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A B S T R A C T

Osteoarthritis of the knee, a widespread cause of knee disability, is commonly treated in orthopedics due
to its rising prevalence. Lower extremity misalignment, pivotal in knee injury etiology and management,
necessitates comprehensive mechanical alignment evaluation via frequently-requested weight-bearing long leg
radiographs (LLR). Despite LLR’s routine use, current analysis techniques are error-prone and time-consuming.
To address this, we conducted a multicentric study to develop and validate a deep learning (DL) model for fully
automated leg alignment assessment on anterior–posterior LLR, targeting enhanced reliability and efficiency.
The DL model, developed using 594 patients’ LLR and a 60%/10%/30% data split for training, validation,
and testing, executed alignment analyses via a multi-step process, employing a detection network and nine
specialized networks. It was designed to assess all vital anatomical and mechanical parameters for standard
clinical leg deformity analysis and preoperative planning. Accuracy, reliability, and assessment duration were
compared with three specialized orthopedic surgeons across two distinct institutional datasets (136 and 143
radiographs). The algorithm exhibited equivalent performance to the surgeons in terms of alignment accuracy
(DL: 0.21 ± 0.18◦ to 1.06 ± 1.3◦ vs. OS: 0.21 ± 0.16◦ to 1.72 ± 1.96◦), interrater reliability (ICC DL: 0.90 ± 0.05
to 1.0 ± 0.0 vs. ICC OS: 0.90 ± 0.03 to 1.0 ± 0.0), and clinically acceptable accuracy (DL: 53.9%–100%
vs OS 30.8%–100%). Further, automated analysis significantly reduced analysis time compared to manual
annotation (DL: 22 ± 0.6 s vs. OS; 101.7 ± 7 s, p ≤ 0.01). By demonstrating that our algorithm not only
matches the precision of expert surgeons but also significantly outpaces them in both speed and consistency of
measurements, our research underscores a pivotal advancement in harnessing AI to enhance clinical efficiency
and decision-making in orthopaedics.
1. Introduction

Lower extremity osteoarthritis (OA) is a prevalent cause of muscu-
loskeletal disability, with a prevalence of 3754.2/100,000 and a 9.3%
increase since 1990, contributing to 4.4% of the global health bur-
den [1]. Lower extremity malalignment is a biomechanical condition
significantly influencing the etiology of various musculoskeletal lower
extremity pathologies, leading to the development of knee joint OA [2,
3]. These pathologies encompass (osteo-)chondral defects [4], meniscal
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tears [5], ligamentous insufficiency [6,7], and patellofemoral instabil-
ity [8]. Additionally, there is growing evidence that biomechanical op-
timization of leg alignment can predict clinical outcomes for numerous
non-surgical and surgical treatment options, including brace therapy,
knee joint preserving surgery [9–13], and knee replacement [14].

A comprehensive preoperative analysis of lower extremity align-
ment on anterior–posterior (a.p.) long leg radiographs (LLR) is a crucial
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clinical exam required for diagnosis, quantification, decision making
and surgery planning for lower extremity malalignment [9–14]. Conse-
quently, it is a frequently ordered radiographic exam in musculoskele-
tal care. Despite the clinical consensus on a standardized approach
to alignment assessment [3,15], the complex analysis involving over
ten radiographic parameters remains time-consuming and prone to
inaccuracies when performed by clinical providers [15–19]. Previ-
ously reported intra- and interreader reliabilities for this analysis vary
from excellent to poor [15,16,18]. High accuracy is vital for sub-
sequent treatment decisions, as inconsistencies may impact clinical
outcomes post-surgery, highlighting the need to address this factor in
the increasingly personalized care of lower extremity musculoskeletal
injuries.

While in line with current macrotrends, multiple clinical specialties
have leveraged the potential of artificial intelligence branches such
as machine learning (ML) and deep learning (DL), clinically applica-
ble solutions specific to muscoluskeletal care and orthopedics have
been relatively underrepresented; despite musculoskeletal pathologies
accounting for a substantial part of the global health burden. However,
in the frequently required and tedious but clinically highly relevant
task of radiographic lower extremity alignment analysis, there seems
significant potential for fully automated machine learning (ML) algo-
rithms, given that reader experience [16,18] and technical support
tools [15,17,19] have been identified as factors limiting precision
and consistency; in particular as ML algorithms have demonstrated to
outperform human raters in comparable clinical use cases [20–23].
The potential of ML algorithms lies in enhancing accuracy, reliability,
and expediting preoperative leg alignment analysis. While previous
studies have reported high accuracy of DL models in predicting single
alignment parameters [24,25], the main limitation is their clinical
applicability to only isolated parameters, as a comprehensive align-
ment analysis as required in the clinical practice of musculoskeletal
care providers relies on multiple relevant alignment parameters to
generate meaningful results that can be leveraged for clinical decision
making [3,15].

From a technical standpoint, algorithms trained to perform clin-
ically relevant analyses on radiographs of the lower extremity used
segmentation methods to obtain leg length measurements [26], single
lower extremity alignment parameters [24], or hip joint detection [27].
In contrast, other studies used landmark detection methods to obtain
alignment analysis of the spine [28] or knee joint [25,29–32]. As such,
there is a significant potential for a combination of these approaches to
improve the reliability and accuracy of automatic measurements on a
radiograph, analogous to ensemble learning in ML [33]. Previous stud-
ies have successfully used multitasking methods in similar clinical use
cases, resulting in high precision [27]. However, as information tech-
nology devices utilized in healthcare facilities typically face limitations
by computing power, there is a critical unmet clinical need for lean and
effective DL architecture to not compromise on the comprehensivess
and accuracy of a lower extremity analysis.

In this study, we present a DL system capable of performing fully au-
tomated, comprehensive leg alignment assessment on anterior–posterior
(a.p.) LLR. We demonstrate the efficient utilization of knowledge
between master and expert networks during evaluation to maximize
accuracy, surpassing single-scale approaches while avoiding hardware
limitations. Comparing key performance indicators such as accuracy,
reliability, and evaluation time with specialized orthopedic surgeons
(OS) in a multicenter validation study, we reveal that a fully automated,
comprehensive leg alignment analysis based on the DL model achieves
clinical-level OS performance. Moreover, the developed DL algorithm
considerably outperforms specialized human raters in processing time.
These findings underscore the potential of state-of-the-art DL models to
augment orthopedic providers’ capabilities in managing lower extrem-
ity pathologies for high-volume, critical tasks demanding precision and
2

reliability.
2. Material and methods

This Institutional Review Board-approved study (460/21s) was con-
ducted in accordance with institutional privacy policies. Patients that
had received radiographic evaluation prior to corrective surgery for
lower extremity malalignment at the senior authors’ institution be-
tween 01/2014 and 01/2021 were retrospectively included. Conven-
tional preoperative weight-bearing a.p. LLRs were required for inclu-
sion. Unconsolidated fractures, metal implants or hardware overlying
the contours of the cortical bone, as well as inadequate radiographic
quality due to severe malrotation or incomplete visualization of the
bony structures were defined as exclusion criteria. The data were split
on patient level 60%, 10%, and 30% for training, validation, and
hold-out testing, respectively. An additional test dataset with a size
equal to the internal dataset was acquired from an external institution
(University of Freiburg) to serve as an external validation of the DL
model.

2.1. Radiographic acquisition

Two or three preoperative weight-bearing a.p. radiographs were
acquired, depending on the height of the patient. The overlapping
radiographs were merged to obtain a full LLR. A ruler and a reference
sphere served as length reference

2.2. Dataset annotation for image analysis

Landmark segmentation and annotation were performed on all pa-
tients’ LLRs. An internal validation of the annotation protocol was
conducted using 50 randomly selected images reviewed by three experi-
enced OS (M.C.R., J.P., M.J.F.). Labels and segmentations were created
by one OS (F.L.) using 3D Slicer (version 4.11, Slicer Community, open
source, slicer.org) and verified by a second OS (M.C.R.). Disagreements
were resolved by a third OS (M.J.F.). These annotations served as the
baseline reference for training. Landmark annotations were made at
anatomic locations relevant for orthopedic surgical planning, following
deformity analysis principles and preoperative analysis requirements.
As depicted in Fig. 1, segmentations and landmark placements were
performed to define femoral head center, femoral and tibial anatomic
axes, femoral and tibial joint lines, and talar joint line. Segmentation
was conducted on the femoral head using a best-fit circle approach,
the distal femur excluding non-weight-bearing structures, the entire
proximal tibia distinguishing anterior and posterior structures, and the
fibular head. The boundaries were defined to include anatomic struc-
tures necessary for planning TKA or alignment corrective osteotomy
(Fig. 1).

2.3. Advanced deep learning techniques for leg alignment analysis

The multi-level approach adopted for automatic detection and label-
ing of various landmarks and segmentations in a single image focused
on leg anatomy. Fig. 2 illustrates the formulated architecture which
partitions the entire leg image anatomically into nine distinct objects
(hip, femur trochanter, femur shaft, femur condyles, tibia eminence,
tibia joint line, tibia shaft, ankle, and reference sphere), each with
segmentation, landmarks, bounding box, and class.

To limit the input area for a single annotation network, we utilize
an upstream recognition step. This step identifies sub-objects within
the entire image, thereby streamlining the task and bypassing hardware
constraints. It is the main recognition network’s duty to designate these
categorized image regions. This procedure employs a network based on
an RCNN ResNet-101, pre-trained with the Microsoft Common Objects
in Context dataset [34]. The loss function comprises the aggregate
of cross-entropy classification losses 𝐿𝑐𝑙𝑠,𝑖 and intersection over union

(IoU) losses 𝐿𝑏𝑜𝑥,𝑖 for each object 𝑖, as outlined by Girshick [35]. To
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Fig. 1. Annotation and segmentation of clinically significant landmarks on standard anteroposterior hip-knee-ankle radiograph using 3D Slicer (v4.11, Slicer Community, open-
source, slicer.org): (a) Radiograph annotations overview. (b) Hip region: H-1 marks femoral head center; F-6 indicates greater trochanter tip; segmentation covers largest femoral
head diameter. (c) Distal femur: F-1, F-2 establish joint line; F-3, F-4 delineate condyles borders; F-5 identifies notch center; segmentation covers weight-bearing distal femur. (d)
Proximal tibia and fibula detail: T-3, T-4 define proximal tibial joint line; T-5, T-6 indicate medial and lateral proximal tibia borders; T-5 marks intercondylar eminence midpoint;
K-1, K-2 represent 25-mm reference body diameter; segmentation includes entire proximal tibia and fibula, differentiating anterior and posterior structures. (e) Ankle joint: S-5
denotes talar surface center; S-3, S-4 indicate talus borders; joint line established by S-1, S-2; segmentation involves proximal talus. Points A-1 through A-8 identify cortical borders
at various elevations, delineating anatomic axes.

Fig. 2. Comprehensive lower extremity alignment analysis via deep learning algorithm: (a) Utilization of standard weight-bearing anteroposterior radiographs for hip, knee, and
ankle evaluation. (b) Detection network processes radiographs, downscaled for memory conservation and optimizing 𝐿𝑐𝑙𝑠,𝑖 and 𝐿𝑏𝑜𝑥,𝑖 for the network heads during training, while
specialized networks examine detected regions at full resolution. (c) Prior to employing expert networks, the image area optimized for inference aligns the object with the average
location in the training dataset. Expert network training is further extended by segmentation (𝐿𝑚𝑎𝑠𝑘,𝑖) and landmark identification (∑𝑚

𝑗=1 𝐿𝑘𝑒𝑦𝑝,𝑖,𝑗 ) for the network heads. (d) Projection
of expert networks’ data onto the hip-knee-ankle radiograph. (e) Result: Automated leg alignment assessment on radiographs.
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ensure the GPU memory usage stays below 2 GB, we downscale the
images prior to processing them through the main network.

Each image region is then directed to expert networks based on
their category, utilizing the original full image resolution. The primary
image analysis, comprising landmark placement, bounding boxes, seg-
mentation, and classification, is conducted by the expert multitasking
network. All network heads are assigned equal weightage for loss
functions, considering their equal impact on the backbone [34]. Each
specialized network employs a Mask-R CNN ResNet-50 architecture
pre-trained with the COCO dataset and fine-tuned with the training
dataset for 30,000 iterations, with implementations based on PyTorch
1.12 and the detectron2 v0.6 library [36].

In order to optimize the proposed pipeline’s performance, an adap-
tive method is introduced. This leverages the master network’s knowl-
edge and employs distinct strategies for training and inference as
depicted in Fig. 2(c). During training, random segments of the entire
X-ray image are selected to ensure variance in image representation
while maintaining sufficient object presence and minimizing utilized
image area. Therefore each expert network is trained on an individually
created training dataset.

During inference, the main detection network’s positional informa-
tion is leveraged to minimize the task complexity faced by the expert
network. This is accomplished by positioning the detected object at the
location where it was on average in the training dataset used by the
individually trained expert network. If the main detection network fails
to detect the object during inference, the object’s position is roughly
predetermined using the statistical data from the main network’s train-
ing dataset, and the expert network is tasked with annotation within
this expanded search area.

The final result of the DL-based image analysis is obtained by
projecting the integrated annotations from specialized networks, along
with the main detector network’s positional information, onto the
complete X-ray image (see Fig. 2(d)). In-depth information on each net-
work’s implementation can be accessed through the online training pa-
rameters and source code: https://github.com/NikonPic/AlignmentNet
and in Appendix A. The obtained results form the foundation for
subsequent post-processing steps aimed at enhancing overall perfor-
mance, encompassing segmentation, bounding box, class, and landmark
locations of each object identified by the DL algorithm.

2.4. Optimization of landmark accuracy through annotation integration
and local edge filtering

To enhance the precision of angle calculations, we introduce a
process that integrates additional intermediate steps, tailored to the
specific anatomy. This approach merges information from bounding
boxes, segmentation, and landmarks to augment the result’s accuracy.
For instance, landmarks of the tibial and femoral condyles and the an-
kle joint are carefully positioned on the predefined segmentation edge.
Through the consolidation of segmentation and detected landmarks, the
accuracy of the final landmarks can be amplified. We calculate these
final landmarks as follows:

markf inal = 𝑘 ⋅markorig + (1 − 𝑘) ⋅markseg⟂. (1)

Where markf inal represents the landmark defined for angle analysis,
markorig is the original landmark as defined by the specialist network,
and markseg⟂ is the perpendicular projection of the original landmark
onto the segmentation. The coefficient 𝑘, determined to be 0.6, is
the optimally chosen parameter that minimizes angular loss in the
validation dataset. This value was empirically found to provide the
most accurate balance between the initial and projected landmark
positions for precise angle analysis.

To further optimize the accuracy of critical landmarks, specifically
those situated on the convex contour of the femoral condyles (F-1 and
F-2), we employ a local edge filter. These landmarks are especially
prone to errors but are essential for determining clinical parameters like
4

Fig. 3. Local edge filter for accurate anatomical localization of F-1 on the femoral
condyle: (a) Relevant X-ray image section displaying physician’s annotations in green,
network’s annotations in blue, and redefined F-1 point using local edge filter in red.
(b) Image section serving as input for the edge filter. (c) Edge filter output, illustrating
network markers in blue and the minimum in red. The redefined red point, while
farther from the OS’s annotation, provides superior alignment parameter calculation.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

JLCA and mLDFA. We necessitate the use of an edge filter due to the
conservative behavior of the landmark detector during training, which
is driven by the loss function for landmark placement. The application
of the local edge filter is visualized in Fig. 3.

The network’s label serves as an anchor for the local edge analysis. A
window expands around this area (as seen in Fig. 3(a) black box or (b)).
The intensity of the selected area is averaged, converting the image into
a one-dimensional intensity vector as:

intensity𝑦 =
10
∑

𝑥=−10
intensity𝑥,𝑦 (2)

By applying a digital zero-phase filter based on [37] to the acquired
intensity and identifying the filtered signal’s minima, we ascertain and
apply the new y-position for the landmark to redefine the F-1 or F-2
point, as shown in Fig. 3(c).

2.5. Conducted ablation studies

To optimize the DL model’s accuracy, the presented methods were
evaluated and compared in detail. Initially, various DL architectures
were assessed on the internal test dataset. The selected benchmarks
included:

1. Single-scale approach (SC) that directly evaluates entire images
without a localization step.

2. Multiscale approach (MS) that incorporates the master network
but centers the local object in image subregions.

3. Proposed approach combining multiscale approach and simu-
lated training scenario for the expert network (MS-TrainSim).

These models were compared with the annotations of OS1 on the
internal test dataset, particularly analyzing and comparing the root
mean square error (RMSE) of landmarks across all objects. The archi-
tecture exhibiting the lowest RMSE in landmark detection served as the
foundation for further analysis.

A subsequent ablation study assessed the advantages of anatomical
landmark optimization filters. The DL model landmarks were compared
with the combination of the DL model with local edge filters for points
F-1 and F-2. Landmark accuracy and angular accuracy for mLDFA and
JLCA were compared, and the approach with the lowest error for JLCA
and mLDFA was utilized for further analysis.

https://github.com/NikonPic/AlignmentNet
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2.6. Lower extremity alignment analysis

The final automatic landmark detection algorithm generated numer-
ical output for lower limb alignment, including relevant parameters
such as mLPFA, mLDFA, JLCA, mMPTA, mLDTA, AMA, mFA-mTA, and
limb length [3,38].

The mLPFA is the lateral angle between a line from the femoral
head’s center to the greater trochanter’s tip and the femur’s mechanical
axis. The mLDFA is the lateral angle between the distal femoral knee
joint line and the femur’s mechanical axis. The JLCA is the angle
between the distal femoral knee joint line and the proximal tibial knee
joint line. The mMPTA is the medial angle between the proximal tibial
knee joint line and the tibia’s mechanical axis. The mLDTA is the lateral
angle between the tibia’s mechanical axis and the talar joint line. The
AMA is the angle between the mechanical and anatomic axes of the
femur. The mechanical tibiofemoral angle is the angle between the
femur’s and tibia’s mechanical axes. MAD is the distance between the
Mikulicz line and the tibial joint line’s center, while limb length is
determined using the Mikulicz line’s length.

The DL model was trained to recognize and measure the refer-
ence sphere’s diameter for accurate length calibration. If the reference
sphere was absent, the ruler was used for calibration using the latest
OCR version by Ooms [39]. The developed model’s final workflow for
an example radiograph is shown in Fig. 4. Further details on calculating
each angle based on the determined landmarks can be found in the
GitHub repository https://github.com/NikonPic/AlignmentNet.

2.7. Evaluation of performance

To evaluate the performance of the fully automated alignment
analysis, reference measurements were performed by three different
experienced human raters for both the internal and external test data
sets.

For the internal dataset, manual landmark annotation was per-
formed using 3D Slicer (version 4.11, Slicer Community, open source,
slicer.org), and subsequent alignment analysis parameters were cal-
culated using the principles of deformity analysis [3] as clinically
required for the [38] planning method. In addition, a comprehensive
leg alignment analysis of OS was performed using the state-of-the-art
US Food and Drug Administration (FDA)-approved mediCAD ortho-
pedic planning software (version mediCAD Classic, Knee 2D, version
6.0; Hectec GmbH) according to the software instructions to obtain the
outcome parameters generated by the DL algorithm. While OS1 (J.P.)
and OS2 (Y.J.E.) were two specialist OS employed in the specialized
tertiary lower extremity deformity correction department at the senior
author’s institute that performed measurements for the purpose of this
study, OS3 reflects the attending-level surgeon approved measurements
that were utilized for the preoperative lower alignment analysis.

To evaluate inter- and intrarater reliability, segmentation and land-
mark detection and reference measurement by OS1 and OS2 were
performed twice at four-week intervals in 30 randomly selected pa-
tients.

2.8. Performance metrics

The fully automated landmark detection accuracy was gauged using
the root mean square error (RMSE) and Sørensen-Dice coefficient as
per [40]. This assessment compared bounding box placement and
segmentation accuracy between manual annotations by an orthopedic
surgeon (OS1) and our deep learning (DL) model on the internal test
dataset.

For final performance evaluation, the DL model’s clinical parame-
ters were contrasted with the average of human measurements (OS1,
OS2, and OS3) on both internal and external test datasets. Discrep-
ancies between the DL model’s predictions and these ground truth
measurements were quantified to assess alignment parameter accuracy.
5

Fig. 4. Detailed algorithm workflow: (a) Analysis conducted on a standard weight-
bearing anterior–posterior hip-knee-ankle radiograph. (b) DL model’s predicted
annotations and segmentation in blue, with ground truth annotations in green for
comparison. (c) Post-processing visualization of alignment parameters derived from
landmark annotations for clinical application. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Interrater reliability was examined by comparing intraclass coefficients
(ICC) between individual human raters and between the ground truth
and DL model parameters (ICC3K; average fixed rater). Intrarater relia-
bility, for 30 cases in the external dataset, involved repeating measure-
ments by OS1, OS2, and the DL model after a 30-day period, with ICC
comparisons made between each rater’s repeated measurements.

Finally, to gauge the clinical reliability and safety of the DL algo-
rithm, we compared the percentage of DL algorithm parameters within
a clinically acceptable range against human raters (OS1 vs. OS2; OS1
vs. OS3; OS2 vs. OS3). Clinically acceptable error thresholds were
defined as over 2◦ for angle measurements [15,41], 2 mm for MAD,
and 5 mm for limb length [41,42].

2.9. Statistical analysis

Statistical analysis was performed using the python pingouin pack-
age [43]. Categorical variables are reported as counts and percentages,
while continuous variables are reported as mean ± standard deviation.
To evaluate the accuracy of landmark annotation between OS and
the DL system, the root mean square error (RMSE) was calculated.
To evaluate the accuracy of segmentations between OS and the DL
system, the root mean square error was calculated via the Sørensen-
Dice coefficient. For reliability assessment, ICC values of ≥0.9 were
defined as excellent, ≥0.75 as good, ≥0.5 as moderate, and ≤0.5 as
poor [44]. The normality of continuous variables was assessed using the
Shapiro–Wilk test. According to the respective distribution, continuous

https://github.com/NikonPic/AlignmentNet
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Table 1
Patient characteristics. Continuous variables are presented as mean ± standard deviation (range); Categorical variables are
presented as count and percentage.

Overall (n = 594) Train (n = 399) Valid (n = 59) Test (n = 136) External (n = 143)

Age [years] 41.1 ± 13.2 41.6 ± 13.0 46.8 ± 12.1 37.4 ± 13.4 40.7 ± 11.4
Left 388 (65.3%) 296 (74.2%) 0 (0.0%) 92 (67.6%) 72 (50.4%)
Female 182 (30.6%) 117 (29.3%) 16 (27.1%) 49 (36.0%) 36 (25.2%)
Fig. 5. Flowchart illustrating the patient population for this study after considering
inclusion criteria, exclusion criteria for the internal (A) and external dataset (B).

variables were compared using t-tests or Mann–Whitney U tests. The
significance level was set at p < 0.05.

3. Results

Between 01/2014 and 01/2021, review of the institutional database
identified 687 patients who had a preoperative weight-bearing a.p.
LLR. Accounting for inclusion and exclusion criteria (Fig. 5), 594
the remaining patients (mean age 41.1 ± 13.2 years, 182 females,
388 left leg) were included. The demographic characteristics of the
study population are summarized in Table 1. At the senior author’s
institution, a reference sphere was present on 580 radiographs, whereas
a ruler was present on the remaining 14 radiographs. Accordingly,
patient radiographs were randomly divided into training (n = 399,
60%), validation (n = 59, 10%), and test (n = 136, 30%) data sets.

3.1. Performance in landmark detection and segmentation

To calculate all relevant angles, the DL model must first identify
the necessary anatomical structures and landmarks, learning to detect
these from the ground truth annotations provided by the expert. High
agreement was observed between the predicted landmarks by the DL
model and the annotated landmarks, enabling accurate angle calcu-
lation. Table 2 presents the detailed results for the accuracy of each
individual object and landmark. For length measurements, a reference
object, such as a reference sphere or a ruler, must be identified within
the X-ray. The algorithm successfully detected the reference sphere
in 100% (132 of 132) of cases where it was present and performed
measurements on the ruler in 100% (4 of 4) of the remaining cases.

The mean RMSE across all landmarks of each object ranged from
0.48 mm ± 1.0 mm (Sphere) to 7.1 mm ± 4.55 mm (femurshaf t). The
Sørensen-Dice coefficient for bounding box placement ranged from
0.92 ± 0.04 (tibiashaf t) to 0.97 ± 0.01 (femurtrochanter) and for segmen-
tation between 0.89 ± 0.2 (ankle) and 0.97 ± 0.01 (femurtrochanter).

3.2. Performance of DL algorithm compared to manual reference measure-
ments

The DL model calculates the relevant alignment parameters based
on the definitions provided in Section 2.6 and underwent both internal
6

Table 2
Root Mean Square Errors (RMSE) in mm of the averaged landmark detections and Dice
Score Coefficient for Bounding Box placement (Dice BBox) and Segmentation (Dice
Seg) for the individual objects on the internal test dataset. Continuous variables are
presented as mean ± standard deviation (range) and data listed in brackets are 95%
CIs.

RMSE Dice BBox Dice Seg

Hip 0.6 ± 0.3 0.97 [0.97,0.97] 0.97 [0.97,0.97]
Femtroch 0.9 ± 0.5 0.97 [0.97,0.97] 0.97 [0.97,0.97]
Femshaf t 7.0 ± 4.6 0.90 [0.89,0.91] –
Femcond 1.9 ± 2.7 0.96 [0.96,0.96] 0.97 [0.97,0.97]
Tibemin 1.1 ± 1.1 0.96 [0.96,0.96] 0.95 [0.93,0.97]
Tibjl 1.4 ± 1.4 0.96 [0.96,0.96] 0.96 [0.96,0.96]
Tibshaf t 5.5 ± 3.5 0.92 [0.91,0.93] –
Ankle 0.8 ± 1.6 0.93 [0.91,0.95] 0.89 [0.89,0.89]
Sphere 0.5 ± 1.0 0.95 [0.92,0.98] 0.95 [0.92,0.98]

Table 3
Assessment accuracy of alignment parameters measured by the mean deviation from
the average OS rating for the internal and external test dataset. The highest accuracy
for each parameter is highlighted in bold. Continuous variables are presented as
mean ± standard deviation. TP, tibial plateau.

Internal test dataset (n = 136)

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length [mm] 6.91 ± 7.99 – – 9.31 ± 9.22
Load on TP [%] 2.58 ± 12.36 0.76 ± 0.71 1.1 ± 1.72 1.73 ± 6.18
MAD [mm] 2.35 ± 1.33 1.66 ± 1.17 1.32 ± 1.86 1.16 ± 0.68
mLPFA [◦] 0.82 ± 1.13 1.47 ± 1.23 1.38 ± 1.28 0.69 ± 0.71
AMA [◦] 0.29 ± 0.27 0.34 ± 0.22 0.32 ± 0.26 0.36 ± 0.52
mLDFA [◦] 0.48 ± 0.56 0.66 ± 0.61 0.58 ± 0.55 0.5 ± 0.71
JLCA [◦] 0.56 ± 0.56 0.83 ± 0.74 0.69 ± 0.62 0.76 ± 0.93
mMPTA [◦] 0.39 ± 0.39 0.88 ± 1.7 0.91 ± 1.65 0.67 ± 0.61
mFTA [◦] 0.13 ± 0.14 0.32 ± 0.25 0.32 ± 0.24 0.16 ± 0.13
KJLO [◦] 0.45 ± 0.76 – – 0.65 ± 0.63
mLDTA [◦] 0.5 ± 0.51 0.77 ± 0.69 0.53 ± 0.45 0.94 ± 0.86

External test dataset (n = 143)

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length [mm] 4.24 ± 2.89 15.38 ± 27.47 16.53 ± 27.7 7.58 ± 9.31
Load on TP [%] 0.82 ± 0.65 1.22 ± 1.59 1.37 ± 1.69 1.1 ± 1.1
MAD [mm] 0.93 ± 0.72 1.58 ± 3.01 1.76 ± 3.04 1.86 ± 1.38
mLPFA [◦] 0.86 ± 0.72 1.69 ± 1.92 1.72 ± 1.96 1.06 ± 1.3
AMA [◦] 0.28 ± 0.21 0.23 ± 0.19 0.32 ± 0.25 0.35 ± 0.37
mLDFA [◦] 0.45 ± 0.74 0.48 ± 0.53 0.55 ± 0.76 0.45 ± 0.52
JLCA [◦] 0.48 ± 0.71 0.74 ± 0.61 0.83 ± 0.86 0.59 ± 0.59
mMPTA [◦] 0.37 ± 0.31 0.68 ± 0.78 0.74 ± 0.81 0.46 ± 0.57
mFTA [◦] 0.21 ± 0.16 0.23 ± 0.26 0.25 ± 0.29 0.21 ± 0.18
KJLO [◦] 0.42 ± 0.51 – – 0.42 ± 0.59
mLDTA [◦] 0.48 ± 0.46 0.91 ± 1.1 0.95 ± 1.06 0.95 ± 1.13

and external testing. For the internal dataset, the mean differences
in the angular alignment parameters between the OS ranged from
0.13◦ ± 0.14◦ (mFTA, OS1-OS2) to 1.47 ± 1.23 (mLPFA, OS1-OS3).
In comparison, the mean differences between the DL model and the
mean measurement of the OS ranged from 0.16◦ ± 0.14◦ (mFTA) to
0.94◦ ± 0.86◦ (mLDTA).

In the validation of the performance on an external test dataset, the
mean differences in the angular alignment parameters assessed between
the OS ranged from 0.21◦ ± 0.16◦ (mFTA, OS1-OS2) to 1.72◦ ± 1.96◦

(mLPFA, OS2-OS3). In the comparison, mean differences between the
DL model and the mean measurement of the OS, these ranged from
0.21◦ ± 0.18◦ (mFTA) to 1.06◦ ± 1.3◦ (mLPFA). Detailed information
on the performance is presented in Table 3.
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Table 4
Interreader reliability as quantified by intraclass correlation (ICC) values on the internal and external test dataset. Data listed in brackets
are 95% CIs. TP, tibial plateau.

Internal test dataset (n = 136)

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length 0.99 [0.99, 0.99] – – 0.99 [0.97, 0.99]
Load on TP 0.92 [0.89, 0.95] 1.0 [0.99, 1.0] 0.99 [0.98, 1.0] 0.98 [0.97, 0.99]
MAD 0.99 [0.8, 1.0] 1.0 [0.95, 1.0] 1.0 [0.99, 1.0] 1.0 [0.98, 1.0]
mLPFA 0.98 [0.98, 0.99] 0.95 [0.74, 0.98] 0.95 [0.79, 0.98] 0.99 [0.99, 0.99]
AMA 0.97 [0.95, 0.98] 0.95 [0.68, 0.98] 0.95 [0.62, 0.99] 0.93 [0.9, 0.95]
mLDFA 0.99 [0.98, 0.99] 0.96 [0.93, 0.97] 0.96 [0.94, 0.98] 0.98 [0.97, 0.99]
JLCA 0.92 [0.87, 0.95] 0.87 [0.79, 0.92] 0.92 [0.87, 0.95] 0.73 [0.62, 0.81]
mMPTA 0.99 [0.99, 0.99] 0.81 [0.7, 0.88] 0.82 [0.71, 0.88] 0.97 [0.96, 0.98]
mFTA 1.0 [1.0, 1.0] 1.0 [0.98, 1.0] 1.0 [0.99, 1.0] 1.0 [1.0, 1.0]
KJLO 0.96 [0.94, 0.97] – – 0.95 [0.92, 0.97]
mLDTA 0.99 [0.99, 0.99] 0.98 [0.95, 0.99] 0.99 [0.98, 1.0] 0.97 [0.96, 0.98]

External test dataset (n = 143)

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length 1.0 [1.0, 1.0] 0.92 [0.87, 0.95] 0.92 [0.86, 0.95] 0.99 [0.97, 0.99]
Load on TP 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
MAD 1.0 [1.0, 1.0] 0.99 [0.99, 0.99] 0.99 [0.99, 0.99] 1.0 [0.95, 1.0]
mLPFA 0.99 [0.99, 0.99] 0.95 [0.89, 0.97] 0.95 [0.91, 0.97] 0.98 [0.97, 0.98]
AMA 0.97 [0.94, 0.98] 0.98 [0.97, 0.98] 0.96 [0.9, 0.98] 0.94 [0.91, 0.96]
mLDFA 0.97 [0.95, 0.98] 0.98 [0.97, 0.99] 0.96 [0.95, 0.97] 0.98 [0.97, 0.99]
JLCA 0.9 [0.87, 0.93] 0.86 [0.8, 0.9] 0.79 [0.7, 0.85] 0.9 [0.85, 0.93]
mMPTA 0.99 [0.99, 1.0] 0.97 [0.95, 0.98] 0.96 [0.94, 0.97] 0.98 [0.98, 0.99]
mFTA 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
KJLO 0.97 [0.96, 0.98] – – 0.96 [0.95, 0.97]
mLDTA 0.99 [0.99, 1.0] 0.97 [0.96, 0.98] 0.97 [0.96, 0.98] 0.97 [0.95, 0.98]
i

3

3.3. Interreader reliability

Details on the interreader reliability of the internal and external
test datasets are provided in Table 4. For the internal test dataset,
interreader reliability was good (0.81) to excellent (1.0) between OS
for all angular measurements, while it was excellent (0.92–0.99) for
measurements involving absolute distances. Comparable to human per-
formance, interreader reliability between the DL model and ground
truth measurements of the OS was moderate (0.73) to excellent (1.0)
for all angular measurements, while it was excellent (0.98–0.99) for
measurements involving absolute distances.

For the external test dataset, interreader reliability was moderate
(0.79) to excellent (1.0) between OS for all angular measurements,
while it was excellent (0.92–1.0) for measurements involving abso-
lute distances. Similar to human performance, interreader reliability
between the DL model and ground truth measurements of the OS was
excellent (0.9–1.0) for all angular parameters, and excellent (0.99–1.0)
for measurements involving absolute distances.

3.4. Intrarater reliability

To determine intrarater reliability, the measurement was performed
twice with Medicad on the external dataset for n = 30 cases and
ompared. The same cases were also repeated with the algorithm,
hich always gave the same results due to its deterministic behavior.

ntratrater reliability results are shown in Table 5.

.5. Determination of clinically acceptable accuracy

Detailed results on the clinically acceptable accuracy are presented
n Table 6.

In the internal test dataset, the rate of clinically acceptable agree-
ent between OS1, OS2 and OS3 in the assessment of the respective

lignment parameters ranged between 13.6% and 100% of the cases.
he rate of clinically acceptable agreement between the DL model and
he ground truth measurements by OS1, OS2 and OS3 in the assessment
f the respective alignment parameters ranged between 32.8% and
7

00% of the cases. y
Table 5
Intrarater reliability as quantified by intraclass correlation (ICC) values on the internal
test dataset for OS1 and OS2. Data listed in brackets are 95% CIs. The AI outperforms
both OS, due to her deterministic behavior and scores 1.0 [1.0, 1.0] for all parameters.
TP, tibial plateau.

OS1-OS1 OS2-OS2

Leg length 1.0 [1.0, 1.0] 1.0 [1.0, 1.0]
Load on TP 0.99 [0.98, 0.99] 0.95 [0.9, 0.98]
MAD 1.0 [0.99, 1.0] 0.99 [0.92, 1.0]
mLPFA 0.97 [0.93, 0.98] 0.98 [0.96, 0.99]
AMA 0.98 [0.92, 0.99] 0.95 [0.49, 0.99]
mLDFA 0.98 [0.97, 0.99] 0.99 [0.96, 0.99]
JLCA 0.94 [0.87, 0.97] 0.83 [0.65, 0.92]
mMPTA 0.98 [0.97, 0.99] 0.98 [0.96, 0.99]
mFTA 1.0 [0.99, 1.0] 0.99 [0.93, 1.0]
KJLO 0.99 [0.97, 0.99] 0.97 [0.95, 0.99]
mLDTA 0.95 [0.89, 0.98] 0.99 [0.98, 1.0]

In the external test dataset, the rate of clinically acceptable agree-
ment between OS1, OS2 and OS3 in the assessment of the respective
alignment parameters ranged between 31% and 100% of the cases. The
rate of clinically acceptable agreement between the DL model and the
ground truth measurements by OS1, OS2 and OS3 in the assessment of
the respective alignment parameters ranged between 54% and 100% of
the cases.

3.6. Analysis of cases with worst performance

The cases with the worst performance on the external data set com-
pared with the surgeons’ averaged measurements (OSmean) are shown
in Fig. 6. In case (a), the mLPFA is misdetermined by 8.5◦ (97.8◦ DL
versus 89.3◦ OSmean). In case (b), the angle of the mLDFA is too low
by 2.9◦ and the JLCA by 5.8◦. In case (c), the AMA is too low by 3.2◦

compared with the OS. Similarly, in case (d), the KJLO and mMPTA are
too high by 6.1◦ and 6◦, respectively. Finally, in case (e), the mLDTA
s too high by 10.6◦.

.7. Comparison of time required for analysis

Mean time required of human raters for a full comprehensive anal-

sis of the alignment using MediCAD version 6.0 was 103 ± 8 s for
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Table 6
Clinically acceptable accuracy according to clinically relevant tolerance margins on the
internal and external test dataset. Values represent the percentage of individual cases,
clinically acceptable agreement was achieved. TP, tibial plateau.

Internal test dataset

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length (tol = 5 mm) 56.0 – – 32.8
Load on TP (tol = 2%) 94.4 15.2 14.4 90.4
MAD (tol = 2 mm) 41.6 20.0 26.4 87.2
mLPFA (tol = 2◦) 93.6 13.6 13.6 96.0
AMA (tol = 2◦) 99.2 16.8 16.8 98.4
mLDFA (tol = 2◦) 97.6 55.2 56.8 96.8
JLCA (tol = 2◦) 82.4 53.6 50.4 91.2
mMPTA (tol = 2◦) 100.0 56.8 56.0 96.0
mFTA (tol = 2◦) 100.0 59.2 59.2 100.0
KJLO (tol = 2◦) 97.6 – – 94.4
mLDTA (tol = 2◦) 96.8 15.2 16.8 88.8

External test dataset

OS1-OS2 OS1-OS3 OS2-OS3 AI-OSmean

Leg length (tol = 5 mm) 68.5 31.5 30.8 53.9
Load on TP (tol = 2%) 95.1 72.7 69.9 86.0
MAD (tol = 2 mm) 98.6 73.4 74.1 62.9
mLPFA (tol = 2◦) 90.9 71.3 74.8 88.8
AMA (tol = 2◦) 100.0 95.8 95.8 99.3
mLDFA (tol = 2◦) 97.9 94.4 94.4 97.2
JLCA (tol = 2◦) 97.9 93.0 92.3 98.6
mMPTA (tol = 2◦) 100.0 93.0 93.0 98.6
mFTA (tol = 2◦) 100.0 96.5 95.8 100.0
KJLO (tol = 2◦) 98.6 – – 97.2
mLDTA (tol = 2◦) 99.3 86.7 86.7 89.5

Fig. 6. Worst-Performing cases on external test dataset: Displaying the lowest perfor-
mance for (a) mLPFA, (b) mLDFA and JLCA, (c) AMA, (d) KJLO and mMPTA, and
(e) mLDTA, with DL algorithm annotations (segmentations and landmark detections)
in blue and corresponding angles and parameters in their respective colors. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

OS1 and 98 ± 6 s for OS2. The processing time for the DL model
for a full comprehensive analysis per radiograph at inference was
22 ± 0.5 s, utilizing a consumer-grade personal computer (Nvidia GTX
2070 maxQ) as a simulated clinical resource environment. This was
8

significantly faster (p ≤ 0.01) than OS1 or OS2 on the internal test
dataset. Similarly, on the external test dataset, the mean time required
of human raters for a full comprehensive analysis of the alignment
using MediCAD version 6.0 was 105 ± 7 s for OS1 and 101 ± 7 s for
OS2, while it was 22 ± 0.6 s for the DL model (p ≤ 0.01). As such, the
processing time of the DL model was more than four times faster than
OS1 and OS2.

4. Discussion

This study aimed to develop and externally validate a DL model
for the autonomous, comprehensive assessment of leg alignment using
a.p. LLR radiographs through a multitasking approach. The resulting
DL model performed leg alignment analysis, incorporating comprehen-
sive parameters essential for clinical decision-making, with a level of
precision, inter-reader reliability, and clinically acceptable accuracy
matching that of specialized OS. Furthermore, the algorithm notably
outperformed human raters in intra-rater reliability and processing
time. With degenerative knee joint pathologies on the rise, the demand
for lower extremity analysis using LLR is increasing. The DL model
developed in this study holds significant potential to streamline work-
flow, bolster diagnostic confidence and accuracy, and reduce processing
time.

Despite the adoption of ML and DL advances by numerous clini-
cal specialties to improve quality of care and workflows in resource-
constrained environments, orthopedic musculoskeletal care has seen
a dearth of clinically applicable solutions [45]. Although AI applica-
tions in orthopedic care have primarily concentrated on risk stratifi-
cation, clinical outcome prediction [46], and enhancing radiographic
diagnostic accuracy for certain pathologies [47], there is a lack of
meaningful applications that tangibly improve orthopedic providers’
clinical workflows. While previous publications have striven to expedite
standardized lower extremity alignment analysis [24,25,29,30,41,48],
the majority have focused solely on measuring a single alignment pa-
rameter, such as the mFTA angle [24,25,29,30,48], AMA [49], or limb
length [26]. While these analyses may serve as proof of concept, they
offer limited utility in clinical decision-making and surgical planning
contexts, such as lower extremity deformity correction [15,50] and
knee arthroplasty [51].

4.1. Technical innovation

From a technical perspective, this study’s model uses a master net-
work to guide multiple expert networks, employing a multi-algorithmic
approach. These networks perform multi-task feature selection like
segmentation and landmark detection, optimizing accuracy and re-
liability while reducing memory use. The master network improves
performance by sharing knowledge with the expert networks during
inference and applying local edge detection to error-prone landmarks.

This stands in contrast to previous solutions for related clinical use
cases that only utilized single-task features such as landmark detec-
tion [25,28–30] or segmentation features [24–26,29,30]. This study’s
development approach effectively harnesses the power of ensemble
learning in ML [33]. The distinct technologies used in the multi-
tasking approach outperformed previously reported results in terms
of landmark detection accuracy, with previously reported L2 errors
ranging from 1.63 ± 1.29 mm (tibial spines) to 1.7 ± 1.0 mm (femoral
head) [25], and segmentation tasks, with Sørensen-Dice coefficients
ranging from 0.97 ± 0.09 (femoral) to 0.96 ± 0.11 (tibial) [24] or 0.82
(hip) to 0.93 (knee) [48].
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4.2. Evaluating alignment accuracy

In evaluating the accuracy of clinically relevant alignment param-
eters as a key performance indicator for potential applicability in
orthopedic care, the accuracy of the developed DL model generally
performed on the level of different specialist OS. Notably, using a
multitasking approach, the algorithm outperformed previously reported
studies such as Simon et al. [41], which documented accuracies of 0.39◦

or mFTA, 0.96◦ for mLDFA, and 1.07◦ for mMPTA. Comparing the
ystematic bias of the performance, the results align well with those
btained by Schock et al. [24] with mean differences between raters
nd AI of −0.04◦ to 0.01◦ for mFTA and −0.31◦ to 0.3◦ for AMA
nd Tack et al. [25] with 0.13 ± 0.65◦–0.21 ± 0.56◦ for mFTA, but with
ubstantially lower SDs compared with these studies, indicating higher
ccuracy on average. Moreover, the developed DL model outperformed
he results published by Pei et al. [48], reporting a systematic bias of
.49◦ for mFTA, Gielis et al. [29] with 1.8◦ for mFTA, and Gielis et al.
29] with −0.40◦ for mFTA.

.3. Interreader and intrarater reliability

Evaluation of the algorithm’s consistency and reliability by com-
aring the interrater reliability between the human specialist raters
nd the developed DL model showed good (JCLA) to excellent (all
ther paramters) interrater reliability for the external test dataset and
as comparable to the interreader reliability of specialized OS using
FDA-approved digital planning program [15]. More specifically, the

CCs between the mean observer and DL model in the present study
re higher for load, mLPFA, mLDFA, mMPTA, mFTA, while they are
ower for the leg length and JCLA measurements compared with human
aters. Interrater reliability between human raters and the DL model
as higher in the present study compared with previously published

tudies using high-performance algorithms on internal test datasets,
ith reported ICCs for the mFTA of 0.99 [0.99, 1.0] [24] or 0.97 [25]
nd ICCs for AMA of 0.87 [0.83, 0.9] – 0.89 [0.86, 0.92] [24,52].
ompared to publications reporting on the reliability of DL algorithms
n external datasets, the developed DL model showed higher ICCs
ompared to the human raters than previous studies, reporting ICCs of
.99 for the mFTA, 0.87 [0.84–0.89] for mLDFA, and 0.93 [0.91–0.94]
or mMPTA. Regarding intrarater reliability, the algorithm showed
xcellent results due to its deterministic behavior, aligning closely with
he algorithm published by Simon et al. [41]. Relative to Mitterer et al.
53], our algorithm was slightly outperformed in JLCA (0.95 vs. 0.9)
nd AMA (0.96 vs. 0.94), equaled in mLDFA (0.99 vs. 0.98), mLDTA
0.97 vs. 0.97), and mMPTA (0.97 vs. 0.98), but edged ahead in MAD
0.99 vs 1.0), HKA (0.98 vs. 1.0), and mLPFA (0.93 vs. 0.98), also
roviding additional measurement parameters.

.4. Clinically acceptable accuracy

Measurement reliability within a clinically acceptable safety mar-
in is a critical parameter for assessing the clinical value of a fully
utomated tool like the developed DL algorithm. The algorithm demon-
trated high clinical accuracy, with a notable percentage of its measure-
ents falling within the clinically tolerable safety margin compared

o human raters. Specifically, this ranged from 89%–100% for the
nternal dataset and 88%–100% for the external dataset, exceeding 90%
greement in all measurements crucial for orthopedic decision making,
uch as mMPTA, mLDFA, JLCA, AMA, and mFTA. This performance is
n par with human assessments, which varied between 82%–100% for
nternal data and 71%–100% for external data. In comparison, prior
tudies reported clinically acceptable agreement of only 82.3% within
1.5◦ margin [30] or 90% agreement in class assignment (varus<−2;

algus>2) of 90◦–92◦ [25] for mFTA. However, the DL algorithm in-
roduced here showed a clinical accuracy of 100% within a 2◦ margin.

hen compared with previously published fully automated commercial
olutions, our DL algorithm exhibited higher clinical accuracy across all
valuated angles [41].
9

.5. Length calibration

Calibration, though a minor manual task, is crucial for accurate
mplant sizing and cut planning in orthopedic surgery [15,50,51]. Our
L algorithm effectively performs two calibration methods, achieving
100% success rate, depending on the available reference objects in

he radiograph. Despite less precision in absolute distances compared
o angular measurements, the algorithm’s accuracy and reliability were
linically acceptable, paralleling specialized OS. Challenges in achiev-
ng precise calibration mainly stemmed from minor errors due to small
eference objects like spheres or rules, impacting measurements such as
AD, implant size, or osteotomy gap opening. This aligns with previous

tudies [41] and reflects the inherent difficulty in calibration rather
han algorithmic limitations. For parameters significantly affected by
alibration, like limb length discrepancies, clinical relevance lies in the
ifference between sides, aiding healthcare providers in maintaining
hysiological limb length during surgeries [51].

.6. Processing time

Harnessing the true power of DL applications for clinical tasks,
he processing time for time consuming clinical tasks can be signif-
cantly and substantially reduced and automatically be performed in
he background prior to human evaluation. With a processing time of
2 ± 0.6 s, the DL model in this study significantly and substantially

outperformed specialized OS with advanced FDA-approved digital plan-
ning software by a factor of 4.6 (excluding the time required to open the
image and save the analysis results) and by a factor of 8.6 compared
with the literature. In addition, the models outperform commercially
available AI models for leg alignment analysis on a consumer-grade
laptop, demonstrating the computational advantage of a multitasking
approach [41]. Considering the multitude of parameters, the perfor-
mance is on par with other single-task models with similar performance
designed to measure single alignment parameters, ranging from 3–
7 s [24]. The fact that these findings were obtained on a consumer
grade laptop demonstrates the potential for a local deployment in a
clinical information technology environment with limited computing
power, while not compromising on speed and accuracy of the analysis.

4.7. Susceptibility to errors

However, as the analysis of the individual radiographs with the
worst performance shows, the DL algorithm is not error-free. In par-
ticular, in the presence of anatomical abnormalities, such as a surgical
revision situation and/or high-grade osteoarthritis, the performance
of DL models suffers. Furthermore, in the presence of risk factors
indicative of suboptimal radiographic quality of LLRs, such as flexion
of the knee and deviated position of the patella or proximal fibula
suggestive of lower extremity malrotation, human review is required
to prevent treatment decisions from being made based on incorrect
alignment parameters [54].

4.8. Clinical potential

In terms of its clinical potential, we consider a highly compre-
hensive, accurate, reliable and fast algorithm such as the DL model
developed to be of potential substantial benefit to the clinical radiologic
and orthopedic workforce upon clinical deployment. With a precision,
consistency, and clinical accuracy on a level of experienced OS, a
solution such as this may increase the reliability as well as yield the
potential of substantial time saving by sourcing out the time intensive
process of a comprehensive leg alignment analysis. While at the current
point in time, human input may be required to review and confirm the
product of the fully automated assessment, solutions such as the DL
model developed unlock potential for increases in efficacy as well as
savings of time, resources, and cost.
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4.9. Limitations

There were several limitations to this study. First, as the perfor-
mance of a DL model was compared to a ground truth, the results
are limited by the human performance. By including measurements
of highly trained OS as well as measurements performed in a realistic
clinical environment, efforts were made to obtain high quality as well
externally valid ground truth measurements, yet the individual human
performance is an inherent limitation of this methodology. Second, the
quality of the radiograph is a factor significantly limiting precision
of the DL model developed. Especially in case of suboptimal quality
limited by incomplete depiction of relevant landmark, malrotation or
flexion of the lower extremity, the fully automated assessment requires
human rater review. Third, as the DL algorithm is primarily designed
to assist in therapeutical decision making and preoperative planning,
radiographs including hardware overriding the cortical bones were a
priori excluded from training.

5. Conclusions

The developed DL model allowed for a comprehensive analysis of
leg alignment on a.p. LLR with precision, reliability, and robustness
comparable to that of OS, not failing on a single image during internal
and external validation. Furthermore, by significantly and substantially
outperforming human raters in terms of processing time for assessment
as well as repeated measurement reliability, the DL model developed
yields potential to accelerate and enhance clinical practice. This high-
lights, how a state-of-the-art DL model could augment the abilities of
orthopedic providers in managing lower extremity pathologies in a
high-volume, critical tasks that demands a high degree of precision and
reliability.

Code availability

Detailed analysis on the developed DL model and information on
calculating each angle based on the determined landmarks can be found
in the GitHub repository https://github.com/NikonPic/AlignmentNet.
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Appendix A. Neural network implementation details

Dataset preparation

The main detection network, trained on Lower Limb Radiographs
(LLRs), outputs classes and bounding boxes for each object. The expert
network is trained on specially prepared datasets. For each dataset,
the relative positions of the objects in the LLRs are determined using
top and bottom limits 𝑏𝑖, 𝑡𝑖. The overall image range is selected so
that range = [bottom, top] with bottom = min(𝑏𝑖) and top = max(𝑡𝑖)
or 𝑖 = 1,… , 𝑛, where 𝑛 is the number of images. This ensures that
ach local dataset contains the targeted object. Average object widths,
eights, and centers are recorded for each dataset to enhance inference
ccuracy.

reprocessing

Preprocessing was an integral part of our data processing pipeline
or both the internal and external datasets. This preprocessing primarily
nvolved downscaling the images to make them suitable for processing
y our RCNN model. The downscaling approach was governed by the
etectron2 framework’s configurations, where the shorter side of each

mage was dynamically resized. For training, this size was randomly
elected from a predefined list ranging between 640 and 800 pixels,
hile for testing, a fixed size of 800 pixels for the shorter side was used.
he longer side of the images was correspondingly resized, capped at
maximum of 1333 pixels, to maintain the aspect ratio.

rchitecture and inference process

A detailed visualization of the image analysis procedures employed
s presented in Fig. 7. Initially, the complete lower limb radiograph
LLR) image is subjected to preprocessing, preparing it for the primary
etection network. This network, a Region-based Convolutional Neural
etwork (RCNN) with a ResNet101 backbone, is adapted from the ar-
hitecture described in [55]. Equipped with a Feature Pyramid Network
FPN), it generates a nuanced representation of the image’s features.
he Region Proposal Network (RPN) within the RCNN framework is
asked with generating preliminary object and bounding box predic-
ions. To refine these predictions and mitigate overlaps, Non-Maximum
uppression (NMS) by Neubeck and Van Gool [56] is applied, filtering
ased on object scores. Following this, Region of Interest (RoI) Align, as
roposed in [34], is utilized to accurately map the predicted regions to
heir corresponding objects using the extracted features, culminating in
he box head’s final predictions of object classes and bounding boxes.

Subsequent to the network’s output of predictions, encompassing
lass and bounding box coordinates (𝑐𝑙𝑎𝑠𝑠, 𝑏𝑏𝑜𝑥), a specialized expert
etwork is selected for more in-depth analysis. The center coordinates
𝑥, 𝑦) of the identified bounding box are computed to extract a specific
ubimage from the X-ray. This selection is meticulously aligned to
oincide with the training data’s statistical mean, ensuring that the de-
ected center (𝑥, 𝑦) matches the average center (𝑥mean, 𝑦mean) observed
uring training. The alignment process extends to the dimensions of
he subimage, with the width and height adjusted to match the average
imensions width = widthmean and height = heightmean derived from
he localized dataset used for training the expert network.

In the final stage, this expert network, a Mask R-CNN as referenced

n [34], conducts a thorough analysis of the chosen subimage. Differing

https://github.com/NikonPic/AlignmentNet
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Table 7
Network parameters of RCNN-101 and Mask-RCNN-50 networks utilized for lower extremity alignment analysis.

Parameter RCNN-101 Mask-RCNN-50

Batch size 1 image per batch 1 image per batch
Base learning rate 0.00025 0.00025
Training iterations 30,000 30,000
RoI per image 512 512
Training input size range 640–800 pixels 640–800 pixels
Maximum input dimension 1333 pixels 1333 pixels
Anchor sizes [32, 64, 128, 256, 512] [32, 64, 128, 256, 512]
Non max surpression thresholds 0.7 (training), 0.5 (testing) 0.7 (training), 0.5 (testing)
ROI box head pooler resolution 7 7
Mask activation – Specific to object
Convolutional layers in mask head – 4 layers
Pooler resolution for ROI mask head – 14
Fig. 7. Detailed view of the network architectures and their interplay during inference.
The master RCNN101 network first analyzes the X-ray image, predicting classes and
bounding boxes. For each detected object, the respective expert is selected based on
class, and center coordinates (𝑥, 𝑦) are determined. A subimage is then chosen based on
average values from the expert network’s training dataset, positioning the object at the
average training location. The expert Mask RCNN50 network subsequently performs
detailed analysis, extracting final class, bounding box, segmentation, and keypoints.
Key training losses are indicated at respective stages where they primarily contribute
to the network’s learning process.

from the initial RCNN with ResNet101, the expert network’s architec-
ture includes additional network heads for segmentation and keypoint
detection for each object, besides the standard class and bounding
box heads. This Mask R-CNN’s enhanced capabilities allow for more
detailed and specific analysis, particularly beneficial for complex or
overlapping anatomical structures in the radiograph.

Training losses

The utilized Mask R-CNN is trained with a multi-task loss func-
tion based on He et al. [34], which combines several different loss
components. The total loss is a sum of these individual losses:

• Classification Loss (𝐿𝑐𝑙𝑠): This is the softmax loss over the object
classes, including a background class.

𝐿 = − log(𝑝 )
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𝑐𝑙𝑠 𝑢
where 𝑝𝑢 is the softmax probability for the true class 𝑢.
• Bounding Box Regression Loss (𝐿𝑏𝑜𝑥): This loss is applied to

the predicted bounding box coordinates. It is typically a Smooth
L1 loss between the predicted bounding box offsets and the true
offsets.

𝐿𝑏𝑜𝑥 = Smooth𝐿1(𝑡𝑢 − 𝑣)

where 𝑡𝑢 are the predicted offsets for bounding box and 𝑣 are the
ground truth offsets, and Smooth L1 loss is defined as:

Smooth𝐿1(𝑥) =

{

0.5𝑥2 if |𝑥| < 1,
|𝑥| − 0.5 otherwise.

• Mask Loss (𝐿𝑚𝑎𝑠𝑘): This is a per-pixel binary cross-entropy loss,
used for the mask prediction branch.

𝐿𝑚𝑎𝑠𝑘 = − 1
𝑚2

𝑚2
∑

1
[𝑦𝑖𝑗 log(𝑦̂𝑖𝑗 ) + (1 − 𝑦𝑖𝑗 ) log(1 − 𝑦̂𝑖𝑗 )]

where 𝑚 is the dimension of the mask, 𝑦𝑖𝑗 is the ground truth and
𝑦̂𝑖𝑗 is the predicted mask at pixel (𝑖, 𝑗).

• Keypoint Loss (𝐿𝑘𝑒𝑦𝑝): This loss is used for keypoint detection
tasks. It is a per-keypoint binary cross-entropy loss.

𝐿𝑘𝑒𝑦𝑝 = − 1
𝐾𝑚2

𝐾
∑

𝑘=1

𝑚2
∑

𝑢=1
[𝑦𝑘𝑖𝑗 log(𝑦̂𝑘𝑖𝑗 ) + (1 − 𝑦𝑘𝑖𝑗 ) log(1 − 𝑦̂𝑘𝑢𝑣)]

where 𝐾 is the number of keypoints, 𝑚 is the dimension of the
mask, 𝑦𝑘𝑖𝑗 is the ground truth and 𝑦̂𝑘𝑖𝑗 is the predicted probability
at location (𝑖, 𝑗) for keypoint 𝑘.

• Objectness Loss (𝐿𝑜𝑏𝑗): This is a binary cross-entropy loss for the
objectness score predicted by the RPN.

𝐿𝑜𝑏𝑗 = −[𝑦 log(𝑦̂) + (1 − 𝑦) log(1 − 𝑦̂)]

where 𝑦 is the binary indicator (0 or 1) if the anchor is an object,
and 𝑦̂ is the predicted objectness score.

• RPN Box Regression Loss (𝐿𝑟𝑝𝑛): This is a Smooth L1 loss applied
to the bounding box predictions of the RPN.

𝐿𝑟𝑝𝑛 = Smooth𝐿1(𝑡𝑖 − 𝑣𝑖)

where 𝑡𝑖 are the predicted offsets for the RPN bounding boxes and
𝑣𝑖 are the ground truth offsets.

The total loss for each expert Mask R-CNN is a weighted sum of
these losses. With equal weights, the expert network’s total loss is:

𝐿𝑒𝑥𝑝𝑒𝑟𝑡 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 + 𝐿𝑘𝑒𝑦𝑝 + 𝐿𝑜𝑏𝑗 + 𝐿𝑟𝑝𝑛

For the master RCNN model, which does not require segmentation or
keypoint detection, the loss simplifies to:

𝐿 = 𝐿 + 𝐿 + 𝐿 + 𝐿
𝑚𝑎𝑠𝑡𝑒𝑟 𝑐𝑙𝑠 𝑏𝑜𝑥 𝑜𝑏𝑗 𝑟𝑝𝑛
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Table 8
Mean Root Mean Square Errors (RMSE) of the landmark detections for the individual
objects and the different approaches on the internal test dataset. The approaches are
divided into the singlescale (SC), multiscale (MS), and multiscale training simulation
(MS-TrainSim) approaches. Continuous variables are presented as mean ± standard
deviation (range).

Object [mm] SC MS MS-TrainSim

Hip 6.6 ± 24.8 0.6 ± 0.4 0.6 ± 0.3
Femur trochanter 6.9 ± 29.4 1.2 ± 1.5 0.9 ± 0.5
Femurshaf t 55.5 ± 105.3 17.5 ± 11.0 7.1 ± 4.5
Femurcondyles 6.9 ± 42.4 1.9 ± 2.0 1.7 ± 1.6
Tibiaeminence 12.5 ± 61.6 1.0 ± 1.1 1.1 ± 1.1
Tibiajoint line 6.9 ± 42.4 1.3 ± 1.0 1.3 ± 1.3
Tibiashaf t 95.4 ± 139.5 5.8 ± 4.1 5.5 ± 3.5
Ankle 1.1 ± 1.9 1.7 ± 3.5 0.9 ± 1.7
Sphere 8.2 ± 49.5 0.5 ± 1.0 0.4 ± 1.0

Average 20.9 ± 73.9 3.0 ± 6.0 1.9 ± 2.9

Table 9
Ablation study for anatomical landmark optimization of F-1 and F-2 on the internal
test dataset. Displayed are the Root Mean Square Errors (RMSE) for F-1 and F-2 in
mm, as well as the accuracy of the angles JLCA and mLDFA in deg for the plain label
by the object detector (AI) and the combination of object detector and local edge filter
(AI + Edge).

AI AI + Edge

F-1 [mm] 1.6 ± 1.4 1.7 ± 4.1
F-2 [mm] 2.0 ± 1.8 2.0 ± 1.9
JLCA [◦] 1.1 ± 1.0 0.8 ± 1.0
mLDFA [◦] 1.3 ± 1.1 0.5 ± 0.7

Network parameters

This paragraph delves into the specifics of the neural network
architectures utilized in our study for leg alignment analysis using
radiographic images. It focuses on detailing the RCNN-101, used as
the primary detection network, and the Mask-RCNN-50, employed as
specialized subnetworks for nuanced analysis. Essential optimization
parameters are summarized in Table 7.

Appendix B. Ablation study for optimal architecture determina-
tion

When determining the optimal architecture of the DL model to
attain the most accurate landmark accuracy, the three architectures
Singlescale (SC), Multiscale (MS) and Multiscale Training Simulation
(MS-TrainSim) are compared. The results of the average landmark
accuracy are shown in Table 8 for the internal test dataset.

The MS TrainSim achieved the highest average landmark accuracy
(1.9 mm ± 2.9 mm) and substantially outperformed the SC architecture
20.9 mm ± 73.9 mm) as well as moderately outperformed the MC
rchitecture (3.0 mm ± 6.0 mm). Therefore, the MS TrainSim approach
as used as the basis for all further analyses.

ppendix C. Ablation study for anatomical landmark optimization

The results for the ablation study regarding the utility of employ-
ng edge filters are shown in Table 9. While the accuracy of the
andmark detection decreased slightly (F-1: 1.6 mm ± 1.4 mm vs.

1.7 mm ± 4.1 mm, F-2: 2.0 mm ± 1.8 mm vs. 2.0 mm ± 1.9 mm), the
accuracy of the affected angles JLCA and mLDFA increased moderate
to significantly (JLCA: 1.1◦ ± 1.0◦ vs. 0.8◦ ± 1.0◦, mLDFA: 1.3◦ ± 1.1◦

s. 0.5◦ ± 0.7◦). As such, the edge filter, while moving the landmark
urther away from its target on average, is more accurate for its
natomical position. Therefore, the landmark filter used for F-1 and
12

-2 was activated for further analyses.
Table 10
Comparison between the Dice scores for object detection of the main detection
network (RCNN-101) and the final results of the specialized networks (RCNN101 +
MASK-RCNN50).

Object Dice score (Specialized) Dice score (Main)

Hip 0.97 ± 0.02 0.93 ± 0.2
Femur troch 0.97 ± 0.01 0.96 ± 0.09
Femurshaf t 0.9 ± 0.06 0.88 ± 0.17
Femurcond 0.96 ± 0.02 0.96 ± 0.09
Tibiaemin 0.96 ± 0.02 0.94 ± 0.12
Tibiajl 0.96 ± 0.02 0.94 ± 0.15
Tibiashaf t 0.92 ± 0.04 0.89 ± 0.17
Ankle 0.93 ± 0.09 0.89 ± 0.22
Sphere 0.95 ± 0.15 0.96 ± 0.09

Appendix D. Performance of the RCNN-101

The efficacy of our master RCNN-101 network is evaluated using
the Dice score metric, which measures the overlap between the net-
work’s detected objects and the ground truth labels on our internal test
dataset. To demonstrate the effectiveness of our two-stage approach, we
compare the Dice scores of the master RCNN-101 network with those
achieved using the subsequent expert network. Table 10 presents this
comparative analysis.

Our results indicate that the combined methodology, where the
general RCNN-101 is used for object localization and the specialized
MASK-RCNN for detailed object detection, generally surpasses the per-
formance of the standalone RCNN-101 in most tasks. The Dice scores
for the general RCNN-101 range from 0.89 to 0.96, while the special-
ized MASK-RCNN shows an improvement with scores ranging from
0.90 to 0.97. Notably, the sole exception to this trend is in Sphere
detection, where the standalone RCNN-101 marginally outperforms the
two-stage process.
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