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Currie et al. show that movement-type-

specific information is routed through
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projection neurons. Using 2-photon pop-

ulation calcium imaging, they demon-

strate that movement-invariant signaling

dominates layer 5B population dynamics,

whereas movement-specific signaling is

differentially distributed across projec-

tion neuron classes.
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SUMMARY
Motor cortex generates descending output necessary for executing a wide range of limb movements.
Although movement-related activity has been described throughout motor cortex, the spatiotemporal
organization of movement-specific signaling in deep layers remains largely unknown. Here we record layer
5B population dynamics in the caudal forelimb area of motor cortex while mice perform a forelimb push/
pull task and find that most neurons show movement-invariant responses, with a minority displaying move-
ment specificity. Using cell-type-specific imaging, we identify that invariant responses dominate pyramidal
tract (PT) neuron activity, with a small subpopulation representing movement type, whereas a larger propor-
tion of intratelencephalic (IT) neurons display movement-type-specific signaling. The proportion of IT neu-
rons decoding movement-type peaks prior to movement initiation, whereas for PT neurons, this occurs
during movement execution. Our data suggest that layer 5B population dynamics largely reflect move-
ment-invariant signaling, with information related to movement-type being routed through relatively small,
distributed subpopulations of projection neurons.
INTRODUCTION

In mammals, descending cortical output is necessary for the

learning and execution of voluntary movements (Guo et al.,

2015; Hwang et al., 2019, 2021; Kawai et al., 2015; Lawrence

and Kuypers, 1968; Martin and Ghez, 1991). Deep-layer projec-

tions from primarymotor cortex formmultiple descending path-

ways innervating cortical, subcortical, brain stem, and spinal

cord circuits necessary for triggering and controlling movement

(for reviews, see Lemon, 2008; Ruder and Arber, 2019; Shep-

herd, 2013). Individual layer 5 projection neurons display com-

plex firing patterns that correlate with various aspects of limb

trajectories, such as joint angle, direction, and speed (Georgo-

poulos et al., 1982; Moran and Schwartz, 1999; Paninski et al.,

2004; Thach, 1978), and during single-action tasks in rodents,

most layer 5 projection neurons (>70%) display movement-

related activity in the form of bidirectional changes in firing

rate (Dacre et al., 2021; Estebanez et al., 2017; Levy et al.,
This is an open access article und
2020; Park et al., 2022; Sauerbrei et al., 2019; Wang et al.,

2017), suggesting widespread encoding of movement. Howev-

er, in non-human primates, the largest components of motor

cortex population responses during a delayed-multi-direction

reach task have been shown to be ‘‘condition invariant,’’ mean-

ing the population response magnitude and time course were

similarly irrespective of reach direction (Kaufman et al., 2016).

Condition-invariant responses are tightly linked to the onset

of movement, likely reflecting movement timing rather than

movement type, similar to condition-invariant population tran-

sitions observed in recurrent neural networks trained to recapit-

ulate complex muscle patterns in reaching primates (Sussillo

et al., 2015). Deciphering how condition-invariant (which we

call ‘‘movement-invariant’’) and movement-specific signaling

is spatiotemporally organized in the output layers of motor cor-

tex and how they map onto specific projection classes would

be an important step toward understanding descending

cortical control of movement.
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In rodents, descending information from the main output layer

of motor cortex, layer 5B, is routed via two molecularly and

anatomically defined projection pathways. Pyramidal tract (PT)

neurons innervate multiple targets, including the thalamus, sub-

thalamic nucleus, superior colliculus, ipsilateral striatum, brain

stem, and spinal cord, but not the cortex or contralateral striatum

(Economo et al., 2018; Kita and Kita, 2012; Muñoz-Castañeda

et al., 2021; Ueta et al., 2014; Winnubst et al., 2019), whereas in-

tratelencephalic (IT) neurons target cortex and the striatum

bilaterally but not other subcortical targets (Levesque et al.,

1996; Muñoz-Castañeda et al., 2021; Wilson, 1987; Winnubst

et al., 2019). Although layer 5Bneurons are reciprocally connected

(Kiritani et al., 2012; Morishima and Kawaguchi, 2006; Morishima

et al., 2011), connectivity is essentially unidirectional from IT to PT

neurons (Kiritani et al., 2012). This formof asymmetric across-pro-

jection class connectivity appears to be a common cortical motif

necessary for sensorimotor processing (Brown and Hestrin, 2009;

Kiritani et al., 2012; Molyneaux et al., 2007; Reiner et al., 2010).

From a descending control perspective, asymmetric connectivity

coupled with differential PT and IT intrinsic excitability, sensitivity

to neuromodulation and local- and long-range inputs (for reviews,

see Baker et al., 2018; Shepherd, 2013) provides amechanism for

flexible routing of information via distinct output channels depend-

ing on behavioral state and task requirements. Accumulating evi-

dence suggests that PT neurons provide an essential source of

descending control for execution of voluntary limb movements

(Economo et al., 2018; Nelson et al., 2021; Peters et al., 2017;

Soma et al., 2017; Wang et al., 2017), whereas IT neurons provide

input to cortical and striatal circuits contributing to movement

preparation and specification (Panigrahi et al., 2015; Park et al.,

2022; Yttri and Dudman, 2016), but howmovement-specific infor-

mation is spatiotemporally organized across the two output chan-

nels remains unclear.

Here we performed 2-photon calcium imaging in deep layers

of the caudal forelimb area (CFA) of mice trained to perform

two diametrically opposing forelimb movements (i.e., an alter-

nating push/pull lever task). By combining population imaging

with neural classifiers and dimensionality reduction, we show

that the majority of layer 5B neurons display movement-invariant

signaling (i.e., the same magnitude of response for push and pull

movements), correlated with movement timing rather than

movement type, whereas small subpopulations of PT and IT neu-

rons convey movement-specific information. Decoding move-

ment type was most prevalent prior to movement initiation in IT

neurons and during movement execution in PT neurons, with

neurons with high decoding accuracy from both projection clas-

ses being temporally uncorrelated and distributed across layer

5B. These findings provide evidence that movement-invariant

signaling dominates layer 5B activity, whereas movement-spe-

cific information is spatially and temporally distributed across

projection neuron classes.

RESULTS

CFA is required for execution of a push/pull lever task
for mice
To explore how layer 5B signaling relates to execution of

different movements, we first developed a cued linear push/
2 Cell Reports 39, 110801, May 10, 2022
pull lever task for mice. The task design required mice to push

or pull a horizontal lever during presentation of a 2-s 6 kHz audi-

tory cue to receive a water reward. After a 4- to 6-s inter-trial in-

terval (ITI), mice had to push the lever 4 mm forward from an

initial starting position. The lever would then be locked, and a

servo-controlled lick spout would deliver a 5-mL reward following

a 1-s delay. The lever then unlocked, and a second ITI

commenced, where mice would be expected to pull the lever

backward 4 mm to the original starting position after presenta-

tion of the same 6-kHz auditory cue. Missed trials or sponta-

neous movement during the ITI resulted in a lever reset and

restarting of the ITI (Figure 1A). Individual mice displayed idio-

syncratic strategies to engage with the lever but showed repro-

ducible trial-to-trial forelimb trajectories (Figure 1B). In general,

mice reoriented their forelimb and paw upon cue presentation

(lift and rotate backward for pushes, lift and rotate forward for

pulls) (Video S1) prior to initiation of the push or pull action.

Mice rapidly learned the task (mean, 10.5 days; [4] inter-quartile

range (IQR); N = 24 mice), displaying fast reaction times and

movement durations that reflect the combination of paw reorien-

tation and lever manipulation (Figure 1C). ‘‘Expert’’ mice

completed 44.5 [9.5] IQR successful push and 45.0 [8.5] IQR

successful pull trials during each 30-min behavioral session,

equating to �71% task success (push median 68.0%, [35.9]

IQR; pull median 74.5%, [43.4] IQR; N = 24 mice) (Figures 1D

and 1E).

To confirm that CFA is required for execution of push and pull

movements, we focally injected the Gamma aminobutyric acid

type A (GABAA) receptor agonist muscimol (1.6 mm lateral and

0.6 mm rostral of bregma; STAR Methods; Dacre et al., 2021;

Schiemann et al., 2015). By applying muscimol during behavior,

we could assess the immediate effects of CFA inactivation within

the first 10 min after drug injection (Figure 1F), where drug

diffusion remained in the targeted region (Figures S1A–S1C).

Muscimol rapidly blocked initiation of both actions, reducing

the number of successful trials in the first 10 min by �65%

(push Pre 13.9 [11.1 17.1] 95% CI trials, push Post 5.0 [3.3 6.8]

95%CI trials, N = 10mice; pull Pre 14.0 [10.9 17.2] 95%CI trials,

pull Post 5.3 [3.2 7.4] 95% confidence interval [CI] trials, N = 10

mice) (Figure 1G). Sham injections of saline into CFA ormuscimol

injections into hindlimb motor cortex had no effect on behavior

(Figures S1D–1G). Blocking CFA activity resulted in an inability

to initiate push or pull movements and monoparesis of the

contralateral forelimb (i.e., localized weakness without complete

loss of function), as evidenced by a significant reduction in paw

position accuracy (i.e., the forepaw was not positioned on the

lever at cue presentation) (Figures 1H and S1H–1J; Video S2).

The effect of muscimol inactivation was most pronounced in

mice that displayed the highest number of successful trials, con-

firming that task execution is CFA dependent even in expert mice

(Hwang et al., 2019, 2021; Kawai et al., 2015; Figure S1K).

Movement-invariant signaling dominates layer 5B
activity patterns
To examine how output from CFA relates to execution of push

and pull movements, we restricted imaging of behavior-related

population activity to cortical depths corresponding to layer 5B,

the upper boundary of which was identified by the presence of
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Figure 1. CFA is necessary for executing

cued push and pull movements

(A) Top: cued alternating push/pull task for head-

restrained mice. Bottom: behavioral task structure.

ITI, inter-trial interval; SM, spontaneous movement.

(B) Paw and lever movement trajectories from

3 mice relative to position at movement initiation.

Single trials (dashed lines) and mean paw trajec-

tories (solid lines) during push (left, blue) and pull

(right, green) trials are shown alongside the average

movement vector of the lever (black arrow). Red

dots depict approximate tracked positions on the

paw.

(C) Violin plots showing median, IQR, and range of

reaction times (left) and movement durations (right)

during push (blue) and pull (green) trials. Circles

represent data from individual mice (N = 24 mice).

(D) Number of successful trials per 30-min training

session (small symbols, data from individual mice;

large symbols, mean ± 95% CI; N = 24 mice).

(E) Box-and-whisker plots showing median, IQR,

and range of task success across mice (N = 24

mice).

(F) Focal muscimol inactivation of CFA, centered 0.6

mm anterior and 1.6 mm medial of bregma (red

cross).

(G) Number of successful push (blue) and pull

(green) trials in a 10-min period before (Pre) and after

(Post) injection of muscimol (N = 10 mice); paired

t test. Colored lines, individual mice. Symbols,

population means ± 95% CI.

(H) Paw position accuracy at the point of cue pre-

sentation before (Pre) and 10 min after (Post) mus-

cimol injection into CFA (N = 10 mice); paired t test.

Colored lines, individual mice. Symbols, population

means ± 95% CI.
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PT neurons in separate tracing experiments (CFA upper bound-

ary R500 mm from the pial surface) (Schiemann et al., 2015;

Figures 2A, 2B, and S2A). Cell density estimates suggested

that we imaged the majority of layer 5B neurons at depths up

to 650 mm from the pial surface (Figures S2A–2C). A large pro-

portion of layer 5B neurons displayed movement-related activ-

ity (468 of 653 neurons, mean = 73.5% [54.7 81.8] 95% CI per

field of view [FOV], N = 12 FOVs from 6 mice), defined as DF/

F0 changes occurring within a peri-movement window spanning

150 ms prior to movement initiation to 40 ms after median

movement completion. The remaining neurons were classified

as non-responsive or reward-related when changes in DF/F0
occurred after the peri-movement window (Figures 2C and

2D). The trial-to-trial similarity in population responses of

movement-related neurons strongly correlated with the similar-

ity in forelimb movement magnitude (i.e., motion index;
STAR Methods), suggesting that DF/F0
changes reflected movement of the fore-

limb (Figure 2E). By comparing push and

pull trials, we found that most layer 5B

neurons displayed movement-related ac-

tivity that was indistinguishable between

trial types (median = 59.8% [31.4] IQR of

neurons, N = 6 mice), termed ‘‘move-
ment-invariant’’ signaling, manifested as increased (85%) or

decreased (15%) activity around movement onset. Move-

ment-invariant neurons appeared to reflect the timing of move-

ment (i.e., transition from a resting posture to push/pull) rather

than movement type and were spatially distributed across

each FOV (Figures 2F–2H). In contrast, only a small fraction of

neurons displayed movement-specific signaling, where DF/F0
changes were significantly different between push and pull tri-

als (termed movement bias; push bias, median = 14.3% [15.9]

IQR; pull bias, median = 11.8% [19.5] IQR, N = 6 mice) (Fig-

ure 2M). Responses of movement bias neurons were classified

into four different types, including positive and negative

changes in DF/F0, consistent with bidirectional movement-spe-

cific tuning of neural activity (Georgopoulos et al., 1982). Most

movement-bias neurons were classified as type 1 (136/181

neurons, 75.1%, N = 6 mice), showing increased DF/F0 during
Cell Reports 39, 110801, May 10, 2022 3
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Figure 2. Movement-invariant and movement-specific signaling in layer 5B of CFA

(A) Depth profile of pyramidal tract (PT) neurons in CFA. Left: Retrobead labeling of PT neurons after injection into the pons. Right: normalized fluorescence ±SEM

as a function of depth from the pial surface (N = 3 mice). A black line indicates the upper and lower boundary of layer 5B across mice.

(B) Representative 2-photon imaging fields of view (FOVs) from layer 5B in CFA (N = 4 mice). Cyan circles depict regions of interest.

(C) DF/F0 traces from four example layer 5B neurons during task execution (gray vertical bars). Black traces depict neurons with movement-related activity. Gray

trace depicts a neuron with reward-related activity.

(D) Proportion of non-responsive, movement-related, or reward-related neurons per FOV (N = 12 FOVs from 6 mice). Black dots represent individual FOVs, and

bars represent mean ± 95% CI.

(E) Pairwise trial-to-trial correlation of population DF/F0 during push (blue) or pull (green) trials as a function of the pairwise trial-to-trial correlation of the cor-

responding motion index (N = 12 FOV from 6 mice).

(F) Activity of two example movement-invariant neurons. Top: raster showing normalized DF/F0 across successive push (blue) or pull (green) trials. Bottom: mean

DF/F0 ± 95% CI for push and pull trials. Dashed lines, movement initiation (MI).

(G) Summary of movement-invariant and movement-bias neuron classification in layer 5B of CFA (n = 468 neurons, N = 6 mice).

(H) 2 overlapping FOVs from a single mouse, showing movement-invariant (dark gray), movement bias (light gray), and non-responsive neurons (white).

(I) Activity of movement bias neurons split by type. Top: example type 1 neurons with push (left) or pull (right) bias. Bottom left: example type 2 neuron with push

bias. Bottom right: example type 3 neuron with pull bias. Dashed lines, MI.

(J) Summary of movement bias classification in the layer 5B CFA (n = 181 neurons, N = 6 mice). Insets: model examples of type 1–4 DF/F0 changes.

(legend continued on next page)
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push and pull trials, whereas smaller proportions of type 2 neu-

rons (25/181 neurons, 13.8%, N = 6 mice) and type 3 (15/181

neurons, 8.3%, N = 6 mice) displayed movement selectivity

(i.e., a significant change in DF/F0 for one movement with no

response during the opposing movement). Finally, a small mi-

nority of cells displayed reduced activity during push and pull

trials, classified as type 4 neurons (5 of 181 neurons, 2.8%;

N = 6 mice) (Figures 2I and 2J). In terms of spatial organization,

movement bias neurons were found in all FOVs and were

spatially intermingled with movement-invariant neurons

(Figures 2H and 2K). Although there was a high degree of vari-

ability in DF/F0 changes trial to trial, no consistent differences in

mean pairwise trial to trial DF/F0 correlations were found be-

tweenmovement-invariant andmovement-bias neurons across

trial types (Figure 2L). A small proportion of bias neurons dis-

played differences in baseline DF/F0 between push and pull tri-

als, which could reflect postural differences (i.e., different trial to

trial start positions for push and pull trials) or differential prepa-

ratory activity (Li et al., 2015; Figures S2D–S2F). However,

baseline differences were, on average, smaller than those

observed during the peri-movement epoch (data not shown)

and, thus, unlikely to be the main driver of movement-specific

signaling. Given that DF/F0 changes provide an indirect readout

of neural activity, we sought to confirm the proportions of move-

ment-invariant and movement-bias neurons in layer 5B using

high-density silicone probe recordings. Putative layer 5B pro-

jection neurons were identified using spike-width thresholding

and electrode depth profiling based on retrograde labeling

from the pons (Figures S2G–S2I). We found similar proportions

of movement-invariant and push/pull bias neurons when

comparing both recording methods (Figures 2M and S2J–

S2L), confirming that movement-invariant signaling dominated

layer 5B responses, whereas a small proportion of neurons

conveyed movement-specific information.

Movement-specific signaling is more prevalent in
superficial layers
Excitatory networks in primary motor cortex display a top-down

laminar organization, where output from layer 2/3 provides

strong excitatory input to upper layer 5B projection neurons (An-

derson et al., 2010; Weiler et al., 2008). Thus, movement bias in

layer 5B neurons could be inherited from top-down input. To

explore this possibility, we imaged behavior-related activity in

layer 2/3 of CFA and found that, in contrast to layer 5B, move-

ment-specific signaling dominated, with �60% of neurons dis-

playing push or pull bias (movement bias, 216 of 375 neurons,

57.6%; movement-invariant, 159 of 375, 42.4%; N = 5 mice).

The vast majority of movement bias neurons were classified as

type 1 (200 of 216 neurons, 93.0%), showing increased DF/F0
during push and pull trials (Figures S3A–S3G). The difference in

lamina-specific activity profiles could indicate a top-down
(K) 2 overlapping FOVs from a single mouse, showing neurons with push (blue) or

neurons.

(L)Mean pairwise trial-to-trialDF/F0 correlation for push (blue) and pull (green) trials

N = 6 mice). Black dots represent individual mice.

(M) Proportion of invariant and push- and pull-biased neurons per mouse (n = 468

cross marks an identified outlier.
convergence of movement-specific information where wide-

spread movement bias signaling in layer 2/3 converges on spe-

cific subpopulations of downstream layer 5B neurons.

A small proportion of layer 5B neurons decode
movement type
Next we investigated how reliably movement type could be de-

coded from layer 5B single-neuron and population changes in

DF/F0 using a Gaussian naive Bayes classifier and logistic

regression, respectively (STAR Methods). Approximately 37%

of neurons (172 of 468 neurons) displayed decoding accuracy

scores above chance (Figure 3A), similar to but slightly higher

than the combined proportion of identified push and pull bias

neurons (see Figure 2M), likely reflecting subtle differences in

the sensitivity of both approaches (see also layer 2/3 decoding

accuracy scores for comparison; Figure S3H). Given the trial-

to-trial variability in DF/F0 and resultant moderate decoding

scores (Figures 2I and 3A), we reasoned that population re-

sponses could provide a more robust movement-related signal

that would enhance decoding of movement type. By applying lo-

gistic regression, population decoding was found to be consis-

tently more accurate (single-cell median decoding accuracy =

0.61, [0.07] IQR; population median decoding accuracy 0.75,

[0.16] IQR; N = 6 mice, p = 2.8 3 10�2, Wilcoxon signed rank

test) (Figure 3B). However, this increase was driven almost

entirely by a small proportion of neurons with high decoding ac-

curacy. Removing the top �20% of neurons ordered by decod-

ing accuracy score abolished movement type classification (me-

dian prop. removed = 0.21, [0.50] IQR, N = 6 mice), whereas

sequential removal of randomly selected neurons resulted in a

significantly larger proportion of neurons having to be removed

before decoding accuracy reduced to chance (median prop.

removed = 0.64, [0.57] IQR, N = 6mice, p = 2.83 10�2, Wilcoxon

signed rank test) (Figure 3D–3F). This dependency on neurons

with high decoding accuracy suggests that movement-specific

information is routed through a selected subset of layer 5B

neurons.

To further explore the underlying structure of layer 5B popula-

tion activity, we employed principal-component analysis

(Churchland et al., 2010, 2012; Cunningham and Yu, 2014; Kauf-

man et al., 2014; Stopfer et al., 2003). For the leading 16 principal

components, we compared the difference between push and

pull trials to compute a discrimination index (d’) (Figure S4A).

Leading principal components tended to be more similar across

actions, whereas movement type was often better represented

by higher components (Figure S4B). Despite correlating with

population decoding scores, high d’ values were not preferen-

tially associated with the leading principal components of the

population activity (Figures S4C–4E), suggesting that movement

type is not a dominant signal in the population response (Kauf-

man et al., 2016).
pull (green) bias. Gray, movement-invariant, non-responsive, or reward-phase

in invariant and push- and pull-biased neurons (n = 468 neurons from 12 FOVs,

neurons from 12 FOVs, N = 6mice). Black dots represent individual mice. A red

Cell Reports 39, 110801, May 10, 2022 5
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Figure 3. Population decoding relies on a

small proportion of neurons with high decod-

ing accuracy

(A) Maximum decoding accuracy during peri-

movement epochs generated using a Gaussian

naive Bayes classifier. Circles represent individual

neurons; black horizontal lines indicate significance

threshold. HDA, high decoding accuracy (orange);

LDA, low decoding accuracy (gray).

(B) Box-and-whisker plots showing median, IQR,

and range of single-cell (naive Bayes classifier, or-

ange) and population (logistic regression, brown)

decoding accuracy (N = 12 FOVs from 6 mice, p =

2.8 3 10�2, Wilcoxon signed-rank test). Black dots

represent individual mice.

(C) Mean population decoding accuracy for all

neurons from a representative FOV (all neurons) or

after removal of 10%–50% of neurons in order from

high to low single-cell decoding accuracy (A). Red

shaded line, 95% CI based on shuffled data.

Dashed line, MI.

(D) Change in population decoding accuracy for an

example FOV after sequential removal of neurons in

order from high (orange) to low (gray) single-cell

decoding accuracy (A). Line, mean ± 95% CI. Red line, 95% CI based on shuffled data.

(E) Change in population decoding accuracy for an example FOV after random removal of individual neurons. Line, mean ± 95% CI. Red line, 95% CI based on

shuffled data.

(F) Box-and-whisker plots showing the median, IQR, and range for ordered (HDA to LDA) versus random removal of neurons (N = 12 FOVs from 6 mice, p =

2.8 3 10�2, Wilcoxon signed-rank test). Black dots represent individual mice.
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IT and PT neurons display temporal differences in
encoding of movement type
Layer 5B contains two broad classes of projection neurons: IT

neurons form striatal and cortico-cortical connections (Levesque

et al., 1996; Muñoz-Castañeda et al., 2021; Wilson, 1987; Win-

nubst et al., 2019), whereas PT neurons target multiple subcor-

tical, brain stem, and spinal cord areas (Economo et al., 2018;

Kita and Kita, 2012; Muñoz-Castañeda et al., 2021; Ueta et al.,

2014; Winnubst et al., 2019) (Figure 4A). We next sought to un-

derstand whether movement-specific and movement-invariant

signaling was dependent on projection class identity. To perform

population imaging from identified cell types, we used an inter-

sectional retrograde viral approach targeting the ipsilateral brain

stem (pons, PT) and contralateral CFA (IT) using a retrograde ad-

eno-associated virus (r-AAV-retro cre) and conditional expres-

sion of GCaMP6s in ipsilateral CFA (Figures 4B and 4C). Using

a bicistronic viral vector expressing GCaMP6s (flex) and mRuby,

we confirmed that we recorded from the majority of PT and IT

neurons per FOV at depths of up to 700 mm from the pial surface

(Figure S5), consistent with our previous estimates (Figures S2A–

2C). Comparing push and pull trials, most PT neurons displayed

movement-invariant activity (75.0% [21.1] IQR), with a small

number of neurons displaying push or pull bias (push bias =

10.3% [19.9] IQR, pull bias = 13.8% [11.3] IQR, N = 5 mice),

mainly consisting of type 1 (78.2%) and type 2 neurons

(16.9%) (Figures 4D and 4E). In contrast, similar proportions of

IT neurons displayed movement-specific and movement-

invariant signaling (movement bias = 48.8% [11.6] IQR), move-

ment-invariant = 51.2% [11.6] IQR) with type 1 and type 2

neurons again being the most abundant (Figures 4F and 4G).

Single-cell decoding accuracy scores were highly consistent
6 Cell Reports 39, 110801, May 10, 2022
across mice, and, as expected, population decoding accuracy

increasedwhen averaging the activity of all high-decoding-accu-

racy neurons per FOV (Figures 4H and 4I). Although trial type

could only be decoded in approximately one-third of projection

neurons during the peri-movement window, the proportion of

IT neurons with decoding accuracy above chance was highest

prior to movement initiation, whereas for PT neurons, this

occurred duringmovement execution (IT peak proportion of neu-

rons, 0.19 at �192 ms; PT peak proportion of neurons, 0.21

at +544 ms, N = 6 and 5 FOVs from 5 and 4 mice, respectively),

suggesting differential roles for IT and PT populations in move-

ment initiation and execution, respectively. Importantly, at no

time during the peri-movement window was the proportion of

neurons with high decoding accuracy above 21% for either

cell type (Figure 4J), consistent with a small proportion of projec-

tion neurons conveying time-dependent, movement-specific

information.

Movement-specific signaling is distributed across
layer 5B
To explore whether high decoding accuracy PT and IT neurons

form functional clusters, we first detected the onset of move-

ment-related DF/F0 changes. Within each FOV, activity changes

occurred �300 ms prior to movement, consistent with a role in

preparation/initiation (Dacre et al., 2021; Estebanez et al.,

2017; Isomura et al., 2009; Li et al., 2015), and tiled the peri-

movement window. Neurons displaying a range of DF/F0 onsets

were spatially distributed across each FOV (Figures 5A and 5B).

To explore correlations in peri-movement activity patterns, we

split PT and IT neurons based on their decoding accuracy scores

(high, low, and all) and compared pairwise activity during push
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Figure 4. Movement-invariant and movement-specific signaling in identified layer 5B projection neurons

(A) Schematic showing brain-wide projections of layer 5B PT (purple) and IT (red) neurons. Contra- and ipsilateral relate to the site of 2-photon imaging.

(B) Histology from two imaged mice showing retrograde cell-type-specific labeling of PT (left) and IT (right) neurons in CFA.

(C) Example FOV showing PT neurons with push (blue) or pull (green) bias. Gray, movement invariant; white, non-responsive neurons.

(D) Activity of two example PT neurons: movement-invariant (left) and movement bias, type 1 (right). Top: raster showing normalized DF/F0 across successive

push (blue) or pull (green) trials. Bottom: mean DF/F0 ± 95% CI for push and pull trials. Dashed lines, MI.

(E) Left: summary of movement-invariant and movement bias PT neuron classification (n = 125 versus 46 neurons, N = 5 mice). Center: summary of movement

bias classification in PT neurons (n = 46 neurons, N = 5 mice). Right: proportion of invariant, push- and pull-biased PT neurons per mouse (n = 171 neurons from

6 FOVs, N = 5 mice). Black dots represent individual mice. Bottom: model examples of DF/F0 changes classified as type 1–4.

(F) Activity of two example IT neurons: movement-invariant (left) andmovement bias, type 1 (right). Top: raster showing normalizedDF/F0 across successive push

(blue) or pull (green) trials. Bottom: mean DF/F0 ± 95% CI for push and pull trials. Dashed lines, MI.

(G) Left: summary of movement-invariant and movement bias IT neuron classification (n = 56 versus 54 neurons, N = 4mice). Center: summary of movement bias

classification in layer 5B IT neurons (n = 54 neurons, N = 4 mice). Right: proportion of invariant, push- and pull-biased layer 5B IT neurons per mouse (n = 110

neurons from 5 FOVs, N = 4 mice). Black dots represent individual mice. Bottom: model examples of DF/F0 changes classified as type 1–4.

(H) Example FOV showing HDA (orange), LDA (gray), and non-responsive (white) PT neurons.

(legend continued on next page)
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and pull trials. We found weak correlations within and across

groups irrespective of cell type identity (Figures 5C, 5D, and

S6). Moreover, comparing the activities of PT and IT neurons

as a function of their pairwise distance suggested that neigh-

boring neurons did not show correlated activity or spatiotem-

poral clustering (Figures 5E–5G). Thus, our data suggest amodel

where movement-specific information is routed through small,

distributed subpopulations of layer 5B projection neurons,

whereas most neurons convey movement-invariant information

related to the timing of movement execution (Figure 5H).

DISCUSSION

Here we have shown that layer 5B neuronal signaling is mostly

movement-invariant, with similar activity patterns generated dur-

ing execution of two diametrically opposing movements.

Changes in activity were tightly locked to the peri-movement

period, indicative of a generic motor signal relating to movement

timing but notmovement type.Movement- or condition-invariant

signaling also dominates in primate motor cortex, thought to

trigger state-dependent switching from stable neural dynamics

during rest toward oscillatory dynamics underpinningmovement

execution (Churchland et al., 2010, 2012; Kaufman et al., 2014,

2016; Kurtzer et al., 2005), and is an emergent property of recur-

rent neural networks trained to recapitulate complexmuscle pat-

terns during reaching (Sussillo et al., 2015). In contrast to primate

motor cortex, we found widespread movement-invariant re-

sponses at the single-neuron level (Kaufman et al., 2016). This

is unlikely to reflect differences in recording sensitivity, given

that our imaging and electrophysiology approaches identified

similar proportions of movement-invariant neurons across layer

5B (Wei et al., 2020; Zhou and Tin, 2021), or the limited number

of movements in our task because movement-invariant re-

sponses have been shown in relatively simple tasks requiring

few actions (Evarts, 1968; Hocherman and Wise, 1991; Messier

and Kalaska, 2000; Riehle et al., 1994; Weinrich et al., 1984) and

in complex tasks involving more than 20 separate actions (Kauf-

man et al., 2016). Instead, this might reflect evolutionary differ-

ences in how motor cortex recruits and controls muscle activa-

tion during the transition from rest to movement execution.

Cell-type-specific imaging identified that movement-invariant

signaling dominated PT neuron activity, suggesting that a large

proportion of the output conveyed to subcortical, brain stem,

and spinal cord areas relates to execution of movement without

necessarily specifying movement type, whereas equal propor-

tions of IT neurons displayed movement-invariant versus move-

ment-specific signaling. If movement-invariant signaling relates

to the execution of movement and dominates deep-layer motor

cortex activity, thenwhat drives the change in neural activity, and

what purpose might it serve? Long-range inputs from the thal-

amus, basal ganglia, secondary motor cortex, and cerebellum

are possible sources (Hooks et al., 2013, 2018; Nelson et al.,

2021), providing an external trigger to transform motor cortical
(I) Box-and-whisker plots showing median, IQR, and range of single-cell (naive B

accuracy of PT (left) and IT (right) neurons. Comparisons were made with a two

(J) Proportion of neurons with decoding accuracy above chance (i.e., HDA) acros

110 neurons from 5 FOVs, N = 4 mice. Dashed line, MI.
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dynamics necessary for postural maintenance at rest to a neural

state required for movement execution. This switch in neural dy-

namics would signify the intention to move, but not which move-

ment will be executed (Elsayed et al., 2016; Kaufman et al.,

2016). An important next stepwill be to developmethods to iden-

tify and selectively manipulate neurons displaying movement-

invariant signaling to demonstrate their causal contribution to

postural control and timing of movement execution.

We reasoned that execution of two diametrically opposing

movements should, in principle, generate distinct patterns of

cortical output dynamics, given differences in starting posture,

direction of movement, and temporal sequence of muscle acti-

vation (Isomura et al., 2009; Miri et al., 2017). Although we found

that the majority of layer 5B neuron signaling was movement

invariant, a relatively small proportion of neurons displayed

response bias toward push or pull movements. The relatively

low level of movement-specific signaling is unlikely to be due

to masking of subtle changes in spike rate when using calcium

reporters (Wei et al., 2020; Zhou and Tin, 2021) because we

observed similar proportions of movement-specific signaling

when performing high-density extracellular recordings of puta-

tive layer 5B projection neurons. The firing rates of individual

neurons inmotor cortex reflect a complex combination of signals

that correlate with joint angle, direction, and speed (Georgopou-

los et al., 1982; Moran and Schwartz, 1999; Paninski et al., 2004;

Thach, 1978), whereas population dynamics reflect time-varying

changes in neural state during the transition from rest to move-

ment execution (Churchland et al., 2010, 2012; Kaufman et al.,

2014, 2016; Kurtzer et al., 2005; Sauerbrei et al., 2019). In

mice, individual layer 5B neurons displayed moderate decoding

accuracy scores, likely because of relatively high trial-to-trial

variability, whereas the population average was consistently

higher across mice. We found that only a small proportion

(�20%) of neurons contributed to high population decoding ac-

curacy scores, with their combined effects accurately decoding

three-quarters of all trials. Removing only a handful of neurons

per FOVwas sufficient to abolish decoding, confirming that ami-

nority of neurons convey the majority of information regarding

movement type. This dependency on only a few neurons has

important implications for understanding how movement-spe-

cific information is encoded in primary motor cortex, given that

recording of neural dynamics during execution of a single move-

ment task will likely uncover widespread movement-invariant

signaling, which relates to limb movement, but not the specific

movement being executed.

In mouse cortex, projection neurons display connectivity pat-

terns within and across classes that suggest general organizing

principles (Brown and Hestrin, 2009; Kiritani et al., 2012; Mar-

uoka et al., 2017; Morishima et al., 2011). IT neurons in motor

cortex are strongly recurrently connected, whereas inter-class

connectivity is largely directional from IT to PT but not vice versa,

generating a hierarchical organization with unidirectional

signaling from higher-order to lower-order output neurons
ayes classifier, orange) and population (logistic regression, brown) decoding

sample t test. Black dots represent individual mice.

s time. PT, purple; n = 58/171 neurons from 6 FOVs, N = 5 mice. IT, red; n = 43/
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Figure 5. Cell-type-specific spatiotemporal organization of HDA neurons in layer 5B

(A) Example FOVs showing spatial distribution ofDF/F0 onset for HDAPT (left) and IT (right) neurons during push trials. Colors represent 200-ms bins tiling the peri-

movement epoch: �300 ms (light orange) to +700 ms (dark brown).

(B) Histograms ofDF/F0 onset for HDA (orange) and LDA (gray) PT (left) and IT (right) neurons during push (top) and pull (bottom) trials (n = 6 and 5 FOVs, N = 5 and

4 mice, respectively).

(C) Modeled functional networks depicting HDA (orange) and LDA (gray) neurons with correlated (left) or uncorrelated (right) activity. Each node, represented by a

circle, corresponds to a neuron, whereas the connections represent the strength of activity correlation between neurons.

(D) Left top and bottom: functional networks constructed from the pairwise activity correlations from a representative PT (top) and IT (bottom) FOV. Line color (light

to dark) and width correspond to increasing values of Pearson’s r. Neurons are plotted as nodes in Euclidean space, with color and size relating to increasing

decoding accuracy. Right top and bottom, box-and-whisker plots showing the median, IQR, and range of correlation coefficients across mice for HDA (orange),

LDA (gray), and all (brown) PT (top) and IT (bottom) neurons. Black dots represent individual mice.

(E) Median pairwise correlation coefficient with 95% CI as a function of pairwise distance for HDA (orange) and LDA (gray) PT (left) and IT (right) neurons.

Horizontal lines denote linear regression model fit, with shaded regions representing the bootstrapped 95% CI (PT: p = 0.87 [(HDA], p = 1.0 [LDA], n = 3,024

observations, N = 5 mice; IT: p = 0.6 [HDA], p = 1.0 [LDA], n = 1,562 observations, N = 4 mice).

(F) Modeled functional networks depicting clustered (left) and non-clustered (right) HDA neurons. Each node, represented by a circle, corresponds to a neuron,

whereas the connections represent the pairwise distances between neurons.

(G) Left top and bottom: functional networks constructed from the pairwise distances between neurons in a representative PT (top) and IT (bottom) FOV. Right top

and bottom: box-and- whisker plots showing the median, IQR, and range of median pairwise distances across mice for HDA (orange), LDA (gray), and all (brown)

PT (top) and IT (bottom) neurons. Black dots represent pairwise distances for individual mice, and red crosses mark identified outliers.

(H) Models depicting cell-type- and movement-specific layer 5B signaling in caudal forelimb area of motor cortex (CFA). Colored circles represent movement-

invariant (cyan), push bias (blue), and pull bias (green) neurons.
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(Kiritani et al., 2012). Asymmetric projection-class connectivity

as well as differences in input structure and intrinsic excitability

(Anderson et al., 2010; Hooks et al., 2013; Kiritani et al., 2012;

Oswald et al., 2013) provide amechanism to flexibly route move-

ment-specific information via two independent output channels

depending on behavioral requirements. Our cell-type-specific

imaging identified that only a small proportion of PT neurons

conveyed movement-specific information. In contrast, almost

half of IT neurons displayed movement specificity, with similar

proportions of push and pull bias. Although PT and IT activity on-

sets occurred prior to and throughout movement, consistent

with both pathways contributing to movement initiation and

execution (Chen et al., 2017; Economo et al., 2018; Li et al.,

2015; Park et al., 2022; Wang et al., 2017), the proportion of IT

neurons with high decoding accuracy was highest prior to move-

ment initiation, whereas for PT neurons, this occurred during

movement execution. This suggests that information relating to

movement type is first conveyed by IT neurons, which project

to the cortex and bilaterally to the striatum but not other subcor-

tical structures (Levesque et al., 1996; Muñoz-Castañeda et al.,

2021; Wilson, 1987; Winnubst et al., 2019), before PT neurons

then propagate information to subcortical, brain stem, and spinal

cord circuits necessary for online control of forelimb movement

(Economo et al., 2018; Kita and Kita, 2012; Muñoz-Castañeda

et al., 2021; Ueta et al., 2014; Winnubst et al., 2019). Importantly,

the proportions of PT or IT neurons decoding movement type at

any time never exceeded 25%, consistent with movement-spe-

cific signaling being confined to a relatively small subpopulation

of layer 5B projection neurons. What is unclear is the extent to

which movement-specific signaling in PT and IT neurons is orga-

nized by the projection target, as seen in anterolateral motor cor-

tex during directional licking (Chen et al., 2017; Economo et al.,

2018; Li et al., 2015). Targeting neurons based on molecular

expression profiles and projection specificity (Muñoz-Castañeda

et al., 2021; Winnubst et al., 2019) will provide a finer-grained un-

derstanding of how movement-specific information is routed via

molecularly distinct projection pathways.

We also found that PT and IT neurons displaying high decod-

ing accuracy were distributed across FOVs. This lack of func-

tional clustering differs from the proposed modular organization

of directionally tuned cells in primate motor cortex, where neu-

rons with a similar preferred direction tend to cluster into verti-

cally oriented minicolumns approximately 50–100 mm wide,

repeated every 250 mm (Amirikian and Georgopoulos, 2003;

Cheney et al., 1985; Georgopoulos et al., 2007; Jones and

Wise, 1977), but consistent with the distributed spatial organiza-

tion of direction-specific layer 5B projection neurons in mouse

anterolateral motor cortex during execution of a whisker-based

object location discrimination task (Li et al., 2015). The apparent

lack of spatial clustering in CFA is unlikely to be due to reduced

sensitivity of our analysis methods because 95% confidence in-

tervals provide a lower bound indication of cluster size so that

spatial clusters based on decoding accuracy would have to be

less than �50 mm. Similarly, we found no evidence of temporal

clustering in neurons with high (movement-specific) or low

(movement-invariant) decoding accuracy, as expected, given

that the onset of PT and IT neuron activity changes occurred

�300ms prior to movement and tiled the peri-movement period.
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Our work extends previous findings in superficial layers of motor

cortex showing that neurons with task-related response proper-

ties are spatially intermingled (Galiñanes et al., 2018; Huber et al.,

2012), supporting amodel wheremovement-specific signaling in

layer 5B is distributed across small but distinct subpopulations

of projection neurons. The flexible routing of information through

distributed descending projection pathways could, in principle,

provide a mechanism for differentially controlling movement var-

iables necessary for executing a wide repertoire of limb

movements.

Limitations of the study
In the present study, we suggest that layer 5B population dy-

namics largely reflect movement-invariant signaling, whereas

relatively small subpopulations of projection neurons convey

movement-specific information. However, our task design was

limited to two diametrically opposing movements along a single

axis, where the starting posture for push and pull movements

differed. A fuller understanding of how movement-specific

signaling is organized across mouse layer 5 projection neurons

would require implementation of a task that incorporates multi-

ple movement trajectories initiated from the same start position

(e.g., a center-out multi-direction joystick or reaching task) or a

task in which mice learn to perform multiple distinct actions

(e.g., lever push and reach to grab). Another limitation of our

study is that we only sampled the activity of identified projection

neurons in upper layer 5B. Given the known depth dependence

of top-down and long-range inputs in layer 5 (Anderson et al.,

2010; Weiler et al., 2008; Hooks et al., 2013) and laminar organi-

zation of output neurons based on projection targets (Economo

et al., 2018), encoding of movement specificity is likely to differ

depending on cortical depth. This could be addressed using

methods to image deeper within the cortex (e.g., using a glass

prism or 3-photonmicroscopy) or high-density silicone probe re-

cordings with optogenetic identification of projection neuron

class.
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AAV-pkg-Cre Addgene #24593-AAVrg

pAAV-CAG-Flex-mRuby2-

GSG-P2A-GCaMP6s-WPREpA

Addgene #68717-AAV1

Chemicals, peptides, and recombinant proteins

Muscimol hydrobromide Sigma-Aldrich, Missouri, USA Cat#: G019-5MG

Muscimol, BODIPY TMR-X Conjugate Thermo Fisher

Scientific

Cat#: M23400

Red RetrobeadsTM Lumaflor N/A

Green RetrobeadsTM Lumaflor N/A

Fast Blue Polysciences Cat#: 17740

Vybrant DiI Cell-Labeling Thermo Fisher

Scientific

Cat#: V22885

Experimental models: Organisms/strains

Mouse: C57BL/6J The Jackson Laboratory RRID:

IMSR_JAX:000664

Software and algorithms

MATLAB MathWorks

(https://www.mathworks.com/)

RRID: SCR_001622

Python 3 Python

(https://www.python.org/)

RRID: SCR_008394

Streampix 7.0 Norpix

(https://www.norpix.com/products/streampix/

streampix.php)

RRID:SCR_015773

SpikeGLX (http://billkarsh.github.io/SpikeGLX/) N/A

Mantis64 https://www.mantis64.com/ N/A

Kilosort3 https://github.com/MouseLand/Kilosort N/A

Phy Jun et al., 2017 (https://github.com/cortex-lab/phy) N/A

FIJI Schindelin et al., 2012 (https://github.com/fiji) RRID:SCR_002285

Deeplabcut Adaptive Motor

Control Lab

(https://github.com/DeepLabCut/DeepLabCut)

N/A

FISSA Keemink et al., 2018 N/A

SIMA 1.3.2 Kaifosh et al., 2014

Onset detection algorithm Zong et al., 2003 N/A

Arduino IDE 1.6.5 Arduino

(https://www.arduino.cc/en/software)

N/A

NIS-Elements Nikon

(https://www.microscope.healthcare.nikon.com/

products/software)

RRID:SCR_014329

LotosScan LabVIEW version 8.2; National Instruments N/A

(Continued on next page)
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SciScan Scientifica

(https://www.scientifica.uk.com/products/

scientifica-sciscan)

N/A

Other

Neuropixels probes IMEC Neuropixels 1.0

Laser, Ti:Sapphire pulsed Coherent Chameleon Vision-S

Arduino UNO Arduino

(https://www.arduino.cc/en/Guide/ArduinoUno/)

RRID:SCR_017284
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ian Du-

guid (ian.duguid@ed.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Data reported in this paper will be shared by the lead contact upon request. All original code has been deposited at https://github.

com/DuguidLab and is publicly available as of the date of publication. Any additional information required to reanalyze the data re-

ported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Male adult C57BL/6Jwild-typemice (5-12weeks old, 20-30 g, 1-4 animals per cage) weremaintained on a reversed 12:12 hour light:-

dark cycle and provided ad libitum access to food and water as well as environmental enrichment (e.g., cardboard tubes, plastic

domes, chewing sticks, and rope ladders). All experiments and procedures were approved by the University of Edinburgh local

ethical review committee and performed under license from the UK Home Office in accordance with the Animal (Scientific Proced-

ures) Act 1986.

METHOD DETAILS

General surgery
Surgical procedures were performed under �1.5% isoflurane anaesthesia and each animal received fluid replacement therapy

(0.5 ml sterile Ringer’s solution), buprenorphine (0.05 mg/kg) and either carprofen (4 mg/kg) or dexamethasone (2 mg/kg) for pain

relief and to reduce inflammation. At 24 and 48 hours, carprofen (4 mg/kg) was administered for post-operative pain relief. Craniot-

omies were performed in a stereotactic frame (David Kopf Instruments, CA, USA) using a hand-held dentist drill with 0.5 mm burr. A

small lightweight headplate (0.5 g) was implanted on the surface of the skull using cyanoacrylate glue and dental cement (Lang

Dental, IL, USA) and mice were left for at least 48 hours to recover.

Behavioral training
After recovery from head plate surgery, micewere handled extensively before being head restrained and habituated to a custom fore-

limb lever push / pull behavioral setup. Mice were trained to perform two diametrically opposing movements (4 mm push or pull) in

response to a 6 kHz auditory cue to obtain a 5 ml water reward. Mice rested their right forepaw on a stationary lever while making push

or pull movements with their left forepaw. Upon completion of a successful push or pull (determined by the status of IR beams at

either end of the lever travel), the moveable lever was locked in place for the duration of the reward period (3 s) and the water reward

was delivered by an automated spout - both locking mechanism and spout were controlled by micro servo motors (HXT900,

HexTronik). To increase task engagement, mice were placed on a water control paradigm (1 ml/day) and weighed daily to ensure

body weight remained above 85% of baseline. Mice were trained once per day for 30 mins and advanced through different phases

of the task once they achieved > 50 rewards in two consecutive sessions or > 70 rewards in a single session. Initially, mice were

required to perform uncued push and pull movements to obtain rewards (phase 1). Next, an auditory cue was introduced with

pseudo-random inter-trial-interval (ITI) of 4-6 s and a response window of 10 s (phase 2). During the ITI, mice had to hold the move-
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able lever still as spontaneous movements of the lever within the ITI triggered a reset and the lever was locked in the original position

for 1 s. The response window was gradually reduced to 5 (phase 3) and then 2 s (phase 4) across training sessions. Mice were

deemed ‘‘expert’’ after achieving > 70 rewards on two consecutive days of training with a response window of 2 s. During

2-photon imaging experiments (see below), a 1 s delay between completion of a successful movement and reward delivery was intro-

duced to temporally separate movement- and reward-related activity.

Forelimb kinematic tracking
Behavior was recorded using a high-speed camera (60 fps Prosilica GC780C, Allied Vision, Germany or 100 - 300 fpsMako U U-029,

Allied Vision - cell-type specific calcium imaging and in vivo pharmacology) and acquired using Streampix 7 (Norpix, Canada) or

Mantis64 (https://www.mantis64.com/). Tomeasure gross forelimbmovement, a region of interest (ROI) wasmanually drawn around

the left forelimb and the frame-to-frame difference in pixel intensity was calculated using the formula: MIf =
PN

i =1ðcf + 1;i � cf ;iÞ2,
where cf,i is the grayscale level of pixel i in frame f. The resulting motion index was smoothed with a 1 s LOESS filter then aligned

to behaviorally relevant time points (lever displacement, cue presentation etc.), with videos and behavior resampled to a common

sampling rate. Motion index onsets were calculated by aligning the motion index to the lever movement and identifying the first point

prior to movement wheremeanmotion index was > threshold (mean upper bound of 95%confidence interval during baseline). Direc-

tional tracking of the forelimb and lever movement was performed using Deep Lab Cut (Mathis et al., 2018). Tracking data were

aligned to cue presentation, baselined to mean xy position during the 100ms prior to cue and then cropped betweenmovement initi-

ation and movement completion. For presentation, trials of different durations were resampled to a fixed length to enable a mean

trajectory to be plotted across multiple trials.

In vivo pharmacology
To assess the behavioral effects of caudal forelimb area (CFA; N = 10) or hind limb motor cortex (M1hl; N = 5) inactivation, ‘expert’

mice had a small burr hole drilled directly above the target area (CFA: 1.6 mm lateral, 0.6mm rostral to bregma; M1hl: 1.25mm lateral,

1.25 caudal to bregma) before being left to recover for > 90mins. After 10mins of baseline behavior, the lever was locked and a small

volume of the GABAA receptor agonist muscimol (200 nl, 2 mM) dissolved in external saline solution (containing 150 mM NaCl,

2.5 mM KCl, 10 mM HEPES, 1.5 mM CaCl2 and 1 mM MgCl2, adjusted to pH 7.3) was injected into the target area. Each injection

site was at a depth of 0.7 mm below the cortical surface. To confirm the anatomical location of drug injection, 1% w/v of retrobeads

(red, Lumaflor Inc.) was included in the injected solution. A subset of mice (N = 5/10) also had saline injected into CFA (vehicle only;

injection was perfromed on a different day). In these experiments, mice were randomly assigned to drug or control groups (each

mouse received one injection of muscimol and one injection of saline) and experiments were blinded. After each experiment,

mice were transcardially perfused and coronal (60 mm) or sagittal (100 mm) sections were cut with a vibratome (Leica VT1000S),

mounted with Vectashield mounting medium (H-1000, Vector Laboratories), imaged using a fluorescence microscope (Leica

DMR, 5x objective) and manually referenced to the Paxinos and Franklin Mouse Brain Atlas (Paxinos and Franklin, 2008). Behavioral

metrics were analyzed by comparing videos of 10 mins pre and post injection. Behavioral video data for all pharmacology experi-

ments was captured using a high-speed camera (Mako U U-029, Allied Vision), and paw position accuracy was calculated as the

proportion of trials in which mice were holding the moveable lever at time of cue presentation.

Quantifying muscimol diffusion
Tomeasuremuscimol diffusion, a small volume ofmuscimol-BODIPY TMR-XConjugate (ThermoFisher Scientific; dissolved in 0.1 PBS

w/1% dimethyl sulfoxide) was injected into CFA (200 nl of 2 mM at 4 sites centered on 1.6 mm lateral, 0.6 mm rostral to bregma at a

depth of 0.7mmbelow the cortical surface). Tomark the center of the injection site, pipetteswere backfilledwith a small volume (�20 nl)

of green retrobeads (Lumafluor Inc.) prior to filling with muscimol-BODIPY. Following injection, animals were transcardially perfused

and brains snap-frozenon dry ice 10minutes after completion of themuscimol injection. Brainswere stored ondry ice, coronal sections

(60 mm) collectedwith a cryostat (Leica) at -20�Cand imagedwith a lightmicroscope (Leica DMR, 5x objective).We assumedmaximum

fluorescencezmaximum injected concentration and that grayscale pixel intensity was proportional to muscimol-BODIPY concentra-

tion. Therefore, pixel valueswere thresholded at the equivalent pixel value of an EC20 concentration ofmuscimol and fluorescence out-

lines were drawn to generate a ‘spread profile’. Green retrobeads were used to mark the center of each injection, and images were

aligned to the injection center of gravity. From the aligned profiles, a modal spread profile (i.e., pixels with positive grayscale values

across all mice) was generated and aligned to the Paxinos and Franklin Mouse Brain Atlas (Paxinos and Franklin, 2008).

Retrograde tracing
To selectively label pyramidal tract (PT) neurons in layer 5B of CFA, red retrobeads (Lumafluor, USA) were injected into the pons

(4.0 mm caudal and 0.4 mm lateral to bregma ipsilateral to the target CFA), delivered via pulled glass pipettes (5ml, Drummond Sci-

entific, PA, USA; 10–20 nl/min) using an automated injection system (Model Picospritzer iii, Parker, NH, USA). Injectionsweremade at

4 sites (100 nl per site) located 200, 400, 600 and 800 mmdorsal from the cranial floor. After > 14 days post-injection, mice were termi-

nally anaesthetized using an intraperitoneal injection of a ketamine/domitor mixture (75mg/kg ketamine, 1mg/kg domitor) and trans-

cardially perfused with 30 ml of phosphate-buffered saline (PBS) followed by 30 ml of 4% paraformaldehyde (PFA, Sigma-Aldrich,
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MO, USA), dissolved in PBS and adjusted to pH 7.4. Brains were post-fixed at 4�C for 1–3 days in 4% PFA solution, then transferred

to PBS solution. Individual brains were cut into coronal sections (60 mm) using a vibrating microtome (Leica VT1200S, Leica Micro-

systems (UK) Ltd.) and mounted with Vectashield Antifade Mounting Medium (Vector Laboratories, CA, USA). Images were acquired

with a Leica DM R epifluorescence microscope and image analysis was performed using ImageJ (Rueden et al., 2017) and MATLAB

(MathWorks, MA, USA). To obtain estimates of the depth of layer 5B in CFA, 3 coronal sections from each brain were imaged

(0.54 mm, 0.6 mm and 0.66 mm rostral to bregma). Brightness/contrast adjustments and background subtraction (rolling ball,

30 pixels wide at 1.28 mm/pixel; Fiji (Schindelin et al., 2012)) functions were performed to reduce the contribution of background au-

tofluorescence. Each ROI was then divided into 25 mm deep bins that were normalized to a value between 0 and 1, with 0 being the

darkest bin and 1 being the brightest bin and all bins were compared to baseline. To obtain a depth profile of layer 5B within CFA, the

depth of the dorsal-most retrogradely labeled neurons were recorded at 100 mm intervals from 1.3 - 1.9 mm lateral to bregma and

repeated in 5 sequential coronal sections from 0.36 - 0.84 mm rostral to bregma. For each mouse, the depth of layer 5B at the center

of CFA (1.6mm lateral, 0.6mm rostral to bregma) was taken as the reference depth and the depths of other locations reported relative

to this value.

Immunohistochemistry
Mice expressing GCaMP6s were transcardially perfused and horizontal sections (30 mm) were cut parallel to the surface of CFA. Sec-

tions were rinsed in PBS overnight, incubated with a blocking solution (PBS, with 0.5% Triton X-100 (Sigma-Aldrich) and 10% goat

serum (Sigma-Aldrich)) for 2 hrs and rinsed with PBS. Sections were incubated overnight with mouse anti-NeuN (MAB377 Anti-NeuN

Antibody, clone A60, Sigma-Aldrich) diluted 1:1500 in carrier solution (PBS, with 0.5% Triton X-100 and 1% goat serum), then rinsed

with PBS. For secondary antibody binding, sections were incubated overnight with goat anti-mouse Alexa Fluor 568 (Invitrogen, MA,

USA) diluted 1:750 in carrier solution then rinsed with PBS. Sections were mounted onto glass slides, briefly air-dried, covered with

Vectashield Antifade Mounting Medium (Vector Laboratories), and sealed with a glass coverslip. Images of CFA were acquired using

a Nikon A1R FLIM confocal microscope (20X objective lens, 0.8 NA, Plan Apo VC, Nikon, Europe). Three images were taken at im-

aging planes corresponding to layer 5B (550 mm from the cortical surface). The number of cells in each image was manually counted

and divided by the area to obtain a measure of neuron density. For most FOVs recorded during calcium imaging, neurons were not

visible in all portions of the frame due to occlusion by blood vessels. Polygons were manually drawn around visible neurons in each

field-of-view to provide a realistic estimate of the imaging area.

2-photon imaging
To perform population calcium imaging in layer 5B (12 FOVs, N = 6 mice), 200 nl of the adeno-associated virus (AAV) AAV1-

SynGCaMP6s (diluted to 2.9x1012 GC/ml, Addgene 100844-AAV1) was injected into CFA (1.6 mm lateral, 0.6 mm rostral to

bregma and 0.6 mm from the cortical surface) using a pulled glass pipette (5 ml, Drummond Scientific; 10–20 nl/min) and auto-

mated injection system (Model Picospritzer iii, Parker), before sealing the craniotomy with silicone (Body Double; Smooth-On,

PA, USA) and implanting a lightweight headplate. For imaging, a cranial window (glass coverslip #0; Menzel-Gläser, Germany

fixed with cyanoacrylate glue), was implanted above the virus injection site. 2-photon calcium imaging was performed using a

custom-built resonant scanning 2-photon microscope (320 x 320 mm FOV; 600 x 600 pixels) with a Ti:Sapphire pulsed laser

(Chameleon Vision-S, Coherent, CA, USA; < 75 fs pulse width, 80 MHz repetition rate) tuned to 920 nm wavelength. Images

were acquired at 40 Hz with a 40x objective lens (0.8 NA; Nikon) and custom-programmed LabVIEW-based software

(LotoScan).

For cell type specific imaging, AAV-pkg-Cre (Addgene 24593-AAVrg; 1.7x1013 GC/ml) was injected into either the ipsilateral (right)

pons (PT; 0.4 mm lateral, 0.4 mm rostral to lambda and 0.2, 0.4 and 0.6 mmdorsal from the cranial floor) or contralateral (left) CFA (IT;

4 injections centered on 1.6mm lateral, 0.6mm rostral relative to bregma at 0.7 and 0.35mm from the cortical surface) followed by an

injection of pAAV-CAG-Flex-mRuby2-GSG-P2A-GCaMP6s-WPRE-pA (Addgene 68717-AAV1; 1.8x1013 GC/ml) into right CFA

(1.6 mm lateral, 0.6 mm rostral to bregma and 0.6 mm from the cortical surface). 2-photon calcium imaging was performed using

an 8 kHz resonant scanningmicroscope (HyperScope, Scientifica, UK; 690 x 690 mmFOV; 512 x 512 pixels) with a Ti:Sapphire pulsed

laser (Chameleon Vision-S, Coherent, CA, USA; < 75 fs pulsewidth, 80MHz repetition rate) tuned to 920 nm. Imageswere acquired at

�30 Hz with a 16x objective lens (0.8 NA; Nikon) using SciScan image software (Scientifica) and synchronized with external high-

speed videos and behavioral data using Mantis64. To facilitate reliable imaging at depths > 500 mm, all imaging was performed

24 hrs post-surgery. Laser power was between 91 – 173 mW (mean = 143 mW) across all imaging sessions, well below the damage

thresholds of 250 – 300 mW outlined in Podgorski and Ranganathan (2016). The combination of low pixel dwell time and systematic

blanking of FOV edges, where the dwell time is higher, and the addition of room temperature artificial cerebrospinal fluid on the sur-

face of the skull reduced the risk of thermal effects (as discussed in Podgorski and Ranganathan 2016).

Motion artifacts in the raw fluorescence videos were corrected using discrete Fourier 2-dimensional-based image alignment (SIMA

1.3.2; (Kaifosh et al., 2014)). ROIs were drawn manually in Fiji and pixel intensity within each ROI averaged to produce a raw fluores-

cence time series (F). To remove fluorescence originating from neuropil and neighboring neurons, fluorescence signals were decon-

taminated and extracted using nonnegative matrix factorization, as implemented in FISSA (Keemink et al., 2018). Normalized fluo-

rescence was calculated asDF/F0, where F0 was calculated as the 5th percentile of the 1 Hz low-pass filtered raw fluorescence signal

and DF = F-F0. All further analyses were performed in custom written scripts in MATLAB or Python 3.
Cell Reports 39, 110801, May 10, 2022 e4



Article
ll

OPEN ACCESS
To identify movement-related neurons, we defined a baseline (-500 ms to -150 ms relative to motion index onset) and peri-move-

ment (-150 ms relative to motion index onset to 40 ms after median movement completion) epoch. Next, we used two independent

methods: 1) a bootstrapped distribution (10,000 samples) of baseline-to-peak values (mean of the 100 ms centered on the largest

deviation from baseline within the peri-movement epoch - mean of baseline epoch) was used to test whether 95% confidence

intervals were different from 0; 2) bootstrapped distributions of mean DF/F0 in 250 ms bins within the peri-movement epoch were

compared to bootstrapped distributions of mean DF/F0 within the baseline epoch. If either method identified significant differences

the neuron was classified as movement-related. Neurons with no differences between baseline and movement epochs were clas-

sified as non-responsive and excluded from further analysis. Neurons with a median onset occurring after median movement

completion (plus a small correction factor of 40ms, to account for the rise time of GCaMP6s) were defined as ‘reward phase’ neurons

and excluded from further analysis. The median onset time of each cell was calculated by employing a previously published onset

detection algorithm using a slope sum function (SSF; Zong et al., 2003; Dacre et al., 2021) with the decision rule and window of the

SSF adapted to the calcium imaging data (threshold 10% of peak, SSF window 375ms, smoothed with a Savitzky Golay filter across

27 frames with order 2 and reported as the median of 10,000 bootstrapped samples to reduce the influence of noisy individual trials).

Prior to extracting DF/F0 onsets, we verified this algorithm with simulated data thereby accounting for any bias in the onset detection

potentially introduced by filtering and/or the decision rule. To simulate the rising phase of themovement related calcium events in our

data we used linear ramps with defined onset times and a rise time of 0.5 s mimicking GCaMP6s kinetics. We then calibrated the

onset detection algorithm on the simulated data (100 simulated cells with 30 simulated trials per cell and artificially added noise in

each trial matching the noise level in the imaging data) and updated it by a small correction factor. Neurons with movement bias

were detected using the same classification criteria described above but across movements (i.e. significant differences in bootstrap-

ped DF/F0 baseline-to-peak or 250 ms peri-movement bins).

Trial-to-trial correlations
To assess the similarity of trial-to-trial activity, the average pairwise trial-to-trial correlation coefficients (Pearson’s r) of the peri-

movement DF/F0, smoothed with a 1 s LOESS filter, were computed for each neuron. Data are presented as bootstrapped medians

per animal for each movement bias classification (10,000 repetitions, 50 samples). To investigate the relationship between trial-to-

trial similarity of movement and population DF/F0, pairwise trial-to-trial correlation coefficients (Pearson’s r) of peri-movement motion

index and pairwise trial-to-trial correlation coefficients (Pearson’s r) of the peri-movement population DF/F0 of the same trials were

compared. Population DF/F0 was the sum of all movement-related neurons in each FOV. Data were binned according to the pairwise

trial-to-trial correlation coefficients of their motion index and are presented as the bootstrapped median (10,000 repetitions, 50 sam-

ples) within each bin.

Extracellular recording and spike sorting
To compare neural activity during the task, extracellular unit recordings in CFA were performed using acutely implanted silicone

probes (Neuropixels 1.0 probes, IMEC). Data were acquired from the 384 channels closest to the probe tip (bank 0) with

SpikeGLX software at 30 KHz, an amplifier gain of 500 for each channel and high-pass filtered with a cutoff frequency of

300 Hz. Spike data were synchronized with external high-speed videos and behavioral data (cue presentation, lever movement,

and reward delivery) using Mantis64. Spike sorting was performed using Kilosort3 to automatically cluster units from raw data (Pa-

chitariu et al., 2016). The resulting spike clusters were manually curated using Phy (https://github.com/cortex-lab/phy), and any unit

with sufficient refractory period violations, inconsistent waveform amplitude across the duration of the recording, or clipped ampli-

tude distribution was excluded from analyses. Probe location was confirmed via DiI (Thermofisher) reconstruction of the recording

track and compared to retrogradely labeled PT neurons (FastBlue (Polysciences) injected into the pons) in each animal to limit anal-

ysis to units within layer 5B (upper boundary, 500-680 mm; lower boundary, 900-1080 mm; N = 5 mice). Spike widths were calculated

as the duration from trough to following maxima of the spike waveform. Putative pyramidal neurons were identified as units with

median spike widths greater than 0.4 ms.

To classify units as responsive to push or pull movements, firing rates were calculated by convolving motion index-aligned spike

times with a 50msGaussian kernel andmean changes in firing rate were calculated by subtracting themean firing rate during a base-

line period (1 s period before cue presentation) from the mean firing rates in 250ms bins tiling a response period extending back from

max(pX ushcompletion,pX ullcompletion)) to include motion index onset. Briefly, motion index onsets were calculated as the first

point after cue where the motion index was > threshold (threshold = mean motion index in a baseline window from the 1.5 s before

cue plus 2 SD). Trials where themotion index onset was prior to cue presentation were excluded from analysis. Significant responses

were identified by comparing bootstrapped 95% confidence intervals of mean changes in firing rates to 0; if at least one bin differed

from 0, that unit is consideredmovement-responsive. Movement-responsive units were classified as having a push or pull bias if con-

fidence intervals did not overlap.

Neural decoding
To decode movement type in single neurons we employed a naı̈ve Bayes classifier, where distributions of features are assumed

to be Gaussian. Movement-aligned DF/F0 data were assessed within a 5 s peri-movement window to produce a time series for

the decoding accuracy. At each time point, leaving one trial out (test trial), the likelihood of determining a push or pull was esti-
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mated based on the remaining trials (training set). The leave-one-out procedure was then repeated for all trials to calculate a

mean decoding accuracy time series for each neuron. The resulting time series were analyzed within the peri-movement epoch

- the peri-movement epoch began at -0.15 s relative to motion index onset and ended based on the peak DF/F0 response of

each neuron; the position of the median peak was calculated for each movement type and the later of these time points used as

the cut off. To identify neurons with decoding performance above chance, the bootstrapped distributions of decoding accuracy

scores were compared against a threshold value for each session. Only neurons with at least 1 bin significantly higher than

threshold were defined as high decoding accuracy. The threshold for each session was calculated based on modeled data

composed of random samples from a Gaussian distribution with the same number of trials as the experimental data. For

each session, modeled data accuracy was calculated 1000 times, assuming a prior probability of 50:50, and the mean + 2

SD was used as the threshold for significance. For population level classification of movement type, we employed logistic

regression. As above, the decoding accuracy of the time series for each population was generated via leave-one-out design

looped over all the trials in a given session. Population decoding accuracy was defined as the maximum decoding accuracy

in any 250 ms bin within the peri-movement epoch. Population decoding was also performed on subsets of the entire popula-

tion. Neurons were removed from the population one at a time, either in order from highest to lowest decoding accuracy score

or randomly, with the network retrained for each iteration. The process was repeated 25 times in the random condition and the

median of all responses used as the representative example for comparison with the ordered removal condition. Subpopula-

tions of neurons decoding significantly above chance were determined by comparing decoding scores with a shuffled dataset

(sampled randomly from 1000 time points with the trial labels (push or pull) randomized for each sample). If confidence intervals

from the population data did not overlap with those of the shuffled data, population scores were deemed to be above chance. In

3/12 FOVs the number of high decoding accuracy neurons and/or trial number were low and were excluded from further

comparison.

Dimensionality reduction
Raw fluorescence traces for all trials with successful movements in a 7.5 s peri-movement window were concatenated, filtered

with a three frame (75 ms) wide boxcar kernel, whitened, and transformed with principal component analysis. The principal

components (PCs) corresponding to the 16 highest eigenvalues, which corresponded to an average 83% (range [77 94]) cumu-

lative explained variance, were analyzed. To compute trajectories in PC space, PC projections for all trials were averaged (sepa-

rately for push or pull) and the variance and 95% confidence intervals for each time point estimated via 100-fold bootstrapping.

The separability of the trajectories for push or pull was computed in each PC separately as d’(t) = |mpush(t) - mpull(t)| /

O0.5(vpush(t) + vpull(t)), where mpush(t) and mpull(t) are the mean trajectories for push and pull, and vpush(t) and vpull(t) the corre-

sponding variances, estimated from trials. The separability d’(t) was bootstrapped from 400 samples, and variance and 95%

confidence intervals estimated from this sample. d’(t) was computed for all frames from movement onset to completion, where

the latter was the longest movement duration recorded in each session. PCs were considered separable if the difference be-

tween d’(t) and dshuffle’(t) (obtained in the same way from trial-shuffled data) was within the 95% confidence interval, which was

estimated from the sum of the relevant bootstrapped variances. For each FOV, the largest significant d’(t) was used; in 1/12

FOVs no PCs showed significant separability and was excluded.

Spatiotemporal mapping
To assess the functional (temporal) organization of simultaneously recorded populations of neurons, pairwise correlation coefficients

(Pearson’s r) from the smoothed (1 s LOESS filter) and motion index-aligned DF/F0 within the peri-movement epoch were compared.

Data were split based on their decoding accuracy scores and the bootstrapped median difference between high decoding accuracy

neurons and those of the population were subtracted and a median difference calculated per sample. This process was repeated

10,000 times to generate a distribution for high decoding neurons versus the entire population and the same sampling procedure

was used to investigate the correlations within low decoding accuracy neurons. To investigate spatial clustering, bootstrapped me-

dian differences between high decoding accuracy neurons and the population using pairwise distances (defined as the Euclidean

distance between the centroids of manually drawn ROIs from 2-photon imaging processing) were compared. A Generalized Linear

Mixed-Effects Model:

r � distancepairwise 3 accuracydecoder +movementtype + animal

was used tomodel the pairwise correlation coefficient as a function of pairwise distance (continuous), decoding accuracy andmove-

ment type. Pairwise distance and decoding accuracyweremodeled as interacting fixed terms, whilemovement type and animal were

modeled as random intercepts to account for the dependency of the measurements on observations from the same animal and

across the different movement types. The model was estimated using the restricted maximum likelihood, or REML, method (Bartlett

and Fowler, 1937). Model assumptions were verified by comparing residual versus fitted values for each covariate in the model

against each covariate removed from the model.
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Data analysis was performed using custom-written scripts in MATLAB or Python3 and code will be made available on request. All

statistical details of experiments can be found in the figure legends or main text, including description of the specific test used

and sample sizes. Data are reported as mean ± 95% bootstrapped confidence interval, 10,000 bootstrap samples, unless otherwise

indicated. Where multiple measurements were made from a single animal, suitable weights were used to evaluate summary popu-

lation statistics. Statistical significance was considered when p < 0.05 unless otherwise stated. Data were tested for normality and

parametric/non-parametric tests were used as appropriate and as detailed in the text. The GLMMwas designed in Python using the

statsmodels library (Seabold and Perktold, 2010).
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