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Experimental Section

Synthesis of CuS/C via co-precipitation

CuS nanoparticles were synthesized via a co-precipitation method. Cu(NO3)2:3H20 (298.0%, Sigma-Aldrich) and
thioacetimidic acid (C2HsNS, 299.0%, Sigma-Aldrich) were used in Cu:S molar ratio of 1.0:1.1. Cu(NO3s)2 was firstly dissolved
in deionized water. Afterwards, 10 wt.% thioacetimidic acid aqueous solution was dropwise added into the boiling 0.5M
Cu(NOs)2 solution with vigorous stirring. The sediment, formed via an electrostatic assembly, was washed and centrifuged
several times with deionized water and ethanol. After drying at 80 °C for 12 h, a black CuS precursor was obtained. A part of
CusS precursor was calcinated at 500 °C for 3 h under argon flow, denoted as CuS. The rest of the CuS precursor was
modified via the carbon loading method (see next session 2.2).

Synthesis of Cu,S/C via thermal reduction

Based on the previous report,*) 0.50 g CuS precursor was dispersed in 100 mL deionized water to form a homogeneous
suspension. Then, 1.25 g poly(diallyldimethylammonium chloride) (PDDA, 20 wt.%, Mw<500000 Da, Aldrich) and 0.84 g
poly(sodium-4-styrenesulfonate) (PSS, 30 wt.%, Mw<70000 Da, Aldrich) were respectively dispersed in the suspension under
vigorous stirring. The obtained sediment was washed and carbonized at 500 °C for 3 h under argon flow, denoted as Cu.S/C.

General materials characterization

Raman test was performed by a Raman spectrometer (LabRam Evolution HR, HORIBA Jobin Yvon) using 633 nm laser.
XRD test was employed using an STOE STADI P X-ray powder diffractometer equipped with a Mythen1K detector and a Mo
Ka1 radiation (A\=0.70932 A) in a 28 range of 10°~50° in Debye—Scherrer geometry. Rietveld refinement was performed to
analyze the diffraction data using FullProf software ?. A field-emission scanning electron microscope (SEM, Merlin Carl
Zeiss) was used to characterize the sample morphology. Energy-dispersive X-ray spectroscopy (EDX, Bruker, Quantax 400
SDD) was used to determine the elemental composition. X-ray photoelectron spectroscopy (XPS) was performed on a K-
Alpha XPS instrument (Thermo-Fisher Scientific, East Grinstead). The K-Alpha charge compensation system was used to
prevent any local charge buildup. All samples were analyzed using a monochromated Al Kq X-ray source (400 um spot size).
The spectra are referenced in binding energy to the C 1s peak (C—C, C-H) at 285 eV binding energy.

Operando test using synchrotron radiation diffraction

To monitor the phase evolution of the Cu2S/C precursor during the thermal reduction process, operando high-temperature
synchrotron radiation powder diffraction (HT-SRD) was employed at P02.1, DESY PETRA-Ill, Germany, using
monochromatic synchrotron diffraction (A = 0.20737(4) A). Here, NaCl and LaBs were used as standard samples for the
calibration of temperature and wavelength. The Cu2S/C precursor was sealed in a quartz capillary under argon atmosphere
and heated with a heating rate of 20 °C min~ up to 800 °C. The as-obtained 2D image data were transformed to intensity-26
data using Fit2D software.l”! Also, in situ X-ray absorption spectroscopy (XAS) spectra were collected in transmission
geometry with the step-scan mode at the Cu K-edge (8979 eV). The Si(111) double-crystal monochromator equipped with a
ionization chamber was optimized for the Cu edge absorption. Here, coin cells with glass windows (Li||LP30]|Cu2S/C) were
assembled. The working electrodes were prepared by mixing Cu2S/C (70 wt.%), carbon black (20 wt.%, Super P Li,
Timcal Ltd.) and polytetrafluoroethylene (10 wt.%, PTFE beads, Aldrich), and then loaded on the steel mesh disk (¢
12 mm) as current collector. The cell was discharged at a current density of 100 mA g~ in a potential range of 0.01~3.0 V vs.
Li/Li*.

To understand the mechanism of lithium storage in the Cuz2S/C, operando SRD data were collected at the MSPD beamline,
ALBA, Spain using synchrotron radiation (A = 0.41311(2) A). LaBs was used as a standard sample for wavelength calibration.
Coin cells with glass windows (Li||[LP30||Cu2S/C) were assembled. The working electrodes were prepared by mixing 70
wt.% Cu2S/C. The mixture (~3.5 mg) was pressed on a copper mesh disk (¢ 12 mm). During the operando SRD test,
the cell was cycled at 60 mA g~* in a potential range of 0.01~3.0 V vs. Li/Li* at room temperature.

Electrochemical characterization

The working electrodes were made of CuzS/C (70 wt.%), carbon black (20 wt.%) and PVDF binder (10 wt.%, R6020/1001,
Solvay). The as-prepared homogeneous slurry was coated on a copper foil. The coated foils were dried in a fume hood for 2
h and then dried at 80 °C for 12 h to completely remove N-methyl pyrrolidone solvent. Afterward, the coated foils were
punched into circular electrodes (¢ 12 mm) with mass loading of 1.5~1.8 mg cm2 Cu2S/C and a drying thickness of ~12.2 pm.
The assembled LIB coin cell (CR2032 type) consists of a working electrode, a Whatman® glass-fiber separator (¢ 17 mm), a
lithium foil (¢ 15 mm, Alfa Aesar) and 180 uL of LP30 electrolyte (1 M LiPFs in ethylene carbonate/dimethyl carbonate = 1:1
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by mass ratio, BASF). All cells were assembled in an argon-filled glovebox (MB200, MBraun GmbH). During the
electrochemical tests, the cells were kept in a climate chamber (Binder GmbH) at 25 °C. Galvanostatic charge/discharge
(GCD) and cyclic voltammetry (CV) were employed using a Bio-Logic VMP3 potentiostat in a potential range of 3.0 to 0.01 V
vs. Li/Li*.



Discussion Section
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Figure S1. XPS spectra of pristine Cu2S/C: Cu 2p (a), Cu LMM-2 (b), S 2p (c¢), C 1s (d), and N
1s (e).
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Figure S2. Analysis of typical phase change of the Cu2S/C electrode in LIBs based on
Rietveld refinement: (a) step A—scanl, (b) step B—scan40, (c) step C—scan86, and (d) step D—
scanl120.
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Figure S3. Operando SRD analysis of the Li2S reflection in Cu2S/C electrode.
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Figure S4. Nyquist plots obtained from the EIS test of the Cu2S/C composite electrode before
and after the first cycle at 60 mA g-! in a potential range of 0.01~3.0 V vs. Li/Li* at room

temperature.



Table S1. A review of preparation methods of Cu2S and CuzS/carbon composite, and

corresponding electrochemical performance for LIBs.

sample CuzS Cu2S compositing specific co:JnI:Jtlnawllbic year
preparation morphology method capacity efficiency
0.27 mAh
. cm2 at
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carbon® corrosion . on a Cu film
composite cycles
300 mAh
CuzS/carbon hydrothermal particle calcination with gt after 7204 2015
compositest! method cluster glucose 100 cycles 0
at0.1A g™
in—situ
Cu2S@ N, hvdrothermal polymerization 5(—310;?2
S-doped y nanorods and 9 1 62.4 % 2018
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