natures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3 Fractional edge covers . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Definitions and some observations . . . . . . . . . . . . . . . 101
5.3.2 Properties of fcH . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.3 Fractional edge covers and directed hypergraphs . . . . . . . 106

Epilogue 108

References 110

Index 113

ii



Prologue

Tree-width of graphs (cf. Chapter 1) is a fundamental concept in graph structure
theory, and it also has important algorithmic applications. The tree-width of a
graph measures how close it is to being a tree. Many problems that are NP complete
in general become tractable when restricted to instances of bounded tree-width.

The analogous concept for hypergraphs is generalised hypertree-width, which
can be defined as follows. A hypergraph H = (V,E) (i. e. E is a set of finite subsets
of the vertex set V , called the hyperedges of H) has generalised hypertree-width at
most k if there is a tree T and a family (Bt)t∈T of pieces Bt ⊆ V such that:

1. For all hyperedges h ∈ E there is a tree node t ∈ T such that h ⊆ Bt.

2. For all v ∈ V the set {t ∈ T | v ∈ Bt} is non-empty and connected in T .

3. For all tree nodes t ∈ T there are hyperedges h1, . . . , hk ∈ E such that Bt ⊆
h1 ∪ . . . ∪ hk.

There are many other definitions which are either equal to generalised hypertree-
width or approximate it within a factor of 3. Again, many NP complete problems
become tractable when restricted to instances of bounded generalised hypertree-
width (cf. Chapters 2 and 3).

Generalised hypertree-width is ‘compact’ in the following sense. For a large
class of infinite hypergraphs the generalised hypertree-width is the supremum of the
generalised hypertree widths of the finite induced subhypergraphs (cf. Chapter 4).

The tree-width of a hypergraph is the tree-width of its underlying graph. A
class of hypergraphs of bounded tree-width also has bounded generalised hypertree-
width, but the converse is false. Hence generalised hypertree-width is better for
algorithmic applications in so far as it gives rise to larger tractable classes. This is
not the end of the story. M. Grohe and D. Marx obtained even larger classes by
bounding the fractional hypertree-width [GM05]. A new approach is to consider
directed hypergraphs and make use of the added information. (Both approaches
are presented in Chapter 5.)

Tree-width, generalised hypertree-width and the generalisations from Chapter 5
can all be treated in the following framework. Let G = (V,E) be a graph, and let
f be a width function on G, i. e. a function assigning to every finite subset X ⊆ V
a real number f(X) or f(X) = ∞. Then f -ghw(G) ≤ k if there are T and (Bt)t∈T
satisfying conditions 1-2 above and

3′. For all tree nodes t ∈ T there is a set X ⊇ Bt such that f(X) ≤ k.

If we choose f(X) = |X |−1, then f -ghw(G) is the tree-width of G, and for f(X) =
min{k | X = h1 ∪ . . . ∪ hk; hi ∈ E} and G the underlying graph of H it turns out
that f -ghw(G) is the generalised hypertree-width of H .

The following are the main contributions of this thesis:

• The framework for f -ghw(G).

1



2 PROLOGUE

• Application of the framework to directed hypergraphs. E. g. this allows us to
obtain larger tractable classes of conjunctive queries on databases if there are
functional dependencies.

• Compactness of generalised hypertree-width (and in fact f -ghw(G)), under a
reasonable condition.

• Generalisation of some well-known results to the infinite case, e. g. the char-
acterisation of generalised hypertree-width of an infinite hypergraph in terms
of a monotone robber and cops game.

• Generalised hypertree-width is within a constant factor of several other invari-
ants which resemble graph invariants such as bramble-number, tangle-number,
branch-width and non-monotone cop-width. This is essentially the result of
joint work with G. Gottlob and M. Grohe [AGG05], although the translation
to the f -ghw framework necessitated some changes.

• Numerous complicated examples showing that various desirable properties do
not hold.

Acknowledgements

I wish to thank everyone who supported me with my work. Particularly, I thank
my supervisor Prof. Dr. Jörg Flum for his support, advice, confidence and encour-
agement during my work on this thesis. I am also very greatful to Prof. Dr. Martin
Grohe for fruitful discussions during and after a weak of joint work in Edinburgh,
and to Hans Adler, Moritz Müller, and Mark Weyer for discussions and comments
on drafts of this thesis or talks I gave in our research training group. Moreover, I
thank the Deutsche Forschungsgemeinschaft for making this thesis possible.

Very special thanks to my daughter Sofia for enriching my life since almost
fifteen months, and my mother Brigitte Adler for lovingly taking care of Sofia for
more than two months time during the final spurt. Many thanks to all my dear
friends for accompanying me through sunshine, rain and snow.



Chapter 1

Tree-width

There are numerous equivalent definitions for the tree-width tw(G) of a graph G,
which measures how similar G is to a tree.

the three historically most important definitions and show that they all agree.
Tree-width was independently developed by three groups (see also [Di97, Chapter
12], for historical remarks):

• N. Robertson and P. D. Seymour [RS86a].
tw(G) is the least integer k such that G has a tree decomposition such that
every block has at most k + 1 elements (Section 1.1).

• R. Halin [Ha64, Ha76].
tw(G) is the least integer k such that G has a triangulation which has no
infinite (k + 2)-clique as a subgraph (Section 1.2).

• D. Rose, S. Arnborg, A. Proskurowski et al. [Ro70, BP71, Ro74, AP81].
tw(G) is the least integer k such that G is a (partial) subgraph of a k-tree
(Section 1.3).

In the first section we fix notation and present the definition of tree-width in the
style given by Robertson and Seymour in their graph minor project. This will be
the base for all later chapters. In the second section we use Halin’s deep theorem
on simplicial decompositions. We will need this section only in Chapter 4. Finally,
in the last section of this chapter we present the third approach in terms of k-trees
(which we will not need later).

1.1 Tree decompositions of infinite graphs

In this section we define the tree-width of a graph and we prove some basic results
that we will need later on. We begin by fixing notation. We will generally, though
not in every detail, follow [Di97].

For a set S we use the notation P(S) := {S0 | S0 ⊆ S}, for an integer k ≥ 0
we set P<k(S) := {S0 | S0 ⊆ S, |S0| < k}, P=k(S) := {S0 | S0 ⊆ S, |S0| = k}, and
P<ω(S) := {S0 | S0 ⊆ S, S0 finite}.

Definition 1.1.1

• A graph is a pair G = (V (G), E(G)) where V (G) is a (possibly infinite)
nonempty set of vertices, and E(G) ⊆ P=2(V (G)) is the set of edges of G.
(Thus the edges of G are two-element sets of vertices.)

3



4 CHAPTER 1. TREE-WIDTH

• G0 is a (partial) subgraph of a graph G, G0 ⊆ G, if V (G0) ⊆ V (G) and
E(G0) ⊆ E(G). A subgraph G0 ⊆ G is an induced subgraph, if E(G0) =
E(G) ∩ P=2(V (G0)). For X ⊆ V (G), the induced subgraph of G with vertex
set X is denoted by G[X ]. G \X denotes the induced subgraph G[V (G) \X ].
The union G1 ∪ G2 of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the
graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The intersection G1 ∩G2 of two graphs
G1 = (V1, E1) and G2 = (V2, E2) is the graph G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2).

• The set X ⊆ V (G) is connected if G[X ] is a connected graph. C ⊆ V (G) is
a connected component of G if G[C] is a maximal connected subgraph of G.

• A forest is a graph without cycles. A tree is a connected forest. For a tree T
we often write t ∈ T instead of t ∈ V (T ) for the tree nodes. A branch D of T
is the vertex set D ⊆ V (T ) of a maximal path in T that begins with the root.

• A directed tree T is a rooted tree where the edges are directed away from the
root. We write (t, s) for an edge of T directed from the tree node t to the tree
node s. If (t, s) ∈ E(T ), we say that the node s is a successor of the node t,
and t is the (unique) predecessor of s, in symbols: t = pred(s).

• A graph K is a clique (also complete graph), if E(K) = P=2(V (K)). A
k-clique is a complete graph with k vertices.

Definition 1.1.2 Let G be a graph. A tree decomposition of G is a pair (T,B),
consisting of a tree1 T and a family B = (Bt)t∈T of finite subsets of V (G), the
pieces of T , satisfying:

(TD1) For each v ∈ V (G) there exists t ∈ T , such that v ∈ Bt. We say the node t
covers v.

(TD2) For each edge e ∈ E(G) there exists t ∈ T , such that e ⊆ Bt. We say the
node t covers e.

(TD3) For each v ∈ V (G) the set {t ∈ T | v ∈ Bt} is connected in T .

The width of a tree decomposition of G is defined as

width(T,B) := sup
{

− 1 + |Bt|
∣

∣ t ∈ T
}

∈ ω ∪ {∞}.

The tree-width of G is defined as

tw(G) := min
{

width(T,B)
∣

∣ (T,B) is a tree decomposition of G
}

∈ ω ∪ {∞}.

Note that if G has no isolated vertices, (i.e. every vertex v ∈ V (G) is contained in
some edge of G), then (TD2) implies (TD1). It is not hard to see that tw(G) = 0
if, and only if, G has no edges, and tw(G) ≤ 1 iff G is a forest (cf. Example 1.1.5,
1, below).

Remark 1.1.3 Let G be a graph, and let X ⊆ V (G) be a connected subset of G.
Then the set {t ∈ T | X ∩Bt 6= ∅} is connected in T .

Proof. For every v ∈ X the set {t ∈ T | v ∈ Bt} is connected in T by (TD3).
Moreover, by (TD2) every edge {u, v} ∈ G[X ] is covered by some t{u,v} ∈ T . Thus

t{u,v} ∈
(

{t ∈ T | u ∈ Bt}∩ {t ∈ T | v ∈ Bt}
)

6= ∅. Therefore, since X is connected,
the set

⋃

v∈X{t ∈ T | v ∈ Bt} = {t ∈ T | X ∩Bt 6= ∅} is also connected. �

1Sometimes it is more convenient to work with a directed tree T . In this case we choose a root
r ∈ T and direct the edges of T away from the root.



1.1. TREE DECOMPOSITIONS OF INFINITE GRAPHS 5

Remark 1.1.4 The class of all graphs G with tw(G) ≤ k is closed under taking
subgraphs.

Proof. Let (T,B) be a tree decomposition of G of width ≤ k and let G′ ⊆ G be a
subgraph. Set B′

t := Bt∩V (G′). It is easy to see that (T,B′) is a tree decomposition
of G′ of width ≤ k. �

The remark stays true if we replace ‘subgraphs’ by ‘minors’. But we will not be
concerned with minors.

Example 1.1.5

1. If G is a tree, then tw(G) = 1. This is witnessed by the following tree decom-
position (T,B):

V (T ) =V (G) ∪E(G),

E(T ) =
{

{v, e} | v ∈ e ∈ E(G)
}

,

Bv ={v}, and Be = e.

2. The countably infinite clique Kℵ0 =
(

ℵ0,P=2(ℵ0)
)

satisfies tw(Kℵ0) = ∞.
Moreover, Kℵ0 has a tree decomposition of infinite width: An infinite path T
with an increasing sequence of finite pieces Bt ⊆ V (Kℵ0).

3. From 2 together with Remark 1.1.4 it follows that the uncountable clique
Kℵ1 =

(

ℵ1,P=2(ℵ1)
)

also has tw(Kℵ1) = ∞. The reader is invited to show
that in fact Kℵ1 has no tree decomposition (hint: Proposition 4.3.1, 2), and
thus tw(Kℵ1) = min{} = ∞.

For tree decompositions of infinite graphs as in the example we need to admit
infinite trees. We do so even for finite graphs. Fortunately, this does not affect
tree-width of finite graphs:

Proposition 1.1.6 Let G be a finite graph and let (T,B) be a tree decomposition
of G. Then G has a tree decomposition (T ′, B′) such that

1. T ′ is finite,

2. for every node t′ ∈ T ′ there exists a node t ∈ T such that B′
t′ = Bt, and

3. in particular width(T ′, B′) ≤ width(T,B).

Proof. Given (T,B), choose a root r ∈ T and direct the edges away from the root.
Intuitively, for every t ∈ T simultaneously we now contract the successors s of t
into t that satisfy Bs ⊆ Bt:

We say that s1, s2 ∈ T are equivalent, s1 ∼ s2, if s1 and s2 have a common
ancestor t ∈ T , such that the path P i = t, t1i , t

2
i , t

3
i , . . . , si from t to si (for i = 1, 2)

satisfies Bt ⊇ Bt1i ⊇ Bt2i ⊇ Bt3i ⊇ . . . ⊇ Bsi It is straightforward to see that ∼ is an
equivalence relation.

Now define (T ′, B′) by V (T )′ := T/ ∼, and

E(T ′) :=
{

(s′1, s
′
2)

∣

∣ there are nodes s1 ∈ s′1 and s2 ∈ s′2 such

that (s1, s2) ∈ E(T )
}

.

It is not hard to see that T ′ is a directed tree. Define B′
t′ :=

⋃

t∈t′ Bt. It is easy to
see that (T ′, B′) is a tree decomposition.

1: For every directed edge (t′, s′) ∈ E(T ′) there is a graph vertex v ∈ V (G)
such that v ∈ Bs′ \ Bt′ . Thus each node t′ ∈ T ′ has at most |V (G)| successors.



6 CHAPTER 1. TREE-WIDTH

For the same reason, every branch of T ′ has at most length |V (G)|, and hence T ′

is finite. 2: Since for every equivalence class t′ ∈ V (T ) we have a node t ∈ t′ that
is a common ancestor of all s ∈ t′, we have B′

t′ = Bt. 3: follows from 2. �

Definition 1.1.7

• For a directed tree T and a tree node t ∈ T , let Tt denote the complete subtree
of T with root t, i. e. the subtree containing t and all nodes reachable from t.

• For a tree decomposition (T,B), where T is a directed tree, we set BTt :=
⋃

s∈V (Tt)
Bs.

Proposition 1.1.8 Let G be a non-empty graph, K ⊆ G a finite clique in G,
and let (T,B) be a tree decomposition of G. Then there exists a node t ∈ T with
V (K) ⊆ Bt.

Proof. Let (T,B) be a tree decomposition of G. Starting with the root r of T we
find a path leading us to a node t ∈ T with V (K) ⊆ Bt as follows:

Set p0 := r. If V (K) ⊆ Br we are finished. Otherwise, connectedness (TD3)
shows that for each v ∈ V (K) \Br there exists a unique successor sv of r such that
v ∈ BTsv . If u ∈ V (K) \ Br and u 6= v, the edge {u, v} must be covered by some
s′ ∈ T . Connectedness (TD3) implies that s′ ∈ V (Ts) and hence su = sv. We set
p1 := sv. By (TD3) we have

(

Bp0 ∩ V (K)
)

⊆
(

Bp1 ∩ V (K)
)

.
Suppose the path p0, p1, . . . , pn is already defined. If V (K) ⊆ Bpn we are fin-

ished. Otherwise, by the same arguments as above, there exists a unique suc-
cessor s of pn with V (K) \ Bpn ⊆ BTs . We set pn+1 := s. By (TD3) we have
(

Bpn ∩ V (K)
)

⊆
(

Bpn+1 ∩ V (K)
)

.
Since V (K) is finite, after finitely many steps the path ends at a node pm with

V (K) ⊆ Bpm . �

1.2 Simplicial decompositions

In this section we will prove a theorem on tree decompositions of infinite graphs
by means of Halin’s deep theorem on simplicial decompositions. We begin with the
necessary definitions, followed by the statement of the fact which we are going to
generalise to infinite graphs. This section is the basis for the main result of Chapter
4, but it will not be used otherwise. Readers who wish to skip the results on infinite
graphs (and infinite hypergraphs), may continue with Chapter 2.

Definition 1.2.1

• A graph edge which joins two vertices of a cycle but is not itself an edge of
the cycle is called a chord.

• A graph is chordal if it contains no induced cycle of length ≥ 4. (Or, equiva-
lently, if every cycle of length ≥ 4 has a chord.)

• A graph G′ is a triangulation of the graph G, if G′ is chordal, V (G) = V (G′)
and E(G) ⊆ E(G′).

The following fact is [Di97, Proposition 12.3.11].

Fact 1.2.2 Let G be a finite graph. G is chordal if and only if G has a tree decom-
position (T,B) into complete pieces Bt (i.e. for all t ∈ T , the piece Bt induces a
clique in G).



1.2. SIMPLICIAL DECOMPOSITIONS 7

From this it is easy to derive the fact that even infinite graphs that have a tree
decomposition into complete pieces are chordal. This will be done below in Theorem
1.2.5, 1. The (much harder) converse was proved by I. Kř́ıž and R. Thomas in [KT91]
for infinite chordal graphs that have a finite upper bound on the sizes of complete
subgraphs. They noted: ‘The following result can be deduced from Halin’s theory
of simplicial decompositions, but we prove it from first principles’. We will follow
the first path here because we need a slightly more general result.

Here are the main definitions and the main result of [Ha64]:

Definition 1.2.3 Let G be a graph.

• G is prime, if G is nonempty and connected, and G contains no clique K such
that G \K is disconnected. We say G contains no separating clique.

• Let δ be an ordinal and (Gα)α<δ a family of subgraphs of G. The family
(Gα)α<δ is called a simplicial decomposition of G, if it satisfies:

(SD1) G =
⋃

α<δ Gα,

(SD2) Kβ = Gβ ∩
⋃

α<β Gα is a clique for every β < δ,

(SD3) Gβ ) Kβ and
⋃

α<β Gα ) Kβ.

It follows from (SD1) and (SD2) that the subgraphs Gα are actually induced
subgraphs.

Fact 1.2.4 (Halin 1964) Any graph G not containing an infinite clique has a sim-
plicial decomposition (Gα)α<δ into prime induced subgraphs Gα of G.

Using Facts 1.2.2 and 1.2.4 it is now straightforward to prove the main result of
this section:

Theorem 1.2.5 Let G be an infinite graph.

1. If G has a tree decomposition into complete pieces, then G is chordal.

2. If G is chordal and contains no infinite clique, then G has a tree decomposition
into complete pieces.

Proof. 1: Let (T,B) be a tree decomposition of G into complete pieces. Let O be a
cycle of length at least 4 in G. For each edge e of O choose a node te ∈ T covering
e. Let T ′ be the subtree of T spanned by the nodes {te | e an edge of O}. Since T ′

is finite, we can apply Fact 1.2.2 to the subgraph of G covered by T ′. Therefore O
has a chord.

2: Let G be a chordal graph containing no infinite clique. By Fact 1.2.4, G
has a simplicial decomposition (Gα)α<δ into prime induced subgraphs. By Lemma
1.2.6 below, (Gα)α<δ yields a tree decomposition (T,B) with pieces exactly the sets
V (Gα). Since all the Gα are prime and chordal, they are complete by Lemma 1.2.7
below. �

Lemma 1.2.6 Let (Gα)α<δ be a simplicial decomposition of G such that all Gα are
finite. Then G has a tree decomposition (T,B) with pieces exactly the sets V (Gα).

Proof. We prove this by induction on δ. Define (T 0, B0) by setting T 0 = ({r}, ∅)
and B0

r = ∅. Then (T 0, B0) is a tree decomposition of the empty graph
⋃

α<0Gα.



8 CHAPTER 1. TREE-WIDTH

Let (T β , Bβ) be already defined, (T β , Bβ) a tree decomposition of
⋃

α<β Gα.

Since Kβ = Gβ ∩
⋃

α<β Gα is finite, by Proposition 1.1.8 there is a node t ∈ V (T β)

such that V (Kβ) ⊆ Bβt . We now join V (Gβ) to the node t: Set

V (T β+1) :=V (T β) ∪ {s} for a new node s /∈ V (T β),

E(T β+1) :=E(T β) ∪ {{s, t}} and

Bβ+1
t :=Bβt for all t ∈ V (T β), Bβ+1

s := V (Gβ).

It is easy to see that (T β+1, Bβ+1) is a tree decomposition of
⋃

α<β+1Gα.

Let λ be a limit ordinal. For each α < λ, let (Tα, Bα) be already defined,
(Tα, Bα) a tree decomposition of

⋃

β<αGβ . Set T λ :=
⋃

α<λ T
α and Bλ :=

⋃

α<λB
α. It is easy to see that (T λ, Bλ) is a tree decomposition of

⋃

β<λGβ .

Hence, (T λ, Bλ) is a tree decomposition of G. �

Lemma 1.2.7 Let P be a prime chordal graph. Then P is complete.

Proof. Suppose P is not complete. Then there are p1, p2 ∈ V (P ) with {p1, p2} /∈
E(P ). Our aim is to find a clique in P that separate p1 and p2, a contradiction to
P being prime. The following two claims complete the proof:

Claim 1. There exists a minimal set S ⊆ V (P ) separating p1 and p2.

Claim 2. A minimal set S separating p1 and p2 induces a clique in P .

Proof of Claim 1: The collection of subsets of V (P ) \ {p1, p2} which separate
p1 and p2 is nonempty (as is contains V (P ) \ {p1, p2}) and partially ordered by
inclusion. Let (Si)i∈I be a maximal chain, and let S =

⋂

i∈I Si. Then S separates
p1 and p2: If not, there is a path p1 = v1, v2, . . . , vn = p2 in P \ S. Hence some
Sio satisfies Sio ∩ {vi|i = 1, . . . , n} = ∅. But then Sio does not separate p1 and
p2, a contradiction to our assumption. Therefore S is a minimal set separating the
vertices p1 and p2.

Proof of Claim 2: If not, there are s, t ∈ S such that {s, t} /∈ E(P ). Let C1

be the connected component of P \ S containing p1 and let C2 be the connected
component of P \S containing p2. Since S is minimal, both s and t have a neighbour
in C1 and a neighbour in C2. Let P1 be the shortest path from s to t in C1 ∪ {s, t}
and let P2 be the shortest path from s to t in C2 ∪ {s, t}. Then P1 ∪ P2 is a cycle
of length ≥ 4 without a chord, a contradiction. �

Theorem 1.2.5, 2 does not hold for graphs G containing an infinite clique: [Ha64,
p. 223] contains an example of a chordal graph that has no tree decomposition into
complete pieces.

We will use Theorem 1.2.5 in Section 4.2, where we will generalise C. Thomassen’s
proof of the fact that an infinite graph has tree-width at most k if, and only if, all
of its finite subgraphs have tree-width at most k.

As promised, we finish with an alternative characterisation of tree-width [Ha64].

Corollary 1.2.8 Let G be a graph and k > 0 an integer. Then

tw(G) ≤ k

⇐⇒

G has a triangulation G′ s. t. G′ contains no (k + 2)-clique.

Proof. ‘⇒’: Let (T,B) be a tree decomposition of G of width width(T,B) ≤ k. We
define G′ as follows.



1.3. TREE-WIDTH AND K-TREES 9

Graph G′

vertex set: V (G)
edges: {u, v}, where {u, v} ⊆ Bt for a node t ∈ T

Then (T,B) is a tree decomposition of G′ into complete pieces, and so G′ is chordal
by Theorem 1.2.5. ThusG′ is a triangulation ofG. Now for every complete subgraph
K ⊆ G′, by Proposition 1.1.8 there is a node t ∈ T such that V (K) ⊆ Bt. Hence
|V (K)| ≤ |Bt| ≤ k + 1.

‘⇐’: By Theorem 1.2.5, G′ has a tree decomposition (T,B) into complete pieces,
so |Bt| ≤ k + 1. (T,B) is a tree decomposition of G of width at most k. �

1.3 Tree-width and k-trees

k-trees were first defined in [AP81]. It is well known that for finite graphs, the
subgraphs of k-trees are exactly the graphs of tree-width at most k + 1. In this
section we prove this also for infinite graphs. We begin by refining the idea of
Proposition 1.1.6 in order to show that every tree decomposition can be transformed
into a particularly nice one. The aim of this section is to give another example
where a well-known characterisation of tree decompositions can be maintained in
the infinite case. The results of this section will not be used later.

1.3.1 Smooth tree decompositions

Definition 1.3.1 Let (T,B) be a tree decomposition of a graph G, of width at most
k.

• (T,B) is thick if |Bt| = k + 1 for all t ∈ T .

• (T,B) is small if Bs * Bt for any two distinct tree nodes s, t ∈ T .

• (T,B) is smooth if (T,B) is thick and |Bs ∩Bt| = k holds for all tree edges
{s, t} ∈ E(T ).

Obviously, every smooth tree decomposition is thick and small.

Lemma 1.3.2 Let k < ω. If a graph G has a tree decomposition of width k, then
G also has a thick tree decomposition of width k.

Proof. Let (T,B) be a width k tree decomposition of G. Then there exists a node
t0 ∈ T such that |Bt0 | = k + 1. Set (T,B0) := (T,B).

Suppose we already know that (T,Bi) is a tree decomposition of G with |Bit| =
k + 1 for all nodes t ∈ T with distance ≤ i from t0. For any s with distance i+ 1
from t0 satisfying |Bs| < k + 1, add (k + 1) − |Bs| elements from Bt to Bs, where
t is the neighbour of s with distance i to t0. Thus we obtain a tree decomposition
(T,Bi+1) of G, where |Bi+1

t0 | = |Bi+1
s | = k + 1 for all nodes s ∈ T with distance

≤ i+ 1 from t0.
Now set Bω :=

⋃

i<ω B
i. It is straightforward to check that (T,Bω) is a thick

tree decomposition of width k of G. �

Lemma 1.3.3 If a graph G has a tree decomposition of width k, then G also has
a thick and small tree decomposition of width k.

Proof. Let (T,B) be a tree decomposition of G of width k. By Lemma 1.3.2 we
may assume that (T,B) is thick. Define (T ′, B′) with V (T ′) = V (T )/ ∼, where ∼
is the equivalence relation on V (T ) defined by

s ∼ t : ⇐⇒ Bs = Bt.



10 CHAPTER 1. TREE-WIDTH

We define E(T ′) by setting

{s′, t′} ∈ E(T ′) : ⇐⇒ there exist s, t ∈ T such that s ∈ s′, t ∈ t′ and

{s, t} ∈ E(T ).

Finally, we set B′
t/∼ := Bt for all t ∈ T . Since (T,B) is thick, for each t0 ∈ T

there exists one and only one connected subset C of T such that all t ∈ C satisfy
Bt = Bt0 . It is easy to see that (T ′, B′) is a small thick tree decomposition of G of
width k. �

Proposition 1.3.4 If a graph G has a tree decomposition of width k, then G also
has a smooth tree decomposition of width k.

Proof. Let (T,B) be a width k tree decomposition of G. By Lemma 1.3.3 we may
assume that (T,B) is small and thick. For each edge {s, t} ∈ E(T ) with ` := |Bs ∩
Bt| < k, we insert new nodes s1, . . . , sk−` between s and t. Let Bs = {x1, . . . , xk+1}
and Bt = {x1, . . . , xl, yl+1, . . . , yk+1}. We set B′

s := Bs and B′
t := Bt. Now define

B′
si := {x1, . . . , xk+1−i, yk+2−i, . . . , yk+1} for i = 1, . . . , k − `. Thus we obtain a

smooth tree decomposition (T ′, B′) of G of width k. �

1.3.2 k-trees

Definition 1.3.5 Let G be a graph, v /∈ V (G).

For a subgraph H ⊆ G we define a supergraph G∪ Ĥv ⊇ G (G with a cone over H)
as follows.

Graph G ∪ Ĥv

vertex set: V (G) ∪ {v}
edges: e, where e ∈ E(G)

{v, u}, where u ∈ V (H)

G ∪ Ĥv :=
(

V (G) ∪ {v}, E(G) ∪
{

{v, u}
∣

∣ u ∈ V (H)
})

.

If H = G, we write Ĝv instead of G ∪ Ĝv.

Definition 1.3.6 The class of k-trees is defined inductively as follows:

(KT1) Kk, the complete graph on k vertices, is a k-tree.

(KT2) If G is a k-tree containing Kk as a subgraph and v /∈ V (G), then G ∪ K̂v
k

is a k-tree.

(KT3) Let λ be a limit ordinal. If (Gα)α<λ is a family of k-trees s. t. Gα ⊆ Gβ
for α ≤ β < λ, then

⋃

α<λGα is a k-tree.

It easily follows from (KT3) that
⋃

i∈J Gi is a k-tree for every linearly ordered
set J , if Gi ⊆ Gj for i < j and the graphs Gi are k-trees. It is also not hard to see
that a k-tree that is a subgraph of another k-tree is in fact an induced subgraph.

Remark 1.3.7 The 1-trees are exactly the trees.

Proof. Let G be a 1-tree. We use induction to show that G is a tree:
(KT1): If G = K1, then G is a tree. (KT2): If G = G0 ∪ K̂v

1 where K1 ⊆ G0

and G0 is a tree, then G is a tree as well, since G is obtained from G0 by connecting
the new vertex v by a single edge to the only vertex of K1 ⊆ G0.



1.3. TREE-WIDTH AND K-TREES 11

(KT3): If G =
⋃

α<λGα, Gα ⊆ Gβ for α ≤ β < λ and each Gα is a tree, then G
is a tree as well: Since all Gα are connected, G is connected. G contains no cycle,
since a cycle in G would be contained in some Gα, α < λ.

Conversely, let T be a tree. The set I of all induced subgraphs of T that are
1-trees is nonempty and ordered inductively by inclusion: The union of a linearly
ordered sequence (Ti)i∈J in I is contained in T and is a 1-tree by definition. Now
let M be a maximal element in I. Then M = T : Otherwise there is a node
t ∈ T \ V (M). Since T is connected, there is a path P leading from M to t. Let
t0 be the last node of P that is contained in V (M) and let t1 be the node after t0.
We can join t1 to M by the edge {t0, t1}, thus obtaining a 1-tree M ′ % M in T , a
contradiction to the choice of M . �

Lemma 1.3.8 Let G be a k-tree and v /∈ V (G). Then Ĝv is a (k + 1)-tree.

Proof. We prove this by induction:
(KT1): If G = Kk, then Ĝv = Kk+1 is a (k + 1)-tree.
(KT2): If G = G0 ∪ K̂

u
k is a k-tree, Kk ⊆ G0, then

Ĝv = ̂G0 ∪ K̂u
k

v

= Ĝv0 ∪ (̂K̂v
k )
u

= Ĝv0 ∪ K̂u
k+1

is a (k + 1)-tree, since Ĝv0 is a (k + 1)-tree by assumption.
(KT3): If G =

⋃

α<λGα, Gα ⊆ Gβ for α ≤ β < λ and the Ĝvα are (k + 1)-trees

for α ≤ β < λ, then Ĝvα ⊆ Ĝvβ for α ≤ β < λ. Therefore Ĝv =
⋃

α<λ Ĝ
v
α is a

(k + 1)-tree. �

Corollary 1.3.9 Let `, k ≥ 0 be integers, ` ≤ k. Every `-tree can be embedded in
a k-tree.

Proof. Use Lemma 1.3.8 (k − `) times. �

Theorem 1.3.10 The graphs of tree-width ≤ k are exactly the (partial) subgraphs
of k-trees.

Proof of ‘ ⇒’. Let ` := tw(G) ≤ k. By Corollary 1.3.9 it suffices to show that G
is subgraph of an `-tree. Let (T,B) be a smooth tree decomposition of width ` for
G (such a tree decomposition exists by Proposition 1.3.4). Define a graph G′ as
follows.

Graph G′

vertex set: V (G)
edges: e, where e ∈ E(G)

{u, v}, where {u, v} ⊆ Bt for a node t ∈ T

Obviously, (T,B) is also a tree decomposition of G′.
Claim: G′ is an `-tree.
Proof of the claim. T is a tree and hence, by Remark 1.3.7, T is a 1-tree. We

prove the claim by induction on T .
(KT1): If T = K1 = ({t}, ∅), then G′ is the complete graph on ` + 1 vertices

and therefore G′ is an `-tree.
(KT2): For T0 ⊆ T let G′

T0
denote the subgraph of G′ induced by

⋃

t∈V (T0)Bt.

Let T = T0 ∪ K̂s
1 with s /∈ V (T0), and let G′

T0
be an `-tree. Then

V (G′) = V (G′
T0

) ∪Bs = V (G′
T0

) ∪ {v}, for some v /∈ V (G′
T0

),

where the last equality holds because (T,B) is smooth. Furthermore

E(G′) = E(G′
T0

) ∪
{

{u, v} | u ∈ Bs, u 6= v
}

.



12 CHAPTER 1. TREE-WIDTH

Bs \ {v} induces a complete graph Kl in G′
T0

. Note that an edge {u, v} with
u /∈ Bs cannot exist, since otherwise {u, v} would be covered by some t0 ∈ V (T0),
a contradiction to v /∈ V (G′

T0
). Hence G′ = G′

T0
∪ K̂v

l is an `-tree.
(KT3): If T =

⋃

α<λ Tα, Tα ⊆ Tβ for α ≤ β < λ, and the G′
Tα

are `-trees, then
⋃

α<λG
′
Tα

is an l-tree by definition.
Altogether G′ = G′

T is an `-tree. The proof of the other direction is given at
the end of this section. �

Definition 1.3.11 Let G be a k-tree.We define the construction tree TG of G by:

V (TG) := {K ⊆ G | K is a k-clique or a (k + 1)-clique},

E(TG) :=
{

{K,K ′} | K ⊂ K ′ ⊆ G
}

.

Strictly speaking, the construction tree of G depends on G and k. This is because
of the slightly pathological case of a (k + 1)-clique, which is a k-tree as well as
a (k + 1)-tree. (We cannot avoid this by making the definition of k-trees more
restrictive, since this would break Remark 1.3.7.)

Lemma 1.3.12 The construction tree TG of a k-tree G is in fact a tree.

Proof. We prove this by induction on the k-tree G. Throughout the proof we use
Remark 1.3.7 freely.

(KT1): If G = Kk, then TG =
(

{Kk}, ∅
)

is a tree.

(KT2): Let G = G0 ∪ K̂v
k where Kk ⊆ G0 and TG0 is a tree. Then, by definition

of the construction tree,

V (TG) = V (TG0) ∪ {K̂v
k} ∪ {K1

k, . . .K
k
k}

where Ki
k 6= Kj

k for i 6= j and the Ki
k ⊆ K̂v

k for i = 1, . . . k are the new k-cliques in
Kv
k , i. e. v ∈ Ki

k for i = 1, . . . k. Furthermore,

E(TG) = E(TG0) ∪
{

{Kk, K̂
v
k}

}

∪
{

{K̂v
k ,K

i
k}

∣

∣ i = 1, . . . k
}

.

Therefore TG is a tree.

(KT3): Let G =
⋃

α<λGα, Gα ⊆ Gβ for α ≤ β < λ, where the TGα are trees
for α < λ. Then TGα ⊆ TGβ for α ≤ β < λ and hence TG =

⋃

α<λ TGα is a tree. �

Lemma 1.3.13 Let G be a k-tree and TG the construction tree of G. Then (TG, B)
with BK := V (K) for K ∈ V (TG) is a tree decomposition of G of width ≤ k .

Proof. All K ∈ V (TG) satisfy |BK | = |V (K)| ≤ k+ 1 by definition of the construc-
tion tree. We now check the conditions for tree decompositions.

(TD1): Let v ∈ V (G). It is easy to see that there is a k-clique Kk ⊆ G with
v ∈ V (Kk). Therefore v ∈ BKk .

(TD2): Let e ∈ E(G). It is easy to see that there is a k-clique Kk ⊆ G with
e ⊆ V (Kk). Then e ⊆ BKk .

(TD3): Let u ∈ V (G). By induction on G we show that {t ∈ V (TG) | u ∈ Bt}
is connected:

• If G = Kk, then V (TG) = {Kk} and there is nothing to show.

• Let G = G0 ∪ K̂v
k , where Kk ⊆ G0 and (TG0 , B � TG0) satisfies (TD3). If

u ∈ BKi
k

for one of the k new nodes K1
k, . . . ,K

k
k ⊆ K̂v

k , then u ∈ BK̂v
k
. Hence



1.3. TREE-WIDTH AND K-TREES 13

it suffices to show: If u ∈ BK ∩ BK̂v
k

for some K ∈ V (TG0), then u ∈ Bs for

all s on the path from K to K̂v
k .

Since u ∈ BK , it follows that u 6= v. By the induction hypothesis, it suffices
to show that u ∈ BKk for the unique neighbour Kk of K̂v

k in TG0 , which is
true since u 6= v.

• Let G =
⋃

α<λGα, Gα ⊆ Gβ for α ≤ β < λ. Since all (TGα , Bα) for α < λ
satisfy (TD3), so does (TG, B) =

⋃

α<λ(TGα , Bα). �

Proof of ‘ ⇐’ in Theorem 1.3.10. Let G be a k-tree and G0 ⊆ G a subgraph. By
Remark 1.1.4, it suffices to show that tw(G) ≤ k. This is true by Lemma 1.3.13. �



Chapter 2

f-hypertree-width of graphs

This chapter is motivated by hypergraphs, although in view of later application
(Chapter 5) we work in a more general framework.

Let H = (V,E) be a hypergraph, i. e. E ⊆ P<ω(V ). A tree decomposition of
H is a tree decomposition of the underlying graph H of H (cf. Definition 2.1.6).
Alternatively, we can define a tree decomposition of H by translating the definition
literally from graphs to hypergraphs, replacing the word ‘graph’ by ‘hypergraph’
and ‘edge’ by ‘hyperedge’. With Proposition 1.1.8 it is easy to see that the result
is the same.

In the applications, however, it turns out that the cardinality |Bt| of a piece
Bt is not the best measure for its complexity: Any piece consisting of a single
hyperedge should have small width, even though the cardinalities of such pieces are
unbounded. This is achieved by the following ‘width function’:

cmon
H : P<ω(V (H)) → R ∪ {∞},

X 7→ the least integer n such that X is contained in the

the union of n hyperedges of H.

Given a width function f such as cmon
H , we can proceed to define the f -width of

a tree decomposition (T,B) as f - width(T,B) = sup{f(Bt) | t ∈ T }. The exact
f -hypertree-width of a graph (or hypergraph) G is

f - ehw(G) = inf{f - width(T,B) | (T,B) a tree decomposition of G}.

In the case of f = cmon
H it is easy to see that we get cmon

H - ehw(H) = ghw(H),
the generalised hypertree-width of H as defined by G. Gottlob, N. Leone and F.
Scarcello in [GLS01b].

For technical and historical reasons (which again have to do with the applica-
tions) we work with two other, more complicated notions rather than with exact f -
hypertree-width. These are f -hypertree-width, f -hw, and generalised f -hypertree-
width, f -ghw (cf. Definition 2.1.3). If f , like cmon

H , is a monotone width function,
i.e.

X ⊆ Y ⊆ V (G) =⇒ f(X) ≤ f(Y ),

then all three definitions coincide:

f - ghw(G) = f - hw(G) = f - ehw(G).

For non-monotone width functions, we only have

f - ghw(G) ≤ f - hw(G) ≤ f - ehw(G).

14



2.1. DEFINITIONS AND SOME OBSERVATIONS 15

In Section 2.2 we characterise f - hw(G) as the minimal number k such that in
a monotone robber and cops game in the style of P. D. Seymour and R. Thomas
[ST93], the cops can win if they are allowed to occupy sets X such that f(X) ≤ k.

In Section 2.3, we slightly generalise some standard bounded tree-width and
bounded hypertree-width methods in order to get tractable cases of the homomor-
phism problem. Here it should become clear why we are interested in both f - hw
and f - ghw.

Since we can regard every hypergraph H as its underlying graph H equipped
with the width function cmon

H it makes sense to examine more generally graphs
equipped with arbitrary width functions, and also classes of ‘equipped’ graphs.
Hypertree-width and generalised hypertree-width can be regarded as invariants of
equipped graphs. In Section 2.4 we define some more invariants for equipped graphs
that resemble graph invariants such as bramble-number, linkedness, branch-width,
and we prove that for certain classes of equipped graphs they are all equivalent in
a strong sense.

2.1 Definitions and some observations

2.1.1 Hypertree decompositions and width functions

Definition 2.1.1 Let G be a graph.

• A generalised hypertree decomposition of G is a triple (T,B,C), such that

(HD1) (T,B) is a tree decomposition of G,

and C = (Ct)t∈T is a family of finite subsets of V (G), the guards1 of (T,B,C),
such that

(HD2) Every tree node t ∈ T satisfies Bt ⊆ Ct.

• (T,B,C) is a hypertree decomposition of G if the following condition is also
satisfied:

(HD3) Every tree node t ∈ T satisfies Ct ∩ BTt ⊆ Bt. (Recall that BTt =
⋃

s∈V (Tt)
Bs.)

Thus the axioms for hypertree decompositions are (TD1), (TD2), (TD3), (HD2),
(HD3). Recall from Definition 1.1.2 that the pieces Bt must be finite. Note that for
every tree decomposition (T,B) we get a hypertree decomposition (T,B,B), and
that every hypertree decomposition is a generalised hypertree decomposition.2

Definition 2.1.2 A width function on a graph G is a function

f : P<ω
(

V
(

G)
)

→ R ∪ {∞}.

Definition 2.1.3 Let G be a graph, let f be a width function on G, and let (T,B,C)
be a hypertree decomposition of G.

• The f -width of (T,B,C) is

f -width(T,B,C) = sup{f(Ct) | t ∈ T }.

1Readers already acquainted with hypertree decompositions of hypergraphs as defined in
[GLS02] will note that our guards Ct are sets of graph vertices, not of edges. If C′

t is a guard in
[GLS02], then Ct =

S

C′

t.
2The reader may wonder what a ‘hypertree’ is. Should these decompositions not be called

‘hyper-treedecompositions’? The rationale behind this terminology is that a ‘tree’ in the sense of
tree decompositions is a pair (T, B) and a ‘hypertree’ is a triple (T, B, C).



16 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

• The f -hypertree-width of G is

f -hw(G) = inf
{

f -width(T,B,C) | (T,B,C) a hypertree

decomposition of G
}

.

• The generalised f -hypertree-width of G is

f - ghw(G) = inf
{

f -width(T,B,C) | (T,B,C) a generalised

hypertree decomposition of G
}

.

The ‘generalised’ f -hypertree-width of a graph is, of course, not more general but
just smaller than its f -hypertree-width: f -ghw(G) ≤ f -hw(G). Also note that if G
is finite or if f actually takes values in a well-ordered subset of R ∪ {∞}, such as
ω∪{∞}, then the infima in the definitions of f - hw(G) and f - ghw(G) are attained.

The notion of exact hypertree-width defined in the introduction of this chapter
has an analogous characterisation in terms of ‘exact’ hypertree decompositions, i.e.
hypertree decompositions of the form (T,B,B).

Example 2.1.4 Let G be a graph. The cardinality function

card : P<ω
(

V (G)
)

→ R ∪ {∞},

X 7→ |X | ,

is a width function on G, and

card -hw(G) = card - ghw(G) = tw(G) + 1.

Once again, to a reader who is mainly interested in finite graphs (and finite
hypergraphs), it may seem somewhat unnatural to admit infinite hypertree de-
compositions for finite graphs. But—as in the case of tree decompositions—it is
harmless:

Theorem 2.1.5 Let G be a finite graph, let f be a width function for G and let
k ∈ R.

1. If f -ghw(G) = k, then there is a finite generalised hypertree decomposition
(T,B,C) with f -width(T,B,C) = k.

2. If f -hw(G) = k, then there is a finite hypertree decomposition (T,B,C) with
f -width(T,B,C) = k.

Proof. First note that the f -width of a (generalised) hypertree decomposition,
although defined as a supremum, is in fact a maximum in case of finite G, and
that f -ghw(G) and f -hw(G) are in fact minima. Therefore we have a (generalised)
hypertree decomposition (T,B,C) of G such that f -width(G) = k. Transform
(T,B) into a tree decomposition (T ′, B′) as in Proposition 1.1.6. Then T ′ is finite,
and for every node t′ ∈ T ′ there exists a node t ∈ T with B′

t′ = Bt. Choose such
a node t closest to the root and define C′

t′ := Ct. Then (T ′, B′, C′) is a generalised
hypertree decomposition of G. Moreover, if (T,B,C) is satisfies (HD3), then so
does (T ′, B′, C′). �



2.1. DEFINITIONS AND SOME OBSERVATIONS 17

2.1.2 Application to hypergraphs

Our only example of f -hw and f -ghw so far is tree-width (Example 2.1.4). To give
a second type of examples, we give the definitions of a hypergraph and its cover
number. These will be investigated in detail in Chapter 3.

Definition 2.1.6

• A hypergraph is a pair H =
(

V (H), E(H)
)

, consisting of

– a nonempty set V (H) of vertices, and

– a set E(H) ⊆ P<ω(V (H)) of finite subsets of V (H), the hyperedges of
H (which we will usually just call ‘edges’).

• H0 is a subhypergraph of H, if V (H0) ⊆ V (H) and E(H0) ⊆ E(H).

• Let X ⊆ V (H). Then the subhypergraph of H induced by X is the following
hypergraph H [X ]:

Hypergraph H [X ]
vertex set: X
edges: e ∩X, where e ∈ E(H)

• H0 is an induced subhypergraph of H if H0 = H [X ] for some X ⊆ V (H).

• For a hypergraph H the underlying graph of H is the following graph H:

Hypergraph H
vertex set: V (H)
edges: {v, w}, where v 6= w and there exists an edge h ∈ E(H)

such that {v, w} ⊆ h

H is also called the primal graph or the Gaifman graph of H.

• A hypergraph H is connected if H is connected.

• A hypergraph H is tame if H has no isolated vertices, i. e. every vertex v ∈
V (H) is contained in a hyperedge h ∈ E(H).

We say that f is a width function on the hypergraph H , if f is a width function on
H .

Example 2.1.7 Here is the hypergraph shown in Figure 2.1:

Hypergraph H
vertices: 1, 2, . . . , 11
edges: {1, 2, 3}, {4, 5, 6}, {4, 5, 8}, {4, 5, 8, 9}

{6, 7, 10}, {7}, {9, 10}

Definition 2.1.8 We consider the following width function on hypergraphs H:

cH : P<ω(V (H)) → R ∪ {∞},

X 7→ inf
{

|Y |
∣

∣ Y ⊆ E(H), X =
⋃

Y
}

.

We call cH(X) the cover number of X.



18 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

11

2 3

8 9

4

7

1

10

5 6

Figure 2.1: The hypergraph H from Example 2.1.7.

Definition 2.1.9

• A tree decomposition of a hypergraph H is a tree decomposition of H.

• The tree-width of H is the tree-width of H.

• A (generalised) hypertree decomposition of H is a (generalised, resp.) hyper-
tree decomposition of H.

• For a width function f of H, we define f -hw(H) := f -hw(H) and f -ghw(H) :=
f -ghw(H).

Alternatively, we could define the notions of tree decomposition, hypertree de-
composition, tree-width of H and f -hypertree-width of H by translating the def-
initions literally from graphs to hypergraphs, replacing the word ‘graph’ by ‘hy-
pergraph’ and ‘edge’ by ‘hyperedge’. With Proposition 1.1.8 it is easy to see that
the result would be the same. For some of the other f -invariants defined below in
Section 2.4 this will not be true.

Example 2.1.10 Let H be a finite hypergraph. Then

• cH - hw(H) equals the hypertree-width of H as defined in [GLS02].

• cH - ghw(H) equals the generalised hypertree-width of H as defined
in [GLS02].

Remark 2.1.11 Let H ′ be an induced subhypergraph of H. Then

• cH′ -hw(H ′) ≤ cH - hw(H), and

• cH′ - ghw(H ′) ≤ cH - ghw(H).

Proof. Let (T,B,C) be a (generalised) hypertree decomposition of H satisfying
cH -width(T,B,C) ≤ k. Set B′

t := Bt ∩ V (H ′) and C′
t := Ct ∩ V (H ′). It is easy

to see that (T,B′, C′) is a (generalised) hypertree decomposition of H ′. Moreover,
since H ′ is induced, we have cH -width(T,B′, C′) ≤ k, because cH′ (C′

t) ≤ cH(Ct)
for all tree nodes t ∈ T . �

This is not true for arbitraty subhypergraphs (in contrast to Remark 1.1.4):

Remark 2.1.12 For an integer n > 0 consider the following hypergraph H:



2.1. DEFINITIONS AND SOME OBSERVATIONS 19

Hypergraph H
vertices: 1, . . . , 2n
edges: {1, . . . , 2n}

{i, j}, where i < j, i, j ∈ {1, . . . , 2n}

The hypergraph H has the following subhypergraph H ′:

Hypergraph H ′

vertices: 1, . . . , 2n
edges: {i, j}, where i < j, i, j ∈ {1, . . . , 2n}

For H and H ′ we have

• cH-ghw(H) = cH-hw(H) = 1, and

• cH-ghw(H ′) = cH-hw(H ′) = n.

Proof. The first statement is obvious. For the second statement, note that H ′ is
a clique. Thus, by Proposition 1.1.8, every tree decomposition (T,B) of H ′ has a
piece Bt with V (H ′) ⊆ Bt. The rest is left to the reader. �

2.1.3 Monotone width functions

If f is a width function on G and G′ ⊆ G a subgraph of G, then the restriction of f
to V (G′) is a width function on G′; and one might expect that f -hw(G′) ≤ f -hw(G).
However, this is not the case in general: consider the width function f(X) = − |X |
on an arbitrary graph G. This is the reason for the following slightly complicated
definition.

Definition 2.1.13 Let f be a width function on the graph G and let G′ be a sub-
graph of G. The function f gives rise to a width function fG′ on G′ as follows.

fG′ : P<ω
(

V (G)
)

→ R ∪ {∞},

X 7→ inf
{

f(Y )
∣

∣ Y ⊆ V (G), |Y | < ω, and X = V (G′) ∩ Y
}

.

If H is a hypergraph and H ′ ⊆ H is an induced subhypergraph, then cH′ =
(cH)H′ . Hence the following generalises Remark 2.1.11.

Remark 2.1.14 Let f be a width function on the graph G, let G′ be a subgraph of
G. Then

• fG′-hw(G′) ≤ f -hw(G), and

• fG′-ghw(G′) ≤ f -ghw(G).

Proof. We can restrict a (generalised) hypertree decomposition (T,B,C) by setting
B′
t = Bt ∩ V (G′) and C′

t = Ct ∩ V (G′). Clearly, fG′(C′
t) ≤ f(Ct). �

Definition 2.1.15 A width function f on the graph G is monotone, if for finite
subsets X,Y ⊆ V (G) we have

X ⊆ Y =⇒ f(X) ≤ f(Y ).

Example 2.1.16

• Let G be a graph. The cardinality function card is monotone.



20 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

• In general, the cover number of a hypergraph is not monotone. For example,
the hypergraph H =

(

{1, 2},
{

{1, 2}
})

satisfies

∞ = cH({1}) > cH({1, 2}) = 1.

• If H is a hypergraph, then cH is monotone if, and only if, H is simplicial, i.
e. every subset of a hyperedge is itself a hyperedge.

For monotone width functions f the above complicated definition of fG′ is not
necessary:

Remark 2.1.17 Let f be a monotone width function on the graph G, and let G′

be a subgraph of G. Then fG′ = f � P<ω(V (G′)).

Proof. Let X ⊆ V (G) be a finite subset. Then

fG′(X) = inf
{

f(Y )
∣

∣ Y ⊆ V (G), |Y | < ω, and X = V (G′) ∩ Y
}

=f(X),

where the last equality holds because f is monotone. �

For graphs with monotone width functions, the hypertree decompositions can
be chosen to have a very simple form: If (T,B,C) is a (generalised) hypertree
decomposition for G of f -width at most k, then (T,B,B) is also a (generalised)
hypertree decomposition of f -width at most k.

Remark 2.1.18 Let f be a monotone width function on the graph G. Then

f - ghw(G) = f -hw(G).

Proof. Since every hypertree decomposition is a generalised hypertree decomposi-
tion, we have f - ghw(G) ≤ f - hw(G). Conversely, let f - ghw(G) ≤ k. By mono-
tonicity of f we may assume that this is witnessed by a generalised hypertree de-
composition (T,B,B). But (T,B,B) satisfies condition (HD3) of Definition 2.1.1
and thus is a hypertree decomposition. �

Below in Section 3.3.1 we will see examples where

f - ghw(G) < f - hw(G).

Every width function can be ‘made monotone’ in the following way.

Definition 2.1.19 Given a width function f on the graph G, we define the width
function fmon on G as follows.

fmon : P<ωV (G) → R ∪ {∞},

X 7→ fG[X](X) = inf
{

f(Y )
∣

∣ X ⊆ Y ⊆ V (G), |Y | < ω
}

.

Obviously, if f only takes values in ω ∪ {∞}, then the infimum in the definition
above is actually a minimum. For example this is the case if f = cH .

Lemma 2.1.20 Let f be a width function on G. Then

1. fmon ≤ f ,

2. fmon is monotone,

3. fmon = sup
{

g
∣

∣ g monotone width function on G and g ≤ f
}

,



2.1. DEFINITIONS AND SOME OBSERVATIONS 21

4. If f is monotone, then f = fmon.

Proof. 1: For X ⊆ V (G), we have

fmon(X) = inf
{

f(Y )
∣

∣ X ⊆ Y ⊆ V (G)
}

≤ f(X).

2: Let X ⊆ Y ⊆ V (G). Then

{

f(Z)
∣

∣ X ⊆ Z ⊆ V (G)
}

⊇
{

f(Z)
∣

∣ Y ⊆ Z ⊆ V (G)
}

,

and thus

fmon(X) = inf
{

f(Z)
∣

∣ X ⊆ Z ⊆ V (G)
}

≤ inf
{

f(Z)
∣

∣ Y ⊆ Z ⊆ V (G)
}

= fmon(Y ).

3: Let g be a monotone width function on G such that g ≤ f . For X ⊆ Y ⊆ V (G)
we have g(X) ≤ f(Y ). Thus g(X) ≤ inf

{

f(Y )
∣

∣ X ⊆ Y ⊆ V (G)
}

= fmon(X), and
the statement follows from 2. 4: Follows from 3. �

Proposition 2.1.21 Let G be a graph and let f be a width function on G. Then

fmon- hw(G) = fmon- ghw(G) = f - ghw(G).

Proof. By Lemma 2.1.20, fmon is monotone, and the first equality follows from
Remark 2.1.18. By Part 1 of Lemma 2.1.20, fmon ≤ f . Thus fmon- ghw(G) ≤
f - ghw(G). Conversely, let fmon- ghw(G) ≤ k. We have to show that for all ε > 0
the inequality f - ghw(G) ≤ k + ε holds. Let (T,B,C) be a generalised hypertree
decomposition witnessing that fmon- ghw(G) ≤ k + ε

2 . Since each t ∈ T satisfies
fmon(Ct) ≤ k+ ε

2 , by definition of fmon there exists a set C′
t with Ct ⊆ C′

t ⊆ V (G)
and f(C′

t) ≤ (k + ε
2 ) + ε

2 . Thus (T,B,C′) witnesses that f - ghw(G) ≤ k + ε. �

For completeness we also state the following easy remarks.

Remark 2.1.22 Let be f a width function on the graph G and let G′ be a subgraph
of G. Then

(fmon)G′ = (fG′)mon.

Proof. Let X be a finite subset of V (G′). Then

(fmon)G′(X) = inf
Y⊆V (G)

Y ∩V (G′)=X

inf
Z⊆V (G)
Z⊇Y

f(Z) = inf
Z⊆V (G)
Z⊇X

f(Z)

= inf
Y⊆V (G′)
Y⊇X

inf
Z⊆V (G)

Z∩V (G′)=Y

f(Z) = (fG′)mon(X).

�

Remark 2.1.23 Let f be a width function on the graph G. Let G =
⋃

β<αG[Cβ ],
where the Cβ, for β < α, are the connected components of the graph G (for some
ordinal α). Then

f -hw(G) = sup
{

fG[Cβ]-hw(G[Cβ ])
∣

∣ β < α
}

.



22 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

2.2 A game for f-hypertree-width

In [ST93], P. D. Seymour and R. Thomas defined a game in which a number of
cops must catch a robber on a graph. They also defined a monotone variant of
the game, in which the cops have to make sure that the robber’s ‘escape space’
always decreases. They proved that on a given graph G the minimum number of
cops necessary to catch the robber in the robber and cops game equals the number
of cops necessary to catch the robber in the monotone game variant. Furthermore
they showed that these invariants are equal to tw(G) + 1.

In this section we define very similar games. Where P. D. Seymour and R.
Thomas bounded |X | for a cop position X ⊆ V (G), we bound f(X) for an arbitrary
width function f on G. In this respect the generalisation is very straightforward.
However, in order to make this game behave as expected on infinite graphs, we need
to be a bit more careful.

For arbitrary width functions our robber and cops game and its monotone vari-
ant may not define the same f -invariant, even on finite graphs. Examples of this
phenomenon will be given in Sections 3.2 and 3.3.

But we will see in Section 2.2.3s that the number of cops necessary to catch the
robber monotonely on a graph G equals f - hw(G).

2.2.1 Robber and cops

Let G be a graph, let f be a width function on G and k ∈ R. Informally, the robber
and cops game on G (with game parameters f and k) is played by two players,
the cop player and the robber player, on the graph G. The cop player controls
arbitrarily many cops and the robber player controls the robber. Both the cops and
the robber move on the vertices ofG. The cops choose finite subsetsX ⊆ V (G) with
f(X) ≤ k. In each move, some of the cops fly in helicopters to new vertices. The
robber sees where the cops will be landing and quickly tries to escape by running
arbitrarily fast along paths of G, not being allowed to run through a cop. If G
is finite, the cop player’s objective is to land a cop via helicopter on the vertex
occupied by the robber. The robber player tries to elude capture.

A delicate question is how to determine the winner after an infinite chase. Is it
possible to capture the robber through an infinite sequence of moves? If we were
only interested in finite graphs we could simply say that the winner of an infinite
play is always the robber. Instead we define: The cops win an infinite play if for
every vertex v ∈ V (G) there is a move after which the robber can never reach v
again.

In the rest of this section we will make this informal description precise.

Definition 2.2.1 Let G be a graph, let f be a width function on G and k ∈ R. The
robber and cops game RC(G, f, k) on G and its ‘monotone’ variant, the monotone
robber and cops game RCmon(G, f, k), are the games described below.

A play of RC(G, f, k) is a (finite or countably infinite) sequence

(X0, r0, X1, r1, X2, r2, . . .)

subject to the following conditions:

(C1) Each cop move Xi is a finite subset Xi ⊆ V (G) satisfying f(Xi) ≤ k.

(R1) Each robber move ri is a graph vertex ri ∈ V (G) \Xi.

(R2) For all indices i > 0 the vertices ri−1 and ri are connected by a path in
G \ (Xi−1 ∩Xi).



2.2. A GAME FOR F -HYPERTREE-WIDTH 23

B = . . .

0 1 2 3 4 5

. . .A =

C =

. . .

0 1 2 3 4 5

∞D =

Figure 2.2: RC(G, f, 1). For A,B,C : f(X) := 1 if X is a graph edge, and f(X) :=
∞ otherwise. ForD: f(X) := 1 ifX is one of the ellipses, and f(X) := ∞ otherwise.
The cops can win on A and B, but not on C and D.

The game starts with the empty play, and the cop player (also called the cops)
moves first. A move of the cop player consists in adding a cop move Xn to the play

π = (X0, r0, X1, r1, . . . , Xn−1, rn−1)

in such a way that the resulting sequence

πaXn = (X0, r0, X1, r1, . . . , Xn−1, rn−1, Xn)

is again a play. Similarly, a move of the robber player consists in adding a robber
move rn to the play

π = (X0, r0, X1, r1, . . . , Xn)

in such a way that the resulting sequence

πarn = (X0, r0, X1, r1, . . . , Xn, rn)

is a play. The game is played infinitely long, or until a player cannot move any
more. Thus after finishing an instance of the game we have a maximal play: A play
that is not a proper initial subsequence of any other play.

The winner of a finite maximal play is simply the last player who moved. If
we considered only finite graphs, we could say that every infinite play is won by
the robber. But applying this definition to infinite graphs, the cop player could
only win case A in Figure 2.2. However, since we want to characterise f -hw with
this game, the cop player should be able to win case B as well, by the following
series of moves: 01, 12, 23, 34, . . .Of course we need to make sure that the cop player
cannot win cases C or D. This is achieved by the following winning condition for
RC(G, f, k):

Let (X0, r0, X1, r1, X2, r2, . . .) be an infinite play. Suppose for every graph vertex
v ∈ V (G) there exists an index n < ω such that for all i > n the vertices v and
ri are not connected in G \ Xi. Then the cop player wins. Otherwise the robber
player wins.

It is often convenient to allow players to give up. In this case the last player
who moved wins. Thus we can extend the above definition to arbitrary (possibly



24 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

non-maximal) plays by saying that the cop player wins every finite play of odd
length (not just the maximal ones), and the robber player wins every finite play of
even length.

The monotone robber and cops game RCmon(G, f, k) is the variant of the game
in which plays are further restricted by the following monotonicity condition on the
cop moves:

(C2) Let C be the connected component of ri in G\Xi. Then C is also a connected
component in G \ (Xi ∩Xi+1).

Everything else is defined as in RC(G, f, k), so the plays for RCmon(G, f, k) form a
subset of the plays for RCmon(G, f, k).

Definition 2.2.2 For a play π = (X0, r0, . . . , Xn, rn) on G of even length we define
the robber’s escape space

Rπ = {v ∈ V (G) | v and rn are connected in G \Xn}.

For π = (), the unique play of length 0, we define R() = V (G).

Instead of condition (C2) we can consider the following condition on plays π =
(X0, r0, X1, r1, ...):

(C2′) Rπ0 ⊇ Rπ1 ⊇ Rπ2 ⊇ ... , where πi = (X0, r0, X1, r1, ..., Xi, ri).

The two conditions are equivalent in the following sense:

Remark 2.2.3

1. If a play π satisfies (C2), then it also satisfies (C2′).

2. If a play π does not satisfy (C2), then there is an i < ω and an r′i ∈ V (G)
such that π′ = (X0, r0, X1, r1, ..., Xi, r

′
i) is a play not satisfying (C2′).

Proof: 1: Obvious. 2: If π does not satisfy (C2), then there is an i < ω such
that Rπi is not a connected component of G (Xi ∩Xi+1). Let C be the component
of G \ (Xi ∩ Xi+1) containing Rπi . Then there exists a vertex r′i ∈ C \ Rπi , the
robber can reach r′i during the flight, and the play π′ = (X0, r0, X1, r1, ..., Xi, r

′
i)

does not satisfy (C2). �

Some definitions of the monotone robber and cops game require

Rπ0 ) Rπ1 ) Rπ2 ) . . .

It is easy to see that this further ‘strictly monotone’ variant of the game is equivalent
to RCmon(G, f, k) in the sense that if the cops can win RCmon(G, f, k), then they
can also win the strictly monotone variant (while the converse is obvious).

2.2.2 Strategies

In this section we fix a game RC(G, f, k) or RCmon(G, f, k). Since we are dealing
with infinite plays we will give a precise definition of what it means for the cop
player to have a winning strategy.

Definition 2.2.4 A strategy for the cop player is a function σ associating to
every finite play π of even length a finite subset X = σ(π) ⊆ V (G). A play
(X0, r0, X1, r1, . . .) is consistent with σ, if for every proper initial sequence

π = (X0, r0, X1, r1, . . . , Xn, rn)



2.2. A GAME FOR F -HYPERTREE-WIDTH 25

of even length we have Xn+1 = σ(π).
Similarly, a strategy for the robber player is a function ρ associating to every fi-

nite play π of odd length a vertex r ∈ V (G). A play (X0, r0, X1, r1, . . .) is consistent
with ρ, if for every proper initial sequence

π = (X0, r0, X1, r1, . . . , Xn)

of odd length we have rn = ρ(π).

Remark 2.2.5 Given a cop strategy σ and a robber strategy ρ there is a unique
play π that is maximal subject to the condition that it is consistent with σ and ρ.�

The maximal play consistent with σ and ρ need not be a maximal play. This is
because one of the strategies may prescribe an illegal move. Note that our winning
condition does the right thing in this case: the last player to move wins, and choosing
an illegal move is the same thing as giving up.

Definition 2.2.6 We denote the maximal play consistent with σ and ρ by π(σ, ρ).
The cop strategy σ is a winning strategy (for the cop player) if, for every robber
strategy ρ, the cop player wins the play π(σ, ρ). Similarly, the robber strategy ρ is a
winning strategy (for the robber player) if the robber player wins π(σ, ρ) for every
cop strategy σ.

Obviously, at most one player has a winning strategy. It is open, whether one
of the players always has a winning strategy. For finite graphs it is easy to see that
this is in fact the case.

From Remark 2.2.3 it follows that if we define RC′
mon(G, f, k) with (C2′) instead

of (C2), then the cops have a winning strategy for RC′
mon(G, f, k) if, and only if,

they have a winning strategy for RCmon(G, f, k). We will often use this fact tacitly.

Definition 2.2.7 A strategy σ for the cop player is positional, if it satisfies the
following condition:

σ
(

(X0, r0, . . . , Xn, rn)
)

= σ
(

(X ′
0, r

′
0, . . . , X

′
n, r

′
n)

)

whenever Xn = X ′
n and rn = r′n.

A strategy σ for the robber player is positional, if it satisfies the following con-
dition:

ρ
(

(X0, r0, . . . , Xn, rn, Xn+1)
)

= ρ
(

(X ′
0, r

′
0, . . . , X

′
n, r

′
n, X

′
n+1)

)

whenever Xn = X ′
n, rn = r′n and Xn+1 = X ′

n+1.

It is not hard to check that for finite graphsG, if the cops have a winning strategy
for RC(G, f, k), then they have a positional winning strategy for RC(G, f, k). We
omit this because we will not use this fact.

While we do not know if it is true for infinite graphs, we will show in Section 2.2.3
that the corresponding statement for RCmon(G, f, k) holds for arbitrary graphs.3

Definition 2.2.8 Let G be a graph and let f be a width function on G.

• The f -cop-width of G is

f - cw(G) := inf
{

k | the cops have a winning strategy in

RC(G, f, k)
}

∈ R ∪ {∞}.

3The definition of positionality for robber strategies was only included for completeness, and
we will not use it.



26 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

• The monotone f -cop-width of G is

f - cwmon(G) := inf
{

k | the cops have a winning strategy in

RCmon(G, f, k)
}

∈ R ∪ {∞}.

Example 2.2.9 Let G be a finite graph and k > 0 an integer. Then the game
RC(G, card, k) is the robber and k cops game as defined in [ST93], and the game
RCmon(G, card, k) is its monotone variant. In particular, card-cw(G) (card-cwmon(G))
is the minimum number of cops necessary to catch the robber in the (monotone) rob-
ber and cops game of [ST93].

The next remark is easy to check:

Remark 2.2.10 Let f be a width function on the graph G. Then

f - cw(G) = fmon- cw(G).

�

The following result will not be used later on, but cf. Proposition 2.4.7 below.

Proposition 2.2.11 Let f be a monotone width function on the finite graph G.
Equivalent are:

1. The robber has a positional winning strategy for RC(G, f, k).

2. There is a function ξ :
{

X ⊆ V (G)
∣

∣ f(X) ≤ k
}

→ P
(

V (G) \ ∅
)

satisfying

(a) ξ(X) 6= ∅ is a (not necessarily connected) non-empty vertex set of G\X,

(b) If X ⊆ Y ⊆ V (G) with f(Y ) ≤ k, then ξ(Y ) ⊆ ξ(X).

(c) If X ⊆ Y ⊆ V (G) with f(Y ) ≤ k, then for every v ∈ ξ(X) there is a
path in G \X to some vertex of ξ(Y ).

Proof. 1 ⇒ 2: Assume the robber has a winning strategy against the cops moving
on sets X ⊆ V (G) with f(X) ≤ k. Define

ξ(X) := {r ∈ V (G) \X | the robber can win in position (X, r)},

for every set X ⊆ V (G) with f(X) ≤ k. Then ξ satisfies (a) by definition, and (b)
holds because if X ⊆ Y with f(Y ) ≤ k and the robber can win in position (Y, r)
then she can win on (X, r) as well.

Finally, for (c) let X ⊆ Y with f(Y ) ≤ k. If the robber can win in position
(X, v) and the cops fly to Y , then the robber can run along a path in G\X to some
v′ ∈ V (G) such that she can win on (Y, v′).

2 ⇒ 1: Given ξ, the robber can win as follows: when the cops move to X with
f(X) ≤ k, then she moves to some vertex of ξ(X). It follows from (b) and (c) that
this is always possible. �

2.2.3 Monotone strategies

In this section we will prove

Theorem 2.2.12 Let G be a graph, and let f be a width function on G. Then

f - hw(G) = f - cwmon(G).



2.2. A GAME FOR F -HYPERTREE-WIDTH 27

As a corollary (using the fact that tw(G)+1 = card - hw(G)) we get a result that
was first proved in [ST93]: On a finite graph G, k cops have a monotone winning
strategy for the robber and cops game (as defined in [ST93]) iff tw(G) + 1 ≤ k.
(Of course, the main result of [ST93] was that this holds even without the word
‘monotone’. But in our more general context this is not true.) More special cases
will be presented in Chapters 3 and 5.

The rest of this section is devoted to the proof of Theorem 2.2.12. The two
directions will follow from Lemmas 2.2.13 and 2.2.18.

From strategies to decompositions

Recall that for a directed tree T and node t ∈ T , t not the root, pred(t) denotes
the unique predecessor of t in T .

Lemma 2.2.13 Let f be a width function on the graph G, and let k ∈ R. For every
winning strategy σ (for the cops) for RCmon(G, f, k) there is a hypertree decompo-
sition (T,B,C) of G with f -width(T,B,C) ≤ k.

Proof. The plays of even length that are consistent with σ form a tree in an obvious
way. We will define T as a suitable subtree: For this purpose we fix a choice function
γ that associates to every non-empty subset R ⊆ V (G) a vertex γ(R) ∈ R.

V (T ) is the smallest set of plays of even length that contains the play of length
0 and such that, if π = (X0, r0, . . . , Xn, rn) ∈ V (T ), σ(π) exists and R ⊆ V (G) is a
connected component of G\σ(π) such that R is connected to rn in G\

(

Xn∩σ(π)
)

,
then

πa
(

σ(π), γ(R)
)

=
(

X0, r0, . . . , Xn, rn, σ(π), γ(R)
)

∈ V (T ).

Note that every π ∈ T is consistent with σ because σ is a winning strategy for the
cops, and so σ(π) exists for every π ∈ T . The root of T is the play of length 0. π′

is a successor of π if π′ is of the form π′ = πa(X, r). We define

Cπ := σ(π)

for all π ∈ T . If π = () is the root, we also define B() := C(). Otherwise

Bπ := Cπ ∩ (Bpred(π) ∪Rπ).

(Recall the definition of Rπ, Definition 2.2.2.)
We now show that (T,B,C) is a hypertree decomposition of G.

(TD1): Vertices of G are covered, i. e. are contained in some piece Bπ: Otherwise
there is a vertex u ∈ V (G) not covered in any piece of (T,B). Then the robber can
escape by always choosing γ(R), where R is a connected component containing u,
a contradiction.

(TD2): Edges of G are covered: Suppose {u, v} ∈ E(G). It is not hard to
see that there is a tree node π such that {u, v} ⊆ σ(π) and {u, v} ∩ Rπ 6= ∅.
(Otherwise the robber could escape by always choosing γ(R), where R is a connected
component containing u or v.) If π is minimal such (i. e. closest to the root), then
also {u, v} ⊆ Bπ.

(TD3): For connectedness it is sufficient to show that for every vertex v ∈ V (G)
there is only one tree node such that v ∈ Bπ and v /∈ Bpred(π). It follows from the
definition of Rπ that the sets Rπ′ for children π′ of a given node π are disjoint.
Hence by (C2′) the nodes π such that v ∈ Rπ form an initial sequence of a branch
of T . Now if v ∈ Bπ and v /∈ Bπ′ , then v ∈ Cπ ∩ Rπ. So π is actually uniquely
determined as the last node such that v ∈ Rπ .



28 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

(HD2): By definition, Bπ ⊆ Cπ for all π ∈ T .

(HD3): If π is the root, then Cπ ∩BTπ = Bπ. Otherwise we claim:

BTπ ⊆ Bpred(π) ∪Rπ .

The claim implies (HD3): Cπ ∩BTπ = σπ ∩BTπ ⊆ σπ ∩ (Bpred(π) ∪Rπ) = Bπ.

Proof of the claim. Assume that v ∈ BTπ \ (Bpred(π) ∪ Rπ) exists. It is not
hard to see that for each u ∈ V (G) there exists exactly one node πu ∈ T such that
u ∈ σπu ∩Rπu . Thus v ∈ σπv ∩Rπv ⊆ Bπv but v /∈ Bpred(π). (TD3) implies πv ∈ Tπ.
The monotonicity (C2) of the strategy implies Rπv ⊆ Rπ, hence v ∈ Rπ. This is
contrary to the choice of v.

Thus (T,B,C) is a hypertree decomposition for G and since

f(Cπ) = f
(

σ(π)
)

≤ k,

we have f -width(T,B,C) ≤ k. �

From decompositions to strategies

For this direction, intuitively, the cops move according to the sets Ct of the given
hypertree decomposition. They first move to Cw, where w is the root of T . Then
the robber chooses a vertex r ∈ V (G)\Cw . Clearly r ∈ BTt for exactly one successor
t of w. When the cops fly to Ct, the robber cannot leave BTt during the flight.

The robber chooses a (potentially) new vertex r′ ∈ V (G) \ Ct. Again, r′ ∈ BTs
for exactly one sucessor s of t, telling the cops where to move next. Continuing in
this way the cops win.

Towards a formalisation of this intuition, we need some definitions and a tech-
nical lemma (Lemma 2.2.15).

Definition 2.2.14 Let (T,B) be a tree decomposition of a graph G, and let t ∈ T .
We define

Bpred
t :=

{

∅ if t is the root of T

Bpred(t) otherwise

The tree component of t is defined as follows:

βt := BTt \B
pred
t .

It is a fundamental property of tree decompositions that Bt ∩ Bs separates the
vertices in the pieces of the two parts of the tree obtained by removing the edge
{t, s}:

Lemma 2.2.15 Let (T,B) be a tree decomposition of the graph G and {t, s} ∈
E(T ). Let X := Bt ∩ Bs. Then every path in G from a vertex v ∈ βs to a vertex
v′ ∈ V (G) \ (X ∪ βs) has a vertex in X.

Proof. Let u be the last vertex on the path from v to v′ such that u ∈ βs. Thus the
next vertex u′ on the path satisfies u′ /∈ βs. We claim that u′ ∈ X :

The graph edge {u, u′} is covered by some piece Br of the tree-decomposition.
Since u ∈ βs = BTs \ Bt, u is not covered by any piece of T \ Ts. (Otherwise
(TD3) is not satisfied at t.) Thus r ∈ Ts. On the other hand, since u′ /∈ βs, u

′ is
covered in some piece of Br′ of T \ Ts. Thus u′ ∈ Br ∩Br′ and (TD3) implies that
u′ ∈ Bt ∩Bs = X . �



2.2. A GAME FOR F -HYPERTREE-WIDTH 29

Lemma 2.2.16 Suppose (T,B,C) is a hypertree decomposition of a graph G, t0 ∈
T , and R ⊆ BTt0 is a connected component of G \ Ct0 . Let t1 be the root of the
subtree (cf. Remark 1.1.3)

{t ∈ T | Bt ∩R 6= ∅}.

Then the following facts hold.

1. R ⊆ βt1 .

2. Bt1 ∩R 6= ∅.

3. t1 ∈ V (Tt0) \ {t0}.

4. R is a connected component of G \ (Ct0 ∩ Ct1).

Proof. 1: This follows from R ⊆ BTt1 and Bpred
t1 ∩ R = ∅. 2: This is because

t1 ∈ {t ∈ T | Bt ∩R 6= ∅}.
3: Note that Ct0 ⊇ Bt0 by (HD2), so R ⊆ BTt0 \Ct0 ⊆ BTt0 \Bt0 ⊆ V (G) \Bt0 .

Hence t0 /∈ {t ∈ T | Bt ∩ R 6= ∅}. Since, on the other hand, R ⊆ BTt0 , we have
t1 ∈ {t ∈ T | Bt ∩R 6= ∅} ⊆ V (Tt0).

4: Clearly R ⊆ V (G) \ Ct0 ⊆ V (G) \ (Ct0 ∩ Ct1). It remains to show that for
every edge {r, v} ∈ E(G) such that r ∈ R and v /∈ R we have v ∈ Ct0 ∩Ct1 (and so
R is in fact closed under connectivity in G \ (Ct0 ∩ Ct1)).

Let s ∈ T be a tree node covering {r, v}, i. e. {r, v} ⊆ Bs. Then clearly s ∈ {t ∈
T | Bt ∩ R 6= ∅} ⊆ Tt1 . Hence v ∈ BTt1 (and v ∈ BTt0 by 3). Since R is closed
under connectivity in G\Ct0 , we have v ∈ Ct0 , and v ∈ BTt0 ∩Ct0 ⊆ Bt0 by (HD3).
Thus v ∈ BTt1 ∩Bt0 . Hence by connectedness (TD3) we have v ∈ Bt1 ⊆ Ct1 . Thus
v ∈ Ct0 ∩ Ct1 . �

The following lemma will be used to verify the winning condition.

Lemma 2.2.17 Let (T,B) be a tree decomposition of a graph G. Then:

1. βt ⊆ βpred(t), if t ∈ T is not the root of T .

2. Any infinite branch D of T satisfies
⋂

t∈D βt = ∅.

Proof. 1:

βt \ βpred(t) = [BTt \B
pred
t ] \ [BTpred(t)

\Bpred
pred(t)]

=
(

BTt \ [BTpred(t)
\Bpred

pred(t)]
)

\Bpred
t

=
(

[BTt \BTpred(t)
] ∪ [BTt ∩B

pred
pred(t)]

)

\Bpred
t

= [BTt ∩B
pred
pred(t)] \B

pred
t

= ∅,

where the last equality holds by connectedness (TD3).

2: Suppose v ∈
⋂

t∈D βt =
⋂

t∈D[BTt \ B
pred
t ] =

⋂

t∈DBTt \
⋃

t∈D B
pred
t . Then

all t ∈ D satisfy v /∈ Bpred
t . Since D is infinite, this implies that all t ∈ D satisfy

v /∈ Bt. Since v ∈ V (G), there is an s ∈ T such that v ∈ Bs. Let t ∈ T be the last
vertex of D on the path from the root of T to s. Let t′ be the successor of t in D.
By assumption, we have v ∈ BTt′ . (TD3) implies that v ∈ Bt, a contradiction . �

Lemma 2.2.18 Let f be a width function on the graph G, and let k ∈ R. For
every hypertree decomposition (T,B,C) of G with f -width(T,B,C) ≤ k there is a
positional winning strategy σ for the cops for RCmon(G, f, k).



30 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

Proof. We describe σ informally. The cops’ first move is to Cw, where w ∈ T is the
root of T . When the robber moves, resulting in a play (X0, r0, . . . , Xn, rn), then
the cops move to a position Xn+1 determined as follows. Let R be the connected
component of rn in G \Xn. Let t be the root of the subtree {t ∈ T | Bt ∩R 6= ∅}
of T . Then Xn+1 = Ct.

The strategy σ for the cops, as defined, is clearly a positional strategy. It
remains to show that σ is a winning strategy for RCmon(G, f, k). For any play
(X0, r0, X1, . . .) consistent with σ let Rn be the connected component of rn in G\Xn

(for n = 0, 1, . . .), let t0 = w be the root of T , and let tn ∈ T (for n = 1, 2, . . .) be
the root of {t ∈ T | Bt ∩ Rn−1 6= ∅}. Then clearly X0 = Ct0 , and R0 ⊆ BTt0 is
a connected component of G \ Ct0 . Using Lemma 2.2.16, 4, it is easy to prove by
induction that, in fact, for all n < ω for which the variables are defined we have
Xn = Ctn , and Rn ⊆ BTtn is a connected component of G \ Ctn .

Also by Lemma 2.2.16, 4, when the cops move from Xn to Xn+1, the robber can
only choose a vertex rn+1 ∈ Rn, so Rn+1 ⊆ Rn. Hence all cop moves prescribed by
σ are actually legal moves in RCmon(G, f, k). Therefore the cops win every finite
(maximal) play consistent with σ.

For infinite plays note that Rn ⊆ βtn+1 and tn+1 ∈ Ttn \ {tn} (again by Lemma
2.2.16). Therefore

⋂

n<ω Rn ⊆
⋂

n<ω βtn+1 = ∅ by Lemma 2.2.17, so the winning
condition for infinite plays is also satisfied. �

Corollary 2.2.19 Let G be a graph and f a width function on G.
If the cops have a winning strategy for RCmon(G, f, k), then they also have a

positional winning strategy for RCmon(G, f, k).

Proof. By Lemma 2.2.13, a winning strategy for RCmon(G, f, k) gives rise to a hy-
pertree decomposition (T,B,C) of G with f -width(T,B,C) ≤ k. By Lemma 2.2.18,
we obtain a winning strategy for RCmon(G, f, k) from (T,B,C) that is actually po-
sitional. �

Corollary 2.2.20 Let f be a width function on the graph G. Then

f - cw(G) ≤ f - ghw(G).

Proof. By Proposition 2.1.21, Theorem 2.2.12, and Remark 2.2.10 we have

f - ghw(G) = fmon- hw(G) = fmon- cwmon(G) ≥ fmon- cw(G) = f - cw(G).

�

2.3 The homomorphism problem

In this section all graphs and structures are finite. The general homomorphism
problem asks, given finite relational structures M and N , whether there exists a

homomorphism M
hom
−→ N . For classes C and D of finite relational structures, let

HOM(C,D) denote the restriction of the homomorphism problem to input struc-
tures M ∈ C and N ∈ D. It is well known that the general homomorphism prob-
lem HOM( , ) is NP complete4. (Here ‘ ’ denotes the class of all finite relational
structures.) Moreover, HOM( , ) is equivalent to evaluating conjunctive queries on
databases and also to CSP, the Constraint Satisfaction Problem (see [GLS01a]).

We investigate restrictions on the left hand side that lead to polynomial time
algorithms, i. e. we look for classes C such that HOM(C, ) ∈ P.

4For the basic notions of complexity theory such as the definitions of the classes P and NP, the
reader is referred to [GJ79].



2.3. THE HOMOMORPHISM PROBLEM 31

2.3.1 Structures with partial functions

Functional dependencies in databases allow quick computation of the value of a
function or a partial function. In Chapter 5 we want to exploit this, so we do not
restrict ourselves to relational structures, even though partial functions are of no
immediate use in this chapter. We assume that the reader is familiar with the basic
notions of model theory (see [EF99]), and we slightly generalise these concepts.
This generalisation is in the spirit of ‘partial algebras’ as occasionally examined in
universal algebra. (See, e. g., Chapter 2 of [Grä].)

Definition 2.3.1 A signature is a finite set σ of relation symbols. Some of the
relation symbols are marked as partial function symbols. If R is an (n + 1)-ary
relation symbol that is marked as a partial function symbol, then we may write
R(x1 . . . xn) = xn+1 instead of Rx1 . . . xn+1. For σ-structures we require that the
interpretation of a partial function symbol is a partial function on the universe.

In the above definition, the only difference to the case of general (non-relational)
signatures as they are usually considered in model theory is that we have partial
functions rather than total functions. As usual, we will distinguish between plain
relation symbols and partial function symbols, using capital letters for the former
and small letters for the latter. But note that in contrast to the usual treatment
of non-relational signatures we will not admit nesting of partial functions in terms.
∃v(f(x) = v ∧ g(v) = y) and ∀v((f(x) = v) → (g(v) = y)) are (non-equivalent!)
formulas in an appropriate signature, but f(g(x)) = y is not unnested, hence not a
formula.

Definition 2.3.2

• A substructure of a σ-structure M is a σ-structure N such that RN = RM ∩
Mn for every n-ary relation symbol R ∈ σ, and fN(ā) = b holds if, and only
if, fM (ā) = b and ā, b ∈ N .

• A closed substructure of a σ-structure M is a substructure N such that if
fM (ā) = b holds and ā ∈ N , then b ∈ N .

• For a subset X ⊆ M of the universe M of M, the structure M � X is the
substructure with universe X.

• For a σ-structure M, the underlying hypergraph HM of M is defined as
follows.

Hypergraph HM

vertex set: M
edges: {a1, . . . , an}, where M |= Ra1 . . . an for some relation

symbol R ∈ σ
{a1, . . . , an+1}, where M |= p(a1 . . . an) = an+1 for some
partial function symbol p ∈ σ

Observe that for a substructure M′ of M, the underlying hypergraph H ′
M of

M′ is a subhypergraph of the underlying hypergraph HM of M, but not in general
an induced subhypergraph.

Given a σ-structure M we distinguish between the cardinality |M | of the uni-
verse M of M and the size ‖M‖ of M, given by

‖M‖ = |σ| + |M | +
∑

R∈σ

∣

∣RM
∣

∣ · arity(R) +
∑

p∈σ

∣

∣pM
∣

∣ · (arity(p) − 1).



32 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

Just like there is more than one natural notion of substructure for signatures with
partial function symbols, there are also several notions of homomorphisms between
structures in such a signature. In the definition below we choose the weakest, which
also happens to be the one we get if we treat σ as a non-relational signature. (Thus
if σ′ is the result of forgetting the fact that some relation symbols of σ are marked,
then the category of σ-structures and homomorphisms is a full subcategory of the
category of σ′-structures and homomorphisms.)

Definition 2.3.3 A homomorphism from a σ-structure M to a σ-structure N is
a mapping h : M → N satisfying:

• For all relation symbols R ∈ σ and for all tuples ā ∈ RM we have h(ā) ∈ RN .

• For all partial function symbols p ∈ σ and for all tuples āb from M with
pM ā = b we have pN (h(ā)) = h(b).

We write M
hom
−→ N to indicate that there exists a homomorphism h : M → N .

Given classes C and D of finite structures, possibly with partial functions, the
homomorphism problem HOM(C,D) is the following problem.

HOM(C,D)

Input: M ∈ C, N ∈ D
Question: Is there a homomorphism h : M → N ?

We investigate problems of the form HOM(C, ), where C is defined as the class of
all structures for which the underlying hypergraph satisfies a certain condition. Such
restrictions of the homomorphism problem are often called structural restrictions.

2.3.2 A general no-promise algorithm

Definition 2.3.4 For a signature σ and a σ-structure M, the underlying hyper-
graph HM of M is given by:

Hypergraph HM

vertex set: M
edges: {a1, . . . , an}, where RM (a1, . . . , an) for some R ∈ σ

{a1, . . . , an+1}, where pM (a1 . . . an) = an+1 for some p ∈ σ

Definition 2.3.5 A hypergraph H is acyclic (cf. [LS99]) if its hyperedges can be
arranged as nodes of a tree T so that for every vertex v ∈ V (H), the subgraph of T
defined by the nodes containing v is connected.

It is not hard to see that a finite hypergraph H without isolated vertices is
acyclic if, and only if, it satisfies cH -hw(H) = 1 (we will prove this in Proposition
3.4.2). The following is essentially a classical result due to Yannakakis [Ya81]:

Theorem 2.3.6 (Yannakakis 1981) If C is a class of relational structures such
that the underlying hypergraph of each structure in C is acyclic, then HOM(C, ) ∈ P.

With Proppsition 3.4.2, this theorem will be a consequence of our Theorem
2.3.13 below. Nevertheless, as a taste of things to come and in order to avoid
forward references, here is a proof.



2.3. THE HOMOMORPHISM PROBLEM 33

Proof. Let M ∈ C and N be an arbitrary structure. We use the following two
player game, which is similar to the pebble game defined by Ph. Kolaitis and M.
Vardi in [KV95]:

The positions are pairs (S, h), where S ∈ E(HM) and h is a homomorphism
h : M � S → N .
In each round, player I chooses a new subset S ∈ E(HM). Then player II chooses
a new homomorphism h : M � S → N subject to the following compatibility
condition: If (S′, h′) was the previous position, then h(a) = h′(a) for all a ∈ S ∩S′.
(In the first round the compatibility condition makes no sense, and player II may
choose an arbitrary homomorphism h : M � S → N . Equivalently, one could say
that the game starts fron the initial position (∅, ∅), even though this is not a legal
position unless ∅ ∈ E(HM).)

Player I wins the game, if player II cannot move. Player II wins all infinite
games.

Claim. There is a homomorphism M → N if and only if player II has a winning
strategy for the game.

The forward direction is obvious. For the other direction, suppose player II has
a winning strategy. Let T be a tree with V (T ) = E(HM) witnessing that HM is
acyclic. Since player II can win, he can also win if player I chooses the subsets
S ⊆M according to a branch of T , starting with er ∈ E(HM) where er is the root
of T , and ending with e` ∈ E(HM) where e` is a leaf of T . Thus for every e ∈ T we

obtain a homomorphism he such that he : M � e
hom
−→ N . Because for each vertex

a ∈ V (HM) the subgraph of T defined by the nodes containing a is connected, with
the compatibility condition we obtain a homomorphism h : M → N by setting
h(a) := he(a) for a node e ∈ T with a ∈ e.

There is a straightforward dynamic programming algorithm deciding in polyno-
mial time whether player I has a winning strategy. �

It turns out that it is sufficient to impose our structural restrictions on certain
substructures of the elements in C:

Definition 2.3.7 The core of a structure M is the smallest substructure M′ ⊆ M

such that there is a homomorphism M
hom

−→ M′.

Remark 2.3.8 Let M′ be a core of M.

1. For a structure N there is a homomorphism M
hom

−→ N if and only if there is

a homomorphism M′ hom

−→ N .

2. Any two cores of M are isomorphic, so the core is well-defined up to isomor-
phism.

We will generalise the following result of Dalmau, Kolaitis and Vardi [DKV02]:

Fact 2.3.9 (Dalmau, Kolaitis, Vardi) For an integer k ≥ 1 and a class C of
structures such that the core of each structure in C has tree-width at most k, the
problem HOM(C, ) is in P.

Intuitively, instead of admitting only structures with cores of tree-width at most
k, we will admit classes of structures with cores that admit generalised hypertree
decompositions with guards in some predescribed class C1. For our purposes we need
the class C1 to be such that the following two problems are solvable in polynomial
time.



34 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

SUBSTRC1
enum

Input: A structure M
Output: All closed substructures of M that are in C1.

HOMenum(C1, )

Input: Structures M ∈ C1, N
Output: All homomorphisms h : M → N .

Of course, if C1 is the class of all finite structures, these problems are not in P.

Definition 2.3.10 Let C1 be a class of structures, and let M be a structure. We
say that (T,B,C) is a (generalised) C1-hypertree decomposition of M, if

• (T,B,C) is a (generalised) hypertree decomposition of HM,

• M � Ct is a closed substructure of M, and

• M � Ct ∈ C1 for all t ∈ T.

For a class C1 and for a structure M we define the width function

fC1 : P
(

V (HM)
)

→ R ∪ {∞},

X 7→

{

1 if M � X is a closed substructure of M in C1,

∞ otherwise.

Remark 2.3.11 Let C1 be a class of structures. The structure M has a (gener-
alised) C1-hypertree decomposition if, and only if, HM has a (generalised) hypertree
decomposition of fC1-width 1.

Conversely, let f be a family of width functions fH , for all hypergraphs H . For
example, fH = card, or fH = cH . For k > 0 put Cfk :=

{

M
∣

∣ fHM(HM) ≤ k
}

.
For a hypergraph H = (V,E) and X ⊆ V define H � X := (X,E ∩P(X)). Note

that HM � X = HM�X for a structure M and X ⊆M .

Remark 2.3.12 Suppose f is a family of width functions fH such that for every
hypergraph H = (V,E) and every X ⊆ V we have fH(X) = fH�X(X). Let M be a

relational structure. Then (T,B,C) is a (generalised) Cfk -hypertree decomposition
of M if, and only if (T,B,C) is a (generalised) hypertree decomposition of HM of
fHM-width at most k.

Proof. Let (T,B,C) be a (generalised) Cfk -hypertree decomposition of M. Then

M � Ct ∈ Cfk for all t ∈ T . Thus fHM�Ct (Ct) ≤ k for all t ∈ T . By assumption, for
every t ∈ T we have fHM(Ct) = fHM�Ct (Ct) ≤ k. Thus, (T,B,C) is a (generalised)
hypertree decomposition of HM of fHM-width at most k.

Conversely, let (T,B,C) be a (generalised) hypertree decomposition of HM of
fHM-width at most k. Then for every t ∈ T we have fHM(Ct) = fHM�Ct (Ct) ≤ k.

Thus (T,B,C) is a (generalised) Cfk -hypertree decomposition of M. �

Note that for fH = card and for fH = cH we have fH(X) = fH�X(X). (This
is not true for fH = cmon

H .)



2.3. THE HOMOMORPHISM PROBLEM 35

For a class C1 of structures, let

CoreDecomposable
C1

ghd := {M | the underlying hypergraph HM′ of the

core M′ of M has a generalised C1-hypertree decomposition }.

Theorem 2.3.13 Let C1 be a class of finite structures such that

• SUBSTRC1
enum ∈ P, and

• HOMenum(C1, ) ∈ P.

Then HOM(CoreDecomposable
C1

ghd, ) ∈ P.

Proof. Let M ∈ CoreDecomposable
C1

ghd and N an arbitrary structure. The
following is a generalisation of the pebble game from [KV95]:

The positions are pairs (S, h) where S ⊆M is such that M � S ∈ C1 is a closed
substructure, and h is a homomorphism h : M � S → N of σ-structures.
In each round, player I chooses a new subset S ⊆ M with M � S ∈ C1. Then
player II chooses a new homomorphism h : M � S → N subject to the following
compatibility condition: If (S′, h′) was the previous position, then h(a) = h′(a) for
all a ∈ S ∩ S′.

Player I wins if player II cannot move. Player II wins all infinite games.

Claim. There is a homomorphism M → N if and only if player II has a winning
strategy for the game.

The forward direction is obvious. For the other direction, suppose player II has
a winning strategy. By Remark 2.3.8 it suffices to show that there is a homomor-
phism from the core M′ of M to N . Let (T,B,C) be a generalised C1-hypertree
decomposition of M′. Since player II can win, he can also win if player I chooses
the subsets S ⊆M according to a branch of T , starting with Cr for the root r ∈ T ,
and ending with C` for a leaf ` ∈ T . Thus for every node t ∈ T we obtain a homo-

morphism ht such that ht : M′ � Ct
hom
−→ N . In particular, for every node t ∈ T the

mapping h′t := ht � Bt is a homomorphism from the substructure M′ � Bt of M′ to
N . Because of connectedness (TD3) and the compatibility condition we obtain a
homomorphism h : M′ → N by setting h(a) := h′t(a) for a node t ∈ T with a ∈ Bt.

There is a straightforward dynamic programming algorithm deciding whether
player I has a winning strategy. Since by assumption the problems SUBSTRC1

enum

and HOMenum(C1, ) are in P, the algorithm is in P as well. �

Corollary 2.3.14 Fix an integer k > 0.
Then the class Ccard

k satisfies the assumptions of Theorem 2.3.13, and thus

HOM(CoreDecomposable
Ccard
k

ghd , ) ∈ P .

�

Thus for a class C1, such that the core M′ of each structure M ∈ C1 satisfies
card-ghw(HM′) ≤ k, (i.e. tw(HM′) + 1 ≤ k), the problem HOM(C1, ) is in P. This
reproves Fact 2.3.9. Similarly, if the core M′ of each structure M ∈ C1 satisfies
cHM′ -ghw(HM′) ≤ k.

In [Gr03], M. Grohe proved the following beautiful classification theorem.

Fact 2.3.15 (Grohe 2003) Assume that FPT 6= W[1].5 Then for every recur-
sively enumerable class C of relational structures of bounded arity the following
statements are equivalent:

5See [DF99] for the definitions of FPT and W[1].



36 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

• HOM(C, ) ∈ P

• There is an integer k ≥ 1 such that the core of every structure in C has
tree-width at most k.

Thus essentially, for relational structures of bounded arity, bounded tree-width
of the core is the best we can get. For classes of structures of unbounded arity this
is not the case, and the problem of characterising the tractable classes of unbounded
arity is still open.

The algorithm described in the proof of Theorem 2.3.13 is a ‘no promise algo-
rithm’ in the following sense: If we apply the algorithm to structures M, N where
M /∈ CoreDecomposable

C1

ghd, then there is no promise that the algorithm will
detect this. (In fact, it is likely to give a wrong answer.)

2.3.3 A general promise algorithm

In [GLS01a], the authors claim that an appropriate notion of hypergraph width
should fulfil both of the following conditions:

1. Relevant hypergraph-based problems should be solvable in polynomial time
for instances of bounded width.

2. For each constant k, one should be able to check in polynomial time whether
a hypergraph is of width k, and, in the positive case, it should be possible to
produce an associated decomposition of width k in polynomial time.

We show that this is the case for C1-hypertree decompositions, provided that the
problems SUBSTRC1

enum and HOMenum(C1, ) are in P. For a class C1 of structures,
let

Decomposable
C1

hd := {M | HM has a C1-hypertree decomposition}.

HDC1

Input: A structure M
Output: A C1-hypertree decomposition (T,B,C) of HM if
M ∈ Decomposable

C1

hd, ‘failure’ otherwise.

Theorem 2.3.16 Let C1 be a class of finite structures such that

SUBSTRC1
enum ∈ P .

Then
HDC1 ∈ P .

Proof sketch. Given a structure M, by Remark 2.3.11 and the game theoretic
characterisation, M has a C1-hypertree decomposition if, and only if, the cops have
a winning strategy for RCmon(HM, fC1 , 1). There is a straightforward dynamic
programming algorithm, that decides whether the cops have a winning strategy:
List all pairs (X, r) with X ⊆ M , M � X ∈ C1, and r ∈ M . By assumption, this
is possible in polynomial time. Then mark all pairs (X, r) with r ∈ X as winning
positions. Given the list of all pairs, some of which are marked as winning positions,
we mark a pair (X ′, r′) as a winning position if there is a set X ⊆M satisfying:

• The connected component R′ of HM \X ′ containing r′ is the component of
HM \ (X ′ ∩X) that contains r′ (monotonicity),



2.3. THE HOMOMORPHISM PROBLEM 37

• For all vertices r ∈ M that are connected to r′ in HM \ (X ′ ∩ X), the pair
(X, r) is marked as a winning position.

Since the strategy must be monotone, after |M | iterations we can check whether all
initial positions (∅, r) with r ∈ M are marked as winning positions. In this case,
the cops’ winning strategy can be transformed into a C1-hypertree decomposition.
Then return the C1-hypertree decomposition. Otherwise return ‘failure’. �

Thus, if SUBSTRC1
enum ∈ P, then C1-hypertree decompositions satisfy Claim 2

from [GLS01a] cited above.
By assembling Theorem 2.3.16 with Theorem 2.3.13 it is easy to get a ‘promise

algorithm’ for HOM(Decomposable
C1

hd, ):

Corollary 2.3.17 Let C1 be a class of structures such that

• SUBSTRC1
enum ∈ P, and

• HOMenum(C1, ) ∈ P.

Then there is an algorithm that decides, for given input M, N , whether HM has
a C1-hypertree decomposition. If so, then it correctly answers the question whether
there is a homomorphism h : M → N . If not, it rejects.

Dropping the condition SUBSTRC1
enum ∈ P, the homomorphism problem remains

solvable in polynomial time, provided that the left hand side input comes equipped
with a generalised C1-decomposition. Towards this we define:

Decomposed
C1 :=

{(

M, (T,B,C)
) ∣

∣ (T,B,C) is a generalised C1-hypertree

decomposition of HM}.

HOM(Decomposed
C1 , )

Input: Structures M, N and a generalised C1-hypertree decomposition
(T,B,C) von HM .
Question: Is there a homomorphism h : M → N ?

Theorem 2.3.18 Let C1 be a class of structures such that

HOMenum(C1, ) ∈ P .

Then

HOM(Decomposed
C1 , ) ∈ P .

Proof. Roughly, the idea is as follows: Given σ-structures M and N and a gener-
alised C1-hypertree decomposition (T,B,C) of M, we define σ′ and σ′-structures
M′ and N ′ such that

• M ′ = M , N ′ = N ,

• HM′ is acyclic,

• h is a homomorphism from M to N if, and only if, h is a homomorphism
from M′ to N ′.



38 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

Then we use Yannakakis’ polynomial algorithm (Theorem 2.3.6) for deciding whether
there is a homomorphism h : M′ → N ′. More formally, we define σ′ and the σ′ -
structures M′ and N ′ as follows:

• σ′ := {Rt | t ∈ T }, where Rt has arity |Bt| .

• M ′ := M , N ′ := N .

• For an enumeration a1, . . . , an of Bt ⊆M , let
RM′

t := {(a1, . . . , an)}, and

RN ′

t :=
{(

h(a1), . . . , h(an)
)

∣

∣ h : M � Ct
hom
−→ N

}

M′ and N ′ can be constructed in polynomial time by assumption. Note that HM′

has hyperedges {Bt | t ∈ T }, thus HM′ is acyclic.

Claim. h : M
hom
−→ N if, and only if, h : M′ hom

−→ N ′.
Proof of the claim. The direction from left to right follows from the definitions.
Conversely, for a partial function symbol p ∈ σ, suppose M |= p(a1, . . . , an) = an+1.
Then

{a1, . . . , an+1} ∈ E(HM),

and thus {a1, . . . , an+1} ⊆ Bt for some t ∈ T , because every hyperedge is covered

in some piece of T . In particular, h � Bt : M′ � Bt
hom
−→ N ′, and thus by definition

h � Bt : M � Bt
hom
−→ N . Therefore N |= p

(

h(a1), . . . , h(an)
)

= h(an+1).
For a relation symbol R ∈ σ the proof is similar. �

Thus, if HOMenum(C1, ) ∈ P, (generalised) C1-hypertree decompositions satisfy
Claim 1 from [GLS01a] cited above.

Let C1 be a class of structures, and let M be a structure. Recall that HM

has a C1-hypertree decomposition if, and only if, the cops have a winning strategy
for the game RCmon(HM, fC1 , 1). There is an analogous theorem to 2.3.16 for the
non-monotone game. Let CSC1 be the following problem (where CS stands for cop
strategy):

CSC1

Input: A structure M
Output: A winning strategy for the cops in RC(HM, fC1 , 1), if there is
one, ‘failure’, otherwise.

The following is a corollary to the proof of Theorem 2.3.16.

Corollary 2.3.19 If C1 is a class of finite structures such that

SUBSTRC1
enum ∈ P .

Then
CSC1 ∈ P .

Proof sketch. The proof is similar to the proof of Theorem 2.3.16. Let M be an
arbitrary structure. There is a straightforward dynamic programming algorithm
deciding whether the cops have a winning strategy:

Again, list all pairs (X, r) with X ⊆ M , M � X ∈ C1, and r ∈ M . By
assumption, this is possible in polynomial time. Then mark all pairs (X, r) with
r ∈ X as winning positions. Given the list of all pairs some of which are marked as
winning positions, we mark a pair (X ′, r′) as a winning positions, if there is a set
X ⊆M satisfying:



2.3. THE HOMOMORPHISM PROBLEM 39

• For all vertices r ∈ M that are connected to r′ in HM \ (X ′ ∩ X), the pair
(X, r) is marked as a winning position.

Let p be a polynomial witnessing SUBSTRC1
enum ∈ P. Thus there are at most

p(‖M‖) · |M | different positions. Thus, after p(‖M‖) · |M | iterations we can check
whether all initial positions (∅, r) with r ∈ M are marked as winning positions. If
not, return ‘failure’, otherwise return a winning strategy. �

2.3.4 Conjunctive query evaluation

We say that a σ-formula ϕ is a conjunctive query if ϕ is a conjunction of positive
σ-atoms.

For relational signatures, there is a well known translation between the homo-
morphism problem and conjunctive query evaluation. We will show that this trans-
lation also works for non-relational structures. But before doing so, we will show
how conjunctive queries and structures are related to queries on real databases.

Conjunctive queries and databases

The problem of conjunctive query evaluation is the following problem:

CQ

Input: A structure N and a conjunctive query ϕ
Question: ϕ(N ) 6= ∅?
(I. e.: Are there elements a1, . . . , an ∈ N such that N |= ϕ(a1, . . . , an)?)

Here N is the ‘database’ (possibly with functional dependencies). For example
consider the following database, consisting of three tables:

employee data:

id name year of birth

1 Tsatsikakis 1968

2 Souvlakopoulou 1976

3 Dolmadaki 1942

4 Giaourtimemelidis 1976

employee salaries:

id salary group

1 II

2 III

3 I

4 II

salary details:

salary group year of birth salary new salary

I 1942 70000 70000

I 1968 65000 64000

I 1976 60000 58000

II 1942 55000 52000

II 1968 50000 47000

II 1976 45000 42000

III 1942 42000 39000

III 1968 40000 37000

III 1976 38000 35000

Ignoring the double lines for the moment, this database can be regarded as a rela-
tional structure N in the signature with relation symbols Remployee data (ternary),



40 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

Remployee salaries (binary) and Rsalary details (4-ary) in an obvious way. Thus the ele-
ments of the structure are 1, 2, 3, 4, Tsatsikakis, Souvlakopoulou, Dolmadaki,

Giaourtimemelidis, I, II, III, 1942, 1968, 1976, 70000, 64000,....

A query one might ask is: Is there an employee whose salary won’t change? In
SQL we could code this as follows:

SELECT * FROM employee_data, employee_details, salary_details

WHERE employee_data.id=employee_details.id

AND employee_salaries.salary_group=salary_details.salary_group

AND employee_data.year_of_birth=salary_details.year_of_birth

AND salary_details.salary=salary_details.new_salary

LIMIT 1;

As a conjunctive query this can be formalised as follows:

ϕ(xid, xname, xyob, xsg, xsalary) =Remployee data(xid, xname, xyob)

∧Remployee salaries(xid, xsg)

∧Rsalary details(xsg, xyob, xsalary, xsalary).

Then the question is whether ϕ(N ) 6= ∅.
So far we have ignored the double lines in the tables, which indicate that

the combined columns before the double line together form the key of the ta-
ble. Thus in the salary details table, for example, for every combination of
potential values in the first two columns there is at most one line matching these
values. This restriction on the database can of course be used for faster evalua-
tion of queries. We can translate it into the structure N by adding unary partial
functions femployee data.name, femployee data.year of birth, femployee salaries.salary group and
binary partial functions fsalary details.salary and fsalary details.new salary.

Conjunctive queries and the homomorphism problem

Let M and N be σ-structures. It is easy to see that

• M
hom
−→ N ⇐⇒ ϕM(N ) 6= ∅,

where

ϕM =
∧

R∈σ
M|=Rā

Rā ∧
∧

p∈σ
M|=p(ā)=b

p(ā) = b.

• For a conjunctive query ϕ we have ϕ(N ) 6= ∅ ⇐⇒ Mϕ
hom
−→ N ,

where
Mϕ = var(ϕ)/ ∼ is the set of variables of ϕ up to the equivalence relation ∼,
with x ∼ y if ϕ |= (x = y),
RMx̄ holds if ϕ |= Rx̄, and pMx̄ = y holds if ϕ |= (px̄ = y).

We can apply this to our example query ϕ = ϕ(xid, xname, xyob, xsg, xsalary).
As a homomorphism problem, the question is, whether there is a homomorphism

Mϕ
hom
−→ N . Figure 2.3 shows the underlying hypergraph Hϕ of ϕ , which is defined

as the underlying hypergraph of Mϕ. Is is easy to see that cHϕ -hw(Hϕ) = 2.

We could also have coded our example query in a more efficient way, using the
functional dependencies:



2.4. RELATED F -INVARIANTS 41

xsalary

xid xsg

xname xyob

Figure 2.3: The underlying hypergraph Hϕ of the example query.

ψ(xid, xyob, xsg, xsalary) =femployee data.year of birth(xid) = xyob

∧ femployee salaries.salary group(xid) = xsg

∧ fsalary details.salary(xsg, xyob) = xsalary

∧ fsalary details.new salary(xsg, xyob) = xsalary.

It is easy to check that cHψ -hw(Hψ) = 2, so the increased efficiency due to the
fact that we need only iterate over all possible values of xid is not captured in
the underlying hypergraph. In Chapter 5 we will define the underlying directed
hypergraph ~Hψ of Mψ and a corresponding notion of hypertree-width. With these

improved notions we will have ~c ~Hψ -hw( ~Hψ) = 1.

2.4 Related f-invariants

In this section we are mainly interested in monotone width functions.

We define some more invariants for equipped graphs that resemble graph invari-
ants such as the bramble number or tangle number of a graph [Re97, RS91], the
branch-width [RS91], the linkedness [Re97] and we prove that for certain classes of
equipped graphs all our invariants are linearly coherent in the following sense:

Definition 2.4.1 Let I, J be two invariants defined on a class C of graphs equipped
with a width function.

• I and J are coherent [Ha76] on C, if there exist functions g, h : R → R, such
that

I(G, f) ≤ r =⇒ J(G, f) ≤ g(r), and J(G, f) ≤ r =⇒ I(G, f) ≤ h(r)

for all (G, f) ∈ C.

• I and J are linearly coherent on C, if they are coherent and g, h can be chosen
to be linear functions.

• I and J are strongly coherent on C, if there exist c, C ∈ R, such that

J(G, f) ≤ I(G, f) + c and I(G, f) ≤ J(G, f) + C

for all (G, f) ∈ C.



42 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

The graph invariants mentioned above are known to be linearly coherent in this
sense with tree-width.

The purpose of this section is, on one hand, to prove that under some conditions
on f , we have f -ghw(G) ≤ 3 · f - cw(G) + 2 (as a consequence of Theorem 2.4.23,
1 and 3), hence linear coherence of f -cw and f -ghw. On the other hand, we gen-
eralise some graph invariants by introducing f -bramble-number, f -tangle-number,
f -branch-width, and f -linkedness, and we show that they are linearly coherent on
a certain class of equipped graphs. Outside this section we will not refer to these
invariants beyond an occasional corollary to Theorem 2.4.23.

This section is in part based on joint work with G. Gottlob and M. Grohe
[AGG05].

2.4.1 Conditions on width functions

For a graph G we say that two sets X,Y ⊆ V (G) touch, if X ∩ Y 6= ∅ or there is
an edge e ∈ E(G) with e ∩X 6= ∅ and e ∩ Y 6= ∅.

Definition 2.4.2 (Conditions on width functions) Let f be a width function
on a graph G.

• f is weakly submodular, if any two finite subsets X,Y ⊆ V (G) satisfy

f(X ∪ Y ) ≤ f(X) + f(Y ).

• f is additive, if any two finite sets X,Y ⊆ V (G) that do not touch satisfy

f(X ∪ Y ) = f(X) + f(Y ).

• f is tame if for all v ∈ V (G) there is a finite set X ⊆ V (G) such that v ∈ X
and f

(

X
)

≤ 1.

for all vertices v ∈ V (G).

Clearly, a hypergraph H is tame if, and only if, cH is a tame width function on
H .

It should perhaps be noted, that weak submodularity and tameness are prop-
erties of f only, while additivity is a property of both f and the graph: If f is
a weakly submodular (or tame) width function on a graph G, and G′ is a graph
V (G′) = V (G), then f is also a weakly submodular (tame, resp.) width function
on G′. The analogous statement for additivity is false: Take G = K2 together with
the width function

f(X) =

{

0 if |X | ≤ 1,

∞ otherwise.

Then f is additive. It is easy to see that on G′ :=
(

V (K2), ∅
)

the width function f
is not additive.

Weak additivity and submodularity are preserved when passing from f to fmon:

Remark 2.4.3 Let f be a width function on a graph G.

1. If f is weakly submodular, then so is fmon.

2. If f is tame, then so is fmon.



2.4. RELATED F -INVARIANTS 43

Proof. 1: Given ε > 0, let X ′ ⊇ X , Y ′ ⊇ Y such that f(X ′) < fmon(X) + ε
2 and

f(Y ′) < fmon(Y ) + ε
2 . Then

fmon(X ∪ Y ) ≤ f(X ′ ∪ Y ′) ≤ f(X ′) + f(Y ′) < fmon(X) + fmon(Y ) + ε.

2: Obvious. �

In general, additivity is not passed on from f to fmon:

Example 2.4.4 Let G be the following graph:

Graph G
vertices: 1, 2, 3
edges: {1, 2}, {2, 3}

Consider the width function f on G, where

f(X) =











0 if X = ∅,

1 if X = {1, 2, 3},

∞ otherwise.

It is easy to see that f is weakly sumbodular and additive and tame, and that
fmon is given by

fmon(X) =

{

0 if X = ∅,

1 otherwise.

Since fmon
(

{1}
)

+ fmon
(

{3}
)

= 2 > 1 = fmon
(

{1, 2}
)

, the function fmon is not
additive.

Remark 2.4.5 Let f be a width function on a graph G.

1. If f is additive, then f(∅) = 0.

2. Suppose f is monotone. Then f is tame if and only if f({v}) ≤ 1 for every
vertex v ∈ V (G).

3. If f is monotone and weakly submodular, then 0 ≤ f(X) for all finite subsets
X ⊆ V (G). If, in addition, f is tame, then

0 ≤ f(X) ≤ |X | .

4. Let f be monotone, tame, and weakly submodular. Then

0 ≤ f - ghw(G) ≤ card - ghw(G).

Proof. 1: Recall that graphs are nonempty. Choose a set ∅ 6= X ⊆ V (G). Then X
and ∅ do not touch. By additivity, f(∅) + f(X) = f(X), and thus f(∅) = 0.

2: Follows immediately from the definition of tameness.

3: Let X ⊆ V (G) be finite. By submodularity we have

f(X) = f(X ∪ ∅) ≤ f(X) + f(∅),

and thus 0 ≤ f(∅) ≤ f(X) by monotonicity.
If f is also tame, then for all v ∈ V (G) there exists a finite set Xv ⊆ V (G) with

f(Xv) ≤ 1. Monotonicity implies f({v}) ≤ 1. With submodularity it follows that
f(X) ≤ |X | for every finite set X ⊆ V (G).

4: Follows from 3. �



44 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

2.4.2 Obstructions: Brambles and tangles

Up to now all invariants were defined via some sort of decompositions or strategies
for the cops and they were called ‘widths’, where the ‘width’ was defined as an
infimum. Now we consider obstructions to small f -cop-width, i. e. these obstructions
yield winning strategies for the robber. The invariants corresponding to obstructions
are called ‘numbers’ and are defined as suprema.

Definition 2.4.6 Let f be a monotone width function on the graph G.

• A bramble B ⊆ P
(

V (G)
)

in G is a set of subsets of V (G) satisfying the
following conditions:

(B1) Every B ∈ B is connected,

(B2) Any two sets B1, B2 ∈ B touch,

(B3) Every infinite subset B0 ⊆ B has an infinite subset B′
0 ⊆ B0 which has

non-empty intersection, i. e.
⋂

B∈B′
0
6= ∅.

• The f -order of a bramble B is defined as

f - order(B) = inf{f(Y ) ∈ R | Y ⊆ V (G) a finite subset, and

Y ∩B′ 6= ∅ for all B′ ∈ B}.

• The f -bramble-number of G is defined as

f -bramble-no(G) = sup{f - order(B) | B a bramble in G}.

Thus every finite clique C gives rise to a bramble B =
{

{v} | v ∈ V (C)
}

with

f -order(B) = f
(

V (C)
)

. However, if C is an infinite clique,
{

{v} | v ∈ V (C)
}

does
not satisfy (B3).

In Definition 2.4.6 we could also have allowed f to be non-monotone, obtaining
f -bramble-no(G) = fmon-bramble-no(G) for all graphs G. Note that for a finite
graph G the card-bramble-number is actually the bramble-number of G as defined
in [Re97]. Moreover, the cH -bramble-number is actually the hyperbramble-number
of H as defined in [AGG05].

The following result is only for completeness and will not be used.

Proposition 2.4.7 Let f be a monotone width function on the finite graph G.
Equivalent are:

1. f -bramble-no(G) ≥ k,

2. There is a function ζ :
{

X ⊆ V (G)
∣

∣ f(X) ≤ k
}

→ P
(

V (G)
)

satisfying

(a) ζ(X) is a connected component of G \X,

(b) If X,Y ⊆ V (G) with f(X) ≤ k and f(Y ) ≤ k, then ζ(X) and ζ(Y )
touch.

Proof. 1 ⇒ 2: Let B be a bramble of f -order(B) ≥ k. Then for X ⊆ V (G) with
f(X) ≤ k there is an element BX ∈ B such that X ∩ BX = ∅. Define ζ(X) = C
where C is the connected component of G \X containing BX , thus satisfying (a).
Note that the definition is independent of the choice of BX , because each two
elements of B touch. The touching condition for brambles also shows that (b) is
satisfyed.

2 ⇒ 1: The set
{

ζ(X) | X ⊆ V (G), f(X) ≤ k
}

is a bramble of f -order at least
k in G. �



2.4. RELATED F -INVARIANTS 45

One could call such a function ζ a weak haven, as it is a slightly weaker variant of
a haven as defined in [ST93]. Weak havens were the starting point for the definition
of havens for finite directed graphs in [JRST01]. The reader may wish to compare
this with Proposition 2.2.11.

Proposition 2.4.8 Let f be a monotone width function on the graph G. Then

f -bramble-no(G) ≤ f - cw(G).

Proof. Let B be a bramble in G of f -order at least k. We show that the robber
can avoid capture by cops that only move to sets X ⊆ V (G) with f(X) < k. The
robber can win by making sure that the following invariant holds during the entire
game:
In each position (X,C) (where X is the cops’ position and C is the robber’s escape
space), C is the component of G\X containing a set BX ∈ B such that BX∩X = ∅.

Suppose the game is in position (X,C) and the invariant holds. Note that C is
unique, since any two elements of B touch. Now the cops move to Y with f(Y ) < k.
Then the robber moves to the component C′ of G \ Y containing a BY ∈ B with
BY ∩ Y = ∅. This is possible, since BX and BY touch in G \ (X ∪ Y ). Thus the
robber can always move. Together with (B3) this shows that the robber can escape.

�

It is still an open question whether this inequality can be replaced by an equality.
The following invariant may seem somewhat arbitrarily defined. Yet it has the

advantage of being a common lower bound for both the bramble-number and the
branch-width, a quite natural invariant that will be defined in the next section.

Definition 2.4.9 Let f be a monotone width function on the graph G.

(B2′) A tangle in G is a bramble T , such that B1, B2, B3 ∈ T form a touching
triple, i. e. B1 ∩B2 ∩B3 6= ∅, or there exists an edge e ∈ E(G) with e∩Bi 6=
∅, i ∈ {1, 2, 3}.

The f -tangle-number of G is

f - tangle-no(G) = sup{f - order(T ) | T a tangle in G},

f - order(T ) being defined as for brambles.

For a finite graph G the card-tangle-number is actually the tangle-number of
G as defined in [Re97]. The hypertangle-number of a hypergraph as defined in
[AGG05] is not equal to the cH -tangle-number. Since our touching conditions are
more restrictive, we have less tangles, and the cH -tangle-no(H) is at most the
hypertangle-number of the hypergraph H . It is easy to see that the triangle K3

satisfies cK3 - tangle-no(K3) = 1 < 2 = cK3 - bramble-no(K3). Thus we cannot
obtain equality here.

Theorem 2.4.10 Let f be a monotone and weakly submodular width function on
the graph G. Then

f - tangle-no(G) ≤ f -bramble-no(G) ≤ 3 · f - tangle-no(G).

Proof. The first inequality is true since every tangle is a bramble. For the second
inequality, let B be a bramble in G of f -order at least k. We show that G has a
tangle T of f -order at least k

3 . Let X ⊆ V (G) with f(X) < k
3 . Then V (G) \ X

contains a subset BX ∈ B with X ∩ BX = ∅. Furthermore, every B′
X ∈ B with



46 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

X ∩ B′
X = ∅ lies in the same connected component CX of G \ X as BX (because

BX and B′
X touch). Define

T :=
{

CX | X ⊆ V (G), f(X) <
k

3

}

.

T is again a bramble: (B1) and (B2) are obvious. We only show (B3): For
every CX ∈ T choose BX ∈ B such that BX ⊆ CX . If {BX | CX ∈ T } is infinite,
then (B3) carries over from B to T . Otherwise, if {BX | CX ∈ T } is finite, then
it contains a set BX such that infinitely many elements of T are supersets of BX .
But BX 6= ∅, since BX touches itself. Thus (B3) holds for T .

We now show that T is in fact a tangle of f -order at least k
3 :

• Let CX1 , CX2 , CX3 ∈ T . Then CX1 ∩CX2 ∩CX3 6= ∅: By weak submodularity,
f(X1∪X2∪X3) < k. Hence there is a set B0 ∈ B s. t. B0∩(X1∪X2∪X3) = ∅.
Since B is a bramble, B0 touches BX1 , BX2 and BX3 . Let C0 ⊇ B0 be the
connected component of G \ (X1 ∪X2 ∪X3) containing B0. Since C0 touches
CX1 , we have C0 ⊆ CX1 . Similarly, C0 ⊆ CX2 , CX3 . Hence ∅ 6= C0 ⊆
Cx1 ∩CX2 ∩ CX3 .

• If X ⊆ V (G) with f(X) < k
3 , then CX ∈ T and X ∩ CX = ∅. Hence the

f -order of T is at least k
3 . �

2.4.3 Branch decompositions

A tree T is subcubic, if every vertex of T has degree at most 3.

Definition 2.4.11 Let G be a graph and let f be a monotone width function on G.

• A branch decomposition of G is a triple (T, κ, λ) as follows:

(BD1) T is a subcubic tree,

(BD2) κ = (κe)e∈E(T ) associates to each tree edge e ∈ E(T ) a finite set
κe ⊆ V (G) of graph nodes,

(BD3) λ is a bijection between the set of leaves of T and E(G).

(BD4) If a graph vertex v ∈ V (G) is contained in two graph edges h1, h2 ∈
E(G), v ∈ h1 ∩ h2, and the path from the tree leaf λ−1(h1) ∈ V (T ) to
the tree leaf λ−1(h2) ∈ V (T ) uses a tree edge e ∈ E(T ) (we say: v is
separated by e), then v ∈ κe.

• The f -width of a branch decomposition is

f -width(T, κ, λ) = sup{f(κe) | e ∈ E(T )}.

• The f -branch-width of G is

f -branch-width(G) = inf{f -width(T, κ, λ) | (T, κ, λ) is a

branch decomposition of G}.

Note that that in our definition, λ maps the leaves of T to the edges of G, and
not the other way round. This is slightly non-standard, but more convenient for
our purposes.

A fundamental difference to the other invariants is that a graph having a branch
decomposition can have at most countably many edges.



2.4. RELATED F -INVARIANTS 47

For a finite graph G, card-branch-width(G) is the branch-width as defined in
[RS91]. The hyperbranch-width of a hypergraph as defined in [AGG05] is not a
special case of f -branch-width. Actually, for hypergraphs that are not the disjoint
union of their hyperedges the hyperbranch-width of a hypergraph H is at least cH -
branch-width(H).

Let G be a graph with pairwise disjoint edges, and let f be a monotone width
function on G. Then f -branch-width(G) = f(∅): We can find a branch decom-
position (T, κ, λ) of G where κe = ∅ for all e ∈ E(T ). Since f is monotone,
f(κe) = f(∅) = inf{f(X) | X ⊆ V (G)} is optimal. This example shows that
f -branch-width is fundamentally different from all f -invariants defined so far. For
example if we put f(X) := |X | for |X | ≤ 1, and f(X) := ∞ otherwise, then the
complete graph on two vertices K2 satisfies f -branch-width(K2) = 0 while all other
invariants are infinite. Note that f is tame and monotone, though not weakly sub-
modular. Since this phenomenon is the only obstruction to two inequalities that
otherwise would hold, we define:

Definition 2.4.12

f -branch-width′(G) := max{f -branch-width(G), sup
e∈E(G)

f(e)}.

In our applications supe∈E(G) f(e) will invariably be either 1 or 2, so here the

difference between branch-width and branch-width′ is marginal.
Let (T, κ, λ) be a branch decomposition of a graph G. For every edge {t, s} ∈

E(T ) we let Lt,s and Ls,t be the leaf sets of the two subtrees into which the tree is
divided if the edge {t, s} is removed. (Lt,s is the leaf set of the subtree that contains
s.) Let λt,s be the set of vertices in edges contained in λ(Lt,s), that is,

λt,s =
⋃

λ(Lt,s) =
{

v ∈ V (G)
∣

∣ v ∈ λ(`) for some leaf ` ∈ Lt,s
}

.

Thus λs,t ∩ λt,s ⊆ κh for all edges h = {t, s} ∈ E(T ).

Lemma 2.4.13 Let (T, κ, λ) be a branch decomposition of G, and let t ∈ T be an
inner tree node with neighbours s1, s2, s3 ∈ T . Then the sets λsi,t \ κ{si,t} do not
form a touching triple. That is:

1. (λs1,t \ κ{s1,t}) ∩ (λs2,t \ κ{s2,t}) ∩ (λs3,t \ κ{s3,t}) = ∅, and

2. Every graph edge e ∈ E(G) is disjoint from one of the sets (λsi,t \ κ{si,t}),
i = 1, 2, 3.

Similarly if t has only two neighbours s1, s2 ∈ T .

Proof. First note that λs1,t = λt,s2 ∪ λt,s3 and κ{s1,t} ⊇ λt,s1 ∩ λs1,t, and hence

λs1,t \ κ{s1,t} ⊆ λs1,t \ λt,s1 = (λt,s2 ∪ λt,s3) \ λt,s1 . (2.1)

The analogous statement holds for every permutation of s1, s2, s3.
With this, 1 is true since

(λs1,t\κ{s1,t}) ∩ (λs2,t \ κ{s2,t}) ∩ (λs3,t \ κ{s3,t})

⊆ [(λt,s2 ∪ λt,s3) \ λt,s1 ] ∩ [(λt,s1 ∪ λt,s3) \ λt,s2 ] ∩ [(λt,s1 ∪ λt,s2) \ λt,s3 ]

= ∅.

2: Let e ∈ E(G). We may assume that e ⊆ λt,s1 . But then by (2.1)

λs1,t \ κ{s1,t} ⊆(λt,s2 ∪ λt,s3) \ λt,s1
⊆(λt,s2 ∪ λt,s3) \ e,

so e ∩ (λs1,t \ κ{s1,t}) = ∅. �



48 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

Proposition 2.4.14 Let f be a monotone width function on the finite graph G.
Then

f - tangle-no(G) ≤ f - branch-width′(G).

Proof. Let (T, κ, λ) be a branch decomposition of G witnessing that

f - branch-width′(G) ≤ k.

For every edge h = {t, s} ∈ E(T ) we have f(κh) ≤ k and λt,s ∩ λs,t ⊆ κh.
Suppose for contradiction that G has a tangle B of f -order > k. Then for every

edge h = {t, s} ∈ E(T ) there is an Xh ∈ B such that κh ∩ Xh = ∅. Then either

Xh ⊆ λt,s \κh or Xh ⊆ λs,t \κh. In the first case we let ~h = (t, s), in the second case

we let ~h = (s, t). This orientation of h does not depend on the particular choice of
the set Xh ∈ B, because by (B2) all elements of B touch and hence all those that
do not intersect κh must be on the same side. We orient all edges h ∈ E(T ) in
this way. Since the resulting directed graph is finite and acyclic, there must be a
node t ∈ T with outdegree 0. First suppose t has degree 3. Let s1, s2, s3 be the
neighbours of t. Then Xsi,t ⊆ λsi,t \ κ{si,t} for i = 1, 2, 3. Since by (B2’), the sets
Xs1,t, Xs2,t, Xs3,t form a touching triple we get a contradiction to Lemma 2.4.13.
Similarly if t has degree 2.

Therefore t is a leaf. Let e = λ(t), and let ~f = (s, t) be the edge directed towards
t. Then Xh ⊆ e. Since by assumption f(e) ≤ k and since f -order(B) > k, there
must be a set Y ∈ B such that Y ∩ e = ∅. Since Y and Xh touch, there is a graph
edge e′ ∈ E(G) such that e′ ∩ Xh 6= ∅ and e′ ∩ Y 6= ∅. Since e′ ∈ λ(Lt,s) and
e ∈ λ(Ls,t), we have e ∩ e′ ⊆ κh and hence Xh ∩ e′ ⊆ κh. Thus Xh ∩ κh 6= ∅, which
is a contradiction. �

Proposition 2.4.15 Let f be a monotone width function on the finite graph G.
Then

f -branch-width′(G) ≤ f - ghw(G).

Proof. Let (T,B,C) be a generalised hypertree decomposition of G. We first trans-
form this decomposition into a new decomposition (T ′, B′, C′) and define a bijec-
tion λ from the leaves of T ′ to E(G) such that for every leaf ` of T ′ we have
B` = C` = λ(`). To achieve this, for every edge e ∈ E(G) we pick a vertex te ∈ T
such that e ⊆ Bte . We define the tree T ′ by attaching a new leaf `e to te for every
edge e ∈ E(G). If there are other leaves in T ′ than the newly created leaves `e, we
delete them, and if the deletion creates new leaves, we delete them as well, until the
leaves `e are the only leaves of T ′. For the interior vertices t of T ′ we let B′

t = Bt
and C′

t = Ct. For the leaves, we let B′
`e

= C′
`e

= e. We define the bijection λ by
λ(`e) = e. It is easy to see that (T ′, B′, C′) and λ have the desired properties.

In a second step, we turn T ′ into a subcubic tree T ′′ that has the same leaves
as T ′ by repeatedly splitting nodes of degree greater than 3. For example, if t has
neighbours s1, . . . , sk, where k ≥ 4, we replace t by nodes t1 and t2, connect these
two nodes by an edge, and attach s1, . . . , sbk/2c to t1 and sbk/2c+1, . . . , sk to t2. We
define B′′ and C′′ on T ′′ by letting the split vertices keep their pieces and guards.
That is, if we split t into t1 and t2, we let B′′

t1 = B′′
t2 = B′

t and C′′
t1 = C′′

t2 = C′
t.

We obtain a generalised hypertree decomposition (T ′′, B′′, C′′) of G and a bijec-
tion λ from the leaves of T ′′ to E(G) such that T ′′ is a subcubic tree, and for every
leaf ` of T ′′ we have B` = C` = λ(`).

Now let h = {t, s} be an edge of T ′′. By Lemma 2.2.15, Bt ∩ Bs separates the
vertices in the pieces of the two parts of the tree obtained by removing the edge h.
Thus in particular,

κh := λs,t ∩ λt,s ⊆ Bt ∩Bs ⊆ Ct.



2.4. RELATED F -INVARIANTS 49

Since f is monotone, we have f(κh) ≤ f(Ct) ≤ k for all edges h ∈ E(T ). Finally,
for every edge e ∈ E(G) clearly f(e) ≤ f -ghw(G). Thus (T ′′, κ, λ) is a branch
decomposition of G, witnessing that f -branch-width′(G) ≤ k. �

It is not hard to see that the last result also holds for countably infinite graphs.
Furthermore, it is easy to see that the triangleK3 satisfies cK3 - branch-width(K3) =
cK3 - branch-width′(K3) = 1 < 2 = cK3 - ghw(K3). Thus the inequality of Proposi-
tion 2.4.15 cannot be replaced by an equality. Moreover, the following inequality is
tight.

Theorem 2.4.16 Let f be a monotone, weakly submodular width function on a
graph G without isolated vertices. Then

f - ghw(G) ≤ 2 · f -branch-width′(G).

Proof. Let (T, κ, λ) be a branch decomposition of the graph G of f -width k =
f - branch-width′(G). We define a generalised hypertree decomposition (T,B,C) as
follows: For an interior vertex t ∈ T , let h1 = {s1, t}, h2 = {s2, t} ∈ E(T ) be two of
the edges incident with t. We let

Bt =
(

λt,s1 ∩ λs1,t
)

∪
(

λt,s2 ∩ λs2,t
)

,

Ct = κh1 ∪ κh2 .

For a leaf `, we let B` = C` = λ(`). Let us first argue that (T,B) is a tree-
decomposition of G: For every edge λ(`) ∈ E(G) we have λ(`) ⊆ B`. For a vertex
v ∈ V (G), consider the set B−1(v) = {t ∈ T | v ∈ Bt}. An interior vertex t ∈ T
belongs to this set, if at least two of the (at most three) components of T \ {t}
have a leaf ` such that v ∈ λ(`). A leaf ` belongs to B−1(v) if v ∈ λ(`). Thus
B−1(v) is the union of all paths connecting leaves ` with v ∈ λ(`). Clearly, this set
is connected. Thus (T,B) is a tree-decomposition of G.

It follows immediately from the definition of the guards Ct that Bt ⊆ Ct for all
t ∈ T , thus (T,B,C) is a generalised hypertree decomposition. Since f(κh) ≤ k for
all h ∈ E(T ), and because f is weakly submodular, we have f(Ct) ≤ f(κh1 ∪κh2) ≤
2k for an inner vertex t and

f(C`) = f(e) ≤ f - branch-width′(G) = k,

where λ(`) = e, and thus f -width(T,B,C) ≤ 2k. �

2.4.4 Linking all invariants together

In this section we show that for monotone, additive, tame, weakly submodular
width functions we have

f - ghw(G) ≤ 3 · bramble-no(G) + 2.

Together with our previous results we then have Theorem 2.4.23 below. For the
proof of this inequality (and nowhere else) we need the following f -invariant.

Definition 2.4.17 Let G be a graph, let f be a monotone width function on G.

• Let M ⊆ V (G) be finite. A set C ⊆ V (G) is M -big, if f(M ∩ C) > f(M)
2 .

• A finite set S ⊆ V (G) is a balanced f -separator for the finite set M ⊆ V (G),
if G \ S has no M -big connected component.

• Let k ∈ R. A finite set M ⊆ V (G) is (f, k)-linked, if every balanced f -
separator S of M satisfies f(S) > k.



50 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

• The f -linkedness of G is

f - link(G) = sup{k ∈ R | G contains a finite (f, k)-linked set }.

Note that the card-linkedness of a finite graph G is actually the linkedness of
G as defined in [Re97]. For example, for any clique K the vertex set V (K) is
(

card, |V (K)|
2

)

-linked.
The hyperlinkedness of a hypergraph as defined in [AGG05] is not a special case
of f -linkedness. Actually, the hyperlinkedness of a hypergraph H is at least cH -
link(H).

The f -linkedness is defined as an obstruction number, but it can also be viewed
as a decomposition width:

Remark 2.4.18 Let f be a monotone width function on the graph G. Then

f - link(G) = inf{k ∈ R | each finite M ⊆ V (G) has a balanced f -separator

SM with f(SM ) ≤ k}.

Proof. f - link(G)= sup{k ∈ R | G contains a finite (f, k)-linked set}
= inf{k ∈ R | each finite M ⊆ V (G) has a balanced

f -separator SM with f(SM ) ≤ k}. �

Lemma 2.4.19 Let f be a monotone, additive width function on the graph G. Let
M ⊆ V (G) be finite. Then any two M -big sets C1, C2 ⊆ V (G) touch. In particular,
for any S ⊆ V (G) there is at most one M -big component of G \ S.

Proof. Towards a contradiction, suppose that C1 and C2 do not touch. Then M∩C1

and M ∩ C2 do not touch, and additivity implies that

f(M)

2
+
f(M)

2
<f(M ∩ C1) + f(M ∩ C2)

≤f
(

(M ∩ C1) ∪ (M ∩ C2)
)

≤f(M),

where the last inequality holds by monotonicity, and we have the desired contradic-
tion. �

Proposition 2.4.20 Let f be a monotone, additive width function on the graph G.
Then

f - link(G) ≤ f -bramble-no(G).

Proof. Every (f, k)-linked set M generates a bramble of f -order at least k: Define

B := {C | C the M -big component of G \ S for some finite S ⊆ E(H)

with f(S) ≤ k}.

By Lemma 2.4.19 any two elements of B touch. Moreover, no set S ⊆ V (G) with
f(S) < k intersects every element of B. Hence B is a bramble of order at least k. �

In [AGG05] it is shown that K5 has hyperlinkedness at most two and hyper-
bramble-number at least three. Since cH -bramble-no(H) equals the hyperbramble-
number of H it follows that cK5 - link(K5) ≤ 2 < 3 ≤ cK5 - bramble-no(K5). Thus
we cannot obtain equality here.

The following technical lemma will only be used in the proof of Theorem 2.4.22.



2.4. RELATED F -INVARIANTS 51

Lemma 2.4.21 Let G be a graph and let f be a monotone, weakly submodular
width function on G. Suppose that f -link(G) ≤ k for some k ∈ R. Let M ⊆ V (G)
with f(M) ≤ 2k + 2. Then there exists a set X ′ ⊆ V (G) with M ⊆ X ′ and
f(X ′) ≤ 3k+ 2 such that for all components R of G \X ′ there is a subset M ′ ⊆ X ′

with f(M ′) ≤ 2k + 1 and ∂R′ ⊆M ′.

Where for X ⊆ V (G) and a connected component R of G \X ,

∂R = {v ∈ X | there is an edge e ∈ E(G) with v ∈ e and e ∩R 6= ∅}.

Proof. Given M , let S be a balanced f -separator for M with f(S) ≤ k. Set
X ′ := M ∪ S. Then f(X ′) = f(M ∪ S) ≤ f(M) + f(S) ≤ 2k + 2 + k because
f is weakly submodular. Let R′ be a component of G \ X ′. Then R′ ⊆ C for a
component C of G \ S. Since S is a balanced f -separator for M , C is not M -big, i.
e.

f(C ∩M) ≤
f(M)

2
≤

2k + 2

2
= k + 1.

Set M ′ := S ∪ (C ∩M). Then M ′ ⊆ X ′ and with weak submodularity

f(M ′) ≤ f(S) + f(C ∩M) ≤ k + (k + 1) = 2k + 1.

Furthermore, ∂R′ ⊆ S ∪ (C ∩M) = M ′. �

Theorem 2.4.22 Let G be a finite or countably infinite graph, k ∈ R, and let f be
a monotone, additive, tame, weakly submodular width function on G. Then

f - ghw(G) ≤ 3 · (f - link(G)) + 2.

Proof. Let f satisfy the required conditions. Let f -link(G) ≤ k. Since f is mono-
tone, by Remark 2.1.18 and Theorem 2.2.12, f - ghw(G) = f - hw(G) = f - cwmon(G)
and it suffices to show that the cops have a monotone winning strategy of f -width at
most 3k+2: The cops can make sure that each position (X,R) satisfies f(X) ≤ 3k+2
and ∂R ⊆M for an M ⊆ X with f(M) ≤ 2k + 1:

Suppose this is true for (X,R). Choose v ∈ R. Since f is monotone, tameness
implies that f({v}) ≤ 1. By weak submodularity we have f(M ∪ {v}) ≤ 2k + 2.
Application of Lemma 2.4.21 to M ∪ {v} yields a set X ′ ⊇ M ∪ {v} with f(X ′) ≤
3k + 2, s. t. for each possible escape space R′ with respect to X ′ there exists an
M ′ ⊆ X ′ with f(M ′) ≤ 2k and ∂R′ ⊆M ′.

Obviously, this strategy is monotone, and in the case that G is finite, it is a
winning strategy. If G is countably infinite, then in each step the cops have to
choose the vertex v in such a way, that during the game each vertex of V (G) is
chosen. �

Putting things together we get:

Theorem 2.4.23 Let f be a monotone width function on a finite graph G.

1. We have f -ghw(G) = f -hw(G) = f -cwmon(G) and the following inequalities:

f - tangle-no(G) ≤ f -bramble-no(G) ≤ f - cw(G) ≤ f - ghw(G)

f - tangle-no(G) ≤ f -branch-width′(G) ≤ f - ghw(G)

2. If f is also weakly submodular, then we also have

f -bramble-no(G) ≤ 3 · f - tangle-no(G),

(and
f - ghw(G) ≤ 2 · f -branch-width′(G),

provided that G has no isolated vertices).



52 CHAPTER 2. F -HYPERTREE-WIDTH OF GRAPHS

3. If f is also weakly submodular, additive and tame, then

f - ghw(G) ≤ 3 · f -bramble-no(G) + 2.

Thus, all invariants occurring in the theorem are linearly coherent on the class
of graphs equipped with monotone, weakly submodular, additive, tame width func-
tions. (Here we have omitted f -linkedness, because it has a rather artificial defini-
tion.)



Chapter 3

Hypergraphs

In this Chapter we study the width function cH , with main focus on the relationship
between cH -cw, cH -ghw, and cH -hw.1

In Section 3.1.1 we introduce hypergraph pairs, i. e. pairs (G,H) of hypergraphs
with V (G) = V (H). Obviously, the function cH is a width function on G. Then
the properties of cH are listed which follow from the general theory in Chapter 2.

Hypergraph pairs will be helpful in several places for constructing examples
of hypergraphs. As mentioned before, in [AGG05] it was shown that any finite
hypergraph H satisfies

cH - cw(H) ≤ k =⇒ cH - hw(H) ≤ 3k + 1.

Thus, since cH -cw(H) ≤ cH -ghw(H) ≤ cH -hw(H), all three invariants are linearly
coherent.

In Section 3.2 we first construct hypergraph pairs (Gn, Hn) satisfying

cHn - cw(Gn) = n and cHn - ghw(Gn) = 2n

for every integer n > 0. Thus for hypergraph pairs (G,H) the invariants cH -
cw(G) and cH -ghw(G) are not strongly coherent. This result actually carries over to
hypergraphs. This is done by ‘implementing’ a hypergraph pair (G,H) with H ⊆ G
as a hypergraphH ′ in such a way that cH - cw(G) = cH′ - cw(H ′) and cH - ghw(G) =
cH′ - ghw(H ′). Since the hypergraph pairs (Gn, Hn) constructed in Section 3.2
satisfy Hn ⊆ Gn, this shows that even for hypergraphs H the invariants cH -cw(H)
and cH -ghw(H) are not strongly coherent. Apart from this, the implementation
method will be useful in Chapter 5.

In Section 3.3, the relationship between the invariants cH -ghw and cH -hw is
discussed. Since in [Ad02] (see also [Ad04]) it was already shown that they are not
strongly coherent on hypergraphs, we only give an easy example of a hypergraph H
with cH - ghw(H) = 2 < 3 = cH - hw(H). The we show that for every integer n > 0
there exists a hypergraph pair (Gn, Hn) satisfying

cHn - ghw(Gn) = 1 and cHn - hw(Gn) = n.

Thus, cH -ghw and cH -hw are not coherent on hypergraph pairs.
Finally, in Section 3.4 we show that deciding for fixed k < ω whether a given

finite hypergraph pair (G,H) satisfies cH -ghw(G) ≤ k is actually equivalent to
solving a well known problem: The Hypergraph Sandwich Problem defined by A.
Lustig, O. Shmueli in [LS99]. It is an open question, whether the hypergraph
sandwich problem is solvable in polynomial time. We show that restriction to inputs
with bounded maximum hyperedge size leeds to a polynomial time algorithm.

1Parts of this chapter are based on [Ad05a].

53



54 CHAPTER 3. HYPERGRAPHS

4

4 6
G =

1 2 3 5

1 2 3 6
H =

5

Figure 3.1: A hypergraph pair (G,H).

3.1 Definitions and some observations

3.1.1 Hypergraph pairs

Definition 3.1.1

1. A hypergraph pair is a pair (G,H), where G and H are hypergraphs and
V (G) = V (H).

2. A hypergraph pair (G0, H0) is an induced subhypergraph pair of (G,H) , if
G0 is an induced subhypergraph of G and H0 is an induced subhypergraph
of H.

Figure 3.1 shows a hypergraph pair.2 The only thing we will study for hypergraph
pairs is cH -invariants (more precisely: cH -cw, cH -ghw, and cH -hw) applied to G.
Therefore, whenever we need it, we may assume that a hypergraph pair (G,H)
satisfies G = G. Intuitively, G measures the connectivity (‘robber graph’) and H
measures the cost of covering a set of vertices of G (‘cop graph’).

Example 3.1.2 The following hypergraph pair is depicted in Figure 3.1.

Hypergraph pair (G,H)
vertices: 1, 2, 3, 4, 5, 6
edges of G: {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}
edges of H : {1, 2}, {2, 3}, {1, 3, 4, 6}, {4, 5}, {5, 6}

Figure 3.2 shows a hypertree decomposition of the graph G from Example 3.1.2,
of cH -width 2. Figure 3.3 shows a generalised hypertree decomposition of G, of
cH -width 1. Each tree node t is depicted with Bt on the left hand side and Ct on
the right hand side. Actually, these decompositions are optimal in the sense that
cH -hw(G) = 2 and cH -ghw(G) = 1. The proof is left to the reader. In Section
3.3 we will ‘implement’ examples such as this in order to obtain hypergraphs H
satisfying cH -hw(H) > cH -ghw(H).

2Hypergraph pairs are in fact quite natural. For example, in [FFG02] J. Flum, M. Frick and
M. Grohe define the notion of acyclicity for a conjunctive query with negation, i. e. for a formula ϕ

which is a conjunction of relations and negated relations. Let at+(ϕ) (and at−(ϕ), resp.) denote
the set of all relations occurring positively (negatively, resp.) in ϕ. There is a natural hypergraph
pair (Gϕ, Hϕ) corresponding to ϕ:

Hypergraph pair (Gϕ, Hϕ)
vertex set: var ϕ

edges of Gϕ: h ⊆ var(ϕ), h ∈ at+(ϕ) ∪ at−(ϕ)
edges of Hϕ: h ⊆ var(ϕ), h ∈ at+(ϕ)

It is straightforward to see that ϕ is acyclic in the sense of [FFG02] if and only if the hypergraph
pair (Gϕ, Hϕ) satisfies cHϕ -hw(Gϕ) ≤ 1.



3.1. DEFINITIONS AND SOME OBSERVATIONS 55

4, 5, 6

1, 3, 4, 6

1, 2, 3 4, 5, 61, 2, 3

1, 3, 4, 6

Figure 3.2: A hypertree decomposition of G from Figure 3.1 of cH -width 2. Every
node t ∈ T is depicted by a box with Bt on the left hand side and Ct on the right
hand side.

2, 3 4, 52, 3

1, 2 5, 6

3, 4 1, 3, 4, 6

4, 5

5, 61, 2

Figure 3.3: A generalised hypertree decomposition of G from Figure 3.1 of cH -
width 1.

We obtain the following special case:

Remark 3.1.3

Let (G,H) be a hypergraph pair with E(H) = {{v} | v ∈ V (G)}. Then

tw(G) + 1 = cH - ghw(G) = cH -hw(G) = cH - cw(G).

Proof. The first two equalities follow from the definitions, and the last equality holds
since by Seymour and Thomas [ST93] there is no monotonicity cost on graphs.

Example 3.1.4 Let (G,H) be a hypergraph pair. Then

• cH-hw(G) is the hypertree-width of (G,H) as defined in [Ad05a], and

• cH-ghw(G) is the generalised hypertree-width of (G,H) as defined in [Ad05a].

The games defined in [GLS01b] and [Ad05a] can be regarded as special cases3

of RC(G, f, k), and we get:

Example 3.1.5

• Let H be a finite hypergraph. Then cH-cw(H) (or cH-cwmon(H)) is the min-
imum number of marshals necessary to catch the robber in the (monotone,
respectively) robber and marshals game defined in [GLS01b].

• Let (G,H) be a hypergraph pair. Then cH-cw(G) (or cH-cwmon(G)) is the
minimum number of marshals necessary to catch the robber in the (monotone,
respectively) robber and marshals game defined in [Ad05a].

3Recall that the robber and cops game defined by Seymour and Thomas in [ST93] can also be
regarded as a special case (cf. Example 2.2.9).



56 CHAPTER 3. HYPERGRAPHS

3.1.2 Properties of cH

In order to apply Chapter 2 to f = cH , we first take a look at the properties of cH
(cf. Definition 2.4.2).

Lemma 3.1.6

1. For a hypergraph pair (G,H), the width function cmon
H on G is weakly sub-

modular.

2. For a hypergraph H, the width function cmon
H on H is weakly submodular and

additive. If H is tame, then so is cmon
H .

Proof. Recall that by Remark 2.4.3, weak submodularity and tameness are passed
on from f to fmon. We use this freely.

1: Weak submodularity of cH : Let (G,H) be a hypergraph pair and let X1, X2

be finite subsets of V (G). If cH(X1) + cH(X2) = ∞, then there is nothing to show.
Otherwise, there exist E1, E2 ⊆ E(H) such that

⋃

Ei = Xi and |Ei| = cH(Xi) for
i ∈ {1, 2}. Then

⋃

(E1 ∪E2) = X1∪X2 and thus cH(X1 ∪X2) ≤ cH(X1)+cH(X2).

2: Weak submodularity of cmon
H holds by 1.

Additivity of cmon
H : Since cmon

H is weakly submodular, we only need to show that

cmon
H (X ∪ Y ) ≥ cmon

H (X) + cmon
H (Y )

for finite non-touching sets X,Y ⊆ V (H). If cmon
H (X ∪ Y ) = ∞, then there is

nothing to show. Otherwise, let EX∪Y ⊆ E(H) \ {∅} be such that

⋃

EX∪Y ⊇ X ∪ Y and |EX∪Y | = cmon
H (X ∪ Y ).

Let EX = {h ∈ EX∪Y | h ∩ X 6= ∅} and EY = {h ∈ EX∪Y | h ∩ Y 6= ∅}. Since X
and Y do not touch, EX∪Y is the disjoint union EX∪Y = EX ∪̇EY . Since

⋃

EX ⊇ X
and

⋃

EY ⊇ Y , we have

cmon
H (X) + cmon

H (Y ) ≤ |EX | + |EY | = |EX∪Y | = cmon
H (X ∪ Y ).

Tameness of cH : If H has no isolated vertices, then every vertex v is contained
in a hyperedge h. Now clearly cH(h) = 1. �

Corollary 3.1.7

• For a hypergraph pair (G,H), the width function cmon
H on G satisfies Theorem

2.4.23,1 and 2.

• For a hypergraph H, the width function cmon
H on H satisfies Theorem 2.4.23,1

and 2. If H is tame, then cmon
H also satisfies Theorem 2.4.23,3.

In general, additivity does not hold for the width function cH of a hypergraph
pair (G,H):

Example 3.1.8 Consider the following hypergraph pair.

Hypergraph pair (G,H)
vertices: 1, 2
edges of G: {1}, {2}
edges of H : {1}, {2}, {1, 2}

The hyperedges {1} and {2} do not touch in G, but

cH({1, 2}) = 1 < 1 + 1 = cH({1}) + cH({2}).



3.1. DEFINITIONS AND SOME OBSERVATIONS 57

The following theorem shows that even cH - ghw and cH - hw are linearly coher-
ent.

Fact 3.1.9 ([AGG05]) Every finite hypergraph H satisfies

cH - hw(H) ≤ 3 · cH - ghw(H) + 1.

Lemma 3.1.10 Let f be the family of width functions cH , for all hypergraphs H.
For k > 0, define Cfk :=

{

structures M
∣

∣ cHM
(HM) ≤ k

}

. Then

• SUBSTR
Cf
k

enum ∈ P, and

• HOMenum(Cfk , ) ∈ P.

Corollary 3.1.11 Let f be the family of width functions cH , for all hypergraphs
H, and let k > 0 be an integer. Then

1. HOM(CoreDecomposable
Cf
k

ghd, ) ∈ P,

2. HDCf
k ∈ P,

3. HOM(Decomposed
Cf
k , ) ∈ P,

4. CSCf
k ∈ P .

Proof. Use Theorems 2.3.13, 2.3.16, 2.3.18, and Corollary 2.3.19. �

Corollary 3.1.11, 2 and 3 actually reprove results from G. Gottlob, N. Leone and
F. Scarcello in [GLS02].

3.1.3 cH-hypertree-width is smaller than tree-width

The hypergraph invariants cH -hw(H) and card-hw(H) (= tw(H) + 1) are not co-
herent:

Example 3.1.12 For n < ω consider the following hypergraph.

Hypergraph H
vertices: 1, 2, . . . , n
edges: {1, 2, 3, . . . , n}

Clearly cH-hw(H) = 1 and card - hw(H) = n.

However, when we pass from H to the underlying graph H we loose some infor-
mation. We might get better results by actually encoding H in a graph and then
taking the tree-width. Therefore we also consider the following definition.

Definition 3.1.13 For a hypergraph H, the incidence graph H× is the bipartite
graph defined as follows.

Graph H×

vertex set: V (H)∪̇E(H)
edges: {v, e} ∈ V (H) × E(H), where v ∈ e

But again we have no luck:

Example 3.1.14 For n < ω consider the following hypergraph.



58 CHAPTER 3. HYPERGRAPHS

Hypergraph H
vertices: 1, 2, . . . , n
edges: {1, 2, 3, . . . , n}

{i, j}, where 1 ≤ i < j ≤ n

Clearly cH-hw(H) = 1 and card - hw(H×) = n+ 1.

On the other hand we have the following inequalities.

Proposition 3.1.15 Let H be a tame hypergraph. Then

1. cH-hw(H) ≤ card - hw(H), and

2. cH-hw(H) ≤ card - hw(H×).

Proof. 1: Let (T,B,B) be a hypertree decomposition of H with

card - width(T,B,B) ≤ k.

Let ϕ : V (H) → E(H) be an arbitrary function such that v ∈ ϕ(v). Define
Ct :=

⋃

{ϕ(v) | v ∈ Bt}. We claim that (T,C,C) is a hypertree decomposition of
H such that cH -width(T,C,C) ≤ card-width(T,B,B).
We only prove the connectedness condition (TD3), as this is slightly tricky. Given
v ∈ V (H) we have

{t ∈ T | v ∈ Ct} = {t ∈ T | there is a vertex w ∈ Bt such that v ∈ ϕ(w)}

=
⋃

w∈V (H)
v∈ϕ(w)

{t ∈ T | w ∈ Bt}.

Of course, the set {w ∈ V (H) | v ∈ ϕ(w)} ⊆ V (H) is connected. Thus by Remark
1.1.3, the set

⋃

w∈V (H)
v∈ϕ(w)

{t ∈ T | w ∈ Bt} = {t ∈ T | v ∈ Ct}

is connected in T .
2: Let (T,B,B) be a hypertree decomposition of H× with

card - width(T,B,B) ≤ k.

Let ϕ : V (H)∪̇E(H) → E(H) be an arbitrary function such that v ∈ ϕ(v) and
e = ϕ(e). Let Ct =

⋃
{

ϕ(b)
∣

∣ b ∈ Bt
}

as before. Again we claim that (T,C,C) is a
hypertree decomposition of H such that cH -width(T,C,C) ≤ card-width(T,B,B).
For v ∈ V (H),

{t ∈ T | v ∈ Ct} = {t ∈ T | there is a vertex w ∈ Bt ∩ V (H) such that v ∈ ϕ(w)}

∪ {t ∈ T | there is a vertex w ∈ Bt ∩ E(H) such that v ∈ ϕ(w)}

=
⋃

w∈V (H)
v∈ϕ(w)

{t ∈ T | w ∈ Bt} ∪
⋃

e∈E(H)
v∈e

{t ∈ T | e ∈ Bt}.

Each of these sets is connected. Let e ∈ E(H) be such that v ∈ e. Then the sets
{t ∈ T | e ∈ Bt} and {t ∈ T | v ∈ Bt} intersect because there must be a tree node
s ∈ T such that {e, v} ⊆ Bs. Similarly, if w ∈ V (H) is a graph vertex such that
v ∈ ϕ(w), then {t ∈ T | ϕ(w) ∈ Bt} and {t ∈ T | w ∈ Bt} intersect. �

If we have an upper bound on the size of the hyperedges, then the invariants
are linearly coherent:



3.2. THE RELATION OF CH -CW AND CH -GHW 59

Definition 3.1.16 A hypergraph H is bounded, if there is an integer κ ≥ 0 such
that all e ∈ E(H) satisfy |e| ≤ κ.

Remark 3.1.17 Let H be a hypergraph bounded by κ. Then

1. card-hw(H) ≤ κ · cH-hw(H), and

2. card-hw(H×) ≤ κ · cH-hw(H) + 1.

Proof. The proof is left to the reader. Hint: Use the game theoretic characterisation
and the fact that κ cops can cover any hyperedge of H . �

3.2 The relation of cH-cw and cH-ghw

By Theorem 2.4.23, 1 and 3, applied to f = cmon
H , it follows that cH - cw and

cH - ghw are linearly coherent for finite hypergraphs H . With this, in this section
we show:

• For hypergraphsH , cH -cw and cH -ghw are linearly coherent, but not strongly
coherent.

• Then same is true for hypergraph pairs (G,H) satisfying H ⊆ G.

It remains an open question, whether this is true for arbitrary hypergraph pairs.

3.2.1 Hypergraph pairs

In [Ad04] a graph G is presented with cG-cw(G) = 4 and cG-ghw(G) = 5. Are there
hypergraph pairs or even hypergraphs where these invariants differ by more than
one? In this section we will show that the answer to both questions is yes. We begin
with a hypergraph pair (G,H) with cH -cw(G) = 1 and cH -ghw(G) = 2. Then we
show how we can ‘multiply’ a hypergraph pair (G,H), to obtian a hypergraph pair
(G× n,H · n) with cH·n-cw(G× n) = n · cH -cw(G) and cH·n-ghw(G× n) = n · cH -
ghw(G).

Definition 3.2.1 Let H be a hypergraph. The simplicialisation of H is the follow-
ing hypergraph ΣH .

Hypergraph ΣH
vertex set: V (H)
edges: e′, where e′ ⊆ e for an edge e ∈ E(H)

The following Remark holds due to cmon
H = cΣH . It was proved in [Ad02] (see also

[Ad04]).

Remark 3.2.2 A hypergraph pair (G,H) satisfies cH-ghw(G) = cΣH -hw(G).

Consider the following hypergraph pair (G,H) (see Figure 3.4):

Hypergraph pair (G,H)
vertices: A, 1, 2, 3, 4, B
edges of G: {A, 1}, {1, 2}, {2, 3}, {3, 4}, {4, B}, {A,B}
edges of H : {A, 1, B}, {1, 2, B}, {2, 3, A,B}, {3, 4, A}, {4, A,B}, {A,B}

Remark 3.2.3 The hypergraph pair (G,H) defined above satisfies

cH - cw(G) = 1 and cH - ghw(G) = 2.



60 CHAPTER 3. HYPERGRAPHS

a

G =

A 1 2 3 4 B

H =

1A 2 3 4 B

b b ab a

Figure 3.4: The hypergraph pair (G,H). The hyperedges of H marked by a (resp. b)
additionally contain the vertex A (resp. B).

Proof. One cop can catch the robber chasing him from left to right. Note that the
move from {2, 3, A,B} to {3, 4, A} is non-monotone.

Show cH -ghw(G) = 2 by showing that cΣH -hw(G) = 2 (cf. Remark 3.2.2): It is
easy to see that two cops can win monotonely on (G,ΣH). It is not hard to see
that the robber can escape from one monotone cop: consider all possible starting
positions of the cop. �

Definition 3.2.4
• For a graph G we define the graph G× n as follows.

Graph G× n
vertices: (v, 1), . . . , (v, n), where v ∈ V (G)
edges: {(v, i), (w, j)}, where {v, w} ∈ E(G) and 1 ≤ i ≤ j ≤ n

{(v, i), (v, j)}, where v ∈ V (G) and 1 ≤ i < j ≤ n

If G is a hypergraph, then G× n denotes G× n.

• For a hypergraph H we define the hypergraph H · n as follows.

Hypergraph H · n
vertices: (v, 1), . . . , (v, n), where v ∈ V (H)
edges: h× {1}, . . . , h× {n} where h ∈ E(H)

Note that H · n is the hypergraph that consists of n disjoint copies of H . G× n
contains n copies of G which are pairwise connected by new edges. Figure 3.5 shows
the hypergraph pair (G× 2, H · 2) for (G,H) of Figure 3.4.

For a hypergraph pair (G,H) recall that in the game RC(G, cH , k), the cops
may only occupy subsets X ⊆ V (G) satisfying cH(X) ≤ k. Equivalently, we can
say that the cops may only occupy sets Y ⊆ E(H) of at most k hyperedges (then
cH(

⋃

Y ) ≤ k). We will use this equivalence freely throughout this chapter.

Theorem 3.2.5 Let (G,H) be a finite hypergraph pair. Then:

1. c(H·n)-cw(G× n) = n · (cH-cw(G)).

2. c(H·n)-ghw(G× n) = n · (cH-ghw(G)).



3.2. THE RELATION OF CH -CW AND CH -GHW 61

(B, 1)

G× 2 =

H · 2 =

(a, 1)(b, 1)

(a, 2)(b, 2)

(A, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(4, 2)(3, 2)(2, 2)(1, 2)(A, 2)

(A, 1) (1, 1) (2, 1) (4, 1)

(4, 2)(2, 2)(1, 2)(A, 2)

(b, 2) (b, 2) (a, 2) (a, 2)

(a, 1)(a, 1)(b, 1)(b, 1)

(B, 2)

(B, 1)(3, 1)

(3, 2)

(B, 2)

Figure 3.5: The hypergraph pair (G × 2, H · 2) for (G,H) of Figure 3.4. The
hyperedges of H · 2 maked by (a, i) (resp. (b, i)) additionally contain the vertex
(A, i) (resp. (B, i)), for i=1,2.



62 CHAPTER 3. HYPERGRAPHS

Proof. Since for any hypergraph pair cH -cw(G) = cΣH -cw(G) and cH -ghw(G) =
cΣH -cwmon(G), during the proof we assume that H , and thus H · n, are simplicial,
i. e. H = ΣH and H · n = Σ(H · n).

Given a winning strategy (a monotone winning strategy) on (G,H) for k cops, it
is not hard to see that we obtain a winning strategy (a monotone winning strategy)
on (G × n,H · n), by moving simultaneously on each of the n copies of (G,H) in
(G × n,H · n) as on (G,H). Thus c(H·n)-cw(G × n) ≤ n · (cH -cw(G)) and c(H·n)-
ghw(G× n) ≤ n · (cH -ghw(G)).

For the converse, we define maps

• π : V (G× n) → V (G), π((v, i)) := v,

• π+ : P
(

V (G× n)
)

→ P
(

V (G)
)

, π+(R) := {π(v) | v ∈ R},

• π− : P
(

V (G× n)
)

→ P
(

V (G)
)

, π−(X) := {v ∈ V (G) | π−1(v) ⊆ X}

= V (G) \ π+
(

V (G× n) \X
)

.

Suppose k cops have a winning strategy (a monotone winning strategy) on the
hypergraph pair (G × n,H · n). We obtain a winning strategy for b knc cops on
(G,H) as follows: Let X1 ⊆ E(H · n) be the first position of the cops in their
winning strategy on (G×n,H ·n). For the first move on (G,H), b knc cops choose a
set X ′

1 ⊆ E(H) with
⋃

X ′
1 = π−(

⋃

X1). This is possible since H is simplicial and
since there is one copy of H in H · n containing at most b knc edges of X1 and these
edges must cover all copies of elements of π−(

⋃

X1).
Now the robber chooses an escape space R′

1 ⊆ V (G) with respect to X ′
1. It

is easy to see that there is an escape space R1 ⊆ V (G × n) w. r. t. X1 such
that π+(R1) = R′

1. For the case of the robber choosing R1 there is an answer
X2 ⊆ E(H ·n) for the k cops according to their winning strategy on (G×n,H ·n).
On (G,H), b knc cops again choose a set X ′

2 ⊆ E(H) with
⋃

X ′
2 = π−(

⋃

X2). Now
it is the robber’s turn to choose a possible escape space R′

2 ⊆ V (G). As above,
there is an escape space R2 ⊆ V (G × n) w. r. t. X2 such that π+(R2) = R′

2. It
is not hard to see that since R′

1 and R′
2 are connected in G \ (

⋃

X ′
1 ∩

⋃

X ′
2), R1

and R2 are connected in (G × n) \ (
⋃

X1 ∩
⋃

X2) as well. Hence, R2 is a possible
escape space and there is an answer X3 of the cops playing on (G× n,H ·n) to the
robber’s choice of R2, etc.

In this way we obtain a winning strategy on (G,H) for b knc cops. This winning
strategy is monotone if the winning strategy on (G×n,H ·n) is monotone: R1 ⊇ R2

implies R′
1 = π+(R1) ⊇ π+(R2) = R′

2. �

We conject that cH·n-hw(G× n) = n ·
(

cH - hw(G)
)

holds as well, but as we do
not need this statement, we did not try to prove it.

Corollary 3.2.6 Let (G,H) be the hypergraph pair from Remark 3.2.3 and let n >
0 be an integer. Then

1. cH·n-cw(G× n) = n, and

2. cH·n-ghw(G× n) = 2n.

3.2.2 Implementable hypergraph pairs

Definition 3.2.7 We say that a hypergraph pair (G,H) is trivial, if H ⊆ G.

Theorem 3.2.8 Let (G,H) be a trivial hypergraph pair. Then (G,H) can be im-
plemented by a hypergraph J(G,H), i. e. there is a hypergraph J(G,H) such that

1. cH - cw(G) = cJ(G,H)
- cw(J(G,H)),



3.2. THE RELATION OF CH -CW AND CH -GHW 63

2

G =
a b c d

1

J(G,H) =

H =

d

3

c dba

a b c

Figure 3.6: A trivial hypergraph pair (G,H) with its implementation J(G,H) as a
hypergraph. (In addition to the edges shown in the figure, in each of the three
hypergraphs shown there is a singleton edge for each of the four vertices a, b, c, d.)
Here the robber edge {b, c} is implemented by three parallel paths of length two,
because two cops can win monotonely on (G,H).

2. cH - ghw(G) = cJ(G,H)
- ghw(J(G,H)),

3. cH - hw(G) = cJ(G,H)
- hw(J(G,H)).

Proof. In a first step, we assume that {{v} | v ∈ V (G)} ⊆ E(H). Let n > cH -
hw(G). Define the hypergraph J(G,H) as follows.

Hypergraph J(G,H)

vertices: v, where v ∈ V (G)
(e, 1), . . . , (e, n), where e ∈ E(G) \ E(H)

edges: h, where h ∈ E(H)
{v, (e, i)}, where v ∈ V (G), e ∈ E(G) \ E(H), 1 ≤ i ≤ n, and v ∈ e

Intuitively, we have implemented a ‘robber edge’ {u, v} ∈ E(G) \ E(H) (i. e.
an edge which the cops cannot use) in J(G,H) by so many parallel paths of length
two between u and v, that the cops cannot catch the robber on the parallel paths
without first covering u and v. For a simple example see Figure 3.6.

1: We first show that cH - cw(G) ≥ cJ(G,H)
- cw(J(G,H)). Suppose that k cops

can win on G. For winning on J(G,H), as long as the robber’s escape space R con-
tains a vertex of V (G), the cops play according to their winning strategy on G. If
R ∩ V (G) = ∅, then R = {(e, i)} for some (e, i) ∈ V (J(G,H)). Then the robber can
be caught by one cop in the next step.
For cH - cw(G) ≤ cJ(G,H)

- cw(J(G,H)), assume that k cops have a winning strategy

on J(G,H). Note that since we assume that
{

{v} | v ∈ V (G)
}

⊆ E(H), the hy-
pergraph H is an induced subhypergraph of J(G,H). The cops can win on G by
playing according to the ‘induced’ strategy. They win because for chasing the rob-
ber through an implementation in J(G,H) of a cop edge {u, v} ∈ E(G) \E(H), they
have to cover both u and v. In this way they can also chase the robber through the
robber edge {u, v}.

For showing 2, we can equivalently show that

(cH)mon- cwmon(G) = cmon
J(G,H)

- cwmon(J(G,H)).

This is done similarly to the proof of 1. Note that monotonicity is maintained. 3 is
proved like 2.

In a second step, if the hypergraphH does not satisfy
{

{v} | v ∈ V (G)
}

⊆ E(H),
then we can define a hypergraph pair (G′, H ′) by replacing, for an integer N > cH -
hw(G), each vertex v ∈ V (G) by an N -clique Kv, as follows.



64 CHAPTER 3. HYPERGRAPHS

Hypergraph pair (G′, H ′)
vertices: v′, where v′ ∈ V (Kv), v ∈ V (G)
edges of G′:

⋃

v∈e V (Kv), where e ∈ E(H)
{v′}, where v′ ∈ V (Kv) for some v ∈ V (G)
{u′, v′}, where u′ ∈ V (Ku), v

′ ∈ V (Kv) for some {u, v} ∈ E(G)
edges of H ′:

⋃

v∈e V (Kv), where e ∈ E(H)
{v′}, where v′ ∈ V (Kv) for some v ∈ V (G)

Then (G′, H ′) is again trivial, and we have

1. cH - cw(G) = cH′ - cw(G′) = cJ(G′,H′)
- cw(J(G′,H′)),

2. cH - ghw(G) = cH′ - ghw(G′) = cJ(G′,H′)
- ghw(J(G′,H′)),

3. cH - hw(G) = cH′ - hw(G′) = cJ(G′,H′)
- hw(J(G′,H′)).

Intuitively, this follows from the fact that the singleton edges in H ′ cannot help the
cops to win, because they do not interrupt any connections. �

It seems plausible that for trivial hypergraph pairs, equalities similar to those
of Theorem 3.2.8 hold for the other invariants discussed in Section 2.4.

Corollary 3.2.9 Let (G,H) be a trivial hypergraph pair. Then

cH - cw(G) ≤ cH - ghw(G) ≤ cH - cwmon(G) = cH -hw(G) ≤ 3 · cH -hw(G) + 1.

Proof. By [AGG05] this is true for the implementing hypergraph J(G,H) of (G,H),
and thus by Theorem 3.2.8 for (G,H) as well. �

3.2.3 Hypergraphs

[Ad04] contains an example of a graph G satisfying

cG - cw(G) = 4 and cG - ghw(G) = 5.

We now show that we can modifyG to obtain a hypergraphG′ with cG′-cw(G′) = 4n
and cG′ -ghw(G′) = 5n.

Remark 3.2.10 If (G,H) is a trivial hypergraph pair, then (G × n,H · n) is also
trivial. �

Corollary 3.2.11 Let n ≥ 0 be an integer. There is a hypergraph G′ satisfying

1. cG′ - cw(G′) = 4n, and

2. cG′ - ghw(G′) = 5n.

Proof. Apply Remark 3.2.10 and Theorem 3.2.8 to the graph G from [Ad04] satis-
fying cG-cw(G) = 4 and cG-ghw(G) = 5. �

3.3 The relation of cH-ghw and cH-hw

Recall that by Fact 3.1.9, cH -ghw and cH -hw are linearly coherent on hypergraphs.
With this, in this section we will see:

• cH -ghw and cH -hw for hypergraphs are linearly coherent, but not strongly
coherent invariants.

• The invariants cH -ghw and cH -hw for hypergraph pairs are not coherent.



3.3. THE RELATION OF CH -GHW AND CH -HW 65

A

2

1

3

45

7

8

A

B

B

a

6

b
B

A

Figure 3.7: The hypergraph H from Proposition 3.3.2. Not shown: Every edge
labelled A actually contains the vertex a as well, and every edge labelled B actually
contains the vertex b as well.

{2, 3, b} ∪ {4, 5, a}

1, 2, 7, 8, a, b

2, 6, 7, a, b

2, 5, 6, a, b

2, 3, 4, 5, a, b

{1, 2, a} ∪ {7, 8, b}

{2, 3, b} ∪ {6, 7, a}

{1, 2, a} ∪ {5, 6, b}

Figure 3.8: A width 2 generalised hypertree decomposition for the hypergraph H
from Proposition 3.3.2.

3.3.1 Hypergraphs

In [Ad04, Theorem 4.1] (see also [Ad02]) it was shown that for every n < ω there is a
finite hypergraph H such that cH - hw(H) = cH - ghw(H)+n. In fact it is not hard
to check that the hypergraphs constructed in the proof satisfy cH -cw(H) = cH -
ghw(H).

Fact 3.3.1 For every integer n ≥ 1 there is a finite hypergraph H such that

cH-hw(H) = cH- ghw(H) + n.

In this section we give a simple example H with

cH - ghw(H) = 2 and cH - hw(H) = 3.

Proposition 3.4.2 below shows that 2 is in fact the minimal value of cH -ghw(H) for
any such example. Moreover, we will use this example to prove a stronger version
of the above fact.

Proposition 3.3.2 Consider the following hypergraph H (cf. Figure 3.7).

Hypergraph H
vertices: 1, 2, 3, 4, 5, 6, 7, 8, a, b
edges: {1, 8}, {3, 4}

{1, 2, a}, {4, 5, a}, {6, 7, a}
{2, 3, b}, {5, 6, b}, {7, 8, b}



66 CHAPTER 3. HYPERGRAPHS

{2, 3, b} ∪ {4, 5, a}

1, 2, 7, 8, a, b

2, 3, 4, 5, a, b

2, 3, 6, 7, a, b

2, 3, 5, 6, a, b

{1, 2, a} ∪ {7, 8, b}

{2, 3, b} ∪ {6, 7, a}

{1, 2, a} ∪ {5, 6, b} ∪ {2, 3, b}

Figure 3.9: A width 3 hypertree decomposition for the hypergraph H from Propo-
sition 3.3.2.

This hypergraph satisfies cH-ghw(H) = 2 and cH-hw(H) = 3.

Proof. Figure 3.8 shows a width 2 generalised hypertree decomposition of H . (Note
that the second node does not satisfy condition 3 of a hypertree decomposition.)
With this it is easy to see that cH -ghw(H) = 2. Figure 3.9 shows a width 3 hypertree
decomposition of H . Thus it remains to show that cH -hw(H) ≥ 3. For the proof
we use the game theoretic characerisation of f -hw, Theorem 2.2.12, and Lemmas
3.3.3 and 3.3.4 below. �

We writeA =
{

{1, 2, a}, {4, 5, a}, {6, 7, a}
}

andB =
{

{2, 3, b}, {5, 6, b}, {7, 8, b}
}

for the subsets of E(H) consisting of those edges containing a or b, respectively.
Without restriction the cops always occupy an A edge and a B edge. More pre-
cisely:

Lemma 3.3.3 Let
⋃

M , where M ⊆ E(H) and |M | ≤ 2, be the position of the
cops, let A and B be as above, and suppose the cops move to position

⋃

M ′, where
M ′ ⊆ E(H) and |M ′| ≤ 2.

• If (M ∩ A = ∅ or M ∩ B = ∅) and (M ′ ∩ A = ∅ or M ′ ∩ B = ∅), then the
robber can stay safely on {a, b}.

• If (M ∩ A = ∅ or M ∩ B = ∅) and M ′ ∩ A 6= ∅ and M ′ ∩ B 6= ∅, then the
robber can reach every vertex of H \

⋃

M ′, so the cops could just as well have
started the game on

⋃

M ′.

• If M ∩ A 6= ∅ and M ∩ B 6= ∅ and (M ′ ∩ A = ∅ or M ′ ∩ B = ∅), then the
robber can reach a or b and thus the robber wins (because the cops have made
an illegal move).

Lemma 3.3.4 There is no winning strategy for the cops in RCmon(H, cH , 2).

Proof. By Lemma 3.3.3 we may assume that the cops always occupy an A edge and
a B edge. In the 1st move, the cops choose M ⊆ E.

• If M =
{

{1, 2, a}, {2, 3, b}
}

then the robber stays safely in {5, 6, 7, 8}, because
the cops can only make monotone moves.

• If M ⊆
{

{4, 5, a}, {5, 6, b}, {6, 7, a}, {7, 8, b}
}

then the robber stays safely in
{1, 2, 3}, because the cops can only make monotone moves.

• If M ∩
{

{1, 2, a}, {2, 3, b}
}

6= ∅ and

M ∩
{

{4, 5, a}, {5, 6, b}, {6, 7, a}, {7, 8, b}
}

6= ∅



3.3. THE RELATION OF CH -GHW AND CH -HW 67

and (w. l. o. g.) {1, 2, a} ∈M , then {5, 6, b} ∈M or {7, 8, b} ∈M .
- If {5, 6, b} ∈M the robber stays safely in {7, 8}.
- If {7, 8, b} ∈M the robber stays safely in {4, 5}.

Thus the robber can escape. �

3.3.2 Ultramonotonicity

In this section all graphs and hypergraphs are finite. We define a new variant of
the robber and cops game on G, the ultramonotone robber and cops game on G.

Definition 3.3.5 Let G be a graph, let f be a width function on G, and k ∈ R.
The ultramonotone robber and cops game on G, RCultra(G, f, k), is played like
RC(G, f, k), with the only difference that once a cop is placed on a vertex of G, he
cannot be removed again. A winning strategy for the cops in the ultramonotone
robber and cops game is defined as in the robber and cops game. In other words:
plays (X0, r0, X1, . . .) must satisfy X0 ⊆ X1 ⊆ X2 ⊆ . . . in addition to (R1), (R2)
and (C1) ((C2) easily follows from this condition).

Definition 3.3.6 The ultramonotone cop-width of a graph G, f -cwultra(G), is the
least number of cops that have a winning strategy in the ultramonotone robber and
cops game on G. (Recall that we consider the finite case only).

Remark 3.3.7 For any width function f on a graph G we have

f - cwmon(G) ≤ f - cwultra(G).
�

Now we show that for a hypergraph pair (G,H) and the width function cH , the
ultramonotone Robber and Cops Game can be simulated by the monotone robber
and cops game in the following sense: We modify (G,H) in such a way, that once a
cop has occupied a vertex he cannot release it during the rest of the game without
violating monotonicity. Towards this aim, we first show how to implement for given
vertices w, x ∈ V (G) the requirement that once a cop occupies a vertex x it cannot
be released as long as w is in the robber’s escape space.

Definition 3.3.8 Let G be a graph, let f be a width function on G, let k ∈ R, and
fix w, x ∈ V (G).

• We call x the watched vertex and w the watch vertex. The watch game
on G, Copswatch(w,x)(G, f, k), is played like RCmon(G, f, k), with the only
difference that as long as the watch vertex w is in the robber’s escape space,
a cop having occupied the watched vertex x is not allowed to release x. (The
robber ‘watches’ the cops’ activities on x.)

• The f -watch-width of G is

f -watchcw(w,x)(G) = inf{k ∈ R | the cops have a winning

strategy in the watch game on G of f -width k}.

Remark 3.3.9 Let f be a width function on the graph G and let w, x ∈ V (G).
Then

f - cwmon(G) ≤ f -watchcw(w,x)(G) ≤ f - cwultra(G).



68 CHAPTER 3. HYPERGRAPHS

v3

G = H =

G(1,5) =

2 3 4 5

4

51

2

3

4

1

1

3

5

2

H(1,5) =

v1

v2

v3

v1

v2

Figure 3.10: A hypergraph pair (G,H) with G = H and the corresponding hyper-
graph pair (G(1,5), H(1,5)) below.

The proof is immediate from the definitions. �

Now we construct the implementation of the watch game for a hypergraph pair
(G,H) (see Theorem 3.3.13 for the precise meaning of this intuition).

Definition 3.3.10 Let (G,H) be a hypergraph pair, w, x ∈ V (G), and let

n = cH - cwultra(G) + 1.

The hypergraph pair (G(w,x), H(w,x)) is defined as follows.

Hypergraph pair (G(w,x), H(w,x))
vertices: v, where v ∈ V (G)

v1, . . . , vn (new vertices)
edges of G(w,x): e, where e ∈ E(G)

{w, v1}, . . . , {w, vn}
edges of H(w,x): h, where h ∈ E(H) and x 6∈ h

h ∪ {v1, . . . , vn}, where h ∈ E(H) and x ∈ h
h ∪ {v1}, . . . , h ∪ {vn}, where h ∈ E(H) and w ∈ h

Note that (G,H) is an induced subhypergraph pair of (G(w,x), H(w,x)).



3.3. THE RELATION OF CH -GHW AND CH -HW 69

Example 3.3.11 Consider the following hypergraph pair (G,H) with G = H (cf.
Figure 3.10).

Hypergraph pair (G,H)
vertices: 1, 2, 3, 4, 5
edges of G: {1, 2}, {2, 3}, {3, 4}, {4, 5}
edges of H : {1, 2}, {2, 3}, {3, 4}, {4, 5}

Obviously, 3 = cH - cwultra(G)+1. Then for w := 1 and x := 5, we get the following
hypergraph pair (G(w,x), H(w,x)) = (G(1,5), H(1,5))

Hypergraph pair (G(1,5), H(1,5))
vertices: 1, 2, 3, 4, 5

v1, v2, v3
edges of G(1,5): {1, 2}, {2, 3}, {3, 4}, {4, 5}

{1, v1}, {1, v2}, {1, v3}
edges of H(1,5): {1, 2}, {2, 3}, {3, 4}

{4, 5, v1, v2, v3}
{1, 2, v1}, {1, 2, v2}, {1, 2, v3}

Lemma 3.3.12 (Extension by pins) Let (G,H) be a subhypergraph pair of (G′, H ′).
Assume that G and G′ are graphs. Let G be an induced subgraph of G′ and H and
induced subhypergraph of H ′. Suppose V (G′) = V (G)∪̇P . In addition we require

(a) For each vertex p ∈ P there is one and only one vertex vp ∈ V (G) such that
{p, vp} ∈ E(G′),

(b) {p, vp} is the only edge of G′ containing p, and

(c) For each p ∈ P there is a hyperedge ep ∈ E(H ′) such that {p, vp} ⊆ ep.

Then

1. cH-cw(G) ≥ cH′-cw(G′), and

2. cH-ghw(G) ≥ cH′-ghw(G′).

Intuitively, Conditions (a) and (b) express that G′ is G with some pins stuck into
its vertices.

Proof. For the first part, choose a map ι : E(H) → E(H ′) satisfying e ⊆ ι(e) for all
e ∈ E(H). Suppose the cops have a winning strategy for RC(G, cH , k). Then they
can win RC(G′, cH′ , k) as follows:

As long as the robber’s escape space contains a vertex v ∈ V (G), the cops move
essentially according to their winning strategy for RC(G, cH , k). I. e. if according
to their original winning strategy they should move to a set X , then X =

⋃

Y for
a set Y ⊆ E(H) of at most k hyperedges of H , and the cops occupy

⋃

ι(Y ) for one
such set Y .

If the robber’s escape space does not contain any vertex v ∈ V (G), then it
consists of one single vertex p ∈ P because of (b). Then the robber is caught by
one cop moving to ep, which is possible by (c).

For the second statement, we use Proposition 2.1.21 relating fmon-hw and f -
ghw and the game theoretic characterisation of fmon-hw in Theorem 2.2.12. It is
sufficient to show that

(cH)mon- cwmon(G) ≥ (cH′ )mon- cwmon(G
′).

Suppose the cops have a winning strategy for RCmon(G, (cH)mon, k). Then a win-
ning strategy for RCmon(G

′, (cH′)mon, k) is as follows: As long as the robber’s escape



70 CHAPTER 3. HYPERGRAPHS

space contains a vertex v ∈ V (G), the cops move according to their winning strat-
egy for RCmon(G, (cH)mon, k). It is easy to see that such a move remains monotone.
If the robber’s escape space does not contain any vertex v ∈ V (G), then because of
(a) it consists of one single vertex p ∈ P . There the robber is caught by the cops
moving to ep. �

Note that (G,H) and (G(w,x), H(w,x)) always satisfy the assumptions of Lemma
3.3.12.

Theorem 3.3.13 For every hypergraph pair (G,H), with w, x ∈ V (G), the hyper-
graph pair (G(w,x), H(w,x)) satisfies

1. cH-cw(G) = cH(w,x) -cw(G(w,x)),

2. cH-ghw(G) = cH(w,x) -ghw(G(w,x)), and

3. cH-watchcw(w,x)(G) = cH(w,x) -cwmon(G(w,x)).

Proof. Since G is a subgraph of G(w,x), with Remark 2.1.14 and Lemma 3.3.12 it is
easy to see that the first and the second equality hold. For the third equality, we
first show that

cH - watchcw(w,x)(G) ≤ cH(w,x) - cwmon(G
(w,x)).

Suppose the cops have a winning strategy for RCmon(G
(w,x), cH(w,x) , k). Then a

winning strategy for Copswatch(w,x)(G, cH , k) is obtained as follows: The cops play

on G as if they were playing on G(w,x), using a covering hyperedge h∩V (G) ∈ E(H)
if the hyperedge h ∈ E(H(w,x)) was used in the original game. Thus the width does
not increase. Suppose that the robber’s escape space still contains the watch vertex
w and that there is a cop on the watched vertex x. Since any covering hyperedge
of x covers {vi | i ∈ [n]}, the cops stand on the vi as well. But each vi is a
neighbour of w, and by the choice of n, any cover of {vi | i ∈ [n]} in H(w,x) of
at most k hyperegdes covers x as well. Thus the cops cannot leave x before they
go to w without violating monotonicity. Hence we obtain a winning strategy for
Copswatch(w,x)(G, cH , k).

Now we show that

cH - watchcw(w,x)(G) ≥ cH(w,x) - cwmon(G
(w,x)).

Suppose that the cops have a winning strategy for Copswatch(w,x)(G, cH , k).

With n = cH - cwultra(G) + 1 = |V (G(w,x)) \ V (G)|, consider the following map
ε : E(H) → E(H(w,x)) .

ε(e) :=

{

e ∪ {vi | i < n}, x ∈ e and

e otherwise.

The cops can win as follows: As long as the robber’s escape space contains a
vertex of V (G), the cops move according to their winning strategy for the game
Copswatch(w,x)(G, cH , k), where a cover uses the hyperedge ε(h) ∈ E(H(w,x)) if
in the original game the hyperedge h ∈ E(H) was used. If the robber’s escape
space does not contain any vertex of V (G), then it consists of one single vertex
vi ∈ V (G(w,x))\V (G). Then the robber is caught by the cops moving from an edge
h that covers the (unique) neighbour of vi to the edge h ∪ {vi}. �

In analogy to the definition of (G(w,x), H(w,x)), we can define the hypergraph
pair (G(w,xx′), H(w,xx′)) for w, x, x′ ∈ V (G), with the result that in the game
RCmon(G

(w,xx′), cH(w,xx′) , k), both vertices x and x′ can be watched from w. We
can even implement the requirement that every vertex of G can be watched from
every other vertex of G:



3.3. THE RELATION OF CH -GHW AND CH -HW 71

Definition 3.3.14 Let (G,H) be a hypergraph pair. Let n > cH - cwultra(G). We
define a hypergraph pair (GI , HI) as follows.

Hypergraph pair (GI , HI)
vertices: v, where v ∈ V (G)

(v, v′, 1), . . . , (v, v′, n), where v, v′ ∈ V (G) (new vertices)
edges of GI : e, where e ∈ E(G)

{w, (w, x, 1)}, . . . , {w, (w, x, n)}, where w, x ∈ V (G)
edges of HI : h ∪

(

V (G)×h×{1, . . . , n}
)

∪ {(w, x, i)},
where h ∈ E(H), w, x ∈ V (G) and 1 ≤ i ≤ n

Theorem 3.3.15 Let (G,H) be a hypergraph pair and n > cH - cwultra(G). Let
(GI , HI) be as above. Then

1. cH - cw(G) = cHI - cw(GI),

2. cH - ghw(G) = cHI - ghw(GI), and

3. cH - cwultra(G) = cHI - cwmon(G
I).

Proof. The proof is analogous to the proof of Theorem 3.3.13. �

3.3.3 Hypergraph pairs

Proposition 3.3.16 Let k < ω be an integer and let Gk be the path on 2k − 1
vertices.

Graph Gk
vertices: 1, 2, . . . , 2k − 1
edges: {1, 2}, {2, 3}, . . .{2k − 2, 2k − 1}

Then

1. cGk -cw(Gk) = cGk-cwmon(Gk) = 1, and

2. cGk -cwultra(Gk) = k.

Proof. Obviously cGk -cw(Gk) = cGk -cwmon(Gk) = 1. First we show by induction
that the cops have a winning strategy for RCultra(Gk, cGk , k): For k = 1 this is true.
Now suppose that the cops have a winning strategy for RCultra(Gk, cGk , k). Then
the cops can win RCultra(Gk+1, cGk+1

, k + 1) by partitioning the path as follows:
The cops occupy the edge {2k, 2k + 1} dividing the graph into two intervals. Note
that cGk({2

k, 2k+1}) = 1. Since each of the remaining intervals has at most 2k− 1
vertices, for each such interval there is a width k winning strategy by the induction
hypothesis.

Now it remains to show that the cops have no winning strategy for the game
RCultra(Gk+1, cGk+1

, k): For k = 0 this is true. Now suppose that the cops have
no winning strategy for the game RCultra(Gk, cGk , k − 1). Then the cops have no
winning strategy for RCultra(Gk+1, cGk+1

, k), because for all subsets X ⊆ V (Gk+1)
with cGk+1

(X) ≤ 1 the graphGk+1\X contains a path on at least 2k−1 vertices. By
the induction hypothesis, the cops do not have a ultramonotone winning strategy
of width k − 1 on such a path. �

Corollary 3.3.17 Let Gk = Hk be the path on 2k − 1 vertices. Then

1. cHI
k
- cw(GIk) = 1,

2. cHI
k
- ghw(GIk) = 1, and



72 CHAPTER 3. HYPERGRAPHS

3. cHI
k
- cwmon(GIk) = k.

Proof. By Proposition 3.3.16 we have

1 = cHk - cw(Gk) ≤ cHk - ghw(Gk) ≤ cHk - cwmon(Gk) = 1,

and cHk - cwultra(Gk) = k. Applying Theorem 3.3.13 we obtain

cHI
k

- cw(GIk) = cHI
k

- ghw(GIk) = 1,

and cHI
k

- cwmon(G
I
k) = k. �

Thus we have shown:

Theorem 3.3.18 For every integer k ≥ 1 there is a hypergraph pair (Gk, Hk) with
cHk -ghw(Gk) = 1 and cHk-hw(Gk) = k. �

3.4 The hypergraph sandwich problem

The Hypergraph Sandwich Problem was defined by A. Lustig and O. Shmueli in
[LS99]. Proposition 3.4.8 below shows that it is equivalent to deciding for fixed
k < ω whether a given hypergraph pair (G,H) satisfies cH -ghw(G) ≤ k. It is not
known whether this problem is solvable in polynomial time. Corollary 3.4.9 shows
that it can be approximated in polynomial time when we restrict it to hypergraphs
(instead of hypergraph pairs) as input, and Corollary 3.4.10 shows that we can solve
it in polynomial time for hypergraph pairs (G,H) where the edge sizes of H are
bounded.

3.4.1 Acyclicity

We start with some equivalent formulations of acyclicity. Recall that by Theo-
rem 2.1.5, for a finite hypergraph pair (G,H) there is always a finite generalised
hypertree decomposition (T,B,C) satisfying cH - width(T,B,C) = cH - ghw(G).

Remark 3.4.1 Let (G,H) be a finite hypergraph. If G has a generalised hypertree
decomposition of cH-width k ∈ ω, then G also has a generalised hypertree decompo-
sition (T,B,C) of cH-width k, such that (T,B) is small.

Proof. Let (T ′, B′, C′) be a generalised hypertree decomposition for the finite hyper-
graph pair (G,H) with finite T ′ satisfying cH -width(T ′, B′, C′) = k = cH - ghw(G).
We may assume that T ′ is finite. If {s, t} ∈ E(T ′) with B′

s ⊆ B′
t, remove s, B′

s and
C′
s from (T ′, B′, C′) and connect each neighbour t′ 6= t of s by an edge to t. It is easy

to see that thus we obtain a new generalised hypertree decomposition (T ′′, B′′, C′′)
of cH -width k for G. Since T ′ was finite, we can repeat this procedure finitely often
until we obtain a generalised hypertree decomposition (T,B,C) of cH -width k for
(G,H) s. t. (T,B) is small. �

Note that this is not true for infinite hypergraph pairs: Let H = (ω,P<ω(ω)).
Then cH -hw(H) = 1 (take a one way infinite path with an increasing sequence
of pieces Bt = Ct), but H has no small cH -hypertree decomposition of width 1:
Each cH -hypertree decomposition (T,B,C) of H of width 1 satisfies |Bt| < ω for
all t ∈ T . Therefore, for each Bt there is an edge e ∈ E(H) s. t. Bt $ e and e is
covered by some t′ ∈ T .

Recall that a hypergraph H is acyclic if its hyperedges can be arranged as nodes
of a tree T so that for every vertex v ∈ V (H), the subgraph of T defined by the
nodes containing v is connected.



3.4. THE HYPERGRAPH SANDWICH PROBLEM 73

Proposition 3.4.2 Let H be a finite tame hypergraph. Equivalent are:

1. cH-ghw(H) ≤ 1.

2. cH-hw(H) ≤ 1.

3. H is acyclic.

It is easy to see that 3 implies 2, and that 2 implies 1.
1 ⇒ 3: Let (T,B,C) be a generalised hypertree decomposition of H = (V,E) of

cH -width at most 1. By Remark 3.4.1 we may assume that (T,B) is small. Then
Bt = Ct for all t ∈ T . (Otherwise Bt $ Ct and Ct = e for some e ∈ E. But there
must be a node s ∈ T such that e ⊆ Bs. Hence Bt $ Bs, in contradiction to (T,B)
being small.) We may assume that t = Bt for every t ∈ T . Now we can extend T
to a tree T ′ with V (T ′) = E and such that each e ∈ E \ V (T ) is attached to some
t ∈ T with e ∈ t = Bt. �

(One could ask which other invariants can be added to this proposition. The
3-clique K3, although not acyclic, has cK3 - link(K3) = cK3 - branch-width(K3) = 1.
The question whether cH - bramble-no(H) ≤ 1, or at least cH - cw(H) ≤ 1, implies
acyclicity is left open.)

Section 4.5 contains another equivalent characterisation.

3.4.2 Hypergraph pairs and the HSP

In this section all hypergraphs are finite.

Definition 3.4.3 Let (G,H) be a hypergraph pair. G is a projection of H, denoted
by G ≤ H, if for every hyperedge e ∈ E(G) there exists a hyperedge e′ ∈ E(H) such
that e ⊆ e′.

For example, H ≤ H for every hypergraph H .

Remark 3.4.4 If the hypergraph pair (G,H) satisfies G ≤ H, then E(G) ⊆ E(H).
If G is a graph, then the converse is also true.

In the case that G is a graph, the condition G ≤ H is in a sense dual to triviality
of (G,H). (Moreover, the method for implementing a trivial hypergraph pair by a
hypergraph readily generalises to an implementation of arbitrary hypergraph pairs
(G,H) by a hypergraph pair (G′, H ′) such that G′ ≤ H ′. But we will not use this.)
Hypergraphs of this form feature in the Hypergraph Sandwich Problem [LS99]:

HSP

Input: A hypergraph pair (G,H)
Question: Is there an acyclic hypergraph A such that G ≤ A ≤ H?

Intuitively, G ≤ A ≤ H means that A is ‘sandwiched’ between G and H . This
problem clearly is in NP. It is not known whether it is in P.

Lemma 3.4.5 Let (G,H) be a hypergraph pair. Equivalent are:

1. There is an acyclic hypergraph A such that G ≤ A ≤ H.

2. cH-ghw(G) ≤ 1.



74 CHAPTER 3. HYPERGRAPHS

Proof. Let A be acyclic with G ≤ A ≤ H . By the obvious part of Proposition 3.4.2
(which holds even in the infinite case), A has a generalised hypertree decomposition
(T,B,C) of width ≤ 1. For every t ∈ T we set C′

t := e′ where Ct = e and
e ⊆ e′ ∈ E(H). Thus we obtain a generalised hypertree decomposition (T,B,C′)
of (G,H) of width ≤ 1.

Conversely, let (T,B,C) be a generalised hypertree decomposition of (G,H) of
width ≤ 1. We may assume that Bt 6= ∅ for all t ∈ T . Define a hypergraph A with
V (A) = V (G) and E(A) = {Bt | t ∈ T }. It is easy to see that A is acyclic. Since
every edge e ∈ E(G) is covered by some Bt we have G ≤ A. On the other hand,
by condition 2 of the definition of a hypertree decomposition of (G,H), all t ∈ T
satisfy Bt ⊆ Ct = e′ for some e′ ∈ E(H). Hence A ≤ H . �

Since the equivalence of Lemma 3.4.5 is actually a polynomial time equivalence,
we can reformulate the hypergraph sandwich problem as follows:

GHW1(PAIR)

Input: A hypergraph pair (G,H)
Question: Is cH -ghw(G) ≤ 1?

In Lemma 3.4.7 we will see that we can even reformulate the hypergraph sandwich
problem as the problem of deciding whether cH -ghw(G) ≤ k for a fixed integer
k > 0:

GHWk(PAIR)

Input: A hypergraph pair (G,H)
Question: Is cH -ghw(G) ≤ k?

Definition 3.4.6 For a hypergraph H and k < ω, we define the following hyper-
graph H≤k.

Hypergraph H≤k

vertex set: V (H)
edges: e1 ∪ . . . ∪ ek, where e1, . . . , ek ∈ E(H)

Note that for fixed k and input H , we can compute H≤k in polynomial time.

Lemma 3.4.7 Let H be a hypergraph. Then:

1. cH-ghw(H) ≤ k if and only if cH≤k -ghw(H) ≤ 1.

2. cH-hw(H) ≤ k if and only if cH≤k -hw(H) ≤ 1.

Proof. It is easy to see that (T,B,C) is a (generalised) hypertree decomposition of
cH -width at most k forH if, and only if, it is a (generalised) hypertree decomposition
of cH≤k -width at most 1 for H . �

Let GHWk denote that restriction of GHWk(PAIR) to hypergraphs (H,H) as
inputs. It is an open problem (stated in [GLS01b]), whether for fixed k, the problem
GHWk is in P.4

4A recent result is that computing hypertree decompositions is fixed-parameter intractable (see
[DF99] for the definitions of the parametrised complexity classes and the corresponding notion of
reduction): In [GGMSS05] the authors proved that the problem of deciding whether a hypergraph
H satisfies cH -hw(H) ≤ k, where k is part of the input, is NP complete and W[2]-hard with
respect to parameter k. The same holds for cH -ghw(H).



3.4. THE HYPERGRAPH SANDWICH PROBLEM 75

Proposition 3.4.8 Let (G,H) be a hypergraph pair. Equivalent are:

1. HSP ∈ P,

2. GHW1(PAIR) ∈ P,

3. GHWk(PAIR) ∈ P.

Furthermore, 3. implies GHWk ∈ P.

Proof. Use Lemmas 3.4.5 and 3.4.7. �

The rest of this section presents two corollaries. The first is that GHWk can be
approximated in polynomial time, and the second is that GHWk(PAIR) is decidable
in polynomial time for input hypergraph pairs G,H where H is bounded.

From a theoretic point of view, f -ghw is better behaved than f -hw: It has a
simple definition and if f has finite character, it has a compactness property, which
cH -hw does not have (see Chapter 4).

Corollary 3.4.9 For a fixed integer k and input a hypergraph H, there is a poly-
nomial time algorithm that correctly returns

1. cH-ghw(H) > k, or

2. cH-ghw(H) ≤ 3k + 1 together with a generalised hypertree decomposition of
cH-width ≤ 3k + 1, otherwise.

Proof. We can check in polynomial time, whether cH -hw(H) ≤ 3k+1. If the answer
is no, then, by Fact 3.1.9, cH -ghw(H) > k and we are in the first case. If the answer
is yes, we obtain a hypertree decomposition (see [GLS02]) of cH -width ≤ 3 · k + 1
for H , which obviously also is a generalised hypertree decomposition of cH -width
≤ 3k + 1 for H and we are in the second case. �

By Theorem 3.3.18, this algorithm does not work if we admit hypergraph pairs
as input.

If the size of the hyperedges ofH of the input hypergraph pair (G,H) is bounded,
we can actually decide whether cH -ghw(G) ≤ k for fixed k.

Corollary 3.4.10 Fix integers k, κ > 0. For input (G,H) whith H bounded by κ,
there is a polynomial algorithm deciding whether cH-ghw(G) ≤ k.

Proof. Given a hypergraph pair (G,H), we can compute ΣH in time O(nκ) where
n = |(G,H)|. Then by Theorem 2.3.16 we can decide in polynomial time whether
cΣH -hw(G) ≤ k. �



Chapter 4

Compactness

Tree-width is known to be compact in the sense that

tw(G) = sup
{

tw(G0)
∣

∣ G0 ⊆ G, and G0 is finite
}

.

This was first proved by R. Thomas in [Th]. Here we generalise C. Thomassen’s
short and elegant proof [Thsen89] of this fact to f -ghw. This is where we will need
the characterisation of chordal graphs from Section 1.2. Not surprisingly, we need
a condition on f for this to work.

Section 4.1 contains a characterisation of f -ghw(G) in terms of triangulations
of G with ‘small’ complete subgraphs, that generalises R. Halin’s characterisation
(Corollary 1.2.8).

This characterisation is used in Section 4.2 for the proof of the Compactness
Theorem1 4.2.1. As a corollary we get the extension of a result from [ST93] to
infinite graphs G: The cops have a winning strategy for RC(G, card, k) if, and only
if, they have a winning strategy for RCmon(G, card, k).

In Section 4.3 we show that for a large class of hypergraphs H the invariant
cH - ghw(H) has the compactness property. In Section 4.4 we show that there is
an infinite hypergraph H with edge size at most 3 such that cH -hw(H) = 4, but
cH0 -hw(H0) ≤ 3 for all finite induced subhypergraphs H0 of H . Thus cH - hw(H)
is not compact.

As an application of the Compactness Theorem 4.2.1, in Section 4.5 another
characterisation of f -ghw(G) is presented. For finite graphs and f = card, this char-
acterisation is the k-decomposability as defined by S. Arnborg and A. Proskurowski
in [AP86].

4.1 Triangulations

Definition 4.1.1 Let G be a graph. A monotone width function f on G has finite
character if for all infinite X ⊆ V (G) and for all k ∈ R there is a finite subset
X0 ⊆ X such that f(X0) > k.

More generally, a width function f on G (not necessarily monotone) has finite
character if fmon has finite character, i. e., if for all infinite X ⊆ V (G) and for
all k ∈ R there is a finite subset X0 ⊆ X such that f(X ′

0) > k for all finite X ′
0

satisfying X0 ⊆ X ′
0 ⊆ V (G).

Example 4.1.2
1. The width function card has finite character.

1In [Ad05a] the Compactness Theorem is proved for the special case of the width function
f = cH . The paper also conatins the examples from Sections 4.4.

76



4.2. COMPACTNESS OF F -GHW 77

2. Let c ∈ R, c > 0, and let f be a width function on G such that all finite subsets
X0 ⊆ V (G) satisfy f(X0) ≥ c · |X0|. Then f has finite character.

Proof. 1: Obvious. 2: Let X ⊆ V (G) be an infinite subset, and let k ∈ R. Choose
X0 ⊆ X with |X0| > k · 1

c . Then f(X0) ≥ c · |X0| > k. �

Theorem 4.1.3 Let G be a graph, let f be a monotone width function on G with
finite character, and let k ∈ R. Then

G has a generalised hypertree decomposition (T,B,C) such that
f -width(T,B,C) ≤ k

⇐⇒
G has a triangulation G′ such that every complete subgraph K of G′ (is finite and)

satisfies f
(

V (K)
)

≤ k.

Proof. ‘⇒’: We may assume that C = B. Define G′ as follows:

Graph G′

vertex set: V (G)
edges: {u, v} ⊆ V (G), where {u, v} ⊆ Bt for a node t ∈ T.

From Fact 1.2.2 and Theorem 1.2.5, 1, it follows that G is chordal.
Now we show that a complete subgraph of G′ cannot be infinite. Otherwise by

finite character there exists a finite complete subgraphK0 ⊆ K with f
(

V (K0)
)

> k.
Proposition 1.1.8 shows that V (K0) ⊆ Bt for some t ∈ T . Thus

k < f
(

V (K0)
)

≤ f(Bt),

a contradiction to f -width(T,B,B) ≤ k.
Thus K is finite, V (K) ⊆ Bt for some t ∈ T (Proposition 1.1.8), and again by

monotonicity, we have f
(

V (K)
)

≤ f(Bt) ≤ k.
‘⇐’: Let G′ be a triangulation of G such that every complete subgraph K ⊆ G′

satisfies f
(

V (K)
)

≤ k. Then G′ is chordal, and using finite character it is easy
to see that G′ contains no infinite clique. Hence, by Theorem 1.2.5, G′ admits a
tree decomposition (T,B) into complete pieces. Since all pieces Bt are complete,
by assumption all t ∈ T satisfy f(Bt) ≤ k. It is easy to see that (T,B,B) is a
generalised hypertree decomposition witnessing f - ghw(G) ≤ k. �

Note that we have used finite character of f in the proofs of both directions.

Corollary 4.1.4 Let G be a chordal graph and let f be a monotone width function
on G with finite character. Then

f -bramble-no(G) = f - ghw(G).

Proof. Using Proposition 2.4.8 and Corollary 2.2.20 we get f - bramble-no(G) ≤
f - ghw(G).

Conversely, if f - ghw(G) > k, then, since G itself is a triangulation of G, by The-
orem 4.1.3 there must be a finite complete subgraphK of G such that f

(

V (K)
)

> k.

Then B =
{

{v} | v ∈ V (K)
}

is a bramble in G with f -order(B) > k. �

4.2 Compactness of f-ghw

We can now prove the main result of this chapter:

Theorem 4.2.1 (Compactness of f-ghw) Let G be a graph, let f be a width
function with finite character on G, and k ∈ R. Then



78 CHAPTER 4. COMPACTNESS

f - ghw(G) ≤ k
⇐⇒

fG0- ghw(G0) ≤ k for all finite subgraphs G0 of G.

Proof. ‘⇒’: This follows from Remark 2.1.14.
‘⇐’: Note that since we may assume f to be monotone (Proposition 2.1.21),

fG0 = f for any subgraph G0 of G (Remark 2.1.17). Suppose now f - ghw(G0) ≤ k
for all finite subgraphs G0 of G. By Theorem 4.1.3 we may equivalently show
that G has a triangulation G′ such that every complete subgraph K of G′ satis-
fies f

(

V (K)
)

≤ k. We prove this using Zorn’s Lemma: Let I be the set of all
supergraphs G′ of G with V (G′) = V (G) that satisfy the following condition.

(∗) Every finite subgraph G0 of G′ has a triangulation G′
0 s. t. every complete sub-

graph K of G′
0 satisfies f

(

V (K)
)

≤ k.

I 6= ∅, since G ∈ I: By assumption, f - ghw(G0) ≤ k for all finite subgraphs G0 of
G. By Theorem 4.1.3, every finite subgraph G0 of G has a triangulation G′

0 such
that every complete subgraph K of G′

0 satisfies f
(

V (K)
)

≤ k. Hence, G ∈ I.
I is ordered inductively by inclusion: For a transfinite sequence (Gα)α<δ in I

with Gα ⊆ Gβ for all α ≤ β,
⋃

α<δ Gα satisfies (∗), since a finite subgraph G0 of
⋃

α<δ Gα is already contained in some Gα0 .
Let G′ ∈ I be a maximal element. The following two claims finish the proof:

Claim (i): Let K be a clique in G′. Then f
(

V (K)
)

≤ k.
Claim (ii): G′ is chordal.
(i): If K is finite, this is true by (∗). K cannot be infinite since f has finite character
and hence there would be a finite K0 ⊆ K with f

(

V (Ko)
)

> k, a contradiction.
(ii): Suppose O = v1, . . . , vm, vm = v1 is an induced cycle of length at least four in
G′. By maximality of G′, we cannot add a chord {vi, vj} to O without producing
a finite subgraph Gij of G′ such that every triangulation G′

ij of Gij contains a

complete subgraph K with f
(

V (K)
)

> k. Let G0 be the subgraph of G′ induced

by
(
⋃

1≤i<j<m V (Gij)
)

∪ O. Then G0 is finite and hence G0 is contained in some
Gα1 . But G0 does not satisfy (∗), a contradiction. �

Corollary 4.2.2 (Compactness of tree-width) Let G be a graph and k < ω.
Then

card - ghw(G) ≤ k
⇐⇒

card - ghw(G0) ≤ k for all finite subgraphs G0 of G.

Proof. (Recall that by Example 2.1.4, tw(G) = card-ghw(G).) The width function
card for G has finite character and thus we can apply Theorem 4.2.1. Since card is
a monotone width function, by Remark 2.1.17 a finite subgraph G0 of G satisfies
cardG0 - ghw(G0) = card - ghw(G0). �

Corollary 4.2.3 Any graph G satisfies

card -bramble-no(G) = card - cw(G) = card - cwmon(G).

Proof. With Proposition 2.4.8 it it follows that

card - bramble-no(G) ≤ card - cw(G) ≤ card - cwmon(G).

Conversely, let card - cwmon(G) > k. Then, using monotonicity of card and
the game theoretic characterisation (Theorem 2.2.12), we have card - ghw(G) =
card - hw(G) = card - cwmon(G) > k. Thus by Compactness of tree-width, there



4.3. COMPACTNESS OF CH -GHW 79

is a finite subgraph G0 ⊆ G satisfying card - ghw(G0) > k. In [ST93], N. Robert-
son and P. D. Seymour proved that this implies the existence of a bramble B in
G0 of card-order(B) > k. Since this bramble also is a bramble in G, we have
card - bramble-no(G) > k. �

4.3 Compactness of cH-ghw

In general, cH -ghw(H) is not compact:

Proposition 4.3.1 The hypergraph H =
(

ℵ1,P<ω(ℵ1)
)

satisfies:

1. cH0-ghw(H0) ≤ 1 for all finite induced subhypergraphs H0 of H,

2. cH-ghw(H) = ∞.

Proof. 1 is obvious. For 2, recall that βt = BTt \ B
pred
t . We show that H does not

have a tree decomposition at all. Suppose towards a contradiction that (T,B) is a
tree decomposition of H . Then

(i) Each t ∈ T has at most one successor s such that βs 6= ∅.

(ii) Such a successor s satisfies Bt ⊆ Bs.

Proof of (i): Otherwise, there are (at least) two successors s and s′ of t with v ∈ βs
and v′ ∈ βs′ . By connectedness, v 6= v′. But the edge {v, v′} ∈ E(H) has to be
covered in some node of T , a contradiction to connectedness.
Proof of (ii): Let s be a successor of t with u ∈ βs. Suppose v ∈ Bt \Bs. Again, the
edge {u, v} has to be covered in some node of T , a contradiction to connectedness.

Together, (i) and (ii) show that V (H) = ℵ1 can be obtained as a countable
union of an increasing sequence of finite subsets Bt of V (H), a contradiction. �

Definition 4.3.2 A hypergraph H is locally bounded, if for all v ∈ V (H) there is
an integer κv ≥ 0 such that max

{

|e|
∣

∣ v ∈ e
}

≤ κv.

Recall that H is bounded, if there is an integer κ ≥ 0 such that all e ∈ E(H)
satisfy |e| ≤ κ. Obviously, if H is bounded, then H is locally bounded.

Proposition 4.3.3 Let (G,H) be a hypergraph pair. If H is locally bounded, then
cmon
H has finite character.

Proof. If (G,H) is finite, there is nothing to show. Otherwise, fix an integer
k ≥ 0 and let X ⊆ V (G) be an infinite set. Choose a finite set X0 ⊆ X . If
cmon
H (X0) > k, then we are finished. Otherwise choose a finite set X1 ⊆ X \ X0

satisfying |X1| ≥ max{κv | v ∈ X0}. Then cmon
H (X0 ∪ X1) > cmon

H (X0), hence
cmon
H (X0 ∪ X1) ≥ cmon

H (X0) + 1. Again, if cmon
H (X0) > k, then we are finished.

Otherwise we continue in the same way until we get cmon
H (X0 ∪ . . . ∪Xn) > k. �

The following example shows that the converse is not true.

Example 4.3.4 Let H be the following hypergraph:

Hypergraph H
vertices: a,

(n, 1), . . . , (n, n), where n < ω
edges:

{

a, (n, 1), . . . , (n, n)
}

, where n < ω

Obviously, cmon
H has finite character, but the sizes of the hyperedges containing the

vertex a are unbounded.



80 CHAPTER 4. COMPACTNESS

���� ���� ����

���� ��		 

��

a∗

fd

fd

a b

a b

ge

e g

a∗

Figure 4.1: The hypergraph pair (G′, H ′) from the proof of Theorem 4.4.1.

� � �� � � ��

�� � �� � � ��

�� �� ��

��  ! "#

$% &' ( () )

*+ ,- . ./ /

0 0 01 1 12 2 2 2 2 2 2 23 3 3 3 3 3 3

4 4 45 5 56 6 6 6 6 6 6 67 7 7 7 7 7 7

8 8 89 9 9

: : :; ; ;

< < <= = => > > > > > > >? ? ? ? ? ? ? ?

@ @ @A A AB B B B B B B BC C C C C C C C

D D DE E E

F F FG G G

H H HI I I J J J J J J JK K K K K K K

L L LM M M N N N N N N NO O O O O O O

P P P PQ Q Q Q

R R R RS S S S
a

...

...

ai−1 bi−1 di−1 ei−1 f i−1 gi−1

ai−1 bi−1 di−1 ei−1 f i−1 gi−1

ai bi di ei f i gi

ai bi di ei f i gi

ai+1 bi+1 di+1 ei+1 f i+1 gi+1

ai+1 bi+1 di+1 ei+1 f i+1 gi+1

a

Figure 4.2: The hypergraph pair (G,H) from Theorem 4.4.1.

Corollary 4.3.5 Let (G,H) be a hypergraph pair where H is locally bounded. Then

cH - ghw(G) ≤ k
⇐⇒

cH - ghw(G0) ≤ k for all finite subhypergraphs G0 ⊆ G.

Proof. Use Theorem 4.2.1. �

4.4 Non-compactness of cH-hw

4.4.1 Hypergraph pairs

In this section, we show:

Theorem 4.4.1 There is a hypergraph pair (G,H) such that:

(i) cH-hw(G) = 2,

(ii) cH0-hw(G0) ≤ 1 for all finite induced subhypergraph pairs (G0, H0) of (G,H),
and

(iii) all hyperedges e ∈ E(H) satisfy |e| ≤ 3.

The rest of this section consists of the proof of this Theorem:
Let (G′, H ′) be the hypergraph pair defined by V (G′) = {a, b, d, e, f, g, a∗},
E(G′) = {{a, b}, {b, d}, {d, e}, {e, f}, {f, g}, {g, a∗}} and
E(H ′) = {{a, b}, {b, d, f}, {d, e}, {e, f}, {f, g}, {g, a∗}} (see Figure 4.1).
For each i ∈ Z, let (Gi, Hi) be an isomorphic copy of (G′, H ′) whith vertex set



4.4. NON-COMPACTNESS OF CH -HW 81

{ai, bi, di, ei, f i, gi, hi}. By identifying the ‘rightmost’ vertex of the i-th copy with
the first vertex of the (i+ 1)-th copy, we obtain the hypergraph pair of Figure 4.2

(G,H) :=
⋃

i∈Z

(Gi, Hi)
/

(ai∗ = ai+1).

The game theoretic characterisation of cH -hw(G) (Theorem 2.2.12) allows us to
argue game theoretically: It is easy to see that two cops have a winning strategy
on (G,H), and we will not prove this here.

Let (G0, H0) be a finite induced subhypergraph pair of (G,H). Then one cop
player has a winning strategy: He starts by occupying the rightmost hyperedge of
(G0, H0) and then he chases the robber to the left.

Nevertheless, one cop does not have a winning strategy on (G,H). The robber
can escape as follows: After the cop’s first move to a hyperedge h ∈ E(H), the
robber chooses the unoccupied vertex ei which is as far ‘left’ as possible such that
there is a vertex v ∈ V (G) on the ‘left side’ of ei with v ∈ h. From then on,
the robber stays on ei. By monotonicity it is easy to see that each of the cop’s
following moves is uniquely determined, until at some point, the cop occupies the
hyperedge {bi, di, f i}. Now he cannot move at all, and therefore the robber wins.
Hence (G,H) satisfies (i), (ii) and (iii).

4.4.2 Hypergraphs

In this section we prove:

Theorem 4.4.2 There is an infinite hypergraph H satisfying:

(i) cH-hw(H) = 4,

(ii) cH0-hw(H0) ≤ 3 for all finite induced subhypergraphs H0 of H, and

(iii) all hyperedges e ∈ E(H) satisfy |e| ≤ 3.

Although the presentation will be independent from the previous paragraph,
the idea of the construction is to code G and H from the previous paragraph in a
single hypergraph. So we will have to ‘implement’ the cop edges (i. e. the edges from
E(H)\E(G)) and the robber edges (i. e. the edges from E(G)\E(H)) using ordinary
edges that can be used both by the cops and by the robber. The implementation
of the cop edges will increase the number of cops necessary to catch the robber by
two.

As in the previous section, we again construct the example by gluing together
infinitely many copies of a certain ‘module’: Let M be the hypergraph from Figure
4.3, with V (M) = P ∪ Q ∪ {c1, c2, . . . , c5}, where P = {α, β, γ, α′, β′, γ′}, and
Q = {a, b, d, e, f, g, a∗},
E(M) = {{a, b}, {d, e}, {e, f}, {f, g}, {g, a∗}, {α, β, γ}, {α′, β′, γ′}}
∪{{b, ci} | i = 1 . . . , 5} ∪ {{ci, d} | i = 1 . . . , 5} ∪ {{α, b, α′}, {β, d, β′}, {γ, f, γ′}}
∪{{p, q} | p ∈ P, q ∈ Q} ∪ {{v} | v ∈ V (M)}.

Let (M i)i∈Z be a family of isomorphic copies of M . We denote the vertices of
M i by {vi | v ∈ V (M)}. By identifying the rightmost vertex of the i-th copy with
the first vertex of the (i+ 1)-th copy, we obtain the hypergraph

H :=
⋃

i∈Z

(M i)
/

(ai∗ = ai+1).

Let S =
⋃

i∈Z
{ai, bi, ci1, d

i, ei, f i, gi, ai∗}.

Proof of Theorem 4.4.2, (i). It is easy to see that four cops can win on H . The
following lemma shows that mon-mw(H) > 3:



82 CHAPTER 4. COMPACTNESS

���� ���� ����

a∗fa b d e g

c1

c2

c5

.

.

.

β γ

α′ β ′ γ′

α

Figure 4.3: The hypergraph M from the proof of Theorem 4.4.2. In addition to
the hyperedges shown in the figure, every vertex from P = {α, β, γ, α′, β′, γ′} is
connected to every vertex from Q = {a, b, d, e, f, g, a∗} by a 2-edge. Also, for every
v ∈ V (M), M contains the hyperedge {v}.



4.4. NON-COMPACTNESS OF CH -HW 83

Lemma 4.4.3 On H as defined above, the robber can win against three cops.

Proof. We describe such a winning strategy, which is similar to the robber’s winning
strategy on the hypergraph pair (G,H) defined in the previous paragraph: As long
as no vertex from S is occupied by a cop, the robber stays in the connected compo-
nent of H containing S. Sooner or later, the cops will have to first occupy one or
more vertices of S. Let v be the rightmost such. Then the robber reacts by moving
to the leftmost vertex ai that is to the right of v. Let H ′ be the restriction of H to
M i together with the path from v to ai (in the sense of induced subhypergraph).
The following lemma shows that the robber can elude capture. �

Lemma 4.4.4 Let N be the following hypergraph.

Hypergraph N
vertex set: {vn, . . . , v0} ∪ V (M)
edges: {vn, vn−1}, {vn−1, vn−2}, . . . , {v1, v0}, {v0, a}

e, where e ∈ E(M)

The robber can win on N against three cops, if in the first move the cops occupy vn.

Proof. The robber remains on a until a cop occupies a. Then the robber plays
according to his winning strategy from Lemma 4.4.5 below. �

Lemma 4.4.5 The robber can win against three cops on M , if the first game po-
sition is (

⋃

X, a) with some X ⊆ E(M), |X | ≤ 2 and if in the second move some
cop occupies an edge containing the vertex a.

Proof. As long as there is a vertex from P that is unoccupied by the cops, the
robber stays on such a vertex. All this time the cops have to occupy a. As soon as
the cops occupy all vertices from P (the cops still have to occupy a), we have one
of the following two situations:

• The cops occupy {α, β, γ}, {α′, β′, γ′} and {a}, or

• they occupy {α, β, γ}, {α′, β′, γ′} and {a, b}.

In the first case the robber stays on b until the cops occupy b, by which we are
in the second case. In the second case the robber moves to e. Now the cops can
either additionally occupy a vertex ci (and then give up), or rearrange themselves
to occupy {α, b, α′}, {β, d, β′} and {γ, f, γ′} (and then give up as well). �

Proof of Theorem 4.4.2, (ii). Three cops have a winning strategy on a finite
induced subhypergraph H0 of H : First, we may assume that H0 is the union of
finitely many ‘modules’ Mi. The proof idea is that two cops occupy hyperedges
of the type {αi, βi, γi} and {α′i, β′i, γ′i} almost all the time. The third cop chases
the robber from right to left, while the other two cops do not change position
except when the third cop reaches an egde of type {di, ei}. Then the next step
for the cops is to occupy {αi, bi, α′i}, {βi, di, β′i} and {γi, f i, γ′i}. After that, the
robber is either caught on one of the vertices ci1, c

i
2, c

i
3, c

i
4, c

i
5, or two cops occupy the

hyperedges {αi−1, βi−1, γi−1} and {α′i−1, β′i−1, γ′i−1} and the third cop continues
chasing the robber towards the left end of the finite hypergraph, until the robber
finally cannot move.

Thus, cH0 -cwmon(H0) ≤ 3 for all finite induced subhypergraphs H0 of H . Alto-
gether, H satisfies (i), (ii) and (iii) as required. �



84 CHAPTER 4. COMPACTNESS

4.5 k-decomposability and f-ghw

As an application of the compactness theorem, we present a characterisation of
generalised f -hypertree-width. For finite graphs and f = card, this characterisation
is k-decomposability as defined by S. Arnborg and A. Proskurowski in [AP86].

Definition 4.5.1 Let k > 0 be an integer, and let G be a graph equipped with a
monotone width function f . The equipped graph (G, f) is k-decomposable, if

(D1) f
(

V (G)
)

≤ k, or

(D2) G contains a finite set S ⊆ V (G) such that the connected components of G\S
are (Cα)α<β (for some suitable ordinal β), and all equipped graphs (Gα, fGα)
defined as follows for α < β are k-decomposable:

vertex set: Cα ∪ S
edges: {u, v} where u, v ∈ S, and

e where e ∈ E
(

G[Cα ∪ S]),

or

(D3) for a limit ordinal λ we have G =
⋃

α<λGα, where (Gα)α<λ is a family
of induced subgraphs Gα of G with Gα ⊆ Gβ for α < β < λ, such that all
equipped graphs (Gα, fGα) are k-decomposable.

Remark 4.5.2 If (G, f) is k-decomposable and G0 ⊆ G is a subgraph, then (G0, fG0)
is also k-decomposable.

Proof. This is easily proved by induction on the rules (D1), (D2), (D3). �

Proposition 4.5.3 Let G be a finite graph equipped with a monotone width func-
tion f .

f - ghw(G) ≤ k
⇐⇒

(G, f) is k-decomposable.

Proof. ‘⇒’: We use induction on |V (G)|. Let (T,B,C) be a generalised hypertree
decomposition witnessing that f -ghw(G) ≤ k. By Remark 3.4.1 we may assume that
(T,B) is small. If f

(

V (G)
)

> k, then |V (T )| ≥ 2. Let (s, t) ∈ E(T ). Then the set
S := Bs∩Bt separatesG, and every component C of G\S satisfies |C ∪ S| < |V (G)|.
By induction hypothesis, (G[C ∪ S], fG[C∪S]) is k-decomposable. Thus by (D2),
(G, f) is k-decomposable.

‘⇐’: We prove this direction by induction on the rules (D1) and (D2). If
f
(

V (G)
)

≤ k, there is nothing to show. Otherwise, by induction hypothesis, fGi-
ghw(Gi) ≤ k for i = 1 . . . ,m, witnessed by (T i, Bi, Ci). Since S induces a clique
in Gi, by Proposition 1.1.8, there exists a node ti ∈ V (T i) such that S ⊆ Biti
(i = 1 . . . ,m). Then (T ′, B′, C′) is a generalised hypertree decomposition of G of
f -width at most k, where

V (T ′) :=
˙⋃
V (T i)∪̇{t},

E(T ′) :=
˙⋃
E(T i) ∪

{

{ti, t} | i = 1, . . . ,m
}

B′
s := Bis for s ∈ V (T i), B′

t := S,

C′
s := Cis for s ∈ V (T i) and C′

t := S.

�



4.5. K-DECOMPOSABILITY AND F -GHW 85

Corollary 4.5.4 Let k ∈ R, and let G be a graph equipped with a monotone width
function f .

1. If f - ghw(G) ≤ k, then (G, f) is k-decomposable.

2. If f has finite character, then

f - ghw(G) ≤ k if and only if (G, f) is k-decomposable.

Proof. If G is finite, this is true by Proposition 4.5.3. So let G be infinite.
1: Let G be a graph equipped with a monotone width function f , and let

(T,B,C) be a generalised hypertree decomposition of G with width(T,B,C) ≤ k.
Define the supergraph G′ of G as follows:

Graph G′

vertex set: V (G)
edges: {u, v} where {u, v} ⊆ Bt for some node t ∈ T

Then G is a subgraph of G′, f is a monotone width function on G′, and (T,B,C)
witnesses that f -ghw(G′) ≤ k. By Remark 4.5.2, it suffices to show that (G′, f) is
k-decomposable. We number the nodes of T , beginning with the root t0 of T in
such a way that the numbering respects the predecessor relation. Now we show by
induction that for every ordinal α the subgraph Gα of G′ induced by

⋃

β≤αBtβ ,
together with fGα is k-decomposable.

Since f(Bt0) ≤ k, by (D1) this is true for G0 = G′[Bt0 ]. Suppose that (Gα, fGα)
is k-decomposable. Since fG′[Btα+1

](Btα+1) ≤ k, it follows from (D1) that the

equipped graph (G′[Btα+1 ], fG′[Btα+1
]) is k-decomposable. By definition of G′, the

set S := Btα+1 ∩Bpred(tα+1) ⊆ V (Gα) induces a complete subgraph in Gα. Thus we
can apply (D2) and it follows that (Gα+1, fGα+1) is k-decomposable.

Let λ be a limit ordinal. Suppose that for every α < λ, the equipped graph
(Gα, fGα) is k-decomposable. Then every Gα is an induced subgraph of Gλ, and
we have Gα ⊆ Gβ for α < β < λ, and Gλ =

⋃

α<λGα. Thus by (D3), (Gλ, fGλ) is
k-decomposable.

2. Let f have finite character. By 1 it suffices to show that if (G, f) is k-
decomposable, then f - ghw(G) ≤ k. Let G be (f, k)-decomposable. Then so is
every finite subgraph G0 of G. Hence by Proposition 4.5.3, every finite subgraph
G0 of G satisfies f - ghw(G0) ≤ k. Thus by Theorem 4.2.1, f - ghw(G) ≤ k. �

Since rule (D2) can be used to create infinite graphs, one might ask whether
rule (D3) is redundant. A ray in a graph is a subgraph (not necessarily induced)
isomorphic to the graph shown in Figure 2.2, B. It easy to see that, regardless of
f , no graph created only using rules (D1) and (D2) can contain a ray. But a ray
equipped with f = card should, of course, be 2-decomposable. Hence (D3) is in
fact necessary.



Chapter 5

More width functions

In this chapter three more examples of width functions are given. In the first two
sections, we define two width functions that make use of functional dependencies in
databases or structures (see Section 2.3) as follows. Let σ be a signature (possibly
containing partial function symbols). Let M be a σ-structure and X ⊆ M . Let
〈X〉 denote the smallest superset 〈X〉 ⊇ X that is a universe of a substructure of
M that is closed under partial functions. Then for input M and X ⊆ M we can
compute 〈X〉 in polynomial time in the size ‖M‖. (Starting with X we iterate
through the partial functions of σ, adding an element y to X whenever p(x̄) = y
for some x̄ ⊆ X and p ∈ σ. We stop, when after a run through all partial function
symbols of σ, no changes have occured. Thus we stop after at most |M | such runs,
each of which can be done in polynomial time.)

To apply Theorem 2.3.13 and Corollary 2.3.17, we need a class C1 such that
we have SUBSTRC1

enum ∈ P and HOMenum(C1, ) ∈ P; and the closed substructures
enumerated by SUBSTRC1

enum should be large, so that the promise and no promise
algorithms work on large classes of structures. We can achieve this by taking C1 to
consist of the closures of a bounded number of elements (Section 5.1) or of unions
of a bounded number of hyperedges in the underlying hypergraph (Section 5.2).

In Section 5.1 we actually define a width function on a mixed graph, i. e. on
a graph that may contain directed edges. This width function can be seen as the
directed analogue of the function card. If all partial function symbols from σ are
unary, a σ-structure has a natural underlying mixed graph.

Since every directed graph is a mixed graph, we thus get a new tree-width no-
tion for directed graphs. Up to now, basically two tree-width notions for directed
graphs have been defined. The directed tree-width was introduced by T. Johnson,
N. Robertson, P. D. Seymour, and R. Thomas in [JRST01]. They showed that
Hamiltonicity can be solved in polynomial time for directed graphs of bounded
directed tree-width1. However, the definition of directed tree-width is rather com-
plicated and it has some unfavourable properties2. Recently, D. Berwanger, A.
Dawar, P. Hunter, and S. Kreutzer introduced the notion of DAG-width of a di-
rected graph in [BDHK05]. The directed tree-width of a digraph is at most its
DAG-width, so Hamiltonicity can also be solved in polynomial time for directed
graphs of bounded DAG-width. Moreover, the winner of a parity game on a di-
rected graph of bounded DAG-width can be determined in polynomial time. The
tree-width notion for directed graphs presented here is fundamentally different from
the two previous notions: it is coherent with neither of them.

In Section 5.2 we define a width function on directed hypergraphs, which is the

1Actually, in [Re99] B. Reed gave an alternative definition of directed tree-width, but I could
not verify that this definition is equivalent to directed tree-width.

2In [Ad05b] it was proved that taking minors can increase the directed tree-width.

86



5.1. MIXED GRAPHS 87

directed analogue for the width function cH . For an arbitrary signature σ, a σ-
structure M always has an underlying directed hypergraph.

Finally, in Section 5.3 we show that the fractional hypertree-width recently de-
fined by M. Grohe and D. Marx in [GM05] can also be described by a width function.
It has been asked in [CD05, CJG05, GGMSS05, Gr03] whether there are classes C of
structures whose underlying hypergraphs have unbounded cH -hypertree-width such
that HOM(C, ·) ∈ P. In [GM05] this question is answered positively if we take C
to be the class of structures whose underlying hypergraphs have bounded fractional
hypertree-width. Applying our general theory we prove some inequalities between
‘fractional’ hypergraph invariants, such as ‘fractional’ bramble-number, ‘fractional’
branch-width, etc.

5.1 Mixed graphs

5.1.1 Definitions and some observations

Definition 5.1.1 A mixed graph is a triple ~G = (V,E,D) = (V (~G), E(~G), D(~G))

where E ⊆ P=2(V ) (the set of edges of ~G) and D ⊆ V × V (the set of arcs of ~G).
Thus (V,E) is a graph and (V,D) is a directed graph.

We identify graphs (V,E) with the mixed graphs (V,E, ∅) and directed graphs

(V,D) with the mixed graphs (V, ∅, D).3 The underlying graph ~G of a mixed graph
~G is defined as follows.

Graph ~G

vertex set: V (~G)

edges: e, where e ∈ E(~G)

{u, v}, where (u, v) ∈ D(~G)

Definition 5.1.2 Let ~G = (V,E,D) be a mixed graph. The forward closure of

X ⊆ V (~G) is the smallest superset 〈X〉 ⊆ V of X which is closed under out-edges,

i. e. if u ∈ 〈X〉 and (u, v) ∈ D(~G), then v ∈ 〈X〉. For a single vertex v ∈ V we
write 〈v〉 for 〈{v}〉.

Remark 5.1.3 Let ~G be a mixed graph. Any two vertex sets X,Y ⊆ V (~G) satisfy

〈X〉 ∪ 〈Y 〉 = 〈X ∪ Y 〉. �

Lemma 5.1.4 Let ~G be a finite mixed graph and let (T,B) be a tree decomposition

of the underlying graph ~G. Then (T, 〈B〉) is also a tree decomposition of ~G, where
〈B〉 := (〈Bt〉)t∈T .

Proof. Obviously, every vertex and every edge of ~G is covered in (T, 〈B〉), since

this is the case in (T,B). Therefore (TD1) and (TD2) hold. Let (u, v) ∈ D(~G).

Both u and v induce connected subtrees Tu and Tv of T . Since {u, v} ∈ E(~G),
{u, v} is covered somewhere in Tu ∩ Tv. Therefore adding the vertex v to every
block containing the vertex u preserves connectedness of the pieces containing v.
By induction, the connectedness condition (TD3) holds as well. Thus, (T, 〈B〉) is a

tree decomposition of ~G. �

Lemma 5.1.4 would stay true for infinite graphs, if we allowed tree decomposi-
tions with infinite pieces.

3This is of course inconsistent with the usual identification of graphs with certain directed
graphs. We hope that the reader will not find this too confusing.



88 CHAPTER 5. MORE WIDTH FUNCTIONS

3

2

4

1

Figure 5.1: A mixed graph ~G (cf. Example 5.1.6).

By a width function for a mixed graph ~G we understand a width function on its
underlying graph ~G.

Definition 5.1.5 For finite mixed graphs ~G we consider the following width func-
tion.

−−→
card~G : P<ω

(

V (~G)
)

→ R ∪ {∞},

X 7→ inf
{

|Y |
∣

∣ Y ⊆ X, X = 〈Y 〉
}

.

Note that
−−→
card~G is not monotone. Also note that defining

−−→
card~G in this way does

not make much sense for arbitrary infinite mixed graphs. We write
−−→
card~G-hw(~G)

for
−−→
card~G-hw(~G); analogously for the other widths.

Example 5.1.6

• If ~G is a graph (i. e. D(~G) = ∅), then
−−→
card~G-hw(~G) = card-hw(~G).

• The following mixed graph ~G is depicted in Figure 5.1:

Mixed graph ~G
vertices: 1, 2, 3, 4
edges: {1, 4}, {2, 3}, {2, 4}
arcs: (1, 2), (1, 3), (3, 4)

It satisfies
−−→
card~G-hw(~G) = 1: Take the tree decomposition ({t}, B) with Bt =

{1, 2, 3, 4} and cover Bt by the forward closure of {1}.

• For an integer n > 0 consider the following mixed graph ~Kn.

Mixed graph ~Kn

vertices: 1, 2, . . . , n
edges: none
arcs: (i, j), where 1 ≤ i < j ≤ n

Then
−−→
card ~Kn-hw( ~Kn) = 1 and card-hw( ~Kn) = n.

Hence card-hw and
−−→
card~G-hw are not linearly coherent.

Lemma 5.1.7 For every finite mixed graph ~G we have

1.
−−→
card~G- cw(~G) ≤ card - cw(~G),

2.
−−→
card~G- ghw(~G) ≤ card - ghw(~G), and



5.1. MIXED GRAPHS 89

3.
−−→
card~G- hw(~G) ≤ card - hw(~G).

Proof. 1,2: Here we can use the fact that f -cw(~G) = fmon-cw(~G) and f -ghw(~G) =

fmon-ghw(~G) for all width functions f . Clearly
−−→
cardmon

~G
(X) ≤ card(X) for all

X ⊆ V (~G).

3: Suppose the cops have a winning strategy for RCmon(~G, card, k). We may
assume that in every move the set of vertices occupied by the cops either increases

or decreases. The cops can clearly win RC(~G,
−−→
card~G, k) by playing according to

this strategy, except that they occupy 〈X〉 rather than X , so it only remains to
show that this strategy is monotone. Suppose the cops would move from X to X ′

according to the original strategy. Then the cops actually move from 〈X〉 to 〈X ′〉.
If X ⊆ X ′, then 〈X〉 ⊆ 〈X ′〉 and the move is certainly monotone. If X ⊇ X ′ and
the robber’s position is r, then let R be the robber’s escape space with respect to X
or, equivalently, with respect to X ′. It is not hard to see that R ∩ 〈X〉 = R ∩ 〈X ′〉.
From this it easily follows that the move is monotone. �

Let ~G be a mixed graph, and let (T,B,C) be a (generalised) hypertree decom-

position of ~G witnessing that
−−→
card~G- hw(~G) ≤ k. It is easy to see that all nodes

t ∈ T satisfy Ct = 〈Ct〉.

The next lemma shows that for a finite mixed graph ~G with
−−→
card~G-hw(~G) ≤ k

(or
−−→
card~G-ghw(~G) ≤ k) there is always a particularly nice (generalised) hypertree

decomposition witnessing this. We will need this in the next section.

Lemma 5.1.8 Let k < ω be an integer, let ~G be a finite mixed graph, and let
(T,B,C) be a (generalised) hypertree decomposition of ~G satisfying

−−→
card~G-width(T,B,C) ≤ k.

Then (T, 〈B〉, C) is also a (generalised) hypertree decomposition of ~G satisfying
−−→
card~G-width(T, 〈B〉, C) ≤ k.

Proof. By Lemma 5.1.4, (T, 〈B〉) is a tree decomposition of ~G, so (HD1) is satisfied.
Since all t ∈ T satisfy 〈Ct〉 = Ct, and Bt ⊆ Ct, we have 〈Bt〉 ⊆ Ct, and thus (HD2)
holds.

In the case that (T,B,C) is a hypertree decomposition, it remains to show that
all t ∈ T satisfy Ct ∩ 〈B〉Tt ⊆ 〈Bt〉 (condition (HD3)). Towards a contradiction,
suppose there exists a vertex x ∈ (Ct ∩ 〈B〉Tt) \ 〈Bt〉. Then there is a node s ∈ Tt
with x ∈ 〈Bs〉. Since x /∈ Bt and (by (HD3) of (T,B,C)) we have Bt ⊇ Ct ∩ BTt ,
it follows that x /∈ BTt . Thus no node tx with x ∈ Btx is in Tt. But then x ∈
(〈Btx〉 ∩ 〈Bs〉) \ 〈Bt〉, a contradiction to connectedness (TD3) of (T, 〈B〉). �

Lemma 5.1.9

The width function
−−→
cardmon

~G
on a finite mixed graph ~G (i. e. on its underlying graph

~G) is weakly submodular.

Proof. By Remark 2.4.3 it suffices to show that
−−→
card~G is weakly submodular: Let

X1, X2 be finite subsets of V (~G). If

−−→
card~G(X1) +

−−→
card~G(X2) = ∞,

then there is nothing to show. Otherwise, there exist V1, V2 ⊆ V (~G) such that

〈Vi〉 = Xi and |Vi| =
−−→
card~G(Xi) for i ∈ {1, 2}. Then 〈V1 ∪ V2〉 = X1 ∪X2 and thus

−−→
card~G(X1 ∪X2) ≤

−−→
card~G(X1)+

−−→
card~G(X1). �



90 CHAPTER 5. MORE WIDTH FUNCTIONS

Corollary 5.1.10 For a finite mixed graph ~G, the width function
−−→
cardmon

~G
on G

satisfies Theorem 2.4.23,1 and 2.

In the next section we show that even more inequalities hold. This is done by

a different method, since—as we will now see—the width function
−−→
cardmon

~G
is not

additive in general.

Example 5.1.11 Let ~G be the following mixed graph:

Mixed graph ~G
vertices: 1, 2, 3
edges: none
arcs: (1, 2), (2, 1), (2, 3), (3, 2)

Then the width function
−−→
cardmon

~G
on ~G is not additive: The sets {1}, {3} do not

touch in ~G, but we have

−−→
cardmon

~G

(

{1, 3}
)

= 1 < 2 =
−−→
cardmon

~G

(

{1}
)

+
−−→
cardmon

~G

(

{3}
)

.

5.1.2 Translation between hypergraphs and mixed graphs

In this section, we show that a finite mixed graph can be implemented as a finite

hypergraph and vice versa. As a corollary we obtain linear coherence of
−−→
card~G-

cw and
−−→
card~G-hw on mixed graphs. As another corollary we get that the (open)

recognition problem GHWk and the problem deciding, given a mixed graph ~G,

whether
−−→
card~G-ghw(~G) ≤ k, are PTIME equivalent.

Implementing arcs as hyperedges

Theorem 5.1.12 For a finite mixed graph ~G consider the following hypergraph pair
(G~G, H~G).

Hypergraph pair (G~G, H~G)

vertex set: V (~G)

edges of G~G: e, where e ∈ E(~G)

〈v〉, where v ∈ V (~G)

edges of H~G: 〈v〉, where v ∈ V (~G)

Then

1.
−−→
card~G-cw(~G) = cH~G

-cw(G~G).

2.
−−→
card~G-ghw(~G) = cH~G

-ghw(G~G).

3.
−−→
card~G-hw(~G) = cH~G

-hw(G~G).

Proof. 1: Note that ~G ⊆ G~G. Thus, it is easier to catch the robber on ~G;

and a cop winning strategy for RC(G~G, cH~G
, k) is already a winning strategy for

RC(~G,
−−→
card~G, k).

Conversely, suppose the cops can win RC(~G,
−−→
card~G, k). If we show that edges in

E(G~G) \ E(~G) do not give an advantage to the robber, then the winning strategy



5.1. MIXED GRAPHS 91

for RC(~G,
−−→
card~G, k) is actually a winning strategy for RC(G~G, cH~G

, k). For {u, v} ∈

E(G~G) \ E(~G) let

S{u,v} :=
{

x ∈ V (~G)
∣

∣ {u, v} ⊆ 〈x〉
}

6= ∅.

Note that for all x ∈ S{u,v} there are paths in S{u,v} connecting v to x and u to x.

Now suppose the cops fly from X ⊆ V (~G) = V (G~G) to X ′ and suppose the robber
can use the edge {u, v} during the flight. Then S{u,v} ∩ (X ∩ X ′) = ∅. But this
means that u and v are connected by some x ∈ S{u,v}, and thus the robber can also

reach u from v and vice versa on ~G. Therefore, the robber’s escape spaces in G~G

are exactly the robbers escape spaces in ~G, and the cops win.
2: Is proved like 3.
3: Since ~G ⊆ G~G, a hypertree decomposition of G~G witnessing that cH~G

-

hw(G~G) ≤ k already witnesses
−−→
card~G-hw(~G) ≤ k: For t ∈ T let Y ⊆ E(H~G)

witness that cH~G
(Ct) ≤ k, i. e. |Y | ≤ k and

Ct =
⋃

Y =
⋃

〈v〉∈Y

〈v〉 = 〈{v | 〈v〉 ∈ Y }〉,

where the last equality holds because of Remark 5.1.3. Thus, {v | 〈v〉 ∈ Y } witnesses

that
−−→
card~G(Ct) ≤ k.

Conversely, let (T,B,C) be a hypertree decomposition of ~G witnessing that
−−→
card~G-hw(~G) ≤ k. By Lemma 5.1.8 we may assume that B = 〈B〉. We show that
(T,B,C) is a hypertree decomposition of G~G witnessing cH~G

-hw(G~G) ≤ k.
(HD1): (T,B) is a tree decomposition of G~G: Since (T,B) is a tree decomposi-

tion of ~G, every vertex v ∈ V (G~G) = V (~G) is covered by some node t ∈ T . Now let

e ∈ E(G~G). If e ∈ E(~G), then e is covered in some piece of (T,B) by assumption.
If e = 〈v〉 for some v ∈ V , then v is covered in some piece Btv of T and thus
〈v〉 ⊆ Btv = 〈Btv 〉. Obviously, (T,B) satisfies connectedness (TD3).

(HD2) and (HD3) are satisfied by assumption.

For t ∈ T , let X ⊆ V (~G) witness that
−−→
card~G(Ct) ≤ k, i. e. |X | ≤ k and

Ct = 〈X〉 =
⋃

{〈x〉 | x ∈ X},

where the last equality holds because of Remark 5.1.3. Thus, {〈v〉 | v ∈ X} wit-
nesses that cH~G

(Ct) ≤ k. Altogether, (T,B,C) is a hypertree decomposition of G~G

witnessing cH~G
-hw(G~G) ≤ k. �

Corollary 5.1.13 Every finite mixed graph ~G satisfies

−−→
card~G- cw(~G) ≤

−−→
card~G- ghw(~G) ≤

−−→
card~G- cwmon(~G) =

−−→
card~G- hw(~G)

≤ 3 ·
−−→
card~G-hw(~G) + 1.

Proof. The hypergraph pair (G~G, H~G) from Theorem 5.1.12 is obviously trivial, so
we can apply Corollary 3.2.9. �

Implementing hyperedges as arcs

Theorem 5.1.14 For a finite hypergraph H consider the following directed graph
~GH .



92 CHAPTER 5. MORE WIDTH FUNCTIONS

Directed graph ~GH
vertex set: V (H) ∪̇ E(H)
arcs: (e, v), where v ∈ e ∈ E(H)

Then

1.
−−→
card~G-cw(~GH) = cH-cw(H)

2.
−−→
card~G-ghw(~GH) = cH-ghw(H)

3.
−−→
card~G-hw(~GH) = cH-hw(H)

Proof. Before beginning with the proof, we observe that since H is nonempty, using
Corollary 2.2.20 we have

1 ≤ cH - cw(H) ≤ cH - ghw(H) ≤ cH - hw(H).

3: First we show
−−→
card~G-hw(~GH) ≤ cH -hw(H). Let (T,B,C) be a hypertree decom-

position of H of cH -width ≤ k, for some integer k ≥ 0. We may assume that for
each e ∈ E(H) there exists a leaf te ∈ T with Bte = Cte = e. (Otherwise choose
a node t ∈ T with e ⊆ Bt and add such a leaf te to T , connecting it with t.) For
t ∈ T define

B′
t :=

{

Bt if t /∈ {te | e ∈ E(H)},

Bt ∪ {e} if t = te for some edge e ∈ E(H).

and

C′
t =

{

Ct if t /∈ {te | e ∈ E(H)},

Bt ∪ {e} if t = te for some edge e ∈ E(H).

We now show that (T,B′, C′) is a hypertree decomposition of ~GH that witnesses
−−→
card~G-hw(~GH) ≤ k:

(HD1): (T,B′) is a tree decomposition for ~GH : Every v ∈ V (~GH) ∩ V (H) is

covered by some Bt ⊆ B′
T . Every e ∈ V (~GH) ∩ E(H) is covered in B′

te . Moreover,

every edge {e, v} ∈ E(~GH) satisfies {e, v} ⊆ Bte , and connectedness obviously holds
as well.

(HD2): Obviously, each t ∈ T satisfies B′
t ⊆ C′

t.
(HD3): We have to show that all t ∈ T satisfy C′

t ∩B
′
Tt

⊆ Bt.
For t ∈ T \ {te | e ∈ E(H)} we have

C′
t ∩B

′
Tt = Ct ∩ (BTt ∪ {e | e ∈ E(H), te ∈ Tt}) = Ct ∩BTt ⊆ Bt = B′

t.

If t = te for some e ∈ E(H), then t is a leaf and C′
t ∩B

′
Tt

= B′
t. This proves (HD3).

Let t ∈ T \ {te | e ∈ E}. Choose Yt ⊆ E with |Yt| ≤ k and Ct =
⋃

Yt. Then

Yt ⊆ V (~GH) and 〈Yt〉 = Ct = C′
t. Thus

−−→
card~G(C′

t) ≤ k. For t = te we have

C′
t = Bt ∪ {e} = 〈e〉. Thus

−−→
card~G(C′

t) ≤ 1 ≤ cH - hw(H) ≤ k.

Altogether, (T,B′, C′) is a hypertree decomposition of ~GH witnessing
−−→
card~G-

hw(~GH) ≤ k.
Conversely, using the game theoretic characterisation, we show

−−→
card~G- cwmon(~GH) ≥ cH - cwmon(H).

Suppose the cops have a winning strategy for RCmon(~GH ,
−−→
card~G, k). Choose a

function ϕ : V (H) → E(H) satisfying v ∈ ϕ(v). For a set X ⊆ V (~GH), define the
set ϕ(X) = (X ∩E(H)) ∪ {ϕ(v) | v ∈ X ∩ V (H)}.



5.1. MIXED GRAPHS 93

The cops play on H according to their winning strategy on ~GH , placing the cops

on ϕ(X) ⊆ E(H) instead of X ⊆ V (H) ∪ E(H) = V (~GH). Then a position (X,R)

of RCmon(~GH ,
−−→
card~G, k) yields a position (

⋃

ϕ(X), R′) on H where R′ ⊆ R∩V (H),
so the cops can win. It remains to show that their strategy is monotone.

Suppose towards a contradiction, that while the move from (X,R) to (Y, S) is
monotone, the move from (

⋃

ϕ(X), R′) to (
⋃

ϕ(Y ), S′) is not. Then there exists a
vertex v ∈ S′ \R′. Let u ∈ R′ be the last vertex in R′ on a path from R′ to v in H
and let u′ be the next vertex after u on the path to v. Then (because u′ ∈

⋃

ϕ(X))
we have {e ∈ E(H) | u′ ∈ e} ∩ ϕ(X) 6= ∅ but {e ∈ E(H) | u′ ∈ e} ∩ ϕ(Y ) = ∅
(because u′ /∈

⋃

ϕ(Y )). Thus for

M := {v ∈ V (H) | u′ ∈ ϕ(v)} ∪ {e ∈ E(H) | u′ ∈ e} ⊆ V (~GH)

we have M ∩X 6= ∅ but M ∩ Y = ∅. Thus we have {v ∈ V (H) | u′ ∈ ϕ(v)} ∩X 6= ∅
or {e ∈ E(H) | u′ ∈ e} ∩X 6= ∅.

First assume that there exists a vertex

v0 ∈ {v ∈ V | u′ ∈ ϕ(v)} ∩X.

Then v0 /∈ Y . Since R′ ⊆ R ∩ V (H) we have u ∈ R. Since u and u′ are neighbours
in H , there exists an edge e ∈ E(H) with {u, u′} ⊆ e. This edge e must a be free

vertex during the flight from X to Y , and thus in ~GH there is a path from u via e
to u′. Since during the cops’ flight from X to Y the set M is free, the edge ϕ(v0)

as a vertex of ~GH is free. By the choice of v0, we have u′ ∈ ϕ(v0) and thus there is
a path from u′ via ϕ(v0) to v0, a contradiction to monotonicity of the strategy for

RCmon(~GH ,
−−→
card~G, k).

Second, assume that there exists an edge e0 ∈ {e ∈ E(H) | u′ ∈ e} ∩X. Then
e0 is free during the flight from X to Y and the robber can reach e0 via u′, a
contradiction.

Thus we have found a strategy for RCmon(H, cH , k).

2:
−−→
card~G-ghw(~GH) ≤ cH -ghw(H) is proved like

−−→
card~G-hw(~GH) ≤ cH -hw(H)

(see 3). For
−−→
card~G-ghw(~GH) ≥ cH -ghw(H) use the fact that a width function f of

a graph G satisfies f -ghw(G) = fmon-hw(G) = fmon-cwmon(G) and show

−−→
cardmon

~G
- cwmon(~GH) ≥ cmon

H - cwmon(H).

The proof is analogous to the proof of
−−→
card~G-hw(~GH) ≥ cH -hw(H) (see 3).

1:
−−→
card~G-cw(~GH) ≥ cH -cw(H) follows from the proof of

−−→
card~G-hw(~GH) ≥ cH -

hw(H) (see 3). For
−−→
card~G-cw(~GH) ≤ cH -cw(H), assume that the cops have a

winning strategy for RC(H, cH , k). Note that although the robber has more vertices

and edges in ~GH than in H , there are no new paths between vertices {u, v} ⊆ V (H).
Thus if (X,R) is a position of RC(H, cH , k), then (X,R′) where R′ = R ∩ V (H) is

a position of the game on ~GH . Now the cops win as follows: As long as the robber’s
escape space contains a vertex of V (H), the cops play according to this strategy on
~GH . If the robber’s escape space does not contain a vertex of V (H), then it is {e}
for some e ∈ E(H). Then the robber is caught by one cop moving to e. �

Recall that GHWk is the problem of deciding for a given hypergraph H whether
cH -ghw(H) ≤ k.

Corollary 5.1.15 Let k ∈ ω. The problem GHWk and the problem of deciding,

given a mixed graph ~G, whether
−−→
card~G-ghw(~G) ≤ k, are PTIME equivalent.



94 CHAPTER 5. MORE WIDTH FUNCTIONS

Proof. Given a hypergraph H , we can compute ~GH of Theorem 5.1.14 in polyno-
mial time. Conversely, given a mixed graph ~G, we compute (G~G, H~G) from Theorem
5.1.12 in polynomial time. By Corollary 5.1.13 the hypergraph pair (G~G, H~G) is
trivial. Therefore we can use Theorem 3.2.8: If H~G is not tame, then reject. Other-
wise, n :=

∣

∣E(H~G)
∣

∣+1 satisfies n > cH~G
-hw(G~G). With this n we can even compute

the hypergraph J(G~G
,H~G

) of Theorem 3.2.8 in polynomial time. This completes the
proof, because

−−→
card~G- ghw(~G) = cH~G

- ghw(G~G) = cJ(G~G
,H~G

)
- ghw(J(G~G

,H~G
)). �

5.2 Directed hypergraphs

Directed hypergraphs are more general than mixed graphs. While every struc-
ture has a natural underlying directed hypergraph (see Section 5.2.2), only those
structures where all partial functions are unary have an underlying mixed graph.
Moreover, directed hypergraphs ~H are a natural generalisation of hypergraphs if we

want to define a width function ~c ~H similar to
−−→
card~G.

Our function~c ~H defined below on directed hypergraphs seems to be more general

then
−−→
card~G: Only in the case that all partial functions are unary, we were able to find

an implementation similar to the implementation of mixed graphs as hypergraphs
in the last section (see Theorem 5.2.14 below).

Finally, we show that for a fixed integer k > 0, the mixed graphs ~G with
−−→
card~G-

hw(~G) ≤ k and the directed hypergraphs ~H with ~c ~H -hw( ~H) ≤ k are recognisable
in polynomial time. Moreover, we show that the problem HOM(C, ) is solvable
in polynomial time for a class C of structures such that the underlying directed
hypergraph ~H of the core of each structure from C satisfies ~c ~H-ghw( ~H) ≤ k (for

fixed k).

5.2.1 Definitions and some observations

Definition 5.2.1 A directed hypergraph is a pair ~H = (V ( ~H), D( ~H)) consisting

of a non-empty set V ( ~H) of vertices and a set D( ~H) ⊆ P<ω
(

V ( ~H)
)

×P<ω
(

V ( ~H)
)

of pairs of finite sets of vertices, called the hyperarcs of ~H.
If (h1, h2) ∈ D( ~H) is a hyperarc of ~H, then h1 is called the source set and h2

is called the target set. We will usually write h1 → h2 for such a hyperarc. In the
special case where the target set h2 = ∅ is empty, we will just write h1 instead of
h1 → ∅. We call such hyperarcs hyperedges.

We identify hypergraphs (V,E) with the directed hypergraphs (V,E × {∅}). We
also identify mixed graphs (V,E,D) with the directed hypergraphs

(

V,E × {∅} ∪
{

({u}, {v})
∣

∣ (u, v) ∈ D
})

.

The underlying hypergraph ~H of a directed hypergraph ~H is defined as follows.

Hypergraph ~H

vertex set: V ( ~H)

edges: h1 ∪ h2, where (h1, h2) ∈ D( ~H)

Example 5.2.2 Figure 5.2 shows the following directed hypergraph ~H.

Directed hypergraph ~H
vertices: 1, 2, 3, 4, 5
hyperarcs: {3, 4, 5}

{2, 3} → {1}, {4} → {2}, {5} → {3}



5.2. DIRECTED HYPERGRAPHS 95

5

1

32

4

Figure 5.2: The directed hypergraph ~H of Example 5.2.2.

It appears that the terminology around directed hypergraphs is not completely
standardised yet. The most common definition of directed hypergraphs is a bit
more restrictive than the one given above: For hyperarcs h1 → h2, the set h2 must
consist of precisely one element. This is not appropriate in our context, where we
also need a way to encode undirected hyperedges.

For our purposes it would be sufficient to permit only hyperarcs h1 → h2 where
h2 ∈ P≤1(V ( ~H)) is either empty or consists of a single vertex. This is in fact
a natural restriction for one of our applications (underlying directed hypergraphs
of structures with function symbols), but not for the other (underlying directed
hypergraphs of databases or queries, in the presence of functional dependencies).

Definition 5.2.3 Let ~H be a directed hypergraph. The forward closure of X ⊆ V
is the smallest superset 〈X〉 ⊆ V ( ~H) of X which is closed under out-hyperarcs, i.

e. if (h1, h2) ∈ D( ~H) is a hyperarc such that h1 ⊆ 〈X〉, then h2 ⊆ 〈X〉.

Remark 5.2.4 For a directed hypergraph ~H, let X,Y ⊆ V ( ~H). Then

1. 〈X〉 ∪ 〈Y 〉 ⊆ 〈X ∪ Y 〉.

2. If D( ~H) ⊆ P≤1

(

V ( ~H)
)

× P<ω
(

V ( ~H)
)

, then 〈X〉 ∪ 〈Y 〉 = 〈X ∪ Y 〉. �

Of course, for directed hypergraphs, 〈X〉∪ 〈Y 〉 = 〈X ∪Y 〉 is not true in general:

Example 5.2.5 Let ~H be the directed hypergraph of Example 5.2.2 (Figure 5.2),

and let X := {4, 5} ⊆ V ( ~H). Then

⋃

v∈X

〈v〉 = 〈4〉 ∪ 〈5〉 = {2, 4} ∪ {3, 5} $ {1, 2, 3, 4, 5} = 〈X〉.

It is not hard to find examples showing that the difference of the sizes
∣

∣

⋃

v∈X〈v〉
∣

∣

and |〈X〉| can actually be unbounded. We will do this below (in Proposition 5.2.13).
The following lemma is proved like Lemma 5.1.4.

Lemma 5.2.6 Let ~H be a finite directed hypergraph and let (T,B) be a tree decom-

position of its underlying hypergraph ~H. Then (T, 〈B〉) is also a tree-decomposition

of ~H. �



96 CHAPTER 5. MORE WIDTH FUNCTIONS

By a width function on a directed hypergraph ~H we understand a width function
on its underlying hypergraph ~H .

Definition 5.2.7 For finite directed hypergraphs ~H we consider the following width
function ~c ~H .

~c ~H : P<ω(V ( ~H)) → R ∪ {∞}

X 7→ inf
{

|Y |
∣

∣ Y ⊆ E( ~H), X = 〈
⋃

Y 〉
}

.

As for mixed graphs, ~c ~H is not monotone, and it does not make much sense to define

~c ~H for arbitrary infinite graphs. We write ~c ~H -hw( ~H) for ~c ~H -hw( ~H); analogously
for the other ~c ~H -invariants.

Example 5.2.8

• The directed hypergraph ~H of Example 5.2.2 (Figure 5.2) satisfies ~c ~H-hw( ~H) =
1.

• If ~H is a finite hypergraph (i. e. D( ~H) ⊆ P<ω × {∅}), then

~c ~H- hw( ~H) = c ~H - hw( ~H).

The following example shows that c ~H -hw and ~c ~H -hw are not coherent.

Example 5.2.9 For every even integer n > 0 let ~Kn be the mixed graph from
Example 5.1.6, regarded as a directed hypergraph. Then

• ~c ~Kn-hw( ~Kn) = 1,

• c ~Kn
-hw( ~Kn) = n

2 .

Lemma 5.2.10 Let ~H be a finite directed hypergraph. Then

• ~c ~H- cw( ~H) ≤ c ~H - cw( ~H),

• ~c ~H- ghw( ~H) ≤ c ~H - ghw( ~H), and

• ~c ~H- hw( ~H) ≤ c ~H -hw( ~H).

Proof. This is proved precisely in the same way as Lemma 5.1.7. �

Lemma 5.2.11 Let k < ω be an integer and ~H a finite directed hypergraph with
~c ~H-hw( ~H) ≤ k, witnessed by a hypertree decomposition (T,B,C). Then (T, 〈B〉, C)

also witnesses ~c ~H-hw( ~H) ≤ k.

Proof. We show that (T, 〈B〉, C) is also a hypertree decomposition witnessing ~c ~H -

hw( ~H) ≤ k. (HD1): By Lemma 5.2.6, (T, 〈B〉) is a tree decomposition of ~H .

The proofs of (HD2) and (HD3) are literally as in the proof of Lemma 5.1.8. �

Example 5.2.12 For every integer n ≥ 1 we consider the following directed hyper-
graph ~Hn (see Figure 5.3).



5.2. DIRECTED HYPERGRAPHS 97

4′A

1A 1B

3A

2A

4A 4B 4′B

1′B 1′A

2B 2′B 2′A

3B 3′B 3′A

Figure 5.3: The directed hypergraph ~Hn of Example 5.2.12 for n = 4. Any two
vertices are connected by an undirected edge not depicted here.

Directed hypergraph ~Hn

vertices: 1A, . . . , nA, 1B, . . . , nB, 1′B, . . . , n
′
B, 1′A, . . . , n

′
A

hyperarcs: {1A, 1B} → {2A}, . . . , {(n− 1)A, (n− 1)B} → {nA}
{1A, 1B} → {2′B}, . . . , {(n− 1)A, (n− 1)B} → {n′

A}
{1′B, 1

′
A} → {2B}, . . . , {(n− 1)′B, (n− 1)′A} → {nB}

{1′B, 1
′
A} → {2′A}, . . . , {(n− 1)′B, (n− 1)′A} → {n′

A}
{u, v}, where u 6= v

Proposition 5.2.13 For every integer n ≥ 1 the directed hypergraph ~Hn from Ex-
ample 5.2.12 satisfies

1. ~c ~Hn(V ( ~Hn)) = ~c ~Hn-ghw( ~Hn) = 2,

2. min
{

|Y |
∣

∣ Y ⊆ E( ~Hn), V ( ~Hn) =
⋃

h∈Y 〈h〉
}

≥ n, and

3. c ~Hn(Vn) = c ~Hn -ghw( ~Hn) > n.

Thus, by 1 and 3, ~c ~H -ghw and c ~H -ghw are not coherent. From 1 and 2 it follows

that there is a set Yn ⊆ E( ~Hn) showing that the difference of the sizes of 〈
⋃

Yn〉|
and

∣

∣

⋃

h∈Yn
〈h〉

∣

∣ is unbounded.

Proof of Lemma 5.2.13. 1: Since 〈{1A, 1B} ∪ {1′A, 1
′
B}〉 = V ( ~Hn), it follows that

~c ~Hn(V ( ~Hn)) ≤ 2. It is easy to see that this is the smallest we can get, and thus

~c ~Hn(V ( ~Hn)) = 2. The second equality follows from this, together with the fact that

~Hn, the underlying graph of the underlying hypergraph of ~Hn, is a clique and hence

every tree decomposition of ~Hn has a piece V ( ~Hn).

2: For every h ∈ E( ~Hn) we have |〈h〉| ≤ 4. Since |Vn| = 4n, we have

min
{

|Y |
∣

∣ Y ⊆ E( ~Hn), V ( ~Hn) =
⋃

h∈Y

〈h〉
}

≥
4n

4
= n.



98 CHAPTER 5. MORE WIDTH FUNCTIONS

3: For every h ∈ E( ~Hn) we have |h| ≤ 3. Thus, for c ~Hn(V ( ~Hn)) > n we can

argue as in 2. The rest follows from this, together with the fact that ~Hn is a clique

and hence every tree decomposition of ~Hn has a piece V ( ~Hn). �

Theorem 5.2.14 For a finite directed hypergraph ~H consider the following hyper-
graph H.

Hypergraph H

vertex set: V ( ~H)

edges: 〈e〉, where e ∈ E( ~H)

Then

1. ~c ~H-cw( ~H) ≤ cH-cw(H),

2. ~c ~H-ghw( ~H) ≤ cH-ghw(H),

If ~H is actually a mixed graph or, more generally, D( ~H) ⊆ P1(V ( ~H))×P<ω(V ( ~H)),
then

1. ~c ~H-cw( ~H) = cH-cw(H),

2. ~c ~H-ghw( ~H) = cH-ghw(H),

3. ~c ~H-hw( ~H) = cH-hw(H).

Proof. For the first inequality, observe that ~H ⊆ H . A cop winning strategy for

RC(H, cH , k) yields a winning strategy for RC( ~H,~c ~H , k) as follows: Whenever the

cops move to a set
⋃

Y ⊆ V (H) onH with |Y | ≤ k, they move to 〈
⋃

〈e〉∈Y e〉 ⊆ V ( ~H)

on ~H . By Remark 5.2.4, 1, we have
⋃

Y ⊆ 〈
⋃

〈e〉∈Y e〉, and thus the cops win.

For the second inequality, let (T,B,C) be a generalised hypertree decomposition

witnessing that cH -ghw(H) ≤ k. Since ~H ⊆ H , (T,B) is a tree decomposition of
~H . For every node t ∈ T choose a set Yt ⊆ E(H) with |Yt| ≤ k and

⋃

Yt = Ct.
Define C′

t = 〈
⋃

〈e〉∈Yt
e〉. Then ~c ~H(C′

t) ≤ k. Using Remark 5.2.4, 1, we have

Bt ⊆
⋃

Yt ⊆ 〈
⋃

〈e〉∈Yt
e〉. Thus (T,B,C′) is a generalised hypertree decomposition

of
The last three equalities are proved similarly to Theorem 5.1.12, where we use

Lemma 5.2.11 instead of Lemma 5.1.8, and Remark 5.2.4, 2, instead of Remark
5.1.3. �

Corollary 5.2.15 Let C be the class of all directed hypergraph ~H satisfying D( ~H) ⊆

P1(V ( ~H))×P<ω(V ( ~H)). Then there is a polynomial time reduction from the prob-

lem deciding, given a directed hypergraph ~H ∈ C, whether ~c ~H-ghw( ~H) ≤ k, to the

problem GHWk.

Proof. Given ~H ∈ C, we can compute the hypergraph H from Theorem 5.2.14 in
polynomial time. �

For applying Chapter 2 to the width functions
−−→
card~G and ~c ~H , we take a look at

their properties.

Lemma 5.2.16 The width function ~cmon
~H

on a finite directed hypergraph ~H (i. e.

on its underlying graph ~H) is weakly submodular.



5.2. DIRECTED HYPERGRAPHS 99

Proof. Let X1, X2 be finite subsets of V ( ~H). If ~cmon
~H

(X1) + ~cmon
~H

(X2) = ∞, then

there is nothing to show. Otherwise, there exist E1, E2 ⊆ E( ~H) such that 〈
⋃

Ei〉 ⊇
Xi and |Ei| = ~cmon

~H
(Xi) for i ∈ {1, 2}. Then by Remark 5.2.4,

〈
⋃

E1 ∪
⋃

E2〉 ⊇ 〈
⋃

E1〉 ∪ 〈
⋃

Ei〉 ⊇ X1 ∪X2,

and thus ~cmon
~H

(X1 ∪X2) ≤ ~cmon
~H

(X1) +~cmon
~H

(X2). �

Corollary 5.2.17 For a directed hypergraph ~H, the width function ~cmon
~H

on ~H sat-
isfies Theorem 2.4.23,1 and 2.

It is easy to see that for the directed hypergraph ~G from Example 5.1.11 (which
even is a mixed graph) the width function ~cmon

~G
is not additive.

5.2.2 More on the homomorphism problem for non-relational

signatures

Definition 5.2.18 Let σ be a signature that may contain partial function symbols
as well as relation symbols, and let M be a σ-structure. The underlying directed
hypergraph ~HM of M is defined as follows.

Directed hypergraph ~HM

vertex set: M
hyperarcs: {a1, . . . , an} → {b},

where M |= f(a1, . . . , an) = b for a partial function symbol f,
{a1, . . . , an},

where M |= Ra1 . . . an for a relation symbol R

If σ contains only unary function symbols, then ~HM is in fact a mixed graph, and
we may call ~HM the underlying mixed graph of M.

Of course, if σ is relational, then ~HM = HM is just the underlying hypergraph
of M.

Example 5.2.19

• Consider the signature σ = {p, q, R} where p and q are unary partial function
symbols, and R is a binary relation symbol. Define the σ-structure M by

M := {1, 2, 3, 4},

pM := {(1, 2), (3, 4)},

qM := {(1, 3)}, and

RM := {{1, 4}, {2, 3}, {2, 4}}.

Then the underlying directed hypergraph ~HM of M is the mixed graph depicted
in Figure 5.1.

• Consider the signature σ = {p, q, R} where p is a unary partial function sym-
bol, q is a binary partial function symbol, and R is a ternary relation symbol.
Define the σ-structure M by

M := {1, 2, 3, 4, 5},

pM := {(4, 2), (5, 3)},

qM :=
{

((2, 3), 1)
}

, and

RM := {{3, 4, 5}}.



100 CHAPTER 5. MORE WIDTH FUNCTIONS

Then the underlying directed hypergraph ~HM of M is the directed hypergraph
depicted in Figure 5.2.

Let f be a family of width functions f
~H , for all directed hypergraphs ~H . For

example, f
~H = ~c ~H . For k > 0 we define Cfk :=

{

M
∣

∣ f
~HM( ~HM) ≤ k

}

.

Lemma 5.2.20 Let k > 0 be an integer and let f be the family of width functions
~c ~H , for each directed hypergraph ~H. Then

1. SUBSTR
Cf
k

enum ∈ P, and

2. HOMenum(Cfk , ) ∈ P.

Proof sketch. 1: Let M be a structure. For every setX ⊆ E( ~HM) such that |X | ≤ k
compute 〈

⋃

X〉. This, as well as the removal of any duplicate substructures in the
output, can be achieved in polynomial time.

2: We informally describe how to enumerate the homomorphisms from M to
N . Given M ∈ Cfk we can find a generating set X ⊆ E( ~HM) such that |X | ≤ k.
Thus we have k tuples, each of which occurs in a relation RM

i in M. Under a
homomorphism every such tuple must be mapped to a tuple that occurs in RN

i .
Enumerate all ways of mapping the k tuples in this way. If two of the tuples in M
overlap, form the join. (I. e. remove those mappings which are inconsistent because
one element would have to be mapped to two different elements of N ). Remove
those mappings which are not homomorphisms. It is not hard to see that all this
can be achieved in polynomial time. �

The same holds for the family f of width functions
−−→
card~G, for each mixed graph

~G, if we restrict the problem to structures where all partial functions are unary.

Corollary 5.2.21 Let k > 0 be an integer and let f be the family of width functions
~c ~H , for each directed graph ~H. Then

1. HOM(CoreDecomposable
Cf
k

ghd, ) ∈ P,

2. HDCf
k ∈ P,

3. CSCf
k ∈ P

Again, the same holds for the family f of width functions
−−→
card~G, for each mixed

graph ~G, if we restrict ourselves to structures where all partial functions are unary.

Proof. Use the above lemma and Theorems 2.3.13, 2.3.16, and Corollary 2.3.19. �

5.3 Fractional edge covers

In this chapter, we define the width function fcH for a hypergraph H . The corre-
sponding notion of fcH -hypertree-width of H is the fractional hypertree-width of H
as recently introduced by M. Grohe and D. Marx in [GM05]. While the fractional
hypertree-width of a finite hypergraph is always rational, we show that for every
real number r > 0 there is an infinite hypergraph with fractional hypertree-width r.
Applying our general theory we show that the ‘fractional’ versions of the inequalities
from Theorem 2.4.23 hold.



5.3. FRACTIONAL EDGE COVERS 101

5.3.1 Definitions and some observations

Definition 5.3.1 Let H be a hypergraph.

• R(E(H))
≥0 = {ψ : E(H) → R≥0 | ψ is zero almost everywhere}.

• The weight of ψ ∈ R(E(H))
≥0 at v ∈ V (H) is

weightv(ψ) =
∑

h3v
h∈E(H)

ψ(h).

• The weight of ψ ∈ R(E(H))
≥0 is

weight(ψ) =
∑

h∈E(H)

ψ(h) ∈ R≥0.

Definition 5.3.2 Let H be a finite hypergraph.

• A fractional edge cover of H is a mapping ψ ∈ RE(H)
≥0 such that every v ∈

V (H) satisfies weightv(ψ) ≥ 1.

• The fractional edge cover number is

fc(H) = min
{

weight(ψ)
∣

∣ ψ is a fractional edge cover of H
}

∈ R≥0 ∪ {∞}.

Observe that a finite hypergraph H satisfies fc(H) = ∞ if, and only if, H is not
tame.

Remark 5.3.3 For a finite tame hypergraph H the minimum fc(H) exists and is
rational.

Proof. fc(H) is the solution of the following linear programming problem in the
variables ψ(h), h ∈ E(H): Minimise

weight(ψ) =
∑

h∈E(H)

ψ(h)

subject to the conditions

ψ(h) ≥ 0 for all h ∈ E(H)

weightv(ψ) =
∑

h3v
h∈E(H)

ψ(h) ≥ 1 for all v ∈ V (H)

This problem has a solution because H is tame. It follows from standard results on
linear programming that the solution is attained and that it is a rational number
(since the coefficients are rationals). �

Lemma 5.3.4 Let H = (V,E) be a finite tame hypergraph.

1. An induced subhypergraph H ′ of H satisfies fc(H ′) ≤ fc(H).

2. 0 ≤ fc(H) ≤ |E|.

3. |V |
maxh∈E |h| ≤ fc(H).



102 CHAPTER 5. MORE WIDTH FUNCTIONS

Proof. 1,2: Easy. 3: Let ψ be a fractional edge cover of H . Then

|V | =
∑

v∈V

1 ≤
∑

v∈V

∑

h3v

ψ(h) =
∑

h∈E

∑

v∈h

ψ(h) =
∑

h∈E

(

ψ(h) ·
∑

v∈h

1
)

=
∑

h∈E

ψ(h) · |h|

≤
∑

h∈E

ψ(h) · max
h′∈E

|h′| = (max
h∈E

|h|) ·
∑

h∈E

ψ(h).

By Remark 5.3.3 there is a fractional edge cover ψ0 with fc(H) =
∑

h∈E ψ0(h), and
thus we have

|V |

maxh∈E |h|
≤

∑

h∈E

ψ0(h) = fc(H).

�

Definition 5.3.5 We consider the following width function on hypergraphs H:

fcH : P<ω
(

V (H)
)

→ R ∪ {∞}

X 7→ fc
(

H [X ]
)

.

We call fcH(X) the fractional cover number of X.

Obviously, for a finite hypergraph H we have fc(H) = fcH
(

V (H)
)

.

Lemma 5.3.6 Let H be a hypergraph and X ⊆ V (H) a finite subset of V (H).
Then

fcH(X) = inf
{

weight(ϕ)
∣

∣ ϕ ∈ R(E(H))
≥0 ,weightx(ϕ) ≥ 1 for all x ∈ X

}

.

Proof. For ϕ ∈ R(E(H))
≥0 satisfying weightx(ϕ) ≥ 1 for all x ∈ X , define the function

ψϕ ∈ RE(H[X])
≥0 by

ψϕ(eX) =
∑

e∈E(H)
eX=e∩X

ϕ(e).

Note that

• weightx(ψϕ) = weightx(ϕ) ≥ 1 for every x ∈ X , and thus ψϕ is a fractional
edge cover of H [X ], and

• weight(ψϕ) = weight(ϕ).

Conversely, choose a function τ : E(H [X ]) → E(H) satisfying eX = τ(eX)∩X . For

a fractional edge cover ψ ∈ RE(H[X])
≥0 define ϕψ ∈ R(E(H))

≥0 by

ϕψ(e) =

{

ψ(eX) if e = τ(eX) for an edge eX ∈ E(H [X ]), and

0 otherwise.

Note that

• weightx(ϕψ) = weightx(ψ) ≥ 1 for every x ∈ X , and

• weight(ϕψ) = weight(ψ).



5.3. FRACTIONAL EDGE COVERS 103

Then we have

fcH(X) = inf
{

weight(ψ)
∣

∣ ψ ∈ RE(H[X])
≥0 , weightx(ψ) ≥ 1 for all x ∈ X

}

= inf
{

weight(ϕψ)
∣

∣ ψ ∈ RE(H[X])
≥0 , weightx(ψ) ≥ 1 for all x ∈ X

}

≥ inf
{

weight(ϕ)
∣

∣ ϕ ∈ R(E(H))
≥0 , weightx(ϕ) ≥ 1 for all x ∈ X

}

≥ inf
{

weight(ψϕ)
∣

∣ ϕ ∈ R(E(H))
≥0 , weightx(ϕ) ≥ 1 for all x ∈ X

}

≥ inf
{

weight(ψ)
∣

∣ ψ ∈ RE(H[X])
≥0 , weightx(ψ) ≥ 1 for all x ∈ X

}

= fcH(X).

�

The following result is based on an idea of M. Weyer. For every real number
r > 0 we construct a hypergraph Hr such that fcH -ghw(H) = r. Of course, if r is
irrational then Hr must be infinite by Remark 5.3.3.

Example 5.3.7 Let 1 ≤ k ≤ n be integers. Consider the hypergraph Hn
k

given by

Hn
k

=
(

{1, . . . , n},P=k

(

{1, . . . , n}
))

,

consisting of n vertices and all k-element subsets as hyperedges. Then

fcHn
k

- ghw(Hn
k
) =

n

k
.

Proof. Note that since H is a complete graph, every tree decomposition (T,B) of H
contains a piece Bt = V (H), and thus fcHn

k
- ghw(Hn

k
) = fcHn

k

(

V (Hn
k
)
)

= fc(Hn
k
).

We first show that fc(Hn
k
) ≤ n

k , by defining a fractional edge cover with weight n
k .

Note that
∣

∣E(Hn
k
)
∣

∣ =
(

n
k

)

, and that each v ∈ V (Hn
k
) is contained in exactly

(

n−1
k−1

)

hyperedges of E(Hn
k
). Define ψ : E(H) → [0,∞) by

ψ(e) =
1

(

n−1
k−1

) ,

for all e ∈ E(H). Then each v ∈ V (Hn
k
) satisfies

∑

e3v ψ(e) = 1, and hence ψ is a
fractional edge cover for Hn

k
. The weight of ψ is

weight(ψ) =
∑

e∈E(Hn
k

)

ψ(e) =

(

n

k

)

·
1

(

n−1
k−1

) =
n!

k!(n− k)!
·
(k − 1)!(n− k)!

(n− 1)!
=
n

k
.

Therefore fc(Hn
k
) ≤ n

k . Conversely, by Lemma 5.3.4 we have

fc(Hn
k
) ≥

|V (H)|

max
{

|e|
∣

∣ e ∈ E(Hn
k
)
} =

n

k
.

�

Corollary 5.3.8 For every r ∈ R there is a hypergraph Hr with

fcHr - ghw(Hr) = r.

Proof. Choose a sequence (qn)n<ω of rational numbers satisfying qn < r such that
limn→∞ qn = r. Define Hr to be the disjoint union

Hr =
˙⋃

n<ω
Hqn ,

where each Hqn is as in Example 5.3.7. It is easy to see that fcHr -ghw(Hr) = r. �



104 CHAPTER 5. MORE WIDTH FUNCTIONS

5.3.2 Properties of fcH

Lemma 5.3.9 For a hypergraph H, the width function fcH of H is monotone,
additive and weakly submodular. If H is tame, then so is fcH .

Proof. Monotonicity: Suppose X,Y are finite sets such that X ⊆ Y ⊆ V (H). By
Lemma 5.3.6 we have

fcH(X) = inf
{

weight(ϕ)
∣

∣ ϕ ∈ R(E(H))
≥0 , weightx(ϕ) ≥ 1 for all x ∈ X

}

≤ inf
{

weight(ϕ)
∣

∣ ϕ ∈ R(E(H))
≥0 , weighty(ϕ) ≥ 1 for all y ∈ Y

}

= fcH(Y ).

Weak submodularity: Let H be a hypergraph and let X,Y be finite subsets of
V (H). By Lemma 5.3.6 we have

fcH(X ∪ Y ) = inf
{

weight(ϕ)
∣

∣ ϕ ∈ R(E(H))
≥0 , weightz(ϕ) ≥ 1 for all z ∈ X ∪ Y

}

≤ inf
{

weight(ϕX + ϕY )
∣

∣ ϕX , ϕY ∈ R(E(H))
≥0 ,

weightx(ϕX) ≥ 1 and weighty(ϕY ) ≥ 1 for all x ∈ X, y ∈ Y
}

= inf
{

weight(ϕX)
∣

∣ ϕ ∈ R(E(H))
≥0 , weightx(ϕX) ≥ 1 for all x ∈ X

}

+ inf
{

weight(ϕY )
∣

∣ ϕ ∈ R(E(H))
≥0 , weighty(ϕY ) ≥ 1 for all y ∈ Y

}

=fcH(X) + fcH(Y ).

Additivity: By weak submodularity we only have to show that

fcH(X ∪ Y ) ≥ fcH(X) + fcH(Y )

for finite, non-touching sets X,Y ⊆ V (H). For ϕ ∈ R(E(H))
≥0 with weightz(ϕ) ≥ 1

for all z ∈ X ∪ Y , define ϕX , ϕY ∈ R(E(H))
≥0 by

ϕX(e) =

{

ϕ(e) if e ∩X 6= ∅, and

0 otherwise,

and

ϕY (e) =

{

ϕ(e) if e ∩ Y 6= ∅, and

0 otherwise.

Then for x ∈ X we have

weightx(ϕX) =
∑

x∈e∈E(H)

ϕX(e) =
∑

x∈e∈E(H)

ϕ(e) ≥ 1,

and similarly for y ∈ Y and ϕY . Since by assumption,
{

e ∈ E(H)
∣

∣ e∩ (X ∪ Y ) 6= ∅
}

=
{

e ∈ E(H)
∣

∣ e∩X 6= ∅
}

∪̇
{

e ∈ E(H)
∣

∣ e∩ Y 6= ∅
}

,

we have ϕ ≥ ϕX + ϕY . Thus,

fcH(X ∪ Y ) = inf
{

weight(ϕ)
∣

∣ ϕ ∈ R(E(H))
≥0 , weightz(ϕ) ≥ 1 for all z ∈ X ∪ Y

}

≥ inf
{

weight(ϕX + ϕY )
∣

∣ ϕX , ϕY ∈ R(E(H))
≥0 ,

weightx(ϕX) ≥ 1 and weighty(ϕY ) ≥ 1 for all x ∈ X, y ∈ Y
}

≥ inf
{

weight(ψ)
∣

∣ ψ ∈ R(E(H))
≥0 , weightx(ψ) ≥ 1 for all x ∈ X

}

+ inf
{

weight(ψ′)
∣

∣ ψ′ ∈ R(E(H))
≥0 , weighty(ψ

′) ≥ 1 for all y ∈ Y
}

= fcH(X) + fcH(Y ).



5.3. FRACTIONAL EDGE COVERS 105

Tameness: If H has no isolated vertices, then every vertex v is contained in a
hyperedge h. Now clearly fcH(h) = 1. �

Corollary 5.3.10 For a finite hypergraph H, the width function fcH on H satisfies
Theorem 2.4.23,1 and 2. If H is tame, then fcH also satisfies Theorem 2.4.23,3.

Proof. Use that fcH = fcmon
H . �

Remark 5.3.11 Let H be a hypergraph. Let X ⊆ V (H) be a finite subset of V (H).
Then fcH(X) ≤ cH(X).

Proof. Suppose cH(X) ≤ k . Then there is a subset EX ⊆ E(H [X ]) satisfying

|EX | ≤ k and X =
⋃

EX . Therefore the function ψ ∈ RE(H[X])
≥0 given by

ψ(e) =

{

1 if e ∈ EX , and

0 otherwise

is a fractional edge cover of H [X ] satisfying weight(ψ) =
∑

e∈E(H[X]) ψ(e) = k. �

Remark 5.3.12 Any hypergraph H satisfies

fcH -hw(H) = fcH - ghw(H) ≤ cH - ghw(H) ≤ cH -hw(H).

Proof. This follows from Remark 5.3.11 and monotonicity of fcH . �

By Theorem 2.4.23,3, for a tame hypergraph H and k ∈ R we have

fcH - cw(H) ≤ k =⇒ fcH - hw(H) ≤ 3k + 2.

This reproves a result of M. Grohe and D. Marx in [GM05]. They also show that
fcH -hypertree-width and cH -hypertree-width are not coherent:

Fact 5.3.13 (Grohe, Marx) For every integer n > 0 there is a hypergraph Hn

with fcHn-hw(Hn) ≤ 2 and cH-hw(Hn) = n.

If we only consider classes of hypergraphs that are bounded by some fixed integer
κ > 0, then we get linear coherence:

Proposition 5.3.14 Let H be a hypergraph bounded by κ > 0.

1. If H is tame, then fcH - hw(H) ≤ card -hw(H) ≤ κ ·
(

fcH -hw(H)
)

.

2. fcH -hw(H) ≤ cH -hw(H) ≤ κ ·
(

fcH - hw(H)
)

.

Proof. 1: Since fcH is monotone, tame, and weakly submodular, by Remark 2.4.5,
4 we have fcH -hw(H) ≤ card-hw(H). For the second inequality, by Remark 5.3.12
it suffices to show that card - hw(H) ≤ κ ·

(

fcH - ghw(H)
)

. Let (T,B,B) be a gen-
eralised hypertree decomposition of H with fcH - width(T,B,B) ≤ k. Then every
node t ∈ T satisfies fcH(Bt) ≤ k. Thus with Lemma 5.3.4, 3, we get

|Bt|

κ
≤

|Bt|

maxe∈E(H[Bt]) |e|
≤ fc(H [Bt]) = fcH(Bt) ≤ k.

Therefore, for every t ∈ T we have |Bt| ≤ κ · k, and (T,B,B) witnesses that card-
hw(H) ≤ κ · k.



106 CHAPTER 5. MORE WIDTH FUNCTIONS

2: By Remark 5.3.12 we have fcH - hw(H) ≤ cH - hw(H). If H is not tame,
then cH - hw(H) = fcH - hw(H) = ∞, so we now assume that H is tame. Then the
second inequality is proved by

cH - hw(H) ≤ card - hw(H) ≤ κ ·
(

fcH - ghw(H)
)

,

which follows from 1 and 3.1.15, 1. �

In [GM05, Theorem 5], M. Grohe and D. Marx proved the following fact.

Fact 5.3.15 Let k ∈ R and let f be the family of width functions fcH , for all hyper-
graphs H. Let Cfk = {structures M | fcHM

(HM) ≤ k}. Then HOMenum(Cfk , ) ∈ P.

It is an open problem, whether SUBSTR
Cf
k

enum ∈ P.

Corollary 5.3.16 Let f be the family of width functions fcH , for all hypergraphs

H. Then HOM(Decomposed
Cf
k , ) ∈ P .

Proof. Use Theorem 2.3.18. �

Corollary 5.3.17 (Compactness of fcH-ghw) Let H be a hypergraph such that
fcH has finite character. For example, this is the case if H is bounded. Then

fcH - ghw(H) ≤ k
⇐⇒

fcH0 - ghw(H0) ≤ k for all finite induced subhypergraphs H0 of H.

Proof. Use Remark 2.1.17 and Theorem 4.2.1. If H is bounded, then fcH has finite
character by Lemma 5.3.4 and Example 4.1.2, 2. �

5.3.3 Fractional edge covers and directed hypergraphs

In analogy to
−−→
card~G and ~c ~H , we can define the width function

−→
fc ~H on a directed

hypergraph ~H . More generally, for a width function f on the underlying graph ~H

of ~H we can define a width function ~f ~H as follows.

Definition 5.3.18 Let ~H be a directed hypergraph, and let f be a width function
on the underlying graph ~H of ~H. Then the width function ~f ~H is given by

~f ~H : P<ω
(

V ( ~H)
)

→ R ∪ {∞},

X 7→ inf{f(Y ) | Y ⊆ V ( ~H), X = 〈Y 〉}.

Combining the examples of Example 5.2.12 and Fact 5.3.13, it is easy to find
a class C of directed hypergraphs such that the ~c ~H -hypertree-width and the fcH -

hypertree-width of C are unbounded, but the
−→
fc ~H -hypertree-width is bounded.

Recall that card is monotone, but
−−→
card~G is not. Thus f being monotone does

not imply that ~f ~H is monotone. Moreover, for a directed hypergraph ~H we have
already seen, that—although the width function cmon

~H
is additive (Lemma 3.1.6)—

the width function ~cmon
~H

need not be additive (cf. Example 5.1.11). Submodularity
and tameness are passed on:

Lemma 5.3.19 Let ~H be a directed hypergraph, and let f be a monotone width
function on the underlying graph ~H of ~H.



5.3. FRACTIONAL EDGE COVERS 107

1. If f is weakly submodular, then so is ~f
mon
~H .

2. If f is tame, then so is ~f
mon
~H .

Proof. 1: Let f be weakly submodular, and let X1, X2 be finite subsets of V ( ~H).

For ε > 0 choose Y1, Y2 ⊆ V ( ~H) such that Xi ⊆ 〈Yi〉 and ~f ~H(Xi) + ε ≥ f(Yi) for
i = 1, 2. Then

~f ~H(X1) +~f ~H(X1) + 2ε ≥ f(Y1) + f(Y2) ≥ f(Y1 ∪ Y2) ≥~f ~H(X1 ∪X2),

where the second inequality holds because f is weakly submodular, and the last
inequality holds because X1 ∪X2 ⊆ 〈Y1 ∪ Y2〉.

2: Obvious. �

Corollary 5.3.20 For a finite directed hypergraph ~H, the width function
−→
fc ~H on

~H satisfies Theorem 2.4.23,1 and 2. �

Example 5.1.11 also shows that
−→
fc ~H is not additive in general.

It is easy to see that the tractability results from Section 2.3 are passed on from

Cfk to C
~f
k . In particular, for the family ~f of width functions ~f ~H for every directed

hypergraph ~H , we have HOM(Decomposed
C
~f
k , ) ∈ P .



Epilogue

The focus of this thesis is on generalised hypertree-width, its generalisations and
related1 invariants. Of the related invariants known so far, cop-width and hypertree-
width are closest to generalised hypertree-width, bounding it from below and from
above. Therefore they were also examined in detail. Two very basic questions had
to be left open even in the finite case:

• Under what conditions is f -bramble-no(H) = f -cw(H)? Is f = cmon
H suffi-

cient?

• cH -ghw(H) and cH -hw(H) are linearly coherent by [AGG05]. Is there a nat-
ural class of equipped graphs (G, f) (larger than that of those of the form
(H, cmon

H )) such that f -ghw(G) and f -hw(G) are (linearly) coherent?

The infinite case is much more complicated. Open questions include:

• Is it true that in the games RCmon(G, f, k) and RC(G, f, k), one of the players
must have a winning strategy?

• Is it true that if the cops have a winning strategy for RC(G, f, k), then they
also have a positional winning strategy?

• Is it true that if the robber has a winning strategy for RCmon(G, f, k) or
RC(G, f, k), then he also has a positional winning strategy? (This should be
easy for RCmon(G, f, k).)

• How about compactness properties for the other invariants defined in Section
2.4?

• Is f -ghw(G) = k always witnessed by a single generalised hypertree decom-
position? (This is true if f only takes values in a well-ordered set such as
ω ∪ {∞}. But how about fractional hypertree-width?)

• If H is locally bounded, does it follow that fcH has finite character?

• Conjecture. If H contains no infinite complete subgraph, then cH has finite
character.

Tree decompositions of infinite graphs

There is more than one way of defining tree decompositions for infinite graphs. For
this thesis we have settled on one of them.

P. D. Seymour and R. Thomas in [ST93] have a more restrictive definition, the
only difference being that the tree T in a tree decomposition (T,B) must be rayless ,
i. e. it must not contain a ray (a graph isomorphic to Figure 2.2, B) as a subgraph.
Apart from the fact that a ray is a tree which does not have a tree decomposition

1In the sense of being linearly coherent.

108



EPILOGUE 109

in this sense (and apart from the necessary failure of the compactness property),
this approach seems to work remarkably well. If we had followed this line, then of
course we would have had to adapt some other definitions as well. The winning
condition in RC(G, f, k) and RCmon(G, f, k) would have been much simpler: The
robber wins every infinite play. Brambles and tangles would have been defined
without condition (B3) and k-decomposability without condition (D3). It is not
clear how we could have fixed the definition of k-trees.

We could also generalise our definition of tree decompositions, admitting infinite
pieces Bt. But then we would have to consider width functions defined on arbitrary
(possibly infinite) sets of vertices. In this context it would also be natural to permit

infinite hyperedges in hypergraphs. Every attempt to define
−−→
card~G or ~c ~H on infinite

mixed graphs or infinite directed hypergraphs naturally leads to this generalisation.
There is also one point that only affects hypertree decompositions. In order

for condition (HD3) to make sense we need T to be a directed tree. However, our
definition of infinite directed trees is unnecessarily restrictive in that it requires a
root. The root has no in-edge, while every other node has precisely one in-edge.
But an infinite tree which is not rayless can also be directed in such a way that
every node has precisely one in-edge. (Intuitively, the root of such a tree is the
limit of an inverse ray.) Therefore, let us call an ordered tree every tree the edges
of which are directed in such a way that every node has at most one in-edge.

Condition (HD3) makes sense if T is an ordered tree. Therefore we could say
that (T,B,C) is a weak hypertree decomposition if T is an ordered tree (not nec-
essarily a directed tree), and T satisfies (TD1), (TD2), (TD3), (HD2), (HD3). On
finite graphs every weak hypertree decomposition is of course a hypertree decom-
position. But the hypergraph H from Theorem 4.4.2, which has cH -hw(H) = 4,
has a weak hypertree decomposition of cH -width 3. Thus it seems likely that the
resulting notion of ‘weak hypertree-width’ is compact for locally bounded graphs.
On the other hand, it seems to be hard to find a game characterisation for this new
notion, unless along the lines of: ‘First, the robber player chooses a finite induced
subhypergraph’.

The homomorphism problem

Of course one would like to have an analogue of M. Grohe’s classification theorem
Fact 2.3.15 in terms of the underlying hypergraph rather than the underlying graph.
This seems to be rather hard, since the proof of the theorem uses the deep Excluded
Grid Theorem from [RS86b]. We are still far from having an analogous theorem
for hypergraphs. In fact, it is not even clear what a good definition of hypergraph
minors should be.

Going in a different direction, one could try to find an analogue of Fact 2.3.15
in terms of the underlying mixed graph of a structure with relations and unary

functions, with
−−→
card~G-ghw instead of tw.



References

[AGG05] I. Adler, G. Gottlob, M. Grohe, Hypertree-Width and related Hyper-
graph Invariants. EuroComb 2005, accepted for publication.

[Ad02] I. Adler. Diplomarbeit: Spiele als Hilfsmittel zu Strukturuntersuchun-
gen bei Graphen und Hypergraphen. Freiburg 2002.
http://www.math.uni-freiburg.de/archiv/diplom/isolde adler.html

[Ad04] I. Adler. Marshals, Monotone Marshals, and Hypertree-Width. J. of
Graph Theory, 47(4):275–296, 2004.
(This paper contains the main results of [Ad02].)

[Ad05a] I. Adler. Tree-related Widths of Graphs and Hypergraphs, 2005. Sub-
mitted for publication.

[Ad05b] I. Adler. Directed Tree-Width Examples. Submitted for publication.

[AP81] S. Arnborg, A. Proskurowski. Linear time algorithms for NP-hard
problems restricted to partial k-trees. Discr. Appl. Math., 23:11–24,
1981.

[AP86] S. Arnborg, A. Proskurowski. Characterization and recognition of par-
tial 3-trees. SIAM J. Alg. Disc. Meth. 7(2):305–314, 1986.

[BDHK05] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer. DAG-width and
parity games. 2005. Accepted for publication

[BP71] L. W. Beineke, R. E. Pippert. Properties and characterizations of
k-trees, Mathematika, 18:141-151. 1971.

[CD05] H. Chen, V. Dalmau. Beyond hypertree width: Decomposition meth-
ods without decompositions. In: Proceedings of the 11th International
Conference on Principles and Practice of Constraint Programming.
2005.

[CJG05] D. Cohen, P. Jeavons, M. Gyssens, A Unified Theory of Structural
Tractability for Constraint Satisfaction and Spread Cut Decomposi-
tion. 2005. Proceedings of IJCAI’05 pp:72-77.

[DKV02] V. Dalmau, Ph. G. Kolaitis, M. Y. Vardi. Constraint satisfaction,
bounded tree-width and finite variable logics. In P. Van Hentenryck,
editor, Proceedings of the 8th International Conference on Princi-
ples and Practice of Constraint Programming. LNCS 2470:310–326.
Springer 2002.

[DF99] R. G. Downey, M. R. Fellows. Parametrized Complexity. Springer
1999.

110



REFERENCES 111

[Di97] R. Diestel. Graph Theory, Springer 1997.

[EF99] H.-D. Ebbinghaus, J. Flum. Finite Model Theory. Springer 1999.

[FFG02] J. Flum, M. Frick, M. Grohe. Query evaluation via tree-decomposi-
tions. J. of the ACM 49(6):716–752, 2002.

[GGMSS05] G. Gottlob, M. Grohe, N. Musliu, M. Samer, F. Scarcello. Hypertree
Decompositions: Structure, Algorithms, and Applications. Proc. of
the 31st Int. Workshop on Graph-Theoretic Concepts in Computer
Science (WG’05), LNCS ???. Springer, ???.

[GJ79] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman 1979.

[GLS01a] G. Gottlob, N. Leone, F. Scarcello. Hypertree Decompositions: A sur-
vey. In J. Sgall, A. Pultr, and P. Kolman (eds.): MFCS 2001, LNCS
2136:37–57. Springer 2001. .

[GLS01b] G. Gottlob, N. Leone, F. Scarcello. Robbers, Marshals, and Guards:
Game Theoretic and Logical Characterizations of Hypertree Width.
Proc. of the 20th ACM Symposium on Principles of Database
Systems:21–32. ACM Press 2001.

[GLS01c] G. Gottlob, N. Leone, F. Scarcello. A Comparison of Structural CSP
Decomposition Methods, Artificial Intelligence (2000),124(2):243–
282. Preliminary version in IJCAU’99.

[GLS02] G. Gottlob, N. Leone, F. Scarcello. Hypertree Decompositions and
Tractable Queries. J. Computer and System Sciences 64(3):579-627,
2002. Preliminary version in PODS’99.

[GM05] M. Grohe, D. Marx. Constraint Solving via fractional edge covers,
to appear in Proc. of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2006).

[Gr03] M. Grohe. The complexity of homomorphism and constraint satisfac-
tion problems seen from the other side. In Proc. of the 44th IEEE
Symposium on Foundations of Computer Science (FOCS ’03):552–
561, 2003.

[Grä] G. Grätzer. Universal Algebra. Van Nostrand, 1968,

[Ha64] R. Halin. Über simpliziale Zerfällungen beliebiger (endlicher und un-
endlicher) Graphen. Mathematische Annalen 156:216–225, 1964.

[Ha76] R. Halin. S-functions for graphs. J. Geometry 8:171–186, 1976.

[JRST01] T. Johnson, N. Robertson, P. D. Seymour, R. Thomas. Directed Tree-
Width. J. Comb. Theory (Series B) 82:138–154, 2001.

[KT91] I. Kř́ıž, R. Thomas. The Menger-like Property of the tree-width of
Infinite Graphs. J. of Combinatorial Theory (Series B) 52:86–91, 1991.

[KV95] Ph. G. Kolaitis, M. Y. Vardi. On the expressive power of datalog:
tools and a case study. Journal of Computer and System Sciences
51(1):110–134, 1995.

[LS99] A. Lustig, O. Shmueli. Acyclic Hypergraph projections. J. of Algo-
rithms 30:400–422, 1999.



112 REFERENCES

[Re97] B. A. Reed. Tree-Width and Tangles: A New Connectivity Measure
And Some Applications. In Surveys in Combinatorics (R. Bailey, ed.).
Cambridge University Press 1997

[Re99] B. Reed. Introducing Directed Tree-Width. 6th Twente Workshop on
Graphs and Combinatorial Optimization (Enschede 1999). Electronic
Notes Discrete Math. 3:8 pages (electronic). Elsevier 1999.

[Ro70] D. Rose. Triangulated graphs and the elimination process, J. Math.
Aanalysis Appl., 32:597–609, 1970.

[Ro74] D. Rose. On simple characterizations of k-trees, Discrete Math., vol.
7:317–322, 1974 .

[RS86a] N. Robertson, P. D. Seymour. Graph Minors. II. Algorithmic Aspects
of Tree-Width. J. of Algorithms, 7:309–322, 1986.

[RS86b] N. Robertson, P. D. Seymour. Graph Minors. V. Excluding a planar
graph. J. of Combinatorial Theory (Series B), 41:92–114, 1986.

[RS91] N. Robertson, P. D. Seymour. Graph Minors. X. Obstructions to Tree-
Decompositions. J. of Combinatorial Theory (Series B) 52:153–190,
1991.

[Sa85] D. Saccà. Closures of Database Hypergraphs. J. of the Association for
Computing Machinery, 32(4):774–803, 1985.

[ST93] P. D. Seymour and R. Thomas. Graph Searching and a Min-Max The-
orem for Tree-Width. J. of Combinatorial Theory (Series B) 58:22–33,
1993.

[Th] R. Thomas. The tree-width compactness theorem for hypergraphs.
Unpublished manuscript.

[Thsen89] C. Thomassen. Configurations in graphs of large minimum degree,
connectivity or chromatic number. In Combinatorial Mathematics,
Proc. of the 3rd International Conf., New York 1985, Annals of the
New York Academy of Science, 555:402–412, 1989.

[Ya81] M. Yannakakis. Algorithms for acyclic database schemes. In 7th In-
ternational Conf. on Very Large Data Bases, 82–94, 1981.



Index

Symbols
BTt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
G ∪ Ĥv . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
G× n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
G0 ⊆ G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
G1 ∩G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
G1 ∪G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
H · n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
H � X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
H≤k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Rπ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Tt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
CQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CSC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
RC(G, f, k) . . . . . . . . . . . . . . . . . . . . . . . 22
RCmon(G, f, k) . . . . . . . . . . . . . . . . . . . 22
ΣH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
βt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
cH . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 102
〈X〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CoreDecomposable

C1

ghd . . . . . . . . . 35

Decomposable
C1

hd . . . . . . . . . . . . . . . . 36

Decomposed
C1 . . . . . . . . . . . . . . . . . . 37

fc(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
fcH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
FPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35−−→
card~G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

GHWk . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Ĝv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
HDC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
HM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
HOM(C,D) . . . . . . . . . . . . . . . . . . . . . . . 32
HOMenum(C1, ). . . . . . . . . . . . . . . . . . .34
HSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
λt,s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

M
hom
−→ N . . . . . . . . . . . . . . . . . . . . . . . . 32

R(E(H))
≥0 . . . . . . . . . . . . . . . . . . . . . . . . . .101

Cfk . . . . . . . . . . . . . . . . . . . . . . . 34, 57, 100
pred(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
SUBSTRC1

enum . . . . . . . . . . . . . . . . . . . . . 34
tw(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
var(ϕ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ϕ(N ) 6= ∅ . . . . . . . . . . . . . . . . . . . . . . . . . 39
~G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
width(T,B) . . . . . . . . . . . . . . . . . . . . . . . .4
weight(ψ) . . . . . . . . . . . . . . . . . . . . . . . 101
weightv(ψ) . . . . . . . . . . . . . . . . . . . . . . 101
W[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
f -bramble-no . . . . . . . . . . . . . . . . . . . . . 44
f - cw(G). . . . . . . . . . . . . . . . . . . . . . . . . .25
f - cwmon(G) . . . . . . . . . . . . . . . . . . . . . . 26
f - ghw(G) . . . . . . . . . . . . . . . . . . . . . . . . 16
f - hw(G) . . . . . . . . . . . . . . . . . . . . . . . . . 16
f - link(G). . . . . . . . . . . . . . . . . . . . . . . . .50
f - order(B) . . . . . . . . . . . . . . . . . . . . . . . 44
f - branch-width(G) . . . . . . . . . . . . . . . 46
f - ehw(G) . . . . . . . . . . . . . . . . . . . . . . . . 14
f - ghw(H) . . . . . . . . . . . . . . . . . . . . . . . . 18
f - hw(H) . . . . . . . . . . . . . . . . . . . . . . . . . 18
f - tangle-no. . . . . . . . . . . . . . . . . . . . . . .45
f - width(T,B) . . . . . . . . . . . . . . . . . . . . 14
f - width(T,B,C) . . . . . . . . . . . . . . . . . 15
f - width(T, κ, λ) . . . . . . . . . . . . . . . . . . 46
fmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
fG′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
fC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
k-decomposable . . . . . . . . . . . . . . . . . . .84

A
acyclic . . . . . . . . . . . . . . . . . . . . . . . . 32, 72
additive width function . . . . . . . . . . . 42
arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B
(B1), (B2), (B3) . . . . . . . . . . . . . . . . . . 44
(B2′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
balanced f -separator . . . . . . . . . . . . . 49
(BD1), (BD2), (BD3), (BD4) . . . . . 46
M -big . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
bounded hypergraph . . . . . . . . . . . . . . 59
bramble . . . . . . . . . . . . . . . . . . . . . . . . . . 44
f -bramble-number . . . . . . . . . . . . . . . . 44
branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
branch decomposition. . . . . . . . . . . . .46
f -branch-width . . . . . . . . . . . . . . . . . . . 46
f -branch-width′ . . . . . . . . . . . . . . . . . . 47

113



114 INDEX

C
(C1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
(C2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
chordal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
k-clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
coherent . . . . . . . . . . . . . . . . . . . . . . . . . . 41
complete graph . . . . . . . . . . . . . . . . . . . . 4
conjunctive query . . . . . . . . . . . . . . . . . 39
connected . . . . . . . . . . . . . . . . . . . . . . 4, 17
connected component . . . . . . . . . . . . . . 4
construction tree . . . . . . . . . . . . . . . . . 12
cop player . . . . . . . . . . . . . . . . . . . . . . . . 23
cop strategy . . . . . . . . . . . . . . . . . . . . . . 24
f -cop-width . . . . . . . . . . . . . . . . . . . . . . 25
core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

D
(D1), (D2), (D3). . . . . . . . . . . . . . . . . .84
DAG-width . . . . . . . . . . . . . . . . . . . . . . . 86
database . . . . . . . . . . . . . . . . . . . . . . . . . .39
directed graph . . . . . . . . . . . . . . . . . . . . 87
directed hypergraph . . . . . . . . . . . . . . 94
directed tree . . . . . . . . . . . . . . . . . . . . . . . 4
directed tree-width . . . . . . . . . . . . . . . 86

E
edges . . . . . . . . . . . . . . . . . . . . . . . 3, 17, 87
equipped graph . . . . . . . . . . . . . . . . . . . 15
escape space . . . . . . . . . . . . . . . . . . . . . . 24
exact f -hypertree-width . . . . . . . . . . 14

F
finite character . . . . . . . . . . . . . . . . . . . 76
forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
forward closure . . . . . . . . . . . . . . . 87, 95
fractional cover number . . . . . . . . . .102
fractional edge cover . . . . . . . . . . . . . 101
fractional edge cover number . . . . 101
fractional hypertree-width . . . . . . . 100

G
Gaifman graph . . . . . . . . . . . . . . . . . . . 17
generalised C1-hypertree decomposition

34
generalised f -hypertree-width . . . . . 16
generalised hypertree decomposition15
graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
guard. . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

H
(HD1), (HD2), (HD3). . . . . . . . . . . . .15

homomorphism problem . . . . . . . . . . 40
hyperarcs . . . . . . . . . . . . . . . . . . . . . . . . . 94
hyperedges . . . . . . . . . . . . . . . . . . . . 17, 94
hypergraph . . . . . . . . . . . . . . . . . . . . . . . 17
hypergraph pair . . . . . . . . . . . . . . . . . . 54
Hypergraph Sandwich Problem . . . 73
‘hypertree’ . . . . . . . . . . . . . . . . . . . . . . . .15
hypertree decomposition . . . . . . . . . . 15
C1-hypertree decomposition . . . . . . . 34
f -hypertree-width . . . . . . . . . . . . . . . . 16

I
induced subgraph . . . . . . . . . . . . . . . . . . 4
induced subhypergraph . . . . . . . . . . . 17
induced subhypergraph pair . . . . . . 54

K
(KT1), (KT2), (KT3). . . . . . . . . . . . .10

L
linearly coherent . . . . . . . . . . . . . . . . . . 41
(f, k)-linked . . . . . . . . . . . . . . . . . . . . . . 49
f -linkedness . . . . . . . . . . . . . . . . . . . . . . 50
locally bounded hypergraph. . . . . . .79

M
minors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
mixed graph . . . . . . . . . . . . . . . . . . . . . . 87
monotone f -cop-width . . . . . . . . . . . . 26
monotone robber and cops game . . 22
monotone width function . . . . . . . . . 19

N
no promise algorithm . . . . . . . . . . . . . 36
nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

O
f -order . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ordered tree . . . . . . . . . . . . . . . . . . . . . 109

P
partial function symbols . . . . . . . . . . 31
partial subgraph . . . . . . . . . . . . . . . . . . . 4
pebble game . . . . . . . . . . . . . . . . . . 33, 35
pieces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
positional . . . . . . . . . . . . . . . . . . . . . . . . .25
predecessor . . . . . . . . . . . . . . . . . . . . . . . . 4
primal graph . . . . . . . . . . . . . . . . . . . . . 17
prime graph . . . . . . . . . . . . . . . . . . . . . . . 7
projection . . . . . . . . . . . . . . . . . . . . . . . . 73
promise algorithm . . . . . . . . . . . . . . . . 37

R
(R1), (R2) . . . . . . . . . . . . . . . . . . . . . . . . 22



INDEX 115

ray . . . . . . . . . . . . . . . . . . . . . . . . . . 85, 108
rayless. . . . . . . . . . . . . . . . . . . . . . . . . . .108
robber and cops game . . . . . . . . . . . . 22
robber player . . . . . . . . . . . . . . . . . . . . . 23
robber strategy . . . . . . . . . . . . . . . . . . . 25

S
(SD1), (SD2), (SD3) . . . . . . . . . . . . . . . 7
separating clique . . . . . . . . . . . . . . . . . . . 7
signature . . . . . . . . . . . . . . . . . . . . . . . . . 31
simplicial . . . . . . . . . . . . . . . . . . . . . . . . . 20
simplicial decomposition . . . . . . . . . . . 7
small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
smooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
source set. . . . . . . . . . . . . . . . . . . . . . . . .94
strictly monotone . . . . . . . . . . . . . . . . . 24
strongly coherent . . . . . . . . . . . . . . . . . 41
structural restrictions . . . . . . . . . . . . . 32
subcubic tree . . . . . . . . . . . . . . . . . . . . . 46
subgraph . . . . . . . . . . . . . . . . . . . . . . . . . . 4
subhypergraph. . . . . . . . . . . . . . . . . . . .17
successor . . . . . . . . . . . . . . . . . . . . . . . . . . 4

T
tame hypergraph . . . . . . . . . . . . . . . . . 17
tame width function . . . . . . . . . . . . . . 42
tangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
f -tangle-number . . . . . . . . . . . . . . . . . . 45
target set . . . . . . . . . . . . . . . . . . . . . . . . . 94
(TD1), (TD2), (TD3) . . . . . . . . . . . . . . 4
thick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
touching triple . . . . . . . . . . . . . . . . . . . . 45
tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
tree component . . . . . . . . . . . . . . . . . . . 28
tree decomposition . . . . . . . . . . . . . 4, 18
k-tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
tree-width. . . . . . . . . . . . . . . . . . . . . .4, 18
triangulation. . . . . . . . . . . . . . . . . . . . . . .6
trivial hypergraph pair . . . . . . . . . . . .62

U
underlying directed hypergraph . . . 99
underlying graph. . . . . . . . . . . . . .17, 87
underlying hypergraph . . . . 31, 32, 94
underlying hypergraph of ϕ . . . . . . . 40
underlying mixed graph. . . . . . . . . . .99

V
vertices . . . . . . . . . . . . . . . . . . . . . . . . 3, 94

W
weak hypertree decomposition . . . 109
weakly submodular . . . . . . . . . . . . . . . 42
weight . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

width function . . . . . . . . . . . . 15, 88, 96
f -width. . . . . . . . . . . . . . . . . . . . . . . . . . .15
winning condition for RC(G, f, k) . 23
winning strategy . . . . . . . . . . . . . . . . . . 25


