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A B S T R A C T

How to ascertain causal relationships has been a key question in science and philosophy for centuries. Based
on established principles of causation, we develop a quantitative measure of an agent’s causal responsibility for
the state of a dynamical system: we measure the degree to which an agent’s action has caused the system state
at a later point in time as the degree to which the action is necessary and sufficient for this state. Our concept
can be applied in deterministic as well as in stochastic systems, and for continuous and discrete conceptions of
the system state. We find that the extent of causal responsibility crucially depends on the specifics of system
dynamics, type of action and the point in time at which the system state occurs. Quantitatively measuring
causation in dynamical systems is relevant for attributing an observed system state to its causes, assessing the
effectiveness of management actions and policies, or designing liability regulations. Our concept also provides
information about the temporal extent of an agent’s causal efficacy and, hence, the temporal limits of the
agent’s normative responsibility.
1. Introduction

Many natural and human-made systems are inherently dynamic in
the sense that their state and structure change over time. In a dynamical
system, the consequences of an agent’s action may not become apparent
immediately, but only take effect at a later point in time and may
be co-determined by natural dynamics. For instance, the discharge
of pollutants by a mining company into a river may not have an
immediate effect on the river ecosystem, but may – in combination
with high water temperatures – facilitate a bloom of toxic algae that
leads to a collapse of the fish population in the river weeks after the
discharge. To determine who is to blame for the collapse, one needs to
know what has caused it. Other than the mining company’s discharge,
temperature conditions, chance influences, or a combination of these
factors could have also played a role in causing the collapse. In such
a situation, the challenge is to quantitatively assess to what extent the
collapse has been caused by the mining company’s discharge – rather
than by other factors. This is the mining company’s causal responsibility
for the collapse.

In general, this raises the question of how to measure causation in
dynamical systems. More precisely, one would like to know to what
extent the system state at a particular point in time can be attributed
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E-mail addresses: michael.stecher@isi.fraunhofer.de (M. Stecher), stefan.baumgaertner@ere.uni-freiburg.de (S. Baumgärtner).

1 To say that an agent is causally responsible for a system state goes beyond ascertaining that the agent’s action has caused the outcome. Agents can only
be causally responsible for an outcome if they can choose freely from a range of alternatives that differ qualitatively in their foreseeable consequences (Bovens,
1998). Causal responsibility is purely descriptive and distinct from other layers of responsibility, such as normative responsibility – how one should act given some
normative framework (Baumgärtner et al., 2018).

to an agent’s prior action. Further, to evaluate and inform decision-
making, one would like to assess an action’s effectiveness to reach a
given target state as well as its expected causal impact in the future.
These questions are relevant in all kinds of dynamical systems that
are affected by human actions, including fisheries, forests, agricul-
tural systems, the global climate system, public health, epidemics and
vaccination campaigns, financial markets, or the macroeconomy.

In this paper, we develop a measure of an agent’s causal responsibil-
ity1 for the state of a dynamical system based on the agent’s action and
its impact on the subsequent system dynamics. In addition, we study
how causal responsibility evolves over time, and how this depends on
the type of dynamical system and action.

A number of approaches of how to ascertain and measure the
strength of causal relationships exist in the literature. A fundamental
distinction between approaches is whether, for a given causal relation-
ship, one aims at identifying the effects of a given cause (e.g., health
consequences of a particular lifestyle) or the causes of a given effect
(e.g., risk factors for a particular disease) (Holland, 1986). Both per-
spectives provide valid insights into the causal relationship under study
and are relevant for answering different questions. Here, we elaborate
the dynamic aspect of the second approach. Before going into the
details of this approach, we briefly discuss the main exponent of the
vailable online 19 December 2023
921-8009/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.ecolecon.2023.108086
Received 17 November 2022; Received in revised form 12 December 2023; Accepte
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 13 December 2023

https://www.elsevier.com/locate/ecolecon
https://www.elsevier.com/locate/ecolecon
mailto:michael.stecher@isi.fraunhofer.de
mailto:stefan.baumgaertner@ere.uni-freiburg.de
https://doi.org/10.1016/j.ecolecon.2023.108086
https://doi.org/10.1016/j.ecolecon.2023.108086
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolecon.2023.108086&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ecological Economics 217 (2024) 108086M. Stecher and S. Baumgärtner

v
i

t
a
a
a
p
s
s
‘
i
s
s
w
c
a
p

t
1
1
l
c
u
d
t
c

s
p
T
o
s
s
b
a
c

t
u

i
o
m

first approach, causal inference, as well as concepts that bridge both
approaches.

Causal inference in economics and other disciplines measures the
effect of a given cause (‘‘treatment’’) as the difference between two
potential outcomes of some response variable: exposure to the treat-
ment versus no exposure (‘‘control’’) (Haavelmo, 1943; Rubin, 1974;
Holland, 1986; Angrist and Pischke, 2009). This basic idea, originally
developed for randomized experiments (Neyman, 1923, translated and
reprinted in Neyman, 1990), has been extended to identify causal ef-
fects using non-randomized empirical data. The ‘‘fundamental problem
of causal inference’’ (Holland, 1986) that both treatment and control
cannot be observed on the same unit is overcome by considering the
average treatment effect over a larger population of units. In dynamic
settings, the time-varying causal effect of a factor can be measured as
the cumulative average treatment effect over time (Jordà et al., 2022).
The validity of causal inferences rests on several assumptions about
the data-generating process and the suitability of the chosen identifi-
cation strategy, including the ‘‘stable unit treatment value assumption’’
(SUTVA)2 and ‘‘excludability’’.3 In coupled human and natural systems
iolations of SUTVA and excludability are likely, which may bias causal
nferences (Ferraro et al., 2019).

A more basic perspective on causal relationships in dynamic settings
hat bridges the two approaches – effects of a given cause or causes of

given effect – analyzes whether two factors are causally related at
ll. This approach, of which the most prominent exponent is known
s ‘‘Granger causality’’ (Granger, 1969), is based on the notion of
redictability: one time-series variable is said to ‘‘Granger cause’’ a
econd one if it improves the ability to forecast future values of the
econd. Hence, Granger causality reflects whether two variables are
‘temporally related’’ (Granger and Newbold, 1977), but provides no
nformation on the strength or nature of the underlying causal relation-
hip. In ecosystems and other nonseparable weakly coupled dynamical
ystems, where Granger causality is not applicable, a similar approach
as suggested by Sugihara et al. (2012). Their methodology based on

onvergent cross mapping is useful to identify whether two species in
n ecosystem do or do not interact, but cannot be used to attribute a
articular ecosystem state to various factors, including agents’ actions.

There is a rich and long-standing literature that aims at identifying
he causes of a given effect (e.g. Hume, 1739; Mill, 1843; Wright,
921; Reichenbach, 1956; Bunge, 1959; Hart and Honoré, 1959; Good,
961; Mackie, 1965; Lewis, 1973; Pearl, 2009). This literature has
argely focused on the conditions under which an action is considered a
ause of an outcome, and when it is not. That is, causation is typically
nderstood in a binary sense rather than as a cardinal measure of the
egree to which a given outcome was caused by one cause relative
o another. There are a number of contributions developing such a
ardinal measure.

Vallentyne (2008) proposes a measure of an agent’s ‘‘partial re-
ponsibility’’ for an outcome based on the increase in the outcome’s
robability that is directly and indirectly due to the agent’s action.
his achieves a full attribution of causality, but only considers a single
utcome in a highly stylized probabilistic system. Pearl (2009) proposes
eparate measures for the ‘‘probability of necessity’’, ‘‘probability of
ufficiency’’ and ‘‘probability of necessity and sufficiency’’ relating two
inary variables. This is based on the distinction (Mackie, 1965; Mitroff
nd Silvers, 2013) between necessary causation (i.e., the outcome
ould not have occurred without the cause) and sufficient causation

2 SUTVA states that there is no interference between units in the sense
hat the outcome of treatment in one unit depends on the treatment of other
nits (Rubin, 1980).

3 Excludability states that unobserved heterogeneity arising from confound-
ng factors that drive variation in the response variable beyond their effect
n treatment has been accounted for by an adequate treatment assignment
2

echanism (Ferraro et al., 2019).
(i.e., the cause was, all by itself, capable of producing the outcome).
Which of these is an adequate measure of causation may depend on
the context (Hannart et al., 2016). While explicating the concepts of
necessary and sufficient causation in a probabilistic context, Pearl’s
(2009) approach does not ascribe causality to agents and their actions.
Gleiss and Schemper’s (2019) measures for a prognostic factor’s ‘‘degree
of necessity’’ and ‘‘degree of sufficiency’’ in an epidemiological context
are similar and do not refer to agency either.

Empirical work on the degree of causation has recently gained
attention in the context of extreme event attribution in climate sci-
ence (Allen, 2003; Stott et al., 2004; Otto, 2017). There, the question
is to what extent a particular climatic event can be attributed to
anthropogenic greenhouse gas emissions rather to natural climate vari-
ability. The answer to this question is given by the relative increase
in the likelihood of the event compared to a counterfactual climate
without anthropogenic forcing, which essentially measures how nec-
essary climate change is for the occurrence of this event. The event
to be attributed needs to be defined in terms of a threshold of a
climatic variable (e.g., a heatwave is defined as the monthly average
temperature in a particular region exceeding a certain value), which
may be ‘‘to a large extent arbitrary’’ (Hannart et al., 2016).

Questions of causal attribution have also been discussed in the
context of material flow analysis, for instance, how to measure the
responsibility of consumers and producers for greenhouse gas emissions
caused by the production and consumption of goods (e.g., Bastianoni
et al., 2004; Rodrigues et al., 2006; Lenzen et al., 2007). While it
is a strength of this literature that material flows are attributed to
different agents, these treatments are deficient in several ways. First,
the proposed measures are largely ad hoc and not systematically based
on principles of causation. Second, the notion of ‘‘responsibility’’ em-
ployed in this literature confounds descriptive aspects of causation and
normative aspects of fairness.

A handful of contributions are concerned with determining the
relative causal contributions of individual agents in situations where
an outcome is jointly caused by the simultaneous actions of multiple
agents. Chockler and Halpern (2004) propose a measure based on
contingency, which captures how many changes need to be made
to the circumstances before an action makes a critical difference for
the outcome. Their concept of ‘‘degree of responsibility’’ can lead to
considerable over- or underattribution of causality. Braham and van
Hees (2009) measure an action’s degree of causation as the relative
frequency in which the action is a necessary element of a set of
conditions which is jointly sufficient for the outcome. This avoids over-
or underattribution, but is not applicable in a stochastic system where
the outcome consists of infinitely many potential realizations of the
continuous system state. Mittelstaedt and Baumgärtner (2023) measure
an agent’s individual causal responsibility as the marginal increase in
the outcome’s probability due to the agent’s action averaged over all
hypothetical sequences in which the simultaneous actions of all agents
might unfold. This achieves a full attribution of causality in a stochastic
system, but is limited to dichotomous outcomes in systems with two
discrete states.

Our novel contribution here is to develop a generalized measure
of the degree to which a given outcome in a dynamical system is
attributed to an agent’s action. Specifically, we measure an agent’s
causal responsibility for the realized state of a dynamical system as
the degree to which the agent’s action is necessary and sufficient for
the realization of this state. Our concept is founded upon established
principles of causation and achieves a full attribution of causality
that is consistent across deterministic and stochastic systems for both
discrete and continuous conceptions of the system state. Furthermore,
we study how the agent’s causal responsibility evolves over time for
different types of actions and systems. This is relevant for a number of
applications in which an action’s consequences dynamically unfold in
a non-trivial way. For instance, our concept can be used for attributing

a realized system state to its causes, assessing the effectiveness of
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management actions for given goals, designing economically efficient
liability regulations, and quantifying the temporal limits of normative
obligations.

This paper is organized as follows. In Section 2 we present a simple
and general setup of stochastic dynamical systems, which forms the
basis of our analysis. In Section 3 we review established philosophi-
cal ideas on causation and develop a quantitative measure of causal
responsibility. In Section 4 we apply this measure to a number of
dynamical systems and different management actions. In Section 5
we highlight the relevance of our concept and its implications for
normative responsibility. In the final Section 6 we discuss limitations
and conclude.

2. Model and setup

The evolution of the system state4 𝑋𝑡 ∈ [0,∞) over time 𝑡 ∈ [0,∞)
is the realization of a stochastic process 𝑋𝑡,5 which is described by a
stochastic differential equation of form

d𝑋𝑡 = 𝑓 (𝑋𝑡) d𝑡 + 𝑔(𝑋𝑡) d𝑍𝑡 , (1)

where 𝑓 (⋅) and 𝑔(⋅) are continuously differentiable functions and 𝑍𝑡
is some stochastic process. The known initial value of 𝑋𝑡 at 𝑡 = 0
is 𝑥0. In deterministic systems, 𝑔(𝑋𝑡) = 0 for all 𝑋𝑡. The state of
the system at any point in time can be obtained by solving Eq. (1)
analytically or numerically. Suppose that the solution over the entire
time interval [0,∞) is known. We assume that the stochastic process
𝑋𝑡 (Eq. (1)) satisfies the Markov property and admits a stationary
probability distribution.

Given the stochastic dynamics (1) of the system state 𝑋𝑡, there exists
a stationary probability density function 𝑝(𝑥). Hence, the probability
that a realization of the process 𝑋𝑡 lies in the interval [𝑥, 𝑥̄] ⊆ [0,∞) at
some time 𝑡 is given by:

Prob
(

𝑋𝑡 ∈ [𝑥, 𝑥̄]
)

= ∫

𝑥̄

𝑥
𝑝(𝑥) d𝑥 . (2)

Conditioned on the initial value 𝑥0 at time 𝑡 = 0, there exists a
conditional (or: transition) probability density function 𝑝(𝑥, 𝑡 ∣ 𝑥0, 0).
The conditional probability that a realization of the process 𝑋𝑡 lies in
the interval [𝑥, 𝑥̄] ⊆ [0,∞) at time 𝑡 given the initial value 𝑥0 is thus:

rob
(

𝑋𝑡 ∈ [𝑥, 𝑥̄] ||
|

𝑥0
)

= ∫

𝑥̄

𝑥
𝑝(𝑥, 𝑡 ∣ 𝑥0, 0) d𝑥 =∶ 𝑃𝑋𝑡

(𝑥, 𝑥̄) , (3)

where the last expression is introduced to simplify notation and denotes
the integral of the conditional probability density associated to the
process 𝑋𝑡.

Actions
There is a single agent that takes a one-time action 𝑎 at time 𝑡 = 0

which modifies the dynamics of 𝑋𝑡:

d𝑋𝑎
𝑡 = 𝑓 (𝑋𝑡, 𝑎) d𝑡 + 𝑔(𝑋𝑡, 𝑎) d𝑍𝑡 . (4)

Consequently, the probabilities (2) and (3) are also modified. We
assume that the agent knows these probabilistic consequences of acting.

In principle, an action could modify the initial system state 𝑥0,
the deterministic drift 𝑓 of the process or its stochastic factor 𝑔.
Specifically, we consider the following distinct types of management
actions that affect the probability distribution of 𝑋𝑡 in different ways.
These action types are idealized cases that, in reality, may occur in
combination or come in different variants. We restrict our analysis to
actions that change the moments of the distribution of the process, but
not its existence or stationarity.

4 For systems with multiple state variables, it may be possible to construct
n index of the ecosystem state, so that 𝑋𝑡 is the index value at time 𝑡.

5 In slight abuse of notation, we denote the process and its realization by
he same variable 𝑋𝑡. Which of the two is meant should be obvious from the
ontext.
3

(i) Initial value modification: 𝑥0 ≠ 𝑥𝑎0
Modifying the initial value of the process directly and instanta-
neously changes the system state. This changes the conditional
probability density 𝑝(𝑥, 𝑡 ∣ 𝑥𝑎0, 0). Examples include extracting a
certain amount of a natural resource (e.g., clear-cut harvesting of
timber) or replenishing its stock (e.g., afforestation).

(ii) Drift modification: d𝑋𝑎
𝑡 = 𝑓 (𝑋𝑡, 𝑎) d𝑡 + 𝑔(𝑋𝑡) d𝑍𝑡

Modifying the deterministic drift may affect the probability dis-
tribution in two different ways: we distinguish between attractor
modifications, which change the mean E[𝑋𝑡] of the stationary
distribution, and rate modifications, which do not.

(a) Attractor modification: E[𝑋𝑎
𝑡 ] ≠ E[𝑋𝑡]

Modifying an attractor changes the mean of the stationary
distribution of 𝑋𝑎

𝑡 (i.e., the value 𝑋𝑎
𝑡 converges against in

the long run). In ecological systems, this corresponds to
modifying the carrying capacity of a population, for instance
by changing resource availability or trophic interactions
(e.g., removing competitors or introducing alien species).

(b) Rate modification: E[𝑋𝑎
𝑡 ∣ 𝑥𝑎0] ≠ E[𝑋𝑡|𝑥0], E[𝑋𝑎

𝑡 ] = E[𝑋𝑡]
Rate modifications change the conditional mean, but do
not affect its stationary mean. In particular, rate modifi-
cations alter the speed and variability of the convergence
process towards the stationary distribution. In ecological
systems, this affects the return time to equilibrium after a
perturbation, which is known as stability (Holling, 1973) or
engineering resilience (Pimm, 1984). In technical and bio-
chemical systems, this corresponds to catalyzing a reaction
or accelerating bacterial growth through higher ambient
temperature.

(iii) Volatility modification: d𝑋𝑎
𝑡 = 𝑓 (𝑋𝑡) d𝑡 + 𝑔(𝑋𝑡, 𝑎) d𝑍𝑡

Modifying the stochastic factor 𝑔 of the process changes the
susceptibility of the system state to stochastic influences. This
primarily changes the variance and higher moments of the con-
ditional and the stationary distribution of the process. In agricul-
tural systems, constructing irrigation infrastructure or dams in-
sures the crop output against adverse environmental fluctuations
such as drought or flooding.

(iv) Choice of control strategy: d𝑋𝑎
𝑡 = [𝑓 (𝑋𝑡) − 𝑎(𝑋𝑡)] d𝑡 + 𝑔(𝑋𝑡) d𝑍𝑡

Choosing a particular control strategy at time 𝑡 = 0 continuously,
at each time 𝑡, reduces or increases the stock by a certain amount
𝑎(𝑋𝑡). Examples include continuous harvesting of a renewable
natural resource (e.g., exploiting a fish stock) or the emission of
pollutants (e.g. greenhouse gases or nutrients from fertilizer use).
This changes mean and higher moments of both the conditional
and the stationary distribution of the process. We consider three
different types of control strategy:

(a) Constant amount: 𝑎(𝑋𝑡) = ℎ
Extracting a constant amount ℎ at each time 𝑡, irrespective
of the stock level, can be thought of, e.g. as harvesting for
subsistence.

(b) Constant fraction: 𝑎(𝑋𝑡) = ℎ𝑋𝑡
Extracting a constant fraction ℎ of the current stock level,
i.e. extracting more when the stock level is high and less
when it is low, can be thought of as a rudimentary adaptive
harvesting strategy.

(c) Intertemporally optimal amount: 𝑎(𝑋𝑡) = ℎ∗(𝑋𝑡)
Extracting, at each time, the amount ℎ∗(𝑋𝑡) that solves
some biological or economic optimization problem, e.g.
maximization of welfare or net benefits subject to ecological
constraints.

We study the effects of these idealized action types with illustrative
nd practically relevant examples in Section 4.
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3. Conceptualizing and measuring causal responsibility

Causal responsibility ascribes the consequences of an action to its
perpetrator.6 In a dynamical system, the consequences of an action
consist of subsequent system states which result from the modified sys-
tem dynamics due to action. Which consequences are to be ascribed to
the actor needs to be specified and may be conceptualized in different
ways. In principle, one ascribes the realized system state at a particular
point in time being in a specific interval, where the interval and the
point in time are to be specified (‘‘causal responsibility for what?’’).
Causal responsibility is purely descriptive and independent of any norm
about how the system state ought to be or what action ought to be
taken.

A quantitative measure of causal responsibility should satisfy a
number of principles of causal attribution. In the next subsection, we
discuss these principles and what they imply for the quantitative mea-
surement of causal responsibility. Subsequently, we suggest a measure
that fulfills these principles. First, we present the simplified version
for deterministic systems before presenting the generalized measure for
stochastic systems.

3.1. Principles of causal attribution

To substantiate the meaning of causal responsibility, we start from
general and accepted ideas on causation. In particular, we discuss:

1. counterfactual causation
2. necessary and sufficient causation
3. multiple causes
4. singular vs. general causation (ex-post vs. ex-ante perspective)

While these are not independent, we discuss them in turn. To start
with, we employ an ex-post perspective, meaning that we start from the
singular case of an actually realized system state and retrospectively ask
about its causes. We explicitly consider the aspect of taking an ex-ante
vs. an ex-post perspective when discussing point 4.

Counterfactual causation
We employ a counterfactual conception of causation that may be

summarized as: ‘‘we think of a cause as something that makes a
difference, and the difference it makes must be a difference from what
would have happened without it’’ (Lewis, 1973, p. 557). Clearly, an
action did not cause a particular system state if the action did not
make a difference for this system state to occur compared to the
counterfactual of not acting. Using a counterfactual approach is only
possible in a system in which causal relationships can be identified
and described through a predictive model (Pearl, 2009, Chap. 7), such
as in Section 2. This conception of causation implies three important
properties of causal responsibility:

(i) An agent’s causal responsibility is measured relative to the refer-
ence scenario of not acting.

(ii) An agent’s causal responsibility for the system state at time 𝑡
is different for two different actions taken under the same cir-
cumstances (and hence the same counterfactual system state) if
and only if the actions entail (probabilistically) different system
states at time 𝑡. And the larger the difference in the (probability
of the) resulting system states, the larger the difference in causal
responsibility.

6 We use the term ‘‘causal responsibility’’ here for what is also
nown as ‘‘ascriptive responsibility’’ (Baumgärtner et al., 2018) or ‘‘agent-
esponsibility’’ (Vallentyne, 2008).
4

r

(iii) An agent’s causal responsibility for the system state at time 𝑡
when taking a given action may be different under different
circumstances. That is, an agent’s causal responsibility does not
only depend on the action taken, but also on the circumstances
under which the action’s consequences unfold (and which also
modify the counterfactual system state).

Necessary and sufficient causation
In general, one distinguishes between necessary and sufficient cau-

sation (Mackie, 1965; Braham and van Hees, 2009; Pearl, 2009; Mitroff
and Silvers, 2013; Gleiss and Schemper, 2019). A cause is necessary for
an outcome if the outcome would not have occurred in the absence
of the cause. This notion of ‘‘but for’’ causation is predominant in the
law (Hart and Honoré, 1959; Hannart et al., 2016) and captures one
important condition of causation, but does not by itself imply that the
outcome actually occurs. The other important aspect is sufficiency: a
cause is sufficient for an outcome if the outcome must occur in the
presence of the cause. An outcome is fully determined by a cause if
and only if the cause is both necessary and sufficient for the outcome.
Hence, the attribution of causal responsibility for an outcome to an
agent should be based on necessary and sufficient causation.

Multiple causes
Typically, there are multiple causes for an outcome. In our setting

(Section 2), a given system state may be caused by the agent’s action, or
natural dynamics, or a combination of both. Hence, an action may not
be entirely necessary and sufficient for a given system state, but only
partially (Chockler and Halpern, 2004; Vallentyne, 2008; Braham and
van Hees, 2009). Thus, an agent’s causal responsibility for the realized
system state should measure the degree to which the agent’s action is
necessary and sufficient for this state. Likewise, the degree to which
natural dynamics are necessary and sufficient for the realized system
state is attributed to ‘‘nature’’. The agent’s causal responsibility and
the causality attributed to nature should add up to one, so that the
actual system state is fully and disjointly explained by its causes. This
guarantees that there is neither over- nor underattribution.7

Regarding sufficient causation with multiple causes, natural dynam-
ics are completely sufficient for the counterfactual system state. In turn,
the agent’s action is completely sufficient for the difference between
the realized and the counterfactual system state. Hence, both are only
partially sufficient for the realized system state at a particular point in
time: the degree to which natural dynamics are sufficient is given by the
relative contribution of the counterfactual to the realized system state;
the action’s degree of sufficiency is given by the relative difference in
state that the action makes.

In stochastic systems, natural dynamics also include random fluctu-
ations of the system state. In our setting, this implies that for a given
action any system state may occur with some probability. Hence, no
action can be completely necessary for a realized system state, because
there is always the possibility that this system state is realized by
pure chance in the absence of action. The degree to which an action
is necessary for a realized system state is given by the change in
the state’s probability due to action compared to the counterfactual
probability entailed by not acting. The larger the increase in probability
due to action, the larger is the action’s degree of necessity. The action
is completely unnecessary for a realized system state if it does not
increase, or if it decreases, the state’s probability of occurring.

7 Overattribution means that the sum of causal responsibility attributed to
ndividual causes is greater than 1. It typically arises from causal overdeter-
ination, which occurs when multiple causes are present, of which any one
ould be entirely sufficient for the outcome individually, such as when a
ictim dies from being shot simultaneously by multiple assassins. In criminal
aw, overattribution may be desirable – all the assassins are legally fully

esponsible for the victim’s death (cf. Hart and Honoré, 1959; Honoré, 1995).
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Fig. 1. Intuition of measuring causal responsibility in deterministic systems: actual
system state 𝑋𝑎

𝑡 (Eq. (4) with 𝑔(𝑋𝑡 , 𝑎) = 0) and counterfactual system state 𝑋𝑡 (Eq. (1)
ith 𝑔(𝑋𝑡) = 0) over time.

ingular vs. general causation (ex-post vs. ex-ante perspective)
So far, we have considered a realized system state at some point

n time and retrospectively asked about its causes. This is an ex-
ost perspective, which is adequate for a particular outcome that has
ctually occurred (‘‘singular causation’’) (Pearl, 2009). Alternatively,
ne may ask prospectively8 at the time of action about the action’s
xpected causal impact on the future system state. This is an ex-ante
erspective, which is adequate for the general tendency of an action
o bring about some outcome that might occur in the future (‘‘general
ausation’’) (Mackie, 1965).

In deterministic systems, both perspectives are equivalent. In
tochastic systems, which perspective is used when attributing causality
akes a conceptual difference. When taking an ex-post perspective, one

nly considers a single random realization of the system state – and
one of the infinitely many other potential states that could have been
ealized at that time. When taking an ex-ante perspective, forming an
xpectation about the action’s consequences requires that one considers
ll potential system states at that time.

Against this background, an agent’s ex-post causal responsibility
s an answer to the question: ‘‘To what extent has the agent’s action

at time 0 caused the realized system state at time 𝑡?’’ In contrast,
n agent’s ex-ante causal responsibility answers a different question,
amely: ‘‘To what extent can the agent’s action 𝑎 at time 0 be expected
o cause the resulting system state at time 𝑡?’’ The ex-ante causal
esponsibility is simply the expected value of the ex-post measure. Both
oncepts carry different information about an action’s causal efficacy
nd are relevant for different purposes. The ex-post concept is the
elevant one to attribute a specific realized system state to its causes
‘‘singular causation’’). It is thus subject to the randomness inherent
n the realization of a particular system state. The ex-ante concept, by
onsidering all potential realizations, reveals an action’s causal efficacy
n the system in a representative manner (‘‘general causation’’). While
roviding general insight on the causal efficacy of an action, it may dif-
er substantially from the ex-post causal responsibility for a particular,
andom realization.

.2. Causal responsibility in deterministic systems

Suppose the state of some deterministic dynamical system is 𝑥𝑎𝑡1 at
ime 𝑡1 ≥ 0 and the agent modified the system dynamics by taking
ction 𝑎 at time 𝑡 = 0. In this certain environment, both the action and
atural dynamics were completely necessary for the realized system

8 Both the retrospective and prospective assessment discussed here are
urely descriptive. In particular, the prospective assessment is not normative
what one should do), and the retrospective is not judging (how one should
ave acted) (cf. Baumgärtner et al., 2018, Sec. 3.2).
5

e

state, meaning that 𝑥𝑎𝑡1 could not have resulted at time 𝑡1 without
either of them. That is, both the action’s degree of necessity and that
of natural dynamics are 100%. In line with Section 3.1, an agent’s
causal responsibility measures the degree to which the agent’s action
is necessary and sufficient for the realized system state. We take the
degree of necessary and sufficient causation as the product of the
degree of necessity and the degree of sufficiency. Hence, measuring
causal responsibility for the state of deterministic systems reduces to
measuring an action’s degree of sufficiency for the realized system state.

For known deterministic dynamics, an action’s degree of sufficiency
(and thus an agent’s causal responsibility) for the system state 𝑥𝑎𝑡1 at
ime 𝑡1 is given by the relative difference between the realized and the
ounterfactual system state 𝑥𝑡1 at time 𝑡1. The counterfactual system
tate that would have resulted in the absence of action 𝑎 (Fig. 1) is
niquely determined by Eq. (1) with 𝑔(𝑋𝑡) = 0 for all 𝑋𝑡.

efinition 1. An agent’s causal responsibility for the realized deter-
inistic system state 𝑥𝑎𝑡 at time 𝑡, given the counterfactual system state
𝑡, and given that the agent took action 𝑎 at time 𝑡 = 0, is given by:

(𝑥𝑎𝑡 , 𝑥𝑡) =
| 𝑥𝑎𝑡 − 𝑥𝑡 |
max{𝑥𝑎𝑡 , 𝑥𝑡}

(5)

The numerator of (5) takes the absolute value of the difference
between the realized and the counterfactual system state because it
does not matter for causation whether action 𝑎 increases or decreases
the system state relative to the counterfactual. In contrast, the normal-
ization factor in the denominator depends on whether 𝑎 increases or
decreases the system state relative to the counterfactual. It consists
of whichever of the two – realized or counterfactual system state –
is greater at time 𝑡 to consistently measure the relative difference to
the counterfactual that is due to action. The agent is not causally
responsible for the realized system state if the action is completely
insufficient for this state, that is, if it does not change the system state
relative to the counterfactual. The agent is fully causally responsible if
and only if the action is completely sufficient for the resulting system
state, which implies that either 𝑥𝑎𝑡 = 0 or 𝑥𝑡 = 0. Between these extreme
cases, an agent’s causal responsibility lies between 0 and 100%.

The causal responsibility measure (5) has been introduced from an
ex-post perspective, but formally also holds for the ex-ante perspective.

3.3. Causal responsibility in stochastic systems

In stochastic systems, causality needs to be attributed under un-
certainty. One only observes a single random realization 𝑋𝑎

𝑡 of the
tochastic process 𝑋𝑎

𝑡 and none of its infinitely many other potential
ealizations (Fig. 2). In addition, the counterfactual process 𝑋𝑡 in the
bsence of action has also infinitely many other potential realizations.

Similar to the deterministic case, an action’s degree of sufficiency is
easured as the relative difference between the realized system state
𝑎
𝑡 and the counterfactual system state 𝑥𝑡. In a stochastic system with
nown dynamics (4), the counterfactual system state that would have
een realized in the absence of action 𝑎 can be uniquely determined
s follows9: First, for a given realization 𝑋𝑎

𝑡 , the stochastic forcing 𝑍𝑡
pparent in the time evolution of 𝑋𝑎

𝑡 is separated from the known
eterministic trajectory of the system, by calculating the realization of
he stochastic process 𝑍𝑡 from the other known quantities in Eq. (4).
his particular realization 𝑍𝑡 of the stochastic forcing is then used to
imulate the counterfactual realization 𝑋𝑡 by inserting 𝑍𝑡 into Eq. (1).10

Beyond sufficiency, in stochastic systems one also needs to consider
ow necessary the action was for the realized system state and to

9 We thank Hermann Held for suggesting this procedure to us.
10 If the stochastic forcing cannot be separated from the deterministic

rajectory of the system, but arises, for example, from the high dimensionality
f the system dynamics, one needs to use an alternative quantity, such as the
xpected value of the counterfactual system state in the absence of action.
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Fig. 2. Epistemological problem in stochastic dynamical systems: three random realiza-
tions of the stochastic process 𝑋𝑎

𝑡 (described by Eq. (4)) and its expected value (dashed
curve). In practice, one only observes a single realization, such as the one drawn in
bold, with corresponding system state 𝑥𝑎𝑡1 at time 𝑡1.

what extent there were other potential causes. Measuring an action’s
degree of necessity requires calculating the probability of finding the
process in an interval [𝑥, 𝑥̄] around the realized system state 𝑋𝑎

𝑡 , where
𝑥 and 𝑥̄ need to be specified. Specifically, we take an action’s degree
of necessity as the relative difference between two probabilities: the
probability 𝑃𝑋𝑎

𝑡
(𝑥, 𝑥̄) of observing the realized system state given the

modified process due to action 𝑋𝑎
𝑡 , and the probability 𝑃𝑋𝑡

(𝑥, 𝑥̄) of
observing this state given the counterfactual process in the absence of
action 𝑋𝑡. This measures by how much, in relative terms, the action
makes the realized system state more likely.

For illustration, consider two actions 𝑎 and 𝑎′ that both increase
the probability of the realized system state by the same absolute
amount of 30 percentage points, but relative to different counterfactual
probabilities in the absence of action 𝑃𝑋𝑡

(𝑥, 𝑥̄) = 0.1 and 𝑃𝑋′
𝑡
(𝑥, 𝑥̄) = 0.6.

The degree of necessity of action 𝑎 is (0.4 − 0.1)∕0.4 = 0.75, whereas
that of action 𝑎′ is (0.9 − 0.6)∕0.9 = 0.33. The former is larger than the
latter because the realized system state is made relatively more likely
by action 𝑎 – although it is more likely in absolute terms for action 𝑎′.11

In conclusion, causal responsibility for the state of stochastic sys-
tems is determined by the product of two factors: the relative difference
between the realized and the counterfactual system state in the absence
of action (the action’s degree of sufficiency) and the relative difference
in the probability of the realized system state (the action’s degree of
necessity). In line with Section 3.1, the degree of necessity, and hence
causal responsibility, is zero for any action that does not increase, or
decreases, the probability of 𝑥𝑎𝑡 .

Definition 2. An agent’s ex-post causal responsibility for the actually
realized system state 𝑥𝑎𝑡 at time 𝑡, given the probabilistic knowledge
available at time 𝑡 = 0, is given by:

𝑅
(

𝑥𝑎𝑡 , 𝑥𝑡
)

=

⎧

⎪

⎨

⎪

⎩

𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄) − 𝑃𝑋𝑡

(𝑥, 𝑥̄)

𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄)

⋅
| 𝑥𝑎𝑡 − 𝑥𝑡 |
max{𝑥𝑎𝑡 , 𝑥𝑡}

for 𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄) > 𝑃𝑋𝑡

(𝑥, 𝑥̄)

0 for 𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄) ≤ 𝑃𝑋𝑡

(𝑥, 𝑥̄)
.

(6)

11 This is equivalent to the systematic attribution procedure presented
by Baumgärtner (2020). In this procedure, a fraction of

[

𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄) −

𝑃𝑋𝑡
(𝑥, 𝑥̄)

]

∕𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄) of the ‘‘outcome luck’’ (Vallentyne, 2008), i.e., the remain-

ing probability difference 1−𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄), is attributed to the agent in addition to

the direct probability shift of 𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄)−𝑃𝑋𝑡

(𝑥, 𝑥̄). In the discrete setting studied
by Baumgärtner (2020), this is equal to causal responsibility.
6

The first factor can also be interpreted in a different manner, namely
as a prefactor that measures which part of the relative difference
between the realized and the counterfactual system state in the absence
of action is attributable to action.12 The relative difference between
the probability due to action and the probability when not acting
decreases as the uncertainty surrounding the system dynamics (𝜎 in our
setting) increases. That is, the larger the uncertainty, the lower is an
action’s degree of necessity and thus also causal responsibility. In the
extreme case of absolute certainty (i.e., 𝑃𝑋𝑎

𝑡
(𝑥, 𝑥̄) = 1 and 𝑃𝑋𝑡

(𝑥, 𝑥̄) =
0) the causal responsibility measure (6) reduces to the deterministic
measure (5) presented in Section 3.2.

An agent’s ex-ante expected causal responsibility is given by the
expected value of her ex-post causal responsibility across all potential
realized system states weighted by their respective probability of oc-
curring 𝑃𝑋𝑎

𝑡
(𝑥, 𝑥̄). That is, the expected value is calculated with respect

to the conditional distribution of the process modified by the action,
which represents the agent’s state of probabilistic knowledge at the
time of action.

Definition 3. An agent’s ex-ante expected causal responsibility at time
𝑡 for taking action 𝑎 is given by:

𝑅𝑒(𝑎) = E
[

𝑅(𝑥𝑎𝑡 , 𝑥𝑡)
]

. (7)

While the ex-ante expected responsibility is clearly defined, it may
not exist in closed-form, but rather has to be obtained through simula-
tions.

4. Application and results

In this section, we apply the measures (5), (6) and (7) of causal
responsibility to four stylized examples of different dynamical systems
covering both deterministic and stochastic dynamics with and without
thresholds. These examples have emerged from a more encompassing
analysis that we have performed and were chosen because they are
well-suited to illustrate the essential results. In Section 4.3, we present
general results and conjectures that follow from the examples presented
here and are also informed by our more encompassing analysis.13

4.1. Deterministic logistic growth

Consider some renewable resource, such as a fish stock or a forest
stand, for which the evolution of the resource stock over time is given
by the logistic equation:
d𝑋𝑡
d𝑡

= 𝑟𝑋𝑡

(

1 −
𝑋𝑡
𝐾

)

, (8)

where the rate of increase of the stock is determined by the intrinsic
growth rate 𝑟, its maximum stable population size is determined by the
carrying capacity 𝐾 and the initial value is 𝑥0. Eq. (8) has a single,
stable non-trivial equilibrium at 𝑋𝑡 = 𝐾. In this model, the elementary
action types presented in Section 2 correspond to modifying, at time
0, the values of 𝑟 (rate modification) and 𝐾 (attractor modification),
which affect the stock size indirectly, as well as directly modifying the
initial value 𝑥0. Control strategies are represented by adding the control
term 𝑎(𝑋𝑡) to the right-hand side of Eq. (8).

12 In climate attribution science, this factor is known as the ‘‘fraction of
attributable risk’’ (Allen, 2003; Jaeger et al., 2008; Otto, 2017; Pfrommer et al.,
2019).

13 For the systems presented here, we studied a range of parameter values
and action combinations. We have also studied other types of systems, in-
cluding the Solow (1956) model of capital accumulation, the Lotka–Volterra
model of predator–prey population dynamics (Lotka, 1925; Volterra, 1926),
and a model of stochastic ecosystems with alternative stable states (Stecher
and Baumgärtner, 2022).
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Fig. 3. Evolution of the actual system state 𝑋𝑎
𝑡 (solid orange), counterfactual system state 𝑋𝑡 (solid blue) and causal responsibility 𝑅(𝑥𝑎𝑡 , 𝑥𝑡) (Eq. (5)) (solid turquoise) over time

under deterministic logistic stock dynamics with and without threshold (Eq. (8) for a,b,c; Eq. (9) for d) for different action types (a–d). Parameter values: 𝑟 = 0.05, 𝐾 = 80, 𝑥0 = 40
in a–f, 𝑥𝑎0 = 20 in a and d, 𝐾𝑎 = 60 in b, 𝑟𝑎 = 0.1 in c, 𝑉 = 15 in d (dashed red), ℎ = 1 in e, ℎ = 0.1 in f. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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For actions that modify the initial value 𝑥0, such as a one-time
reduction or replenishment of the stock of a natural resource, an agent’s
causal responsibility (Eq. (5)) for the system state is maximal at time
0 and subsequently decreases over time (Fig. 3(a)). Both the actual
system state and the counterfactual system state converge to the same
attractor 𝐾, only from different initial values 𝑥0 and 𝑥𝑎0. Hence, causal
esponsibility for the system state converges to zero over time as the
elative difference of the actual to the counterfactual system state in
he absence of action decreases to zero. That is, the action’s degree
f sufficiency decreases over time, whereas natural dynamics become
7

ncreasingly sufficient for the system state. t
For actions that modify the carrying capacity 𝐾, for instance by
hanging resource availability or trophic interactions, an agent’s causal
esponsibility for the system state is zero initially and subsequently
ncreases over time (Fig. 3(b)). As the system state converges to its
odified carrying capacity 𝐾𝑎, causal responsibility converges against

ts maximum level over time. As the actual and the counterfactual
ystem state converge to different attractors from the same initial value,
he relative difference between 𝑥𝑎𝑡 and 𝑥𝑡 increases over time.

For actions that modify the intrinsic growth rate 𝑟, an agent’s
ausal responsibility for the system state is zero at first, followed by a
emporary increase, before it subsequently decreases to zero (Fig. 3(c)).



Ecological Economics 217 (2024) 108086M. Stecher and S. Baumgärtner

𝑋
s

a
a
h
w
t
t
o
s
t

t
m
i
m
a
s
e
e

t
s
t
v
i
r
m
w

w
W
v
m
o

t
p

q

Examples include improving the spawning habitat of a fish stock or
planting a faster-growing tree species. Both the absolute and the rela-
tive difference between the factual and the counterfactual system state
increase at first due to the growth rate differential. As both 𝑋𝑎

𝑡 and
𝑡 converge to the same attractor 𝐾 over time, the action’s degree of

ufficiency subsequently decreases and converges to zero.
For harvesting a constant amount ℎ of the stock at each time,

n agent’s causal responsibility for the system state is zero initially
nd subsequently increases over time (Fig. 3(e)). In the depicted case,
arvesting follows the maximum sustainable yield (MSY) paradigm,
hich keeps the stock level constant at its most productive level of half

he carrying capacity. Still, causal responsibility increases over time as
he counterfactual system state increases over time. In the extreme case
f choosing a high harvesting amount that reduces the stock to zero at
ome point, the agent is fully responsible for the stock collapse from
his point on.

Similarly, for harvesting a constant fraction ℎ of the stock at each
ime, an agent’s causal responsibility increases and converges to its
aximum level over time (Fig. 3(f)). In the depicted case, the agent

s eventually fully responsible for completely exhausting the stock by
eans of choosing an unsustainably high harvesting rate. Conversely,

n agent is only partially responsible, i.e. 𝑅(𝑥𝑎𝑡 , 𝑥𝑡) < 1, for any system
tate with a positive stock level, e.g. before the stock is completely
xhausted or when choosing a lower harvesting rate that does not
xhaust the stock.

Consider now a renewable resource that exhibits critical depensa-
ion. That is, the resource stock decreases and converges to zero for
tock levels below a critical threshold 𝑉 < 𝐾. In ecological systems,
his phenomenon of population density being positively related to indi-
idual fitness is known as the Allee effect (Allee et al., 1949). Examples
nclude a minimum viable population size necessary for successful
eproduction or a minimum level of forest cover that is required for
aintaining a suitable microclimate. The dynamics of a resource stock
ith critical depensation can be described by (Clark, 1990):

d𝑋𝑡
d𝑡

= 𝑟𝑋𝑡

(

1 −
𝑋𝑡
𝐾

)(

𝑋𝑡
𝑉

− 1
)

. (9)

The stability properties of Eq. (9) are different from those of Eq. (8):
in addition to the stable equilibrium at 𝑋𝑡 = 𝐾, Eq. (9) has an
unstable equilibrium at 𝑋𝑡 = 𝑉 . With that, the same actions may entail
completely different consequences than without critical depensation.

For actions that reduce the system state below the critical threshold,
an agent’s causal responsibility for the system state increases and
converges to its maximum value of 1 over time. That is, if the threshold
is crossed due to the action, the agent is fully responsible for the
resulting resource depletion as the action becomes completely sufficient
for the system state. This is only possible for actions that directly affect
the system state, i.e. initial value modifications or choosing a control
strategy. For instance, for reducing the initial value below the critical
threshold (𝑥𝑎0 < 𝑉 < 𝑥0), the agent is fully responsible for the eventual
exhaustion of the stock (Fig. 3(d)).

4.2. Stochastic logistic growth

Consider now a renewable resource that grows logistically over time
and is subject to stochastic perturbations, such as random events of
individual mortality and reproduction in population dynamics (Lande
et al., 2003). The evolution of the stock over time is now given by:

d𝑋𝑡 = 𝑟𝑋𝑡

(

1 −
𝑋𝑡
𝐾

)

d𝑡 + 𝜎𝑋𝑡 d𝑊𝑡 , (10)

here d𝑊𝑡 = 𝑊𝑡+d𝑡 − 𝑊𝑡 is the infinitesimal increment of a standard
iener process 𝑊𝑡. That is, d𝑊𝑡 is a normally distributed random

ariable with mean zero and variance d𝑡. This random component is
ultiplied by the stock size 𝑋𝑡 at time 𝑡, which means that the size

f stochastic perturbations to the resource stock is proportional to
8

he stock size. The system’s susceptibility to stochastic influences is
arametrized by 𝜎.

Measuring causal responsibility in stochastic systems (Eq. (6)) re-
uires specifying the interval [𝑥, 𝑥̄] centered around the realized system

state 𝑥𝑎𝑡 . Although the probabilities 𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄) and 𝑃𝑋𝑡

(𝑥, 𝑥̄) change con-
siderably for different interval widths, the relative difference between
the probabilities and thus causal responsibility are not very sensitive to
the interval width (Fig. A.1). An agent’s ex-post causal responsibility
(Eq. (6)) for the actually realized system state 𝑥𝑎𝑡 at time 𝑡 depends
on the specific, random realization of the stochastic process described
by Eq. (10).

Fig. 4(a) shows one random realization (black line) for an action
that modifies the initial value 𝑥0. The expected values E[𝑋𝑎

𝑡 ] and E[𝑋𝑡]
of the corresponding actual and counterfactual process are slightly
lower than in the deterministic case because stochastic fluctuations
reduce the expected growth rate (Pindyck, 1984). The probability
𝑃𝑋𝑎

𝑡
(0.9𝑥𝑎𝑡 , 1.1𝑥

𝑎
𝑡 ) of finding the process 𝑋𝑎

𝑡 within plus or minus ten
percent of the realized system state 𝑥𝑎𝑡 at time 𝑡 is close to 1 initially
because the variance of 𝑋𝑎

𝑡 is low initially. In the counterfactual case
of not acting, the probability of finding the process 𝑋𝑡 within the same
interval is close to zero at first due to the low variance of 𝑋𝑡. As
the variance of both processes increases over time, both probabilities
tend to converge against each other and the agent’s ex-post causal
responsibility (Eq. (6)) decreases over time.

Fig. 4(b) shows the agent’s ex-ante causal responsibility (Eq. (7))
for the same action, which reveals the action’s causal impact on the
system in a representative manner. An agent’s ex-ante causal respon-
sibility for the resulting system state at time 𝑡 is maximal at time
0 and subsequently decreases over time when modifying the initial
value. Comparing with Fig. 3(a), it becomes apparent that the ex-
ante responsibility for the stochastic system state is almost identical
to causal responsibility for the deterministic system state. That is, the
randomness inherent in a particular realization (Fig. 4(a)) is smoothed
over by averaging over a large number of realizations due to the law
of large numbers.14 Similar results are obtained for attractor and rate
modifications (not shown here): an agent’s ex-post causal responsibility
depends on the particular realization of the system state, while the
ex-ante causal responsibility resembles the corresponding deterministic
case.

Further, the agent can modify the system’s susceptibility to stochas-
tic shocks by changing the value of 𝜎 (Fig. 4(e)). Increasing 𝜎 leads
to a higher variance of the process 𝑋𝑎

𝑡 (Eq. (10)) and thus a lower
probability of finding it relatively close to its expected value. Hence,
for realized system states close to E[𝑋𝑎

𝑡 ] the probability due to action
is lower than the probability in the counterfactual case of not acting.
Conversely, larger deviations of 𝑋𝑡 from the expected system state
become more likely by increasing 𝜎. Hence, an agent’s ex-post causal
responsibility for the realized system state is larger the farther 𝑋𝑡
deviates from E[𝑋𝑎

𝑡 ] when increasing 𝜎.
An agent’s ex-ante causal responsibility for the resulting system state

is zero initially and subsequently increases over time for actions that
increase 𝜎 (Fig. 4(f)). As the variance approaches its stationary level,
causal responsibility converges against its maximum level over time.
Although on average the probability due to action is lower than the
counterfactual probability, the ex-ante causal responsibility is positive
due to possible realizations far from the expected value.

Fig. 5 depicts the case of a natural resource with economically
optimal harvesting that maximizes discounted net surplus for isoelastic

14 This result is not a general property of the ex-ante causal responsibility
and only holds for systems that can be described by a probability distribution
of the exponential family, but not for e.g. heavy-tailed distributions.
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Fig. 4. Realized system state 𝑋𝑎
𝑡 (solid black), corresponding expected value E[𝑋𝑎

𝑡 ] (dashed orange) and probability 𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄) (solid orange), counterfactual realization 𝑋𝑡 (dotted

black), corresponding expected value E[𝑋𝑡] (dashed blue) and probability 𝑃𝑋𝑡
(𝑥, 𝑥̄) (solid blue), as well as ex-post causal responsibility 𝑅(𝑥𝑎𝑡 , 𝑥𝑡) (Eq. (6), panels a,c,e) and ex-ante

ausal responsibility 𝑅𝑒(𝑎) (Eq. (7), panels b,d,f) (both solid turquoise) under stochastic logistic stock dynamics with and without thresholds (Eq. (10) for a,b,e,f; Eq. (12) for c
nd d). Parameter values: 𝑟 = 0.05, 𝐾 = 80, 𝑥0 = 40, 𝜎 = 0.05, 𝑥 = 0.9𝑥𝑎𝑡 , 𝑥̄ = 1.1𝑥𝑎𝑡 in a–f, 𝑥𝑎0 = 20 in a–d, 𝑉 = 30 in c and d (dashed red), 𝜎𝑎 = 0.1 in e and f. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
emand and marginal cost functions.15 The agent’s ex-post causal re-
ponsibility increases over time as the difference between the exploited

15 The optimal extraction rule ℎ∗(𝑋𝑡) in this case is given by (Pindyck, 1984):

∗(𝑋𝑡) = 𝑏𝑋𝑡

⎧

⎪

⎨

⎪

⎩

𝑐 +
2𝑏2 + 2𝑏

[

𝑏2 + 𝑐
(

𝑟 + 𝛿 − 𝜎2)2
]

1
2

(

𝑟 + 𝛿 − 𝜎2
)2

⎫

⎪

⎬

⎪

⎭

− 1
2

, (11)

with isoleastic demand 𝑞(𝑝) = 𝑏𝑝−𝜂 with 𝜂 = 1∕2 and isoelastic marginal cost
−𝛾
9

(𝑋𝑡) = 𝑐𝑋𝑡 with 𝛾 = 2 and discount rate 𝛿.
stock and the counterfactual stock without extraction increases and
converges against its maximum level (Fig. 5(a)). In general, causal
responsibility is relatively high when choosing an optimal control
strategy, because the system is exploited to a strong degree (Figs. 5(a)
and 5(b)). Under certain economic or biological conditions, such as a
high discount rate, it may be economically optimal to drive the stock
to extinction, for which the agent is then fully causally responsible
(Figs. 5(c) and 5(d)).

Finally, consider a logistically growing renewable resource that is
subject to stochastic perturbations and exhibits critical depensation.
The stock dynamics are given by:
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Fig. 5. Realized system state 𝑋𝑎
𝑡 (solid black), corresponding expected value E[𝑋𝑎

𝑡 ] (dashed orange) and probability 𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄) (solid orange), counterfactual realization 𝑋𝑡 (dotted

black), corresponding expected value E[𝑋𝑡] (dashed blue) and probability 𝑃𝑋𝑡
(𝑥, 𝑥̄) (solid blue), as well as ex-post causal responsibility 𝑅(𝑋𝑎

𝑡 , 𝑋𝑡) (Eq. (6), panel a) and ex-ante
ausal responsibility 𝑅𝑒(𝑎) (Eq. (7), panel b) (both solid turquoise) under stochastic logistic stock dynamics (Eq. (10)) and economically optimal harvesting ℎ∗(𝑋𝑡) (Eq. (11)).
arameter values: 𝑟 = 0.05, 𝐾 = 80, 𝑥0 = 40, 𝜎 = 0.05, 𝑏 = 1, 𝑐 = 1, 𝑥 = 0.9𝑥𝑎𝑡 , 𝑥̄ = 1.1𝑥𝑎𝑡 in a–d, 𝛿 = 0.03 in a and b, 𝛿 = 0.1 in c and d. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
d𝑋𝑡 = 𝑟𝑋𝑡

(

1 −
𝑋𝑡
𝐾

)(

𝑋𝑡
𝑉

− 1
)

d𝑡 + 𝜎𝑋𝑡 d𝑊𝑡 . (12)

An agent’s ex-post causal responsibility for an action that decreases
the initial value below the threshold value 𝑉 depends less on the
particular realization than when not crossing the threshold (Fig. 4(c)).16

In particular, the action’s degree of sufficiency approaches 1 over time,
whereas its degree of necessity is close to 1 throughout, although
the probability 𝑃𝑋𝑎

𝑡
(𝑥, 𝑥̄) decreases sharply over time as the variance

decreases.
Similar to the deterministic case (Fig. 3(d)), an agent’s ex-ante

causal responsibility for the resulting system state when taking an
action that decreases the initial value below the critical threshold is
increasing and converges to its maximum value over time (Fig. 4(d)).
It is slightly lower than causal responsibility in the deterministic case
due to the (unlikely) possibility that the counterfactual system state
decreases below the threshold value, or that 𝑋𝑎

𝑡 increases above the
threshold, due to stochastic perturbations.

4.3. General results and conjectures

Beyond specific example systems and actions, we now formulate
general results for causal responsibility in dynamical systems. These are

16 The magnitude of this effect depends on the parameter values. Here,
roportional stochastic perturbations to the system state are very small because
he system state itself is very small.
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deduced from the insights gained from an encompassing set of exam-
ples, rather than being derived analytically from Section 2 in an ele-
mentary manner. In that sense, they are conjectures, yet well-founded
and reasoned.

While these results are fairly general, they only apply to systems
that have at least one locally stable non-trivial equilibrium and do
not exhibit cyclical or chaotic behavior. This may exclude certain
parameter values and actions even in the examples presented (such
as large values of 𝑟 in the logistic growth model, which give rise to
chaotic behavior). As throughout the entire analysis, we remain in the
setting described in Section 2: a single action’s consequences unfold
under (probabilistically) known circumstances.

We focus on how an agent’s ex-ante causal responsibility develops
over the long run. One essential result is that causal responsibility
may increase or decrease over time, depending on the system and
action type. More specifically, causal responsibility may either vanish
asymptotically over time, or it may converge to a finite, constant level.

For systems without thresholds, the long-run development of causal
responsibility is determined by the action type: initial value and rate
modifications entail vanishing causal responsibility, whereas attractor
and volatility modifications as well as the choice of any control strategy
entail lasting causal responsibility. For systems with thresholds, the
long-run development of causal responsibility for some action types
also depends on other factors. For initial value modifications, causal
responsibility is vanishing if the action does not cause the system
to cross the threshold, whereas it is lasting if it does. For attractor
modifications, causal responsibility is vanishing if the system is initially
below its threshold, and lasting if it is above. Table 1 summarizes these
results.
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Table 1
Long-run development of ex-ante causal responsibility, depending on the type of system and on the action type.

Action type D DT S ST

Initial value (𝑥0) vanishing vanishing or lasting vanishing vanishing or lasting
Attractor (𝐾) lasting vanishing or lasting lasting vanishing or lasting
Rate (𝑟) vanishing vanishing vanishing vanishing
Volatility (𝜎) – – lasting lasting
Control strategy (ℎ) lasting lasting lasting lasting

D = deterministic systems without thresholds, DT = deterministic systems with thresholds, S = stochastic systems without
thresholds, ST = stochastic systems with thresholds.
Fig. 6. Actual system state 𝑋𝑎
𝑡 (solid orange), counterfactual system state 𝑋𝑡 (solid

blue) and causal responsibility 𝑅(𝑋𝑎
𝑡 , 𝑋𝑡) (Eq. (5)) (solid turquoise) under determin-

istic logistic stock dynamics (Eq. (8)) with significance threshold 𝑅 (dashed green).
Parameter values: 𝑟 = 0.05, 𝑟𝑎 = 0.1, 𝐾 = 80, 𝑥0 = 40, 𝑅 = 0.1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

To quantitatively describe the temporal extent of causal responsi-
bility, we introduce a significance threshold 𝑅, which represents the
minimum level of causal responsibility below which an action’s causal
impact is deemed negligible. The actual value of 𝑅 is not an inherent
property of the system, but reflects the (risk) preferences of society.
It follows that causal responsibility may be limited in time by falling
below this threshold. Formally, the time period  sig(𝑎) during which an
action 𝑎’s causal impact on the system is significant is defined by:

 sig(𝑎) ∶=
{

𝑡 ∣ 𝑅𝑒(𝑎
)

≥ 𝑅
}

. (13)

For cases of vanishing causal responsibility there exists some 𝑇max(𝑎) ∶=
sup  sig(𝑎). After this point in time action 𝑎 no longer exerts a signifi-
cant causal influence on the system (Fig. 6).17 It describes the maximum
temporal extent of an action’s causal efficacy on the system. Likewise,
there exists a minimum time 𝑇min(𝑎) ∶= inf  sig(𝑎) before which the
action 𝑎 has no significant causal efficacy on the system. This time lag,
which may be zero, between the time of action and when the action’s
consequences begin to take a significant effect is well-known in the
context of monetary policy (e.g. Friedman, 1961) but is relevant for
policy-making more generally.

5. Relevance

Our results show that the time of occurrence of a system state is cru-
cial for the extent of causal responsibility. The underlying fundamental
reason is that the relationship between cause and effect may change
over time. This aspect is neglected when one performs a (quasi-) static
assessment of causality in a dynamical system. Our concept is relevant
whenever the action’s consequences dynamically unfold in a non-trivial
way because it explicitly captures this aspect. In particular, this may be
relevant in the following instances.

17 Formally, if causal responsibility is lasting, 𝑇max(𝑎) is not defined, but
infinite.
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5.1. Attribution and impact assessment

Obviously, our concept of causal responsibility can be used to at-
tribute an observed system state to its causes (ex-post) and to assess the
expected causal efficacy of different actions (ex-ante). This is relevant
for formulating feasible management goals, assessing the effectiveness
of management actions for given goals, appropriately setting economic
incentives, and judging the quality of management actions as a basis
for reward or punishment.

If one thinks of actions as policy measures, our concept allows
an – ex-ante or ex-post – assessment of their effectiveness to reach
a given target system state. The assessment is in terms of a single
number, which means it could be used as an indicator of effectiveness.
Examples include policies which aim at reaching a predefined system
state, such as an inflation target, full employment, a public health target
(e.g., vaccination rates), or ‘‘good status’’ of freshwater bodies (defined
through threshold values).

If one asks whether a given agent is to blame or praise for the state
of a dynamical system, our concept allows an ex-post attribution of the
system state to the agent’s action and natural dynamics. For example,
our concept quantitatively measures to what extent a mining company’s
discharge of pollutants into a river has caused the subsequent collapse
of a fish stock.

5.2. Liability

Our concept is relevant for the design of strict18 liability regulations
when an agent’s action subsequently entails a damage to another
person. In particular, suppose the damage is determined by the actually
realized system state. If the agent has (partially) caused this system
state she is liable, in principle, for compensation. In the law-and-
economics literature on liability, different institutional designs have
been discussed in terms of whether they can establish appropriate
incentives for an efficient allocation (Shavell, 1987; Pitchford, 1995;
Alberini and Austin, 2002; Boomhower, 2019). In contrast to designing
liability regulations solely on grounds of efficiency, one may also
design liability in proportion to the agent’s causal responsibility for
the damaging system state, which is both efficient and in line with
generally accepted principles of causation (Baumgärtner and Quaas,
2021). More precisely, liability in proportion to causal responsibility
means that the agent owes compensation of that fraction of the damage
for which she is causally responsible.

Our concept captures how the causal relationship between the
damage and the agent’s action changes over time, which is relevant
when designing liability regulations in dynamical systems in proportion
to causal responsibility. First, if a damage occurs at a point in time
subsequent to the agent’s action, the agent’s degree of causation of the
damage depends not on the actual and counterfactual system state at
the time of action, but on the actual and counterfactual system state
at the time of damage. Accordingly, the extent of the agent’s liability
crucially depends on the time at which the damage occurs.

18 Strict liability follows the logic of consequentialism. Hence, causation is
at its core, in contrast to negligence liability (Epstein, 1973).
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Second, if a damage occurs over an extended period of time, the
agent’s degree of causation of the damage may be different at each
point in time. Hence, at each point in time during the damage period
the agent is liable for compensation of that fraction of the damage for
which she is causally responsible at that time. As this fraction is not
necessarily constant over time, it needs to be factored in at each point
in time when assessing the agent’s liability for the total damage over
the entire time period.

5.3. Normative responsibility

The concept of responsibility, in general, has different layers of
meaning (Baumgärtner et al., 2018, Sec. 3.1). We have so far focused
on the elementary layer of causal responsibility, which is purely de-
scriptive. We now turn to normative responsibility, which is about
how one should act. In particular, we discuss the implications of causal
responsibility for normative responsibility in dynamical systems.

Our understanding of normative responsibility is founded on con-
sequentialist ethics, according to which actions are judged based on
their consequences.19 In a dynamical system, an agent’s normative re-
sponsibility is to effectuate a future desired system state, or to avoid an
undesired one, by choosing at time 0 a suitable action from the actions
at her disposal. For example, the agent’s normative responsibility may
be to see to it that a natural resource is not exhausted.

Generally, the extent of normative responsibility may be limited due
to several reasons (Baumgärtner et al., 2018, Sec. 4.4). One important
reason is the agent’s limited causal responsibility, that is, the agent’s
limited ability to effectuate or avoid a normatively specified future
system state. This fundamental limit has been introduced by Immanuel
Kant (cf. Stern, 2004) and is known in modern ethics as the Ought-
Implies-Can-Principle (Van Inwagen, 1978; Griffin, 1992): one can only
be obliged to do what one is able to do. In other words, being able to
effectuate a particular system state is a necessary condition for bearing
normative responsibility for it.

As discussed in Section 4.3, an agent’s causal efficacy when taking
a particular action 𝑎 may be limited in time. Accordingly, the agent’s
normative responsibility may also be limited in time. In particular, if an
agent’s causal responsibility for the system state at time 𝑡 is below the
ignificance threshold 𝑅 for any action at her disposal, the agent cannot

be normatively responsible for the system state at that time. That is, the
temporal extent of an agent’s normative responsibility cannot extend
beyond the time period during which the agent’s causal impact on the
system is significant when considering all possible actions. For actions
that entail vanishing causal responsibility (see Table 1), the agent’s
normative responsibility for future system states is therefore limited
by the largest 𝑇max(𝑎) of all actions at the agent’s disposal. If there
xists a time lag between the time of action and when the action’s
onsequences begin to take a significant effect, the agent cannot be
ormatively responsible for system states before the smallest 𝑇min(𝑎)

when considering all actions at her disposal.
The Ought-Implies-Can-Principle thus limits the temporal extent of

an agent’s normative responsibility. These limits need to be respected
when specifying an agent’s normative responsibility.

6. Discussion and conclusion

We have developed a novel measure of an agent’s degree of causal
responsibility for the state of dynamical systems founded on the agent’s
action’s degree of necessity and sufficiency for the system state. Go-
ing beyond existing quantitative measures of the degree of causation
of a given outcome, our concept captures the varying strength of

19 This is opposed to deontological ethics, according to which actions are
onsidered morally right or wrong irrespective of their consequences (Alexan-
er and Moore, 2021).
12
causal relationships over time and can be applied in deterministic and
stochastic systems for both discrete and continuous conceptions of the
system state. We have shown that the extent and trajectory of causal
responsibility over time vary substantially both across different types
of systems for identical actions and across different types of actions
within the same system. For given type of system and action, the extent
of causal responsibility is determined – by definition – by the time at
which a particular system state occurs.

We have applied this general measure of causal responsibility to
different stylized actions in a number of simple example systems.
Applying our concept to more complex actions in real-world systems
requires good system knowledge formalized in a dynamic model. For
many systems, such detailed knowledge in the form of a model might
not yet be available, for instance due to limited data. Still, the prac-
tice of attributing extreme weather events to climate change (Allen,
2003; Stott et al., 2004; Otto, 2017) exemplifies that it is possible to
make robust counterfactual predictions despite highly complex system
dynamics.

Our measure of causal responsibility is independent of any norm
about how the system state ought to be or what action ought to be
taken. While causation itself is purely descriptive, ascribing causality to
an agent does carry some normative content about how the attribution
should be done. For instance, it needs to be specified what knowledge
about the action’s consequences can reasonably be expected of the
agent. Here, we assumed that the agent is fully aware of the state of
probabilistic knowledge available at the time of action. Furthermore,
when using a counterfactual conception of causation, it needs to be
specified against which reference action the action is compared. Here,
we took not acting as the reference action. This reflects the conven-
tional view that acting in a dynamical system means interfering with
the natural dynamics and not acting being the default.

We deliberately restricted our analysis to systems with a single state
variable, since a single measure of causal responsibility for a multi-
dimensional system state would require some form of aggregation. It
is well-known that such aggregation cannot be done in a descriptive
and value-free manner.

To focus on the dynamic aspect of causation in stochastic dynamical
systems, we analyzed an agent’s degree of causal responsibility for
the realized system state at a particular point in time. An obvious
extension would be to assess an agent’s degree of causal responsibility
for the trajectory of the system state over some time interval. For
instance, one building block of such a measure could be the 𝐿1-norm
of the realized and the counterfactual process, indicating how much
the action changes the continuous trajectory of the system state over
this time interval (Krysiak, 2011). By such an aggregation, one would
gain insight into the action’s overall impact over an extended time
interval, indicated by a single number. Yet, one would lose more
detailed information about the degree of causation at each point in
time.

Another restriction of our analysis is the single-agent setup, which
allows a clear focus on the properties of causal responsibility in stochas-
tic dynamical systems. Of course, in most relevant problems, many
agents are involved. For the case of multiple agents acting sequen-
tially with complete knowledge, each agent’s causal responsibility can
be assessed by applying our concept, with the system dynamics as
determined by previous actions forming the counterfactual reference.
When multiple agents act simultaneously or with incomplete knowl-
edge, one needs a more complicated scheme to attribute the jointly
caused outcome to each agent individually. Concepts for measuring
causation in such a multi-agent setting exist (e.g. Chockler and Halpern,
2004; Braham and van Hees, 2009; Mittelstaedt and Baumgärtner,
2023), but involve other strong simplifications, such as omission of
dynamics, stochasticity, management, or continuity of the system state.
Generalizing our concept to a multi-setting is a considerable challenge

for future research.
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Fig. A.1. Actual expected value E[𝑋𝑎

𝑡 ] and probability 𝑃𝑋𝑎
𝑡
(𝑥, 𝑥̄), counterfactual expected value E[𝑋𝑡] and probability 𝑃𝑋𝑡

(𝑥, 𝑥̄), as well as ex-ante causal responsibility 𝑅𝑒(𝑎) (Eq. (7))
nd degree of necessity DN (first factor in Eq. (6)) under stochastic logistic stock dynamics (Eq. (10)). Parameter values: 𝑟 = 0.05, 𝐾 = 80, 𝑥0 = 40, 𝜎 = 0.05, 𝑥𝑎0 = 20, 𝑥 and 𝑥̄ given

in panel captions.
In conclusion, our measure of causal responsibility is relevant when-
ever an action’s consequences dynamically unfold in a non-trivial way.
It can be used to attribute a realized system state to its causes, to quan-
titatively assess the effectiveness of management actions and policies
over time, to design liability regulations that are both in line with
causality and economically efficient, and to delineate the temporal
scope of an agent’s normative responsibility.
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