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Abstract

Material informatics has emerged as a valuable research field in material sci-

ence, providing solutions to previously unsolvable problems or accelerating

deliverables. Fatigue failure, as a complex and non-deterministic phenomenon,

requires a probabilistic approach to assess the uncertainty of the fatigue

strength prediction. This study compares various probabilistic data-driven

models for credible fatigue strength predictions for three distinct steel groups.

The analysis considers data and model uncertainty, evaluating their impacts

on predictive quality from engineering and data science perspectives. Results

reveal that deep ensembles outperform other probabilistic models regarding

negative log-likelihood (NLL), while random forest exhibits the lowest root

mean square error (RMSE). Notably, the prediction accuracy of case-hardened

steels is negatively affected by insufficient material properties definitions,

while stainless steels demonstrate the best performance compared to other

steel types.
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Highlights

• DeepEnsembles is the best ML model for probabilistic fatigue strength

predictions.

• Random forest is the best ML model for deterministic fatigue strength

predictions.
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• The accuracy and credibility of data-driven fatigue strength predictions

depends on material properties.

• Understanding and considering the dominant fatigue damage influencing

factors are crucial for prediction improvements.

1 | INTRODUCTION

Fatigue describes the weakening of the material due to a
cyclic load, resulting in a structural failure of metallic
components. Developing structural components requires
consideration of various influencing factors for reliable
design. Current physical-motivated methods require tre-
mendous modeling and computation effort to predict the
fatigue strength for a broad range of metallic materials
due to complex multiscale impact of the component's
geometry, applied load, surface quality, microstructure
characteristics, and so forth.1–5 Different guidelines have
been developed for assessing the component fatigue
strength.6–11 However, these guidelines are often empiri-
cally derived and practically focused.

To overcome these circumstances of high modeling
effort and increase material fatigue strength prediction
accuracy, data-driven approaches have recently become
popular to predict the fatigue strength.12–18 Agrawal et al12

compared various deterministic machine learning
(ML) and deep learning (DL) for steel fatigue prediction
using solely chemical composition and heat treatment
parameters. He et al14 compare deep neural network
(DNN) and random forest (RF) for fatigue strength predic-
tion with different steels using mechanical properties. Both
Xiong et al18 and He et al15 apply symbolic regression
models to predict the fatigue strength of steels. Symbolic
regression models derive an analytical equation contrasting
classical black box ML and DL models. However, symbolic
regression only applies to a few features due to the tremen-
dous equation complexity for higher feature numbers. All
of the works mentioned above show proof of determining
fatigue strength with data-driven approaches.

Including uncertainty quantification (UQ) methods
within data-driven approaches is beneficial in multiple
ways. A common issue of data-driven approaches is the
dependency on the database on which the ML models
were trained. Data is usually scarce, heterogeneous, and
incomplete, especially in engineering applications. This
uncertainty is known as data uncertainty. Since fatigue
specimen or component tests are cost-intensive, they are
rarely open-source available. Combining scarce databases
from different sources induces model uncertainty as a
consequence of different testing standards, data quality
and steel types, due to feature shifts within the data

domain. Despite the issue of data quality and availability,
the fatigue problem itself is a non-deterministic phenom-
enon, that is influenced by microstructural changes and
processing-induced defects, resulting in probabilistic fail-
ure modeling when evaluating fatigue specimen/
component tests.19 Therefore, probabilistic behavior
should also be considered within data-driven methods.
The above reasons induce either model or data uncer-
tainty in the data-driven fatigue strength prediction. Con-
sidering UQ methods gains trust in data-driven
approaches since the certainty of the model's prediction
can directly be investigated. Furthermore, distinguishing
between the types of uncertainty contributes to under-
standing the database structure and the lack of specific
database entries. It offers valuable insights about identify-
ing uncertain steels by classifying the uncertainty. As a
result, one learns about which kind of data and features
shall be collected in the future to improve the prediction
accuracy further.

A first step towards models with UQ was derived by
Weichert et al17 using a Gaussian process regression (GPR)
model to quantify the uncertainty in the material fatigue
prediction of stainless steels. GPRs cannot distinguish
between model and data uncertainty and are limited to a
small amount of data points.20 All the previously men-
tioned publications focus on predicting material fatigue
strength for one specimen geometry, neglecting different
component design parameters, as this information was
unavailable in their databases. Kolyshkin et al16 use the
first extended database considering material and compo-
nent design parameters, including UQ, through a probabi-
listic RF, without focusing on model comparison or
differentiating between uncertainty types.

This work compares various probabilistic ML and DL
methods for two distinct feature sets to predict the local
fatigue strength of steel components with uncertainty
quantification (UQ) and distinguish between model and
data uncertainty. The best models are identified
and tested concerning reliable uncertainty prediction.
Subsequently, their performance is tested on three differ-
ent steel types. The uncertainty owing to the unconsid-
ered fatigue-influencing factors is considered depending
on each steel type in the model validation section.
Finally, the amount of data required to make reliable pre-
dictions with UQ is studied.
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This study contributes to the advancement of material
informatics and its application to fatigue strength predic-
tion, thus providing reliable material fatigue and compo-
nent fatigue prediction and increasing component design
flexibility and reducing product development time. This
research enhances the ability to optimize material selec-
tion and design, improving structural components' reli-
ability and durability in various engineering applications.
The results offer valuable insights for engineers and data
scientists, highlighting the importance of accounting for
uncertainties in modeling complex and multiscale phe-
nomena such as fatigue failure.

2 | FUNDAMENTALS

2.1 | Types of uncertainty

In general, the influence of each uncertainty factor on
the overall predictive uncertainty is unknown and can
not be modeled separately since the features interact with
each other. The design and training of DNNs are affected
by the data quality and how well the relation between
input and output can be modeled. Thus, typically, proba-
bilistic DNNs try to distinguish between the two types of
uncertainties: aleatoric and epistemic. Hüllermeier and
Waegeman21 and Gawlikowski et al22 provide brief over-
views of both uncertainties and discusses concepts,
sources and methods to identify them.

• Aleatoric uncertainty, also known as statistical or data
uncertainty, refers to the uncertainty caused by the
data's randomness. Data uncertainty is induced by
the noise in the measurement system, the lack of
knowledge and the insufficiency of information avail-
able about the functional relation between input and
output. Aleatoric uncertainty can be reduced by reduc-
ing measurement noise, enhancing domain knowledge
or providing more meaningful features. The data
uncertainty is unaffected by the amount of data used
to train the model.21,22

• Epistemic uncertainty, also known as the model or sys-
temic uncertainty, is not only provoked by the choice,
the structure, and the training of the model itself. It is
also affected by the ability of a model to deal with the
variability of input data which can cause data domain
shift and out-of-distribution data, leading to interpola-
tion or extrapolation. In contrast to aleatoric uncer-
tainty, the epistemic uncertainty can be reduced with
more data by lowering the interpolation and extrapola-
tion range. Further reduction of epistemic uncertainty
can be done by the right model choice and by enhanc-
ing the training procedure.

2.2 | ML models

Recently, a wide variety of publications have dealt with
developing and investigating novel and well-known proba-
bilistic DL models for different domains. Wang and
Yeung23 and Jospin et al24 provide surveys for Bayesian
DL, while Gawlikowski et al22 summarize and discuss
publications concerning UQ in DL models. Gawlikowski
et al. 22 categorizes DL models based on the UQ approach.
Five different probabilistic deep learning models were cho-
sen based on this grouping. The first four columns in
Table 1 are summarized from fig. 3 in Gawlikowski et al.22

Columns 4 and 5 are added to illustrate how the DL
approaches distinguish between epistemic and aleatoric
uncertainty. All models except Evidential Neural Networks
use a normal distribution to model the aleatoric uncer-
tainty. They differ in how the models are trained and the
epistemic uncertainty is estimated.

2.2.1 | Deep ensembles

Lakshminarayanan et al25 proposed deep ensemble neu-
ral networks to estimate predictive uncertainty. Multiple
DNNs with varying weight initialization are trained inde-
pendently of each other. Due to the stochastic training
process, different local minima in the loss landscape are
reached. The different network parameterizations lead to
varying predictions due to epistemic uncertainty.

2.2.2 | Bayesian neural networks (BNN)

In contrast to standard NNs, where single weights are
learned, BNNs place distributions over weights that will
be learned during training. Inferring the true posterior
distribution of the NN's weights is intractable due to the
high number of network parameters. Thus, variational
inference methods are used to approximate the true dis-
tribution. Usually, a normal distribution is used for
approximation from which the mean and the standard
deviation are learned in the training process. During pre-
diction, each forward feed samples a weight out of its
weight distribution, leading to different predictions and
reflecting the epistemic uncertainty.24,26

2.2.3 | MC dropout

Gal and Ghahramani27 presented dropout as a Bayesian
approximation approach. Dropout is a widely known reg-
ularization method to avoid overfitting. While dropout is
usually turned off during prediction, Gal and

1038 FRIE ET AL.
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Ghahramani27 suggest enabling it to make uncertainty
estimations. Enabling dropout during prediction and
applying multiple forward feeds leads to different predic-
tions through the dropout, causing epistemic uncertainty
since Dropout is a binary decision, whether a neuron is
turned on or off, the variational distribution is a
Bernoulli distribution, while BNNs typically use a normal
distribution.

2.2.4 | Cyclical stochastic gradient Markov
chain Monte Carlo (CSG-MCMC)

In contrast to the other NN models trained with the most
used Adam optimizer,28 Zhang et al29 extended the
SG-MCMC optimizer presented by Welling and Teh30 to
propose a cyclical (SG-MCMC) optimizer to explore
exceptionally high dimensional and multimodal loss-
landscapes. This method cyclically anneals the learning
rate to reach and escape from local minima. In contrast
to the deep ensemble method, where multiple indepen-
dent networks are saved, only one network is trained,
and the parameter configuration at each minimum is
saved and added to the ensemble.

2.2.5 | Evidential deep learning (EvidPrior)

Amini et al31 proposed a deep evidential neural
network for regression tasks. This NN model uses a single

network and requires only one forward feed for the pre-
diction and uncertainty estimation. This makes it popular
for time-critical and memory-restricted applications.
Explaining the network's method is more complicated
than the other probabilistic approaches. For more details,
we refer to Amini et al.31

2.2.6 | Random forest with jackknife-
estimator (RFJ)

The RFJ is the only ML approach, while all other models
are DL methods. Wager et al32 proposed the jackknife
estimator for predictive uncertainty estimation for the
random forest. In contrast to the DL methods, the predic-
tion is a two-step process. First, the RFJ predicts
the mean, followed by a confidence estimation around
the mean prediction. Therefore, The RFJ cannot distin-
guish between aleatoric and epistemic uncertainty.

2.3 | Metrics and losses

The goal of supervised learning, such as regression, is to
map the input vector xi to a corresponding real-valued
output vector yi2ℝ of a dataset D¼fxi,yigMData

i¼1 . In classi-
cal regression tasks, a machine learning model f with
parameters θ outputs a single value μi ¼ fθðxiÞ for a given
input xi. The training consists of finding the model
parameters θ, which minimize a loss function.

TABLE 1 List of probabilistic deep learning methods modeling epistemic and aleatoric uncertainty.

Note: Columns 1 to 4 were summarized from fig. 3 in Gawlikowski et al.22

FRIE ET AL. 1039
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LRMSEðθÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
MData

X

MData

i¼1

ðyi�μðxiÞÞ2
v

u

u

t ð1Þ

The root-mean-squared error is typically used as a
loss function that does not consider the predictive uncer-
tainty (Equation 1). Adding a second output in the final
layer of a neural network can capture heteroscedastic
Gaussian variance. Using a Softmax activation function
ensures that σ2ðxiÞ>0.33 The loss function changes to the
negative log-likelihood criterion in Equation (2) when
the NN outputs a mean μðxiÞ and a standard deviation
σðxiÞ of a Gaussian distribution.

LNLLðθÞ¼ 1
MData

X

MData

i¼1

logðσ2ðxiÞÞ
2

þðyi�μðxiÞÞ2
2σ2ðxiÞ þ const:

ð2Þ

μ ∗ ðxÞ¼
1

MPred

X

MPred

j¼1

μjðxiÞ ð3Þ

σ2∗ ðxiÞ¼
1

MPred

X

MPred

j¼1

ðσ2j ðxiÞ
|fflfflffl{zfflfflffl}

Aleatoric unc:

þμ2j ðxiÞÞ�μ2∗ ðxiÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Epistemic unc:

ð4Þ

During prediction mode, Lakshminarayanan et al25

and Kendall and Gal34 model the predictive uncertainty
by a uniformly weighted Gaussian mixture
NðμjðxiÞ,σjðxiÞÞ where fμjðxiÞ,σ2j ðxiÞgMPred

j¼1
are MPred pre-

dictions of the probabilistic neural network, where the
meaning of M depends on the model. For the Deep
Ensembles, MPred stands for each model in the ensemble
where MCDropout makes MPred forward feeds with the
same model having Dropout enabled. These predictions
are assembled into a single mean and a single standard
deviation Nðμ ∗ ðxiÞ,σ2∗ xiÞÞ with Equations (3) and (4).
The total variance in Equation (4) can be decomposed
into the aleatoric and epistemic uncertainty.25,34

2.4 | Bayesian optimization

Bayesian optimization is a sequential strategy for global
optimization of black-box function and is often used in
deep learning models for hyperparameter tuning.35–38

Bergstra et al39 proposed the tree-structured Parzen esti-
mator (TPE), which constructs a surrogate model to
obtain the best hyperparameters for the ML model. Out
of a predefined search space, the TPE sequentially opti-
mizes the surrogate model for proposing the

hyperparameters for the next iteration cycle, the chance
of the largest expected improvement of a predefined met-
ric (e.g., mean-squared error)

2.5 | Calibration

Calibration describes the degree of the uncertainty's reli-
ability.22 A well-calibrated estimator predicts the target
value with the corresponding predictive probability. Guo
et al40 observed that many DL models are uncalibrated,
leading to underconfident or overconfident predictions.
Different calibration methods have been proposed in
literature.40–43 Kuleshov et al41 proposed a post-
processing calibration method based on the isotonic
regression applied to a hold-out dataset after training.
The miscalibration area criterion determines a scalar
value for measuring the goodness of the predictive uncer-
tainty on the hold-out dataset. Based on the miscalibra-
tion area, a recalibration factor can be estimated and
multiplied by the predictive uncertainty to receive cali-
brated predictions. The open-source uncertainty toolbox
estimates the miscalibration area and the recalibration
factor.44

2.6 | Fatigue

Fatigue calculations are based on comparing actual loads
and load collectives with empirical material data, which
are gained by the number of cycles the material can with-
stand for a given amplitude. Therefore, the fatigue
strength is determined by the highest stress the material
can resist without breaking under a cyclic load. Typically,
various load amplitudes for a given stress ratio are con-
sidered to characterize this load. Normed specimen or
component geometries are tested under various stress
amplitudes until failure, or if the component exceeds a
certain number of cycles, it is considered as runout, as
the component would not fail within its lifetime in an
industrial application. The S-N curve describes the
fatigue characteristics of a material by fitting an S-N
curve model to the experimental test results and is
required for reliable component design. Different S-N
curve models have been proposed in the literature.19,45–49

Several factors, such as the material, stress ratio, compo-
nent design, load, environmental conditions, and so
forth, influence the S-N curve. Analytical empirical
models have been derived to reduce cost and time for the
design effort, such as the FKM-Guideline.11 Other guide-
lines were developed for a specific application, such as
designing of offshore wind parks8 or for vessels design in

1040 FRIE ET AL.
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the petroleum industry9 and other guidelines were devel-
oped for national6,10 for continental/national interests.7

The FKM-Guideline is used in this work.

2.6.1 | FKM-Guideline

The FKM-Guideline11 “Analytical Strength Assessment
of Components” is a guideline developed by the For-
schungskuratorium Maschinenbau (FKM) and published
by the VDMA (Verband Deutscher Maschinen- und
Anlagenbau). It describes a general procedure for asses-
sing the strength of components in mechanical engineer-
ing made of steel, cast iron and aluminum materials. It
comprises a static and fatigue strength assessment for
linear material behavior. Additionally, a subdivision
between nominal and local stresses is considered to
account for notched components. The FKM-Guideline is
derived empirically and the factors depend on the mate-
rials, loadings, component designs, stress ratios and envi-
ronmental conditions such as temperature and
distinguish between stainless, case-hardened, and all
other steels, solely named steel for steel materials. The
FKM-Guideline is valid for tensile strength < 1400 MPa
only and should carefully be applied to tensile strength
between 1400 MPa and 1600 MPa as it assumes surface-
induced fatigue damage.11 It is designed to derive a con-
servative fatigue strength assessment and showed an
RMSE of 90 MPa in Kolyshkin et al16 applied on the
same database used in this work.

2.6.2 | Damage mechanism

The material's fatigue properties depend on the compo-
nent design and the microstructural characteristics. The
latter is responsible for the probabilistic fatigue behavior
due to variations within the microstructure. Moreover,
variation in process parameters, different testing condi-
tions influences the fatigue strength. The damage mecha-
nisms strongly depend on factors that induce stress
concentration. Stress concentration can be caused by
notches in the designed component or microstructural
characteristics. Fatigue cracks for low-strength materials
usually nucleate at intrinsic defects, such as slip bands
and grain boundaries. Process defects include scratches,
nonmetallic inclusions, segregation, and so forth and are
mostly responsible for fatigue failure for high-strength

steels. There is also a mixture zone of intrinsic and pro-
cess defects in the transition of low- to high-strength
steels.50–54

3 | METHODS AND CONCEPTS

3.1 | Database and feature selection

The database used to train the data-driven approaches
includes Bosch's internal and external open access data-
sets. The three main database sources are the following:

• National Institute for Materials Science (NIMS)55

• Datenbank und Auswertesystem Betriebsfestigkeit
(DaBef)56

• Robert Bosch internal database

The collected database includes 1250 S-N Curve
experiments evaluated on approximately 30,000 speci-
mens of 58 steels tested under different conditions. The
tabular database includes up to 70 features per S-N curve
experiment, containing the chemical composition, pro-
cessing, forming, heat treatment, finishing, static tests,
load, and geometry during testing. The raw data of the
experimental outcomes are evaluated with
the maximum-likelihood method for a bilinear S-N curve
model according to Köder.47 As a result, four S-N
curve parameters, with the slope k in high cycle fatigue
area, the kneepoint Nk, the data scatter Ts, and the
fatigue strength of 50% failure probability at
2∗107,Sd50%,2E7, are estimated for each database entry.
The raw data assumes specimens that did not fail within
2 ∗ 107 cycles as survivals. Thus, the very-high-cycle
fatigue regime is not considered.

In this work, two selected feature combinations are
used to predict the local fatigue strength Sd50%,2E7

(Table 3) for different steel design components. The fea-
tures were chosen based on the availability in the data-
base, selected features in other publications,12,16,57,58 and
the generally known influencing factors on the compo-
nent fatigue strength.59 The Engineer features comprise
the chemical composition, mechanical properties, speci-
men geometry, loading, and testing frequency features.

The FKM-Guideline11 applies an analytical prediction
of the component fatigue strength based on the corre-
sponding material group shown in Table 2, which is used
as an additional feature to incorporate an engineering

TABLE 2 Dataset with in total 853

entries, categorized by the FKM-

Guideline material group11 and the

corresponding number of entries.

FKM material group Steel Stainless steel Case-hardened steel

Dataset size, MData = 853 707 82 64

FRIE ET AL. 1041
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model into the pure data-driven approaches. The local
fatigue strength concept is applied in this work to
account for the induced local stresses of notched speci-
mens. For Stainless and Steel steels, the analytical FKM-
prediction was calculated according to chapter 4 of the
FKM-Guideline for the fatigue strength for local stresses.
The calculation follows: First, the material fatigue
strength for a stress ratio R¼�1 is calculated based on
the tensile strength with different constants and multipli-
cation factors according to the loading type and material.
In the next step, the material strength is adjusted by the
design factor calculated based on the component's design
parameters, such as loaded volume, stress concentration
factor and surface roughness. As the surface roughness is
not included in the database, the FKM-Guideline uses a
default value. Lastly, the fatigue strength of the
component for a specific stress ratio is derived under con-
sideration of a material-dependent mean stress factor
multiplied by the component fatigue strength at R¼�1.
In contrast, FKM Chapter 5.5 was applied for
surface-treated components and local stresses for the
case-hardened steels. The calculation differs from Chap-
ter 4, as a surface-treated factor is additionally
included.11

Figure 1 illustrates the distribution of hardness
measured at the surface and tensile strength of the core
material concerning its steel group for Stainless and
Steels. For case-hardened steels, the surface hardness and
the tensile strength of the case-hardened material were
used. The database captures a wide range of low- to high-
strength steels. The Process features extend the Engineer
features by heat treatment parameters.

Missing values were removed from the database,
resulting in a remaining dataset size of 853 entries. The
heat treatment features were removed from the dataset
for the Engineer Features and included for the Process
Features to train both feature combinations on the same
dataset size. All models were implemented using Python
with the DL library tensorflow and the probabilistic
extension, tensorflow-probability.60 The library Scikit-

Learn61 was used for the RF model, and the uncertainty
toolbox44 was applied for model calibration. Hyperopt's62

TPE was used for hyperparameter optimization.

3.2 | General method

Figure 2 illustrates the two branched diagrams of this
work. First, the performance of the probabilistic ML and
DL models for both feature combinations for all steels are
compared in the left branch to determine the best
models. Each model's parameters have been optimized in
an iterative process to determine the best hyperpara-
meters, followed by a 10-fold cross-validation to examine
the model's performance on the entire dataset. The best
two models are selected for further analysis in the right
branch based on the NLL and RMSE metrics in
Section 4.1. Both models are tested for reliable uncer-
tainty prediction by conducting a calibration analysis in
the right branch in Section 4.2. Subsequently, Section 4.3
investigates the model's performance and predictive
uncertainty on the testing dataset based on the different
FKM steel types (Steel, Stainless, and case-hardened) for
model validation. Furthermore, the model's performance
evolution and the predictive uncertainty on the testing
dataset for solely Steel depending on the number of data-
base entries are investigated in Section 4.4.

3.3 | Hyperparameter tuning and ML
training

Selecting the appropriate hyperparameters for ML
models is a crucial task. The TPE from Section 2 is used
as a Bayesian optimization algorithm to select the opti-
mal hyperparameter for each model. The search spaces
from which the hyperparameters were determined can be
found in Appendix A (Tables A1–A6). For each model,
the TPE performed 150 optimization cycles, and the best
hyperparameter set was fitted in a 10-fold cross-

FIGURE 1 Distribution for Vickers

hardness (HV20) at the surface and tensile

strength of the database for three different

steel types according to the FKM-

Guideline.11 [Colour figure can be viewed

at wileyonlinelibrary.com]
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validation where a train, validation, and test split of
70-15-15 was used. The TPE determines the follow-up
hyperparameters based on the predictive performance of
the test data set, seeking to reduce the error further and
increase accuracy. The hyperparameter for each optimi-
zation iteration was visually investigated to ensure that
the hyperparameter boundaries in the search space did
not affect the TPE algorithm by excluding the optimal
value. All DL models were trained with early stopping on
the validation dataset to prevent overfitting of the train-
ing dataset. The validation dataset was also used as a cali-
bration dataset in the right branch to determine the
calibration factor. All models except for EvidPrior and
RFJ use a normal distribution to model the aleatoric
uncertainty and are trained against the negative log-
likelihood criterion in Equation (2). The mean prediction
for the testing dataset and the predictive uncertainty is

modeled with Equations (3) and (4). The RFJ is trained
against the root-mean-squared error in Equation (1), and
the predictive uncertainty is calculated with the
jackknife-estimator as described in Wager et al.32 For
training and prediction of EvidPrior, we refer to their
publication.31

4 | RESULTS AND DISCUSSION

4.1 | Determining best models

Figure 3 illustrates the performance for six different prob-
abilistic data-driven models for the two feature combina-
tions evaluated for the negative-loglikelihood (NLL) and
RMSE metric according to Equations (1) and (2) for all
steels types.

FIGURE 2 Worflow of this work, containing two main branches for determining and analyzing the best models. The numbers

symbolize the corresponding chapters. The dotted lines in the left branch illustrate the iterative process of the hyperparameter optimization,

while the dashed lines demonstrate the 10-fold cross-validation. [Colour figure can be viewed at wileyonlinelibrary.com]
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The chemical composition combined with the heat
treatment determines the microstructure and defect mor-
phology of the material, influencing the mechanical and
fatigue properties. Hence, it is expected that the predictive
quality will increase. The performance of all models,
except the BNN, increases with lower NLL values by using
the Process features where heat treatment features are
included. Including the heat treatment features increases
the number of model inputs. The BNN has to learn twice
as many parameters as the other DL approaches with the
same amount of data available. Increasing the model's
input dimension without increasing the available data
explains the decrease in BNN performance.

The DeepEnsemble outperforms all other models in
terms of NLL, except for the RMSE where RFJ has the
lowest value. Additionally, the RMSE for the DeepEnsem-
ble does not decrease as much as the NLL. The fact that
NLL and RMSE are not necessarily correlated can also be
seen for the CSG-MCMC model, where the RMSE
increases while the NLL decreases. Lakshminarayanan
et al25 also observed that NLL and RMSE are not always
correlated and reasoned that the model is trained with
the NLL loss function instead of the RMSE, which incor-
porates both the mean and standard deviation (see
Equation 2). Reducing the NLL does not necessarily
lower the RMSE. The RFJ is trained against the RMSE
and provides the lowest RMSE value for both feature
combinations. Applying the Jackknife-Estimator after the
training procedure for uncertainty estimation results in a
mean NLL comparable to the EvidPrior and MCDropout
but worse than the DeepEnsembles.

While Bayesian methods have a strong theoretical
base,23,24 they are less frequently used in industrial appli-
cations compared to DeepEnsembles. Lakshminarayanan
et al25 compared the performance of DeepEnsembles,
BNN, and MCDropout for well-known standard UCI-
datasets63 showing DeepEnsembles is superior over the
other methods. DeepEnsembles can capture multiple
modes in the loss landscapes, while Bayesian methods

can only observe single optima.22,23 This characteristic
makes DeepEnsembles methods robust and reliable.

Gustafsson et al64 investigated uncertainty quantifica-
tion methods for real-life applications and found that Dee-
pEnsembles are more applicable than MCDropout, which
was also founded by Beluch et al65 for active learning
tasks. We also compared the performance of DeepEnsem-
bles trained against the RMSE instead of NLL (not shown
here) and witnessed an improvement of the RMSE value
while still being less accurate than the RFJ. This survey
was also observed by Borisov et al,66 who investigated the
performance of ML and DL methods for supervised learn-
ing of heterogeneous tabular data and found that ML
methods outperform DL approaches in terms of RMSE.

This work extends the funding from Borisov et al66

for probabilistic methods, that ML models achieve com-
parable results for the NLL than DL approaches for het-
erogeneous tabular data. Since DeepEnsembles were
found to be robust and reliable, we claim this also holds
for an ensemble of ML methods, like the RFJ. However,
this requires more research on distinct datasets for gener-
alizability. The performance differences depend on the
metric of interest since DeepEnsembles is trained on
the NLL while the RFJ uses the RMSE. Choosing the
optimal model depends on the applications. If solely the
mean prediction is of interest and uncertainty estimation
is irrelevant, the RFJ is the best model as it provides the
smallest root-mean-squared error. If uncertainty quantifi-
cation is required, the DeepEnsembles yields the smallest
NLL with the cost of less accurate mean prediction. Both
models are considered for further analysis.

4.2 | Calibration of DeepEnsembles and
RFJ

Figure 4 illustrates the change in NLL performance before
and after calibration. The post-processing calibration proce-
dure is applied after the training procedure based on

FIGURE 3 Comparison of different

probabilistic ML and DL models for two

feature combinations for the negative-

loglikelihood (NLL) and RMSE metric

according to Equations (1) and (2) for the

entire database with mean and standard

deviation of the 10-fold cross validation.

[Colour figure can be viewed at

wileyonlinelibrary.com]
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isotonic regression, which determines a scalar value multi-
plied by the standard deviation to achieve a more calibrated
prediction. The calibration for the RFJ for both feature com-
binations significantly improves the NLL, while the calibra-
tion for DeepEnsembles harms the prediction quality.

There is rare research on uncertainty calibration for
regression models caused by the increased complexity for
continuous output, compared to discrete and bounded
outputs as in classification tasks.41,67 Chung et al44 tested
different evaluation metrics besides the NLL for regres-
sion tasks and concluded that calibrated UQ for
regression tasks might not always be straightforward.
Even for classification tasks in DL, UQ calibration is still
an open field of research.68 Rahaman and Thiery68 inves-
tigated the uncertainty calibration for DeepEnsembles for
classification tasks and found a non-trivial trade-off
between data augmentation which increases robustness
and increased calibration accuracy and the resulting data
distribution shift leading to a raise of the calibration
error. Thus, it remains unclear why the performance of
the RFJ increases while the predictive quality of DeepEn-
sembles decreases trained on the same data split.

The main drawback of the calibration procedure is
that a single scaling factor is determined for the entire
dataset. From a data science point of view, the calibration
dataset requires a representative subset to determine a
single factor for recalibration. This is usually achieved by
collecting a random subset. Data is usually scarce in engi-
neering applications and taking a random subset further
reduces the training dataset. The overall performance
relies on a trade-off between the amount of training data
and a representative calibration dataset.

A single calibration factor is calculated for Steels since
it provides enough data for providing a representative
calibration dataset while Stainless Steels and case-
hardened Steels are rarely present in the dataset in
Table 2. Thus, their predictive uncertainty of Stainless
Steels and case-hardened Steels are not calibrated. There-
fore, the RFJ in Figure 4 is partially calibrated as it is a
weighted sum of all steel groups. Calculating a single cal-
ibration factor for all steel types was tested but neglected
due to worsening the NLL performance of Stainless Steels
and case-hardened Steels.

Calibrating all steel types with one calibration is also
questionable from an engineering perspective since it
would imply that the predictive uncertainty of the fatigue
strength of all steels has a homogeneous error, which is
adjusted by one calibration factor.

The fatigue properties of Stainless Steels correlate with
the quasistatic parameters, and slip bands emergence at
the surface are the primary damage mechanism. Con-
trary, the fatigue process of case-hardened Steels is not
only affected by slip bands emergence but also by the size

of inclusions and the steel's purity, resulting in more het-
erogeneous and complex failure mechanisms.50–54

4.3 | Model validation

Figure 5 illustrates the performance of the DeepEnsem-
bles and RFJ depending on the steel type and the corre-
sponding predictive total uncertainty. The DeepEnsembles
can further distinguish between aleatoric and epistemic
uncertainty according to Equation (4). In contrast, the
total uncertainty of the RFJ is not capable of further
differentiation.

The NLL, RMSE, and total uncertainty of the DeepEn-
sembles and RFJ show a similar trend for all steel types
and feature combinations where more minor RMSE
errors lead to lower total predictive uncertainty because
less uncertainty is required to capture the fatigue strength
value and thus resulting in lower NLL values. From a
physical perspective, it can be assumed that adding heat
treatment parameters increases the performance because
it determines the microstructure. This assumption holds
for both models and all steel types except for the predic-
tive quality from the DeepEnsembles for case-hardened
steels. A reason could be the increased input size for the
DL approach while providing the same amount of case-
hardened steel entries.

Stainless steels provides the lowest NLL and RMSE
error, followed by Steel and case-hardened steels, while
the latter has a significantly worse performance. All is a
weighted average of all steel types. This is mainly influ-
enced by Steel but with higher NLL values due to the
impact of case-hardened steels. The RFJ has a slightly bet-
ter performance for case-hardened steels than the

FIGURE 4 Change in NLL performance for the DeepEnsemble

and random forest (RFJ) for the uncalibrated and calibrated model

for both feature combinations with a mean and standard deviation

of the 10-fold. [Colour figure can be viewed at wileyonlinelibrary.

com]
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DeepEnsembles, indicating that the DL approach is not
just incapable of capturing deeper relations for improving
the prediction quality. Furthermore, it performs even
worse than the ML approach of a RFJ. In contrast, the
DeepEnsembles outperforms the RFJ about the Stainless
steels for the NLL and RMSE, while the performance for
Steels is similar.

The total predictive uncertainty of the DeepEnsembles
can be split into an epistemic and an aleatoric part
according to Equation (4). The epistemic uncertainty for
Stainless and case-hardened steels is increased compared
to Steel, indicating that more data will further reduce this
uncertainty. Steel is the group that is most present in the
dataset compared to Stainless and case-hardened steels
(see Table 2). However, the epistemic uncertainty con-
tributes just a small fraction to the total uncertainty while
the aleatoric uncertainty provides the highest part. The
aleatoric uncertainty can only be reduced by providing
more meaningful features to the model. In general, add-
ing known physical influence factors like residual

stresses, surface roughness, grain size, defect size, or
defect distribution could enhance the predictive quality
of both models.

Case-hardened steels have the worst NLL/RMSE per-
formance and highest aleatoric/data uncertainty, indicat-
ing that the DeepEnsemble model is not capable of
learning the fatigue strength with the provided input
since information of the main fatigue damage mecha-
nism of high-strength steels are not provided in the data-
set. High-strength steel's predominant fatigue damage
mechanisms are process defects, where sizes, shapes, and
distribution are valuable but missing information.50–54

Presumably, providing information about inclusions and
volume defects could probably increase the predictive
performance, especially for high-strength steels. The
hardening process significantly changes the surface hard-
ness, the hardening depth, the microstructure, surface
roughness, the residual stresses, etc. All these influencing
factors, except the surface roughness, are indirectly con-
sidered through the carburization and hardness at the

FIGURE 5 Comparison of model

performance and different predictive

uncertainties (Equation 4) for different

steel types according to Wächter et al11

with mean and standard deviation of the

10-fold. [Colour figure can be viewed at

wileyonlinelibrary.com]
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surface (see Table 3). The predictive quality for case-hard-
ened steels is also limited by the hybrid modeling
approach of incorporating an analytical prediction of
fatigue strength by the FKM-Guideline. Figure 1 shows
the median of case-hardened steels for tensile strength
around 1400 MPa. The model's input feature might
already be uncertain since the FKM-Guideline is not
valid above 1600 MPa, resulting in a wrong prediction
and increasing the RMSE and aleatoric uncertainty.

However, all influencing parameters should be collected
separately in the future instead of indirect consideration
through the carburization and hardness at the surface.
This could increase the data diversity and probably
improve performance as the ML methods can learn to
distinguish between the separate influencing factors. Fur-
thermore, the data coverage in the feature space and,
therefore, the scope and limitations of the ML model are
more obvious for users since the value ranges of each

TABLE 3 Feature description for selected feature combinations Engineer Features and Process Features.

Category Description Engineer features Process features

Chemical composition wt% of carbon ✓ ✓

wt% of silicon ✓ ✓

wt% of manganese ✓ ✓

wt% of phosphorus ✓ ✓

wt% of sulfur ✓ ✓

wt% of chromium ✓ ✓

wt% of nickel ✓ ✓

wt% of molybdenum ✓ ✓

Mechanical properties 0.2% proof stress in MPa ✓ ✓

Tensile strength in MPa ✓ ✓

Elongation at fracture in % ✓ ✓

Vicker Hardness HV20 on surface ✓ ✓

Component design, load and testing Effective diameter in mm ✓ ✓

Relative stress gradient at hot spot mm�1 ✓ ✓

90% of maximum loaded volume according to
Wächter11 in mm3

✓ ✓

Stress concentration factor ✓ ✓

Loading type ✓ ✓

Stress ratio ✓ ✓

Testing frequency in Hz ✓ ✓

Material science model Analytic prediction of local fatigue strength based
on FKM Guideline 201211

✓ ✓

Material group Categorization of steels based on FKM Guideline
201211

✓ ✓

Process parameters Normalizing temperature in � C ✓

Carburization temperature in � C ✓

Carburization time in min ✓

Through hardening temperature in � C ✓

Through hardening time in min ✓

Cooling rate for through hardening � C/min ✓

Temperature of the cooling medium ✓

Tempering temperature in � C ✓

Tempering time in min ✓

Cooling rate for tempering � C/min ✓
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feature are known. This increases credibility and
enhances usage in applications.

For low-strength ductile materials, such as Stainless
steels (see Figure 1), several works have shown that the
fatigue strength linear correlates with the quasi-static
mechanical properties.50,52,53,69 The dominant fatigue
damage mechanism are slip bands or grain boundaries at
the surface, while inclusion size usually does not deter-
mine fatigue strength.53,54,70 Thus RFJ, as well as the Dee-
pEnsembles, predict the fatigue strength with the highest
accuracy compared to the other steel types since one fail-
ure mechanism is predominant and the quasi-static
mechanical properties already imply a high correlation
with the fatigue strength. The surface roughness is vital
for the induced failure initiation in bulk materials. There-
fore, providing this information could further reduce the
error for low-strength steels.

The Steel group is a pool of all other steel types that
can not be grouped into one of the other two categories.
Thus providing a heterogeneous mixture of a variety of
steels. The hardness in Figure 1 shows the widest distribu-
tion and thus includes fatigue damage mechanisms from
intrinsic and processing defects. The overall performance
is slightly worse than for Stainless steels. Further analysis
cannot be done here since all steel types are summarized
together. Providing defect information for high-strength
steels and surface roughness for low-strength steels could
increase the predictive quality similar to the conclusion
from case-hardened and Stainless steels.

Thus, further work should consider alternative cate-
gorizations for model validation instead of the three steel
groups of the FKM-Guideline. A categorization according
to the predominant fatigue damage mechanism could be
applied by differentiating between intrinsic defects, pro-
cess defects and a mixture of both. This distinction could
further help to understand what data-driven models can
learn and what causes the aleatoric/data uncertainty in
the prediction. Notably, the database includes various
load and specimen geometries, which increases the com-
plexity of understanding the underlying fatigue damage
mechanisms.

4.4 | Influence of dataset size on models
performance

Figure 6 illustrates the performance change for DeepEn-
semble and RFJ depending on the dataset size. This investi-
gation was only tested for the Steel type since Stainless and
case-hardened steels are rarely present in the dataset (see
Table 2). Further reduction of the training data reduces the
model's generalizability due to low data density for both
steel types, and the applicability in practice is questionable.

100% matches the original dataset with 853 entries. The
dataset size was reduced by randomly selecting a subset
from the Steel material group. The NLL of the DeepEnsem-
ble and the RMSE for the RFJ decrease with a rising num-
ber of data for both feature combinations, seemingly
converging beyond 100% of available data. Thus, providing
more data for both feature combinations and models will
probably lead to further error reduction, but the benefit
appears marginal. The process features increase the predic-
tive quality for both models and both metrics.

The NLL and RMSE performance correlates with the
database size for the RFJ as the prediction is a two-step
procedure. First, the prediction mean is calculated, fol-
lowed by the uncertainty interval. Thus, reducing the
prediction accuracy directly impacts the uncertainty pre-
diction, resulting in a lower NLL performance. At the
same time, the DeepEnsembles shows a different behavior
where the RMSE remains constant, and the NLL
decreases with lowering the available training data. A
decreasing NLL by lowering the dataset size is expected
for the DeepEnsemble since it is trained on the NLL and
not on the RMSE. Thus, decreasing the training data
increases the total predictive uncertainty, resulting in less
certain predictions. At the same time, the RMSE error
stays unaffected, indicating that it is easier to train the
mean than the total uncertainty with the NLL loss func-
tion in Equation (2). It requires more investigations on
why the RMSE for DeepEnsemble does not increase. The
total uncertainty for DeepEnsemble is mainly driven by
the data uncertainty, similar to Figure 5, where the alea-
toric uncertainty slightly increases when lessening data.
At first, this seems to conflict with the definition of alea-
toric uncertainty given in section 2, that it is unaffected
by dataset size. However, the aleatoric uncertainty will
also increase if the DL method cannot capture the appro-
priate underlying function due to the lack of training
data. The definition of the aleatoric uncertainty assumes
that there is enough data to train a DL model. The episte-
mic uncertainty also increases when decreasing data for
both feature combinations, where the rise is higher when
incorporating heat treatment features due to the
increased input size for the same amount of data.

The amount of data required to train a model always
depends on the relational complexity between input and
output. The random subset taken to decrease the training
data includes a broad range of low- to high-strength steels
(see Figure 1). Thus, not only intrinsic defects but also pro-
cess defects play an essential role in fatigue failure mecha-
nisms. Excluding high-strength steels could reduce
complexity due to focusing on fewer failure mechanisms
and less data is required for low errors similar to the pre-
dictive quality of Stainless steels. Weichert et al17 used only
114 Stainless steels to achieve reliable fatigue strength
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prediction using GPR. On the contrary, increasing the
amount of data for high-strength steels will decrease the
epistemic uncertainty. Still, the RMSE error and the alea-
toric uncertainty remain high unless more meaningful fea-
tures are included. The material digitalization will further
increase, making more data available for data-driven
methods. Including more design elements will further
increase the database diversity and improve the generali-
zation of the ML application to assess the fatigue strength
for various design elements. The epistemic uncertainty
might support detecting design components that have not
been available in the database yet, indicating the reliability
of the ML/DL prediction. Consequently, ML/DL models
with UQ can increase the trustworthiness of data-driven
approaches in engineering applications.

5 | CONCLUSION

Probabilistic ML/DL methods are powerful methods to
model complex input-output relations by distinguishing
between data and model uncertainty. This work compares

various probabilistic Machine and Deep Learning methods
to predict the fatigue strength with uncertainty quantifica-
tion and validate the results for three different steel types
categorized by the FKM-Guideline into Stainless steels
case-hardened steels and other Steels. Despite its simplicity
for probabilistic metallic fatigue strength prediction, we
show that DeepEnsemble outperforms all other probabilistic
DL methods. Even though the Random Forest RFJ per-
forms slightly worse than the DeepEnsemble, it is easier
and faster to train than the DeepEnsemble model and thus
exhibits a good benchmark model. Calibrating probabilistic
models for regression tasks is crucial and needs more
research to provide reliable predictions as it remains
unclear when calibration is required. Including heat treat-
ment features improves the predictive quality for all three
steel groups. We showed that the predictive quality is the
best for low-strength ductile stainless steels since there is
solely one dominant fatigue damage mechanism. Case-
hardened steels have the worst performance since process
defects play an important role in fatigue failure, and the
dataset does not supply such information. Providing defect
information about shape, size, and distribution while

FIGURE 6 Change of different types

of predictive uncertainty according to

Equation (4) for DeepEnsemble and RFJ

depending on the dataset size in % for two

feature combinations with mean and

standard deviation of the 10-fold. [Colour

figure can be viewed at wileyonlinelibrary.

com]
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simultaneously enlarging the database with further micro-
structural features about grain size, core hardness, hard-
ness gradient, and so forth could improve the mean
prediction and lower the predictive uncertainty. The last
group Steel has the most database entries and includes a
broad range of hardness's. Thus, the performance is slightly
worse than for the Stainless steels since high-strength steels
are also included, involving a variety of fatigue damage
mechanisms resulting in a more heterogeneous dataset and
thus in higher predictive uncertainty. Further work should
focus on data categorizations based on the hardness or pre-
dominant failure mechanisms instead of distinguishing
between the FKM-steel types to increase the interpretabil-
ity of the aleatoric/data uncertainty.
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APPENDIX A: HYPERPARAMETER SEARCH SPACE FOR ML MODELS

TABLE A1 Hyperparameter space for BNN.

Hyperparameter
Range [min, max, (stepsize)]/
Category

Layer 1 [100, 400, 20]

Layer 2 [100, 400, 20]

Layer 3 [0, 400, 20]

Layer 4 [0, 400, 20]

Batch size [16, 32, 4]

Optimizer Adam

Activation
function

[“Elu,” “Relu,” “Selu,” “Tanh”]

Learning_rate [0.00001, 0.1] log scale

TABLE A2 Hyperparameter space for DeepEnsembles.

Hyperparameter
Range [min, max, (stepsize)]/
Category

Layer 1 [100, 400, 20]

Layer 2 [100, 400, 20]

Layer 3 [0, 400, 20]

Layer 4 [0, 400, 20]

Batch size [16, 32, 4]

Optimizer Adam

Activation
function

[“Elu,” “Relu,” “Selu,” “Tanh”]

Learning_rate [0.00001, 0.1] log scale

L2 regularizer [0.00001, 0.1] log scale

TABLE A3 Hyperparameter space for MCDropout.

Hyperparameter
Range [min, max, (stepsize)]/
Category

Dropout 1 [0.1, 0.5]

Layer 1 [100, 400, 20]

Dropout 2 [0.1, 0.5]

Layer 2 [100, 400, 20]

Dropout 3 [0.1, 0.5]

Layer 3 [0, 400, 20]

Dropout 4 [0.1, 0.5]

Layer 4 [0, 400, 20]

Batch size [16, 32, 4]

Optimizer Adam

Activation
function

[“Elu,” “Relu,” “Selu,” “Tanh”]

Learning_rate [0.00001, 0.1] log scale

TABLE A4 Hyperparameter space for EvidPrior.

Hyperparameter
Range [min, max, (stepsize)]/
Category

Layer 1 [100, 400, 20]

Layer 2 [100, 400, 20]

Layer 3 [0, 400, 20]

Layer 4 [0, 400, 20]

Batch size [16, 32, 4]

Optimizer Adam

Activation
function

[“Elu,” “Relu,” “Selu,” “Tanh”]

Learning_rate [0.00001, 0.1] log scale

L2 regularizer [0.00001, 0.1] log scale

TABLE A5 Hyperparameter space for CSG-MCMC.

Hyperparameter
Range [min, max, (stepsize)]/
Category

Layer 1 [100, 400, 20]

Layer 2 [100, 400, 20]

Layer 3 [0, 400, 20]

Layer 4 [0, 400, 20]

Batch size [16, 32, 4]

Optimizer SG-MCMC

Activation
function

[“Elu,” “Relu,” “Selu,” “Tanh”]

Learning_rate [0.00001, 0.1] log scale

TABLE A6 Hyperparameter space for RFJ.

Hyperparameter
Range [min, max, (stepsize)]/
Category

Number of
estimators

[1000, 4000, 200]

Max depth [4, 40]

Min samples split [2, 10]

Min samples leaf [1, 3]

Max features [16, 32]
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