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Abstract

Primary cilia project from the surface of most vertebrate cells and
are key in sensing extracellular signals and locally transducing this
information into a cellular response. Recent findings show that pri-
mary cilia are not merely static organelles with a distinct lipid and
protein composition. Instead, the function of primary cilia relies on
the dynamic composition of molecules within the cilium, the
context-dependent sensing and processing of extracellular stimuli,
and cycles of assembly and disassembly in a cell- and tissue-
specific manner. Thereby, primary cilia dynamically integrate dif-
ferent cellular inputs and control cell fate and function during tis-
sue development. Here, we review the recently emerging concept
of primary cilia dynamics in tissue development, organization,
remodeling, and function.
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Introduction

Almost all cells, from embryonic development until adulthood, form

a hair-like membrane protrusion with a microtubule-based core,

called the primary cilium. Primary cilia are immotile and have sen-

sory and signaling functions (Malicki & Johnson, 2017; Anvarian

et al, 2019; Nachury & Mick, 2019; Wachten & Mick, 2021). The pri-

mary cilium originates from a modified centriole called the basal

body (Fig 1A). The basal body forms a nucleation site for the ciliary

axoneme, consisting of parallel microtubule doublets in a character-

istic ‘9 + 0’ cylindrical arrangement, which, however, may change

along the axoneme depending on the cell type (Webber & Lee, 1975;

Gluenz et al, 2010; Sun et al, 2019; Kiesel et al, 2020). Along the

axoneme, the intraflagellar transport (IFT) machinery, consisting of

IFT-A and IFT-B protein complexes, transports molecules anterogra-

dely towards the ciliary tip or retrogradely towards the ciliary base

via kinesin or dynein motors, respectively (Goetz & Anderson, 2010)

(Fig 1A). The IFT machinery is supported by the BBSome protein

complexes, which act as adaptors for the retrograde transport of cili-

ary membrane proteins via the IFT machinery and, thereby, deter-

mine the ciliary protein composition (Garcia-Gonzalo & Reiter,

2017; Garcia et al, 2018; Nachury, 2018). The BBSome is a multi-

subunit protein complex, consisting of BBS proteins, named after

the syndromic ciliopathy, the Bardet-Biedl syndrome (BBS)

(Nachury et al, 2007; Forsythe & Beales, 2013). In addition, the
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transition zone (TZ) at the ciliary base acts as a diffusion barrier,

controlling the lateral diffusion of membrane proteins between the

cell body and the cilium (Park & Leroux, 2022). In combination, the

IFT machinery, the TZ, and the BBSome determine the unique pro-

tein and lipid composition that controls primary cilia signaling and

function (Fig 1A).

The primary cilium acts as a sensory organelle for different envi-

ronmental stimuli. These cues can be ligand-based (chemosensa-

tion), mechanical (mechanosensation, e.g., upon fluid flow), or

even photons. The latter are sensed by the light-sensitive GPCR

rhodoposin in specialized ciliated cells in the eye, the photorecep-

tors, which do not possess prototypic primary cilia. Thus, we will

not cover this aspect here, but rather refer to another recent review

(Barnes et al, 2021).

In vertebrates, canonical Hedgehog (Hh) signaling is the prime

example of a chemosensory ciliary signaling pathway (Rohatgi

et al, 2007; Bangs & Anderson, 2017; Ingham, 2022). The Hh recep-

tor Patched1 (PTCH1) is activated upon ligand binding and exits the

cilium, while Smoothened (SMO) enters the cilium. SMO then trig-

gers pathway activation through GLI transcription factors, which

A B

Axoneme

Kinesin

IFT-B

BBSome

Transition 
zone (TZ)

Endocytosis

Daughter 
centriole

Basal 
body

Ciliary 
pocket

Transition 
fibres

Y-links

Cargo

IFT-A

Dynein

Ectosome 
formation

Levels of primary cilia dynamics

Compositional dynamics

Kinesin

IFT-B

Transition 
zone (TZ)

IFT-A

BBSome

Dynein

1

Signaling dynamics

2nd 
messenger

GPCR

RTK Chemical 
ligand

2

(Dis)assembly dynamics3

Flow

i

ii

iii

Soma Soma

Signal 
transduction

Signal 
transduction

P

Ub

Ion 
channel

G
1

S

G
2

M

©
 E

M
B

O

Figure 1. Primary cilia: structure and dynamics.

(A) The core structure of the primary cilium is the microtubule-based axoneme. The primary cilium originates from a modified centriole called the basal body. Protein

transport in and out of the cilium is passively controlled by the transition zone (TZ) and the transition fibers, and actively by the intraflagellar transport (IFT) machinery,

which transports proteins anterogradely in a kinesin-2-dependent manner using IFT-B trains and retrogradely in a dynein-2-depentend manner using IFT-A trains. The

BBSome is assembled with the help of the BBS chaperonin complex and functions as a cargo adaptor complex for the retrograde IFT transport of transmembrane pro-

teins, in particular G protein-coupled receptors (GPCRs). (B) Primary cilia dynamics can be observed on three different levels: 1. Compositional dynamics, determined by

the active and passive gating structures that determine the compartmentalization of the primary cilium; 2. Signaling dynamics, referring to the signal-dependent fine

tuning to adapt the distinct molecular ciliary makeup appropriate to the signal status across time, space, and cellular state; 3. Assembly/disassembly dynamics, which

are tightly coupled to the cell cycle. Figure has been created using Biorender.
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constantly cycle through the cilium to sense Hh signaling status and

control gene expression in the nucleus. This tightly controlled

sequence of events, consisting of ciliary protein export and import,

is key for Hh signaling and, in turn, tissue development, homeostasis,

and regeneration (Rohatgi et al, 2007; Mukhopadhyay & Rohatgi,

2014; Bangs & Anderson, 2017; Kopinke et al, 2021; Ingham, 2022).

But not only Hh signaling, also Receptor Tyrosine Kinase (RTK)

(Christensen et al, 2017), WNT (May-Simera & Kelley, 2012), as well

as G protein-coupled receptor (GPCR) (Hilgendorf et al, 2016;

Mykytyn & Askwith, 2017; Wachten & Mick, 2021) signaling path-

ways have been implicated in primary cilia signaling.

Fluid flow has been described as the main mechanical stimulus

sensed by primary cilia, e.g., fluid flow in the renal tubules or in the

embryonic left–right organizer (LRO) during development. Luminal

fluid flow in renal tubules determines the direction and bending of

the cilium, which, in turn, evokes a ciliary signaling response

(Basten & Giles, 2013; Praetorius, 2015). Polycystins, polycystin-like

proteins, and calcium signaling have been associated with ciliary

mechanosensation, although the precise molecular mechanisms

have been debated (Delling et al, 2016; Wachten & Mill, 2023).

Recently, two studies added new experimental evidence that pri-

mary cilia function as calcium-mediated mechanosensors to deter-

mine left–right asymmetry (Djenoune et al, 2023; Katoh et al, 2023),

answering some but also opening up new questions (Wachten &

Mill, 2023). In summary, not only changes in the chemical environ-

ment but also in the mechanical forces can lead to dynamic cilia sig-

naling responses, which we will describe later in further detail.

Primary cilia dysfunction caused by structural or signaling

defects leads to severe diseases, commonly referred to as ciliopa-

thies (Fliegauf et al, 2007; Hildebrandt et al, 2011; Reiter & Leroux,

2017). Since the first molecular mechanisms connecting primary

cilia dysfunction and ciliopathy development were described

(Pazour et al, 2000), many studies revealed molecular insights into

how primary cilia dysfunction impairs tissue development and

homeostasis and, in turn, causes the clinical manifestations of cilio-

pathies, as reviewed extensively by others (Badano et al, 2006; Flie-

gauf et al, 2007; Marshall, 2008; Quinlan et al, 2008; Gerdes et al,

2009; Hildebrandt et al, 2011; Waters & Beales, 2011; Oh & Katsanis,

2012; Mitchison & Valente, 2017; Reiter & Leroux, 2017; Elliott &

Brugmann, 2019; Suciu & Caspary, 2021).

Recent investigations have revealed that the primary cilium is

not a static, sensory organelle, which is simply turned on and off by

ciliogenesis and cilium disassembly, respectively. Instead, primary

cilia are highly dynamic, and ciliary dynamics appear to be vital in

controlling tissue development. Thus, in this review, we will focus

on primary cilia dynamics and how they control tissue development

and function.

Primary cilia dynamics can be observed on three levels (Fig 1B):

(i) Compositional dynamics, (ii) Signaling dynamics, (iii) Assembly/

disassembly dynamics. The compositional dynamics are controlled

by the active and passive gating structures that determine the com-

partmentalization of the primary cilium. The signaling dynamics

refer to the signal-dependent fine-tuning to adapt the distinct molec-

ular ciliary make-up in response to the signal status across time,

space, and cellular state. Finally, the assembly and disassembly

dynamics are tightly coupled to the cell cycle. Indeed, cells assemble

primary cilia when exiting mitosis (M to G0/G1 phase), they start

to disassemble the primary cilium when re-entering the cell cycle

(G1-S transition), and fully disassemble the primary cilium before

entering mitosis (G2 to M phase) (Ishikawa & Marshall, 2017; Wang

& Dynlacht, 2018). However, the timing of the dynamics depends

on the in vivo context (Ford et al, 2018).

Although the dynamic ciliary processes in primary cilia can be

assigned to the aforementioned three levels, they are all closely

connected and interdependent—not only on a single cell level but

even within an entire tissue. Primary cilia coordinate cellular func-

tions in a tissue context to control tissue organization and function

(Anvarian et al, 2019). The close connection between ciliation and

tissue development is illustrated by the fact that the complete loss of

primary cilia causes embryonic death in all animals examined to

date (Nonaka et al, 1998; Huangfu et al, 2003). Even the cell type-

specific loss of primary cilia leads to severe tissue developmental

defects (Pazour et al, 2000; Jonassen et al, 2008; May-Simera

et al, 2015; De-Castro et al, 2021; Chinipardaz et al, 2022).

Defects in cilium disassembly and ciliogenesis have been associ-

ated with ciliopathy development, e.g., with autosomal dominant

polycystic kidney disease (ADPKD) (Gerakopoulos et al, 2020),

microcephaly displaying defects during brain development (Rocha &

Prinos, 2022), or tumor development (Wang & Dynlacht, 2018).

This demonstrates the importance of assembling and disassembling

a primary cilium at the right time and in a given cell type to drive

tissue development and organization.

Trying to dissect primary cilia dynamics is challenging on a

single-cell level, let alone in a tissue-wide perspective. A holistic

approach must be pursued to fully understand the function of the

primary cilium as a dynamic organelle. This requires analyzing cilia

dynamics at all levels from the compositional to the signaling and

assembly/disassembly dynamics (Fig 1B), and is a significant chal-

lenge that needs to be tackled in primary cilia research in the com-

ing years.

Here, we review current literature regarding the three different

levels of primary cilia dynamics, how they can be analyzed using

state-of-the-art technologies, and highlight primary cilia dynamics

within the context of tissue organization and function.

The different levels of primary cilia dynamics

Compositional dynamics
To function as a signaling hub and maintain a unique protein and

lipid composition, the cilium utilizes the coordinated action of

active and passive gating structures. This includes the transition

zone (TZ), the IFT machinery, and the BBSome (Fig 1A and B). In

addition, proteins need to contain a ciliary targeting sequence. How-

ever, the molecular mechanisms underlying the recognition of cili-

ary proteins are still not fully understood. A summary of the

respective findings can be found here (Malicki & Avidor-Reiss, 2014;

Schou et al, 2015; Mukhopadhyay et al, 2017).

To enter the primary cilium, proteins need to cross the TZ, which

acts as a passive, size-selective diffusion barrier for cytoplasmic and

membrane proteins, maintaining the unique molecular makeup of

the cilium (Park & Leroux, 2022). Molecularly, the TZ contains func-

tionally different protein modules, the NPHP (nephrocystin), the

MKS (Meckel Gruber syndrome), and the core scaffolding module,

whose components are hierarchically organized (Park & Leroux,

2022). Of note, the regulation of the TZ seems to be cell and tissue
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type-specific (Wiegering et al, 2018; Lewis et al, 2019), with interest-

ing implications for the molecular etiologies of ciliopathies.

The IFT machinery was first identified in Chlamydomonas

(Kozminski et al, 1993) and is essential for moving proteins in and

out of the cilium. Kinesin motors move IFT complexes anterogradely

from the cell body to the ciliary tip, whereas dynein motors carry

out retrograde protein transport of IFT complexes from the tip to the

cell body (Fig 1A). The IFT complexes, IFT-A and -B, consist of

numerous IFT protein subunits. Similarly, the retrograde dynein-2

and the canonical, anterograde kinesin-2 motor complex consist of

multiple subunits (Mill et al, 2023). The IFT machinery is essential

for ciliary protein transport as well as for primary cilia formation

and maintenance. In turn, primary cilia loss, as in Ift88 mutants,

results in cystic kidney disease (Pazour et al, 2000). The compo-

nents of the IFT machinery, the molecular motors, and how

they function has been extensively described in several reviews

(Lechtreck, 2015; Taschner & Lorentzen, 2016; Ishikawa & Marshall,

2017; Lechtreck et al, 2017; Prevo et al, 2017; Morthorst et al, 2018;

Nakayama & Katoh, 2018, 2020; Webb et al, 2020; Jordan &

Pigino, 2021; Mul et al, 2022; Mill et al, 2023). Thus, we will not

focus on these aspects here.

Besides the passive gating function of the TZ and the active

transport function of the IFT, the third component determining

the dynamics of the ciliary membrane protein composition

is the BBSome protein complex (Nachury, 2018; Wingfield

et al, 2018). The BBSome acts as an adaptor for the retrograde trans-

port of ciliary membrane proteins via the IFT machinery (Fig 1A).

The BBSome consists of eight BBS protein subunits, whose assem-

bly is regulated by three additional, chaperonin-like BBS proteins

(Seo et al, 2010; Nachury, 2018). Genetic loss of or mutations in one

of the 26 BBS genes results in the Bardet-Biedl Syndrome, the arche-

typical ciliopathy, which presents predominantly with obesity, poly-

dactyly, retinal degeneration, and kidney cysts (Beales et al, 1999;

Forsythe & Beales, 2013). Generally, the BBSome picks up cargo,

e.g., activated G protein-coupled receptors (GPCRs), for transport

out of the cilium (Wingfield et al, 2018; Ye et al, 2018; Shinde

et al, 2020). In turn, the loss of BBSome function results in defects

of the stimulus-dependent control of GPCR localization in the cil-

ium, whereby downstream GPCR signaling is severely affected

(Schou et al, 2015; Wingfield et al, 2018; Anvarian et al, 2019). This

has been shown for ciliary GPCRs, such as the somatostatin 3 recep-

tor (SSTR3), the melanin-hormone concentrating receptor 1

(MCHR1) (Berbari et al, 2008; Nager et al, 2017; Eintracht et al,

2021), the neuropeptide Y receptor 2 (NPY2R) (Loktev & Jack-

son, 2013), and the dopamine receptor 1 (DR1) (Stubbs et al, 2022).

Mechanistically, the BBSome and the receptors accumulate at the

ciliary tip, where retrograde cargo is loaded (Ye et al, 2018). Subse-

quently, the cargo is moved towards the ciliary base and passes it

through the barrier at the TZ. If this mechanism is impaired, GPCRs

accumulate at the ciliary tip and are removed by shedding extracel-

lular vesicles (see below) (Nager et al, 2017; Phua et al, 2017).

Not only the ciliary proteome but also the ciliary lipidome is dis-

tinct from the rest of the cell (Garcia et al, 2018; Conduit et al,

2021). Here, phosphoinositides (PI) play a central role, and their

content in the cilium is mainly regulated by the inositol polypho-

sphate 5-phosphatase INPP5E, which produces PI(4)P and PI(3,4)P2
from PI(4,5)P2 and PI(3,4,5)P3, respectively. Different PI species

bind different pleckstrin-homology (PH) domain-containing effectors

and determine their subcellular localization, e.g., in the cilium

(Chavez et al, 2015; Garcia-Gonzalo et al, 2015). Furthermore, other

lipids, e.g., sterols, have been shown to fine tune ciliary signaling,

such as Hh signaling, as reviewed by others (Nguyen et al, 2022).

In summary, the interaction of the IFT machinery with the

BBSome and TZ components is key to dynamically regulate

the molecular make-up of the primary cilium, e.g., the ciliary pro-

tein and lipid composition.

Signaling dynamics
The primary cilium acts as a “cellular antenna” that responds to

extra-cellular signals, and adapts its molecular content, relying on

the gating structures described above (Fig 1B). This section reviews

signal-dependent regulation of ciliary signaling and compositional

dynamics, with a particular focus on mechanosensation, and dis-

cusses a novel function of the primary cilium as a signal emitter

releasing extracellular vesicles (EVs).

Mechanosensation

Primary cilia have been proposed to act as dynamic flow sensors

(Fig 1B). Ciliary flow sensing has been discussed in the kidney

(Schwartz et al, 1997; Praetorius & Spring, 2003), in blood vessels

(Nauli et al, 2008; Goetz et al, 2014), in the developing heart (Hierck

et al, 2008), in bone (Malone et al, 2007; Xiao et al, 2011), and the

left–right organizer (LRO) during embryonic development (McGrath

et al, 2003; Yoshiba et al, 2012; Djenoune et al, 2023; Katoh et al,

2023); for an in-depth overview, see reviews by others (Spasic &

Jacobs, 2017; Ferreira et al, 2019).

The working model of cilia-based mechanosensation suggests

that mechanical forces bend the cilium, which generates membrane

tension and opens tension-activated channels, leading to calcium

influx and downstream signaling. However, the processes involved

in mechanosensing appear more complicated, and the role of the

primary cilia in flow sensing remains controversial (Delling et al,

2016; Ferreira et al, 2017).

A key challenge is the vastly different time-scales involved: from

sub-second detection of mechanical forces to signaling cascades last-

ing tens of minutes. Two recent publications provide additional evi-

dence for mechanosensation by cilia. In these studies, oscillatory

mechanical forces using optical tweezers were directly applied to

primary cilia in the left–right organizer of mice and zebrafish,

thereby establishing a causal link between mechanical manipula-

tions and left–right patterning (Djenoune et al, 2023; Katoh et al,

2023; Wachten & Mill, 2023).

Even though external flow has been shown to bend cilia (Prae-

torius & Spring, 2001) and trigger signaling cascades (Nauli et al,

2003; Praetorius & Spring, 2003; Liu et al, 2005b), it remains

debated whether primary cilia act as bona fide flow sensors.

A few calculations might help to shed light on whether primary

cilia act as flow sensors (Box 1). The dynamics of mechanical stim-

uli, i.e., detecting steady versus oscillatory flow, may be important

and may partially account for different sensitivity thresholds

observed in different systems. We note that several authors report

flow as volume flow rates or maximal flow speed in a channel

(Young et al, 2012; Khayyeri et al, 2015). To make quantitative com-

parisons across reports easier, it may be useful if future reports state

flow in comparable ways using physical conversion formulas

(Ferreira et al, 2019).
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Next, to be able to gauge whether a given flow is sufficient to

deform a cilium and, thus, induce a mechanoresponse, it is key to

know the bending stiffness (or flexural rigidity) of a cilium. So far, it

has not been possible to measure this bending stiffness directly, but

all estimates rely on fitting computational models to experimental

data. The recent estimate EI = 30 pN lm2 (= 3 *10�23 N m2) (Battle

et al, 2015) is in agreement with previous measurements in the

range 10–50 pN lm2 (Nag & Resnick, 2017), and implies that pri-

mary cilia are substantially softer than motile cilia. Confusingly,

direct deformation of immotile nodal cilia using optical traps

resulted in a 10-fold higher stiffness 300–500 pN lm2 (Katoh et al,

2023), which would imply a smaller mechanoresponse.

Even though flow sensing in some tissues appears plausible, it is

not clear by which physical mechanism cilia would sense flow.

Additionally, the identity and location of the mechanosensory

remains unknown (Ferreira et al, 2019) (Fig 1B):

1 Mechano-sensitive channels inside the cilia membrane could

sense membrane curvature or membrane tension. However, the

estimated membrane tension is low (~0.1 mN/m for a = 100 1/s),

which is below the detection threshold of known, tension-gated

ion channels (~ 3–10 mN/m) (Ferreira et al, 2019). Moreover,

because membranes are fluid, membrane tension should relax

< 1 s after the onset of external flow, thereby limiting sensing to

rapidly changing flows.

2 This issue could be rectified if mechano-sensitive channels were

mechanically connected to the axoneme, nearby microvilli, or

extracellular polymer chains. This is for instance the case for

Polycystin-2 (PC2), which targets and anchors polyglycan-based

cilia extensions known as mastigonemes in swimming Chlamydo-

monas (Liu et al, 2020). Arthropods express mechanosensory

TRP channels, e.g., NOMPC (Yan et al, 2013), which localizes to

distal cilium of Drosophila campaniform and chordotonal receptor

cells (Liang et al, 2011) and seems to require mechanical linkage

to the cytoskeleton for their mechano-sensory function (Zhang

et al, 2015).

3 Lastly, external flow will not only induce local shear forces and

bending moments on a cilium, but also exert a torque at its base

(Young et al, 2012; Battle et al, 2015). Hence, mechanosensation

could also be measured by torque sensors at the basal body. Gen-

erally, physics predicts that molecular mechano-sensors can be

more sensitive when coupled to a rigid support, yet such pro-

cesses remain to be identified in the context of cilia-mediated

mechanosensation.

Polycystins (Polycystin-1 and -2, PC1 and PC2, encoded by PKD1

and PKD2) and polycystin-like proteins (e.g., PKD1L1) have been

suggested as putative channel complexes for flow sensing in the cil-

ium for multiple reasons. First, polycystin and polycystin-like

mutants cause cyst formation in the kidney and defects in left–right

patterning, reminiscent of ciliary defects and potentially disturbed

flow sensing (Pazour et al, 2002; Nauli et al, 2003; Field et al, 2011;

Kamura et al, 2011; Yoshiba et al, 2012; Grimes et al, 2016; Vetrini

et al, 2016; Ma et al, 2017; Liu et al, 2018b; Walker et al, 2019;

Djenoune et al, 2023; Katoh et al, 2023). Second, polycystins local-

ize to primary cilia (Pazour et al, 2002; Nauli et al, 2003; Field

et al, 2011; Grimes et al, 2016), and their ciliary localization is

important for preventing kidney cystogenesis (Xu et al, 2007;

Walker et al, 2019). Third, loss of PC2 in either the zebrafish or

mouse left–right organizer seems to abolish ciliary signaling upon

oscillatory mechanical stimulation of cilia by optical tweezers

(Djenoune et al, 2023; Katoh et al, 2023).

However, the mechanisms by which polycystins sense fluid flow

remain elusive. PC2, as a TRP channel, lacks common motifs identi-

fied in known mechanosensitive channels such as NOMPC (Zhang

et al, 2015) or the Piezo ion channel family (Kefauver et al, 2020).

PC1 and PKD1L1 are transmembrane proteins with a large extracel-

lular N terminal domain (Su et al, 2018; Ta et al, 2020), which are

prone to respond to external stimuli. It is, however, important to

note that PC1/2 channels have also been shown to have chemosen-

sory properties (Kim et al, 2016; Ha et al, 2020), indicating that

PC1/2 in the cilium could serve both chemo- and mechanosensory

function.

Lastly, which signaling cascades are involved in mechanosensa-

tion remains poorly understood. Calcium signals were observed

upon application of external forces in kidney cells in a cilia-

dependent manner (Nauli et al, 2003; Praetorius & Spring, 2003; Liu

et al, 2005b) and in the left–right organizer of mice and zebrafish

upon manipulation with optical tweezers (Djenoune et al, 2023;

Katoh et al, 2023; Wachten & Mill, 2023). Reducing ciliary calcium

activity using a genetically encoded calcium-binding protein inter-

fered with left–right asymmetry breaking in the zebrafish (Yuan

et al, 2015), suggesting a causal relationship between ciliary calcium

activity and left–right patterning. Since calcium activity was shown

to be abolished in polycystins or polycystin-like mutants during

mechanosensation (Nauli et al, 2003; Grimes et al, 2016; Djenoune

et al, 2023; Katoh et al, 2023), it was hypothesized that polycystins

could be mechanosensory elements regulating calcium influx to the

cilium. However, calcium signaling is comparatively slow, rendering

it improbable that calcium enters the cilium directly upon mechani-

cal deflection, in line with the observation that primary cilia are not

calcium-responsive mechanosensors in the kidney and the left–right

organizer (Delling et al, 2016). Taken together, even though there is

increasing evidence showing that calcium is implicated in mechano-

sensation, the precise dynamics of calcium signaling, its key players,

and physiological importance remain to be characterized in further

detail.

Box 1. Flow sensing via primary cilia-calculations.

The sensitivity threshold for cilia flow sensing seems to be a wall
shear stress of ~20 mPa, corresponding to a flow velocity of
v ~ 200 lm/s at the tip of a 10-lm long cilium (Ferreira et al, 2017).
For flow above a planar surface, a wall shear stress of r = 100 mPa
(= 1 dyn/cm2) corresponds to a shear rate a = r/g ~ 100 s�1 and
hence a speed ah ~ 1 mm/s at a distance h = 10 lm from the sur-
face (where g is the dynamic viscosity of the fluid, here taken as
g = 10�3 Pa for water at 20°C). Estimated wall shear stresses range
from 1 to 1,000 mPa in systems with proposed cilia flow sensing
(Ferreira et al, 2017), with 200 mPa for renal flow (Kang et al, 2006)
(computed from glomerular filtration rate 32.4 nl/min), but only
1 mPa for the left–right organizer of zebrafish (Kupffer’s vesicle)
(Supatto et al, 2008; Ferreira et al, 2017). Based on these numbers, cilia
flow sensing in the kidney seems plausible, while flow speeds may be
below the detection limit of cilia flow sensing in the left–right
organizer (Ferreira et al, 2017). Yet, Djenoune and colleagues reported
that forces of 0.6 pN are sufficient to elicit calcium transients in the
immotile cilia of the Kupffer’s vesicle (Djenoune et al, 2023).
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In conclusion, a growing number of experimental studies suggest

that primary cilia may sense steady or unsteady flow and promote

cellular signaling, which instructs tissue re-organization. However,

the precise molecular and biophysical mechanisms are not yet well

understood, and flow speeds may be too low in some systems to be

sensed by primary cilia. Future work is needed to characterize the

dynamic stimulus–response relationship of mechanosensation on

both fast timescales of seconds and longer timescales of minutes

and hours.

Chemosensation

The view that the primary cilium acts as the cell’s “chemical

antenna” stems from its chemosensory function in olfactory sensory

neurons (Kaupp, 2010). Chemosensation is often thought to be the

main function of primary cilia. The general concept of how primary

cilia respond to ligand-based cues has been extensively reviewed

(Mukhopadhyay & Rohatgi, 2014; Schou et al, 2015; Hilgendorf

et al, 2016; Bangs & Anderson, 2017; Mykytyn & Askwith, 2017;

Garcia et al, 2018; Anvarian et al, 2019; Wachten & Mick, 2021;

Ingham, 2022; Mill et al, 2023). Ciliary Hh signaling is the prime

example of a chemosensory ciliary signaling pathway and show-

cases how ciliary proteins are dynamically localized along the cil-

ium to fine-tune ciliary signaling upon ligand sensing. In brief, in

the absence of a Hh ligand, PTCH1 and the orphan GPCR GPR161

are localized to the primary cilium, which represses the expression

of Hh target genes by promoting proteolytic cleavage of the tran-

scription factors GLI2/3, turning them into their repressor forms.

Upon ligand binding, PTCH1 and GPR161 leave the cilium, whereas

SMO accumulates in the cilium. The localization of the constitu-

tively active GPR161 inside and outside of the cilium is key to regu-

late ciliary cAMP levels and, thereby, promote Hh signaling.

Furthermore, ciliary removal of PTCH1 and GPR161 converts GLI2/

3 into their active form, promoting the expression of Hh target genes

(Rohatgi et al, 2007; Mukhopadhyay & Rohatgi, 2014; Bangs &

Anderson, 2017; Kopinke et al, 2021; Ingham, 2022).

While the sequence of events of signal-dependent fine-tuning of

ciliary signaling dynamics has been well described for Hh signaling,

the detailed understanding of other chemosensory signaling path-

ways in the cilium is relatively sparse. Receptor Tyrosine Kinase

(RTK) (Christensen et al, 2017), the Frizzled receptor binding WNT

ligands (May-Simera & Kelley, 2012), and G protein-coupled recep-

tor (GPCRs) (Hilgendorf et al, 2016; Mykytyn & Askwith, 2017;

Wachten & Mick, 2021) signaling have been described in primary

cilia, yet, mechanistic insight about their dynamics is rather limited.

To highlight the advances in the field, we will focus on the recent

findings regarding second messenger dynamics downstream of

receptor engagement in the primary cilium, and highlight how post-

translational modifications control signaling dynamics in the pri-

mary cilium (see 2.3).

Dynamics of ciliary second messengers and beyond

On a molecular level, upon activation of receptors in the cilium, sec-

ond messengers, such as calcium and cAMP, are utilized to either

directly modify downstream signal mediators or evoke signaling

through posttranslational modifications (PTMs) (May et al, 2021b)

(Fig 1B). This concept mainly holds true for GPCRs (Schou et al,

2015; Hilgendorf et al, 2016; Mykytyn & Askwith, 2017; Garcia

et al, 2018; Wachten & Mick, 2021; Scamfer et al, 2022). Other

ciliary chemoreceptors, such as Receptor Tyrosine Kinases (RTKs)

and Transforming Growth Factor beta (TGFb) receptors, directly

phosphorylate their targets to change ciliary signaling dynamics and

evoke a downstream cellular response (Christensen et al, 2017).

While the modulation of ciliary calcium levels upon GPCR and

Gq protein activation remains not well understood, activation or

inhibition of ciliary adenylyl cyclases via GPCR/Gs proteins to

modulate cAMP signaling has been described in more detail (Schou

et al, 2015; Mykytyn & Askwith, 2017; Anvarian et al, 2019;

Nachury & Mick, 2019; Barbeito et al, 2021; Wachten & Mick, 2021;

Brewer et al, 2022; Jin & Zhong, 2022). Several studies have started

to dissect ciliary cAMP dynamics upon ligand-dependent GPCR

activation in different cell types using genetically encoded biosen-

sors (see below). This allowed to follow cAMP dynamics during

Hh signaling (Moore et al, 2016; Jiang et al, 2019; Truong

et al, 2021) as well as the sensing of omega-3 fatty acids via the

Free Fatty-Acid Receptor 4 (FFAR4) in preadipocytes (Hilgendorf

et al, 2019) or prostaglandin E2 in renal epithelial cells via the

GPCR Prostaglandin E4 receptor (EP4) during cyst formation

(Hansen et al, 2022).

Downstream of the known effector proteins for cAMP, mainly

cAMP-dependent protein kinases (PKA) and exchange proteins

directly activated by cAMP (EPAC) have been studied in the context

of the primary cilium. EPAC activation seems to induce transcrip-

tional changes via chromatin remodeling (Hilgendorf et al, 2019),

but the molecular mechanisms have not been fully revealed yet. In

contrast, signaling dynamics downstream of PKA have been well

described for Hh signaling, where the cAMP signal is converted into

PKA-dependent PTMs on the GLI2/3 transcription factors, which in

turn changes gene expression (Tuson et al, 2011; Niewiadomski

et al, 2014; Tschaikner et al, 2020).

Besides the ciliary GPCRs that indirectly evoke PTMs through

activation of PKA via cAMP, ciliary RTKs and TGFb receptors can

directly modify downstream effectors by phosphorylation. Upon

ligand binding, RTKs are auto-phosphorylated, forming a signaling

platform where other ciliary proteins assemble, are activated, and,

in turn, control downstream signaling. This principle has been

described for the Platelet-Derived Growth Factor alpha (PDGFR-a)
(Schneider et al, 2005, 2010; Clement et al, 2013; Gerhardt et al,

2013; Nielsen et al, 2015; Umberger & Caspary, 2015; Goranci-

Buzhala et al, 2021) and the Insulin-Growth Factor 1 Receptor (IGF-

1R) (Zhu et al, 2009; Dalbay et al, 2015), and has been extensively

reviewed by others (Christensen et al, 2012, 2017).

Activation of PDGFR-a engages downstream signaling via

the MAPK (Mitogen-Activated Protein Kinase), PI3K-AKT (Phos-

phoinositide 3 Kinase, AKT = Protein kinase B), and PLCc
(Phospho-lipase C delta) pathways, whereas activation of IGF-1R

involves IRS-1 (Insulin Receptor Substrate 1) and PI3K-AKT signal-

ing (Christensen et al, 2017). However, how the cilium achieves

specificity for these signaling dynamics and how they are inter-

preted differently from the cell body remains poorly understood.

Elegant studies have dissected the role of PTMs in the regulation

of the compositional (intraciliary protein) dynamics in cilia. For

instance, the signal-induced removal of GPCRs from cilia is initiated

by phosphorylation (Pal et al, 2016) and precedes ubiquitination by

E3 ubiquitin ligases, such as Wwp1 (WW Domain Containing E3

Ubiquitin Protein Ligase 1), which has been shown to ubiquitinate

SMO (Smoothened) (Lv et al, 2021). Ubiquitinated GPCRs are then
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recognized by ubiquitin adaptors (Shinde et al, 2023) that bridge the

interaction to the BBSome for IFT-dependent removal (Desai

et al, 2020; Shinde et al, 2020). Similarly, a complex interplay

between phosphorylation and ubiquitination regulates cilium bio-

genesis (Wang & Dynlacht, 2018; Breslow & Holland, 2019).

While these findings demonstrate that ciliary signaling follows

the same general principles of cellular signaling, it also points to the

requirement of cilium-specific components to create a distinct sig-

naling environment. Of note, calculations of the ciliary volume and

absolute protein abundance in sperm flagella revealed that signaling

proteins in the flagellum exist in a concentration of up to 400 lM
(Trötschel et al, 2020). As primary cilia are much smaller than fla-

gella and display a distinct geometry (Truong et al, 2021), the pro-

tein concentrations and the efficacy of the signaling kinetics might

be higher.

The role of ciliary extracellular vesicles (EVs) in controlling ciliary

signaling dynamics

Recent studies revealed that cilia not only function as signal

receivers but are also able to transmit signals by releasing bioactive

extracellular vesicles (EVs) containing proteins and mRNAs (Wang

& Barr, 2018; Luxmi & King, 2022; Ojeda Naharros & Nachury, 2022;

Vinay & Belleannee, 2022). This has mainly been studied in Chlamy-

domonas (Wood et al, 2013) or in C. elegans (Wang et al, 2015,

2021; Wang & Barr, 2018), where ciliary EVs are involved in mating

and behavior. However, a few studies have already shown bioactiv-

ity of mammalian ciliary EVs involved in regulation of cellular sig-

naling pathways during development and disease conditions (Ding

et al, 2021; Volz et al, 2021).

EVs are a heterogenous group of small membranous vesicles that

can shuttle cargo from one cell to another and are, therefore, impor-

tant for intercellular communication and physiological processes

(Simons & Raposo, 2009; Mathivanan et al, 2010; Cocucci & Meldo-

lesi, 2015). These include cell proliferation, survival, and transfor-

mation through autocrine and paracrine interactions (Maas et al,

2017; van Niel et al, 2018). Disruption of EV-regulated signaling can

lead to severe pathophysiological conditions, including cancer,

neurodegeneration, and kidney disease (Hill, 2019; Li et al, 2021;

Grange & Bussolati, 2022). EVs were initially seen as an evolution-

arily conserved mechanism to dispose cellular waste (Deatherage &

Cookson, 2012). However, it is now well-accepted that EV secretion

is a highly orchestrated process to regulate membrane composition

and signal transduction.

EVs can generally be divided into two main classes according to

their size and biogenesis (Thery et al, 2018). Large EVs (lgEVs)

(150–350 nm; also referred to as microvesicles or ectosomes) are

formed through outward budding directly at the plasma membrane,

whereas small EVs (smEVs, 50–150 nm) comprise microvesicles

that are shed from the plasma membrane, or exosomes of endocytic

origin, which are released by exocytosis of multivesicular bodies

(MVB).

Cilia are considered evolutionarily conserved sites of EV produc-

tion. However, studies have shown distinct processes for ciliary EV

biogenesis and shedding in different species (Wood et al, 2013;

Wang et al, 2014; Salinas et al, 2017; Akella et al, 2020). Due to

size-selectivity at the ciliary transition zone, the ciliary axoneme is

devoid of MVBs; hence ciliary membrane-derived EVs are most

likely to be large EVs (lgEVs) or small EVs (smEVs), formed via

directly budding from the ciliary membrane. In mammalian cells,

the most common site of EV budding from the cilium is the ciliary

tip (Hogan et al, 2009; Nager et al, 2017; Phua et al, 2017), whereas

the ciliary base and potentially the ciliary pocket seem to be a

source of ciliary smEVs (Hogan et al, 2009; Chacon-Heszele et al,

2014; Wang et al, 2014; Volz et al, 2021). Occasionally, EVs are also

observed along the length of the cilium. However, in the absence of

data on ciliary EV dynamics, it is unclear whether these EVs are

being released or absorbed by the cilium (Cao et al, 2015; Huang

et al, 2016).

A large fragment of the ciliary axoneme can also be shed at once,

referred to as ciliary decapitation or excision, which often precedes

cilia disassembly (Phua et al, 2017; Wang et al, 2019; Ojeda

Naharros & Nachury, 2022). Related to this phenomenon is a pro-

cess referred to as ciliary amputation or autotomy, by which the

entire cilium is instantly removed distally to the transition zone

(Quarmby, 2004; Das & Storey, 2014; Ford et al, 2018; Mirvis

et al, 2019; Toro-Tapia & Das, 2020).

Several functions besides promoting intercellular signaling

(Wang et al, 2014; Cao et al, 2015; Volz et al, 2021) have been pro-

posed for ciliary EVs, including waste disposal (Nager et al, 2017).

This leads to the removal of ciliary proteins via EVs, which, in turn,

could also regulate ciliary signaling. This could also be viewed as a

safety valve mechanism to prevent protein overload or excessive cil-

iary elongation, which has been observed in a multitude of different

organisms (Nager et al, 2017; Akella et al, 2020; Razzauti & Laurent,

2021). EV biogenesis also controls cilia length (Long et al, 2016;

Phua et al, 2017), and modulates ciliation via initiating cell cycle re-

entry into mitosis (Phua et al, 2017; Wang et al, 2019), as covered

by other recent reviews (Wang & Barr, 2018; Ikegami & Ijaz, 2021;

Ojeda Naharros & Nachury, 2022; Vinay & Belleannee, 2022). Since

EVs are important in intercellular communication in many tissues, it

is tempting to speculate that the dynamic generation and shedding

of ciliary EVs control tissue organization and function.

In summary, ciliary EV biogenesis is a critical process in regulat-

ing ciliary signaling dynamics, which seems to be organism, cell-,

and tissue-type specific.

Assembly and disassembly dynamics
The primary cilium is not a static organelle; it dynamically assem-

bles and disassembles in coherence with the cell cycle (Pan &

Snell, 2007). Generally, in cycling cells, the cilium is assembled as

the cell exits mitosis to G0/G1 and is disassembled when the cell re-

enters into the cell cycle, beginning from the G1-S transition. Two

phases of cilium disassembly have been observed in cultured mam-

malian cells: The first phase starts at the G0/G1-S transition after

growth factor stimulation, and the second phase follows before the

mitotic onset (Munger, 1958; Tucker et al, 1979; Pan & Snell,

2007; Pugacheva et al, 2007; Sanchez & Dynlacht, 2016; Wang &

Dynlacht, 2018) (Fig 2). As the presence of a cilium is incompatible

with mitosis, cilia-dependent signaling and cell division are mutu-

ally exclusive. Consequently, defects in cilium assembly prevent cili-

ary signaling and promote cell proliferation. In contrast, defects in

cilium disassembly have been proposed to prolong ciliary signaling

and suppress re-entry into the cell cycle (Gerakopoulos et al, 2020).

During cilium disassembly, ciliary length progressively decreases,

the axoneme is deacetylated, the membrane composition is remodeled,

and the basal body is released to participate in spindle assembly. These
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dynamic processes are orchestrated with cell cycle progression in a

highly regulated manner to ensure that the centrioles are freed and can

be used for cell division. Delayed cilium disassembly can impose a

brake on cell cycle progression, also referred to as “cilium checkpoint”,

which must be released before the cell proceeds through the cell cycle

(Jackson, 2011; Kim et al, 2011; Li et al, 2011) (Fig 2).

Here, we briefly summarize how timely cilium disassembly is

accomplished by mechanisms occurring in the cytoplasm, the cil-

ium, and ciliary membrane. Excellent reviews provided detailed

summaries of the mechanisms underlying cilium disassembly (Pan

& Snell, 2007; Sanchez & Dynlacht, 2016; Patel & Tsiokas, 2021). Of

note, these principles predominantly apply to cultured cells,

whereas the correlation between primary cilia disassembly and cell

cycle progression is less well understood in situ and in vivo.

In the final part of this section, we describe the consequences of

defective cilium disassembly on cell fate and tissue organization

and highlight findings on ciliated states in a tissue context-

dependent manner.

Aurora kinase A (AURKA) and polo-like kinase 1 (PLK1) initiate

the first phase of cilium disassembly, when cells re-enter the cell

cycle from G0/G1 (Pan et al, 2004; Pugacheva et al, 2007; Lee

et al, 2012; Wang et al, 2013). AURKA activation promotes cilium

disassembly, which is tightly regulated. For example, calcium/cal-

modulin (CaM)-dependent formation of the human enhancer of
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Figure 2. Primary cilium assembly/disassembly dynamics in a cycling cell in vitro.
The mature mother centriole (purple) templates the axoneme for cilium formation when the cell exits mitosis to the G1 phase. The daughter centriole at this stage is
indicated in yellow. The cilium begins to disassemble at the onset of the S-phase. Failure of or delay in cilium disassembly acts as a brake (“cilium checkpoint”) in cell
cycle progression (stop sign). Cilium disassembly at G2 triggers cells to continue with mitotic progression.
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filamentation 1 (HEF1)-AURKA complex (Pugacheva et al, 2007;

Plotnikova et al, 2012) as well as binding of lysophosphatidic acid

(LPA) to the LPA receptor 1 (LPAR1), triggering YAP/TAZ and cal-

cium/CaM signaling, regulates AURKA activation (Hu et al, 2021).

AURKA and PLK1 together activate histone deacetylase 6 (HDAC6)

(Pugacheva et al, 2007; Maisonneuve et al, 2009), which functions

as an a-tubulin deacetylase, facilitating deacetylation of ciliary

microtubules during ciliary disassembly (Ran et al, 2015).

The predominant mechanism for the second phase of cilium

disassembly is microtubule (MT) depolymerization at the ciliary

base. Here, the NIMA-related kinase 2 (NEK2) activates KIF24, a

kinesin that possesses MT depolymerization activity and prevents

axoneme re-assembly (Spalluto et al, 2012; Kim et al, 2015). The

NEK2-KIF24 axis ensures that the cilium is completely disas-

sembled before the G2-M transition (Kim et al, 2015; Sanchez &

Dynlacht, 2016). In addition, KIF2B, another MT depolymerase,

is activated by PLK1 (Miyamoto et al, 2015). Finally, KIF24 inter-

acts with centriolar coiled-coiled protein 110 (CP110) and the

centrosomal protein 97 (CEP97) and recruits them to the mother

centriole (Kobayashi et al, 2011). CP110 and CEP97 have

centriole-capping functions, ensuring that the centriole cannot

assemble the cilium in cycling cells (Spektor et al, 2007;

Kobayashi et al, 2011).

Altogether, the components that regulate cilium disassembly are

recruited at the ciliary base at the onset of cilium disassembly to

form the cilium disassembly complex (CDC). Besides the essential

kinases (AURKA, NEK2, PLK1) (Gabriel et al, 2016; Goranci-

Buzhala et al, 2017, 2021), the CDC contains dynein binding-,

centriolar satellite, and centrosomal proteins, such as NudE neuro-

development protein 1 (NDE1), oral-facial-digital syndrome 1 pro-

tein (OFD1), and centrosomal-P4.1 associated protein (CPAP) (Tang

et al, 2013; Gabriel et al, 2016; Monda & Cheeseman, 2018). CPAP

has already been shown to play a central role in centrosomal dupli-

cation as well as centriolar and cilia length control (Kohlmaier

et al, 2009; Tang et al, 2009; Zheng et al, 2016). Additionally, stud-

ies analyzing a CPAP mutation revealed that CPAP also provides a

scaffold for CDC recruitment at the base of the cilium. However, its

role in cilium disassembly independent from its centrosome duplica-

tion functions remains unknown (Gabriel et al, 2016).

Another aspect of cilium disassembly is remodeling of the mem-

brane in the ciliary pocket and removing receptors from the cilium.

The rearrangement of the ciliary pocket is controlled by the activa-

tion of TCTEX-1, a light-chain dynein subunit (Li et al, 2021). Acti-

vated TCTEX-1 interacts with annexin A2, which mediates the

remodeling of the actin network-rich ciliary pocket (Saito et al,

2017). TCTEX-1-mediated remodeling precedes cilium disassembly

at the onset of the S-phase (Li et al, 2011).

Cilium assembly and disassembly dynamics and their conse-

quences for cell signaling seem to be context-dependent in different

tissues. For example, abnormal or primary cilia loss has been

observed in different types of cancer, including renal cell carcinoma,

pancreatic ductal adenocarcinoma, prostate cancer, cholangiocarci-

noma, glioblastoma, thyroid cancer, breast cancer, ovarian cancer,

and melanoma (Eguether & Hahne, 2018; Liu et al, 2018a; Wang &

Dynlacht, 2018; Higgins et al, 2019). However, in some cancer

types, e.g., in medulloblastoma, cilia are present and cilia-dependent

signaling can promote tumorigenesis (Goranci-Buzhala et al, 2017,

2021; Marino, 2022; Paul et al, 2022), e.g., by altering Hh signaling

(Wu et al, 2017; Jeng et al, 2020) but also through WNT and ERK/

MAPK signaling (Higgins et al, 2019).

Not only cell proliferation but also cell fate decisions are con-

trolled by the cilium assembly/disassembly dynamics. Microceph-

aly, a neurodevelopmental disorder, is typically associated with

defective centrosome function, including errors in centriole duplica-

tions (An et al, 2022). Importantly, a microcephaly causing muta-

tion in CPAP(Lin et al, 2020), a centrosome duplication factor,

exhibits a delayed cilium disassembly without affecting centrosome

structure or function (Gabriel et al, 2016). A similar delay in cilium

disassembly was also observed when the spindle pole-associated

scaffold protein WDR62 was genetically deleted (Zhang et al, 2019).

Notably, mutations in WDR62 are the second most common genetic

cause of primary microcephaly (Bilguvar et al, 2010; Nicholas

et al, 2010). These findings indicate that defects in ciliary dynamics

underlie the development of microcephaly and, thereby, underline a

role for primary cilia assembly/disassembly modulation in regulat-

ing the fate of neural progenitor cells.

These studies have just started to reveal the importance of timely

cilium assembly/disassembly in determining cell fate establishment

and tissue organization. So far, we mainly have a snapshot view of

the primary cilium in various cell culture models and some tissues.

Developing tools that allow analyzing cilia assembly/disassembly

dynamics at various cell cycle stages in living cells and in vivo

within their tissue context will be important. To this end, the

development of a tri-cistronic cilia and cell cycle biosensor

(ARL13B-Cerulean combined with the cell cycle senor Fucci2a)

allows identifying the ciliation state of cycling cells at high resolu-

tion in vitro and in vivo (Ford et al, 2018). Strikingly, these analyses

revealed that cilia persist even beyond the G1/S transition into the

S/G2/M-phase, which seems to be a general property in different

cell types and in tissues of the developing mouse embryo (Ford

et al, 2018). This novel tool paves the way to dissect the impact of

cilia assembly and disassembly dynamics in tissue organization in

vivo (Mill et al, 2023). This is underlined by findings in chicken and

mouse epithelial cells of the neural tube and the developing cortex,

respectively, which disassemble the cilium in G2 (Spear & Erickson,

2012). Combining in vivo tools with recent advances in analyzing

the ciliary proteome and signaling states (see below) will allow to

disentangle the interaction between cilia-mediated signaling and

cilia status in specific cell types during tissue organization.

Analyzing primary cilia dynamics with
state-of-the-art methods

Within the last few years, major technical advances have opened

new frontiers and helped to overcome previous limitations in inves-

tigating primary cilia function. In the following sections, we will

highlight some of the recent approaches that led to discoveries in

cilia biology.

Spatial proteomic approaches in primary cilia
Over a decade ago, advances in mass spectrometry allowed in-depth

analyses of the flagellar and ciliary protein composition in an unbi-

ased fashion (Pazour et al, 2005; Liu et al, 2007; Mayer et al, 2008,

2009; Ishikawa et al, 2012). Comprehensive comparisons of the fla-

gellar proteome, obtained from isolated flagella, were successfully
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performed in the green alga Chlamydomonas reinhardtii by classic

biochemical methods (Pazour et al, 2005; Lechtreck et al, 2009;

Craige et al, 2010). However, such approaches using isolated organ-

elles were not feasible for mammalian primary cilia due to limita-

tions in biological material quantity, sample purity, and the

complexity of fractionation protocols used for analysis (Mayer

et al, 2008; Ishikawa et al, 2012). These limitations were overcome

by introducing proximity labeling technologies (Roux et al, 2012;

Rhee et al, 2013).

Conceptually, proximity labeling technologies are based on

genetically engineered enzymatic activities that biotinylate nearby

proteins, which are subsequently affinity purified and subjected to

mass spectrometric analysis. Ultimately, the purification and identi-

fication of biotinylated proteins do not require lengthy protocols.

Initially, an engineered ascorbate peroxidase (APEX) fused to a pep-

tide targeted to mitochondria was used to comprehensively identify

mitochondrial proteins (Rhee et al, 2013). Inspired by this approach,

this technique has now also been applied to cilia by either fusing

APEX to the first 200 amino acids of the ciliary protein

nephrocystin-3 (NPHP3, cilia-APEX) (Mick et al, 2015) or to the C-

terminus of the ciliary 5-hydroxytryptamine (serotonin) receptor 6

(Htr6/5HT6), sitting in the ciliary membrane (cm-APEX) (Kohli

et al, 2017). Proximity labeling in cilia, including recently emerged

approaches, such as BioID, to study protein spatial interactions, has

been comprehensively reviewed (Arslanhan et al, 2020; Chen

et al, 2022).

Apart from proteomic profiling of primary cilia to investigate the

consequences of mutations in cilia genes (Mick et al, 2015),

the genetically optimized, ‘high speed’ biotin ligases TurboID or

MiniTurbo (Branon et al, 2018) and APEX2 (Lam et al, 2015) will

have a significant impact on our future understanding of ciliary

dynamics due to their high temporal resolution. High enzymatic

activities and short labeling times make them ideal tools to investi-

gate temporal dynamics and, combined with targeting to subcellular

compartments, provides the spatial resolution. Cilia-APEX has

already been used to study the dynamics of ciliary Hh signaling in

vitro, identifying a new component that dynamically localizes to the

primary cilium and revealing a rapid removal of PKA from primary

cilia after pathway induction (May et al, 2021a). Moreover, APEX

labeling in the cilium also determined the role of actin depolariza-

tion on the ciliary proteome. Depolarization of branched F-actin

with cytochalasin D increased ciliary length and the abundance of

actin-binding proteins within the cilium (Kohli et al, 2017). In sum-

mary, ciliary-targeted APEX and TurboID are in a prime position

and have already started to improve the study of ciliary dynamics

on a proteomic level by providing high temporal and spatial resolu-

tion in a context-dependent manner.

Imaging primary cilia dynamics using markers and biosensors
To understand cilia dynamics, live imaging of molecules is impera-

tive, whereby imaging of primary cilia usually requires cilia-

localized fluorescent markers. So far, these approaches rely on the

expression of a fusion protein between a fluorophore and a ciliary

targeting sequence or a full-length ciliary protein, e.g., ARL13B or

somatostatin receptor 3 (SSTR3) (Borovina et al, 2010; Nakata

et al, 2012; Guadiana et al, 2013; O’Connor et al, 2013; Bangs

et al, 2015; Mick et al, 2015). Alternatives are cilia-targeted nanobo-

dies that recruit ciliary cargoes by binding and avoid changes in

protein activity or interactions upon fusion with large protein

domains (Hansen et al, 2020). Even though the identification of var-

ious cilia targeting sequences has improved our understanding of

cilia trafficking over the last decades (Nachury et al, 2010; Barbeito

et al, 2021), such motifs can be difficult to use and may not apply to

all ciliated cell types and protein types (Hansen et al, 2020). Impor-

tantly, overexpression of such constructs may lead to altered cilia

signaling and function. Careful titration of expression levels is cru-

cial to minimize artifacts while maintaining high fluorescence

levels, which are required for a fast image acquisition (Guadiana

et al, 2013; Hansen et al, 2020, 2021).

Fusion proteins and nanobodies have allowed ciliary targeting of

biosensors to detect a wide range of signaling molecules, such as

calcium or cAMP, in the cilium, providing insight into the signaling

dynamics (Delling et al, 2013, 2016; Yuan et al, 2015; Moore

et al, 2016; Mukherjee et al, 2016; Hansen et al, 2020; Mizuno

et al, 2020). Since levels of second messengers may differ in the cil-

ium versus the cell soma or other organelles, it is crucial to use bio-

sensors with the right detection range for ciliary concentrations of

second messengers (Delling et al, 2013). Moreover, even though pri-

mary cilia are not motile, they are not rigid and can also move on

the cell surface during imaging (Hansen et al, 2020). Hence, to over-

come motion artifacts, ratiometric approaches have been well imple-

mented with the use of a second fluorophore whose fluorescence is

insensitive to the second messenger under investigation (Delling

et al, 2013, 2016; Yuan et al, 2015; Moore et al, 2016; Mizuno

et al, 2020; Djenoune et al, 2023; Katoh et al, 2023). Alternatively,

FRET-based sensors naturally overcome the challenges of (i) record-

ing motion artifacts and (ii) different expression levels of the biosen-

sor between individual cells by normalization, i.e., normalizing the

FRET signal to the donor and acceptor signal (Mukherjee et al,

2016).

For unbiased, quantitative image analysis of cilia properties,

such as length, signaling state, cilia position, and its relation to cel-

lular and organ physiology, the first step is the detection and seg-

mentation of structures from 3D (x,y,z) or 4D (x,y,z,t) datasets.

Various tools have been developed to identify and track cilia on

either open-source or commercial platforms (Ruhnow et al, 2011;

Dummer et al, 2016; Ferreira et al, 2017; Hansen et al, 2018, 2021;

Lauring et al, 2019; Geyer et al, 2022; Djenoune et al, 2023).

While second messenger dynamics are usually investigated at

high temporal resolution, monitoring cilia dynamics during the cell

cycle requires prolonged live imaging. Using a cilia and cell cycle

biosensor consisting of ARL13B-Cerulean and the Fucci2a system

(Ford et al, 2018) revealed a surprising persistence of primary cilia

after the G1/S transition both in vitro and in vivo (Ford et al, 2018).

The increasing quality and availability of such tools will be

instrumental in increasing our understanding of how primary cilia

dynamics relate to the physiological output of cells and control tis-

sue development and organization.

Optogenetic and chemical tools to manipulate ciliary signaling
Optogenetic techniques of altering biochemical functions or localiza-

tion of molecules have emerged as powerful tools to study biological

processes with spatiotemporal control. The photo-activated adenylyl

cyclase (bPAC) and the light-activated phosphodiesterase (LAPD)

have been used to increase or decrease cAMP levels in cilia, respec-

tively (Jansen et al, 2015; Guo et al, 2019; Raju et al, 2019; Hansen
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et al, 2020, 2022; Truong et al, 2021). Targeting these light-regulated

enzymes to cilia or the cytoplasm allowed disentangling the contri-

bution of ciliary versus cytoplasmic cAMP levels to cell signaling

and cilia function (Hansen et al, 2020, 2022; Truong et al, 2021).

Using this approach, it was shown that (i) elevation of ciliary cAMP,

but not cytoplasmic cAMP, inhibits Hh signaling (Truong

et al, 2021), (ii) an increase in ciliary cAMP lengthens the cilium,

whereas an increase in cytoplasmic cAMP levels shortens it (Hansen

et al, 2020), and that (iii) a chronic increase in ciliary cAMP levels

promotes cyst formation in a 3D kidney epithelial cell model

(Hansen et al, 2022).

Optogenetic systems have also been used to recruit proteins of

interest, such as enzymes, to primary cilia by light-dependent

dimerization of protein domains fused to the protein of interest and

a cilia-localized partner protein. Such systems have been used to

study cell signaling (e.g., Akt and PI3K), to induce F-actin formation

and ciliogenesis, and to disrupt microtubules (Guo et al, 2019; Liu

et al, 2022; Yasunaga et al, 2022). The blue-light or red-/far-red-light

inducible protein dimerizers CIBN/GRY2 or PIF/PHYB, respectively,

were fused to the N-terminus of NPHP3 or the small GTPase

ARL13B for ciliary targeting. Furthermore, they were combined with

the binding domains of the Microtubule-Associated Protein 4

(MAP4m) or the actin-binding domain of Ezrin for recruitment to

microtubules or F-actin, respectively (Guo et al, 2019; Hansen

et al, 2020; Liu et al, 2022; Yasunaga et al, 2022). As described

above, nanobody-dependent protein recruitment into cilia has

proven successful and has also been applied to optogenetic tools

(Hansen et al, 2020). Such an approach was combined with photo-

switchable nanobodies that alter protein binding-ability upon blue

light illumination to achieve temporal control over protein localiza-

tion, e.g., targeting to actin (Gil et al, 2020). These tools employ the

light-oxygen-voltage domain 2 (LOV2), which reversibly changes

conformation in a light-dependent manner (He et al, 2021).

Not only optogenetics but also chemogenetics have been used to

localize proteins to primary cilia. Here, protein recruitment is induced

by protein dimerization upon addition of small molecules. Two hall-

mark studies used the rapamycin-inducible dimerization of FKBP-FRB

(FK506 Binding Protein, FKBP Rapamycin Binding-Domain) to charac-

terize the ciliary diffusion barrier that maintains cilium integrity

(Breslow et al, 2013; Lin et al, 2013). The FKBP-FRB system has also

been applied to study protein trafficking into primary cilia via IFT

complexes. In this case, induced dimerization has been used to

deplete IFT proteins from cilia and trap them at mitochondria, also

referred to as “knocksideways” (Eguether et al, 2018). The outcome

of these experiments suggested that IFT is dispensable for SMO trans-

port to primary cilia, as previously suggested (Milenkovic et al, 2009).

Such methods for inducible inactivation will not only allow the inves-

tigation of ciliary components that lead to a loss of cilia, such as IFT

complexes, but will also allow discriminating primary from secondary

effects that classic genetic approaches may miss.

Chemogenetics were also used to manipulate second messenger

dynamics in primary cilia by DREADDs (Designer Receptors Exclu-

sively Activated by Designer Drugs), which are engineered GPCRs

activated by otherwise inert small molecules. Applying DREADDs in

cilia revealed that (i) neuronal primary cilia length is controlled by

ciliary cAMP signaling, (ii) ciliary cAMP shapes the development of

interneuronal connectivity, (iii) ciliary Ca2+ and cAMP signaling

alters axonal behavior, and (iv) ciliary cAMP controls Hh

signaling (Truong et al, 2021; Alhassen et al, 2022). Altogether,

these studies highlight that both light- and chemically inducible

approaches allow specific manipulation of ciliary processes,

whereby the consequences of protein perturbation for cilia can be

temporally dissected.

How do primary cilia control tissue organization
and function?

Primary cilia are key determinants of tissue organization and func-

tion. In the following section, we highlight findings that demon-

strate the importance of the different levels of primary cilia

dynamics in controlling tissue organization during embryonic devel-

opment and show how dysfunction of primary cilia dynamics leads

to diseases. We focus on tissue types in which cilia dynamics at the

defined levels (compositional, signaling, and assembly/disassem-

bly) have been characterized in sufficient detail, and which has not

been extensively described in recent reviews.

Primary cilia dynamics during development and disease
Primary cilia are required for tissue and organ formation, where

they are dynamically assembled and disassembled in developing tis-

sues during morphogenesis (Fig 3A). As such, loss of primary cilia

causes severe developmental defects in humans and in animal

models. Many ciliopathies are either embryonic lethal or character-

ized by morphological malformations and impaired organ forma-

tion, arising from misguided developmental processes (Goetz &

Anderson, 2010; Reiter & Leroux, 2017; Anvarian et al, 2019).

Primary cilia dynamics in the left–right organizer

A classic example of cilia function in vertebrate development is the

specification of the left–right (LR) body axis, which allows the

development of asymmetric organs, including the heart, lungs, and

intestine (Hamada, 2020; Little & Norris, 2021). During late gastrula-

tion and neurulation, most vertebrate embryos form a transient, cili-

ated structure that acts as a left–right organizer (LRO), called the

node in mammals, the gastrocoel roof plate in amphibians, and

the Kupffer’s vesicle in teleost fish (Blum et al, 2014). To break the

initial bilateral symmetry, medially located cells of the LRO form

motile monocilia with a ‘9 + 0’, ‘9 + 2’, or ‘9 + 4’ MT arrangement

(Feistel & Blum, 2006; Odate et al, 2016), which are posteriorly

tilted while they are growing (Schweickert et al, 2007) and which

rotate clockwise (Nonaka et al, 1998). This generates a cilia-driven,

leftward fluid flow, a dynamic physical process which, in conse-

quence, induces differential gene expression. Laterally located cells

of the LRO harbor primary cilia that sense fluid flow, which leads to

de-repression of the TGFb family signaling molecule Nodal on the

left side of the embryo (Schweickert et al, 2010; Maerker

et al, 2021). Nodal induces its own expression and the expression of

downstream factors in the left lateral plate mesoderm and heart

anlage, which instructs asymmetric organ morphogenesis

(Schweickert et al, 2017). Defective motile or primary cilia forma-

tion and function lead to abnormal asymmetric organ placement,

called situs inversus, when a complete mirror-image orientation

develops, and situs ambiguus, when left and right sides are dupli-

cated (left or right isomerism) or when individual organs are

inverted (heterotaxia) (Fliegauf et al, 2007).
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The role of primary cilia in dynamic flow sensing and that of

ciliary ion channels from the PKD family in generating dynamic

ciliary calcium transients has been described above (section 2.1).

Additionally, two orphan GPCRs, Gpr22 and Gpr161, the latter

being a well-established Hh signaling component (Mukhopadhyay

et al, 2013), were implicated in LRO function in the zebrafish

Kupffer’s vesicle using morpholino-based knock-down studies

(Leung et al, 2008; Verleyen et al, 2014). Loss of Gpr22 causes

abnormal axoneme formation and changes in Gpr22 levels affect

cilia length, while loss of Gpr161 perturbs calcium dynamics.

However, their precise signaling functions in left–right develop-

ment are not understood, and the role of Gpr161 is being debated,

because genetic knockouts and CRISPR-mediated mutations did

not lead to laterality defects in mice and zebrafish, respectively

(Mukhopadhyay et al, 2013; Verleyen et al, 2014; Tschaikner

et al, 2021). In summary, the identity and the dynamic sensing of
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physical and chemical cues through primary cilia in the LRO is

only partially understood.

Furthermore, because the LRO is a transient structure, ciliated

cells have to precisely coordinate (i) proliferation to generate an

appropriate number of LRO cells with (ii) cilia formation to generate

and sense fluid flow, and (iii) cilium disassembly, which proceeds

after left–right asymmetry is established and that is required for

LRO cells to contribute to the formation of other developing tissues

(e.g., the notochord and the somites).

Furthermore, how primary cilia formation in the LRO is deter-

mined also remains an open question. The specification of motile

monocilia of the LRO is induced by cell signaling, i.e., canonical

WNT signaling, which regulates the expression of foxj1, the master

motile cilia inducer (Stubbs et al, 2008; Caron et al, 2012; Walentek

et al, 2012). In the developing Xenopus embryo, both medial and

lateral LRO cells express foxj1 and form motile cilia. Nevertheless,

differences in mechanical strain dynamics during gastrulation that

medial versus the lateral LRO cells experience during cilia formation

lead to differential trafficking of the motile cilia-specific protein

Tektin2 only into motile cilia at the center of the LRO (Chien

et al, 2018). Thus, the lateral LRO forms primary (flow-sensing) cilia

in low mechanical strain conditions that affect ciliary protein traf-

ficking. However, the molecular mechanism underlying this differ-

ential mode of ciliary compositional dynamics deciding between

different types of cilia formation remains enigmatic.

Similarly, how the cell cycle of LRO cells is synchronized to

allow for transient cilia formation throughout the entire structure

remains elusive. Initial evidence from zebrafish indicates that the

regulation of proliferation in LRO precursors needs to be tightly con-

trolled to generate sufficient Kupffer’s vesicle cell numbers (Gokey

et al, 2016) and to stabilize Foxj1, indicating potential effects on the

decision between motile and sensory LRO cilia (Liu et al, 2019).

Similarly, interfering with the cilia retraction pathway disrupts left–

right patterning, as demonstrated in mice haploinsufficient for Pitch-

fork (PIFO), which regulates cilia disassembly through AURKA acti-

vation (Kinzel et al, 2010). These mice have abnormal cilia and

defective ciliary protein trafficking, but how that affects LRO signal-

ing has not been investigated. Thus, while the essential role of pri-

mary cilia in vertebrate left–right axis development is widely

accepted, open questions remain regarding protein trafficking, cell

cycle control, and ciliary signaling dynamics during the process.

Primary cilia dynamics during neural tube development

Prominent examples of primary cilia dynamics in development are

also found during all phases of nervous system formation, e.g., the

morphogenetic movements leading to cranial neural tube closure

or during Shh-mediated patterning of the developing brain and

neural tube.

One of the first dynamic processes with regard to primary cilia is

their positioning in neuroepithelial cells. During polarization and

epithelialization of the neuroepithelium in zebrafish, basal bodies

move from a position close to the nucleus towards the apical mem-

brane of neuroepithelial cells (Hong et al, 2010). As the apical

aspects of neuroepithelial cells will establish the lining of the neural

tube lumen (Fig 3B and C), apical positioning of the basal body is a

prerequisite step to position a primary cilium on the ventricular sur-

face of the central nervous system.

Primary cilia signaling is already active at neural plate stages,

i.e., before a ventricular surface is established by neural tube clo-

sure or neural rod cavitation. Manipulation of Shh signaling alters

target gene expression already in neural plate epithelial cells

(Walentek et al, 2015; Brooks et al, 2020). In the early neurula

embryo, the presence and physiological function of primary cilia is

clearly required to transform the neural plate epithelium into a

closed neural tube (Huangfu et al, 2003; Caspary et al, 2007;

Ashique et al, 2009; Mukhopadhyay et al, 2013; Manojlovic et al,

2014; Shimada & Mukhopadhyay, 2017). There is, however, a

region-specific requirement for primary cilia function in neural tube

closure. Neural tube closure defects in primary cilia mutant mice

generally affect the cranial region, resulting in exencephaly, while

neural tube closure in the trunk region is commonly not affected

(Murdoch & Copp, 2010; Wallingford & Mitchell, 2011). Yet, not all

primary cilia defects impair cranial neural tube closure. The picture

has emerged that impaired signaling dynamics – specifically leading

to upregulation of Shh signaling – induces exencephaly (Murdoch &

Copp, 2010; Wallingford & Mitchell, 2011; Mukhopadhyay et al,

2013; Shimada & Mukhopadhyay, 2017; Brooks et al, 2020; Hwang

et al, 2021). This is prominently exemplified by defects in the IFT-

A/TULP3/GPR161 complex, a prerequisite for Hh signaling dynam-

ics. IFT-A core proteins together with TULP3 facilitate ciliary access

for GPR161, a prerequisite for the repression of Hh signaling

(Mukhopadhyay et al, 2010, 2013). Mutations in or loss of IFT-A/

TULP3/GPR161 prevent complex formation and, thus, impair ciliary

◀ Figure 3. Primary cilia dynamics during tissue development.

(A) Primary cilia dynamics in tissue morphogenesis. From left to right: Cilium retraction and assembly (purple arrows) during proliferation (purple curved arrow), apical

constriction, and cell delamination. (B, C) Primary cilia dynamics during neural tube closure. (B) Transverse view of the neuroepithelium (dark gray cells) flanked by

non-neural ectoderm (light cells); short primary cilium retraction and assembly during cell proliferation (purple and purple curved arrows) occurs differentially along

medial-to-lateral (med./lat.) axis, which becomes the ventral-to-dorsal (V/D) axis during neural fold elevation. (C) Upon neural tube closure, cilia on the ventral (V) floor

plate elongate dynamically, while cilia on lateral and dorsal (D) aspects of the neural tube remain short. (D) Primary cilia dynamics during brain development. Left: Api-

cal progenitors’ (AP) cilia are located at the apical surface of the neural epithelium (NE) in direct contact with embryonic cerebrospinal fluid (CSF). Right: Two different

examples of ciliary dynamics upon neuronal differentiation. Top: The cilium is re-assembled within the neuronal tissue following cell division, away from embryonic

CSF. Bottom: Apical abscission removes the cilium from the differentiating neuron. The cilium will eventually be re-assembled away from the apical surface of the NE.

This leads to a transition from canonical to non-canonical Hh signaling. (E) Primary cilia dynamics in the retinal pigment epithelium (RPE). Left: Cross-section of the

vertebrate eye. The apical processes of pigmented RPE cells (purple) engulf the outer segments of the light-sensitive photoreceptors (beige). Middle/Right: A short pri-

mary cilium (red) can be detected from E14 onwards. Primary cilia are longest and most abundant at E16, before disassembling around birth. Disassembly of the pri-

mary cilium precedes extension of actin-based apical processes. (F) Primary cilia dynamics in the pancreas. An adult mouse pancreas (left) comprises a network of

ducts (brown) terminated by acini (top), forming the exocrine pancreas. A section of a large duct displayed on the right shows cilia on ductal cells (red), pointing

towards the lumen. The islets of Langerhans (bottom) are located close to ducts and assemble multiple endocrine cells, which harbor a cilium on their lateral surface

(red). The direction of fluid flow and the direction of cilia movement are indicated with blue arrows. Parts of the figure have been created using Biorender.
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localization of GPR161, leading to overactivation of Hh signaling

and, as a result, exencephaly (Qin et al, 2011; Liem et al, 2012;

Hwang & Mukhopadhyay, 2015). It has recently been shown that

the spatial dynamics of Shh signaling instruct regionalized apical

constriction, a cell shape change that brings about tissue deforma-

tion (Fig 3B and C). Although apical constriction occurs along the

entire length of the neural plate, it is essential for cranial neural

tube closure (Brooks et al, 2020). Although the underlying

molecular mechanisms are not fully understood, calcium influx

upon non-canonical Shh signaling and the subsequent calcium-

mediated activation of myosin-driven actin meshwork contraction

likely play a role (Belgacem & Borodinsky, 2011; Adachi et al,

2019).

Morphogenetic re-arrangements in the cranial region, especially

(defective) neural tube closure, are readily visible readouts of pri-

mary cilia-mediated signaling dynamics in the embryo. Yet, cell-

fate specification occurs “invisibly” at the same time. Dorso-ventral

patterning of the emerging neural tube is already being established

along the medial-to-lateral axis of the neural plate, which is trans-

formed into a ventral-to-dorsal (or dorsoventral, DV) axis as the

neural plate folds and fuses into a tube (Fig 3B and C). Here, cell-

fate specification depends on opposing morphogen gradients:

WNT/BMP (Bone Morphogenetic Protein), emanating from the lat-

eral aspects of the neural plate (the future dorsal roof plate), and

Shh, secreted from the midline (the future ventral floor plate). This

establishes six distinct progenitor domains in the ventral part of the

trunk neural tube and specifies V0-V3 interneurons, motor neurons,

and the floor plate (Jessell, 2000; Ribes et al, 2010). All cells dis-

play a short primary cilium during patterning in the open neural

plate (Fig 3B). Upon neural tube closure, primary cilia length is

dynamically adjusted: while primary cilia on Shh-receiving cells

remain short, cilia on Shh-expressing floor plate cells that express

foxj1 elongate, concomitant with an attenuation of Shh signaling in

the floor plate (Fig 3C) (Cruz et al, 2010). Over time, the niche of

cells with elongated cilia expands in the dorsal direction, matching

the shift of Shh responsiveness (Ribes et al, 2010). Similarly,

dynamically elongating primary cilia are found in other regions of

the neural tube that express foxj1, i.e., the zona limitans intrathala-

mica (ZLI), isthmic organizer, and rhombomere boundaries

(Hagenlocher et al, 2013). The floor plate, ZLI, isthmic organizer –

and possibly also the rhombomere boundaries, which express Hh

signaling components (Perron et al, 2003) – serve as signaling cen-

ters with crucial roles in embryonic brain patterning via Shh signal-

ing (Kiecker & Lumsden, 2012). The dynamic regulation of cilia

length in these signaling centers seems to fine-tune Shh signaling

and adapt it to the spatio-temporal requirements of Shh-mediated

patterning (Cruz et al, 2010; Ribes et al, 2010). Interestingly, the

composition and function of elongated primary cilia in signaling

centers continue to be adapted: under the influence of foxj1, elon-

gated cilia will acquire motile cilia features (Yu et al, 2008; Cruz

et al, 2010; Hagenlocher et al, 2013). It is currently unknown

whether they retain their function as dynamic modulators of Shh

signaling, gain mechanosensory functions, or generate extracellular

fluid flow that influences Shh ligand distribution. Since motile cilia

have been shown to transduce Hh signaling in sea urchin larvae

(Warner et al, 2014), it can be envisioned that elongated motile-like

cilia in the floor plate retain a sensory function for Hh and other

potentially other pathways.

Primary cilia dynamics during brain development

To understand the importance of primary cilia dynamics in mamma-

lian brain development, it is worth considering the complexity of

the developing mammalian brain, which contains various progeni-

tors that divide, differentiate, and migrate to eventually form several

neocortex layers (Rakic, 1995; Goetz & Huttner, 2005; Huttner &

Kosodo, 2005). During the early stage of neocortex development,

the neuroepithelial cells of the anterior neural tube expand and gen-

erate radial glial stem cells (RGs), forming an apical ventricular

zone (VZ) that contains apical progenitors (Rakic, 1995; Florio &

Huttner, 2014). Through asymmetric division, in which the two

daughter cells eventually acquire different fates, apical progenitors

give rise to other progenitors, forming different germinal zones,

including the inner and the outer subventricular zones, separated by

an inner fiber layer. This heterogeneity of layered neural progenitor

cell (NPC) populations is determined by cell cycle length, mode of

cell division, and by cell polarity, and is critical for neurogenesis,

thereby contributing to the massive expansion of the human neocor-

tex. NPCs eventually differentiate and give rise to neurons, which

migrate to their target destination in the developing brain. Any

defect in NPC proliferation and differentiation can elicit malforma-

tion of the neocortex, leading to neurodevelopmental defects like

microcephaly, macrocephaly, or heterotopia (Hill & Walsh, 2005;

Jayaraman et al, 2018; Pinson et al, 2019; Gabriel et al, 2020).

Given the role of primary cilia in controlling cell division,

cell polarity, and cellular communication, it is not surprising

that primary cilia dysfunction affects NPCs and neurons and,

thereby, underlies several neurodevelopmental disorders (Han &

Alvarez-Buylla, 2010; Paridaen & Huttner, 2014; Liu et al, 2021; Suciu

& Caspary, 2021; Stoufflet & Caill�e, 2022; Zaidi et al, 2022). Notably,

apical progenitors, which generate other progenitor types upon sym-

metrical or asymmetric cell division, exhibit a primary cilium at the

apical surface, projecting into the lumen of the ventricular zone (VZ)

in vertebrate brain (Wilsch-Br€auninger & Huttner, 2021).

In this review, we limit our discussions about the role of primary

cilia dynamics in brain development to the timely cilium disassem-

bly and re-assembly in NPCs and differentiating neurons, and the

signals associated with these dynamic ciliary processes.

Delayed cilia disassembly in NPCs was identified in several stud-

ies modeling developmental brain defects due to mutations in the

basal body or ciliary genes such as CPAP, NDE1, WDR62, RRP7A,

Tctex-1, and LPRA1 (Li et al, 2011; Gabriel et al, 2016; Tan

et al, 2017; Zhang et al, 2019; Farooq et al, 2020; Hu et al, 2021). As

cilium disassembly is required before mitosis to free the centrioles

for cell division, the working model suggests that apical progenitors

that exhibit a delay in cilia resorption could impact on cell prolifera-

tion. Thereby, the NPC pool is diminished, and NPC fate is changed,

leading to defects in neocortex formation (Gabriel et al, 2016; Zhang

et al, 2019). However, a detailed analysis of NPC fate and pool com-

position upon delayed ciliary disassembly is missing and will

require single-cell RNA sequencing studies. Furthermore, to what

extent and which of the specific ciliary signals are perturbed when

cilium disassembly in NPCs is delayed and how the different signal-

ing pathways affect brain development, is also not known.

Similar to cilium disassembly, cilium formation in NPCs also

needs to be tightly controlled. Cilium formation requires first

centriolar appendages to anchor the mother centriole at the plasma

membrane, followed by Golgi-derived vesicle docking to the distal
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end of the mother centriole, and elongation of the microtubule-

based axoneme. Alterations in any of these processes were shown

to impact the proliferative capacity of the neural progenitors, as

indicated hereafter. Notably, a mutation in a microtubule-associated

protein, EML1, resulted in a shorter cilium and was sufficient to

cause the mislocalization of progenitors in the developing neocortex

leading to heterotopias (Uzquiano et al, 2019). Mutations in a distal

appendage protein, CEP83, inhibit ciliogenesis and lead to megaloce-

phaly, a condition with an increased abundance of neural progeni-

tors, for which the underlying mechanisms remain unknown (Shao

et al, 2020b). Finally, loss of the phosphatase Inpp5e that controls

the phosphoinositide composition of the ciliary membrane resulted

in shorter primary cilia with altered membrane structure, leading to

neocortex defects in mice (Bielas et al, 2009; Jacoby et al, 2009).

The timing of cilium reassembly also controls NPC fate, as it has

been shown that inheritance of ciliary membrane remnants after dis-

assembly results in faster cilia re-assembly and, thereby, promotes

stemness during asymmetric division of apical progenitors (Paridaen

et al, 2013).

Dynamic ciliary assembly/disassembly processes have also been

observed in early differentiating neurons. Here, we will highlight

two examples and their consequences on ciliary signaling. First, in

mice, it was shown that following asymmetric division, the daughter

cell, which will become a neuron, rebuilds its cilium on the basolat-

eral rather than the apical plasma membrane, which is exposed to

embryonic cerebrospinal fluid (CSF) (Wilsch-Br€auninger et al, 2012;

Paridaen et al, 2013) (Fig 3D). Since embryonic CSF is enriched in

pro-proliferative molecules that provide a particular environment

for progenitor cells (Wilsch-Br€auninger et al, 2012; Fame &

Lehtinen, 2020), it raises the question of whether repositioning the

cilium away from the ventricle potentially turns off ciliary signaling

from the CSF. Second, in the chick neural tube, another process,

referred as to apical abscission, was shown to cut away most of the

cilia from the apical membrane of the neuron-to-be (Das & Sto-

rey, 2014; Toro-Tapia & Das, 2020) (Fig 3D). Following abscission,

the cilium reassembles rapidly at the tip of the apical process during

its retraction from the ventricular surface. Importantly this dynamic

dis�/re-assembly process was shown to correspond to a switch

from canonical to non-canonical Hh signaling in the differentiating

neurons (Das & Storey, 2014; Toro-Tapia & Das, 2020). Taken

together, these two examples show that the dynamic regulation of

cilia assembly/disassembly can modulate the response of a differen-

tiating neuron to its signaling environment.

Altogether, primary cilia dynamics regulate several aspects of

brain development, from controlling progenitor division, neuronal

differentiation, and migration to forming a fully functional brain.

Understanding the principles of cilia dynamics and its regulatory

roles will be instrumental for decoding mechanisms of brain

development.

Primary cilia dynamics during the development of the retinal pigment

epithelium

The vertebrate eye is a complex organ, consisting of multiple inter-

connected cell types with specialized functions. Numerous ocular

cell types display a primary cilium (May-Simera et al, 2017).

Undoubtedly, the best-studied ciliated cells in the visual system are

the retinal photoreceptors, whose connecting cilium and outer seg-

ment build a ‘photoreceptor connecting cilium’, which has been

extensively studied. Many excellent reviews have described the for-

mation, structure, and function of this specialized cilium (Ramamurthy

& Cayouette, 2009; Bachmann-Gagescu & Neuhauss, 2019; Chen

et al, 2021). While the trafficking of molecules into and out of this cil-

ium is highly dynamic, the structure itself is predominantly static once

it is formed. However, the closely associated retinal pigment epithe-

lium (RPE), a monolayer of highly specialized, tightly connected polar-

ized cells, harbors a dynamic primary cilium that controls the

differentiation, maturation, and function of the RPE.

During RPE development, the primary cilium is a highly dynamic

structure that, in mice, can first be identified around embryonic day

14 (E14), is most abundant at E16.5, and are shorter and less abun-

dant post birth (P0) (Nishiyama et al, 2002; Patnaik et al, 2019)

(Fig 3E). Although a few cells remain ciliated, the majority of RPE

cells lack primary cilia in the adult state. Similar to the in vivo

expression in the mouse, the emergence of primary cilia on human

induced pluripotent stem (hiPSC)-derived RPE cells temporally coin-

cides with the maturation of cells and precedes the final phases of

maturation (May-Simera et al, 2018). Intriguingly, hiPSC-derived

RPE cells maintain cilia post-maturation, which do not appear to

disassemble (May-Simera et al, 2018). However, these results raise

the question whether cilium disassembly is dependent on or trig-

gered by interactions and connections with the outer segments of

adjacent photoreceptor cells or whether the differences seen are

species-specific.

As in all epithelial tissues, the development and maturation of

the RPE are orchestrated via a complex cascade of signaling path-

ways. Work from ciliopathy mutant mouse models, as well as cilio-

pathy patient-derived hiPSC-RPE cells has shown that the temporal

and spatial modulation of WNT signaling by the primary cilium is

particularly important, which is likely regulated via the dynamic

presence of the cilium (May-Simera et al, 2018; Patnaik et al, 2019;

Schneider et al, 2021). Initially, activation of b-catenin drives the

expression of early transcription factors MITF, OTX2, and PAX6

(Westenskow et al, 2009; Bharti et al, 2012; Fujimura et al, 2015)

whereas later, dampening of b-catenin activity is required for matu-

ration and polarization of the tissue (Westenskow et al, 2009;

Hagglund et al, 2013; Fujimura et al, 2015). Consequentially, disrup-

tion of ciliary dynamics in the RPE leads to defects in development

and maturation, ultimately affecting tissue homeostasis and func-

tion. Since the RPE is intricately connected with the outer photore-

ceptor segments, any aberrations to ciliary dynamics in the RPE

could significantly affect the neuroretinal tissue and visual function.

Primary cilia dynamics in skeletal development

Three different embryonic cell lineages define mammalian skeletal

development: (i) paraxial mesoderm cells form somites and, in turn,

the axial skeleton, (ii) lateral plate mesoderm cells form the limb

skeleton, and (iii) neural crest cells give rise to the craniofacial skel-

eton (Horton, 2003). Long bone formation occurs via chondral ossi-

fication. First, a primordial skeleton forms when mesenchymal cells

condensate and differentiate into chondrocytes to form hyaline carti-

lage. Second, transformation from cartilage to bone occurs through

continuous degradation of cartilage by chondroclasts and replace-

ment with bone by osteoblasts. Bone length is increased at the so-

called epiphyseal growth plates by chondrocyte proliferation and

differentiation into hypertrophic chondrocytes, which change their

extracellular matrix deposition for mineralization.
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During in-vitro chondrocyte differentiation, cilia length is dynam-

ically regulated with increasing cilia length in further differentiated

cells (Upadhyai et al, 2020). In contrast, mechanical stress in form

of compressive loading reversibly reduces cilia length and ciliation

per se (McGlashan et al, 2010). Thus, it has been proposed that

chondrocyte primary cilia sense peripheral tissue deformation and

mechanical properties via extracellular matrix receptors, e.g.,

integrin alpha2-, �alpha3, and -beta1 as well as the chondroitin sul-

phate proteoglycan 4 (NG2), which have been localized to the cili-

ary membrane (McGlashan et al, 2006).

Primary cilia-controlled Hh signaling dynamics have been pro-

posed to play a major role in regulating hypertrophic differentiation

and proliferation (Ohba, 2020). Further, Hh signaling in the limb

buds is crucial for digit patterning, and defects in Hh signaling result

in poly(syn)dactyly (Litingtung et al, 2002). While other cell signal-

ing pathways, such as WNT and FGF signaling, are important for

growth plate patterning, their role in primary cilia and their dynam-

ics during skeletal development is largely unknown.

Several ciliopathy phenotypes share polydactyly as a common

hallmark, including the short rib thoracic dysplasia (SRTD), short

rib polydactyly syndrome (SRPS) spectrum (all caused by cytoplas-

mic dynein-2 or IFT mutations), Ellis-van Creveld (EVC) syndrome

(EVC1/EVC2 gene mutations), BBS (caused by BBS mutations),

Meckel-Gruber Syndrome (MKS mutations in 13 different genes), or

Oro-Facial-Digital syndrome (OFD, OFD1 mutation) (Braun &

Hildebrandt, 2017). SRTD, SRPS, and EVC are additionally charac-

terized by shortened long bones and ribs, resulting in short stature

as well as a narrow thorax causing pulmonary deficits.

The most common genetic cause of SRTD are mutations in the

retrograde IFT motor complex dynein-2, followed by mutations in

the IFT-A complex, while mutations in IFT-B genes or in genes

encoding for proteins localized at the ciliary base, such as NEK1,

are rarely identified (Schmidts, 2014; Zhang et al, 2018). Thus, cilio-

genesis and the compositional protein dynamics controlled by the

IFT machinery seem to play a key role in skeletal development.

In contrast to other ciliopathies, STRD patients usually carry par-

tial loss-of-function (hypomorphic) IFT- or dynein-2 alleles. In mice,

loss of IFT or dynein-2 genes leads to early death during embryonic

development (Gorivodsky et al, 2009; Ocbina et al, 2009, 2011) due

to cilia loss or severe cilia shortening (Pazour et al, 2000; Ocbina &

Anderson, 2008; Jonassen et al, 2012; Liem et al, 2012). However,

these ciliary defects are not observed in patient-derived cells but

instead, accumulation of IFT particles at the ciliary tip has been

described (Arts et al, 2011; Schmidts et al, 2013, 2015; Doornbos

et al, 2021). Regulation of IFT needs to be highly dynamic to enable

fast adaptation to the rapidly changing cellular needs, including pri-

mary cilium assembly and disassembly, signal transduction upon

extracellular stimuli as well as cell signaling receptor activation with

fast-changing IFT cargo. This requires a flexible, easily changeable

IFT loading and cargo binding system. However, while IFT function

is required for cellular differentiation, maintenance, and survival,

individual functions of the multiple IFT-complex components and

their role during mammalian development have remained largely

elusive due to the complete loss of cilia upon knockout of IFT or

dynein-2 genes, and relevant patient tissues are not available.

Human SRTD phenotypes differ markedly when comparing

patients carrying disease-causing mutations in IFT-A, IFT-B, or

dynein-2 genes: for example, ectodermal dysplasia features affecting

hair or nails are often observed for IFT-A but not for IFT-B or

dynein-2 mutations, while the childhood-onset retinal or renal dis-

ease is common in IFT-patients but not in dynein-2 patients. In con-

trast, individuals affected by dynein-2 dysfunction commonly

present with more severe skeletal features than IFT patients

(Schmidts, 2014). However, the underlying molecular mechanisms

are not understood. Potentially, qualitative or quantitative differ-

ences in Hh signaling during skeletal development could play a role

as well as gene-specific effects on other cell signaling pathways reg-

ulating chondrocyte differentiation and proliferation such as WNT,

BMP, or FGF signaling.

Mechanistically, data from mouse models strongly suggest that

Hh signaling defects during embryonic limb bud development

underlie polydactyly development (Huangfu et al, 2003; Liu et al,

2005a; Ruiz-Perez & Goodship, 2009; Yin et al, 2009). Furthermore,

primary cilia dynamics also control endochondral bone formation

(Haycraft et al, 2007). Whether other mechanisms that regulate cili-

ary Hh signaling dynamics also play a role in skeletal development,

is not fully understood.

More recently, the interaction between ciliary cAMP and protein

kinase A (PKA) signaling has been demonstrated, and heterozygous

or mosaic loss of the PKA subunits PRKACA or PRKACB in humans

results in a phenotype overlapping with SRTD, including polydac-

tyly, brachydactyly, and short stature (Abraham et al, 2022). How-

ever, the effect of human IFT-dynein disease alleles on ciliary cAMP

dynamics and PKA signaling has not been studied to date. Besides

PKA, also several other protein kinases, which, at least partially,

exert their function through primary cilia, play an essential role dur-

ing mammalian skeletal development and patterning (Abraham

et al, 2022). Human disease alleles in NEK1, NEK9, CILK1, and

FGFR3 result in skeletal ciliopathy phenotypes, which overlap with

IFT-dynein-2 phenotypes (Abraham et al, 2022). NEK1 has been

shown to regulate cilium disassembly (Al-Jassar et al, 2017) and cili-

ary length, whereas mutations in Dyrk2 alter ciliary length and

cause accumulation of GLI2 and GLI3 at the ciliary tip, leading to

loss of Hh target gene expression (Abraham et al, 2022).

In summary, while IFT represents the dynamic supply chain and

lifeline for cilia in general, disturbances foremost result in severe

skeletal developmental defects. While Hh signaling defects have

been clearly linked to skeletal developmental disorders in verte-

brates, putative contribution of other cell signaling defects have

remained elusive. Further, clear genotype–phenotype correlations

observed with hypomorphic human disease alleles strongly suggest

gene-specific functions for cilia dynamics, regulating developmental

cell signaling pathways at the growth plate, and, as a consequence,

chondrocyte differentiation and proliferation. Loss of cilia as a con-

sequence of IFT- or dynein-2 biallelic null mutations/knockouts has

hampered in vivo studies to investigate such gene-specific functions.

The generation of hypomorphic human disease alleles in vitro and

in vivo models would be one way to tackle this issue, including

gene-specific effects on the regulation of Hh signaling at the growth

plate and the putative contribution of other cell signaling pathways.

Ciliary dynamics in pancreas development

Similar to the RPE, the pancreatic tissue also shows dynamic pres-

ence of primary cilia in the different cell types. Cilia are known to

be present in several cell types of the pancreas, notably in ductal

(Boquist, 1968; Aughsteen, 2001), centroacinar, and endocrine cells
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in the adult organ (Munger, 1958; Yamamoto & Kataoka, 1986)

(Fig 3F). However, the most numerous cells, the exocrine acinar

cells, which synthesize and secrete digestive enzymes, do not har-

bor cilia (Cano et al, 2004). During mouse development, cilia have

been reported in the pancreas as early as E12.5, and can be detected

at all developmental stages on the pancreas progenitors. While their

endocrine and ductal daughter cells are ciliated, their acinar daugh-

ters are not (Cano et al, 2004), leaving unclear whether this is

caused by a primary cilia loss or different populations of progeni-

tors. Moreover, how cilia numbers, length, and orientation changes

over time is not established yet. Cilia control exocrine ductal cell

development and homeostasis as well as endocrine cell function.

Loss of cilia dynamics in mouse mutants that exhibit either short-

ened cilia, such as Orpkd/Tg737/Ift88 knockout (KO) mice, or even

complete cilia loss, such as Kif3a KO mice, exhibit enlarged ducts

by the end of development at E18.5, and develop large cysts by P4

and subsequently acinar cell resorption. These acinar cells are

replaced by fat tissue in the Kif3a KO, and periductal fibrosis is

observed (Cano et al, 2004, 2006). The defect in progenitors and

ductal cells, which harbor cilia, appears to be the primary defect,

whereas the acinar cell defects are a secondary consequence (Cano

et al, 2004, 2006). Pkd2 knock-out mice, causing persistent primary

cilia signaling (Gerakopoulos et al, 2020), develop pancreatic cysts

as early as E14.5, indicating that ciliary signaling is already present

in this developmental stage. Similarly, mice that lack Hnf6, a gene

necessary to form cilia during development, display dilated ducts at

E14.5 (Pierreux et al, 2006). Thus, the dynamics of when and where

cilia are formed during embryonic development seem to be impor-

tant for pancreas development.

Understanding the signaling function of primary cilia in the pan-

creas has proven to be difficult and so far, the prevalent hypothesis

is that cilia sense flow (Fig 3F), although the dynamic response of

pancreatic cilia to flow is not yet documented. In addition, chemical

sensing, i.e., of Shh, has been detected (Nielsen et al, 2008).

Pancreatic defects have been reported in a subset of ciliopathies,

whose understanding might help to shed light on how primary cilia

and their compositional and signaling dynamics control pancreatic

tissue organization and function (Braun & Hildebrandt, 2017;

Reiter & Leroux, 2017; Srivastava et al, 2017; Luo & Tao, 2018). Pan-

creatic cysts and/or fibrosis have been reported upon mutation

Nephronophtisis-causing genes that mainly encode proteins associ-

ated with the base of the cilium or IFT (Bergmann et al, 2008; Frank

et al, 2013; Halbritter et al, 2013; Moalem et al, 2013; Grampa

et al, 2016). Pancreatic fibrosis has also been observed in other cilio-

pathies, including the Jeune asphyxiating thoracic dystrophy, the

oral-facial-digital syndrome type 1 (OFD1), and renal-hepatic-

pancreatic dysplasia (Bernstein et al, 1987; Yerian et al, 2003;

Chetty-John et al, 2010).

Diabetes is detected in syndromic ciliopathy patients with obe-

sity, such as Bardet-Biedl or Alström syndrome (Green et al, 1989;

Girard & Petrovsky, 2011). The reported cause of diabetes appears

to be either dysfunction of beta cells, which we elaborate upon

below, or insulin sensitivity defects in their target tissues. Patients

with Alström syndrome carry mutations in the ALMS1, which

encodes for ALMS1, a protein that is localized to the ciliary base

and centrosomes and is highly expressed in pancreatic islets (Hearn

et al, 2005). Accordingly, Alms1 knock-out mice show degranula-

tion of b-cells and islet cysts (Collin et al, 2005; Arsov et al, 2006).

In contrast, at least in some BBS knock-out mouse models, insulin

sensitivity was not impaired and they displayed normal glucose tol-

erance (Marion et al, 2012). Postnatal depletion of cilia in Ift88

knock-out mice as well as global loss of Bbs4 in mice progressively

reduce insulin secretion (Gerdes et al, 2014; Volta et al, 2021). The

underlying mechanisms are, however, still under investigation, but

may include calcium signaling via GABA (Sanchez et al, 2023) as

well as EphA3 phosphorylation (Volta et al, 2021). A recent study

suggested that b-cell cilia oscillate and that this motion promotes

insulin secretion, a surprising finding that will be worth follow-up

studies (Cho et al, 2022). Cilia on endothelial cells are also neces-

sary for the high-density vascularization of islets (Xiong et al, 2020).

In summary, primary cilia dynamics are important during pan-

creatic development. However, the molecular mechanisms underly-

ing primary cilia function in the pancreas need to be revealed in the

future.

Ciliary dynamics in kidney epithelium remodeling

All epithelial cells lining the renal tubules throughout the nephron

carry a primary cilium on their apical surface, except for the small

population of intercalated cells of the collecting duct. These cilia

project into the lumen of the tubule and are in direct contact with

the bypassing urine (Ma et al, 2017). Yet, their function during kid-

ney development and in renal physiology is not well understood.

The kidneys are among the most severely affected organs in most

ciliopathy patients. Among the renal ciliopathies, autosomal-

dominant polycystic kidney disease (ADPKD) is one of the most

common monogenic diseases (Ma et al, 2017) and several rare

autosomal-recessive ciliopathies (e.g., autosomal-recessive polycys-

tic kidney disease (ARPKD) or Nephronophthisis (NPH)) are renal

diseases (Hildebrandt et al, 2011). These renal ciliopathies typically

manifest as cystic kidney disease of two significant types: ADPKD/

ARPKD is characterized by massively enlarged, highly proliferative

polycystic kidneys with cyst development throughout the entire

organ, whereas NPH or NPH-related ciliopathies display degenera-

tive, cystofibrotic kidneys with fewer cysts primarily limited to the

cortico-medullary border. Remarkably, the kidney phenotype of

PKD mouse models is ameliorated when genetically interfering with

ciliogenesis (Ma et al, 2013; Shao et al, 2020a), suggesting a cilia-

dependent, cyst-promoting signaling network. Consistently, delayed

deciliation has been found in cystic epithelium of Pkd1-deficient

mice (Gerakopoulos et al, 2020). While the impact of cilia in (poly)

cystic kidney diseases is well established, the cilia-dependent remo-

deling processes under physiological and pathological conditions

are still somewhat elusive, and it is attractive to speculate on the

role of ciliary dynamics in disease pathogenesis. In recent years, it

has become clear that upon kidney injury, massive proliferation

occurs in the kidney to repair tubular damage (Humphreys

et al, 2011). This is not primarily driven by progenitor cells. Instead,

it has been demonstrated for the proximal tubule that repair is

achieved by fully differentiated proximal tubular epithelial cells

(Kusaba et al, 2014). Here, the dynamic process of ciliary disassem-

bly is key, as epithelial cells need to disassemble the cilium to re-

enter the cell cycle before proliferation (Kim & Tsiokas, 2011). Thus,

classical ciliopathy mutations, some of which have only very subtle,

minor effects on ciliary structure and function, could alter disassem-

bly and result in inefficient repair. This hypothesis is in line with

the third-hit theory in ADPKD, which predicts that – beyond
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loss-of-heterozygosity – external damaging factors, such as

ischemia–reperfusion or crystal formation, drive disease progres-

sion. The continuous deterioration could be aggravated by altered

susceptibility to cell death and subsequent inflammation and fibro-

sis (Kieckhöfer et al, 2022).

In summary, the requirement for timely ciliary disassembly dur-

ing efficient renal repair might explain the renal phenotype develop-

ing over the years from a normal, unaffected kidney towards (poly)

cystic kidney disease. Of course, it is likely that these mechanisms

will also include deregulated ciliary signaling dynamics as well as

alterations of the ciliary composition. Therefore, studies on ciliary

dynamics will be instrumental in understanding renal ciliopathies.

Conclusion and open questions

This review summarizes the dynamic properties of primary cilia,

moving away from the perception of the primary cilium as a static

organelle, and towards the view that primary cilia dynamics are a

key factor in regulating cell fate and tissue organization. General

concepts are starting to emerge to understand primary cilia dynam-

ics, but many open questions remain. Here, we list a few:

• What are the dynamic changes in the ciliary protein content during

self-renewal, differentiation, and tissue organization?

Most studies have focused on cultured, immortalized, or termi-

nally differentiated cells to study the ciliary protein composition. As

a result, we have yet to learn about dynamic changes in intraciliary

proteins in self-renewing stem cells that give rise to different cell

types during tissue organization. A comparative study between a

stem cell and its progeny will reveal how the ciliary protein compo-

sition and its associated signaling determine cell fate. Fortuitously,

as we have described in this comprehensive review, necessary tools

and technologies such as spatial proteomics as well as high-

resolution and long-term imaging are in place to resolve these

questions.

• How are different mechanical and chemical stimuli integrated

through cilia to regulate cell fate and function, tissue organization,

and consequently physiological function?

Understanding how mechanical and chemical stimuli (in time,

space, and concentration) modulate ciliary functions in specific cell

types to promote cell–cell communication during tissue organization

and function is a challenge. However, recently emerged reductionist

approaches, such as organoid cultures combined with genome

editing and optogenetic tools, are in place to address these questions

and transfer this knowledge in vivo to whole organisms.

• How is cilium disassembly coordinated in vivo? Does delayed

cilium disassembly affect signaling competency, cell cycle progres-

sion, and cell differentiation?

Primary cilia disassembly as a cilia checkpoint for cell cycle pro-

gression is an exciting concept as it adds another checkpoint to the

cell cycle. Why cells assemble and disassemble primary cilia at a

particular time and space remains not fully understood. As the

cilium receives extracellular signals and transduces them into the

cell, the duration of signal perception has been proposed to depend

on the presence of the cilium. Thus, primary cilia integrate and

transduce growth factor signaling input. One hypothesis would be

that cells assemble cilia in order to search and receive sufficient and

specific signals before they divide.

Furthermore, the receptors and signaling components need to be

removed in a timely manner when the cilium is disassembled. How

this process is carried out on a molecular level is not well under-

stood. One can hypothesize that this dynamic process is affected

when cilium disassembly is delayed, whereby the fate and function

of a cell and, thereby, the whole tissue could be altered.

Altogether, primary cilia dynamics are fundamental for tissue

development and function. Analyzing all levels of cilia dynamics,

from the compositional and signaling to the cilia assembly/disas-

sembly dynamics in various cell and tissue types, and integrating

them will allow to pinpoint general concepts of how cilia dynamics

determine life and death (of an organism). With the advent of

cutting-edge technologies, the coming years will uncover novel con-

cepts in cilia biology and set the stage for translational cilia biology

to diagnose and interrogate human diseases.
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