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Abstract

1. Antagonistic host-parasitoid interactions can be quantified using bipartite and

metanetworks, which have the potential to reveal how habitat structural elements
relate to this important ecosystem function.

Here, we analysed the host-parasitoid interactions of cavity-nesting bees and
wasps, as well as their abundance, diversity and species richness with forest struc-

tural elements from 127 forest research plots in southwestern Germany.

. We found that parasitoid abundance, diversity and species richness all increase with

host abundance, a potential mediator between parasitoids and forest structure.
Both parasitoid abundance and diversity increased with stand structural complexity,
possibly mediated by the abundance of hosts. In addition, parasitoid abundance

increased with increasing standing deadwood and herb cover.

. The bipartite networks of host-parasitoid interactions showed higher connectance

with increasing standing deadwood, herb cover and host abundance. Analyses of
interactions within the host-parasitoid metanetwork revealed that increasing host
abundance and decreasing canopy cover diversify the suites of interactions present

at the plot level.

. These results demonstrate that forest structural elements can improve the stability

and resilience of host-parasitoid networks by promoting parasitoids and diversify-

ing interactions in ecological networks.

KEYWORDS
ecological networks, ecosystem functions, forest conservation, Hymenoptera, remote sensing

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Ecological Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

Ecological Entomology. 2024,49:257-271.

wileyonlinelibrary.com/journal/een 257


https://orcid.org/0000-0001-9576-2742
https://orcid.org/0000-0003-0894-7576
https://orcid.org/0000-0003-0157-2417
https://orcid.org/0000-0001-7895-702X
https://orcid.org/0000-0002-9098-9427
https://orcid.org/0000-0003-2139-8575
mailto:nolan.rappa@slu.se
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/een
http://crossmark.crossref.org/dialog/?doi=10.1111%2Feen.13301&domain=pdf&date_stamp=2024-01-15

2 1§ 5] BE~
INTRODUCTION

Parasitism can be quantified and visualised as a network of directed
bipartite interactions (Dormann et al., 2009; Thierry et al., 2019)
between parasitoids and their hosts. Bipartite networks can quantify
and visualise parasitism at varying spatial and temporal scales (Mora
et al., 2020; Torné-Noguera et al., 2020) and along environmental gra-
dients (Fisogni et al., 2022). In so doing, it is possible to test the impor-
tance of habitat components on parasitism using indices quantified
from individual networks. Connectance, for example, is calculated by
dividing the linkage density by the number of species present with a
high value indicative of a generally well-connected network, which
has been associated with higher robustness (Estrada, 2007). Parasit-
ism can be further visualised across whole host-parasitoid communi-
ties using metanetworks (Libran-Embid et al., 2021), which quantify
the co-occurrence of interactions. Thus, metanetworks have the
potential to evaluate the prevalence of interactions at large
spatial scales and across multiple sites and habitats (Grainger &
Gilbert, 2016), where previous approaches have examined spatially or
temporally isolated interaction networks (Hagen et al., 2012). Addi-
tionally, modelling of metanetwork interaction indices accounts for
the spatial distributions of species (Emer et al., 2018; Li et al., 2020),
revealing interactions that link distinct networks and thus support
ecological functions at large spatial scales.

Parasitism is a grouping of life history strategies characterised by
species living in close association with their hosts to utilise them or their
resources for survival (Gullan & Cranston, 2014). A subset of parasitic
species are parasitoids and kleptoparasites (parasitoids hereafter),
which, though having slightly different strategies, typically result in the
death of hosts to complete their lifecycles (Sedivy et al., 2013), making
them functionally similar. Parasitism is an important ecosystem function,
regulating populations of hosts (Lynch et al., 1998), which may be pests
(Menalled et al., 2003; Mills, 2010), pathogen vectors (Plowright
et al., 2017) or invasive species (Chabert et al., 2012; Duan et al., 2013).
The top-down regulation of host populations by species at a high tro-
phic position has important effects on host population dynamics
(Hassell, 2001), thus cascading effects on the biotic and abiotic
resources that hosts utilise (Tan et al., 2020; Vidal & Murphy, 2017). In
addition, parasitoids are particularly sensitive to bottom-up effects (fluc-
tuations in host populations) (Hassell, 2001; Singh, 2021) and microcli-
mate variation (Kankaanpaa et al., 2020; Wenda et al., 2022), making
parasitoid interaction networks good proxies for evaluating habitat
integrity and quality (Anderson et al., 2011; Grass et al., 2018).

In forests, the structural elements or physical structure character-
istics of forest habitat (e.g. tree canopies) influencing parasitism inter-
actions have only generally been described (Eckerter et al., 2022;
Laliberté & Tylianakis, 2010; Staab et al., 2016). The structural ele-
ments of forests, and more broadly other habitats, can be quantified
to allow meaningful investigations of their importance for various
aspects of biodiversity (Rappa et al., 2022; Storch et al., 2018). Can-
opy cover, for example, while varying between the sites, is a charac-
teristic of forest habitat and, thus, can be hypothesised to have a
strong influence on forest biota (Fornoff et al, 2021; Gustafsson
et al., 2019; Oettel & Lapin, 2021). Forb cover, by contrast, or the
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percentage of flowering plant species, is a quantifiable metric of
meadow habitats (Jiang & Hitchmough, 2022). The spatial arrange-
ment of forest structural elements can be strongly influenced by man-
agement practices such as retention forestry (Gustafsson et al., 2012).
Retention forestry emphasises maintaining forest habitat structural
elements that would have been removed during timber harvest as a
result of traditional management practices (e.g., deadwood removal)
(Storch et al., 2020). Unique forest structural elements such as dead-
wood are important components of forest habitats and can have
important influences on parasitism networks via the abundance and
species richness of their potential hosts (Eckerter et al., 2021; Rappa
et al., 2023), feeding resources (Heimpel, 2019) and microclimates
(Laliberté & Tylianakis, 2010). Thus, understanding the potential
effects of retention forestry on parasitism via the arrangement of for-
est habitat structural elements will provide valuable insights into the
maintenance of this important ecosystem function (Baho et al., 2017;
Holling, 1973).

Most insect species with parasite/parasitoid life history strategies
are within the Hymenoptera (bees, ants and wasps) (Gullan &
Cranston, 2014), and thus closer examination of these insects is neces-
sary to characterise parasitism as an ecosystem function. Cavity-nesting
bees and wasps, as well as their associated parasitoids, can be easily and
reliably sampled using trap nests (Staab et al., 2018) and are thus ideal
study organisms. Cavity-nesting bees and wasps locate hollow cavities in
deadwood or soil exposures and provision resources in a series of cells
for their offspring. In forests, cavity-nesting bees and wasps are consid-
ered secondary saproxylics, nesting in the deadwood exit holes created
by primary saproxylic organisms (Westerfelt et al., 2015), and can thus
be useful indicators of forest structure (Eckerter et al., 2021, Rappa
et al., 2023). During nest building, or following nest completion, parasit-
oid species exploit the opportunity to lay their eggs on the resources
provisioned and on/within the host egg or larvae. The parasitised cells
can then be easily identified by the presence of a parasitoid individual/
cocoon or a host cocoon with parasitoid exit holes.

In the present study, we seek to determine if the gradients of the
amounts of structural elements prioritised by retention forestry for
their importance for biodiversity can influence the stability and resil-
ience of parasitism as an ecosystem function. Here, we follow Rappa
et al., 2023, which investigated the importance of forest structural
elements for cavity-nesting bees and wasps, which are the hosts of
the parasitoids used in the present study.

To assess the influence of forest structural elements on parasitism
as an ecosystem function, we tested the following hypotheses: 1) para-
sitoid abundance, species richness and diversity will increase with struc-
tural elements in forest habitats, namely standing/lying deadwood, herb
cover and canopy cover as these are the most important resources for
the foraging and nesting of their hosts (Rappa et al., 2023), which differ
from parasitoids that are primarily limited by host availability. Further-
more, we hypothesise that the environmental variables structuring para-
sitoid communities will differ from those structuring host communities
because of differing resource requirements, such as the predatory
nature of some host species. 2) The weight and diversity of the bipartite
host-parasitoid interaction networks will increase with the increasing
forest structural elements that influence the amount of foraging and
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nesting resources available to hosts (e.g., greater herb cover) but also
the diversity of resources following the habitat-heterogeneity hypothe-
sis (e.g., forest strata occupied by vegetation, greater stand structural
complexity and understorey species richness) (Cramer & Willig, 2005;
MacArthur & MacArthur, 1961). 3) The arrangement of host-parasitoid
interactions will be determined by forest structural elements that have
the potential to create stand-level heterogeneity via more diverse forag-
ing and nesting resources (e.g., canopy cover and stand structural com-
plexity). Heterogeneity of structural elements at the stand level has the
potential to influence species richness via increased available niches
and, thus, may diversify the suites of interactions that co-occur. We
additionally employ a metanetwork approach to identify the most
important interactions in promoting the stability of host-parasitoid net-
works, which we expect to involve host general parasitoids because
these species have greater niche breadth. We further expect that para-
sitoid biodiversity metrics, community composition and host-parasitoid
interactions will be significantly influenced by host abundance. The
results of these analyses will present what is to our knowledge, the first
metanetwork analysis of parasitoid bees and wasps, as well as the first

simultaneous use of bipartite and metanetworks.

METHODS
Study region and plot selection

The present study was conducted on 134 1-ha plots, established in
2016 by the ‘Conservation of Forest Biodiversity’ (ConFoBi) project in
the southern Black Forest mountain range (Baden-Wirttemberg,
Germany) (Storch et al., 2020). The Black Forest is mixed-deciduous,
consisting of mainly planted Norway spruce (Picea abies L.), European
beech (Fagus sylvatica L.), silver fir (Abies alba Mill.), sycamore maple
(Acer pseudoplatanus L.) and sessile oak (Quercus petraea Matt.).The
transition from timber-focused to close-to-nature forest management
has focused on enhancing structure through deadwood and habitat tree
retention (Storch et al., 2018; Storch et al., 2020), and reflecting the
potentially natural beech-dominated vegetation of the area (Gartner &
Reif, 2005; Standovar & Kenderes, 2003). Initial plot selection focused
on deadwood amounts and forest cover at the landscape as the two
primary gradients. The high number of plots, large spatial extent of the
study area and heterogeneity in the Black Forest have resulted in gradi-
ents of numerous environmental variables. For more detailed informa-
tion on the ConFoBi plot selection and the Black Forest as a study
system, as well as additional environmental variables measured, see

Storch et al. (2020). For a map of the study area, please see Figure S1.

Forest structural elements and environmental
variables

Variables characterising the environment were chosen based on their
potential influence on feeding and nesting resources of cavity-nesting

bees and wasps, following Rappa et al. (2023). Deciduous tree share

e [

(proportion of deciduous tree species), elevation and diameter at breast
height of standing and lying deadwood pieces above 7 cm in diameter
were obtained during full plot-level inventories conducted in 2017 and
2018. Typically, five stages are applied to classify deadwood according
to decay: recently dead or raw wood (l), solid deadwood (ll), rotten
wood (Ill), mould wood (IV) and duff wood (V) (Hunter, 1990). Cavity-
nesting bees and wasps, the host species for parasitoids in our study,
prefer fresh and/or moderately decomposed deadwood (Bogusch &
Horak, 2018; Eckerter et al., 2021; Westerfelt et al., 2015), as nest
building requires stable substrates. To account for this, the cumulative
diameter of lying and standing deadwood at plot level of only decay
stages I-1ll was used, excluding decay stages IV and V, in which sub-
strates become soft and unsuitable. Herb cover and understorey spe-
cies richness were measured from six 5m x 5 m subplots in 2017
(Helbach et al., 2022). Forest cover (proportion of forested area in
1 km? around plot centres) was calculated using the aerial image data
by Storch et al. (2020). The remotely sensed indices stand structural
complexity index (SSCI) and effective number of layers (ENL) were
derived from terrestrial laser scans at northwest and southeast corners,
as well as plot centres (Ehbrecht et al., 2017; Frey et al., 2019; Knuff
et al., 2020; Rappa et al., 2022). The SSCI is a measure of geometric
complexity of vegetation and structures within a forest stand (Ehbrecht
et al.,, 2017; Stiers et al., 2018). The ENL is an index for measuring the
vertical heterogeneity of vegetation layering using voxels in 3D space
(Ehbrecht et al., 2016; Ehbrecht et al., 2019). Mean values for each
index were calculated using three values taken along northwest-
southeast transects to generate one value per plot. Mean canopy cover
was measured in ImageJ using overhead hemispherical photos taken at
each trap location in early Fall 2020 (Rappa et al., 2023). Summary
information of the environmental variables is available in Table 1. Fur-
ther explanation of the remotely sensed indices can be found in Sup-

porting Information.

Insect collection, identification and categorisation

Insects were collected during the spring/summer of 2020 using trap
nests, which present hollow cavities within reed (Phragmites australis
polyvinyl
(Krombein, 1967; Staab et al., 2018). Traps were secured in pairs to

Cav.) internodes packed into chloride  tubes
~2 m high wooden poles, which were placed between the plot centre
points and the northwest (NW) and southeast (SE) corners, totalling
four traps per plot, each with cavities facing in the NW and SE
directions. Traps were deployed in early March-April and collected
mid-late October to sample the full breadth of phenologies. When
occupied with nests, internodes can be easily opened, allowing for the
quantification of cells with provisioned resources (abundance) and
parasitised cells. From the number of provisioned and parasitised cells,
the parasitism rate or the proportion of provisioned cells that were
parasitised can be calculated. This sampling method allows highly
detailed host-parasitoid interaction data to be gathered
(Krombein, 1967) as the interactions can be directly inferred. After

collection, nests were removed from traps and refrigerated at ~4°C
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TABLE 1 Environmental variables and summary statistics characterising the 127 plots used in analyses, following exclusion of plots deficient

of remotely sensed indices (seven plots).

Variable Unit  Definition Range Mean = SD
Canopy cover (%) % Proportion of area with sunlight blocked by forest canopy 39-92 78+8
Deadwood DBH (lying) cm Sum diameter of lying deadwood structures >7 cm DBH 0-1682 238 + 214
below decay stage 4
Deadwood DBH (standing) cm Sum diameter of standing deadwood structures >7 cm DBH 0-1832 499 + 359
below decay stage 4
Deciduous tree share % Percentage of trees by count in plot that are deciduous 0-96 28 + 25
species
Forest cover % Proportion of forested area within 1 km? of plot centres 9-81 61+15
Herb cover % Ratio of area on ground with herb layer present 0.14-73.77 35+19
Elevation m Average of min and max heights above sea level 443-1334 821 + 183
Mean effective number of layers (ENL) - Mean number of 1 m thick strata with filled 3D voxels 7-27 16 + 4
indicating presence of vegetation measured across NW-
SE transect on each plot
Mean stand structural complexity index (SSCI) - Mean index characterising the diversity of physical 2-12 4+2

characteristics measured across NW-SE transect on each

plot

Understorey species richness -

Number of plant species identified in the understorey (2-5 m) 2-71

31+14

Note: None of the variables were excluded on the basis of assumed collinearity (p > 0.70) following pairwise analyses. A summary of Spearman’s

correlations among environmental variables can be found in Table S1.

Abbreviations: DBH, diameter at breast height; NW, northwest; SE, southeast.

for 8-24 weeks to simulate winter diapause. While refrigerated, nests
were opened to quantify the abundance of hosts (cells provisioned)
and parasitoids (parasitised cells). Nests were then exposed to room
temperature to facilitate the hatching of individuals, which were sub-
sequently collected for morphological identification, using current tax-
onomic literature (e.g., Jacobs, 2007 for Crabronidae). Individuals who
could not be identified at species level (~8% of host cells, ~12% of
parasitised cells) were excluded before analyses. Following identifica-
tion, species were categorised according to habitat specialisation as
forest and non-forest specialists (hosts) (Rappa et al., 2023) and
according to host specificity as general and specific (parasitoids). More
detailed information regarding trap construction, and insect identifica-
tion and categorisation can be found in Supporting Information.

Statistical analyses

Comprehensive information, biodiversity metrics and
species composition

Plots with missing environmental variables (seven plots) were omitted
before all analyses. Environmental variables were assessed for collin-
earity using Spearman’s coefficient (R package ‘ggpubr’) (Dormann
et al., 2013; Kassambara, 2020). Following this procedure, if a pair of
variables share a coefficient greater than 0.70, only one should be
retained for analyses. In our data, no pair of environmental variables
was found to be collinear (Table S1).

Species data (hosts and parasitoids) were pooled per plot, before
calculating abundance, Shannon diversity and species richness, yielding
one data point per plot for each metric. Sampling completeness was

assessed with species accumulation curves using the ‘specaccum’ func-
tion (R package ‘vegan’) (Oksanen et al., 2022) for hosts and parasit-
oids, with jackknifel estimators of expected total species richness of
each (Figure S2). In addition, an accumulation curve of host-parasitoid
interactions was calculated, with jackknifel estimation of the expected
total number of bipartite interactions estimated (Figure S3). To analyse
the influence of environmental variables on overall parasitoid biodiver-
sity metrics, abundance and species richness were each analysed using
negative binomial generalised linear models, diversity was analysed
using a linear model and parasitism rate was analysed using a binomial
generalised linear mixed model (GLMM), with parasitism represented as
successes and failures of brood cells due to parasitoids at plot level. An
observation-level random effect was included in the GLMM, analysing
parasitism rate to account for overdispersion. All environmental vari-
ables listed in Table 1 were included in each model, with the addition
of log-transformed (logyo[x + 1]) host abundance at the plot level as a
covariate. Host availability is the most limiting resource for parasitoids
(Pitcairn et al., 1990; Vogel et al., 2021), and thus host abundance is
potentially highly influential for parasitoid biodiversity metrics as well
as bipartite and metanetwork interactions.

To test the influence of environmental variables on species com-
position, NMDS (Non-metric MultiDimensional Scaling) was per-
formed for hosts and parasitoids using the ‘metaMDS’ function
(R package ‘vegan’) with 1000 random starting draws each. Ordina-
tions were made using ‘Bray-Curtis’ dissimilarities on three axes to
reduce stress while ensuring ordination, and fitting of environmental
variables could still be reliably interpreted. Procrustes errors of the
first two axes of host and parasitoid ordinations were compared sepa-
rately to ordinations with two axes using the ‘protest’ function. The
representation of the first two axes in three-dimensional ordinations
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was similar to two-dimensional ordinations (Table S3), and thus, only
the first two dimensions are displayed in Figure S5. All environmental
variables listed in Table 1 were fitted post hoc to the scores of the
first two ordination axes of each ordination using the ‘envfit’ function

with 1000 permutations.

Bipartite networks

Weighted bipartite networks were calculated at plot level, with net-
work properties quantified with several indices using the ‘bipartite’
package (Dormann et al., 2009), calculated for each plot-level net-
work. The pooled bipartite network was calculated across all sites to
examine the diversity of interactions sampled. While numerous indi-
ces are available to characterise bipartite networks (Almende
et al, 2021; Dormann et al., 2009), weighted connectance, linkage
density, link diversity and specialisation (H2') were chosen to test the
relationship between the host-parasitoid network structure and envi-
ronmental variables. Models of connectance and linkage density
tested whether the environmental variables listed in Table 1 poten-
tially influence the weight of interactions between the parasitoids and
host species. Models of link diversity and specialisation (H2') tested
whether environmental variables diversified and compartmentalised net-
works. Indices were calculated for only networks with more than one
host-parasitoid interaction (one parasitised cell or one interaction). Pre-
liminary analyses were conducted using values from all 90 networks
where meaningful indices could be calculated (four models), and later
excluding networks with fewer than 10 parasitised cells, analysing values
from the resulting 68 networks (four models). Each index in both sets of
analyses was analysed using linear models, including log-transformed
host abundance at plot level as a covariate. To test if host-parasitoid
networks and thus interaction indices differed significantly from chance
(and are thus not random), we calculated Patefield null models using
1000 random model runs each and compared null indices with observed
indices (Bliithgen et al., 2006; Dormann et al., 2009). Additional informa-
tion about host-parasitoid interactions (Table S7) and bipartite network
indices can be found in Supporting Information.

Metanetwork

The metanetwork was constructed using a data frame of unique host-
parasitoid interaction co-occurrences. Each unique pair of interactions
was used as a node and the frequency of its co-occurrence with
another interaction as the edge connecting them (Figure 5). At the
centre, or core of a metanetwork are the most central nodes (host-
parasitoid interactions) that co-occur with the largest number of other
interactions. The metanetwork indices interaction degree (a measure
of centrality) and interaction closeness (a measure of distal branching)
were calculated for each host-parasitoid interaction throughout the
metanetwork using the ‘igraph’ package (Csardi & Nepusz, 2006).
While many indices are available for interactions within the metanet-

work (R package ‘igraph’) (Csardi & Nepusz, 2006), interaction degree

i - N

and closeness were chosen to measure the centrality and distal
branching of interactions (Libran-Embid et al., 2021). A high value of
interaction degree indicates a high number of uniquely co-occurring
interactions, and thus a more central node forming a greater part of
the metanetwork core. Closeness measures how many steps are
required to reach another node from a given node. While also used to
infer interaction centrality, a high value of closeness does not indicate
a greater connection to other interactions but fewer steps necessary
to reach all other interactions. Importantly, a low value of closeness
indicates an interaction that is far from the metanetwork core. The
indices were applied to each interaction in the plot-level dataset,
resulting in groups of values of interaction degree and interaction
closeness for each plot. To model the similar and repeated interaction
degree (one model) and closeness (one model) values, where the num-
ber of interactions varied between the plots, GLMMs were calculated
including the log-transformed (log[x + 1]) number of interactions as an
offset and plot as a random term, as well as log-transformed host
abundance at plot level as a covariate. Modelling interaction degree
tests the influence of environmental variables on the co-occurrence of
interactions, and thus the potential to connect plot-level networks
with shared function (e.g., standing deadwood promoting frequently
occurring interactions). Modelling interaction closeness determines
which environmental variables have the potential to diversify suites of
interactions, appearing as unique. To compare the indices calculated
for interactions in the metanetwork with indices calculated from
bipartite networks, mean values for interaction degree and closeness
were taken for each plot and then compared to bipartite network indi-
ces using Spearman’s correlation coefficients (Table $12). Additional
information regarding metanetwork construction, detailed description
of the metanetwork core and the selection of interaction indices can
be found in Supporting Information.

Residuals of four models of biodiversity metrics, eight models of
bipartite indices and two models of metanetwork interaction indices
were tested for spatial autocorrelation using Moran’s | calculations,
performed using the ‘testSpatialAutocorrelation’ function (R package
‘DHARME’) (Hartig, 2022), respectively. No model residuals exhibited
spatial autocorrelation (Table S11).

RESULTS
Biodiversity metrics and species composition

In total, 2220 parasitised brood cells (from a total of 14,957 provi-
sioned by hosts) from 39 species (Table S2) were collected, represent-
ing 85% of the expected total parasitoid species richness (Figure S2).
The average parasitism rate of brood cells was 14.52% (+ 14.14%).
Only two obligate hyperparasitoid individuals were collected and,
thus, were excluded from our data which had no influence on our
results. Abundance, diversity and species richness of parasitoids were
all positively related to the abundance of hosts at plot level
(Figure S4), whereas abundance (z = 2.036, p = 0.042) and diversity
(t = 2.284, p = 0.024) were additionally positively related to standing
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FIGURE 1 Abundance of parasitoids of cavity-nesting bees and wasps and significant fixed effects: (a) stand structural complexity index
(SSCI) and (b) standing deadwood cumulative diameter (cm). Trend lines from negative binomial generalised linear models are depicted for

abundance in both figures, with 95% confidence intervals coloured in grey.
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FIGURE 2 Diversity (Shannon) of parasitoids of cavity-nesting
bees and wasps and stand structural complexity index (SSCI). Trend
line for the linear model of diversity is depicted, with 95% confidence
intervals coloured in grey.

structural complexity (Table S4) (Figures 1a and 2). Parasitoid abun-
dance increased with standing deadwood (z = 3.368, p < 0.001)
(Figure 1b). Parasitism rate increased with only increasing standing
deadwood (z = 2.998, p < 0.001) (Figure 3). These results changed lit-
tle following exclusion of the most common parasitoid species (Melit-
tobia acasta) from our data, with parasitoid abundance and diversity
no longer increasing with stand structural complexity (Table S13).

Host species composition was structured by canopy cover
(r?=0.157, p <0.001), SSCI (r? =0.071, p = 0.001), understorey
species richness (r? = 0.063, p = 0.019), herb cover (r?=0.065,
p =0.015) and elevation (r?=0.064, p =0.021) (Table S5 and
Figure S5). Parasitoid species composition was structured by only can-
opy cover (r? = 0.080, p = 0.026) and host abundance (r? = 0.094,
p = 0.015) (Table S6 and Figure S5).

100+ 4

Parasitism rate (%)
(S ~
e il
L

N
il

450 900 1350 1800
Standing deadwood (cm)

FIGURE 3 Parasitism rate of cavity-nesting bees and wasps and
standing deadwood cumulative diameter (cm). Trend line for the
binomial generalised linear model (GLM) is depicted with 95%
confidence intervals coloured in grey.

Bipartite networks

The pooled host-parasitoid interaction network had a Shannon inter-
action diversity of 3.453 and specialisation (H2') of 0.567 (Figure 4).
Most (83%) of networks including those with fewer than 10 parasi-
tised cells and nearly all (93%) networks excluding those with fewer
than 10 parasitised cells differed significantly from chance during null
model comparisons and are thus ecologically reliable. In analyses that
included networks with fewer than 10 parasitised cells, linkage den-
sity (t = 2.653, p = 0.009) and link diversity (t =4.647, p < 0.001)
both increased with increasing host abundance (Table S8). Specialisa-
tion (H2') decreased (t = —2.277, p = 0.026) while weighted connec-
tance increased with standing deadwood (t = 2.116, p = 0.038) and
herb cover (t=2.297, p=0.024). Linkage density (t=—-2.467,
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FIGURE 4 Pooled quantitative bipartite host-parasitoid network (H2' = 0.567) representing all plots where parasitism was observed. Width of
upper bars represents brood cells parasitised by each species. Width of lower bars represents total number of parasitised brood cells for each host
species. Arrow width represents the number of interactions (parasitised brood cells) between each parasitoid (above) and host (below) species.
Numbers correspond to species listed in Table S7. Species names are listed for the strongest (highest numbers of parasitised brood cells) interactions.

p = 0.016) and link diversity (t = —2.093, p = 0.039) both decreased
with increasing canopy cover.

In analyses restricted to networks with more than 10 parasitised
cells, both linkage density (t = —2.215, p = 0.031) and link diversity
(t=-2.168, p=0.034) decreased with increasing canopy cover
(Table S9). Weighted connectance decreased with only host abun-
dance (t = —3.407, p = 0.001). Specialisation (H2’) was not related to

environmental variables or host abundance (Table S9).

Metanetwork indices

Both interaction degree (z= —4.856, p <0.001) and closeness
(t =—7.338, p <0.001) decreased with increasing host abundance
(Table S10). Interaction closeness increased with increasing canopy
cover (t =2.188, p = 0.032). Spearman’s coefficients revealed weak
correlations between interaction degree (0.062 + 0.039) or closeness
(0.066 + 0.024) with bipartite indices (Table S12). The metanetwork

core was comprised of mostly specific parasitoids parasitising forest
specialist hosts (Figure 5 and Table S7).

DISCUSSION

Parasitoid reliance on hosts

The reliance of parasitoids on their hosts results in close and relatively
specialised interactions compared with other interaction types such as
pollination, which can be characterised as being more general
(Fontaine et al., 2009; Soares et al., 2017). Host abundance was the
primary determinant of parasitoid biodiversity metrics, particularly
parasitoid abundance but also species composition. These results sup-
port the more-individuals hypothesis (Srivastava & Lawton, 1998),
where an increase in host abundance yields not only an increase in
the abundance of parasitoid species but increases in their richness
and diversity as well. This has been observed in several studies
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FIGURE 5 Host-parasitoid interaction metanetwork representing all 115 plots where parasitism was observed. Nodes in the metanetwork
represent host-parasitoid interactions from local bipartite networks while edges represent co-occurrences with other interactions at plot-level.
For each node (interaction) parasitoid species are depicted above dashed lines while hosts are depicted below. Edge width corresponds to the
number of local networks where both interactions co-occurred. Point size corresponds to degree, or number of co-occurring interactions, with
the most common ‘core’ interactions represented with images. Point shape corresponds to the habitat specialisation of hosts while point colour
corresponds to specificity of host utilisation by parasitoids. The host-parasitoid interactions depicted are (from top to bottom): Trypoxylon figulus-
Trichrysis cyanea, T. figulus-Melittobia acasta, Deuteragenia subintermedia-M. acasta, Anicistrocerus trifasciatus-C. solida, T. figulus-Nematopodius
debilis, Symmorphus gracilis-C. corusca, Passaloecus insignis-Omalus aeneus, P. insignis-O. puncticollis and T. clavicerum-N. debilis. Additional
descriptions of the interactions pictured, and the metanetwork core can be found in Supporting Information.

examining parasitoid taxa (e.g., Vogel et al., 2021), as host availability
is likely an important component of parasitoids’ ecological niche. Our
results, therefore, add further support to the significance of bottom-
up influences in trophic interactions (Mehrparvar et al., 2019). The
analyses of host biodiversity metrics in Rappa et al. (2023) show that
structural components of forest habitat, namely standing deadwood
and SSCI, promote greater abundance and species richness of cavity-
nesting bees and wasps through increased and more diverse foraging
and nesting resources. The potential influences of these relationships
were observed in our study of parasitoids at higher trophic levels, with

greater abundance, diversity and species richness. Thus, the retention
of forest structural elements can potentially promote this important
ecosystem function via bottom-up focused conservation and poten-
tially enhance top-down influences by increasing resilience through
redundancy (Sanders et al., 2018; Thierry et al., 2022).

The density-dependent regulation of common host species
potentially fosters greater ecosystem stability by buffering competi-
tive exclusion (Brown, 2022), which would occur if a highly abundant
species consumes foraging and nesting resources. Under these cir-
cumstances, other species with overlapping foraging and nesting
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requirements would experience a population decline or a decreased
carrying capacity. In our data, the most abundant species Trypoxylon
figulus built ~28% of all nests collected. Given its highly general habi-
tat tolerance (Jacobs, 2007) and tendency to nest in a wide range of
cavity diameters, this species could, if very abundant, occupy potential
nest sites before other species could utilise them. This is unless higher
host density increases parasitism rate (Wang et al., 2020), thus creat-
ing a more stable population dynamic, buffering the exclusion effect.
The increase in parasitism rate with greater standing deadwood
observed in our data is possibly mediated by higher stability of host
nesting substrates and is, thus, an effect of resource stability. This is
consistent with studies examining the philopatric tendencies of solitary
bees and wasps (Murray et al., 2009; Polidori et al., 2006) and their pro-
pensity to nest close to other individuals of the same species, and in
close proximity to where they themselves hatched. Additional analyses
of parasitism rate from our data, including the abundance of host nests
as a covariate cannot support this however (Table S14). Interestingly,
parasitism rate was influenced by only standing deadwood in our addi-
tional analyses, indicating that it may not be the density or abundance
of host nests increasing parasitism rate, but rather the stable presence
of hosts as resources, facilitated by stable deadwood structures.
Parasitoid and host species’ compositions shared only canopy
cover as a significant environmental variable. The activity of many
host species included in our study is strongly reliant on sun exposure
(Eckerter et al., 2022; Fye, 2012; Hilmers et al., 2018), and most
cavity-nesting species tend to prefer sun-exposed deadwood sub-
strates (Bogusch & Horak, 2018). Interestingly, no relationships were
observed between parasitoid biodiversity metrics and canopy cover.
Following the habitat-heterogeneity hypothesis (Cramer &
Willig, 2005; MacArthur, 1972); however, the potential influence of
forest structure could possibly be mediated by host abundances. The
creation of canopy gaps (e.g., by tree felling) can diversify light condi-
tions and, thus, the communities of photophilic bees and wasps in for-
ests. The resulting increase in host abundance (see also Achury
et al., 2023) and thus parasitoid species richness could improve func-
tional resilience of parasitism networks to environmental changes
(Evans et al., 2016; Gladstone-Gallagher et al., 2019; Laliberté &
Tylianakis, 2010; Standish et al., 2014) such as those resulting in unfa-

vourable microclimates (Bernaschini et al., 2021) via redundancy.

Interaction bipartite networks

Our hypotheses regarding the influence of forest habitat structural
elements on networks were only partially confirmed. Among models
including indices from all possible networks, only standing deadwood
and herb cover are revealed as potentially supporting more stable par-
asitism networks by increasing connectance. This is partially sup-
ported by our finding that parasitism rate increased with standing
deadwood, though parasitism rate and connectance differ. However,
networks at plots with more standing deadwood exhibited lower spe-
cialisation, indicating that parasitoid host range potentially increases
with host abundance, or when host populations are denser (Arneberg
et al.,, 1998; Stanko et al., 2006). It is interesting that greater herb

e

cover increases connectance in our data, considering that nectar for-
aging by adult parasitoids (Zemenick et al., 2019) is typically over-
looked in favour of their more relevant resources (hosts). In addition,
it is possible that the abundance of prey items for predatory cavity-
nesting wasps (e.g., aphids, spiders) increases with greater herb cover,
creating a potentially compounding positive influence on host abun-
dance, and therefore parasitoids (Ziesche & Roth, 2008).

The most common interaction in our data involved the highly host
general parasitoid species M. acasta, which was observed on ~52% of
research plots and accounts for 36% of interactions. The importance
of generalist species for stabilising networks through redundancy has
been well studied (Fornoff et al., 2019). However, networks domi-
nated by one or only a few generalist parasitoids could be overly sim-
ple (Dehling, 2018; Poisot et al, 2012) and potentially more
vulnerable to disturbances or stochastic changes. For example, a net-
work with only M. acasta would be highly robust, and top-down den-
sity dependant population regulation would occur for (theoretically)
all species. Removal of half the population of M. acasta in this case
may not collapse the network (Nuwagaba et al., 2017; Vizentin-
Bugoni et al., 2019). One potential consequence could be, however,
greater vulnerability due to decreased redundancy driven by lower
richness, meaning a stochastic effect on this single species could col-
lapse the network. Greater resilience provided by the promotion of
generalists may be particularly relevant when networks contain highly
general species, which have the potential to parasitise also non-native
hosts, as is the case with M. acasta. The potential to parasitise non-
native hosts may provide a potential buffer against species invasions
(Magal et al., 2008), which without population regulation mechanisms
could otherwise collapse ecosystems (Hensel et al., 2021; Morales
et al,, 2013; Reaser et al., 2007; Walsh et al., 2016).

When only networks with more than 10 parasitised cells are con-
sidered, similar effects from only host abundance and canopy cover
were observed compared with analyses from networks including
fewer than 10 parasitised cells. These analyses together highlight the
potential importance of considering small networks to reveal trends.
The decrease in network connectance with increasing host abundance
is possibly due to dilution (Civitello et al.,, 2015; Okuyama, 2021),
especially when considering the observed increase in parasitoid abun-
dance with host abundance. The significance of canopy cover for link-
age density and link diversity could potentially indicate that
promoting the abundance of only hosts may not be a sufficient mea-
sure to foster new interactions within networks. This could then mean
that consideration of also forest structure is important for actions
meant to promote greater network resilience. The diversification of
networks with decreasing canopy cover is a somewhat contrary con-
clusion to Laliberté and Tylianakis (2010), where networks were
homogenised by the removal of forest canopy. Furthermore, it has
been found that canopy cover re-establishes communities of cavity-
nesting bees, wasps and parasitoids (Fornoff et al., 2021), albeit these
studies were conducted in subtropical forests. It is important to
acknowledge that in the context of our study; only forests were sam-
pled, and, thus, we have not sampled the full gradient of canopy cover
or examined variables unassociated with forests, which would no

doubt provide additional insights.
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Interaction metanetwork

The metanetwork allowed for the visualisation of parasitism over the
entirety of our study area, and revealed which interactions are co-
occurring more frequently and potentially bridging distal groups of
interactions. For example, the interaction between the spider-hunting
wasp T. figulus and the gregarious parasitoid M. acasta was the most
frequent in terms of parasitised cells in the trap nests, yet did not
co-occur with other interactions as frequently as the interaction
between T. figulus and the kleptoparasitoid Trichrysis cyanea. This indi-
cates that the latter interaction is potentially more important for con-
necting distal networks and is a more important feature of parasitism
networks in forests.

It was contrary to our expectations that more specific parasitoids
comprise more of the metanetwork core than generalists, given that
generalists are more frequently encountered due to greater niche
breadth (Kassen, 2002; Robinson & Strauss, 2018). Several studies
have highlighted the importance of rare or unique parasitoids in stabi-
lising metanetworks (Santos et al., 2020), but the importance of more
specific parasitoids in our analyses of metanetwork interactions war-
rants further study. Moreover, more abundant hosts may support
more specialist parasitoids due to the stability of hosts as a resource
and sensitivity of specialist parasitoids to fluctuations in host popula-
tions (Cagnolo et al., 2009; Holzchuh et al., 2010).

Canopy cover partially confirmed our hypothesis that increasing
forest structural heterogeneity would diversify interactions in the
metanetwork, manifesting as the distal branches of the metanetwork
where unique species are present. The leftmost distal branch, for
example, is comprised of interactions, which occurred on very few
plots, for example, the leaf-cutter bee Megachile versicolor parasitised
by the cuckoo bee Coelioxys inermis. Interestingly, the host species in
these interactions are often forest specialists (Rappa et al., 2023), and
thus characteristic among forest biota. This result is contrary to our
expectation that removal of canopy cover would foster unique inter-
actions with non-forest species (Fricke & Svenning, 2020), following
transformation of forest habitat. These findings indicate that discrimi-
nation by host habitat specialisation is necessary to assess the value
of forest structures for parasitism networks.

Future research could reveal the impact of habitat structural ele-
ments on specialist and non-specialist-based interactions, by sampling
research plots across habitats and analysing the interaction values from
the resulting metanetwork. Furthermore, analyses of interaction indices
extracted from the metanetwork can reveal habitat structural elements
with important roles in maintaining the complexity of interactions and
thus ecological communities (Mougi & Kondoh, 2012; Xing &
Fayle, 2021). The metanetwork approach could be taken yet another
step further and include multiple interaction types, and interactions
involving multiple actors to more precisely assess the importance of hab-
itat structural elements in structuring multi-trophic interaction networks.
For example, using the co-occurrences of both host-parasitoid and
plant-pollinator interactions sampled from forests and grasslands, hypo-
thetically revealing the most important habitats for interaction types and

more importantly, the interactions which connect them spatially.

RAPPA ET AL

CONCLUSIONS

Parasitoid biodiversity in forests is influenced most strongly but not
exclusively by the abundance of their hosts. Stand heterogeneity (mea-
sured here by canopy cover, and stand structural complexity) may have
strong influences on parasitoid abundance, species richness and diver-
sity directly but also via increasing host abundance. Forest structural
elements such as deadwood have the potential to enhance ecosystem
functions, such as parasitism in the case of our study. This research
demonstrates the potential insightfulness of concurrent analyses of
bipartite and metanetworks for evaluating interactions and ecosystem
functions with important considerations for conservation. Furthermore,
the derivation of metanetworks from bipartite interactions necessitates

their use in tandem to thoroughly answer research questions.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the Support-
ing Information section at the end of this article.

Data. Supporting Information.

Figure S1. Map of the 134 ConFoBi research plots sampled in the
southern Black Forest, Baden-Wirttemberg, Germany. Green points
correspond to plot geolocations (latitude and longitude of plot cen-
tres). Figure credit: Julian Frey.

Figure S2. Species accumulation curves of: a) cavity-nesting bees and
wasps and b) their associated parasitoids, collected using 4 trap-nests
on each of 127 plots. Plots missing remotely sensed variables (7) were
excluded prior to analyses. Observed cumulative species richness is
represented in each figure by solid lines, with 95% CI of accumulation
curves shown as grey polygons. Total species richness (extrapolated)
based on jackknifel estimators is represented by horizontal lines
(solid) with 95% CI (dashed lines). In total, 57 species (86% of
expected total richness) of cavity-nesting Hymenoptera and 39 species
(85 % of expected total richness) of parasitoids were collected.

Figure S3. Host-parasitoid interaction accumulation curve, displaying
cumulative parasitism events (one species parasitising another) per
each of 115 sampled plots where parasitism was observed. Observed
cumulative interactions is represented by solid lines, with 95% CI
accumulation curves shown in grey. Total interactions possible
(extrapolated) based on jackknifel estimators is represented by hori-
zontal lines (solid) with 95% Cl (dashed lines). In total, 139 interactions
(72% of expected total interactions) were observed.

Figure S4. Abundance (parasitised brood cells) (a), diversity (b) and
species richness (c) of parasitoids of cavity-nesting bees and wasps
and host abundance. Host abundance was log-transformed (log(x+1,
10)) prior to plotting in each figure. Trend lines are depicted for nega-
tive binomial generalised linear models (a and c) and a linear model (b),
with 95 % confidence intervals coloured in grey.

Figure S5. NMDS (‘metaMDS’, permutations=1,000) of a) cavity nest-
ing bees and wasps and b) their parasitoid species matrices using
Bray-Curtis dissimilarities on 3 axes at 0.191 and 0.164 stress respec-
tively. Forest variables were correlated with the scores of each NMDS
using the ‘envfit’ function (permutations=1,000, p<0.05). Plots where
only one or no individuals were collected were omitted prior to ordi-
nation, resulting in 122 plots used for cavity-nesting Hymenoptera
and 97 for their parasitoids respectively.

Table S1. Spearman correlation coefficients (p) for all pairwise com-
parisons of environmental variables. Abbreviations are as follows:
DBH, diameter at breast height; ENL, effective number of layers or
1-meter forest strata; SSCI, stand structural complexity index.

Table S2. Parasitoid (including klepto-parasitic) species collected
between March-October of 2020 using trap nests, deployed on
134 plots. The total number of nests, genera and host species
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parasitised are listed for each parasitoid species. The total abundance
(number of parasitised brood cells) is listed for each species. The rele-
vant literature used for identification is listed for each species.

Table S3. Results of Procrustes comparison of 3 to 2 axes ordinations
for both host and parasitoid species composition. Procrustes sum of
squares is represented as m2. Significant p-values (listed in bold) indi-
cate correlation between ordinations.

Table S4. Regression coefficients of models of parasitoid abundance
(negative binomial), parasitism rate (binomial), parasitoid species rich-
ness (negative binomial) and parasitoid diversity (normal) sampled on
127 plots. Each model included all environmental variables listed in
Table 1, with log-transformed host abundance at plot-level included
as a covariate. Significant coefficients are displayed in bold. Condi-
tional and marginal R? values are listed in parentheses for models of
diversity and parasitism rate, while McFadden’s pseudo R? is listed for
models of abundance and parasitoid species richness.

Table S5. Summary results from permutation tests fitting environmen-
tal variables to host species NMDS (“metaMDS, 1,000 permutations)
using “envfit” function with 1,000 permutations. Significant correla-
tions (p<0.05) are displayed in bold.

Table S6. Summary results from permutation tests fitting environmen-
tal variables to parasitoid species NMDS (“metaMDS, 1,000 permuta-
tions) using “envfit” function with 1,000 permutations. Significant
correlations (p<0.05) are displayed in bold.

Table S7. Parasitoid interactions (parasitoids, corresponding hosts and
number of parasitised brood cells) from 115 plots where parasitism
was sampled. Corresponding bipartite network numbers for parasit-
oids and their hosts are listed in parentheses. Corresponding habitat
specialisation of hosts and specificity (restriction in host acceptance)
of parasitoids are included for each interaction.

Table S8. Regression coefficients of models using bipartite network
indices as response variables, excluding networks with single links for
which no indices could be calculated, resulting in values from 90 net-
works being analysed. Models included all environmental variables
listed in Table 1 as fixed-effects and log-transformed host abundance
at plot-level as a covariate. Weighted connectance (linear), link density
(linear) linkage diversity (linear) and network specialisation (linear)
were analysed. Number of interactions (parasitised brood cells) among
modelled networks ranged from 3-105 (23 + 20). Conditional and
marginal R? values are listed in parentheses for each model.

Table S9. Regression coefficients of models using bipartite network
indices as response variables, and all environmental variables listed in
Table 1 as fixed-effects and log-transformed host abundance at plot-
level as a covariate. Weighted connectance (linear), link density (linear)
linkage diversity (linear) and network specialisation (linear) were ana-
lysed. Bipartite networks which were too small (singleton and double-
ton), as well as networks with fewer than ten parasitised brood cells
were excluded prior to analyses, resulting in values from 68 networks
being analysed. Number of interactions (parasitised brood cells)
among modelled networks ranged from 10-105 (27 + 19). Conditional

and marginal R? values are listed in parentheses for each model.

. | o

Table S10. Regression coefficients of models using indices calculated
for each interaction (host parasitised by parasitoid species) throughout
metanetwork as response variables. Interaction degree (negative bino-
mial) and interaction closeness (normal) were each modelled with site
included as a random term and an offset using the number of
observed interactions per site. Indices were calculated for interactions
for each site where they were observed. Singleton interactions (those
occurring alone at site level) were excluded prior to analyses, resulting
in indices calculated from parasitoids collected on 90 plots being mod-
elled. Each model included all environmental variables listed in
Table 1, with log-transformed host abundance at plot-level included
as a covariate. Conditional and marginal R? values are listed in paren-
theses for each model.

Table S11. Results of Moran’s | calculations for assessing potential
spatial autocorrelation in model residuals. Moran’s | calculations were
performed using residuals of bipartite models including and excluding
small networks (fewer than 10 parasitised brood cells) separately. Cal-
culations were performed using simulated residuals for mixed-models
of interaction degree and closeness. Note: All models’ residuals were
tested for spatial-autocorrelation using the “DHARMa” package
(Hartig 2022).

Table S12. Spearman correlation coefficients (p) for all pairwise
comparisons of bipartite (rows) and mean metanetwork interaction
(columns) indices. Mean values of Spearman’s correlation coeffi-
cients for interaction degree (0.062 + 0.039) and interaction close-
ness (0.066 + 0.024) showed no correlation to bipartite network
indices.

Table S13. Regression coefficients of models of parasitoid abundance
(negative binomial), parasitism rate (binomial), parasitoid species rich-
ness (negative binomial) and parasitoid diversity (normal) sampled on
127 plots, following removal of the most common parasitoid species
M. Acasta from the dataset. Each model included all environmental vari-
ables listed in Table 1, with log-transformed host abundance at plot-
level included as a covariate. Significant coefficients are displayed in
bold. Conditional and marginal R? values are listed in parentheses for
the models of diversity and parasitism rate, while McFadden'’s pseudo
R? is listed for models of abundance and parasitoid species richness.
Table S14. Regression coefficients of models of parasitism rate (bino-
mial), sampled on 127 plots. Each model included all environmental
variables listed in Table 1, with log-transformed host and nest abun-
dances at plot-level included as covariates. Significant coefficients are
displayed in bold. Conditional and marginal R? values are listed in
parentheses.
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