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Summary

Juvenile myelomonocytic leukaemia (JMML) is characterized by gene variants that
deregulate the RAS signalling pathway. Children with neurofibromatosis type 1 (NF-
1) carry a defective NFI allele in the germline and are predisposed to JMML, which
presumably requires somatic inactivation of the NFI wild-type allele. Here we exam-
ined the two-hit concept in leukaemic cells of 25 patients with JMML and NF-1. Ten
patients with JMML/NEF-1 exhibited a NFI loss-of-function variant in combination
with uniparental disomy of the 17q arm. Five had NFI microdeletions combined with
a pathogenic NFI variant and nine carried two compound-heterozygous NFI vari-
ants. We also examined 16 patients without clinical signs of NF-1 and no variation
in the JMML-associated driver genes PTPN11, KRAS, NRAS or CBL (JMML-5neg)
and identified eight patients with NF1 variants. Three patients had microdeletions
combined with hemizygous NFI variants, three had compound-heterozygous NFI
variants and two had heterozygous NFI variants. In addition, we found a high inci-
dence of secondary ASXLI and/or SETBPI variants in both groups. We conclude that
the clinical diagnosis of JMML/NEF-1 reliably indicates a NFI-driven JMML subtype,
and that careful NFI analysis should be included in the genetic workup of JMML
even in the absence of clinical evidence of NF-1.

KEYWORDS
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INTRODUCTION

Juvenile myelomonocytic leukaemia (JMML) is an aggres-
sive clonal myeloproliferative and myelodysplastic neoplasia
in children. Malignant transformation of haematopoietic
stem/progenitor cells (HSPCs) into JMML is characterized
by gene variants that promote sustained activation of the
RAS signal transduction pathway. Variation of the canoni-
cal RAS pathway genes PTPN11, NRAS, KRAS, NF1 or CBL
accounts for 90% of patients diagnosed with JMML." The
majority of patients have no known predisposing condition
and the RAS pathway variants (usually in PTPN11, NRAS or
KRAS) occur somatically in HSPCs. Patients with Noonan
syndrome and a germline variant in the PTPNII (or, rarely,
KRAS) gene are at increased risk of developing a JMML-like
myeloproliferative disorder (MPD).> Further predisposition
to JMML includes CBL syndrome and neurofibromatosis
type 1 (NF-1).>* NF-1 is a complex multisystem develop-
mental and tumour-predisposing disorder, which primarily
affects the nervous system and skin,” and has a prevalence
between 1 and 10 cases per 10000 children.%” It has been
estimated that patients with NF-1 are at approximately
200-fold risk of developing JMML compared to the general
population.*®

Individuals with NF-1 typically carry one defective
NFI gene allele in the germline, with nearly half of the
patients having de novo variants.” NFI is located near the
centromere on chromosome band 17q11.2 in the vicinity
of several repetitive elements, increasing its susceptibility
to genetic alteration. Somatic inactivation of the inherited
wild-type allele in haematopoietic cells is associated with
transformation to JMML.*!® Biallelic NFI inactivation
was also reported in other tumours associated with NF-1,
such as neurofibroma, malignant peripheral nerve sheath
tumour and pilocytic astrocytoma, and was also found in
hyperproliferative lesions, such as café-au-lait macules."" ™
Mitotic recombination, leading to uniparental isodisomy
(UPD) of the 17q chromosome arm, was found to be the
most frequent mechanism behind biallelic loss of NFI func-
tion in JMML cells.® Other mechanisms include somati-
cally acquired deletions of 17q11.2 or inactivating variants
on the second allele.'®

Due to the presence of repeat sequences within the NFI
locus and the existence of several NFI pseudogenes, it was
historically difficult to obtain complete genetic analyses of
the NFI locus. Therefore, the diagnosis of the NF-1 group in
patients with JMML was usually based on clinical features,
chiefly café-au-lait macules, and/or a family history of NF-1.
Taking advantage of advances in next-generation sequencing
(NGS) technologies and better computational methods for
the detection and interpretation of variants, we now set out
to clarify whether the genetic findings in leukaemic cells of
JMML/NEF-1 patients are consistent with the clinical assess-
ment and the two-hit concept. Specifically, the goal was to
identify more than one NFI-inactivating event and thus con-
firm the relevance of clinical NF-1 features in children with
JMML/NEF-1. Furthermore, we investigated the possibility

that the group of JMML patients without clinical evidence
of neurofibromatosis and no abnormality in PTPN11, KRAS,
NRAS or CBL (herein abbreviated as JMML-5neg) contained
unrecognized cases driven by biallelic inactivation of NFI.

MATERIALS AND METHODS

The study cohort consisted of 156 patients diagnosed with
JMML who were registered in the European Working Group
of MDS in Childhood (EWOG-MDS) studies EWOG-MDS98
and EWOG-MDS2006 (NCT00047268 and NCT00662090;
www.clinicaltrials.gov). Patients with Noonan syndrome-
associated MPD or CBL syndrome were excluded by prior
Sanger sequencing of PTPNI1, KRAS, NRAS and CBL in
hair follicles, buccal epithelium or skin fibroblasts. Parents
or legal guardians of all patients provided informed consent
to the scientific use of patient materials in accordance with
the Declaration of Helsinki. The collection and storage of
patient materials was approved by the institutional review
board of each participating centre. DNA from bone marrow
or peripheral blood cells collected at the time of diagno-
sis was used for targeted NGS. The multigene panel con-
sisted of coding regions of canonical driver genes (PTPNI1I
[NM_002834], KRAS [NM_ 004985], NRAS [NM_002524],
CBL [NM_005188, exons 7-10] and NFI [NM_001042492])
and genes previously reported to be associated with JMML
as secondary lesions (ASXLI [NM_015338, exons 11-12],
JAK2 [NM_004972.3, exon 14], JAK3 [NM_000215.3, exons
11-13,15,17,19], RRAS [NM_006270], RRAS2 [NM_012250],
RAC2 [NM_ 002872], RUNXI [NM_001754], SETBPI
[NM_015559, exon 4] and SH2B3 [NM_005475, exons 2-7]).
The targeted NGS libraries were prepared using NEBNext
Ultra II kits (New England Biolabs), and samples were se-
quenced on a MiSeq 2000 sequencer (Illumina) with 150 bp
paired-end reads. CytoScan HD arrays (Affymetrix) were
applied to detect segmental deletions or copy number-neu-
tral loss of heterozygosity (LOH).

Our in-house bioinformatics pipeline was applied for
the detection of sequence variants. The raw paired-end
reads were trimmed using Trimmomatic (v0.30). Raw fastq
files were processed with options 2:30:10, HEADCROP:3
TRAILING:10 MINLEN:25."” The processed reads were
mapped to the human genome (version hgl9) using the
BWA aligner (v 0.7.17) with mem mode."® The aligned reads
were further processed using Picard and GATK tools,"”
converted into the mpileup format using Samtools v1.9 and
subjected to variant discovery using VarScan v2.3.9.2%*' We
set the VAF cut-off as 5%, minimum coverage as 20 and
p-value as 0.05. Subsequently, the variants were further fil-
tered (--min-ref-basequal 28 --min-var-basequal 28 --min-
ref-readpos 0.01 --min-ref-dist3 0.01 --min-var-readpos 0.01
--min-var-dist3 0.01) using VarScan2. The identified vari-
ants were annotated using Annovar, SnpEff and InterVar
tools.”>** We adhered to ACMG guidelines for annotating
the variants.”® Variants were sequentially checked for their
presence in the population databases gnomAD, ExAC,
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esp6500siv2 and 1000 Genomes. Variants with a population
allele frequency above 0.1% were filtered out. Novel variants
were manually checked against the alignment files to iden-
tify technical artefacts. NFI is located near the centromere
of 17q, is surrounded by repetitive elements and has sev-
eral pseudogenes. We have identified and eliminated such
off-target regions in our bioinformatics workflow to avoid
the detection of spurious variants. Single-nucleotide vari-
ants and indels identified by our targeted NGS analysis and
not previously listed in the ClinVar database were verified by
Sanger sequencing.

RESULTS

Spectrum of NFI gene alterations in patients
with JMML

We examined the driver gene profile of 156 children with
JMML by targeted NGS with a panel covering the full cod-
ing sequence of the NFI, PTPN11, KRAS, NRAS, RRAS and
RRAS2 genes and the hotspot region (exons 7-10) of the CBL
gene. Twenty-five of the 156 patients (16%) were clinically
assigned to JMML/NEF-1, based on the presence of 26 café-
au-lait macules, or any number of café-au-lait macules plus
positive family history. One hundred fifteen patients (74%
of the 156 cases) exhibited somatic variants in the PTPNII,
KRAS or NRAS genes and were negative for clinical features
of NF-1. Sixteen children (10%) were JMML-5neg; that is,
negative for clinical NF-1 and without genetic alteration
of PTPN11, KRAS, NRAS or CBL in leukaemic cells. One
of the 16 JMML-5neg patients carried a variant in RRAS2.
Combining the JMML/NF-1 and JMML-5neg groups, the
cohort for detailed genetic workup of NFI thus consisted of
41 patients. These included 26 males and 15 females with a
median age of 3.0years at diagnosis (range, 0.2-7.8 years).
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The karyotype of leukaemic cells was normal in 31 cases,
5 cases had monosomy 7 and 5 carried other chromosomal
abnormalities.

Among the 41 JMML cases subjected to in-depth NFI
molecular genetic analysis, we found 46 sequence alterations
in 33 patients, consisting of 18 nonsense variants, 16 indels,
5 splice site variants, 5 missense variants and 2 in-frame
deletions (Figure 1; Table S1). The variants were distributed
across the entire NFI sequence without obvious clusters or
hot spots. p.I1679Dfs*21, a single-nucleotide duplication in
the homopolymer region (c. 2033dup), was identified in four
patients. Two nonsense variants (p.R1362* and p.R1534%)
were found in two patients each. All other variants occurred
only once. Among 40 unique variants, 33 were predicted to
cause premature truncation of the protein, in line with loss
of neurofibromin function, the key mechanism of disease
development. We also detected five missense variants in the
cohort. These variants are not reported in the healthy popu-
lation (gnomAD, v.2.1.1), affect amino acids with evolution-
ary conservation or 5" splice sites of NFI exons (Figure S1)
and were in part reported in NF-1.6"*® All missense variants
were predicted to impair protein function by several compu-
tational tools (Table S2).

Two cases exhibited in-frame NFI deletions entailing
the loss of five and two amino acids respectively (p.A208_
V212del and p.N2387_F2388del). Applying ACMG crite-
ria,”® 37/40 variants were pathogenic or likely pathogenic
while 3/40 were scored as variants of unknown significance
(Table S1). However, their non-random occurrence in con-
comitance with a pathogenic NFI lesion supports their
pathogenic role.

Additional NFI alterations were detected by targeted
NGS analysis in patients belonging to the JMML subgroups
PTPNI11 (9/76 cases, 12%) and NRAS (3/23 cases, 13%)
(Table S3). No concomitant NFI alterations were found in 16
patients of the KRAS subgroup, consistent with a previous

Asn2387_Phe2388del
Gly2397Arg

Arg1241*
Arg1276*
Arg1362*
Arg1412Thr
Ser1524Alafs*50
Arg1534*
Arg1769*
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Glu2143Lys
6642+1G>C
Arg2258*
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Val2445Tyrfs*4
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FIGURE 1
the distribution of variants identified in 33 patients. Pie charts symbolize the

PH-NF1

NLS
OVariant allele frequency

Spectrum of NFI gene variants in JMML. Schematic representation of the functional domains of neurofibromin (NP_001035957) and

allele frequencies of the variants. Amino acid positions and changes are

indicated at the top. Functional domains are colour-coded. CSRD, cysteine- and serine-rich domain; CTD, C-terminal domain; GRD, GAP-related
domain; NLS, nuclear localization signal; PH, pleckstrin homology domain; Sec/CRAL-TRIO, Sec14 homology/CARL-TRIO domain; TBD, tubulin-

binding domain.
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exome analysis.”’ The NF1 VAFs provided no evidence of
biallelic NFI inactivation in the JMML PTPNI1I and NRAS
subgroups, suggesting that these changes to NFI were sec-
ondary events. The only exception was the case NRAS02
which harboured two pathogenic NFI variants. Targeted
sequencing in buccal epithelial cells demonstrated that the
NRAS variant as well as both NFI variants were absent from
the germline. Single-cell DNA sequencing would be required
to help determine whether NFI or NRAS was the initiating
oncogene in this case.

Genetic evidence of biallelic inactivation of NF1
in JMML

Upon evaluation of targeted NGS reads, 13 of the 25 JMML/
NF-1 cases exhibited a NFI loss-of-function variant with
a variant allele frequency (VAF) in the range of 72%-99%,
suggesting that these variants occurred in combination with
a prior or later event causing LOH. Eight cases carried two
independent pathogenic NFI variants, each with a VAF of
almost 50%, and one case harboured three NFI variants
with 53%, 28% and 13% VAF, suggesting two coexisting sub-
clones. In the three remaining JMML/NF-1 cases, targeted
sequencing identified pathogenic NFI variants with mono-
allelic status (VAF 49%) in one sample and low VAF in the
other two samples (32% and 6% respectively).

We then performed array-based single-nucleotide poly-
morphism (SNP) analysis to search for mechanisms of
NFI LOH in 15/25 JMML/NEF-1 cases, that is excluding
those nine cases where the combined occurrence of two
or more heterozygous variants already suggested biallelic
inactivation without LOH and one case where additional
DNA for SNP arrays was unavailable. Among 15 cases, 10
exhibited a large region of UPD that affected almost the
entire chromosome 17q arm and encompassed the NFI
locus (Table 1; Table S4), in line with previous reports.'>'¢
Based on previous literature on 17q UPD-related neoplasms
in NF-1,% it is likely that the NFI variation was the con-
stitutional event, and subsequent somatic acquisition of
17q UPD led to JMML in these patients. We confirmed
the acquired nature of 17q UPD in one case where suffi-
cient remaining non-haematopoietic material (fibroblasts)
was available (NF16 in Table 1). However, since the com-
bination of a high-VAF variant and UPD is only possible
if the UPD comes second, it can be assumed that all UPD
cases had the isodisomy as the somatic event. In 3/15 cases,
SNP array analysis detected microdeletions encompass-
ing the NFI locus (Table 1; Table S4). Of these, one was a
recurrent type 1 deletion (i.e. encompassing 1.4 Mb and
14 protein-coding genes), one was a recurrent type 2 de-
letion (i.e. involving 1.2Mb and 13 protein-coding genes
but leaving the LRRC37B gene unaffected) and one was
atypical.”’ The remaining 2/15 cases showed NF1 variants
with low VAF, suggesting that heterozygosity of NFI was
retained in leukaemic cells. However, SNP array analysis
uncovered type 1 microdeletions in both (NF04 and NF12

BRITISH JOURNAL OF HAEMATOLOGY

in Table 1; Table S4). Non-haematopoietic material (fibro-
blasts) was available in three of the five microdeletion cases
(NF09, NF12, NF13). The microdeletion was present but
the missense variant was undetectable in all three germline
samples, indicating that the sequence of constitutional mi-
crodeletion and acquired missense variant predominates in
JMML/NE-1 cases without UPD. The possible combination
of constitutional microdeletion and acquired 17q UPD was
not detected in our cohort.

Among 16 patients in the JMML-5neg group, we identified
three cases with NFI variants at allelic frequency near 100%
(NEGO1, NEG06 and NEGO7 in Table 1; Table S5) and three
cases with compound-heterozygous NFI variants (NEG04,
NEGO5 and NEGO08), indicating biallelic loss of NFI in the
absence of syndromic features. SNP array analysis identi-
fied one atypical and two type 1 NFI microdeletions in the
three cases with high-VAF NFI variants. One case carried
two frameshift single-nucleotide duplications (c.2024dup
and ¢.2033dup) in close proximity (NEGO5). It was therefore
possible to determine from individual sequencing reads that
the two alterations were situated in trans, substantiating the
concept of compound heterozygosity. Heterozygous or low-
VAF NFI-inactivating variants, but no second hits to NFI,
were found in two cases (NEG02 and NEGO03), providing in-
conclusive evidence of driver function. There was no genetic
evidence of NFI involvement in the other eight JMML-5neg
cases.

The lack of non-haematopoietic material in JMML-5neg
cases with biallelic NFI inactivation precluded us from as-
sessing if any of the lesions were present in the germline.
We could therefore not determine genetically whether the
patients were affected by constitutional neurofibromato-
sis with the onset of JMML before the syndrome became
clinically evident. However, the median follow-up period of
12.6years without the children developing features of NF-1
(Table 1) argues against this idea. Other possible interpreta-
tions include double somatic NFI hits in the haematopoietic
lineage or postzygotic NFI mosaicism.

Secondary variants associated with JMML and
NF1 inactivation

In addition to covering canonical RAS pathway driver
genes, our NGS panel also interrogated secondary gene
abnormalities frequently associated with JMML (i.e. those
involving ASXLI, JAK2, JAK3, RUNX1I, SH2B3 or SETBPI)
and thus provided a picture of the variational landscape
in NFI-driven JMML.?>**"* We found at least one sec-
ondary variant in 15 of the 25 patients with clinical NF-1,
and in 4 of the 8 JMML-5neg patients with NFI variants
(Figure 2, Table 1). Among these, variants in the ASXLI
gene were present in 12 patients. All identified variants
in ASXLI lead to premature truncation due to a nonsense
alteration, duplication of a single nucleotide or short dele-
tion. Variants in the classic RAS pathway genes were found
in four patients: The pathogenic PTPNII variant p.E76A

85U80|7 SUOWILIOD A1) 3 cedldde auy Aq pausenob afe a0l VO @SN JO s3I 10j Akeiq178ulUO 48] UO (SUORIPUOD-pUe-SLUBIA0D A8 | im AeIq 1jpu1[UO//:SANY) SUORIPUOD pue SWie | 8u 88S *[7202/20/20] uo Ariqiaulluo Ae|im ‘EseAIuN-s6impn1-1eq |y Aq 06T6T Y Q/TTTT 0T/I0p/L00 A8 | ARelg 1 jeul|uo//Sdny Wouy pepeo|umod ‘Z ‘v20Z ‘TYTZS9ET



602 BIALLELIC NFI INACTIVATION IN JMML
BRITISH JOURNAL OF HAEMATOLOGY
2128z 5a0
P-SsPIIRBALASIET88ELE8EBNE2IYICR 00000000
| I T T T T T T T W W w w w w ww
ZZZ2Z2Z2ZZZ2Z222ZZZZ22Z2ZZZZZZ2ZZ ZZZZZZZZ gwMaleOPFemale
Sex M Clinical NF-1
Clinical NF-1 B JMML-5neg
JMML-5neg [ Compound het.
NF1 variant type Il LOH - UPD17q
Karyotype M LOH - microdeletion
ASXL1 [ Normal
‘zgz—sm E Monosomy 7
[l Complex karyotype
P,L\T;f N1 = B Other
JAK3 H [l Secondary variants
RUNX1 A4 Monoallelic evidence
FIGURE 2 Clinical features and genetic landscape of individuals with JMML and NF1I inactivation. The clinical and molecular characteristics of

33 JMML patients with evidence of NFI inactivation are displayed. Sex, clinical NF-1, JMML-5neg status, type of NFI variation (double heterozygosity,
UPD17q, microdeletion), leukaemia karyotype (normal, monosomy 7, complex, other) and secondary variants in ASXLI, SETBPI, CBL, PTPN11, JAK3

and RUNXI are indicated.

(VAF 11%) was found in one case, and the pathogenic
CBL missense variants p.L380P, p.C384Y and p.C416R
(VAFs ranging from 20% to 29%) were detected in three
samples. The sample with the CBL p.C384Y variant addi-
tionally carried a three-nucleotide duplication in the CBL
gene (VAF 37%), predicted to cause a non-frameshift in-
sertion of one amino acid (p.C401dup). We identified at
least one pathogenic SETBPI variant (p.D868N, p.G870S,
or p.E858K) in five patients, with VAFs ranging from 5%
to 49%. The pathogenic JAK3 variants p.R657Q (VAF 48%)
and p.R657W (VAF 7%) were found in one patient each.
One sample harboured two RUNXI variants (VAFs 11%
and 16%). There was no significant difference between
JMML/NF-1 and JMML-5neg patients with regard to sec-
ondary variants in genes that are not part of the canonical
RAS pathway. However, all patients with secondary vari-
ants in RAS pathway genes (1 PTPN11 and 3 CBL) belonged
to the JMML/NE-1 group.

DISCUSSION

The present study provides the first systematic investigation
of genetic lesions that lead to biallelic loss of NFI gene func-
tion and thus drive the leukaemic process in a large series
of 41 children with JMML. A clinical diagnosis of NF-1 was
known in 25 patients, while 16 patients had no clinical fea-
tures of NF-1 and were also negative for variants in the other
canonical RAS pathway driver genes PTPN11, KRAS, NRAS
and CBL. Although we have previously addressed the genet-
ics of NFI variants or NFI deletions in patients with JMML
and NF-1'>'¢ and NFI sequence analysis was part of previ-
ous whole-exome cohort studies,”**>* the additional value
of the work presented here lies in a significantly increased
number of cases, a more rigorous assessment of biallelic NF1
inactivation using improved sequencing methods and high-
resolution SNP arrays, and a more detailed description of the
neurofibromatosis phenotype. For clarity, patients already
included in previous publications are indicated in Table 1.

The combined application of NGS and SNP array anal-
ysis identified biallelic NFI inactivation due to gene vari-
ation plus LOH in 13 of 25 patients with JMML/NF-1 and
3 of 16 JMML patients with no clinical diagnosis of NF-1.
Ten patients exhibited large regions of interstitial UPD in-
volving almost the entire 17q chromosome arm. Six patients
had NFI microdeletions (four recurrent and two atypical).
An interesting observation is that 17q UPD was restricted to
JMML/NF-1 patients but did not occur in JMML-5neg chil-
dren, and that it was detected only in the context of NFI sin-
gle-nucleotide variants or indels but not other types of NFI
inactivation. As a possible interpretation, UPD on top of an
interstitial deletion would lead to nullisomy of other genes
in the region and this could protect the cells from transfor-
mation to leukaemia. We also uncovered a high proportion
of NFI microdeletions in the cohort. These were germline
events in all cases where non-haematopoietic material was
available for testing. The overrepresentation of constitu-
tional deletions in JMML/NF-1 patients compared to the
general NF-1 population® may suggest that patients with
microdeletions are at higher risk of JMML, consistent with
the view that codeleted flanking genes are likely to act as
phenotype modifiers.” SUZ12 deletion might be a potential
link as inactivation of polycomb repressive complex 2 has
previously been shown to be associated with JMML.*

Some interesting aspects emerged from the analysis of
secondary variants in NFI-driven JMML. Consistent with
the notion that JMML/NEF-1 is a subtype with aggressive
presentation and poor prognosis, secondary variants were
detectable at the time of diagnosis in the majority (15/25) of
JMML/NEF-1 patients. Co-occurrence of another RAS path-
way lesion with NFI inactivation was noted in 4 of these 15
patients (3 CBL, 1 PTPNII). Both the clinical phenotype
and the comparison of allele frequencies clearly indicated
that NFI was the original driver in these cases whereas the
changes in the other RAS pathway genes were limited to
subclones. Further, the JMML/NF-1 group contained eight
patients with ASXLI lesions and four with SETBPI alter-
ations. Concerning ASXLI in particular, this suggests an
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overrepresentation compared to patients with other sub-
types of JIMML.*?27*

For the management of patients, we conclude from
our study that the clinical assignment to the JMML/NEF-1
group is reliable and can almost always be confirmed ge-
netically. This is remarkable since the children are often
too young at the onset of JMML to display the full spec-
trum of NF-1-associated symptoms.>>® In fact, our genetic
data show that the presence of 26 café-au-lait macules (or
less in the case of affected parents) in a child with JMML
is already sufficient to diagnose NF-1 with a very high
probability.

Our data illustrate that the two definitions of the NFI-
driven JMML subtype recently published by expert groups
have imperfections.””*® The ICC definition calls for “ger-
mline NFI mutation and LOH of NFI or clinical diagnosis
of NF-1”, but this does not accommodate compound-het-
erozygous variants in children with clinical NF-1 or double
somatic NFI inactivation in children without NF-1 pheno-
type.”” The WHO definition requires “biallelic pathogenic
alterations in NFI” but this does not account for JIMML cases
with a clear clinical diagnosis of NF-1 where genetic NFI
analysis is uninformative or missing.”® Both definitions do
not specify whether testing for LOH (e.g. by SNP array) is
explicitly required or whether LOH can be inferred from a
high NFI VAF; also, no VAF thresholds are provided for the
latter alternative.

Our genetic analysis in JMML patients who lacked clin-
ical features of NF-1 and harboured no driver alteration in
PTPNI11, KRAS, NRAS or CBL demonstrated the biallelic
involvement of NFI in a relevant number of cases (38%).
Since no NF-1 symptoms developed in these children even
after long observation periods, we consider postzygotic
mosaics or double somatic NFI inactivation in haemato-
poietic cells to be more likely than constitutional NF-1.
Future studies are needed to determine whether this va-
riety of NFI-driven JMML differs haematologically and
clinically from JMML in constitutional NF-1. Finally, in
JMML-5neg cases without NFI alteration, other forms of
myeloproliferative neoplasms should be considered, for
example, those involving alterations or rearrangements of
tyrosine kinase genes.
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