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Zusammenfassung

Deep-Learning-Modelle benötigen erhebliche Ressourcen für ihren Einsatz, was ihre breite
Akzeptanz einschränkt. Das Ziel dieser Arbeit ist es, dieses Problem anzugehen, indem
Methoden vorgeschlagen werden, um Deep-Learning-Modelle für Training und Einsatz
effizienter zu machen.

Ein wichtiger Aspekt des maschinellen Lernens ist die Fähigkeit, visuelle Informationen
aus begrenzten beschrifteten Daten zu verstehen, da groß angelegte Annotationsprozesse
sehr teuer oder nicht durchführbar sein können. Im ersten Teil der Arbeit werden Methoden
zur Verbesserung der Beschriftungseffizienz für Deep-Learning-basierte Computer-Vision-
Aufgaben vorgeschlagen, wobei der Schwerpunkt auf zwei Ansätzen liegt - halbüberwachtes
Lernen und aktives Lernen. Für das halbüberwachte Lernen schlägt die Arbeit einen Ansatz
für die halbüberwachte semantische Segmentierung vor, der aus begrenzten, pixelweise
annotierten Beispielen lernt und gleichzeitig zusätzliche annotationsfreie Bilder nutzt. Der
vorgeschlagene Dual-Branch-Ansatz reduziert sowohl die Low-Level- als auch die High-
Level-Artefakte, die typischerweise beim Training mit wenigen Labels auftreten, und seine
Effektivität wird anhand mehrerer Standard-Benchmarks demonstriert. Für aktives Lernen
wird in dieser Arbeit betont, dass die konventionellen Bewertungsschemata, die beim tiefen
aktiven Lernen verwendet werden, entweder unvollständig oder unzureichend sind. Die Ar-
beit untersucht mehrere bestehende Methoden über viele Dimensionen hinweg und stellt fest,
dass die untersuchten neuen zugrundeliegenden Faktoren für die Auswahl des besten aktiven
Lernansatzes entscheidend sind. Die Arbeit bietet auch einen umfassenden Leitfaden für die
Anwendung, um die beste Leistung für jeden Fall zu erzielen. Diese Arbeit befasst sich mit
aktiven Lernmethoden für Bildklassifizierungs- und semantische Segmentierungsaufgaben.

Ein weiteres Problem bei tiefen neuronalen Netzen ist das katastrophale Vergessen, wenn
sie sequentiell mit neuen oder sich entwickelnden Aufgaben konfrontiert werden. Dies
macht sie für viele reale Anwendungen ungeeignet, da das Modellwissen mit allen jemals
aufgetretenen Daten oder Aufgaben neu trainiert werden muss. Der zweite Teil der Arbeit
konzentriert sich auf das Verständnis und die Behebung des katastrophalen Vergessens beim
kontinuierlichen Lernen, insbesondere beim Class-incremental Lernen (CIL). Die Auswer-
tung zeigt, dass eine Kombination einfacher Komponenten das katastrophale Vergessen



viii

bereits in gleichem Maße beheben kann wie komplexere Maßnahmen, die in der Literatur
vorgeschlagen werden.

Insgesamt bietet diese Arbeit rationalisierte Ansätze zur Verbesserung der Effizienz von
Deep-Learning-Systemen und zeigt die Bedeutung vieler unerforschter Richtungen für eine
verbesserte realistische Bewertung auf.



Abstract

Deep learning models require significant resources to deploy, limiting their widespread
adoption. The aim of this thesis is to address this issue by proposing methods to make deep
learning models more efficient for training and deployment.

One important aspect of machine learning is the ability to understand visual information
from limited labeled data because large-scale annotation processes can be very expensive or
infeasible. The first part of the thesis proposes methods to improve label efficiency for deep
learning-based computer vision tasks focusing on two approaches - semi-supervised learning
and active learning. For semi-supervised learning, the thesis proposes an approach for semi-
supervised semantic segmentation that learns from limited pixel-wise annotated samples
while exploiting additional annotation-free images. The proposed dual-branch approach
reduces both the low-level and high-level artifacts typically encountered when training with
few labels, and its effectiveness is demonstrated on several standard benchmarks. For active
learning, the thesis emphasizes that conventional evaluation schemes used in deep active
learning are either incomplete or below par. The thesis investigates several existing methods
across many dimensions and finds that the studied new underlying factors are decisive in
selecting the best active learning approach. The thesis also provides a comprehensive usage
guide to obtain the best performance for each case. This thesis covers active learning methods
for image classification and semantic segmentation tasks.

Another issue with deep neural networks is catastrophic forgetting when encountering
new or evolving tasks in a sequential manner. The model must be retrained with all the
data or tasks encountered to avoid forgetting, thus making them unsuitable for many real-
world applications. The second part of the thesis focuses on understanding and resolving
catastrophic forgetting in continual learning, particularly in the Class-incremental Learning
(CIL) setting. The evaluation shows that a combination of simple components can already
resolve catastrophic forgetting to the same extent as more complex measures proposed in the
literature.

Overall, this thesis provides streamlined approaches to improve the efficiency of deep
learning systems and highlights the importance of many unexplored directions for improved
realistic evaluation.
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Chapter 1

Introduction

Deep learning has revolutionized our everyday life, empowering a wide range of services and
products such as face recognition, speech recognition, virtual assistants, and self-driving cars.
The advances in deep learning have provided significant improvements in understanding
visual information. This can be noticed in the remarkable improvements in computer vision
tasks like image classification, object detection, and semantic segmentation. Many of
the benchmarks that were established five years ago have already achieved near-perfect
performance, demonstrating the tremendous progress that has been made in this field.

Despite these great advances, deep learning faces several challenges that hinder its
efficiency and scalability. One of the most significant challenges is the requirement for
large-scale annotations to train deep neural networks. Labeling data can be very expensive
since it is often laborious and time-consuming, especially for dense-prediction tasks such
as object detection and semantic segmentation. Depending on the task, this cost may vary
from a few seconds to a few hours. For example, the task of semantic segmentation is
particularly costly in this regard, as it requires pixel-level annotations. Annotating a single
image from a driving dataset can take an average of 1.5 hours [24]. In some application
areas like medical imaging and genomics, labeled data can be scarce and hard to obtain,
sometimes even impossible due to limited specialists in the field. In other applications, such
as self-driving cars, raw data can be collected in abundance, but annotating this large raw
data can still be costly. This highlights the need to develop new methods for learning with
limited supervision. There exist many ways to tackle this challenge, such as semi-supervised
learning, weakly-supervised learning, and active learning.

For many open-world deep-learning applications, data arrives as a continuous stream over
time, and it is always changing, with new classes appearing and disappearing temporarily.
Another limitation of deep neural networks is the inability to learn from such a continuous
data stream. They tend to forget about previous tasks when they encounter a shift in the
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training data or task, including new classes or domain changes. The most effective way
to address this issue is to re-train the neural network with all the data combined together,
which can be computationally expensive and memory-intensive. Therefore, there is a need
to develop new techniques for continual learning, which can learn continuously without
forgetting and without requiring re-training with all the data.

This thesis focuses on two major aspects of improving the learning efficiency of deep
learning models for computer vision applications: label efficiency and training efficiency.
First, the thesis investigates how to optimize the selection of images for annotation using
active learning and proposes how to optimally use limited annotated samples using semi-
supervised learning to improve label efficiency. Second, the thesis aims to identify the
missing causes of catastrophic forgetting in a continual learning setting and propose solutions
to address the limitations while minimizing memory requirements and training resources to
improve training efficiency.

1.1 Learning with Limited Supervision

In deep learning, maximizing performance with minimal supervision is a crucial objective.
There exist many learning techniques to fulfill this objective, including self-supervised
learning, semi-supervised learning, weakly-supervised learning, and active learning. In this
thesis, we focus on two techniques: semi-supervised learning and active learning. Both
semi-supervised and active learning operate in a similar setting, where a large set of unlabeled
data is available, and the aim is to maximize learning from a limited number of labeled
samples. However, there is a subtle difference between the two objectives. Semi-supervised
learning works on a post-hoc basis, where a small set of labeled samples is already given. In
contrast, active learning is an ad-hoc approach, where the model must actively acquire this
labeled data to maximize the model’s performance.

1.1.1 Semi-supervised Learning:

In semi-supervised learning, the objective is to achieve maximum performance using a limited
set of labeled samples in combination with a large set of unlabeled samples. Compared to
supervised learning, semi-supervised learning has several clear advantages. One key benefit is
that it can leverage both labeled and unlabeled data for learning, whereas supervised learning
only uses labeled data for training. Relying on labeled data only can also be problematic
if the labels provided by human annotators are incorrect or inconsistent. Moreover, semi-
supervised learning is more robust to noisy data. This is because it leverages the underlying



1.1 Learning with Limited Supervision 3

structure of the data to provide more reliable signals than supervised learning. Typically,
semi-supervised methods use a supervised learning objective to learn from labeled data and
an unsupervised learning objective to learn from unlabeled data. This enables them to learn
from a vast amount of data without incurring a large annotation cost.

While image classification has been extensively studied in a semi-supervised learning
setting for many years, dense pixel-level classification with limited supervision has only
recently drawn attention. Learning with limited supervision for dense pixel-level tasks like
semantic segmentation is also a more significant challenge compared to image classification,
as the cost of annotation is much higher. In particular, semi-supervised learning for dense
tasks like semantic segmentation demands a more detailed understanding of visual content
and the ability to distinguish between objects that may be partially obscured or share similar
features. Given these challenges, this thesis focuses on semi-supervised learning specifically
for the semantic segmentation task.

There are two main types of semi-supervised learning techniques [130, 131, 110] for
image classification tasks. The first one involves using predictions as pseudo-labels for
unlabeled data and ground-truth labels for labeled data. This type of approach is referred
to as the self-training approach. The second approach is to learn from unlabeled samples
using consistency loss across two different views of an image. Both approaches use strong
augmentations, including affine transformations and photometric augmentations, using a
student-teacher approach. However, these strong augmentation operations are not directly
applicable to semi-supervised segmentation methods due to the absence of low-density
regions along class boundaries [139]. Consequently, it would violate the smoothness or
clustering assumption of semi-supervised learning. Additionally, pure pseudo-labeling-based
solutions suffer from the problem of confirmation bias since only the highly confident
predictions are used as pseudo-labels, which can lead to the bootstrapping of incorrect
pseudo-labels and suppression of low-frequency classes. This problem is more severe for
class-imbalanced datasets. Therefore, novel techniques are needed to address the unique
challenges of semi-supervised learning for semantic segmentation tasks.

Our proposed method is motivated by the observation that models trained with only a
small labeled set of images tend to produce inaccurate predictions for both low-level and
high-level details in the image. At the low level, the model often struggles to capture the
object shapes and produces incoherent surfaces with holes, as well as inaccurate boundaries.
At the high level, it tends to assign large regions of object instances to incorrect classes.
Figure 2.1 shows an example of low-level and high-level artifacts observed for a model
trained with only a few labeled samples. In this thesis, we propose a two-branch model to
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address both low-level and high-level artifacts separately. Moreover, our method does not
rely on strong augmentation techniques.

To address low-level artifacts, we propose a generative adversarial network (GAN) mode
where the segmentation network acts as a generator, and the discriminator identifies predicted
segmentation maps from ground-truth segmentation maps. This approach helps in learning
low-level features similar to ground-truth data. We additionally propose an auxiliary self-
training approach based on the whole predicted segmentation map on unlabeled data using
the discriminator scores. This self-training approach promotes faster learning of the generator
model and it also automatically allows low-confidence pixel-level predictions for creating
pseudo-labels because the whole predicted segmentation mask with an overall high rating is
selected for self-training training. To address high-level artifacts, we utilize the well-designed
multi-label classification model to predict the classes present in an image. The class-level
prediction, which is more robust than the segmentation model itself, helps to rectify false
positive predictions by masking out low-scoring classes from the segmentation prediction
(see Figure 2.1).

The proposed method is evaluated on three standard semantic segmentation benchmarks
with varying amounts of labeled data. To the best of our knowledge, this is the first work
to propose an end-to-end trainable model for semi-supervised semantic segmentation. Our
method not only outperforms all previous methods but also demonstrates competitive perfor-
mance in comparison to the latest methods proposed after our work. The model and training
details, along with ablation studies, are presented in Chapter 2. In the semi-supervised
learning setting, a limited set of labeled samples is typically provided. However, it is possible
to make better use of the annotated budget by smartly selecting which samples to label,
assuming that some samples are more valuable for the model’s performance. The idea of
selecting samples for annotation is studied under a topic called active learning.

1.1.2 Active Learning

Active learning is a technique that can significantly reduce the labeling cost of training
machine learning models by selecting the most valuable samples for annotation while
maximizing the performance on the given task. The active learning cycle for deep networks
starts from a large pool of unlabeled data samples. Unlike traditional non-deep learning based
active learning methods that select a single sample for annotation, a pool of samples is chosen
for annotation due to practical considerations in deep learning. The selection of the pool of
samples is based on a user-defined acquisition function that attempts to measure the value of
the samples, and the model is trained on the annotated samples. The acquisition function is
used again to select more samples, and the active learning cycle continues. In practice, the
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Fig. 1.1 Active Learning cycle.

selection is often done in conjunction with model training for maximum efficiency i.e., the
acquisition function can be defined using the last trained model in the previous cycle. The
active learning cycle continues until an acceptable performance is achieved or the annotation
budget is exhausted (See Figure 1.1).

Despite over a decade of research work, deep active learning remains an open challenge,
and there still exists an ambiguity concerning selecting the most appropriate active learning
method for a given dataset. This is partially due to the difficult nature of the problem and
inadequate evaluation schemes. Measuring the value of sample annotation for a model is a
non-trivial task that depends on a combination of factors, including the objective of the task,
the current state of the model, data distribution, annotation budget as well as regularization
and optimization techniques.

Variability in the data distribution plays a major role in active learning method selection.
If the annotation budget is too small, bias towards this limited set of data may result in poor
selection by the active learning method, leading to decreased model performance. Whereas
if the dataset size is very large with a lot of redundancies, the active learning method may
select similar samples due to the limited prior knowledge about the dataset, which again
leads to reduced performance. Active learning also requires balancing the trade-off between
exploration and exploitation of the unlabeled data to avoid overfitting and underfitting. In
early training stages, the model may struggle to learn if presented with too difficult samples,
leading to slower learning, while overly simplistic samples later on may also result in slower
learning. Therefore, selecting an optimal acquisition function is highly dependent on prior
knowledge about the dataset and the current optimization state. This way, deep active learning
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Fig. 1.2 State-of-the-art active learning methods do not consistently use modern data augmentation
techniques or advances in the closely related field of semi-supervised learning, which leads to the
wrong impression about the current state of the field. Results are shown for image classification on
CIFAR 10.

is also connected to curriculum learning with additional control over data selection. In this
thesis, we analyze active learning methods across several factors, including data distributions
in terms of levels of redundancy, range of annotation budgets, and learning objectives across
multiple datasets and tasks.

In traditional deep active learning, a large pool of unlabeled samples is used to select a
batch of the most valuable samples for annotation. However, this large pool of unlabeled
samples can be easily utilized for semi-supervised learning along with the already annotated
samples. This utilization of unlabeled samples for learning has been largely ignored in
active learning research. To address this gap, in this thesis, we propose to integrate the latest
semi-supervised learning methods into active learning and conduct a detailed study of this
combination.

Most of the current research on deep active learning has mainly focused on image
classification tasks. However, the challenge of high annotation cost becomes critically more
important for dense prediction tasks like semantic segmentation, as noted earlier regarding
the semi-supervised learning problem. In this thesis, we study deep active learning methods
for both image classification and semantic segmentation tasks. We seek answers to specific
missing questions that have not been explored by previous studies, such as the effectiveness of
AL methods w.r.t. diverse data distributions, the impact of data regularization, the integration
of semi-supervised learning, and the influence of various annotation budget settings on model
performance.
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Fig. 1.3 The figure summarizes and compares several AL methods on datasets with different levels
of redundancy. The figure shows that the best-performing AL method changes depending on the
AL objective in different conditions and with the integration of semi-supervised learning with active
learning. The figure shows the difference between the best-performing single-sample-based AL
method and best performing batch-based AL method, which is discussed in detail in Chapter 3.3.6.

We show deep active learning methods for image classification improve by a large margin
when integrated with data augmentation and semi-supervised learning. However, they are
highly inconsistent across different settings, and they only marginally perform better than
the random selection baseline (see Figure 1.2). These findings have important implications
for the successful development of active learning methods and highlight the need for better
evaluation workflows. As a result of the study, we propose an evaluation protocol for deep
active learning methods. Chapter 3.2 covers the details of this study of active learning
methods for image classification tasks.

We found that the existing benchmarks and methods for active learning for semantic
segmentation only cover a limited range of realistic scenarios, leading to incomplete and
sometimes misleading conclusions. We show that conclusions drawn from these previous
works may not be generalizable to different realistic settings. Our study shows that data
distribution is decisive for the performance of various active learning objectives proposed in
the literature. Particularly, redundancy in the data, as it appears in most driving scenarios
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and video datasets, plays a large role. We also demonstrate that the integration of semi-
supervised learning with active learning can improve performance, although this integration
is more complex than in the case of the image classification task. Figure 1.3 summarizes the
performance of the best active learning method across several datasets with different levels of
redundancy. As an outcome of our extensive study, we provide a comprehensive usage guide
to obtain the best performance for diverse settings and also propose an exemplary evaluation
task to showcase the practical implications of our research findings. Chapter 3.3 contains a
detailed study of active learning methods for the semantic segmentation task.

1.2 Improving Training Efficiency

Modern neural networks are limited by their ability to learn from evolving streams of training
data. When neural networks are trained sequentially on new or evolving tasks, their accuracy
drops sharply on previously learned tasks, making them unsuitable for many real-world
applications. This phenomenon, referred to as catastrophic forgetting, is attributed to the
change in model parameters while solving a new task.

A brute-force way to deal with this challenge would be to collect and annotate all the
data, then train the model repeatedly. However, this approach is certainly not practical
due to reasons like memory restrictions, data security restrictions, computational expenses,
and sustainability issues. Therefore, the goal of continual learning is to adapt the model
continually to new tasks while accumulating knowledge from them without disrupting
previous knowledge. This should be achieved without requiring the model to be re-trained
every time it encounters new data or tasks. More precisely, we begin with a model, which is
trained for a particular task, and the objective is to learn a new task without losing the ability
to perform the previous task.

This thesis focuses mainly on a continual learning scenario for image classification
known as class-incremental learning, where the objective is to learn a completely new set of
classes without access to the data of the old set of classes while still retaining the ability to
do inference on all the classes seen until then. Some methods optionally consider a small
amount of stored data from previous tasks.

Although the phenomenon of catastrophic forgetting is well-known, but its underlying
reasons have not yet been fully understood. One of the main causes of catastrophic forgetting
in class-incremental learners includes weight drift in the last layers, where the network’s
weights are updated to learn the new task, thus causing an imbalance between the weights
responsible for old and new classes. Therefore, we propose a compositional model to address
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the issue of bias in weight vectors. Our model isolates the underlying issue and combines the
simple and effective components to build a robust model.

The problem of class-incremental learning is closely related to transfer learning but with
the additional constraint of remembering and merging the old classes with new ones. Given
a pre-trained model, the model parameters are less likely to be overwritten by the new task if
they are easily transferable to the new task. However, there exists no exact metric to measure
how transferable the model’s parameters are to a new task. Our study finds that overfitting of
the model parameters on the new task is not the only reason for forgetting but also overfitting
on the initial task. We show that the more overfitted models are likely to forget more in the
incremental steps. Therefore, the quality of learned representation in terms of transferability
plays a major role in avoiding forgetting. We propose a proxy metric for measuring the
transferability of the model parameters for the studied problem.

In class-incremental learning, the granularity of the final task becomes finer as more
classes are observed. Therefore, preserving inter-class information in the model becomes
highly relevant. One way to measure this inter-class information within a sample is through
the correctness of the non-maximum output logits for the sample. This information is also
known as dark knowledge in the literature and is referred to as secondary-class information.
Our study shows that the secondary-class information is a good indicator of the transferability
of the model’s parameters for class-incremental learning. Chapter 4 provides details for
the proposed compositional model and shows how the quality of learned representation is
connected to catastrophic forgetting in class-incremental learning.





Chapter 2

Semi-supervised Semantic Segmentation

The content of this chapter was adapted from the following paper.

Sudhanshu Mittal, Maxim Tatarchenko, and Thomas Brox. Semi-supervised semantic
segmentation with high-and low-level consistency. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(4):1369–1379, 2019.

All co-authors mainly contributed to the project discussions as well as the final paper text
editing. All the other contributions described in this chapter are made by myself.

∗∗∗

Motivation. Deep Neural Networks, including CNNs [72] and Transformers [129] have
demonstrated excellent results on the semantic segmentation task for several different datasets
[19, 20, 97, 141, 146]. However, this success usually comes at the cost of collecting dense
pixel-wise annotations - a cumbersome process that involves much manual effort. Attempting
to alleviate this limitation, several methods exploit various weaker forms of supervision,
including image-level labels [8, 98, 124], bounding boxes [27, 94], scribbles [75, 114], or,
recently, image-text pairs [133]. Since acquiring unlabeled data is cheaper, for e. g. from
the web, recently several works [57, 111, 22, 54, 123] have also considered semi-supervised
learning for semantic segmentation. In this semi-supervised learning setting, the objective is
to learn from a limited set of fully-annotated images and a large set of completely annotation-
free images. In this chapter, we propose a semi-supervised learning method for semantic
segmentation.
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(a) (b) (c)

(d) (e) (f)

Fig. 2.1 An image from the PASCAL VOC dataset (a) and its ground-truth segmentation mask (b).
Prediction (c) is obtained with supervised training on 5% labeled samples. Using the other 95%
unlabeled images, our GAN-based branch improves the shape estimation (d). The second branch adds
high-level consistency by removing false positives (e). (f) shows the output when training on 100%
pixel-wise labeled samples.

Problem definition. Assuming we have a dataset consisting of n examples, denoted as
D = (x,y, where x is the set of input images, and y is the set of corresponding pixel-wise
segmentation label. Let Dℓ = {xℓ,yℓ} denote the set of labeled examples, and Du = {xu}
denote the set of unlabeled examples. Thus, Dℓ and Du partition the dataset D, i.e., D =

Dℓ∪Du and Dℓ∩Du = /0. The objective of semi-supervised learning is to learn a function
f :X →Y that maps input images x∈X to labels y∈Y , whereX is the space of images, and
Y is the space of labels. The function f is learned by minimizing a loss function L( f ;Dℓ,Du)

that measures the discrepancy between the predictions of f and the true labels in Dℓ, as well
as the predictions of f on the unlabeled examples in Du. Formally, the semi-supervised
learning problem can be written as the following optimization problem:

min
f
L( f ;Dℓ,Du) (2.1)

where the loss function L is defined as the sum of two sets of terms: a set of terms for
supervised learning Lsup( f ;Dℓ) and a set of terms for unsupervised learning Lunsup( f ;Du):

L( f ;Dℓ,Du) = Lsup( f ;Dℓ)+Lunsup( f ;Du) (2.2)

Modes of failure. CNNs trained on limited data are subject to two typical modes of
failure; see Figure 2.1(c-d). The first one appears as inaccuracy in low-level details, such as
wrong object shapes, inaccurate boundaries, and incoherent surfaces. The second one is the
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Fig. 2.2 Semi-supervised Semantic Segmentation: The proposed semi-supervised learning (SSL)
approach improves over the baselines when only little labeled data is available using unlabeled data,
especially with less than 5% labeled samples. Performance is shown on the PASCAL VOC dataset
without (a) and with (b) COCO pre-training.

misinterpretation of high-level information, which leads to assigning large image regions to
the wrong classes.

Our approach. Our two network branches are designed to address these two types of
artifacts separately. To deal with low-level errors, we propose an improved GAN-based
model, where the segmentation network acts as a generator. It is trained together with a
discriminator that discriminates between generated and ground-truth segmentation maps.
Instead of using the original GAN loss, which causes instability, we propose to use the
feature-matching loss introduced by Salimans et al. [102]. Moreover, we introduce the
self-training procedure based on the discriminator score, which stabilizes the adversarial
learning process and improves the performance of the resulting model.

To resolve the second type of artifact, we propose a semi-supervised multi-label classifi-
cation branch that decides which classes are present and which ones are missing in the image
and thus aids the segmentation network in making globally consistent decisions with the first
branch. To utilize extra image-level information from unlabeled images, we leverage the
success of ensemble-based semi-supervised classification (SSL) methods [70, 116]. The two
branches act in a complementary manner and successfully fix both low-level and high-level
errors; see Figure 2.1 for a typical example.

Scope of this chapter. We demonstrate the effectiveness of our approach on different
amounts of labeled data across a range of popular semantic segmentation datasets: PASCAL
VOC 2012 [34], PASCAL-Context [89] and Cityscapes [24]. We consistently achieve the best
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results compared to existing methods and define the new state of the art in semi-supervised
semantic segmentation. Our approach proves particularly efficient when only very few
training samples are available: with as little as 2% labeled data on the PASCAL-VOC
dataset, we report an 11% performance improvement over state-of-the-art (see Figure 2.2).
Chapter 2.4 covers the experimental results on the mentioned three benchmarks with detailed
ablation studies. Our approach is one of the first to provide an end-to-end learning-type
solution to the semi-supervised semantic segmentation task. We also compare our work to
some of the latest state-of-the-art methods [54, 22, 123, 132] and find that it still performs
competitively to these new methods when trained with similarly high-resolution input images
and new data augmentation techniques. Our approach offers a few additional advantages.
Our self-training technique uses complete prediction as the pseudo-label for unlabeled
samples. Therefore, the method is less prone to training bias [17] caused due to self-training.
Our approach is also flexible regarding the type of supervision provided to the model.
Chapter 2.4.2 shows that the approach can easily utilize extra weak supervision in the form of
image labels and scribbles. And the model with weak supervision compares favorably to the
existing methods operating in the same setting. The source code of this chapter is available 1.

2.1 Related work

Weakly-supervised and Semi-supervised Segmentation. To reduce annotation effort,
many existing approaches rely on weakly- and semi-supervised training schemes which use
weak labels from the whole dataset like image-level class labels [94, 125], bounding boxes
[27, 64, 94] or scribbles [75, 114], where semi-supervised schemes [64, 94, 125] additionally
use a few pixel-wise segmentation labels. Only two works [57, 111], prior to this work,
considered true semi-supervised learning, i.e., they improve semantic segmentation with
completely annotation-free images. These methods, like ours, utilize a GAN-based model.
Although both approaches use the GAN in a different manner. Souly et al. [111] uses the
GAN to generate additional images to enhance the features learned by the segmentation
network and further extend their semi-supervised method by generating additional class-
conditional images. Most related to ours is the work by Hung et al. [57]. They also propose a
GAN-based design that enables learning from unlabeled samples. Also, Luc et al. [80] share
some common ground with our work, although their work does not comprise semi-supervised
learning. In their case, the GAN replaces CRF-post-processing, which enhances low-level
consistency in the segmentation maps.

1Source code: https://github.com/sud0301/semisup-semseg

https://github.com/sud0301/semisup-semseg
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Recent follow-up works. Semi-supervised semantic segmentation has gained a lot of
interest. Many interesting follow-up works have been proposed lately. Self-training and
strong augmentation techniques such as CutMix [139] have become the main components
of these new methods. The latest methods utilize self-training with a student-teacher setup,
where predictions on unlabeled samples are partially selected, based on a confidence thresh-
old, and used as pseudo labels for training. Recently Wang et al. [123] proposed (U2PL) to
make use of low-confidence predictions as well, instead of completely filtering them out,
using contrastive learning. AEL [54] approach argues that self-training harms underper-
forming categories due to data imbalance and focuses on long-tailed label distribution. AEL
adaptively balances the training of well and poor-performing categories. This technique
proves to be useful, especially for class-imbalanced datasets like Cityscapes. Xu et al. [132]
proposes an approach with an additional prototype-based predictor to learn within-class
feature distributions. This is, so far, the best-performing model in the literature.

Semi-supervised Classification. In contrast to segmentation, many semi-supervised meth-
ods exist for image classification [9, 70, 87, 102, 116]. Oliver et al. [92], however, criticizes
that most of the work lacks realistic evaluation to address real-world conditions. In order to
rectify the issue, they propose a new experimental methodology closer to real-world settings.
We find that new consistency-based semi-supervised classification methods [9, 116] show
improvement over the supervised baseline while satisfying at least two procedures mentioned
by Oliver et al. [92]. Firstly, those methods show improvement over the supervised setting
while using a high-quality supervised baseline. Secondly, they can improve upon the pre-
trained network using unlabeled data. In this work, we utilize a consistency-based approach,
which uses a mean-teacher [116] model, for the second branch.

Network Fusion. The approach to fuse spatial and class information by channel-wise
selection is inspired by some recent works in other domains. Hu et al. [55] proposed SE-Net
for image classification, which learns to combine spatial and channel-wise information by
calibrating channel-wise feature maps. Following SE-Net, Zhang et al. [141] proposed to
incorporate class information in semantic segmentation to highlight class-dependent feature
maps. Multiple works [51, 124, 125] have explored the usage of classification methods, both
in a shared and a decoupled manner, to constructively use class information for semi- and
weakly supervised semantic segmentation. Our work uses a decoupled approach with a late
fusion of spatial and class information to remove false positive class channels.
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2.2 Our Method

We propose a two-branch approach to the task of semi-supervised semantic segmentation
as shown in Figure 2.3. The upper branch predicts pixel-wise class labels and is referred to
as the Semi-Supervised Semantic Segmentation GAN (s4GAN). The lower branch performs
image-level classification and is denoted as the Multi-Label Mean Teacher (MLMT).

The core of the s4GAN branch is a standard segmentation network for generating per-
pixel class labels given the input image. We combine conventional supervised training with
adversarial training, which allows leveraging unlabeled data to improve the generalization
of the model. The segmentation network acts as a generator and is trained together with a
discriminator responsible for distinguishing the ground truth segmentation maps from the
generated ones. We additionally treat the output of the discriminator as a quality measure
and use it to identify good quality predictions, which are further exploited for self-training.

The MLMT branch predicts image-level class labels used to filter the s4GAN outputs.
Its core is a mean-teacher classification model, which is an online ensemble of the student
classification model. MLMT branch is trained in a semi-supervised manner using standard
classification loss and consistency loss. The MLMT effectively removes false positive
predictions of the segmentation network. The contributions of the two branches MLMT and
s4GAN are complementary to each other. The outputs of the two branches are combined to
produce the final result.

2.2.1 s4GAN for Semantic Segmentation

In our s4GAN model, the segmentation network S acts as a generator network that takes image
x as input and predicts C segmentation maps, one for each class. The discriminator D gets
the concatenated input of the original image and its corresponding predicted segmentation.
Its task is to match the distribution statistics of the predicted and the real segmentation maps.

Training S The segmentation network S is trained with a loss LS, which is a combination of
three losses: the standard cross-entropy loss, the feature matching loss, and the self-training
loss.

Cross-entropy loss. This is a standard supervised pixel-wise cross-entropy loss term Lce.
The loss for the output S(x) of size H×W ×C is evaluated only for the labeled samples xℓ:

Lce =− ∑
h,w,c

yℓ(h,w,c) logS(xℓ)(h,w,c), (2.3)

where yℓ is the ground-truth segmentation mask.



2.2 Our Method 17

Segmentation Network, S
Discriminator 
Network, D

C+3

C+3

Teacher Network, H

fake
real

C

C

online ensemble

MLMT Branch

s4GAN Branch

Training
Evaluation

labeled + unlabeled 

Concatenation

ground-truth

Network Fusion

Student Network, G

C

Fig. 2.3 Overview of our proposed semi-supervised segmentation approach. The s4GAN branch
is a GAN-based model which improves the low-level details in the segmentation prediction. The
MLMT branch performs semi-supervised multi-label classification to exploit class-level information
for removing false-positive predictions from the segmentation map.

Feature matching loss. The feature matching loss L f m [102] aims to minimize the
mean discrepancy between the feature statistics of the predicted, S(xu) and the ground-truth
segmentation maps, yℓ:

L f m =∥E(xℓ,yℓ)∼Dℓ[Dk(yℓ⊕xℓ)]

−Exu∼Du[Dk(S(xu)⊕xu)]∥, (2.4)

where Dk(·) is the intermediate representation of the discriminator network after the kth

layer. Both ground-truth and predicted segmentation masks are concatenated with their
corresponding input images. Intuitively, it encourages the generator to predict segmentation
maps that have the same feature statistics as the ground truth and, therefore, also qualitatively
resemble the ground truth. This loss is used on the unlabeled samples xu, thus forcing
plausible solutions even for cases where dense labels are unavailable. This loss is class-
agnostic, unlike the self-training loss, and encourages the segmentation model to produce
accurate low-level predictions like edges and corners.

Self-training loss. During GAN training, the discriminator (D) and the generator (G)
networks need to be balanced. If D starts off being too strong, it does not provide any
useful learning signal for G. In order to facilitate such balanced dynamics, we introduce the
self-training (ST) loss. The main idea is to pick the best generator outputs (i.e., those able
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to fool D) which do not have the corresponding ground truth and reuse them for supervised
training. Intuitively, this pushes G more to produce predictions that D cannot distinguish
from the real ones. This impedes the progress of D and does not allow it to become too strong
quickly. This self-training loss re-establishes the desired balance between the generator and
the discriminator model.

Technically, the output of D varies between 0 and 1, where 0 should be assigned to the
predicted segmentation maps and 1 to the ground-truth segmentation maps. We use this
score as a confidence measure for the quality of the predicted segmentation. High-quality
predictions are used for supervised training by creating pseudo-labels, i.e., we calculate the
standard cross-entropy loss based on them. The self-training loss term Lst is thus defined as:

Lst =


− ∑

h,w,c
y∗ logS(xu), if D(S(xu)≥ γ

0, otherwise,
(2.5)

where γ is the confidence threshold which controls how certain D needs to be about
the prediction in order for it to be used in self-training; y∗ are the pseudo-pixel-wise labels
generated from the prediction S(xu) of the segmentation network.

The final training objective LS is composed of the three described terms:

LS = Lce +λ f mL f m +λstLst , (2.6)

where λ f m,λst > 0 are the corresponding weights.

Training D The objective of the discriminator is to distinguish between the ground-truth
(real) and predicted (fake) segmentation masks. If the quality of the predicted mask is good,
then the discriminator is likely to fail in its task, whereas poor prediction quality would result
in a reduction of model D’s loss. This encourages the segmentation network to produce better
predictions using the feature-matching loss as described above. The discriminator network is
trained with the original GAN objective as proposed by Goodfellow et al. [46]

LD =E(xℓ,yℓ)∼Dℓ[logD(yℓ⊕xℓ)]

+Exu∼Du[log(1−D(S(xu)⊕xu))], (2.7)

where ⊕ denotes concatenation along the channel dimension. Following the original GAN
idea, D learns to differentiate between the real yℓ and the fake segmentation masks S(xu)

concatenated with the corresponding input images.



2.2 Our Method 19

2.2.2 Multi-label Semi-supervised Classification

We extend an online ensemble-based semi-supervised classification method (Mean-Teacher)
[116] for semi-supervised multi-label image classification. This model consists of two
networks: a student network G and a teacher network H. Both networks receive the same
images under different small perturbations. The weights (θ ′) of the teacher network are the
exponential moving average (online ensemble) of the student network’s weights (θ ). The
predictions made by the student model are encouraged to be consistent with the predictions
of the teacher model using the consistency loss, which is the mean-squared error between the
two predictions.

We optimize the student network using the categorical cross-entropy loss Lcce for labeled
samples xℓ, and using the consistency loss Lcons for all available samples (xu,ℓ):

LMT =−∑
c

zℓ(c) log(Gθ (xℓ)(c))︸ ︷︷ ︸
Lcce

+λcons ∥Gθ (x(u,ℓ))−Hθ ′(x′
(u,ℓ)

)∥2︸ ︷︷ ︸
Lcons

, (2.8)

where x and x′ are differently augmented images for student and teacher networks, respec-
tively, zℓ is the multi-hot vector for ground-truth class labels. The parameter λcons > 0
controls the weight of the consistency loss in LMT .

2.2.3 Network Fusion

The two described branches are trained separately. For evaluation, the output of the classifi-
cation branch simply deactivates the segmentation maps of those classes not present in the
input image:

S(x)c =

0 if G(xc)≤ τ

S(x)c otherwise
(2.9)

where S(x)c is the segmentation map for class c, G(x)c is the soft output of the MLMT-branch,
and τ = 0.2 is a threshold on that softmax output obtained by cross-validation.
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2.3 Experiment setup

2.3.1 Datasets

PASCAL VOC 2012. It is a standard object-centric semantic segmentation dataset. The
dataset consists of 20 foreground object classes and one background class. We use the
augmented annotation set, which consists of 10582 training images and 1449 validation
images. The training set contains 1464 images from the original PASCAL data, and 9118
extra images from the Segmentation Boundary Dataset (SBD) [48]. The training data
augmentations include random resizing, cropping to 321×321, and horizontal flipping. All
the results for the PASCAL VOC dataset are shown on the validation set.
PASCAL-Context. This is a whole scene parsing dataset containing 4,998 training and
5,105 testing images with dense semantic labels. Following the previous work [19, 76, 141],
we used semantic labels for the 60 most frequent classes, including the background class.
The training data augmentations were the same as for the PASCAL VOC dataset.
Cityscapes. This is an urban driving scene dataset with 2975, 500, and 1525 densely anno-
tated images for training, validation, and testing, and it contains 19 classes. We downsample
the original 1024×2048 images by a factor of 2 to fit the models in the GPU memory. The
training data is augmented with random crops of size 256×512 and horizontal flipping. All
the results on the Cityscapes dataset are shown on the validation set.
Evaluation Metric. We report the mean Intersection-over-Union (mIoU) for all our experi-
ments as the evaluation metric.

2.3.2 Network Architecture

Semi-supervised Segmentation GAN. We used DeepLabv2 [19] as our main segmentation
network for the comparison with previous methods and ablation studies. Due to memory
constraints, we used a single-scale variant of it. Later, we used DeepLabv3+ [21] to compare
with the latest methods, which are based on the same architecture. The discriminator network
of the GAN model was a standard binary classification network consisting of 4 convolutional
layers with 4×4 kernels with {64, 128, 256, 512} channels, each followed by a Leaky-ReLU
[82] activation with negative slope of 0.2 and a dropout [112] layer with dropout probability
of 0.5. We found this high dropout rate to be crucial for stable GAN training. The last
convolutional layer is followed by global average pooling and a fully-connected layer. The
output vector representation produced after global average pooling is used for evaluating the
feature matching loss.
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Semi-supervised Multi-label Classification Network. We used ResNet-101 [49] pre-
trained on the ImageNet dataset [29] as the base architecture. We replaced the softmax
activation layer with a sigmoid function for each class, for multi-label classification.

2.3.3 Training details

Similar to [19], we used the poly-learning policy for both the segmentation and the discrimi-
nator networks of the GAN model, where the base learning rate was multiplied by a factor
of ((1− iter

max_iter)
pow) in every iteration. In our setup, pow = 0.9. Following the learning

scheme in [57], the segmentation network was optimized using the SGD optimizer with a
base learning rate of 2.5e-4, momentum 0.9, and a weight decay of 5e-4. The discriminator
network was optimized using the Adam optimizer [67] with a base learning rate of 1e-4 and
betas set to (0.9,0.99). The model was trained for 35K iterations on the PASCAL VOC and
Cityscapes dataset, and for 50K iterations on the PASCAL-Context dataset. All the learning
hyper-parameters remained the same for all datasets except for the Cityscapes dataset, where
the base learning rate of the discriminator network was set to 1e-5. We used a batch size
of 8 for both PASCAL datasets and a batch size of 5 for the Cityscapes dataset. Through
cross-validation, we find the optimal loss weights: λ f m = 0.1, λst = 1.0, λcons = 1.0 and
τ = 0.2. These hyper-parameters remained the same for all datasets, whereas we set γ = 0.6
for both PASCAL datasets and 0.7 for the Cityscapes dataset. Overall, the gamma parameter
is fairly robust: the performance varies within the range of 0.4% for gamma values between
0.5 and 0.8 on the Cityscapes dataset. Our implementation is based on the open-source
toolbox Pytorch [95]. All the experiments were run on a Nvidia Tesla P100 GPU.

2.3.4 Baselines

We compare to the DeepLabv2 [19] network as the fully-supervised baseline approach,
which was trained only on the labeled part of the dataset. DeepLabv2 makes use of dilated
convolutions to enlarge the receptive field size and incorporate a larger context and introduces
atrous spatial pyramidal pooling (ASPP) to capture image context at multiple levels.

In Table 2.1, we compare our methods to the semi-supervised baseline proposed by
Hung et al. [57]. This was the only work proposed before our method contribution. Apart
from the differences described in Section 2.1, they also use a two-stage GAN training. In the
first stage, both D and G are trained only using labeled data. In the second stage, D’s outputs
are used to update G using unlabeled samples, while D itself is further trained only on the
labeled images. All the methods are trained with the same data augmentation.
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(a) Original (b) Ground Truth (c) Baseline (d) Hung et al. [57] (e) Our Results

Fig. 2.4 Qualitative results obtained using our semi-supervised segmentation approach on the PASCAL
VOC dataset with 5% labeled data without COCO pre-training.

Recent methods. Since our method was proposed, there have been many follow-up
works [54, 22, 123, 132]. We also implemented our approach with new upgraded network
settings proposed by these approaches and compared the upgraded performance of our model
with these new baselines. Shared attributes among these new works include the usage of
DeepLabv3+ architecture and the higher-resolution input images. These follow-up works are
majorly built on our self-training idea along with new advancements. CPS [22] utilized two
parallel trainable networks to generate pseudo labels for each other. Cutmix-seg [36] intro-
duces the usage of CutMix augmentation into semantic segmentation using a mean-teacher
model inspired by successful SSL image classification works [131, 110]. U2PL proposed to
utilize unreliable pseudo-labels using contrastive learning along with reliable pseudo-labels
using self-training. Many approaches [54] have been proposed to resolve class imbalance,
which might be present in the dataset or can be exaggerated by the self-training approach.
Lately, Xu et al. [132] proposed a prototype-based consistency regularization method to
capture the intra-class variations. Our upgraded model uses Deeplabv3+ architecture with
higher resolution input images and cutmix augmentation. In this work, we compare the
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without COCO pre-training

Methods Labeled Data
1/50 1/20 1/8 Full

DeepLabv2 48.3 56.8 62.0 70.7
Hung et al.[57] 49.2 59.1 64.3 71.4
Ours (s4GAN only) 58.1 60.9 65.4 71.2
Ours (s4GAN + MLMT) 60.4 62.9 67.3 73.2

with COCO pre-training
DeepLabv2 53.2 58.7 65.2 73.6
Hung et al.[57] 57.2 64.7 69.5 74.9
Ours (s4GAN only) 60.9 66.4 69.8 73.9
Ours (s4GAN + MLMT) 63.3 67.2 71.4 75.6

Table 2.1 Semi-supervised semantic segmentation results on the PASCAL VOC dataset without and
with COCO pre-training. Our model is trained with input images of resolution 321×321.

Method Resolution Labeled Data
1/16 (662) 1/8 (1323) 1/4 (2646)

Baseline [22] 512x512 70.59 73.20 76.62
CPS [22] 512x512 74.48 76.44 77.68
AEL [54] 512x512 77.20 77.57 78.06
U2PL (w/ Cutmix) [123] 512x512 77.21 79.01 79.30
Proto-Cons [132] 512x512 78.60 (+8.01) 80.71 (+7.51) 80.78 (+4.16)

Baseline* 305x305 69.88 73.65 76.11
Ours 305x305 72.49 75.94 77.29 (+1.18)

Ours (w/ Cutmix) 305x305 74.21 (+4.33) 76.66 (+3.01) 77.02

Table 2.2 Semi-supervised semantic segmentation results on the PASCAL VOC dataset. Here,
we compare our upgraded method to some of the latest methods. Our upgraded model is trained
using DeepLabv3+ architecture, similar to other compared methods in the table. * refers to our
implementation.

upgraded version of our model with several latest methods, including CPS, AEL, U2PL, and
Proto-Cons.

2.4 Results

PASCAL-VOC Table 2.1 shows the segmentation results on the PASCAL VOC dataset
with and without pre-training on the Microsoft COCO [77] dataset. We achieved improved
results compared to the previous method for all data splits. Our method achieves a perfor-
mance increase of 5% to 12% over the baseline for different data splits by utilizing unlabeled
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samples without pre-training the network on any segmentation dataset. Notably, the approach
works well even with only 2% (1/50) of labeled data. Figure 2.4 shows qualitatively how our
method helps remove artifacts produced by other methods. We also validated our approach
with COCO pre-training to directly compare with Hung et al. [57] and achieved an improve-
ment of 6.1 mIoU points over them for the 1/50 split. We speculate that [57] is inferior in the
low-data regime due to the two-stage GAN training, where the discriminator is only updated
based on the labeled samples. This effectively reduces the amount of data it sees during
training, which can easily lead to overfitting.

Comparison to new state-of-the-art Table 2.2 compares our method with the latest state-
of-the-art methods. We upgrade our model to make use of a larger batch size of 16, similar
to the latest methods. Latest works [132, 123] also use higher-resolution input images with a
resolution of 512x512. However, we can only use 305x305 resolution images with a batch
size of 16 due to limited GPU memory. We get bigger performance gains from the usage
of large batch size compared to using higher resolution input images given a fixed memory
usage. By utilizing a larger batch size, we obtain a much higher baseline performance of
69.88 mIoU compared to our previous baseline performance of ∼60 mIoU with 1/16 labeled
samples. Using the s4GAN branch, we obtain a consistent improvement over the baseline.
Similar to these new methods, we also included the CutMix augmentation technique based
on student-teacher modeling. We found that our methods improve significantly using such
strong augmentation and show competitive performance compared to the latest methods.

Cityscapes On the Cityscapes dataset, the s4GAN branch yields an improvement over the
baseline of 3.1%, and 1.7% for the 1/8 and 1/4 data splits, respectively; see Table 2.3. The
distribution of different classes in this dataset is highly imbalanced. The vast majority of the
classes are present in almost every image, and the few remaining classes occur only scarcely.
In this situation, a classifier that eliminates labels of non-existing classes does not help. Thus,
our MLMT branch was ineffective for the Cityscapes dataset.

Figure 2.5 shows qualitative results obtained using our approach with 1/8 labeled samples
and the remaining unlabeled samples. The differences in the Cityscapes dataset are subtle.
Therefore, we include the zoomed-in views of informative areas. Images from Figure 2.5
show our approach yields improvement over the baseline.

Comparison to new state-of-the-art. Similar to the results on PASCAL-VOC, we
compare our method on the Cityscapes dataset with the latest state-of-the-art methods.
For the Cityscapes dataset, we find that the resolution of the input image plays a big role.
Although the latest works [132, 123] uses input images with a resolution of at least 769x769
with a batch size of 16, we could only manage to use an input image of resolution 609x609
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Original Ground-truth Baseline Ours

Fig. 2.5 Qualitative results on the Cityscapes dataset using 1/8 labeled samples without COCO
pre-training. The proposed semi-supervised approach produces improved results compared to the
baseline. We compare our (’Ours’) results with the fully-supervised baseline (‘Base’) which is trained
only on the labeled subset of data.

with a batch size of 8 due to memory limitations. Table 2.4 compares our proposed method
s4GAN with previous approaches. We find that our approach delivers similar improvements
compared to other latest approaches. Our approach improves over the 1/8 baseline by 2.96
points, whereas the best method improves by 3.95 points.

PASCAL-Context Our approach successfully generalizes to the whole scene parsing the
PASCAL-Context dataset. Table 2.5 shows the performance on two splits (1/8 and 1/4 labeled
data) of PASCAL-Context. Although this dataset is smaller and more difficult than PASCAL
VOC, there is still an improvement over the baseline of 3.2% and 2.4% for the 1/8 and 1/4
splits, respectively. Figure 2.6 show qualitative results on the PASCAL-Context test set using
1/8 labeled samples and the remaining unlabeled samples. PASCAL-Context is a smaller
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Method
Labeled Data

1/8 1/4 Full
DeepLabv2 56.2 60.2 66.0
Hung et al.[57] 57.1 60.5 66.2
Ours (s4GAN only) 59.3 61.9 65.8

Table 2.3 Semi-supervised semantic segmentation results on the Cityscapes dataset without COCO
pre-training.

Method Resolution Labeled Data
1/8 (372) 1/4 (744) 1/2 (1488)

Baseline [123] 769x769 72.53 74.43 77.83
CPS [22] 769x769 74.31 (+1.78) 74.58 (+0.15) 76.81 (-1.02)

AEL [54] 769x769 75.55 (+3.02) 77.48 (+3.05) 79.01 (+1.18)

U2PL (w/ Cutmix) [123] 769x769 74.37 (+1.84) 76.47 (+2.04) 79.05 (+1.22)

U2PL (w/ AEL) [123] 769x769 76.48 (+3.95) 78.51 (+4.08) 79.12 (+1.29)

Proto-Cons [132] 769x769 76.31 (+3.78) 78.40 (+3.97) 79.11 (+1.28)

Baseline* 609x609 70.25 71.54 74.39
Ours 609x609 73.21 (+2.96) 75.59(+4.05) 75.41(+1.02)

Table 2.4 Semi-supervised semantic segmentation results on the Cityscapes dataset compared to
the latest state-of-the-art works with the high-resolution input image. Our method is trained on
comparatively lower input resolution of 609 × 609 due to memory limitations. * refers to our
implementation

and harder dataset as compared to PASCAL VOC. Therefore, the results are not as visually
appealing. Still, there is a clear improvement over the baseline.

2.4.1 Ablation study

All the experiments for the ablation studies are shown on the PASCAL VOC dataset without
COCO pre-training.

Contribution of the two branches. Table 2.6 shows the contribution of the s4GAN branch
and the MLMT branch. The s4GAN branch is able to extract extra dense information using
unlabeled images. It improves the shape of the segmented objects, makes the segmentation
prediction more coherent by filling small holes, and improves the fine boundaries between the
foreground and background. We qualitatively showcase these improvements in Figure 2.9(e).

The MLMT branch plays a complementary role and removes the false positives from the
predictions. Figure 2.9(d) shows the improvement using the ‘MLMT branch only’ with the
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Fig. 2.6 Qualitative results on the PASCAL-Context dataset using 1/8 labeled samples. Our approach
produces improved results compared to the baseline. We compare our (’Ours’) results with the
fully-supervised baseline, which is trained only on the labeled subset of data.

segmentation baseline method, and Figure 2.9(g) shows the improvement using the MLMT
branch together with the s4GAN branch. The MLMT branch makes use of unlabeled images
to extract image-level information about the presence of certain classes in the image. For
some cases, the s4GAN branch introduces new artifacts, which are also filtered out by the
MLMT branch. This effect is shown in the bottom-row example of Figure 2.9.

Different s4GAN branch loss terms. We trained the generator network with a combination
of the cross-entropy (CE) loss, the feature matching (FM) loss, and the self-training (ST) loss.
To justify this configuration, we compare the system performance when using different loss
terms; see Table 2.8. There is a consistent performance increase when adding all the proposed
loss terms. We found it crucial for the system stability to train using the FM loss and not the
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Method Labeled Data
1/8 1/4 Full

DeepLabv2 32.1 35.4 41.0
Hung et al.[57] 32.8 34.8 39.1
Ours (s4GAN only) 34.4 37.1 40.8
Ours (s4GAN + MLMT) 35.3 37.8 41.1

Table 2.5 Semi-supervised semantic segmentation results on the PASCAL-Context dataset without
COCO pre-training.

Method Data mIoU
labeled(%) unlabeled(%)

DeepLabv2 5 None 56.8
s4GAN only 5 95 60.9
MLMT only 5 95 59.0
s4GAN + Threshold 5 95 61.2
s4GAN + Class-wise Threshold 5 95 61.5
s4GAN + CNN 5 95 62.2
s4GAN + MLMT 5 95 62.9

Table 2.6 Ablation study of the contribution of each branch. Results are shown for the 5:95 data split
on the PASCAL VOC dataset.

standard GAN loss. Figure 2.7 illustrates the effect of using our proposed self-training loss.
We plot how the discriminator score changes during the course of training. The scores are
averaged over 100 iterations of fake (generated) and real (ground-truth) samples separately.
As discussed in Sec. 2.2.1, adding the ST loss impedes the progress of the discriminator and
does not allow it to become overly confident; that is, it draws its predicted scores towards
0.5. This has a positive effect on the generator performance, in particular with few labeled
samples, as can be seen from the last line of Table 2.8.

Semi-supervised multi-label classification. In this experiment, we compared the perfor-
mance of the proposed MLMT branch with a standard supervised classifier. Table 2.6 shows
that we already get an improvement of 1.3% over the s4GAN performance just by using a
CNN-based classifier [49], but when we further add the consistency-based semi-supervised
classification approach, we observe that the performance improvement increases to 2%.
We also conducted a simple heuristic experiment where we deactivated the predicted class
channels which have a pixel count less than a threshold. In Table 2.6, ‘s4GAN + Threshold’
refers to the case where a single threshold is set for all the classes, and ‘s4GAN + Class-wise
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Method Labeled Data
1/50 1/20 1/8 Full

Deeplabv2 (v2) 48.3 56.8 62.0 70.7
Ours v2 (s4GAN + MLMT) 60.4 62.9 67.3 73.2
Deeplabv3+ (v3+) unstable unstable 63.5 74.6
Ours v3+ (s4GAN + MLMT) 62.6 66.6 70.4 74.7

Table 2.7 Results on PASCAL VOC without COCO pre-training using different backbone architec-
tures.
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Fig. 2.7 Evolution of the discriminator output during the course of training averaged over real and
fake samples separately. Using the self-training loss (w/ ST) prevents D from becoming overly strong
and results in better training dynamics compared to the case when self-training is disabled (w/o ST).

Threshold’ refers to the case where each class has its best respective threshold. We search for
the best-performing thresholds on the validation set in the range from 1K to 12K pixels at an
increment step of 1K. Figure 2.9(f) and (g) show the effect of adding a CNN-based classifier
and an MT-based semi-supervised classifier, respectively.

We also analyze the performance of the CNN-based multi-label classification and MLMT-
based semi-supervised multi-label classification independent of the segmentation model.
Figure 2.8 shows the comparison between the ROC curves of the two methods on the task
of multi-label classification. The MLMT classifier obtains a lower false positive rate for
the same true positive rate. The effect is even more pronounced when not using ImageNet
pre-training; see Figure 2.8(b). This mode of operation is important for domains where
ImageNet pre-training does not help, e.g., bio-medical image analysis.

Limitations In certain situations, our method produces imprecise predictions. Some-
times object classes with multiple protrusions, like plant leaves, chair legs, etc., are under-
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Fig. 2.8 ROC curves for CNN-based classification and MT-based semi-supervised classification
method using 5% labeled data with (a) and without (b) ImageNet pre-training. MT produces fewer
false positives, especially when training from scratch.

Loss Terms Labeled Data
1/50 1/20 1/8

CE only 48.3 56.8 62.0
CE + SGAN [46] 54.0 57.1 62.5
CE + FM 55.4 58.4 63.9
CE + FM + ST 58.1 60.9 65.4

Table 2.8 Ablation study of different GAN loss terms for the generator on the PASCAL VOC dataset.
SGAN refers to the standard GAN loss [46], FM refers to the feature-matching loss and ST refers to
the self-training loss.

segmented by the s4GAN branch, as shown in Figure 2.10(first row). Occasionally, our
approach can identify certain ambiguous foreground objects as one of the classes, as shown in
Figure 2.10(second row). Also, there exist a few cases where some truly positive results are
wrongly predicted by the classifier. However, both qualitative and quantitative results confirm
that these failure cases are outweighed by the positive effect of the proposed techniques. In
Figure 2.10 (row 3-4), we include a few failure cases for the PASCAL-context dataset using
our approach. Figure 2.11 shows a few failure cases for the Cityscapes dataset where a few
thin objects were not segmented properly using our approach.

2.4.2 Semi-supervised Semantic Segmentation with Weak-labels

To further validate the effectiveness of our approach, we compare it to other semi-supervised
segmentation methods [94, 125] that utilize extra weak image-level annotations - labels of
classes present in the image. In this weakly semi-supervised setting, class labels are provided
as extra supervision for all the images, along with full pixel-wise labels for a few images
during training. Here, we compare the performance of our approach with methods that use
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Fig. 2.9 Ablation study on the PASCAL VOC dataset showing the contribution of the MLMT (d)
and the s4GAN (e) branches individually. The s4GAN and the MLMT branches together show a
complementary behaviour fixing both low and high-level artifacts (g). These results are obtained
using 5% labeled data.

extra image-level annotations i.e., 1,464 strongly (w/ segmentation masks) annotated images
from the original PASCAL VOC dataset and 9,118 weakly (image-level) annotated images
from the augmented SBD dataset. To use extra image-level annotations, we train the MLMT
branch using extra image-level labels for improved multi-label classification. The training
procedure and hyperparameters remain exactly the same as in the previous semi-supervised
setting. Table 2.9 summarizes the semi-supervised semantic segmentation results with extra
∼9K image-level annotations. We achieve an improvement of 5.2% over the baseline. Unlike
previous methods, our approach does not utilize CRF post-processing.
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Fig. 2.10 Failure cases. Qualitative results on the PASCAL-VOC and PASCAL-Context datasets
using 1/8 labeled samples. Failures of our approach. We compare our (’Ours’) results with the
fully-supervised baseline (‘Base’), which is trained only on the labeled subset of data.

In an additional experiment, we show that our approach can also make use of extra weak
supervision based on random scribbles. These random scribbles are freestyle hand-drawn
lines annotating the pixels belonging to a particular class. For the experiments, we provide
one scribble of each class instance in an image for the unannotated set of images in the semi-
supervised learning setting. We use the PASCAL-scribble [75] dataset for our experiments.
Table 2.10 shows that using additional scribble annotations in the s4GAN approach improves
the model performance by 7.1% mIoU and 5.3% mIoU for the 2% and 5% cases, respectively.
This experiment shows the extra flexibility of the proposed model in handling different types
of supervision.
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Fig. 2.11 Failure cases. Qualitative results on the Cityscapes dataset using 1/8 labeled samples.
Failures of our approach. We compare our (’Ours’) results with the fully-supervised baseline (‘Base’)
which is trained only on the labeled subset of data.

2.5 Summary

In this chapter, we presented a two-branch approach to the task of semi-supervised semantic
segmentation. The proposed branches are designed to alleviate both low-level and high-
level artifacts, which often occur when working in a low-data regime. The two branches
complement each other, which is validated both qualitatively and quantitatively in this work.
Our proposed feature matching loss serves to stabilize the adversarial training process even
in scenarios with insufficient labeled data, while the self-training loss improves the balance
between the GAN generator and discriminator, thus increasing the final performance. Overall,
our approach is quite versatile that can be adapted to different types of supervision like image-
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Method Data Split (Strong/Weak/Unlab)
1.4K/0/9K 1.4K/9K/0 All/0/0

DeepLab-CRF-LargeFOV [18] 62.5 — 67.6
WSSL (CRF) [94] — 64.6 —
MDC [125] — 62.7 —
MDC (CRF) [125] — 65.7 —
DeepLabv2 65.7 — 70.7
Ours (s4GAN only) 67.5 — 71.2
Ours (s4GAN + MLMT) 69.6 70.9 73.2

Table 2.9 Semi-supervised semantic segmentation results on the PASCAL VOC dataset using extra
weak image-level annotations. Data splits (A/B/C) refers to the usage of A pixel-wise labeled samples,
B image-level labeled samples and C unlabeled samples. For e. g. the second column heading shows
the case where 1.4K images are provided with pixel-wise class labels and 9K images are provided
with only image class labels.

Method Labeled data
2% (210) 5%(525) Full(10k)

DeepLabv2 48.3 56.8 70.7
Ours (s4GAN only) 58.1 60.9 71.2

with additional scribbles
DeepLabv2 61.5 62.8 —
Ours (s4GAN only) 65.2 66.2 —
Ours (s4GAN + COCO pre-train) 68.1 69.7 73.6

Table 2.10 Semi-supervised semantic segmentation results with extra weak supervision using scribbles
on the PASCAL VOC dataset without and with COCO pre-training.

wise class labels and scribbles. The effectiveness of this design is demonstrated in a series of
extensive experiments on three standard segmentation benchmarks.

Several components proposed in this work are still used by the latest works, including
the online self-training technique and multi-label classification branch. Most of these
methods merge the multi-label classification branch into the segmentation branch by using
an additional network head. After studying our approach and the latest methods, we find that
the self-training approach using pseudo-labeled is a crucial component that helps in learning
from unlabeled samples. It is a common component in many state-of-the-art methods. Usage
of strong augmentation, for e. g. Cutmix, Cutout, is also ubiquitous to most of these methods
using a student-teacher model. Class-balanced training can be an important component when
the dataset is biased, for e. g. Cityscapes dataset. Some additional components, like the use
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of low-confidence pseudo labels using contrastive learning and consistency regularization
towards intra-class prototypes, can further boost performance.

In this chapter, we proposed a new semi-supervised method for semantic segmentation
to learn a label-efficient model. In semi-supervised learning setting, a small set of labeled
samples are assumed to be given, randomly picked in this case for experimental purposes.
However, these samples can also be intelligently selected for annotation from the large
unlabeled pool of samples. Such informed selection might allow us to select more valuable
samples for annotation and achieve better performance, keeping the annotation cost constant.
This task is referred to as active learning in the literature and is a non-trivial task that requires
an understanding of the underlying data distribution, implicit bias in the model representation,
and the task objective. In the next chapter, we study active learning methods for deep neural
networks for different tasks. We investigate several aspects of deep active learning, including
its effectiveness, correct evaluation procedure, and best usage in different scenarios.





Chapter 3

Realistic Deep Active Learning

The content of this chapter was adapted from the following papers.

Sudhanshu Mittal, Maxim Tatarchenko, Ozgun Cicek and Thomas Brox. Parting with
Illusions about Deep Active Learning. In ArXiv 2019.

Sudhanshu Mittal*, Joshua Niemeijer*, Jörg Schäfer and Thomas Brox (*indicates
equal contribution). Best Practices in Active Learning for Semantic Segmentation. DAGM
German Conference on Pattern Recognition 2023.

Joshua Niemeijer is a co-author with significant contributions to the paper "Best Practices
in Active Learning for Semantic Segmentation." He identified the need for a more realistic
evaluation of Active Learning methods in the context of autonomous driving, as the previous
SOTA focused on datasets curated for diversity. He proposed and co-designed the study on
scenarios closer to the redundant measurement campaign data found in real-life scenarios.
Joshua contributed by implementing the BALD algorithm for semantic segmentation. He
performed baseline experiments on the Cityscapes dataset and curated redundant dataset
pools from the original A2D2 dataset. All co-authors actively participated in the project
discussions as well as the final paper text editing. All the other contributions described in
this chapter are made by myself.

∗∗∗

In Chapter 2, we proposed a semi-supervised method for semantic segmentation that
could learn from a very small set of labeled samples along with a large set of unlabeled
samples. In that setting, we learned from a set of labeled samples that were already given. In
this chapter, we study whether it is possible to select better samples for annotation than just
random selection to achieve better model performance from the same amount of annotation.
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This process of selecting samples for human annotation and training the model using these
annotated samples is referred to as Active Learning. The objective of this chapter is to
provide a realistic assessment concerning the relevance and effectiveness of deep active
learning for various vision tasks.

In Active Learning (AL), the objective is the reduction of annotation cost by selecting
those samples for annotation, which are expected to yield the largest increase in the model’s
performance. Active learning is based on the attractive idea that some samples are more
valuable for learning than others - by identifying those in the pool of unlabeled data, we
can use an annotator’s time more efficiently. It assumes that raw data can be collected in
abundance for most large-scale data applications, but annotation limits the use of this data.

Problem statement. Assuming we have a dataset consisting of n examples, denoted as
D = x,y, where x is the set of input images, and y is the set of corresponding labels. Let
Dℓ = xℓ,yℓ denote the set of labeled examples, and Du = xu denote the set of unlabeled
examples. Thus D =Dℓ∪Du, where Dℓ contains Bi samples according to the initial labeling
budget, and Du contains n−Bi samples.

The objective of active learning is to learn a function f : X →Y that maps input images
x ∈ X to labels y ∈ Y , where X is the space of images, and Y is the space of labels. The
function f is learned in cycles. At each cycle c, the active learning method selects a set of Bs

samples according to the sampling budget fromDu for annotation using a query function, also
called the acquisition function. The acquisition function is a scoring function that identifies
the most valuable samples for selection. Most valuable samples could mean samples that are
most uncertain, most diverse, or most representative of the data distribution. The acquisition
function defines the identity of the active learning method being used. After, the selection,
the model function fc is then trained using the current labeled setDℓ

c =Dℓ
c−1∪Bs and current

unlabeled set Du
c =Du

c−1 \Bs.

fc = argmin
f
L( f ;Dℓ

c,Du
c) (3.1)

The active learning cycle is repeated either until the maximum annotation budget is
exhausted or the desired performance level is reached. In summary, the active learning
methods iteratively select a subset of unlabeled samples to be annotated by an oracle and
trains the model on this updated set, with the objective of maximizing the performance on a
separate test set. In this work, for both image classification and semantic segmentation tasks,
we assume that the cost of annotation per image is equal across the dataset. This assumption
is made based on our empirical study shown in Chapter 3.3.5.
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Motivation. The appeal of the active learning idea has spawned a multitude of ConvNet-
based AL methods. Various previous works have proposed solutions to this challenge,
which is ubiquitous in most machine learning applications. Yet there exists a skepticism
amongst the users, whether it brings any additional benefit over selecting the samples
randomly or based on some manual prior. One of the main reasons for such hesitancy is
the inconsistency of the method performances across published works due to incompatible
evaluation settings like different architectures, augmentation strategies, optimization methods,
etc. How these acquisition methods perform w.r.t the difficulty levels of the task and
underlying data distributions is also rather unknown. Semi-supervised learning, besides
active learning, is a way to deal with this situation of high annotation cost, as studied in
Chapter 2. Semi-supervised learning (SSL) and AL share a common objective of obtaining
maximum performance from minimum supervision. Therefore, it is sensible to integrate both
ideas, yet the combination of active learning with semi-supervised learning is understudied.
In this chapter, we aim to study this combination in detail and provide clarity on the above-
mentioned discrepancies.

Scope of this chapter. In this chapter, we objectively assess the state of the field and
challenge the principal hypothesis behind active learning: active selection of the samples
to be labeled leads to a significant reduction in the annotation effort compared to random
selection. We systematically study the behavior of active learning methods under different
training conditions in order to present a realistic perspective. Our study identifies that existing
works are effective, but only under certain training conditions. They are not consistent across
different model variabilities like data distribution, annotation budget, supervision type, and
regularization. This chapter provides an extensive analysis of existing active learning methods
under these diverse variabilities for both image classification and semantic segmentation
tasks.

We conduct a detailed analysis in two parts. The first part (Chapter 3.2) studies the
nature of AL methods for image classification, and the second part (Chapter 3.3) studies
the nature of AL methods for semantic segmentation. For the image classification task,
we first challenge the existing methods across several similar datasets like CIFAR-10 and
CIFAR-100 to check the consistency of the methods. Then, they are subsequently studied
under the influence of strong augmentations, semi-supervised learning objectives, and, lastly,
under different annotations budgets. For the dense semantic segmentation task, data is often
collected as video streams, especially for navigation applications such as autonomous driving.
Such video stream data is very different from previously tested benchmarks in active learning
literature; it is highly redundant. Therefore, the behavior of AL methods w.r.t. such data
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Fig. 3.1 State-of-the-art active learning methods do not consistently use modern data augmentation
techniques or advances in the closely related field of semi-supervised learning, which leads to the
wrong impression about the current state of the field. Results are shown for image classification on
CIFAR 10.

distribution changes is unknown and highly relevant. To understand the nature of active
learning methods under such missing cases, we evaluate methods for the segmentation task
for datasets with different levels of redundancy. We also study the active learning methods
for semantic segmentation across different annotation budget settings and with the integration
of semi-supervised learning.

Active Learning for Image Classification

Our first study seeks answers to the following scientific questions about active learning for
image classification:

• Since a widely accepted evaluation protocol is missing, methods are often tested under
incompatible circumstances: different architectures, different augmentation strategies,
etc. We evaluate the effect of compatible experimental settings on the ranking of
methods. In particular, do AL methods work consistently well in conjunction with
data augmentation?

• Contemporary papers on active learning largely ignore the progress of the closely
related field of semi-supervised learning, where approaches effectively operate under
the same assumptions with regard to the used data. What is the effect as concepts
from semi-supervised learning are integrated into active learning?
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• Existing methods are typically not evaluated in a low-budget setting - a mode crucially
important to kick-start network training on a new dataset. How do active learning
concepts work in such a low-budget regime?

Keeping in mind the aforementioned questions, we perform an extensive comparison of
existing approaches for image classification. We study 5 existing active learning acquisition
methods across three dimensions - subject to regularization techniques like strong data
augmentation, integration of semi-supervised learning, and under low as well as large
annotation budget settings. Our experiments reveal that the progress recently made in the field
of active learning is practically negligible when viewed under more realistic circumstances:
in particular, using modern data augmentation and taking the advances of semi-supervised
learning into account, see Figure 3.1. Integration of modern semi-supervised learning into
active learning gives a significant boost to the acquisition functions. However, the difference
w.r.t. random baseline with SSL becomes negligible. Active learning methods also fail to
outperform simple random sampling, especially with a small labeling budget. Based on our
extensive study, we suggest a more suitable evaluation protocol.

Active Learning for Semantic Segmentation

In the second part of the study, we conduct further analysis in this direction for the task of
semantic segmentation. The semantic segmentation application opens up new dimensions
for the analysis of active learning methods. As a result, we show that the findings for image
classification only hold under certain conditions for semantic segmentation.

We noticed that the state-of-the-art active learning methods for segmentation had been
evaluated only in a particular experimental setup - highly diverse benchmark datasets with a
comparatively large annotation budget; see Table 3.1. Its applicability in other settings with
different data distribution and annotation budgets is highly relevant but an unstudied topic.
Additionally, we do not know how active learning methods integrate with semi-supervised
learning. In this chapter, we also seek answers to specific missing questions not captured by
previous works for the semantic segmentation task.

1. How do different active learning methods perform when the dataset has many
redundant samples? Samples with highly overlapping information are referred to as
redundant samples, for example, the consecutive frames of a video. Many commonly
used segmentation datasets were originally collected as videos for practical reasons, e.g.,
Cityscapes, CamVid, BDD100k [137]. Since active learning methods were only tested on
filtered versions of these datasets, their applicability on redundant datasets is open and highly
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Dataset↓ Annotation Budget
Low High

Supervision→ AL SSL-AL AL SSL-AL
Diverse ✓ ✓ ✓ ✓

Redundant ✓ ✓ ✓ ✓

Table 3.1 We study current active learning (AL) methods for semantic segmentation over 3 dimensions
- dataset distribution, annotation budget, and integration of semi-supervised learning (SSL-AL). Green
cells denote newly studied settings in this work. Previous AL works correspond to the grey cells. This
work provides a guide to use AL under all the above conditions.

relevant.
2. What happens when the initial unlabeled pool is also used for training along with
annotated samples using semi-supervised learning (SSL)? For image classification, many
works [85, 41, 56, 91] including our work, have shown that integration of SSL into AL is
advantageous. Most of these works appeared after our study on image classification. For
semantic segmentation, this combination is not well studied.
3. What happens when the annotation budget is low? Which methods scale best in
such low-budget settings? Semantic segmentation annotations can be expensive for specific
applications, especially in the medical domain. Therefore, it is critical to understand the
behavior of the various active learning methods in low-budget settings.

In this work, we report the results of an empirical study designed to find answers to
the above-raised questions. We study 5 existing active learning methods across the three
dimensions as mentioned above - subject to different data distributions w.r.t. redundancy in
the dataset, including the integration of semi-supervised learning, and under low as well as
large annotation budget settings, as shown in Table 3.1. The outcome of this study yields
new insights and provides, as the major contribution of this work, a guideline for the best
selection of available techniques under the various tested conditions. Figure 3.2 illustrates
some of the results, particularly that the performance of acquisition functions can change
depending on whether the dataset is redundant or diverse and that SSL integration plays
an additional role in this. We observe that the integration of SSL and AL objectives can
significantly improve model performance. However, the selection of an active learning
method for segmentation is critical since a poor selection can have a detrimental impact when
combined with SSL. Additionally, we show that active learning in a low annotation budget
setting can be particularly volatile, even nullifying the complete need for it in some cases.
This further emphasizes the importance of knowing the underlying data distribution.

We also propose a new exemplary evaluation task (A2D2-3K) for driving scenarios based
on the highly redundant A2D2 dataset, which is closer to the raw data collection scheme in a
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Fig. 3.2 We analyse and compare single-sample-based AL and batch-based AL on datasets with
different levels of redundancy. The figure shows the difference between the best performing single-
sample-based AL method and best performing batch-based AL method. We find that batch acquisition
performs better for redundant datasets and single-sample acquisition performs better for diverse
datasets. The integration of semi-supervised learning with active learning (SSL-AL) performs well
for batch-based acquisition.

driving case. The experiment outcome on this task aligns with the findings of our study for
redundant dataset type with a high annotation budget setting and shows that there is a strong
case for using active learning in this context.

3.1 Related Work

Active learning methods can be categorized in multiple ways based on the nature of their
heuristics. Different works indicate uncertainty is the right measure, whereas other works
select samples based on their representativeness. Some works acquire a set by individually
selecting the samples based on the sample value, and others acquire the whole batch with a
cumulative objective.
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3.1.1 Acquisition Objective: Uncertainty vs. Representation

Here, we discuss the works divided by the measure of the value of a sample.
Uncertainty-based methods try to find the samples which are hard to learn. In these

methods, samples with the least predictive uncertainty are considered as most informative for
labeling purposes. Several methods have been proposed to estimate uncertainty for neural
networks using Bayesian [12, 38, 39, 63] and non-Bayesian approaches [71, 93]. Gal et
al. [40] proposed to estimate posterior uncertainty using Monte Carlo dropout for active
learning. Wang et al. [120] used the entropy of the softmax output in a neural network
as a proxy uncertainty measure. Beluch et al. [11] used the ensemble method to estimate
prediction uncertainty and select new samples based on a statistical measure of committee
disagreement called variation ratio [62]. They show this method outperforms all other
uncertainty-based methods.

Representation-based methods [103, 135], also referred to as density-based methods,
try to find a diverse set of samples that optimally represents the complete dataset distribution.
Sener et al. [103] formulated the active learning problem as core-set selection and showed
effectiveness for CNNs. This method utilizes the geometry of data points using Euclidean
distances and selects samples that maximize the coverage of all samples. Learning-based
approaches [109, 136] use an auxiliary network module and loss function to learn a measure
of information gain from new samples. Yoo et al. [136] proposed to learn a loss prediction
module to predict target losses of unlabeled samples and select samples with the highest
predicted loss. It can also be considered a pseudo-uncertainty heuristic. Sinha et al. [109]
proposed a semi-supervised active learning approach that learns a VAE-GAN hybrid network
to select unlabeled samples that are not well represented in the labeled set. It can also be
considered a representation-type method.

3.1.2 Acquisition Type: Single-sample vs. Batch Acquisition

The acquisition methods can be categorized into single-sample-based and batch-based ap-
proaches. They assess the value of new samples for selecting individually and collectively as
a batch, respectively.

Single sample acquisition takes the top b samples according to the score of the acqui-
sition function to select a batch of size b. Several methods follow this selection scheme
based on either epistemic uncertainty or representation score. For example, uncertainty-
based methods try to select the most uncertain samples to acquire a batch. Many methods,
such as EqualAL [45], Ensemble+AT [71], and CEAL [121], estimate uncertainty based
on the output probabilities. Epistemic uncertainty, estimated using Entropy [105], is often
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used as a strong baseline in several active learning works [45, 106, 99]. Some methods,
namely BALD [53] and DBAL [40] employed a Bayesian approach using Monte Carlo
Dropout [39] to measure the epistemic uncertainty. Representation-based methods aim to
select the most representative samples of the dataset that are not yet covered by the labeled
samples. Numerous adversarial learning-based methods utilize an auxiliary network to score
samples based on this measure, including DAAL [122], VAAL [109], and WAAL [107]. For
our study, we employ Entropy, EqualAL, and BALD to represent single-sample acquisition
methods due to their direct applicability to segmentation tasks. We did not include deep
ensemble-based methods due to their limited scalability and adversarial methods due to
their hyperparameter sensitivity. In general, single-sample acquisition approaches select
individually very informative samples but do not optimize the joint improvement obtained
with the whole batch.

Batch-based acquisition methods acquire the whole batch of size b to maximize cumu-
lative information gain. Sener et al. [103] formulated the acquisition function as a core-set
selection approach based on the feature representations. It is a representation-based ap-
proach that selects the batch of samples jointly to represent the whole data distribution.
BatchBALD [68] is a greedy algorithm that selects a batch of points by estimating the joint
mutual information between the whole batch and the model parameters. This method was
also proposed to remedy the mode collapse issue, where the acquisition function collapses
into selecting only similar samples (see Section 3.3.3 for details). However, it is limited
to simple image classification datasets like MNIST [31] since its computation complexity
grows exponentially with the batch size. Some more recent batch-based methods include
k-MEANS++ [145], GLISTER [65], ADS [61], but these methods only evaluate on image
classification tasks. For the study, we selected the Coreset method [103] to represent batch-
based methods due to its effectiveness, simplicity, and easy scalability to the segmentation
task.

3.1.3 Active Learning for Semantic Segmentation

Many of the approaches mentioned above mainly focus on image classification. Lately, a few
works have proposed to solve tasks involving higher annotation costs like object detection
[136], pedestrian detection [136], human pose estimation [78], and segmentation [60, 109].

Along with the task of active learning for image classification, we also focus on semantic
segmentation since creating segmentation masks is an expensive labeling task. This makes
semantic segmentation one of the most relevant tasks for active learning. Suggestive Anno-
tation [135], Cereals [83], and VAAL [109] are a few previous works that have shown the
applicability of deep active learning for semantic segmentation.
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When applied to semantic segmentation, active learning methods must choose which area
of the image is to be considered for the acquisition: the full image [109], superpixels [14],
polygons [86, 45], or each pixel [106]. There is no common understanding so far of which
approach is cheaper and more effective. Thus, our study uses the straightforward image-wise
selection and annotation procedure.

Most existing methods for segmentation are based on the model’s uncertainty for the
input image, where the average score over all pixels in the image is used to select top-k
images. Entropy [105] (estimated uncertainty) is a widely used active learning baseline for
selection. This function computes per-pixel entropy for the predicted output and uses the
averaged entropy as the final score. EqualAL [45] determines the uncertainty based on the
consistency of the prediction on the original image and its horizontally flipped version. The
average value over all the pixels is used as the final score. BALD [53] is often used as a
baseline in existing works. It is employed for segmentation by adding dropout layers in
the decoder module of the segmentation model and then computing the pixel-wise mutual
information using multiple forward passes. Coreset [103] is a batch-based approach that was
initially proposed for image classification, but it can be easily modified for segmentation.
For e.g., the pooled output of the ASPP [19] module in the DeepLabv3+ [21] model can be
used as the feature representation for computing distance between the samples. Some other
methods [109, 66, 107] use a GAN model to learn a combined feature space for labeled and
unlabeled images and utilize the discriminator output to select the least represented images.
Our study includes Entropy, EqualAL, BALD, and Coreset approaches for the analysis,
along with the random sampling baseline. Most AL methods for semantic segmentation use
single-sample acquisition and show superior performance over batch acquisition function
Coreset. This chapter also studies the integration of these methods with semi-supervised
learning.

3.1.4 Semi-supervised Active Learning

Active learning uses a pool of unlabeled samples only for selecting new samples for anno-
tation. However, this pool can also be used for semi-supervised learning (SSL), where the
objective is to learn jointly from labeled and unlabeled samples.

Most representation-based AL methods use unlabeled samples to learn the underlying
distribution, but only a few methods use semi-supervised learning to improve their selection
criteria [35, 36, 39, 41]. Sinha et al. [39] used an unlabeled pool to learn its distribution
against the distribution of labeled samples. Still, they did not take advantage to improve
the feature representation of the target model itself. Sener et al. [36] have also previously
shown the advantage of using the unlabeled pool for learning the target model. Wang et
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al. [41] also explored the usage of the most-certain samples from the un-labeled pool using
pseudo-labeling, but the pseudo-labeling process can easily propagate erroneous labels if
not tuned properly. Ravanbakhsh et al. [35] proposed a GAN-based approach to use the
unlabelled pool and utilize the discriminator score to query low-confident samples for active
learning. Recently, two concurrent open-source works [2, 3] have also shown some similar
findings to our work. However, they are restricted to only image classification.

The combination of SSL and AL has been used successfully in many other contexts, such
as speech understanding [20, 9] and pedestrian detection [30]. Some recent works have also
studied active learning methods with the integration of SSL for segmentation, but their scope
is limited only to special cases like subsampled driving datasets [29] or low labeling budget
[27], both cases with only single-sample acquisition methods.

Although modern semi-supervised learning works have been shown to be very effective
in using unlabeled samples in the dataset to reach near 100% supervised performance, it is
an understudied topic in combination with active learning. Overall, a broader understanding
of whether the usage of unlabeled samples is useful or detrimental is not clear. Our work
provides an overview of the integration of SSL and active learning for the image classification
and semantic segmentation task. We study this integration over datasets with different
redundancy levels, under different labeling budgets, and with single-sample and batch-based
methods. Our findings explain when this integration is effective and boosts the active learning
method.

3.1.5 Current Benchmarks

Current AL methods for image classification are mostly tested on CIFAR-10 and CIFAR-100
datasets, which are perfectly balanced. Some recent works [66] have also tested on higher
resolution datasets like Caltech101, which is naturally imbalanced. In this work, we also
use CIFAR-10 and CIFAR-100 for our study on image classification. However, we evaluate
the AL methods with various new settings like strong augmentation, integration of SSL, and
low-annotation budget. Current AL methods for semantic segmentation are usually evaluated
on driving datasets due to the industrial focus on autonomous driving. These datasets include
Cityscapes [25], BDD100K [137] and CamVid [13]. Some works [85] evaluate more generic
datasets like PASCAL-VOC [35]. Medical datasets [143, 23, 108] are also common for the
AL studies due to extremely high annotation cost. In this work, we focus on driving datasets
and introduce a more realistic driving AL task.
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3.2 Active Learning for Image Classification

Model training techniques for deep neural networks are advancing very fast. Often this
progress is ignored by deep active learning studies. In recent times, many interesting AL
methods have been proposed; however, they treat the AL problem independently of the
training process of the model. They often ignore the progress of different training elements
like optimizers, data augmentation, and learning techniques.

In this section, we assess the performance of state-of-the-art AL methods for image
classification and compare them with the integration of data regularization and a state-of-the-
art semi-supervised learning approach. We also challenge the previously proposed methods
under a low annotation budget where the initial model is trained with fewer labeled samples,
followed by a few new sample selections at each AL cycle. We validate our experiments
using at least one recent approach from each of the categories of AL methods as defined in
the related work Section 3.1.

3.2.1 Integration of AL with Label-efficient Learning

Active Learning with Data Augmentation Recently, various regularization techniques
have been proposed to improve model generalization with minimal labeled data. Although
these methods show consistent success in various applications, they have been ignored by
the works on active learning. In this work, we study the effect of one such regularization:
data augmentation. Data augmentation is a widely accepted regularization technique, which
increases the power of machine learning models, particularly when there is little labeled data.
Nevertheless, several latest AL works [11, 109] resort to either not using any augmentation
during training or only doing simplistic augmentations like horizontal flipping. The behavior
of active learning under the influence of strong data augmentation is largely unknown. In the
experiments, we apply strong augmentations, including color and geometric augmentations,
during the training phase of the model. The acquisition function selects samples based on
this model.

Integration of Active Learning with Semi-supervised Learning A largely common
practice in the previous works has been to utilize the unlabeled pool only for sampling,
although it is available throughout the learning process (otherwise, one could not sample
from it) and could be used more rigorously. Using semi-supervised learning, we can utilize
this unlabeled pool for training the model itself and thus learn an improved query function



3.2 Active Learning for Image Classification 49

using unlabeled samples. To this end, we employed the UDA [130] semi-supervised learning
method. UDA applies a consistency loss between differently augmented unlabeled samples
to learn from unlabeled samples. We integrated SSL into the AL methods by training the
model using the UDA objective and defining the query function based on this model. In each
cycle, the target model is trained using UDA instead of the standard supervised training.

Active Learning under Low-annotation Budget We observed in the literature that there
is an inconsistency in the methods’ behavior when switching from CIFAR-10 to CIFAR-100.
This challenges the principal assumption of active learning that a dedicated selection strategy
always improves over a random selection of samples. We ask whether active learning benefits
from a low-budget setting, where every sample is particularly crucial. In certain applications,
such as medical image analysis, already 10000 annotated samples can be very costly. Thus,
training with only a few labeled samples in the beginning is attractive. We study the behavior
of active learning methods where the initial and sampling annotations budget is 10 to 20
times smaller than usually studied in previous works.

3.2.2 Experiment Setup

We evaluate and compare following baseline methods:

• Random: A new set of samples is selected randomly from the unlabeled pool and is
added to the labeled pool with annotations.

• Entropy: [105] is an information-theoretic measure used as an uncertainty metric for
sampling. This method naively selects samples for which the pseudo-probabilities
predicted by the softmax classifier have the highest entropy.

H(y|xu) =−∑
c
(p(y = c|xu)) log(p(y = c|xu)). (3.2)

For the entropy method, we use the softmax output of the final fully-connected layer
to calculate the entropy of the prediction.

• Ensemble with Variation Ratio (ENS-varR): The second method, which selects samples
based on an uncertainty criterion, relies on using ensembles. It has been shown to
consistently outperform all other uncertainty-based approaches for active learning by
Beluch et al. [11]. The core of the method is to calculate the variation ratio (varR)
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metric given as the proportion of predicted class labels that are not the modal class
prediction:

varR = 1− fm

T
, (3.3)

where fm is the frequency of the modal class and T is the number of ensemble members.
This heuristic is motivated by the query-by-committee algorithm proposed by Seung et
al. [104]. The query function selects the samples with larger varR values. The
ensemble is only used for sample querying - the target performance is still reported for
a single model. Similar to Beluch et al.[11], we use an ensemble of 5 models for our
experiments.

• Core-set: This type of method selects a batch of samples such that the performance of
the model trained on the labeled set matches the performance of the model trained on
the whole dataset [96]. The recent core-set approach proposed by Sener et al. [103]
casts the core-set selection problem as a k-center problem and proposes a robust k-
center approach. The proposed approach chooses a subset such that the largest distance
between the chosen point and unlabeled points is minimized in the feature space. For
the core-set approach, we make use of the k-center greedy implementation since it is
much faster and only performs marginally worse than the robust version.

• Learning Loss (LL): This method [136] proposes a loss prediction module that is
attached to the target network to estimate the loss value of the unlabeled samples.
The samples with the largest predicted loss are selected for annotation. This auxiliary
module is trained to preserve the pairwise ranking of the original loss values, which is
imposed using a hinge loss function over random pairs of samples in a minibatch.

• Unsupervised Data Augmentation (UDA): UDA [130] is a semi-supervised learning
method for image classification. It uses consistency regularization to learn from
unlabeled samples along with AutoAugment [26] and other augmentation techniques
to reduce overfitting. We selected this method because: 1) it shows state-of-the-art
performance, 2) it is based on a simple idea and is easy to implement. Also, the
method performs well even when the number of labeled samples is very small. Our
implementation used online data augmentation instead of the offline one in the original
work [130].

Datasets. We evaluate the methods on the CIFAR-10 and CIFAR-100 datasets. Both
datasets contain the same set of 60,000 images, assigned to 10 and 100 classes, respectively.
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The training and test set contains 50,000 and 10,000 images, respectively. CIFAR-10 is the
most commonly tested dataset in the field of active learning. CIFAR-100 is an extension with
100 classes, which makes the task more challenging. The initial labeling budget is Bi = 5000,
and the sampling budget is Bs = 2500 labels for each cycle. We tested this configuration
for 6 sampling cycles (i.e. going from 10% to 40% labeled samples). In the first step, we
randomly sampled a class-balanced subset of samples from the unlabeled pool.

Training details. For the network architecture, we consistently use the Wide-Resnet-
Network [140] with depth=28 and width=2 (WRN-28-2). We select WRN due to its efficiency
and widespread adoption. WRN-28-2 contains only 1.5M parameters showing close-to-
state-of-the-art performance on CIFAR datasets. The WRN-28-2 classification network is
optimized using an SGD optimizer with a base learning rate of 3e-2, momentum of 0.9, and
weight decay rate of 5e-4. We use a cosine learning rate schedule for training each model.
We trained all AL methods (without SSL methods) for 150 epochs per sampling cycle with a
batch size of 64. We train the semi-supervised AL methods for 50k iterations per sampling
cycle with a batch size of 64 for the labeled loss and a batch size of 320 for the unlabeled
loss. We mask out unlabeled examples whose highest probabilities across categories are less
than 0.6 and set the softmax-temperature scaling constant to 0.5. Other hyperparameters are
used exactly as proposed in [130]. Our implementation is based on the open-source toolbox
Pytorch [95].

All results are shown as performance curves. We report the mean performance over 3
trials with different initial labeled sets for all single model-based methods and over 2 trials
for ensemble-based methods due to higher computation cost and lower variance.

LL method usually starts with a higher initial performance due to the extra regularization
effect from the loss-prediction module. All other methods start from similar initial perfor-
mance with a slight difference due to the model variance. This variance is more prominent in
the beginning due to the overfitting effect on a small labeled set.

Evaluation metrics. We evaluate AL methods in different data budget settings, referred
to as the Bi-Bs setting, where Bi is the initial label budget, Bs is the sampling-label budget,
and Bi,Bs refer to the number of labeled images. Images are sampled randomly to fulfill the
initial label budget. For the subsequent steps, images are sampled using the AL acquisition
function with the sampling-label budget. We test these datasets with 5K−2.5K, 500−500,
and 250−250 settings.

We use mean Intersection over Union (mIoU) to evaluate the performance of the model
at each AL cycle step. For the evaluation of the active learning method, we use two metrics:
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Area Under the Budget Curve (AUC@B) and mean Intersection over Union at a budget B
(mIoU@B).

• AUC@B is the area under the performance curves, shown in Figure 3.3 and 3.4. It
captures a cumulative score of the AL performance curve up to a budget B, where B is
the number of labeled images. We use a total budget of B=20K in the 5K-2.5K setting
for CIFAR-10 and CIFAR-100 datasets. We use B=2K for CIFAR-10 in 250-250
setting and B=4K for CIFAR-100 in 500-500 setting. We use the following formula to
compute the Area Under the Budget Curve(AUC@B) at a total budget B, where B is
the percentage of the labeled dataset:

AUC@B =
i=N

∑
i=1

(bi+1−bi)(pi + pi+1)

2
(3.4)

,where N is the number of AL acquisition steps, bi is the percentage of the labeled
dataset from the whole dataset at step i, and pi is the performance of the model in
mIoU(%) at step i.

• Acc@B reports the Accuracy of the model after using a certain labeling budget B. We
report performance at an intermediate labeling budget to clearly see the ranking of the
AL methods.

3.2.3 Results
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Fig. 3.3 Using data augmentation on CIFAR-10 significantly improves the performance of active
learning methods and makes the relative difference between them less pronounced. The performance
of AL methods on CIFAR-100 improves significantly when using up-to-date image augmentation.
Results without augmentation are denoted as ’X-wo-Aug’.
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AL Method Strong CIFAR-10 CIFAR-100
Metric→ Aug. Acc AUC Acc AUC
Random w/o Aug ✗ 76.43 44.87 34.35 20.59
Entropy w/o Aug ✗ 76.11 45.28 34.16 20.27
LL w/o Aug ✗ 78.71 46.09 35.28 20.77
Coreset w/o Aug ✗ 76.94 45.39 35.57 20.98
ENS-varR w/o Aug ✗ 77.39 45.51 35.03 20.68
Random w/ Aug ✓ 89.55 53.27 61.67 35.99
Entropy w/ Aug ✓ 90.76 53.96 60.01 35.31
LL w/ Aug ✓ 90.88 54.06 60.04 35.31
Coreset w/ Aug ✓ 90.63 53.89 62.13 36.21
ENS-varR w/ Aug ✓ 90.58 53.94 62.15 36.25
100% ✓ 95.80 57.48 75.82 45.49

Table 3.2 Active Learning results on CIFAR-10 and CIFAR-100 datasets. AUC@20K and Acc@12.5K
metrics are reported. The table compares AL results with and without the usage of strong data
augmentation during the training of the model.

Integration with Data Augmentation In this experiment, we validated the importance
of elaborate up-to-date image augmentation for the performance of AL methods. We first
evaluated all methods without any augmentation. Subsequently, we evaluated the same
methods with augmentation, which includes using the AutoAugment policies found by
Cubuk et al. [26] , cutout [32], horizontal random flipping, and random cropping. Figure
3.3 shows that without using any augmentation, all AL methods clearly perform better
than the random baseline. The LL method shows distinct improvement over other methods
(matching the results from Yoo et al. [136]) and an overall improvement of 3.2% over the
random baseline on the CIFAR-10 dataset. When the same experiment is performed with
augmentation, all the methods improve drastically in absolute performance. However, the
relative effect of using different AL methods becomes far less pronounced: all the AL
methods show similar performance within a range of 0.4%. In conclusion, AL works well
with data augmentation, but data augmentation blurs the differences between AL strategies:
they all perform largely the same.

For completion, we further validate the importance of using up-to-date augmentation
for AL methods on the CIFAR-100 dataset. We evaluate all methods with and without
augmentation, similar to the CIFAR-10 experiment. The overall conclusion is also very
similar: Without augmentation, the LL method shows a distinct improvement of 1.4%
over the random baseline; with augmentation, all the methods improve by a large margin
in absolute performance, but the relative difference between different methods becomes
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Fig. 3.4 Combining AL methods with semi-supervised learning leads to significant performance
improvement on CIFAR-10 compared to the raw AL case. Results shown in the large-budget setting
with Bi = 5000,Bs = 2500. Integrating SSL and AL leads to overall performance improvement on
CIFAR-100, however, not all combinations consistently outperform random sampling. Results shown
in the large-budget setting with Bi = 5000,Bs = 2500.

insignificant and the relative ranking of different methods changes. Performance curves are
shown in Figure 3.3b.

Integration with Semi-supervised Learning We refer to the integrated methods as SSL-
X, where X is the name of the AL method. Figures 3.4a and 3.4b show a remarkably
strong performance of the SSL method (SSL-Random) on CIFAR10 and CIFAR100: when
using 5K random labeled samples, SSL almost reaches the same performance which AL
methods achieved on 20K samples picked by the corresponding query functions. Also, for
the remaining data ratios, there is a large performance gap between semi-supervised and
active learning, both on CIFAR-10 and CIFAR-100. Clearly, semi-supervised learning makes
much better use of the same data than active learning.

SSL and AL can be combined, which yields an improvement over raw SSL on CIFAR-10.
The SSL-LL method performs best and shows an improvement over the random baseline
by 0.7% after 6 cycles. However, on CIFAR-100, the relative ranking of the AL methods
changes completely; SSL-LL performs worse than the other methods and struggles even to
compete with the random selection method.

The same is true for raw active learning without SSL: on CIFAR-100, some active
learning methods do not reach the performance of randomly drawing the samples to be
labeled, shown in Figure 3.4b.
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AL Method Strong SSL CIFAR-10 CIFAR-100
Metric→ Aug. mIoU AUC mIoU AUC
Random w/ Aug ✓ ✗ 89.55 53.27 61.67 35.99
Entropy w/ Aug ✓ ✗ 90.76 53.96 60.01 35.31
LL w/ Aug ✓ ✗ 90.88 54.06 60.04 35.31
Coreset w/ Aug ✓ ✗ 90.63 53.89 62.13 36.21
ENS-varR w/ Aug ✓ ✗ 90.58 53.84 62.15 36.25
Random-SSL ✓ ✓ 94.11 56.33 68.14 40.19
Entropy-SSL ✓ ✓ 94.32 56.43 67.54 40.02
LL-SSL ✓ ✓ 94.58 56.58 66.99 39.70
Coreset-SSL ✓ ✓ 94.27 56.41 67.17 39.94
ENS-varR-SSL ✓ ✓ 94.21 56.44 68.42 40.40
100% ✓ ✗ 95.80 57.48 75.82 45.49

Table 3.3 Active Learning results on CIFAR-10 and CIFAR-100. AUC@20K and mIoU@12.5K
metrics are reported. The table compares AL methods with and without semi-supervised learning.

High-budget vs Low-budget We explored such low-budget settings with Bi and Bs for
each cycle set to 250 labels for CIFAR-10 and 500 labels for CIFAR-100. We tested this
setting for 7 sampling cycles with a total budget of 2000 and 4000 labels for CIFAR-10
and CIFAR-100, respectively. We kept all the augmentation techniques from the previous
experiments.

The results are shown in Figures 3.5a and 3.5b. None of the active learning methods
consistently outperforms the random baseline, neither on CIFAR-10 nor on CIFAR-100.
This always holds for the combination of active learning and semi-supervised learning,
whereas for raw active learning, only ENS-varR could marginally outperform the random
baseline. In fact, some techniques perform considerably worse than the random baseline,
especially in conjunction with semi-supervised learning, showing that their selection strategy
is counter-productive in the low-budget regime.

Comparison to Transfer Learning Oliver et al. [92] argued that transfer learning might
be a preferable alternative to semi-supervised learning when a suitable labeled dataset is
available for transfer learning. Following the recommendation, we compare the performance
of the SSL-Random baseline with a fine-tuned ImageNet pre-trained network on CIFAR-10.

The ImageNet pre-trained network is fine-tuned only on the labeled samples. The
experiment was conducted with Resnet-18 due to the availability of pre-trained ImageNet
weights. We observe that the SSL-AL method clearly outperforms fine-tuning of a pre-trained
ImageNet network in both high- and low-budget settings. We tested both budget setting for 4
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Fig. 3.5 When evaluated in the low-budget regime (Bi = Bs = 250) on CIFAR-10, integrated SSL-AL
methods are still better than their raw counterparts, however, SSL with random sampling shows the
best performance. When evaluated in the low-budget regime (Bi = Bs = 500) on CIFAR-100, most
integrated SSL-AL methods are still better than their raw counterparts but nothing beats SSL with
random sampling.

sampling cycles. The corresponding results are shown in Figure 3.6a and 3.6b, respectively.
This experiment shows that including an up-to-date semi-supervised learning algorithm in an
active learning pipeline makes sense even when large pre-training data is available.

250 500 750 1000 1250
65

70

75

80

85

90

95

Number of Labeled Images

A
cc
u
ra
cy
(%

)

Pre-trained ImageNet Random
SSL-Random

(a) Low-annotation budget

5000 7500 10000 12500 15000
92

93

94

95

96

Number of Labeled Images

A
cc
u
ra
cy
(%

)

Pre-trained ImageNet Random
SSL-Random

(b) High-annotation budget

Fig. 3.6 The SSL-Random baseline clearly outperforms a fine-tuned network pre-trained on ImageNet
in the low-budget setting. Results shown on CIFAR-10. The SSL-Random baseline clearly outper-
forms a fine-tuned network pre-trained on ImageNet in the large-budget setting. Results shown on
CIFAR-10.

3.2.4 Conclusion and Proposed Evaluation Protocol
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AL Method Strong SSL CIFAR-10 CIFAR-100
Metric→ Aug. mIoU AUC mIoU AUC
Random w/ Aug ✓ ✗ 61.93 1.91 24.13 1.68
Entropy w/ Aug ✓ ✗ 55.79 1.76 20.98 1.43
LL w/ Aug ✓ ✗ 55.75 1.79 21.27 1.50
Coreset w/ Aug ✓ ✗ 59.64 1.85 25.11 1.72
ENS-varR w/ Aug ✓ ✗ 61.00 1.91 24.31 1.73
Random-SSL ✓ ✓ 88.78 2.67 44.42 2.80
Entropy-SSL ✓ ✓ 76.30 2.35 27.46 1.84
LL-SSL ✓ ✓ 78.90 2.44 40.36 2.57
Coreset-SSL ✓ ✓ 84.93 2.55 38.37 2.50
ENS-varR-SSL ✓ ✓ 86.07 2.60 40.91 2.65

Table 3.4 Active Learning results on CIFAR-10 and CIFAR-100. AUC@2K and mIoU@1K metrics
are reported. The table compares AL methods with and without semi-supervised learning in a low-
annotation budget setting.

In this work, we only studied active learning models under the influence of data augmen-
tation, with the integration of semi-supervised learning under different annotation budgets.

Our experiments provide strong evidence that the current evaluation protocol used in
active learning for image classification is sub-optimal, leading to wrong conclusions about
the methods’ performance and the state of the field in general.

Evaluating CIFAR-100, which is marginally different from CIFAR-10, dramatically
changes the ranking of the methods. Applying state-of-the-art data augmentation significantly
increases the scores of all methods, making them virtually indistinguishable in terms of the
final performance. Modern semi-supervised learning algorithms applied in the conventional
active learning setting show a higher relative performance increase than any of the active
learning methods proposed in recent years. State-of-the-art active learning approaches often
fail to outperform simple random sampling, especially when the labeling budget is small - a
setting crucial for many real-world applications.

A recent work [91] has also explored the usage of model regularization like Stochastic
weighted averaging [59] and Shake-shake(SS) [42] with active learning methods. Their
observations confirm and provide conclusions very similar to our work.

Based on our observations, we formulate a more appropriate evaluation protocol and
recommend using it for benchmarking future active learning methods for image classification.

1. AL methods should be evaluated on a broader range of datasets to assess their general
robustness.
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2. Evaluating AL methods with up-to-date network architectures and up-to-date augmen-
tation techniques is vital.

3. There should always be a direct comparison between AL methods and SSL methods.

4. With the existing large-budget regime, AL methods should also be evaluated in the
low-budget regime.

3.3 Active Learning for Semantic Segmentation

In this section, we assess the performance of state-of-the-art AL methods for semantic
segmentation and compare them with the integration of semi-supervised learning. All
methods are tested on datasets with different levels of redundancy and various levels of
annotation budgets to understand how these methods behave under such diverse conditions
which spam across different applications.

First, we provide some conceptual considerations which are important to understand the
results later.

3.3.1 Conceptual Considerations

Our experiments show that the presence of redundant samples in the data distribution
influences the choice of the acquisition function and the training regime that achieve the
best performance. The main cause for this is the mode collapse issue, where the acquisition
function collapses into selecting only similar samples. Here, we first discuss why and when
this mode collapse occurs and how to remedy this issue. Then, we discuss ideal conditions
for the successful integration of semi-supervised learning with active learning acquisition
functions.

Redundancy can cause mode collapse Mode collapse in active learning refers to the
circumstance that acquisition functions tend to select similar (redundant) samples when
acquiring batches of data [68]. Since the selected similar samples contain highly redundant
information, their annotation does not add much new value to the model performance.
Figure 3.7 illustrates this mode collapse issue for a driving dataset case, where samples
are selected from dense local feature space clusters using an epistemic uncertainty-based
acquisition function. The mode collapse occurs when the dataset contains redundant samples,
and the acquisition function is designed to select single samples based on some independent
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Fig. 3.7 T-SNE representations of the feature space. Yellow points represent the unlabeled data, and
violet points represent the acquired data. The acquisition shows clear clusters in the feature space.
The samples in the clusters correspond to similar images as depicted on the right. The mode collapse
was observed while scoring samples independently based on uncertainty.

sample scores. Here, redundant samples tend to get similar scores from the acquisition
function due to their similarity, i. e., their large overlap in information. Therefore, if one
of those samples is selected due to a high score, other similar samples are also selected.
This mode collapse effect occurs especially in Deep Active Learning scenarios since the
acquisition of big batches is necessary to reduce the overall number of active learning cycles.

Existing deep active learning methods for semantic segmentation show that epistemic
uncertainty is a good heuristic to select samples for annotation in common benchmarks.
These strategies utilize single-sample acquisition functions and select the set of most valuable
samples from the unlabeled pool based on the sampling budget. Since such methods were
only tested on diverse datasets which are already curated for diversity, the mode collapse
problem does not have a strong effect on their evaluation. However, this is not the case for
many real-world applications. Redundancy occurs when there are repeated recordings of
similar scenes or when the data is collected in a video format, like driving scenarios. A good
acquisition function for such a redundant dataset must be aware of the batch’s diversity to
address the mode collapse issue. Intuitively, clustering-type approaches are ideal in redundant
datasets since they select one sample from each local cluster avoiding single-sample selection
traps like the mode collapse issue.

In this work, we argue that mode collapse is a common issue in real-world datasets
and is largely ignored due to poor active learning benchmarks, which only cover diverse
datasets. We probe previous AL methods for semantic segmentation over different diverse
and redundant datasets. We design various redundant datasets based on the driving video
dataset A2D2 [43] to reveal how the behavior of active learning methods changes with the
level of redundancy in the dataset.
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Requirements for Integration of Semi-supervised Learning and Active Learning Ac-
tive learning methods use a pool of unlabeled samples only for selecting new samples for
annotation. However, this pool can also be used by semi-supervised learning, where the
objective is to learn jointly from labeled and unlabeled samples. In this work, we integrate
semi-supervised learning with active learning in the context of semantic segmentation, an
idea that was previously proposed for classification [103, 41, 86, 91]. In particular, we train
the model using a semi-supervised learning objective, which impacts the resulting model and
hence the acquisition function.

Successful integration can also be conceptually explained based on the underlying as-
sumption of semi-supervised learning and the selection principle of the active learning
approach. According to the clustering assumption of SSL, if two points belong to the same
cluster, then their outputs are likely to be close and can be connected by a short curve [16].
In this regard, when labeled samples align with the clusters of unlabeled samples, the cluster
assumption of SSL is satisfied, resulting in a good performance. Consequently, to maximize
semi-supervised learning performance, newly selected samples must cover the unlabeled
clusters that are not already covered by labeled samples. Only acquisition functions that
foster this coverage requirement have the potential to leverage the additional benefits that
arise from the integration of semi-supervised learning. A batch-based method, e.g., Coreset,
selects samples for annotations to minimize the distance to the farthest neighbor. By transi-
tivity, such labeled samples would have a higher tendency to propagate the knowledge to
neighboring unlabeled samples in the cluster and utilize the knowledge of unlabeled samples
using a semi-supervised learning objective and help boost the model performance. Similar
behavior can also be attained using other clustering approaches that optimize for coverage.

3.3.2 Experiment Setup

Tested Approaches In our study, we test five active learning acquisition functions, includ-
ing Random, Entropy, EqualAL, BALD, and Coreset. Here Entropy, EqualAL, and BALD
approach represent single-sample, and Coreset represents the batch-based approach. All
methods select the whole image for annotation. These methods are further described below,
along with the segmentation-specific changes.

• Random: The samples are selected randomly for annotation from the unlabeled pool.
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• Entropy [105]: This acquisition function uses per-pixel entropy as an estimation of
the epistemic uncertainty for the predicted output. The final score for selection is the
average entropy over all pixels. This method selects all top-scoring images.

• EqualAL [45]: The EqualAL approach determines the uncertainty based on the self-
consistency between the prediction on the original image and its horizontally flipped
version. The average uncertainty value over all the pixels is used as the final score. We
use the EqualAL implementation, which trains using only cross-entropy loss to keep
the baselines comparable.

• BALD: [53] The BALD approach is based on a Monte Carlo Dropout network to
compute the pixel-wise Mutual Information of the classification. In our implementation,
we employ dropout layers with a dropout ratio of 10% in the decoder layer and, during
inference, compute 10 passes.

• Coreset: [103] The Coreset approach selects a batch of samples that cover the whole
data distribution. It formulates this batch selection as a robust k-center selection
problem. Coreset implements a greedy algorithm that iteratively selects unlabeled
samples with maximum distance to the nearest neighbor of the so far selected samples.
We utilize the k-center greedy approach since it is much faster and only performs
slightly worse than the robust formulation. We use the ASPP module output in the
DeepLabv3+ [21] model as the feature representation.

• MCD setting: Since the BALD method requires the introduction of Dropout layers
into the architecture, we segregate the methods into two categories: With Monte
Carlo Dropout (MCD) and without Monte Carlo Dropout layers. Random, Entropy,
EqualAL, and Coreset are without MCD. BALD and Coreset-MCD are based on MCD.
We compare methods in each category separately due to different architectures. We
show fully-supervised performance, referred to as ‘100%’ in the result tables, both
with (100% MCD) and without MCD (100%) architectures.

Semi-supervised Learning To leverage the unlabeled samples, we use the semi-supervised
learning s4GAN method [85]. It uses adversarial training to align the labeled and unlabeled
data distribution and further uses self-training based on the GAN discriminator score. We
pair all the used active learning approaches with SSL using this approach. This is marked by
the suffix ‘-SSL’ in the experiments. In particular, we train the model using an SSL objective,
which impacts the resulting model and hence the acquisition function.
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A AL Method SSL Cityscapes A2D2 Pool-0f
Metric→ mIoU AUC mIoU AUC

S Random ✗ 58.90 23.29 48.48 19.20
S Entropy ✗ 61.83 24.25 52.40 20.37
S EqualAL ✗ 62.41 24.32 52.50 20.35
B Coreset ✗ 60.89 23.89 51.14 19.88
S Random-SSL ✓ 60.72 23.85 49.69 19.60
S Entropy-SSL ✓ 60.61 23.93 50.80 19.90
S EqualAL-SSL ✓ 60.26 23.96 51.08 20.02
B Coreset-SSL ✓ 63.14 24.47 51.49 20.02
- 100% ✗ 68.42 27.37 56.87 22.75
With MC-Dropout decoder
S BALD ✗ 61.87 24.28 52.82 20.32
S BALD-SSL ✓ 61.13 23.89 52.29 20.14
B Coreset-MCD ✗ 60.60 23.78 49.99 19.45
B Coreset-MCD-SSL ✓ 62.24 24.37 51.76 19.97
- 100%-MCD ✗ 67.07 26.83 56.47 22.59

Table 3.5 Active Learning results on Cityscapes and A2D2 Pool-0f. AUC@50 and mIoU@30 metrics
are reported. A denotes the Acquisition method type. S and B denote the single-sample and batch-
based acquisition, respectively.

Datasets Active learning methods are often evaluated on PASCAL-VOC and Cityscapes
datasets, where PASCAL-VOC is naturally diverse while Cityscapes is diversified by sub-
sampling from videos. In this work, we test on an additional driving dataset, A2D2, which
is highly redundant. We evaluate the methods on these three datasets. To understand the
nature of active learning methods over varying levels of redundancy in the dataset, we curate
5 smaller dataset pools from the large, original A2D2 dataset, described further below as
A2D2-Pools.

• Cityscapes [25] is a driving dataset used to benchmark semantic segmentation tasks.
The dataset was originally collected as videos from 27 cities, where a diverse set of
images were selected for annotation. Due to the selection, Cityscapes cannot cover
the redundant data scenario in our evaluation, although it was derived from videos.
As we will see in the results, the nature of the active learning method changes when
considering the raw form of data in a driving scenario, and pre-filtering, as done in
Cityscapes, is sub-optimal compared to directly applying active learning on the raw
data (see Section 3.3.4).
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A AL Method SSL PASCAL: 5-5 PASCAL: 10-10
Metric→ mIoU AUC mIoU AUC

S Random ✗ 70.70 13.92 72.13 28.85
S Entropy ✗ 70.38 13.94 73.72 29.17
S EqualAL ✗ 69.14 13.82 73.40 29.03
B Coreset ✗ 70.85 13.96 73.63 29.06
S Random-SSL ✓ 72.57 14.36 75.33 29.87
S Entropy-SSL ✓ 73.36 14.51 76.08 30.01
S EqualAL-SSL ✓ 73.39 14.55 75.89 30.06
B Coreset-SSL ✓ 72.88 14.46 75.91 30.03
- 100% ✗ 77.00 15.40 77.00 30.80

Table 3.6 Active Learning results on PASCAL-VOC dataset in 5-5 and 10-10 settings. AUC@50
and mIoU@30 metric are reported. S and B denotes the single-sample and batch-based acquisition,
respectively.

• PASCAL-VOC [35] is another widely used segmentation dataset. We use the extended
dataset [48], which consists of 10582 training and 1449 validation images. It contains a
wide spectrum of natural images with mixed categories like vehicles, animals, furniture,
etc. It is the most diverse dataset in this study.

• A2D2 [43] is a large-scale driving dataset consisting of 41277 annotated images with a
resolution of 1920×1208 from 23 sequences. It covers an urban setting from highways,
country roads, and three cities. It contains labels for 38 categories. We map them to
the 19 classes of Cityscapes for our experiments. A2D2 provides annotations for every
∼ 10th frame in the sequence and contains a lot of overlapping information between
frames. Some consecutive frames are shown in Figure 3.9. We utilize 40135 frames
from 22 sequences for creating our training sets and one sequence consisting of 1142
images for validation. The validation sequence ‘20180925_112730’ is selected based
on the maximum class balance. A2D2 represents the most redundant raw dataset in
our study.

• A2D2 Pools. To obtain a more continuous spectrum between diverse and redundant
datasets, we created five smaller dataset pools by subsampling the large A2D2 datasets.
Each pool comprises 2640 images, which is comparable in size to the Cityscapes
training set. Four pools are curated by subsampling the original dataset, while the fifth
pool is created by augmentation. The first four pools, denoted by Pool-Xf (where X
is 0, 5, 11, and 21), were created by randomly selecting samples and X consecutive
frames for each randomly selected sample from the original A2D2 dataset. Pool-0f
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A AL Method SSL Pool-5f Pool-11f Pool-21f Pool-Aug
Metric→ mIoU AUC mIoU AUC mIoU AUC mIoU AUC

S Random ✗ 47.58 18.69 44.61 17.76 44.52 17.67 43.80 17.15
S Entropy ✗ 49.96 19.48 47.43 18.52 46.08 18.21 44.51 17.33
S EqualAL ✗ 49.50 19.29 47.14 18.44 46.32 18.18 44.24 17.29
B Coreset ✗ 50.08 19.44 47.72 18.69 46.68 18.38 44.70 17.54
S Random-SSL ✓ 47.92 19.03 45.25 18.02 46.27 18.19 44.17 17.29
S Entropy-SSL ✓ 48.78 19.31 47.53 18.56 46.93 18.43 44.50 17.47
S EqualAL-SSL ✓ 48.80 19.28 46.50 18.39 47.11 18.54 44.81 17.56
B Coreset-SSL ✓ 50.44 19.69 48.99 19.01 47.62 18.69 45.81 17.74
- 100% ✗ 53.25 21.30 48.85 19.54 49.23 19.69 46.03 18.41
With MC-Dropout decoder
S BALD ✗ 50.40 19.29 47.85 18.74 46.78 18.57 45.53 17.80
S BALD-SSL ✓ 50.33 19.62 47.34 18.61 47.06 18.57 45.16 17.72
B Coreset-MCD ✗ 50.40 19.49 47.67 18.61 46.86 18.35 44.74 17.50
B Coreset-MCD-SSL ✓ 50.28 19.65 48.60 18.96 47.73 18.75 45.37 17.75
- 100%-MCD ✗ 53.82 21.53 50.86 20.34 50.43 20.17 46.62 18.65

Table 3.7 Active Learning results on A2D2-Pool5f, A2D2-Pool11f, A2D2-Pool-21f, and A2D2-
PoolAug. AUC@50 and mIoU@30 metrics are reported. S and B denotes the single-sample and
batch-based acquisition, respectively.

contains only randomly selected images. We assume that the consecutive frames
contain highly redundant information. Therefore, the pool with more consecutive
frames has higher redundancy and lower diversity. The fifth pool, Pool-Aug, contains
augmented duplicates in place of the consecutive frames. We create five duplicates
of each randomly selected frame by randomly cropping 85% of the image area and
adding color augmentation (see Figure 3.8).

Which dataset is diverse or redundant? We would like to clarify how we tag a dataset as
diverse or redundant. Extreme cases like PASCAL-VOC can be easily tagged as diverse, and
A2D2 original and A2D2-Pool-5f/11f/21f can be tagged as redundant. However, it is hard
to put a redundant/diverse tag for many datasets in the middle of the spectrum. Cityscapes
and A2D2-Pool-0f fall in this spectrum since they are curated by sparsely selecting from
large video stream data. We consider them as non-redundant/diverse for our study since they
behave more like diverse datasets.

Datasets visualization Figure 3.9 shows examples of the A2D2 and the Cityscapes dataset.
Each row shows three temporally consecutive frames in both labeled datasets. We clearly
observe that the images in the A2D2 dataset have high-overlapping information, whereas
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Fig. 3.8 A2D2 Pool-Aug. Left: the original image. Right: the duplication through color augmentation
and random cropping of the original image

images in the Cityscapes dataset are quite diverse. Therefore, to create our redundancy
experiments, we chose the A2D2 dataset as the base dataset.

Training details We used the DeepLabv3+ [21] architecture with Wide-ResNet38 (WRN-
38) [128] backbone for all our experiments. The backbone WRN-38 is pre-trained using
ImageNet [30]. For the supervised learning setting, the model is trained using the SGD
optimizer with a base-learning rate of 1e− 3, momentum of 0.9, and a weight decay of
5e− 4. We utilize a polynomial learning rate scheduler with a batch size of 8 and train a
model in each AL cycle for 100 epochs. The model is trained with data augmentations,
including random cropping and random horizontal flipping. Input image size is 256×512
for Cityscapes and A2D2 datasets and 321×321 for the PASCAL-VOC dataset.
We utilize the s4GAN [85] method for semi-supervised learning (SSL). We use the same
training setting for the segmentation model as in the supervised learning setting. We use the
same hyperparameters as mentioned in [85], except for the learning rate of the discriminator,
which is set to 2.5e−5 for Cityscapes and A2D2 experiments. We add 3 dropout layers with
a dropout rate of 0.1 in the decoder of the segmentation model for all the MCD-based AL
methods.

Evaluation metrics We use mean Intersection over Union (mIoU) to evaluate the perfor-
mance of the model at each AL cycle step. For the evaluation of the active learning method,
we use two metrics: Area Under the Budget Curve (AUC@B) and mean Intersection over
Union at a budget B (mIoU@B). AUC@B is the area under the performance curves, shown
in Figure 3.10 and 3.11. It captures a cumulative score of the AL performance curve up to
a budget B, where B is the percentage of the labeled dataset size. For the experiments on
A2D2 pools, we use a total budget of B=50 in the 10-10 setting. For PASCAL-VOC, we
run three experiments with B=10, 25, and 50 in 2-2, 5-5, and 10-10 settings, respectively.
For Cityscapes, we experiment with B=50 in the 10-10 setting. mIoU@B reports the perfor-
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Fig. 3.9 Consecutive images from the Cityscapes and A2D2 datasets. This shows even the consecutive
images in the Cityscapes dataset are different and diverse, whereas consecutive frames in the A2D2
dataset are very similar, containing redundant information.

mance of the model after using a certain labeling budget B. We report performance at an
intermediate labeling budget to clearly see the ranking of the AL methods.

3.3.3 Results

Here, we answer the three questions raised in the introduction of the chapter concerning
the behavior of active learning methods w.r.t data distribution in terms of redundancy,
integration of semi-supervised learning, and different labeling budgets. For each experiment,
we compare random sampling, single-sample, or batch-based acquisition approaches.

Impact of Dataset Redundancy

Table 3.5 and Figure 3.10 show the results on Cityscapes and A2D2 Pool-0f. For both
datasets, the single-sample (S) method, EqualAL, performs the best in the supervised-only
setting. Table 3.6 and Figure 3.12 shows the results obtained on the PASCAL-VOC dataset
in 5-5 and 10-10 settings. Single-sample-based methods perform the best in the 10-10
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Fig. 3.10 Results on diverse driving datasets. Active learning performance curves on Cityscapes
and A2D2:Pool-0f. X-axis shows the percentage of labeled dataset. The methods which utilize MC-
dropout in their network architecture are marked with ∗, and are only comparable to other methods
with MC-dropout.

setting, whereas Coreset performs the best in the 5-5 AL setting by a marginal gap w.r.t.
random baseline. Table 3.7 and Figure 3.11 show the results for the redundant datasets.
The batch-based Coreset method consistently performs the best in all four datasets in the
supervised-only setting.

Diverse datasets need a single-sample method, and redundant datasets need a batch-
based method. We observe that the order of best-performing models changes based on the
level of redundancy in the dataset. Single-sample-based acquisition functions perform best
on diverse datasets, whereas batch-based acquisition functions perform best on redundant
datasets. We attribute this reversed effect to the mode collapse problem, where, for redundant
datasets, single-sample acquisition methods select local clusters of similar samples. Diverse
datasets are devoid of this issue as they do not possess local clusters due to high diversity
across samples. Therefore, diversity-driven acquisition is not critical for diverse datasets.

This observation is consistent for PASCAL-VOC, where single-sample-based uncertainty-
type methods perform better than batch-based and random methods in the high-budget setting.
The difference between the methods is only marginal here since most acquired samples add
ample new information due to the highly diverse nature of the dataset. This difference further
diminishes w.r.t. random baseline with a lower labeling budget (e.g. 5-5) since any learned
useful bias also becomes weaker. The observations for the 5-5 setting tend towards a very
low-budget setting which is further analyzed later in this section.

Mode collapse analysis. Here, we analyze and visualize the above-mentioned model
collapse issue. We provide a qualitative analysis of the mode collapse issue on the redundant
A2D2 Pool-21f. We plot the feature representations using t-SNE to show the selection
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Fig. 3.11 Results on redundant datasets. Active Learning performance curves on A2D2 dataset:
Pool-5f, Pool-11f, Pool-21f, and Pool-Aug. The X-axis shows the percentage of labeled datasets. The
methods which utilize MC-Dropout in their network architecture are marked with ∗, and are only
comparable to other methods with MC-Dropout.

process for a single-sample-based Entropy function and batch-based Coreset function, shown
in Figure 3.13. It shows that Entropy acquisition selects many samples within local clusters,
which are similar samples with overlapping information. This yields a suboptimal use of the
annotation budget. In contrast, Coreset acquisition has a good selection coverage and avoids
this mode collapse.

In this work, we argue that mode collapse is a common issue in many real-world datasets,
containing similar samples. A good acquisition function for such datasets must be aware
of the batch’s diversity to address the mode collapse issue. It is largely ignored due to the
narrow scope of existing AL benchmarks like PASCAL-VOC and Cityscapes, which only
cover diverse datasets.
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(c) PASCAL-VOC: 2-2
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Fig. 3.12 Active learning performance curves on PASCAL-VOC and A2D2:Pool-0f. X-axis shows the
percentage of labeled dataset. The methods which utilize MC-Dropout in their network architecture
are marked with ∗, and are only comparable to other methods with MC-Dropout.

Systematic Integration of SSL

For all redundant datasets, the Coreset-SSL approach consistently performs the best; see
results in Table 3.7 and Figure 3.7. For diverse datasets, SSL integration is also helpful,
but there is no consistent best approach. For the PASCAL-VOC dataset, single-sample-
based methods with SSL show the best performance, shown in Table 3.6. For Cityscapes,
Coreset-SSL outperforms all other approaches; see Table 3.5 and Figure 3.10. For A2D2-
Pool0f, Coreset-SSL improves over Coreset, but the single-sample acquisition method BALD
approach shows the best performance.

Redundant datasets favor the integration of batch-based active learning and semi-
supervised learning. The batch-based acquisition function Coreset always profits from
the integration of SSL. Coreset aligns well with the SSL objective since Coreset selects
samples from each local cluster, thus covering the whole data distribution. This assists SSL
in obtaining maximum information from the unlabeled samples, as discussed in Section 3.3.1.
This effect is especially strong in the redundant A2D2 pools, where Coreset-SSL always
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improves over Coreset and also shows the best performance. In contrast, SSL integration
for single-sample methods is either harmful or ineffective, except for the PASCAL-VOC
dataset. Interestingly, in Pool-11f, some Coreset-SSL methods even outperform the 100%
baseline with less than 30% labeled data. This indicates that some labeled redundant samples
can even harm the model (see Figure 3.11), possibly due to data imbalance. For Cityscapes,
SSL with Coreset yields significant improvement, and SSL even changes the ranking of the
methods. We see that EqualAL performs the best in the supervised-only setting, whereas
Coreset-SSL surpasses all methods. This slight anomaly in the case of Cityscapes happens
because the advantage due to the combination of SSL and batch-based method is greater
than the advantage of using single-sample methods in non-redundant datasets. For diverse
PASCAL-VOC, all methods align well with SSL. All methods perform well with no clear
winner method since all selection criteria select samples that provide good coverage of the
data distribution.

Low Annotation Budget

Active learning is volatile with a low budget. Experimenting with PASCAL-VOC in the
2-2 budget setting, Random-SSL performs the best, i.e., semi-supervised learning without an
active learning component (see Table 3.8 and Figure 3.12). We believe that active learning
fails in this setting because it fails to capture any helpful bias for selection in such a low-
data regime with diverse samples. Our observations in this low-budget setting confirm and
provide stronger empirical support for similar behavior observed in [86]. For A2D2 Pool-0f
and Cityscapes in the 2-2 setting (see Table 3.9 and 3.8), the single-sample acquisition
performs the best, while its SSL integration is detrimental. These methods possibly learn
some useful bias due to the specialized driving domain. For redundant datasets in low-budget
settings, the batch-based acquisition is still the most effective way. However, SSL does
not contribute any additional improvements due to insufficient labeled samples to support
learning from unlabeled samples. Overall, we observe a highly volatile nature of active
learning in conjunction with a low budget. The ideal policy transitions from random selection
towards batch-based acquisition, as the dataset redundancy goes from low to high.

3.3.4 An exemplar case study: A2D2-3K task

Previous active learning works on semantic segmentation cover only the combination of
a diverse dataset and a high annotation budget. In contrast, the collected raw data can be
quite redundant, like in video datasets. To study this missing redundant setting, we propose a
new active learning task A2D2-3K for segmentation based on the A2D2 dataset. The aim
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A AL Method SSL Cityscapes: 2-2 PASCAL: 2-2
Metric→ mIoU@6 AUC@10 mIoU@6 AUC@10

S Random ✗ 46.05 3.65 66.41 5.22
S Entropy ✗ 51.24 4.00 66.33 5.11
B Coreset ✗ 47.26 3.74 66.24 5.19
S Random-SSL ✓ 47.46 3.72 68.60 5.37
S Entropy-SSL ✓ 49.99 3.93 67.26 5.31
B Coreset-SSL ✓ 48.51 3.82 68.03 5.35
- 100% ✗ 68.42 5.47 77.00 6.16

Table 3.8 Active Learning results on the PASCAL-VOC and Cityscapes dataset in low-budget 2-2
setting. AUC@10 and mIoU@6 metric are reported. A denotes Acquisition method type. S and B
denotes the single-sample and batch-based acquisition, respectively.

A AL Method SSL A2D2 Pool-0f 2-2 A2D2 Pool-11f 2-2
Metric→ mIoU@6 AUC@10 mIoU@6 AUC@10

S Random ✗ 36.82 2.92 37.74 2.93
S Entropy ✗ 41.40 3.18 36.37 2.92
S EqualAL ✗ 41.13 3.22 37.28 2.97
B Coreset ✗ 40.18 3.12 39.63 3.10
S Random-SSL ✓ 37.80 2.99 36.46 2.90
S Entropy-SSL ✓ 38.32 3.03 36.70 2.93
S EqualAL-SSL ✓ 39.43 3.07 36.31 3.06
B Coreset-SSL ✓ 39.28 3.08 39.20 3.06
- 100% ✗ 56.87 4.55 48.85 3.91

Table 3.9 Active Learning results on A2D2 Pool-0f in 2-2 setting. AUC@10 and mIoU@6 metrics
are reported. A denotes Acquisition method type. S and B denotes the single-sample and batch-based
acquisition, respectively.

of the new task is to select 3K images (similar size to Cityscapes) from the original A2D2
dataset (∼40K images) to achieve the best performance. We select 3K images using active
learning in 3 cycles with 1K images each. We compare 5 acquisition functions, including
Random, Entropy, and Coreset, along with SSL integration. Such video datasets are often
manually subsampled based on some prior information like time or location and then used
for active learning. Therefore, we also include two such baselines - (a) where 3K samples
are uniformly selected based on time information, denoted as Uniform, and (b) where every
fifth sample is first selected uniformly to select ∼ 8K samples and then applied with Entropy
acquisition function, denoted as Uniform(@5)+Entropy. The second approach is closer to
previously used active learning benchmarks in the driving context. Results are shown in
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(a) Coreset (Batch-based AL) (b) Entropy (Single-sample AL) (c) Mode collapse (Single-sample AL)

Fig. 3.13 TSNE plots of (a) Coreset and (b) Entropy functions for A2D2 Pool-21f. The yellow
points are feature representation from the unlabeled set, the violet point are the acquired points. The
batch-based approach has good selection coverage, whereas the single-sample acquisition approach
selects similar samples from clusters. Figure (c) shows acquired redundant samples from the violet
clusters in (b).

A AL Method SSL mIoU AUC
B Uniform ✗ 57.75 —
S Random ✗ 56.14 5.35
S Entropy ✗ 60.16 5.53
B Coreset ✗ 60.30 5.55
S Uniform (@5) + Entropy ✗ 60.40 5.66
B Uniform-SSL ✓ 58.93 —
S Random-SSL ✓ 57.57 5.53
S Entropy-SSL ✓ 59.91 5.61
B Coreset-SSL ✓ 61.13 5.72
S Uniform (@5) + Ent-SSL ✓ 59.63 5.59
- 100% ✗ 66.65 6.64

Table 3.10 AL results on the proposed A2D2-3k task. mIoU@7.5 and AUC@7.5 are reported. S and
B denote the single-sample and batch-based acquisition, respectively. Uniform refers to the temporal
subsampling selection process and (@5) means every 5th frame.

Table 3.10. We find that the batch-based Coreset-SSL method performs the best, discussed
in Section 3.3.3, while the subsampling-based approaches are sub-optimal. This makes an
excellent case for active learning in datasets with high redundancy, as active learning filters
the data better than time-based subsampling methods.

3.3.5 A Polygon-based Annotation System

So far, the active learning methods for semantic segmentation were evaluated with the
image-based annotation setting, where we assumed that all images have a equal annotation
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cost and complete images were queried for annotation. In this section, we challenge the
image-based annotation system with a polygon-based annotation system, where the image
parts, in the form of polygons, can be queried and annotated.

Annotation model. A conventional active learning setup includes a human in the loop who
annotates the samples picked by the query function. Since training with an actual human
annotator is prohibitively expensive, we simulated its actions during training. We used the
number of clicks required to annotate the entire image as a proxy for the human annotation
cost. Assuming humans annotate by drawing polygons around each connected component
in the image, we approximate each connected component in the ground truth image with a
polygon using the Ramer-Douglas-Peucker algorithm [33]. The approximation quality is
controlled by a pre-defined pixel-level tolerance parameter. The total number of clicks per
image is then calculated by adding up the number of vertices for all polygons in this image.
We perform a grid search over different tolerance values ranging from 5 to 40 pixels to find a
suitable value. Figure 3.14 shows the trade-off between the average click cost per image and
the polygon approximation quality of annotations for different tolerance values. The trade-off
between different tolerance values and labeling quality is shown in Figure 3.15. Finally, we
select the pixel-level labeling tolerance of 10 pixels. The approximated labels retain 95.06%
mIoU as compared to the original ground-truth labels. According to this approximation, an
average image costs around 33 clicks to label.

Experiment design. We show the performance of the AL methods for semantic segmen-
tation on PASCAL-VOC 2012 [34]. The dataset consists of 20 foreground classes and one
background class. We use the augmented annotated dataset, which contains 10582 training
images and 1449 validation images.

In AL experiments for segmentation, we define the labeling cost in clicks. We use
the initial labeling budget Bi and subsequent sampling budget Bs of 5000 clicks, which is
approximately 1.5% of the total labeling cost of the dataset. In the first cycle, randomly
sampled images are completely labeled until Bi is exhausted. In the subsequent cycles, an
AL query method selects images based on a certain criterion and labels the picked image
until Bs is exhausted. We test all the segmentation AL methods for 5 sampling cycles. All
the results are shown on the validation set.

We evaluate AL methods for semantic segmentation in two different settings: (1) using
standard augmentations and (2) using semi-supervised learning for training the target model.
Our baseline methods include - Random selection, Entropy-based selection, Ensemble
entropy-based selection, Learning loss-based selection, and SSL D-score selection. Random
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Fig. 3.14 Trade-off between the polygon approximation quality and the annotation cost in clicks.
Tolerance values used for each measurement are mentioned above the ▲ markers.

and Entropy-based methods are already described in section 3.3.2. We describe the remaining
methods below:

• Ensemble with Average Entropy (ENS-ent): This second uncertainty-based method
ENS-ent is based on the average entropy over the predictions from all members of the
model ensemble. We used the same information accumulation heuristic as used for the
Entropy method.

• Learning Loss (LL): We adopted the LL [136] method from image classification to
semantic segmentation. Since the original module is proposed for a Resnet architecture
and the segmentation network used in this work is also based on a Resnet architecture,
the exact method is directly adapted by reusing the original loss prediction module.

• SSL-D-score: Inspired by Ravanbakhsh et al. [100], we propose to use the discriminator
of the s4GAN network as a query function for sampling. The output of the discriminator
varies between 0 and 1, where a higher score is assigned to a higher quality of
segmentation prediction. In other words, the discriminator of the s4GAN network acts
as a critic, which provides a higher rating for better segmentation quality. This heuristic
selects the samples which are not well represented by the current learned model, which
is indicated with a lower rating. We refer to this semi-supervised approach for active
learning as the SSL-D-score method.

The mean performance is reported over 3 trials for all single model-based methods and over
2 trials for ensemble-based methods due to higher computation costs.

Results: In the results, the uncertainty method based on entropy performs best and
shows an improvement of around 1.1% mIoU over the random sampling baseline after 5
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Fig. 3.15 Labeling quality when using polygon approximation with different tolerance values (in
pixels). We picked a tolerance value of 10 pixels for our experiments.

AL sampling cycles. The LL method fails to outperform the random baseline approach.
Corresponding performance curves are shown with solid lines in Figure 3.16.

The performance of the random baseline (Random), when combined with s4GAN,
increases by the largest margin of 4.1% mIoU and reaches the overall best value. In addition,
the SSL-D-score heuristic also shows comparable performance to the random baseline after
5 sampling cycles but does not bring any improvement over the SSL-Random baseline. The
performance curves for all integrated methods are shown with dashed lines in Figure 3.16.
Figure 3.18 shows the qualitative results at each sampling cycle, comparing the Entropy-
Image method and the SSL-Random-Image baseline.

Polygon-based selection. In the above setting, labeling cost was defined per polygon, but
the annotation was conducted image-wise. Here, we explore whether labeling only a part of
an image is more effective than labeling the complete image. We evaluate active learning
methods for semantic segmentation, where only a region of an image is selected by the query
function. This region is approximately labeled using a polygon by the annotation simulator.
We evaluate methods where an image is selected randomly, but the polygon in the image
is selected based on the active learning heuristic. We compare entropy-based and random
polygon selection methods in both raw and SSL-integrated active learning settings.

Experiment design: The entropy of a polygon is measured in a similar way as in the
image-level labeling regime. We create a binary mask for the pixel-wise entropy based on a
threshold and use the area of the high-entropy pixels as our selection heuristic. Only in the
first cycle are images completely labeled until the Bi is covered. In the subsequent cycles,
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Fig. 3.16 Integrated SSL-AL methods for semantic segmentation mostly perform better than their
raw counterparts on PASCAL-VOC with Bi = Bs = 5000 clicks (≈ 1.5% of the dataset). None of the
methods outperforms SSL with random sampling.

images are labeled polygon-wise until the sampling budget Bs is exhausted. Figure 3.18
shows two examples of how the polygon-level labeling regime works based on the entropy
heuristic. The budget settings and the hyperparameters exactly match those from the image-
level labeling regime.

Fig. 3.18 Image labeling in a polygon-level labeling regime. From left to right: Original image,
approximated ground-truth, pixel-wise entropy and selected polygon for labeling based on the entropy
heuristic.

Results: Entropy-based polygon selection approach is more effective than random
polygon selection for the raw active learning (without SSL) setting. However, when combined
with semi-supervised learning, both entropy (Random-Image-Entropy-Polygon) and random
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Fig. 3.17 Active learning for semantic segmentation: comparison between SSL integrated with active
learning (SSL-X) against the standard setting. Results are shown on the PASCAL-VOC dataset with
Bi = Bs = 5000 clicks. The suffixes ‘Image’ and ‘Polygon’ refer to the image-level and polygon-level
labeling regimes respectively.

(Random-Image-Random-Polygon) polygon selection strategies perform very similarly.
Results are shown in Figure 3.17. Moreover, when all polygon-level labeling approaches are
compared with the image-level labeling approaches, we find SSL-Random-Image baseline
even outperforms all the polygon-level active learning methods. In this experiment, we
also observed that the SSL-Random-Image baseline outperformed the SSL-Random-Image-
Random-Polygon baseline, showing that image-level labeling is a more effective way of
labeling an image.

3.3.6 Conclusion

This work shows that active learning is indeed a useful tool for semantic segmentation.
However, it is vital to understand the behavior of different active learning methods in various
application scenarios. Table 3.11 provides an overview of the best-performing methods
for each scenario for the semantic segmentation task. Our findings indicate that single-
sample-based uncertainty is a suitable measure for sample selection in diverse datasets.
In contrast, batch-based diversity-driven measures are better suited for datasets with high
levels of redundancy. SSL is successfully integrated with batch-based diversity-driven
methods. However, it can have a detrimental impact when combined with single-sample-
based uncertainty acquisition functions. Active learning with a high annotation budget
always performs better than random sampling and is further improved with the integration of
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Dataset ↓ Annotation Budget
Low High

Sup. → AL SSL-AL AL SSL-AL
Diverse Random Random-SSL Single Single-SSL
Redundant Batch Batch Batch Batch-SSL

Table 3.11 Overview showing the best performing AL method for each scenario. Single and Batch
refer to single-sample and batch-based method, and Random refers to random selection. Suffix -SSL
refers to the usage of semi-supervised learning.

semi-supervised learning. As depicted in Figure 3.19, the batch-based methods are successful
when there is a certain presence of redundancy in the dataset. Active learning with low
annotation budgets is highly sensitive to the level of redundancy in the dataset. The optimal
active learning policy changes from random selection to single-sample selection and then
to batch-based selection based on the level of redundancy in the dataset. In this budget
setting, SSL integration is only successful for highly diverse datasets. Our study, comparing
polygon-based acquisition and image-based acquisition, shows that polygon-based selection
does not offer any additional advantages over image-based acquisition. These findings have
been missing in method development, which is usually optimized only for a few scenarios.
The results of this study facilitate a broader view of the task with presumably positive effects
in many applications.

3.4 Discussion

We observed that active learning acquisition methods for image classification are not very
successful in outperforming naive random sampling when combined with some of the latest
advances in the field. This makes us question the underlying issues present in the existing
active learning literature for image classification. In order to stratify the issues found in this
work, we provide a protocol to make the evaluation scheme more robust.

It would be interesting to know why AL often performs worse than random sampling
for image classification and consistently does so in the low-budget regime. For now, we
can only speculate. We believe that AL sampling introduces a bias into the distribution
of annotated samples, i.e., the sampled distribution does not sufficiently match the true
distribution anymore. The damage caused by this bias is more significant than the positive
effect of learning from “more interesting” samples. If this hypothesis is true, research in
active learning should focus on ways that find a way to control this harmful bias through the
selection strategy.
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Fig. 3.19 The figure summarizes the results from our experiments. It shows how the ideal active
learning policy changes w.r.t. the level of redundancy in the dataset given a high or low annotation
budget. The first line in each block indicates the best acquisition objective, and the second line
indicates whether SSL integration helps boost the performance of the best acquisition objective or not.

Results on semantic segmentation follow the trends observed in image classification,
i.e. it is hard to pick one best method which performs well across all datasets and settings.
However, we found it is possible to select the category of active learning acquisition method -
single-sample based or batch-based, that can be effective if we can determine the nature of
the dataset. Designing a metric that could identify the nature of the dataset as redundant or
diverse is a non-trivial task and perhaps a direction to explore in future works.

In Chapters 2 and 3, we studied two approaches of learning from limited supervi-
sion, namely, semi-supervised learning and active learning. We analyzed existing active
learning methods under realistic settings and also proposed new improved methods for
semi-supervised learning. The overall goal of the approaches studied in these chapters was to
improve label efficiency. In the next chapter, we will learn how to improve training efficiency
in a continual learning setup, particularly in a class-incremental setup. In the next chapter, we
identify novel underlying challenges in the continual learning solutions and propose simple
solutions to rectify these issues which improve model performance.





Chapter 4

Class-incremental Continual Learning

The content of this chapter was adapted from the following paper.

Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Essentials for class incremental
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, pages 3513–3522, June 2021.

Silvio Galesso contributed by conducting the analysis of the effect of different regu-
larizers on the feature representations in the above-mentioned paper. He co-designed and
implemented evaluation metrics for measuring secondary class information. He also analyzed
the expected calibration error for different regularizers. All co-authors contributed to the
project discussions as well as the final paper text editing. All the other contributions described
in this chapter are made by myself.

∗∗∗

In the previous chapters, we learned about how to improve the label efficiency of deep
learning models. In this chapter, we will focus on improving the training efficiency of deep
learning models from a continual learning perspective. The objective of this chapter is to
find and rectify the essential components that are important for deep learning models to
continually learn from changing data distribution and tasks.

Motivation The ability to learn from continuously evolving data is important for many
real-world applications. Traditional machine learning methods typically assume a fixed set
of classes, which can be a limiting factor for a real-world application, where new classes
emerge over time. For e.g., in a facial recognition system, the ability to adapt to new faces
is important, or in autonomous driving systems, an agent might need to learn to recognize
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and respond to new objects and situations on the road. Latest machine learning models,
especially artificial neural networks, have shown great ability to learn the task at hand,
but when confronted with a new task, they tend to override the previous concepts. This
phenomenon of overriding and forgetting previous concepts is referred to as catastrophic
forgetting in the literature. Deep neural networks suffer heavily from this catastrophic
forgetting [84] when trained with a sequence of tasks, impeding continual or lifelong learning.
Without a proper continual learning method, the system would need to be retrained on all
previously seen data from all the tasks, which can be expensive and time-consuming. Several
reasons have been attributed to this catastrophic forgetting issue, including - interference
between the old and new information, overfitting to the new task, and limited capacity of the
neural network. To mitigate catastrophic forgetting, several techniques have been proposed,
including regularization, replay-based methods, and memory augmentation.

Problem setup. The problem of continual learning in the literature has been studied in
numerous settings. They are defined depending on whether, at test time, the task identity is
provided or not and whether the task identity needs to be inferred if it is not provided. This
difference in experimental protocol influences the level of difficulty of the task. In this work,
we study a continual learning setting, where models must be able to solve each task seen so
far without any extra information about the test task identity. The problem is referred to as
class-incremental learning (class-IL) [118]. It is one of the most difficult continual learning
settings.

In class-incremental learning (class-IL) [101], the objective is to learn a unified classifier
over incrementally occurring sets of classes. Since all the incremental data cannot be retained
for unified training, the major challenge is to avoid forgetting previous classes while learning
new ones. The other two scenarios in [118] include - (1) task incremental learning, where
the output space of the tasks is different, and task-ID is provided during testing, and (2)
domain-incremental learning, where the task remains the same but input distribution changes.

The three crucial components of a successful class-IL algorithm include a memory buffer
to store a few exemplars from old classes, a forgetting constraint to keep previous knowledge
while learning new tasks, and a learning system that balances old and new classes. Although
several methods have been proposed to address each of these components, there is not yet a
common understanding of best practices. In this work, we utilize previously proposed buffer
memory and forgetting constraints but propose a novel, simple balanced learning system to
reduce interference between old and new classes.
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Problem definition. The objective of class-incremental learning (class-IL) is to learn a
unified classifier from a sequence of data from different classes. Data arrives incrementally
as a batch of per-class sets X = {X1,X2, ...,X t}, where Xy contains all images from class y.
Learning from a batch of classes can be considered as a task T . At each incremental step, the
data for the new task Ti arrives, which exclusively contains samples of the new set of classes
only. At each incremental step, data is only available for new classes Xnew = {X s+1, ...,X t}.
Only a small amount of exemplar data Pold = {P1, ...,Ps} from previous classes Xold =

{X1, ...,X s} is retained in a memory buffer of limited size. Certain exemplar data is retained
as a replay buffer to avoid complete forgetting. The model is expected to classify all the
classes seen so far.

The problem definition with strictly separated batches may appear a bit specific. In
many practical applications, the data will arrive in a more mixed-up fashion. However,
this strict protocol allows the comparison of techniques, and it covers the key issues with
class-incremental learning. Improvements on this protocol also serve less strict applied
settings.

Scope of this chapter. In this chapter, we propose a compositional class-IL (CCIL) model
that isolates the underlying reasons for catastrophic forgetting in class-IL and combines
the most simple and effective components to build a robust base model. It employs plain
knowledge distillation [50] as a forgetting constraint and selects exemplar samples simply
randomly. For the loss evaluation, we propose important changes in output normalization.
The goal of this part (Section 4.3) is to show that a balanced usage of simple components is
sufficient to produce a strong model with state-of-the-art performance. In addition, we study
the influence of the learned representation’s properties on forgetting and show that the degree
of feature specialization (overfitting) correlates with the degree of forgetting. We study some
common regularization techniques and show that only those that keep, or even improve, the
so-called secondary class information – also referred to as dark knowledge by [50] – have a
positive influence on class-incremental learning, whereas others make things much worse.
With these lessons learned, class-incremental learning results on CIFAR-100 and ImageNet
improve over the state-of-the-art by a large margin while keeping the approach simple.

4.1 Related Work

iCaRL was the first approach that formally introduced the class-IL problem [101]. iCaRL is
a decoupled approach for feature representation learning and classifier learning. It alleviates
catastrophic forgetting via knowledge distillation and a replay-based approach. Later Castro
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et al. [15] extended it to an end-to-end learning model based on a combination of distillation
and cross-entropy loss to show improved results over iCaRL. Successive works usually
dedicate their contribution to one of the three components in class-IL.

Exemplar selection: Replay-based approaches have been shown to be quite effective in
mitigating catastrophic forgetting. Typically, a memory buffer is allocated to store exemplar
samples of old classes, which are replayed while learning a new task to mitigate forgetting.
Many works [15, 52, 101, 127] use herding heuristics [126] for exemplar selection. Herding
selects and retains samples closest to the mean sample for each class. Liu et al. [79]
parameterized the exemplars to optimize them jointly with the model. Iscen et al. [58]
introduced a memory-efficient approach to store feature descriptors instead of images. In our
work, we simply sample from each class randomly to compile the exemplar set.

Forgetting-constraint: Knowledge distillation (KD) was first introduced by Li et al. [74]
for multi-task incremental learning. Thereafter, various works [15, 101, 127] have adopted
it in class-IL to restore previous knowledge. Lately, several works have proposed new
forgetting constraints with the objective of preserving the structure of old-class embeddings.
Hou et al. [52] proposed the usage of feature-level distillation by penalizing the change in
the feature representation from the old model. Yu et al. [138] utilized an embedding network
to rectify the semantic drift, Tao et al. [115] proposed a Hebbian graph-based approach to
retain the topology of the feature space. In this work, we utilize plain knowledge distillation,
which is based on logits to avoid forgetting.

Bias removal methods: Various works [52, 127, 144] have pointed out that class-imbalance
between old and new classes creates a bias in the class weight vectors in the last linear layer,
due to which the network predictions are biased towards new classes. To rectify this bias,
Wu et al. [127] trained an extra bias-correction layer using the validation set, Belouadah et
al. [10] proposed to rectify the final activations using the statistics of the old task predictions,
Zhao et al. [144] adjusted the norm of new class-weight vectors to those of the old class-
weight vectors, and Hou et al. [52] applied cosine normalization in the last layer. The focus
of these works is limited to the bias in the last layer, but ultimately catastrophic forgetting is
an issue that affects the entire network: class imbalance causes the model to overfit to the
new task, deteriorating the performance of the old ones. Some work [15, 73] also fine-tune
the model to avoid overfitting to the current task. We propose a learning system that resolves
this bias without the need for any post-processing by fixing the underlying issues; see Section
4.3.
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(a)

(b)

Fig. 4.1 The comparison between a (a) standard loss system and our proposed (b) compositional loss
system (right). σ shows the softmax function span over all the network output logits. σold and σnew

show softmax span over the set of old and new class logits, respectively.

4.2 Basic Class-Incremental Learning Framework

The network model Θ consists of a feature extractor φ(·) and a fully-connected layer f c(·)
for classification. Similar to a standard multi-class classifier, the output logits o are processed
through a softmax activation function σ(·) before cross-entropy loss LCE is evaluated cor-
responding to the correct class. For the initial base task T0, the model Θs learns a standard
classifier for the first (y ∈ y[1 : s]) classes. In the incremental step, the f c layer is adapted
to learn new classes (y ∈ y[s+1 : t]) by adding new output nodes, whereas the other part of
the network remains unchanged, resulting into a new model Θt . The three main elements of
class-IL are set up as follows.

Exemplar selection. We compile the exemplar set by randomly selecting an equal number
of samples (m) for each class. The samples are sorted in ascending order according to the
distance from the mean of the feature vectors µi for each class separately. Since the size of
the limited memory is fixed (K), some samples of old classes are removed to accommodate
exemplars from new classes. Samples with larger distances to the mean vector are removed
first. Detailed steps are shown in Algorithm 2.

Forgetting constraint. Our model uses knowledge distillation as the constraint against
forgetting. Knowledge distillation penalizes the change with respect to the output of the
old model (Θs) using KL-divergence, thus preserving the network’s knowledge about the
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old classes. The distillation loss (LKD) is computed for the exemplar sets (P) as well as for
samples from the new classes (X ). The final loss for our CCIL model is a combination of
cross-entropy loss LCE for classification and distillation loss LKD for mitigating catastrophic
forgetting as shown in Algorithm 1-Line 15.

Learning system. We propose a new compositional learning system that addresses the
weight-bias issue in class-IL. The proposed loss isolates inter-task and intra-task learning for
balanced processing of data by appropriately normalizing the output logits. The task-agnostic
parts are shared to yield improved efficiency. The details are presented in Section 4.3.

4.2.1 Evaluation Metrics for Class-IL

Class-IL models are evaluated using three metrics: average incremental accuracy, forgetting
rate, and feature retention. After each incremental step, all classes seen so far are evaluated
using the latest model. After N incremental tasks, the accuracy An overall (N +1) steps are
averaged and reported. It is termed as average incremental accuracy (Avg Acc), introduced
by Rebuffi et al. [101]. We also evaluate the Forgetting Rate F proposed by Liu et al. [79].

Algorithm 1: CCIL: IncrementalStep
Input: Xnew = (X s+1, ...,X t),Ps = (P1, ...,Ps) // new classes data, old exemplar sets
Input: K,Θs,Θ̂s // memory size, current model, frozen current model
Output: Θt // model trained on t classes
1 m← K/t // number of exemplars per class
2 Θt ←Θs // add output nodes for new classes
3 P ← UpdateExemplarSets(X ;Ps,m,Θs)
4 for (x,y) ∈ X do // update for mini-batch data in X
5 o = Θt(x) // o = {oold,onew}
6 softmax over new class logits σnew(onew)

7 compute classification loss LCE
X (Eq. 4.3)

8 softmax over old class logits σold(oold)

9 compute distillation loss LKD
X (Eq. 4.4)

10 load a mini-batch from exemplars set (x′,y′)∼P
11 o′ = Θt(x′)
12 softmax over all logits σ(o′)
13 compute classification loss LCE

P (Eq. 4.5)
14 compute distillation loss LKD

P (Eq. 4.6)

15 L= (LCE
X +LCE

P )+λ ∗ (LKD
X +LKD

P )

16 end
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The forgetting rate measures the performance drop on the first task. It is the accuracy
difference on the classes of the first task X1:s

test , using Θ0 and ΘN . Θi denotes a model after i
incremental steps. Therefore, it is independent of the absolute performance on the initial task
T0. We introduce another metric, referred to as Feature Retention Rφ , to measure retention
in the feature extractor φ(·). It measures how much information is retained in the feature
extractor while learning the tasks incrementally as compared to a jointly trained model. To
measure Rφ : after the final incremental step, the parameters of the feature extractor are
frozen, and the last linear layer is learned using all the data from all the classes. Rφ is the
accuracy difference between this model and a model where the whole network is trained on
all the classes with complete data access. This metric measures the difference between the
best possible features using joint training and features learned after incremental learning.

4.3 Compositional Learning System

For each gradient update, the CCIL model receives data in separate batches from the
set of new classes X and the set of exemplars P . P is the updated exemplar set which also
includes the equal size of exemplars from the current new classes. (see Algorithm 1-Line
3) Instead of merging the batches, we propose to compute two separate losses for X and P
mini-batches:

LX = LCE
X +λ ∗LKD

X (4.1)

LP = LCE
P +λ ∗LKD

P (4.2)

Intra-task learning. The classification loss for the new classes (LCE
X ) is computed using

a dedicated softmax function σnew comprising logits of new classes only (Figure 4.1b)
computed as:

LCE
X =−

t

∑
i=s+1

y[i] · log(pnew[i]) (4.3)

for (x,y)∈X , where pnew =σnew(onew), o=Θt(x) and output logits comprise o= {oold,onew}.
This allows the classifier weights for the new classes to be learned independently of the
previous classes - while sharing the feature extractor, thus effectively eliminating the weight
bias. Distillation loss (LKD

X ) is always computed using σold (see Figure 4.1b), since out-
put of new network pold = σold(oold) are compared against the output of previous model
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p̂ = σold(Θ̂
s(x)) as:

LKD
X = DKL(p̂||pold) (4.4)

In the case of a unified softmax, the weights of the old classes are suppressed by the larger
amount of new class samples during training. A similar analysis has been shown by [7] for a
fine-tuning setup.

Inter-task learning. The separate softmax helps intra-task learning for the new classes,
but this does not yet discriminate the new from the old classes. For inter-task learning, we
plan a balanced interaction between the samples of old and new classes. We compile an
exemplar set P , which contains equal numbers of samples from all classes, including old and
new classes. However small, such an exemplar set enables the model to capture the inter-task
relationship through the loss LCE

P , which uses a combined softmax function σ evaluated on
all classes (see Figure 4.1b).

LCE
P =−

t

∑
i=1

y′[i] · log(q[i]) (4.5)

for (x′,y′) ∈ P , where q = σ(o′) and o′ = Θt(x′). The distillation loss is computed similarly
to Eq. 4.4,

LKD
P = DKL(q̂||qold) (4.6)

where q̂ = σold(Θ̂
s(x′)) and qold = σold(o′old). This exemplar set is compiled before learning

the incremental task, contrary to previous works, where it is always compiled after the
incremental step. Figure 4.1 shows how the loss terms are calculated using a separate softmax
function (Figure 4.1b) and also compares it to the unified softmax (Figure 4.1a) used in
previous works.

Transfer learning. We observed that a separate softmax does not remove the bias com-
pletely. Another cause for unbalanced class-weight vectors, and catastrophic forgetting in
general, is the change in the data distribution between different tasks. We hypothesize that the
effect of this distribution shift in the training data is more harmful to the previous knowledge
when the transfer learning from old to new classes is poor, resulting in a strong alteration of
the parameters of the network. We propose to reduce the learning rate for the incremental
steps as a simple way to improve transfer learning and mitigate the adverse effect of the
distribution shift. This further helps reduce the weight bias. The reduced learning rate on
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Algorithm 2: UpdateExemplarSets
Input: X ,Pold // new class data, old exemplar set
Input: Θs,m // old model, new exemplar size per class
Output: Pnew // new Exemplar sets
1 for i = 1, ...,s do
2 Pi← (p1, ..., pm) // keep first m samples
3 end

/* add new class exemplars */
4 for i = s+1, ..., t do
5 Pi← (p1, ..., pm)⊂ X i) // randomly pick m samples
6 µi← 1

m ∑
m
j=1 φ(p j) // mean feature

/* sort exemplars based on distance from µi */
7 for k = 1, ...,m do
8 pk← argmin ||µi−φ(pk)||
9 end

10 end

incremental steps depends on the scale and relevance of features learned in the base task;
therefore, it is determined experimentally. Although lowering the learning rate is a standard
technique when fine-tuning a network on a new dataset, its importance is underestimated
and often missing in incremental learning works. We experimentally show its importance in
ablation studies (Section 4.5.2).

4.4 Improving Feature Representations for Incremental
Learning

Intuitively, poorly transferable embeddings will force the model to alter its parameters
significantly in order to learn new concepts. This destroys the knowledge accumulated for
the previous tasks. In this section, we explore this novel direction- aiming to learn robust
representations that are transferable to a new task and effectively retain previous knowledge
in class-IL. In particular, we study the detrimental effects of overfitting and loss of secondary
class information. We find that: 1) both phenomena strongly correlate with catastrophic
forgetting; 2) regularization methods can significantly improve robustness against forgetting,
but only as long as they enhance the secondary class information of the learned model.
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Fig. 4.2 The effect of overfitting on class-IL performance on the CIFAR-100 dataset. The figure
shows the overfitting behavior on the initial base task. The validation loss (red curve) starts increasing
monotonically after the 100th epoch. The green curve shows the average incremental accuracy (right
y-axis) for class-IL experiments performed over different snapshots at every 100th epoch.

4.4.1 Measuring the Quality of Secondary Logits

Secondary information captures the semantic relationship between the target and non-target
classes. In literature, the term secondary information is interchangeably used to denote the
non-target and non-maximum scores of a classifier [134]. Here, for evaluation purposes,
the term denotes the non-maximum scores produced by the networks. When applying the
maximum operation to the scores predicted by a classifier, part of the information produced
by the model is discarded. For each individual sample, this information represents the
model’s belief about the semantic nature of the image in relation to the other classes. It
is important to learn this secondary information such that the model can re-use it to learn
new classes with the least modification to previous concepts. We argue that semantically
similar classes should lie closer in the representation space as compared to the dissimilar
classes since they share more features, and higher secondary information is an indicator
of such an efficient non-redundant feature space. We have included an analysis on feature
representations to support this argument in Section 4.5.4.

No proper annotations exist for secondary information; therefore, we define a proxy
evaluation objective, exploiting the coarse-labeling of the CIFAR-100 dataset, which parti-
tions the 100 fine-classes into 20 superclasses. The 5 classes belonging to each superclass
are mostly semantically related and have been previously used for evaluating secondary
information [134]. As a proxy evaluation measure for secondary class information, we
propose to use the classification performance on the superclasses, restricting the network
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Epoch SS-NLL ↓ SS-Acc ↑ Avg Acc ↑ F ↓ Rφ↓ ECE
100 2.54 ± 0.04 38.68 ± 0.89 65.42 ± 0.06 16.03 ± 0.36 9.04 ± 0.24 0.093 ±0.003
200 2.89 ± 0.06 32.88 ± 0.59 65.05 ± 0.08 16.04 ± 0.26 9.27 ± 0.42 0.118 ±0.003
300 3.03 ± 0.06 30.09 ± 0.53 64.72 ± 0.07 16.94 ± 0.61 9.51 ± 0.23 0.126 ±0.004
400 3.09 ± 0.07 29.04 ± 0.68 64.3 ± 0.12 18.38 ± 0.19 9.68 ± 0.17 0.131 ±0.005
500 3.11 ± 0.03 27.97 ± 0.54 62.92 ± 0.11 18.57 ± 0.39 10.00 ± 0.20 0.137 ±0.002

Table 4.1 The effect of overfitting on class-IL performance and its correlation with secondary infor-
mation. Table shows the performance of the network snapshots taken at every 100th epoch. Accuracy
decreases and SS-NLL increases, both monotonically, as more severely overfitted models are evalu-
ated. Forgetting rate F also correlates with overfitting. Results are computed over 5 runs.

output to the non-maximum logits. We define two new metrics for this purpose: Secondary
Superclass NLL and Secondary Superclass Accuracy.

Secondary Superclass-NLL (SS-NLL). Negative Log Likelihood is a commonly used cost
function for classification, also known as Cross-Entropy Loss. Here we compute the NLL
induced by the secondary (non-maximum) logits on the superclass classification problem.
Given a set of superclasses S , we can group the fine-grained classes into subsets C according
to their coarse-label, and compute:

SS-NLL(x,y) =−∑
j∈S

[
1C j(y) log ∑

k∈C j

σ̂k
(

f (x)
)]
, (4.7)

where 1C j(y) is an indicator function which evaluates to 1 if the true class y belongs to
superclass j, σ̂ is a softmax function over the secondary fine-logits (i.e. it suppresses the
maximum logit). The network prediction (logits) is denoted as f (x). A lower SS-NLL
indicates better superclass classification and, thus, higher secondary information quality.

Secondary Superclass-Accuracy (SS-Acc): Secondary superclass accuracy computes
the percentage of correct superclass predictions. As for SS-NLL, the largest logit score is
excluded from the prediction to focus the measure on the quality of secondary information.
Higher SS-Acc values indicate higher quality of the secondary information.

4.4.2 Forgetting starts before the incremental step

In this section, we study how the quality of the representations learned during the initial
base task correlates with incremental learning performance. We experimentally show how a
decline in the quality of the learned features - measured as overfitting and loss of secondary
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information - leads to higher catastrophic forgetting, motivating our following search for a
suitable regularizer.

Experiment details: We set up a standard class-IL experiment (with 5 incremental tasks)
on CIFAR-100, using a ResNet-32 model. The initial base network is trained for up to 500
epochs. We employ an SGD optimizer with a base learning of 1e-1, weight decay of 5e-4,
and momentum 0.9. We use a step learning rate schedule, where the learning rate is divided
by 10 at 60th and 90th epochs.

Analysis: Figure 4.2 shows that the validation loss (red curve) starts increasing after about
100 epochs, showing an overfitting effect. Thereafter, we perform five different class-IL
experiments, each based on a different snapshot of the base network (every 100th epoch).
As the validation loss of the snapshot increases, incremental learning performance of the
corresponding class-IL model drops (green curve), and both forgetting rate (F ) and feature
retention metric (Rφ ) worsen (Table 4.1). The worsening Rφ metric indicates that the issue
is rooted in the feature representations, and cannot be mitigated by acting on the last layer
bias. Along with these metrics, we observe that overfitting causes the quality of secondary
information to deteriorate (SS-Acc decreases and the SS-NLL increases, Table 4.1). This loss
of secondary information could also be linked to increasing overconfidence of the network,
measured as Expected Calibration Error (ECE) [47]. Table 4.1 also shows the expected
calibration error (ECE) with standard deviation for different snapshots of the overfitted model.
It shows that ECE monotonically increases with the number of training epochs.

These results indicate that: (1) the quality of the features learned during the first base
task influences the performance of the class-IL model, and as such, it should be expressly
addressed. (2) secondary information can be considered as an indicator of the features’ quality
and their fitness for incremental learning. In the next section, we will show experimental
evidence in support of these hypotheses.

4.4.3 Analyzing Catastrophic Forgetting with Regularization

Having established a link between early feature quality and catastrophic forgetting, we
hypothesize that the application of adequate regularization techniques can improve model
performance on the task at hand. We apply four common regularization techniques to our
CCIL model: self-distillation [37], data-augmentation (including cropping, cutout [32], and
an extended set of AutoAugment [26] policies), label smoothing [113], and mixup [142]. All
these regularizers have been shown to improve generalization on the held-out validation data.
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Model Avg. Acc.↑ SS Metrics F ↓ Rφ↓ ECE↓
5 tasks 10 tasks SS-NLL ↓ SS-Acc. ↑

CCIL 66.44 ± 0.31 64.86 ± 0.40 2.784 34.83 17.13 9.70 0.100
CCIL + SD 67.17 ± 0.14 65.86 ± 0.29 2.675 37.26 16.81 8.88 0.094
CCIL + H-Aug 71.66 ± 0.23 69.88 ± 0.36 2.051 47.69 13.37 6.73 0.018
CCIL + LS 63.08 ± 0.21 61.99 ± 0.30 3.103 24.25 18.79 12.83 0.049
CCIL + Mixup 62.31 ± 0.46 57.75 ± 1.64 2.791 31.57 24.56 16.01 0.024

Table 4.2 Effect of regularization class-IL average accuracy, secondary information (on the first-task
model), forgetting rate and feature retention (5 tasks), on CIFAR-100. All the values are averaged over
3 runs. ↓ and ↑ in the column headings indicate that lower and higher values are better respectively.
Values that are better than the CCIL baseline are marked in green whereas the worse ones are marked
in red. SD:self-distillation, LS:label-smoothing, H-Aug:heavy data augmentation.

Self-distillation. Self-distillation [37, 88] is a form of knowledge distillation in which the
teacher and student networks have the same architecture. It can be applied iteratively, in
generations: at each generation, a copy of the current student becomes the new teacher, with
proven positive effects on generalization.

Data augmentation. Augmentation is one of the most widespread regularization techniques
for neural networks, especially in computer vision. A well-designed data augmentation
routine is key to obtaining good results on the held-out dataset. We sample randomly
from a pool of augmentation policies that contain pairs of different geometric and color
transformations, similarly to [26].

Label smoothing. Label smoothing [113] acts on the cross-entropy loss for classification
by interpolating the one-hot labels with a uniform distribution over the possible classes.
This technique has been shown to improve generalization and reduce overconfidence of
classification models [113].

Mixup. Mixup [142] is an operation that generates training samples for classification by
linearly combining pairs of existing samples - image and label. Mixup has successfully been
used as a form of data augmentation in image classification, improving generalization and
calibration [142, 117].

Analysis. We analyze above discussed metrics for each of these regularization techniques.
Table 4.2 shows the Average Accuracy after finishing the last incremental step, secondary
information quality of the first task model, forgetting rate, feature retention (Section 4.2.1)
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and expected calibration error [47]. We can divide the regularization methods into two
groups: the ones which improve class-IL performance (self-distillation, augmentation) and
the ones which harm it (label smoothing, mixup). The first group also shows consistent
improvements in secondary information and reduction in forgetting, with augmentation
performing the best across all metrics - by a significant margin. In the second group, label
smoothing harms secondary information the most. It has been observed that label smoothing
encourages representations to be closer to their respective class centroid and equidistant to the
other class centroids [90], and this comes at the expense of inter-class sample relationships,
i.e., secondary information. Mixup also harms the quality of secondary information: we
believe this is because it artificially forces arbitrary distances between classes, which modifies
the natural output distribution - similarly to label smoothing. Interestingly, all regularizers
improve network calibration, but ECE is not a good indicator of class-IL performance, unlike
secondary information, shown in Table 4.2.

In summary, label smoothing and mixup - despite their proven regularization effects -
harm secondary class information and have clear negative consequences for class-incremental
learning. On the other hand, regularization methods that enhance secondary class information
(self-distillation and data augmentation) boost the average incremental accuracy. Analogously
to the analysis of Section 4.4.2, we show that the quality of secondary information negatively
correlates to the forgetting rate (Table 4.2), further indicating the importance of secondary
class information.

4.5 Experiments and Results

4.5.1 Training Details

Datasets. We conduct experiments on CIFAR100 [69], ImageNet-100 Subset [28] and
full ImageNet datasets. CIFAR-100 contains 60K images from 100 classes of size 32×32,
with 50K images for training and 10K for evaluation. The ImageNet-100 dataset has 100
randomly sampled classes (using Numpy seed:1993) from ImageNet. The base CCIL model
uses default data augmentation, including random cropping and horizontal flipping for
CIFAR-100 and resized-random cropping and horizontal flipping for ImageNet datasets. All
the randomization seeds are selected following the experiments in previous works [52, 79].

CIFAR-100 classes are shuffled using a fixed seed (Numpy [119] seed:1993) across all
methods for a fair comparison. The ImageNet-100 dataset has 100 randomly sampled classes
(using Numpy seed:1993) from ImageNet and further shuffled (using Numpy seed:1993). It
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contains around 128K images of size 224×224 for training and 5K images for evaluation.
ImageNet-1k classes are also shuffled using a Numpy seed:1993.

Benchmark protocol. We follow the protocol used in previous works [52, 79]. The
protocol involves learning 1 initial base task followed by N incremental tasks. We evaluate
with two incremental settings: where the model learns N = 5 and N = 10 incremental tasks.
For CIFAR-100 and ImageNet-100, 50 classes are selected as the base classes for the initial
task, and the remaining classes are equally divided over the incremental steps. A similar
format is followed for ImageNet with 500 base classes. Exemplar memory size is set to
K = 2k for 100 class datasets and K = 20k for the full ImageNet dataset.

Implementation details. We use a 32-layer ResNet [49] for CIFAR-100 dataset, and a 18-
layer ResNet for ImageNet-100 and ImageNet datasets. The last layer is cosine normalized
following the recommendations of [52]. On CIFAR-100, the base network is trained for 120
epochs using a cosine learning rate schedule, where the base learning rate is 1e-1. Subsequent
N tasks are trained for 240 epochs with a base learning rate of 1e-2. The learning rate is
decayed until 1e-4. We use a batch size of 100 for CIFAR-100 experiments. Networks for
the CIFAR-100 dataset are optimized using the SGD optimizer with a momentum of 0.9
and weight decay of 5e-4. For ImageNet-100, the network is trained for 70 epochs using a
step learning rate schedule, where the base learning rate is 1e-1 for the base task and 1e-2
for the subsequent N tasks. The base learning rate is divided by 10 at {30, 60} epochs. For
ImageNet, the base task is trained for 70 epochs following a step learning rate, where the base
learning is 1e-1. The base learning rate is divided by 10 at {30, 60} epochs. The incremental
task is trained for 40 epochs following a step learning rate, where the base learning rate
starts from 1e-2. The base learning rate is divided by 10 at {25, 35} epochs. Networks for
ImageNet datasets are optimized using the SGD optimizer with a momentum of 0.9 and
weight decay of 1e-4. We use a batch size of 128 for both ImageNet datasets.

For self-distillation experiments, self-distillation is conducted over 4 generations (opti-
mized using validation performance) for CIFAR-100 and ImageNet-100 datasets and over 2
generations for the ImageNet dataset. At the beginning of each self-distillation generation,
the network snapshot (student) becomes the teacher network, and the student continues to
train (fine-tuned) with a combination of classification and distillation loss. For CIFAR-100,
the self-distillation model is trained for 70 epochs with a decaying (cosine) learning rate from
1e-1 to 1e-3. All other optimizer settings are the same as the baseline model. For ImageNet-
100, the self-distillation model is trained for 30 epochs each, where the base learning rate is
1e-2, and it is divided by 10 at 10, 20 epochs. For ImageNet, the self-distillation model is
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Operations Avg Acc ↑ Avg Acc ↑
w/o KD w/ KD

Comb 47.97 52.71
Sep 52.86 60.85

Comb+LowLR 52.79 54.54
Sep+LowLR 58.60 64.79

Table 4.3 Table contains the corresponding class-IL results without distillation (w/o KD) and with
distillation (w/ KD) in terms of average incremental accuracy. All experiments use the linear classifi-
cation layer. Results shown on CIFAR-100 for 5-task experiments.
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Fig. 4.3 (a) & (b) compares the average L2 norm of the classification weight vectors for old and
new classes for class-IL experiments without (w/o) and with (w/) KD respectively. We evaluate
standard combined softmax (Comb) against proposed separate softmax (Sep) and we assess the effect
of reduced learning rate (LowLR).

trained for 15 epochs each, where the base learning rate is 1e-2, and it is divided by 10 at 8,
12 epochs.

4.5.2 Ablation Studies

Elements of the compositional learning system. We evaluate the contributions of each
element in the proposed learning system by training multiple class-IL models featuring
them. The incremental learning in these experiments is conducted in two settings - in
a simple fine-tuning setup (without distillation) in order to single out the effects of the
proposed changes and with knowledge distillation loss included. In Figure 4.3a & 4.3b,
we compare the average L2 norm of the class weight vectors for old and new classes after
5 incremental training steps, while in Table 4.3 we provide the average accuracies of the
respective models. We notice a major difference in the weight norms of old and new classes
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Method Layer Softmax Low AW Classifier KD Avg Acc
Cos Dot Sep Comb LR NME CNN

Comb ✓ ✓ ✓ 47.97
iCaRL ✓ ✓ ✓ ✓ 56.50

iCaRL++ ✓ ✓ ✓ ✓ ✓ 59.78
CCIL ✓ ✓✓✓ ✓✓✓ ✓ ✓ ✓ 66.44

Table 4.4 Drawing parallels between iCaRL and our proposed model. Average accuracy is reported
for 5-task class-IL experiments on the CIFAR-100 dataset. The last row highlights our proposed
changes. All methods use random exemplar selection as used in this work, Dot: linear layer, KD:
knowledge distillation, NME: nearest-mean-of-exemplars (used in [101])

for the default combined softmax (Comb) setting (Figure 4.1a). Using separate-softmax (Sep)
substantially reduces this difference and improves class-IL performance but does not resolve
the problem completely. A lower learning rate (Comb+LowLR) also removes the bias and
improves the performance, although to a lesser extent. When both approaches are combined
(Sep+Low-LR), this bias is largely resolved, and the best class-IL results are produced.

Drawing parallels with iCaRL. We compare different components of our CCIL model
with the first baseline approach (iCaRL) proposed by [101]. Table 4.4 summarizes these
changes. We first isolate the contributions of some follow-up methods by creating another
baseline as iCaRL++. It consists of a (1) cosine-normalized layer (cos) [44, 81, 52], where the
features and class-weight vectors in the final layer are normalized to lie in a high-dimensional
sphere. It helps in removing the remaining weight bias during inference, and (2) adaptive
weighting (AW), where the weight of the distillation loss increases with incremental steps.
AW was previously introduced in [52], which helps in the adaptive balancing of classification
and distillation loss. The adaptive weighting function λ (similar to [52]) between two losses
is defined as:

λ = λbase

(
Cn +Co

Cn

)2/3

(4.8)

,where Cn denotes number of new classes, Co denotes number of old classes, λbase is fixed
constant for each method. It dynamically increases weightage on preserving old knowledge
as incremental training continues. It improves the baseline model by 0.45% for 5 task
experiments on CIFAR-100. λbase = 5 is set for CIFAR-100, λbase = 20 for ImageNet-100
and λbase = 600 for ImageNet. The last row in Table 4.4 shows that replacing the combined-



98 Class-incremental Continual Learning

Method CIFAR-100 ImageNet-100 ImageNet
No. of i-tasks→ 5 10 5 10 5 10
iCaRL∗ [101] 57.17 52.57 65.04 59.53 51.50 46.89
BIC [127] 59.36 54.20 70.07 64.96 62.65 58.72
WA [144] 63.25 58.57 — — — —
LUCIR [52] 63.12 60.14 70.47 68.09 64.34 61.28
Mnemonics [79] 63.34 62.28 72.58 71.37 64.54 63.01
TPCIL [115] 65.34 63.58 76.27 74.81 64.89 62.88
CCIL (ours) 66.44 64.86 77.99 75.99 67.53 65.61
CCIL-SD (ours) 67.17 65.86 79.44 76.77 68.04 66.25
Joint-training 74.12 73.80 84.72 84.67 69.72 69.75

Table 4.5 Comparing average incremental accuracy computed using different methods on CIFAR-100,
ImageNet-100 and ImageNet dataset. *as reported in [52]

softmax (comb) with the proposed separate-softmax (sep) and reducing the learning rate
(LowLR) yields a major improvement.

4.5.3 Comparison to SOTA

Results for CIFAR-100, ImageNet-100, and ImageNet datasets are shown in Table 4.5. We
report the upper bound ‘Joint-training’, where at every incremental step, all the data for the
classes seen until then is accessible. The simple CCIL model compares favorably to previous
results on all datasets, especially on larger datasets like ImageNet-1k. The regularized CCIL-
SD closes the gap to joint training further and achieves state-of-the-art performance across
all datasets. Since the CCIL model is based only on simple components, we believe that the
application of advanced methods for mitigating forgetting [52, 115] and more informative
exemplar selection [79] can further improve the performance.

4.5.4 Representations: Qualitative Analysis

This section provides a qualitative analysis on the effect of different regularizers on the
feature representations (penultimate-layer activations). We analyze the representations of
the network trained on 50 classes (first task) of the CIFAR-100 dataset using the ResNet-32
network.
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Fig. 4.4 Effect of regularizers on the distance between mean class representations. The numbers
shown in the plot are the ratios between the class means distances of each method and of the default
CCIL model. Similar classes are marked in bold. Dotted circle at 1.0 depicts distances between
classes in the baseline CCIL model and other distances are depicted relative to the baseline model.
Positive and negative cases indicate similar and dissimilar classes respectively.
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Class-mean Representations: We argue that the classes which are semantically similar
must be closer in the representation space as compared to the dissimilar classes since they
share more features. Based on this argument, we analyze the effect of different regularization
methods on the relative distances between class-mean representations. We utilize the fine-
and coarse-label structure of the CIFAR-100 dataset to compare the effect on the distance
between semantically similar and dissimilar classes relative to the default baseline model.
Classes associated with the same coarse label or superclass are considered as similar classes,
whereas dissimilar classes are picked from different superclasses. L2 distance is used as the
distance metric.

Figure 4.4 show this qualitative analysis for two classes: cup and tulip. For example, cup
and can are semantically similar classes. When self-distillation and augmentation are used as
regularizers, the relative distance reduces to 0.9 and 0.8, respectively, whereas when label-
smoothing and mixup are applied, the relative distance increases to 1.2 and 1.1, respectively.
Other similar classes follow a similar trend, whereas dissimilar pairs show opposite behavior.
Overall we find that regularizers: self-distillation, and heavy data augmentation reduce the
relative distance between similar classes (marked in bold) while not affecting or increasing the
distance between dissimilar classes. Whereas mixup and label smoothing increase the relative
distance between similar classes and reduce the relative distance between dissimilar classes.
We notice that these observations agree with the findings on secondary class information
presented in Section 4.4.3.

We also argued that label-smoothing and mixup regularization deteriorate secondary class
information since they dismantle the natural output distribution. This qualitative analysis
supports our argument showing how they conversely hamper the distances between similar
and dissimilar classes.

4.6 Summary

In this chapter, we presented a straightforward class-incremental learning system that focuses
on the essential components and already exceeds the state of the art without integrating
sophisticated modules. The proposed compositional model is motivated by the findings on
imbalanced class weight vectors. It isolates and recombines differently affected components
in the network to build an improved model. Since final model is a simple and effective
solution, this makes it a good base model for future research on advancing class-incremental
learning.

Moreover, we showed that countering catastrophic forgetting during the incremental
step is not enough: the quality of the feature representation prior to the incremental step
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considerably determines the amount of forgetting. We empirically displayed that the degree
of overfitting on the prior task correlates with the degree of forgetting in the incremental
learning steps. This suggests that representation learning is a promising direction to maximize
also incremental performance. In this regard, we showed that boosting secondary information
is key to improving the transferability of features from old to new tasks without forgetting.





Chapter 5

Conclusion

In this thesis, we focused on two aspects of improving the efficiency of the deep learning
models. In Chapter 2 and 3, we learned how to best utilize manual supervision while
keeping the annotation cost as low as possible. In Chapter 4, we provided new insights
and methodology toward making continual learning models successful while keeping the
requirements of training resources low.

In Chapter 2 of the thesis, we introduced a novel semi-supervised learning approach for
semantic segmentation that is based on a generative adversarial network. Our approach is
designed to be end-to-end learnable and one-stage, which is stable across different settings
and benchmarks. Our proposed model is a two-branch model which aims to rectify artifacts at
different levels. It leverages an online self-training approach that helps stabilize the generator
and discriminator of the GAN model and enhances the model’s predictive performance. One
major contribution is the use of the Feature Matching loss, which is also crucial for a stable
adversarial training process. Another strength of our approach is its versatility, as it can utilize
various forms of extra supervision, such as image-level labels and scribbles. The effectiveness
of the method is shown qualitatively and quantitatively on three segmentation benchmarks.
Our method also performs competitively well compared to the latest state-of-the-art SSL
methods.

In Chapter 3 of the thesis, we question the existing evaluation practices used in deep active
learning for image classification and semantic segmentation tasks and seek answers to the
specific missing questions that previous works have failed to capture. First, we identify that
the deep AL methods for image classification are often tested under incompatible conditions:
different architectures, different augmentation strategies, budgets, etc., and often ignoring the
latest parallel works in the field, like semi-supervised learning and strong data augmentation.
In this work, we study active learning methods under the influence of data augmentation
and semi-supervised learning across different annotation budgets. Our findings indicate that
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these additional techniques help in improving the model performance in most cases but often
fail to improve consistently over a simple random baseline. For the semantic segmentation
task, we explored the influence on existing active learning methods across three dimensions -
data distribution w.r.t. different redundancy levels, integration of semi-supervised learning,
and different labeling budgets. We found that these three underlying factors are crucial
for selecting the best active learning acquisition function. We observe that the ideal active
learning policy changes from a single-sample selection objective to a batch-based selection
objective as the level of redundancy in the dataset increases. Integration of semi-supervised
learning is not always helpful, as demonstrated in the case of image classification, but rather
depends on the data distribution and the objective of the active learning acquisition function.
Integration of semi-supervised learning is consistently supported for batch-based acquisition
methods and redundant datasets. Moreover, we demonstrate that the selection of the best
AL policy requires precise knowledge about the underlying training conditions when the
available annotation budget is quite low due to its highly volatile nature.

In the last chapter, we propose a simple yet effective solution for class-incremental
learning systems that focuses on the essential components and already outperforms the state-
of-the-art without integrating sophisticated modules. We analyze the cause of catastrophic
forgetting in such continual learning setups and provide a straightforward compositional
model that addresses the issue to a great extent. Our proposed model combines inter-task
and intra-task learning components using the model architecture and objective function in an
informed manner. We further shed light upon other factors that contribute to catastrophic
forgetting, such as overfitting. We found that an overfitted model lacks the ability to learn new
tasks without losing its previous knowledge. This suggests that a transferable representation
is crucial for the success of a class-incremental learning system. We show that the secondary
class information is a good proxy measure for the transferability of the representation. We
believe that it is a promising future direction to seek regularization techniques that enhance
secondary class information captured by the network.

Future Work

Despite the recent rapid progress in making deep learning more efficient, many challenges
still remain open and highly relevant. Here, we provide a few most important directions for
future research.

Open-vocabulary semantic segmentation. Due to the recent success of large vision-
language models, the idea of learning with limited supervision has been transformed into
open-vocabulary prediction, where any objects can be retrieved or classified just using a
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text query. Such vision-language models are usually trained on millions of image-text pairs
and are capable of solving open-world tasks like image classification and object detection.
Such image-text pairs are much easier and cheaper to retrieve from the internet compared
to manual annotations. Recently, open-vocabulary semantic segmentation has also gained
interest, where the objective is to segment any class in the image based on a text query.
Although it currently falls short of supervised baseline performance, we believe this is a
promising future direction to create open-world models without much manual annotation
expenses.

Meta-policy for active learning. In our work on deep active learning, we showed that
different active learning policies are suited for different data distributions w.r.t. the level
of redundancy in the dataset. When the given dataset has a high level of redundancy, a
diversity-driven batch-based approach is more suitable, whereas when the dataset is very
diverse, an uncertainty-driven per-sample-based approach is a better approach. Firstly, one
must measure the redundancy levels in the dataset to select the ideal policy. Defining such a
redundancy measure is a logical next step in this direction. Secondly, as the data annotation
process via the active learning cycle goes on, the nature of the dataset changes, for e. g. ,
when collecting annotated data from a raw video for a specific application. Initially, the
diversity-driven policy is ideal due to the high redundancy in the dataset. However, after
collecting sufficient annotated data, finding special cases where the model is most uncertain
is essential. Therefore, we need a meta-policy that can switch between different acquisition
objectives depending on the model’s current state.
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