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Zusammenfassung
Der steigende Nahrungsbedarf einer ständig wachsenden Weltbevölkerung hat über die
letzten Jahrzehnte die Industrialisierung der Landwirtschaft voran getrieben. Vor allem in
den letzten Jahren wurden die negativen Einflüsse der industriellen Landwirtschaft auf die
Umwelt immer offensichtlicher, so dass heutzutage nachhaltigere Landwirtschaftskon-
zepte wie Präzisionslandwirtschaft und Automatisierung von landwirtschaftlichen Auf-
gaben und Fahrzeugen im Fokus der Forschung stehen. Automation in der Landwirt-
schaft steigert nicht nur die Effizienz landwirtschaftlicher Techniken im Allgemeinen,
sondern ermöglicht vielmehr auch die Anwendung nachhaltiger präzisionslandwirtschaft-
licher Techniken in der Praxis. Ein wichtiger Teil vollständiger Automation ist die Fähig-
keit des landwirtschaftlichen Fahrzeugs, verlässlich über ein Feld zu fahren, ohne die
wertvollen Kulturpflanzen zu beschädigen, was wiederum eine genaue Schätzung der Po-
se des Fahrzeugs relativ zu den Kulturpflanzen erfordert.

Die Umgebung eines landwirtschaftlichen Feldes stellt traditionelle Lokalisierungs-
und Kartierungstechniken vor einige neue Herausforderungen: Erstens, gibt es eine große
Anzahl verschiedener Arten von Kulturpflanzen, deren Aussehen stark variieren kann.
Diese müssen zuverlässig in lokalen Sensordaten erkannt und von wild wachsender Ve-
getation unterschieden werden. Zweitens, um Informationen von mehreren Sensoren ver-
wenden zu können, müssen die erkannten Kulturpflanzen mit zuvor erkannten oder bereits
kartierten Kulturpflanzen assoziiert werden. Datenassoziation basierend auf Pflanzende-
tektionen ist anspruchsvoll, da Pflanzen der gleichen Art schwierig zu unterscheiden sind
und auf dem Feld in regelmäßigen Abständen gesät werden, was zu vielen uneindeutigen
Situationen führt. Drittens, während des Wendens am Ende des Feldes sind die Kultur-
pflanzen nicht immer in den Sensordaten sichtbar, so dass sich Fehler in der Posenschät-
zung akkumulieren können. Eine weitere Herausforderung ist daher die Relokalisierung
des Fahrzeugs, bevor es wieder in das Feld hineinfährt. Viertens, ist der Abstand zwischen
den Reifen einer großen landwirtschaftlichen Maschine und benachbarten Pflanzenreihen
sehr klein. Daher sind eine hoch genaue Ausrichtungs- und seitliche Positionsschätzung
essentiell um eine präzise autonome Navigation zu gewährleisten, die die Kulturpflanzen
nicht beschädigt.

In dieser Dissertation präsentieren wir neue Techniken, die diese Herausforderungen
angehen, um genaue Lokalisierung und Kartierung für autonome Navigation auf land-
wirtschaftlichen Feldern zu ermöglichen. Erstens, stellen wir zwei neue Reihendetekti-
onsmethoden vor, die darauf basieren, dass die Pflanzenreihen auf dem Feld als Menge
von parallelen und äquidistanten Linien repräsentiert werden können. Diese Repräsentati-
on ermöglicht die gleichzeitige Detektion aller sichtbaren Pflanzenreihen, wodurch unsere
Methoden mit wild wachsender Vegetation und anderen schwierigen Situationen, in de-
nen die Reihenstruktur nicht vollständig sichtbar ist, besser umgehen können. Zweitens,
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präsentieren wir mehrere Techniken, die Posenschätzung aufgrund verschiedener Sensor-
modalitäten, einschließlich GPS und Reihendetektionen in lokalen Bild- und Tiefendaten,
ermöglichen. Diese umfassen eine Datenassoziation, die die geometrischen Beziehungen
zwischen Pflanzenreihen nutzt, eine Methode, die das Ende des Feldes erkennt um die Ge-
nauigkeit der Posenschätzung zu erhöhen, und die Formulierung eines Sensormodells, das
die Informationen verschiedener Sensormodalitäten passend für widerspruchsfreie Po-
senschätzungen kombiniert. Drittens, zur Relokalisierung nach dem Wenden und um die
Genauigkeit der Posenschätzung weiter zu verbessern, nutzen wir einzelne Pflanzenpo-
sitionen anstatt gesamten Pflanzenreihen als Landmarken. Um Posenschätzung anhand
einzelner Pflanzenreihen zu ermöglichen, präsentieren wir eine neue Datenassoziations-
technik, die leichte Unregelmäßigkeiten in der Verteilung der Pflanzen entlang den Reihen
ausnutzt und dadurch sogar in mehrdeutigen Situationen die richtige Assoziation findet.

Wir werten unsere Techniken in umfangreichen Experimenten auf Daten aus, die an
drei unterschiedlichen Orten aufgenommen wurden und sieben verschiedene Kulturpflan-
zenarten in variierenden Wachstumsstadien zeigen. Unsere Ergebnisse bestätigen, dass
unsere Methoden den Stand der Technik voranbringen, indem sie eine genaue Bestim-
mung der Pose relativ zu den Kulturpflanzen auf dem gesamten Feld ermöglichen. Des
Weiteren wurden die vorgestellten Techniken in mehreren erfolgreichen autonomen Fahr-
ten über das gesamte Feld genutzt, was die Eignung unserer Techniken für die praktische
Anwendung auf landwirtschaftlichen Feldern weiter bestätigt.

Die vorgestellten Techniken ermöglichen genaue Lokalisierung und Kartierung für ver-
lässliche und präzise autonome Navigation auf dem gesamten Feld und bringen dadurch
Automation in der Landwirtschaft und nachhaltige Präzisionslandwirtschaft voran.



Abstract
With a growing world population the rising demand for food has been pushing the de-
velopment of industrialized farming techniques over the past decades. In recent years
increasing environmental awareness has spawned research into more sustainable farming
concepts such as precision agriculture and automation of agricultural tasks and vehicles.
Automation in agriculture not only has many advantages for farming techniques in gen-
eral, but more importantly also opens the door to more sustainable precision farming
applications. An important part of full automation is the ability of the vehicle to reliably
traverse an agricultural field without damaging the valuable crops, which in turn requires
an accurate pose estimate of the vehicle relative to the crops.

The agricultural environment of a crop field poses several challenges for traditional lo-
calization and mapping techniques: First, crops that have a large variety in shape and size
need to be reliably detected in local sensor data and distinguished from wild growing veg-
etation. Second, to leverage information from multiple sensors, the detected crops need
to be associated with previously detected or mapped crop features. Data association on
crop features is challenging since the crops are hard to distinguish and almost uniformly
distributed resulting in many highly ambiguous situations. Third, during turning maneu-
vers outside the field, the crops are not necessarily visible in the sensor data, so that errors
in the pose estimate usually accumulate during these maneuvers. Thus, re-localizing the
vehicle before it enters the field is another challenge for accurate pose estimation. Fourth,
there is only little clearance between the wheels of a large agricultural vehicle and adja-
cent crop rows. Therefore, highly accurate heading and sideways tracking estimates are
crucial to enable autonomous navigation without damaging the crops.

In this thesis we present novel techniques that tackle these challenges thus enabling ac-
curate localization and mapping for autonomous navigation on agricultural fields. First,
we introduce two novel crop row detection methods based on modeling crop rows as a
set of parallel and equidistant lines. This model enables joint detection of all visible crop
rows and thereby increases the robustness of the detection methods against wild growing
vegetation as well as in challenging situations, where the crop row structure is not fully
visible. Second, we present several techniques that enable pose estimation based on mul-
tiple sensor modalities including GPS and crop row detections from local vision or depth
data. This includes data association based on geometric relations between crop rows, de-
tecting the end of the field to improve the accuracy of the position estimate as well as the
formulation of a sensor model that fuses information from different sensor modalities to
obtain consistent pose estimates. Third, for re-localization after turning maneuvers and to
further improve the accuracy of the pose estimate, we propose to detect and leverage indi-
vidual plant positions as features instead of crop rows. To enable pose estimation relative
to individual plant positions, we present a novel data association technique that leverages
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slight irregularities in the distribution of the plants along the crop rows to determine the
correct data association even in highly ambiguous situations.

We evaluate our techniques in extensive experiments on real-world data recorded in
three different locations featuring seven crop types at varying growth stages. Our eval-
uation results confirm that our techniques contribute to the state of the art by enabling
accurate pose estimation relative to crops across the entire field. Furthermore, our tech-
niques were used in several successful autonomous navigation runs across entire crop
fields, which showcases the suitability of our techniques for real-world application.

The techniques presented in this thesis enable accurate localization and mapping for
reliable and precise autonomous navigation across entire crop fields – thereby contributing
to automation in agriculture and sustainable precision farming applications.
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Chapter 1

Introduction

Producing enough food to sustain a growing world population has become more and more
challenging over the past decades. This has pushed development in the agricultural sector
towards larger and larger monocultures to increase food production. The key advantage
of having larger fields containing the same type of crop is that the same treatment can
be performed on larger areas simultaneously and therefore more efficiently than differ-
ent treatments on many smaller sized individual crop fields. Therefore, technological
advances in agriculture have also been focused on increasing the size and thus range of
agricultural machinery to perform a certain task more efficiently on a larger area. These
tasks range from seeding, over watering, fertilizing and exterminating weeds or pests, up
to harvesting and preparing the field before sowing the next crop. This large scale deploy-
ment of agricultural machinery is described as industrial agriculture, where a crop field
is treated in a homogeneous manner. For example, in industrial agriculture, the whole
field – including the crops – is sprayed uniformly with herbicide to exterminate weeds as
shown on the left of Figure 1.1.

Nowadays the strain that industrial agriculture is putting on the environment becomes
more and more evident, such as, for example, fertilizer that can contaminate the ground
water or reduced biodiversity in large monocultures. Research towards more sustainable
agricultural practices has therefore dramatically increased in recent years. The main chal-
lenge for alternative farming techniques is to reduce environmental stress while at the
same time retaining as much of the production rate achieved with industrial methods as
possible. One of the explored alternative farming concepts is based on introducing pre-
cision into the agricultural tasks performed by the machinery. For example, in precision
agriculture instead of spraying the whole field with herbicide uniformly, the herbicide
is only applied on the weed – with precision. While the weed is still exterminated, the
amount of herbicide sprayed is dramatically reduced [Pretto et al., 2021]. This principle
of precision agriculture, where any resource should only be applied with precision, can be
transferred to most other tasks of cultivating a crop field. For example, detailed analysis
of the soil at different locations of the field allows for targeted application of fertilizer,
exactly where it is required – thereby reducing the amount of fertilizer brought into the
environment. A similar argument holds for irrigation or the use of pesticides. The key
idea of precision agriculture is that if resources are only applied in the right amount and
at the right location, the same area of agricultural land can be cultivated but at the cost of
much less resources while the size of the yield can be retained. Using less chemicals and
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Figure 1.1: This figure shows an example for industrial weed treatment with a tractor on
the left and the BoniRob, a robotic system developed by Deepfield Robotics for precision
agriculture applications, on the right.

fertilizer only if and where required might even result in healthier crops and thus healthier
food [Walter et al., 2017].

While differentiated treatment of different parts of the field provides a solution towards
more efficient use of resources as well as more sustainable farming, it also involves higher
production costs and higher risks: For precise treatment of a field the condition of the
crops as well as the soil of the field has to be monitored closely. For example, different
kinds of soil require different amounts of fertilizer for optimal crop growth. These soil
properties can vary, even within smaller sized fields. Therefore, in precision agriculture
the soil quality should be analyzed to determine if and how much fertilizer is required
at each location on the field. This task of analyzing the soil adds to the work load of
the farmer and therefore results in increased production costs. Some farmers also might
not consider precision agriculture techniques due to the increased risk of a smaller yield
or even loosing the entire yield, which can happen if reduction of resources is not per-
formed correctly, for example, due to incorrect information about the soil quality. How-
ever, there is another obstacle that prevents a wide spread use of precision agriculture
methods: Commonly used industrial agriculture machines are usually not well suited for
precision agriculture applications as they are optimized for large scale and uniform treat-
ment instead of precise treatment of smaller areas. One of the most prominent challenges
to make precision agriculture more accessible and economically feasible is thus to design
precision agriculture machinery that can perform differentiated treatment in an efficient
manner.

In recent years an increasing amount of research has been focused on making the con-
cept of precision agriculture more accessible and safer for production farming applica-
tions. This research includes investigating the use of automated vehicles for both, gather-
ing the required detailed information about the condition of the field and its crops as well
as performing the precise treatment after the acquired information has been evaluated. An
example prototype for a vehicle specifically developed for precision agriculture applica-
tions is the BoniRob shown on the right of Figure 1.1. While fully autonomous traversal
of crop fields is often required for the envisioned precision agriculture applications, it also
has many advantages for the agricultural sector in general:
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The main advantage of fully autonomous vehicles is that they considerably reduce the
work load of industrial as well as precision agriculture. Since the vehicle performs the
required tasks fully autonomously, the worker that would usually steer the vehicle along
the crop field is free to perform other tasks. While fully autonomous vehicles might not be
crucial for industrial farming, they can be an important stepping stone to make precision
agriculture competitive.

Furthermore, fully autonomous vehicles can open the door to entirely new agricultural
applications that are otherwise either not feasible at all or at least not economically fea-
sible without full automation: For example, in industrial agriculture treatment such as
spraying chemicals is usually performed at high speeds, which enables efficient treatment
of large fields. However, precise treatment of local parts of the field or even on a per plant
basis, such as removing individual weed plants, might only be possible at much lower
speeds. Such a treatment is not economically feasible with a person steering the vehicle,
since it would take far too much time to treat the entire field. However, with a fully au-
tonomous system that can even be able to work through the night driving at much lower
speeds can be considered.

Another precision agriculture application that might benefit from autonomous vehicles
at lower driving speeds is harvesting high value crops. Driving at lower speeds could
enable automated harvesting of crops that are usually gathered manually at high financial
cost due to their fragile nature, such as, for example, strawberries [Xiong et al., 2020].

Another well researched precision agriculture application called phenotyping is not
only valuable on production fields but also in crop science: In crop research, phenotyp-
ing describes the process of developing new crop varieties, new phenotypes, with special
properties such as higher robustness against pests or increased yield. To find phenotypes
with interesting properties many different phenotypes of the same crop are grown in small
patches on research fields and closely monitored to detect and evaluate any special prop-
erties a certain phenotype might express. This research is usually based on a lot of manual
work, including manually measuring properties of interest such as foliage coverage, plant
growth as well as close visual inspection of the different phenotypes, to, e. g., determine
a possible infestation with pests. Automated vehicles can help monitor these phenotypes
by collecting detailed data on each patch of phenotypes on a regular basis [Gomez et al.,
2021, Magistri et al., 2021, Smitt et al., 2021].

These are only a few examples that illustrate how fully autonomous navigation not
only plays an important role for more efficient conventional agriculture, but how it can
also open the door to more sustainable precision farming applications that are otherwise
economically not feasible. For fully autonomous navigation in agriculture that is also
feasible in practice a navigation system that steers the vehicle along the crop field needs
to satisfy the following requirements: First, it needs to guide the vehicle along the crop
rows of an agricultural field with high precision to avoid damaging the valuable crops
by driving over them. Second, a navigation system for real-world application needs to
be fully autonomous and should not require manual intervention, such as for example
manually turning the vehicle at the end of each crop row. Third, the navigation system
should reliably traverse entire crop fields, without experiencing critical errors that require
manual intervention or stopping the vehicle for longer periods of time. One of the key
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components to obtain such a precise and reliable fully autonomous navigation system is
an accurate pose estimate of the vehicle. Within the navigation system this pose estimate
is computed by a localization module that uses a map of the environment to localize the
vehicle within this map. Such a map is usually obtained through mapping techniques
that use pose estimates of the vehicle to fuse the observed sensor data into a globally
consistent representation of the environment. While localization and mapping techniques
are well researched for indoor and urban outdoor environments, an agricultural field poses
several challenges for traditional localization and mapping approaches. In this thesis, we
present techniques that tackle these challenges and thereby enable robust and accurate
localization and mapping towards precise and reliable fully autonomous navigation on
agricultural fields.

1.1 Challenges for Localization and Mapping in Precision
Agriculture

While localization and mapping for autonomous navigation is well researched in the field
of robotics in general, the focus often lies on indoor or urban outdoor environments [Ca-
dena et al., 2016, Kümmerle et al., 2014, Levinson and Thrun, 2010, Pradalier and Sekha-
vat, 2002, Thrun et al., 2005, Winterhalter et al., 2015]. However, obtaining reliable and
accurate pose estimates to enable fully autonomous navigation on agricultural fields poses
novel challenges.

A technique commonly used in industrial agriculture applications to obtain pose infor-
mation of the vehicle is based on high precision GPS signals. Such a localization approach
might be well suited for industrial agriculture applications with the goal to guide the vehi-
cle across the field to cover as much area of the field as efficiently as possible. However,
the main disadvantage of this localization is that it is solely dependent on the accuracy of
the received GPS signal, which can easily become a single point of failure in the naviga-
tion system. For example, during GPS outages the accuracy of the high precision GPS
signal can drop considerably. In the best case, the signal outage is detected by the vehicle
and it stops and waits until the signal reception improves, which makes the navigation
system unreliable in areas that have problems with GPS signal reception. In the worst
case, the signal outage is not detected and the vehicle continues traversing the field based
on inaccurate position information, which usually results in imprecise driving behavior
where the vehicle damages the value crops by driving over them. In order to overcome
this single point of failure, additional local information obtained from sensors mounted on
the vehicle is commonly used in other robotics applications, such as autonomous driving,
to improve the accuracy and robustness of the pose estimate. For reliable and precise au-
tonomous navigation on crop fields additional local sensor information should therefore
also be used to estimate the pose of the vehicle in the agricultural setting.

In traditional localization or mapping approaches this local sensor information is com-
pared to the mapped information of the environment to estimate the pose of the vehicle.
If the raw sensor data is not discriminative enough to provide sufficient information about
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Figure 1.2: This figure shows impressions of different crop research fields located at the
crop science research station of ETH Zurich in Eschikon (left and right) as well as in
Ancona, Italy (mid). The left two images show a sugar beet field with tiny plants that
have just emerged, so that they are barely visible from an elevated point of view. The
image in the middle shows the same type of crop at a later growth stage with clearly
visible crop row structure on a sunny day in late spring. The image on the right shows
canola crops at a very late growth stage on a cold and cloudy day in autumn. The foliage
of the canola crops is overlapping into neighboring crop rows, covering the soil between
crop rows and thereby occluding the crop row structure.

the pose of the vehicle, the raw data is often processed into more discriminative informa-
tion by detecting unique features, also called landmarks, in the local sensor data. These
features are then compared to the features in the map to estimate the pose of the vehicle
within the map according to the observed features. These features are usually large, dis-
tinct objects in the environment that are easy to detect in the sensor data of the vehicle,
for example, doors in a hallway of an indoor environment, or buildings, lamp poles or
street signs in an urban setting. However, on an agricultural field as shown in Figure 1.2,
such distinct structures are usually not present. While there might be larger structures like
sheds or trees next to the field, they are only visible if the vehicle is in close proximity
to those landmarks. However, most of the time the vehicle is driving in the field, where
these landmarks are not within sensor range. Therefore, such landmarks at the edge of the
field cannot be used for pose estimation during autonomous navigation. The only feature
that is always present on an agricultural field are the crops themselves. Therefore, most
agricultural localization approaches that use local sensor information detect the crops in
the sensor data and estimate the pose of the vehicle relative to these crops. The fact
that local-sensor-based pose estimation can only rely on the crops as features is the main
reason why localization and mapping on agricultural fields is challenging:

First, in order to use the crops as features in localization or mapping they need to be
detected in the sensor data. This is challenging not only because there is a large variety
of different kinds of crops that come in a lot of different shapes and sizes, but even the
same crop type has a very different appearance over its life cycle. This can also be seen
in Figure 1.2. The two left most images show sugar beets in a very early growth stage,
where the plants have just emerged and are barely visible in images captured from an
elevated point of view (left most image). Detecting these tiny crops is challenging since it
is hard to distinguish them from the soil. While detecting the same crop in a later growth
stage as shown in the middle of Figure 1.2 might be more straightforward, a reliable crop
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detection method needs to be able to detect these larger plants as well as the tiny plants.
Another extreme example is shown on the right of Figure 1.2, where the crops are at a
late growth stage so that the foliage of the plants covers almost the whole field. In these
overgrown crop fields it is difficult to define an accurate location of the crop features
since almost no contrasting soil is visible in the sensor data. While detecting a wide
variety of crops at different growth stages is important, another requirement for a crop
detection method intended for pose estimation is robustness against other wild growing
vegetation. This vegetation is usually also not considered as features when creating the
map of the field since it might not always be present and could even be removed between
consecutive traversals of the same field. Therefore, these plants should not be detected by
a crop detection method. Such wild growing vegetation can either be weeds found inside
the crop field, which are usually removed by performing some kind of weed treatment,
or grass or larger plants around the edges of the field (see left most and right images of
Figure 1.2). While weeds inside the field are usually sparsely distributed, the vegetation
outside the field can range from grass that covers the whole ground, over bushes and even
trees. Being robust against all kinds of wild growing vegetation, while at the same time
also detecting a large variety of crops reliably is quite challenging. Another important
requirement for any outdoor perception method is reliability throughout the whole year.
Therefore, it should be robust against changing lighting conditions that can range from a
sunny summer day (middle of Figure 1.2) to a cloudy autumn day (right of Figure 1.2) as
well as bad weather conditions such as rain or fog.

Second, the detected crop features need to be associated with the mapped crop features
to facilitate estimating the pose of the vehicle within the map. This problem is commonly
known as the data association problem and finding the correct association is crucial for
robust localization or mapping results. In the literature, data association is usually either
based on descriptors that encode unique information of each feature or based on geomet-
rical properties and relations between the features, if no unique properties can be found.
Finding unique information to distinguish individual plants of the same type or even in-
dividual crop rows containing the same crop type is hard. This is not only caused by the
fact that crops of the same type look similar, but also by the fact that crops change their
appearance over time as they grow. Therefore, the data association problem needs to be
solved based on the geometrical properties and relations between the crops. Most data
association approaches that use geometrical features require a sparse and unique distri-
bution of features and usually do not scale well on large amounts of features. However,
the crops on an agricultural field satisfy none of those requirements. They are usually
sown in parallel and equidistant crop rows and even within the rows they are densely and
evenly distributed (see Figure 1.2). Finding the correct data association on such highly
ambiguous feature distributions is therefore a hard challenge.

Third, the crops can only be perceived and therefore used for pose estimation while
the vehicle is inside the field. Besides mounting additional sensors at the back of the ve-
hicle just for turning, the front mounted sensors of the vehicle capture less information
containing the crops of the field and more information containing possibly wild growing
vegetation outside the field as it approaches the end of the field. Nevertheless, for fully
autonomous navigation the vehicle needs to perform turning maneuvers outside the field
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Figure 1.3: This illustrates the spacing between adjacent crop rows on the example of
sugar beet plants in an early growth stage. For comparison, the image on the right shows
one of the wheels of the BoniRob, a large agricultural vehicle, next to the sugar beet
crop rows. Wheels of agricultural vehicles are usually quite wide to improve grip on
muddy soil as well as distribute the weight of the vehicle on a larger area to reduce soil
compression. This leaves only few centimeters clearance between adjacent crop rows and
the wheels of the vehicle.

and thus frequently leave and reenter the field. To facilitate turning outside of the field, a
localization module needs to rely on additional sensor information to perform the turning
maneuver, such as relative motion information obtained from wheel odometry and inertial
measurement unit (IMU) sensors. Since tracking of the crops of the field is lost during
these "blind" turning maneuvers, the pose estimate after turning might not be correct.
Therefore, the autonomous vehicle needs to be re-localized after the turning maneuver
according to the detected crop row structure. This again requires finding the correct data
association between the crop row structure observed after turning and the mapped crop
structure of the field. Solving the data association problem after turning is more chal-
lenging, since the pose estimate after turning might be inaccurate and therefore a larger
amount of highly ambiguous data association matches needs to be considered.

For precise autonomous navigation on crop fields in general the pose estimate provided
to the navigation system needs to be sufficiently accurate. Highly accurate heading and
lateral offset estimates of the vehicle relative to the crop rows are crucial to ensure precise
navigation within a crop field. This is due to the fact that there is usually only few cen-
timeters clearance between the wheels of a large agricultural vehicle and adjacent crop
rows as can be seen in Figure 1.3.

1.2 Contributions

In this thesis we present novel techniques that overcome the aforementioned challenges
to enable localization and mapping for precise and reliable fully autonomous navigation
in agriculture. To this end, we investigate how a large variety of crop types at different
growth stages can be reliably detected, while also being robust against wild growing veg-
etation. We then determine how these detections can be used to obtain a full pose estimate
of the vehicle in conjunction with information from other sensor modalities such as GPS,
wheel odometry, and IMU to facilitate precise and reliable fully autonomous navigation
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of entire crop fields. To further improve the robustness and accuracy of the obtained pose
estimates, we also investigate how an autonomous vehicle can be re-localized after per-
forming a turning maneuver at the end of the field in the context of a mapping framework.
In the following we summarize the main contributions of this thesis.

Robust Crop Row Detection For precise and reliable autonomous navigation on crop
fields using local crop row detections to obtain an accurate pose estimate of the vehicle is
an integral part. In Chapter 3 we present two novel crop row detection methods that detect
crop rows on a large variety of crop types at different growth stages. Both methods are
based on our idea to model the crop rows as a set of parallel and equidistant lines, which
we call a Pattern. This enables the crop row detection method to consider all available
data and jointly extract the visible crop rows. Our experimental evaluation confirms that
this results in robust and accurate crop row detections inside as well as outside of the field.
The presented crop row detection was used in many successful autonomous runs across
entire crop fields to provide accurate heading and lateral offset information of the vehicle
relative to the crops.

Beyond Crop Row Following In order to determine a full pose estimate, including the
heading, the lateral offset to the crop rows as well as the longitudinal position along the
crop rows, local crop row detections need to be processed together with information from
other sensor modalities. In Chapter 4 we therefore present several crucial techniques to
facilitate fusion of these sensor modalities into one localization method that produces con-
sistent pose estimates. Our key idea is that fusing local crop row detections with global
sensor measurements from GPS signals requires a common reference frame in which the
pose estimate is defined. We define this common frame by providing a GPS-referenced
map of crop rows to the localization method. An integral part of our localization algorithm
is the ability to associate the locally detected crop rows with the crop rows given in the
GPS-referenced map. We thus introduce our novel Crop Row data association that analy-
ses the geometric relations between sets of lines to determine the correct data association.
We also present a novel method for detecting not only the crop row structure of the field,
but also the location of the End of the Field. This allows us to not only correct the heading
and lateral offset but also the longitudinal position of the vehicle according to local sensor
information. Finally, we present the sensor model of the localization algorithm, where we
split all sensor information into a heading, a lateral and a longitudinal component. Here,
the lateral and the longitudinal direction are defined relative to the direction of the mapped
crop rows. Splitting the sensor information in this fashion enables integrating the most
accurate measurement for each component to obtain consistent pose estimates. Our ex-
perimental evaluation shows that the presented techniques result in localization methods
that provide accurate and consistent pose estimates throughout the entire traversal of a
crop field, including turning maneuvers outside the field. The techniques presented in this
chapter have provided robust and accurate pose estimates to steer an agricultural vehicle
with precision along entire crop fields during multiple fully autonomous runs – thereby
enabling autonomous navigation beyond crop row following.
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Data Association on Individual Plants While the local detections of the crop structure
provide accurate information inside the field, sensors usually do not perceive the crop
structure during the turning maneuver outside the field, since the vehicle is not facing the
field for most of the time. This means that the autonomous vehicle cannot continue track-
ing the features and the error of the pose estimate accumulates during turning. However,
for efficient navigation maneuvers, where the autonomous vehicle does not skip rows or
traverses the same rows multiple times, the pose estimate of the vehicle needs to be cor-
rected after turning. The key requirement to facilitate this re-localization is to determine
which rows the vehicle is facing after the turning maneuver and therefore, association of
the correct crop rows after turning. In Chapter 5, our key idea is that this can be facil-
itated by representing the crop structure not as crop rows (line features) but instead as
individual plant positions (point features). We then leverage slight irregularities in the
distribution of individual plants along the crop rows to determine the correct data associ-
ation after turning. Partially inspired by our Crop Row data association from Chapter 4,
we present a novel data association on individual plants. Our data association can handle
large amounts of indistinguishable, densely and almost uniformly distributed features by
leveraging geometrical relations between features to determine the correct data associa-
tion. The key novelties of our approach are an efficient parameterized representation of
possible sets of data association matches as well as a highly discriminative, but still robust
strategy that enables counting matches in a continuous fashion. Furthermore, we also in-
vestigate how our data association approach can be applied in a mapping framework on
real-world data to obtain GPS-referenced maps of individual crop positions from ground
vehicle data. Our in-depth experimental evaluation shows that our data association ap-
proach on individual plants can indeed find the correct data association after turning on
indistinguishable, densely and almost uniformly distributed crop features.

The techniques presented in this thesis not only enable robust detection of the crop
row structure, but also facilitate integrating these detections with information from other
sensor modalities into an accurate and consistent pose estimate well suited for reliable
and precise fully autonomous navigation on crop fields. Furthermore, finding the correct
data association on a per plant basis enables re-localizing an agricultural vehicle after per-
forming a turning maneuver. While this enables localization and mapping applications for
ground vehicles without the need of high precision GPS information, it can also improve
the efficiency of fully autonomous navigation.

1.3 Publications

Parts of this thesis have been published in international peer-reviewed conferences and
journals. We list these publications in chronological order below.

• N. Chebrolu, P. Lottes, A. Schaefer, W. Winterhalter, W. Burgard, and C. Stachniss.
Agricultural robot dataset for plant classification, localization and mapping on sugar
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beet fields. International Journal of Robotics Research (IJRR), 36(10):1045–1052,
2017

• W. Winterhalter, F. Fleckenstein, C. Dornhege, and W. Burgard. Crop row detection
on tiny plants with the pattern hough transform. Robotics and Automation Letters
(RA-L), 3(4):3394–3401, 2018

• F. Fleckenstein, W. Winterhalter, C. Dornhege, C. Pradalier, and W. Burgard. Smooth
local planning incorporating steering constraints. In International Conference on
Field and Service Robotics (FSR), 2019

• A. Pretto, S. Aravecchia, W. Burgard, N. Chebrolu, C. Dornhege, T. Falck, F. Fleck-
enstein, A. Fontenla, M. Imperoli, R. Khanna, F. Liebisch, P. Lottes, A. Milioto,
D. Nardi, S. Nardi, J. Pfeifer, M. Popović, C. Potena, C. Pradalier, E. Rothacker-
Feder, I. Sa, A. Schaefer, R. Siegwart, C. Stachniss, A. Walter, W. Winterhalter,
X. Wu, and J. Nieto. Building an aerial-ground robotics system for precision farm-
ing: an adaptable solution. IEEE Robotics & Automation Magazine (RAM), 28(3):
29–49, 2021. IEEE Robotics & Automation Magazine Best Paper Award

• W. Winterhalter, F. Fleckenstein, C. Dornhege, and W. Burgard. Localization for
precision navigation in agricultural fields—beyond crop row following. Journal of
Field Robotics (JFR), 38(3):429–451, 2021

1.4 Collaborations
Parts of this thesis are the result of joint work with other researchers. The supervisor
of this thesis, Wolfram Burgard, contributed suggestions and ideas to all of its parts.
Collaborations with other researchers are detailed in the following:

• In Chapter 2, the results of joint work with research colleagues from the Flour-
ish project is presented. This research resulted in several publications [Chebrolu
et al., 2017, Fleckenstein et al., 2019, Pretto et al., 2021]. The author of this the-
sis contributed to the work by Chebrolu et al. [2017] by extrinsically calibrating
the sensors of the ground vehicle, the BoniRob, which was used to record the data
set. In the work ofPretto et al. [2021] the presented crop row detection and local-
ization algorithms used on the BoniRob for autonomous navigation are the main
contribution of this author. The publication of Fleckenstein et al. [2019] presents
a solution to obtain smooth local plans by considering steering constraints, which
is crucial for efficient traversal of crop fields with large agricultural vehicles. Cé-
dric Pradalier contributed to this work by providing the formulation of the steering
constraints as an instantaneous center of rotation (ICR) path. Freya Fleckenstein,
the main contributor of this work then translated the ICR paths into valid velocity
paths by providing the idea of velocity roll-outs. Christian Dornhege provided in-
put on experiment design and evaluation. The author of this thesis supported Freya
Fleckenstein with data set collection and experiment execution.
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• The crop row detection methods presented in Chapter 3 are part of joint work with
Freya Fleckenstein and Christian Dornhege and resulted in the publication of Win-
terhalter et al. [2018]. Freya Fleckenstein provided the idea and implementation
of the vegetation Feature Maps. These Feature Maps are used as the input to the
crop row detection algorithms. The Pattern formulations and the crop row detec-
tion algorithms are the main contributions of this author. Christian Dornhege, Freya
Fleckenstein and the author of this thesis performed the data collection and exper-
imental evaluation presented in this thesis. Large parts of Chapter 3 have been
previously published in the work by Winterhalter et al. [2018].

• The techniques presented in Chapter 4 are the result of joint work with Freya Fleck-
enstein and Christian Dornhege and have also been published in the work by Win-
terhalter et al. [2021]. Freya Fleckenstein contributed the definition and implemen-
tation of the quality measure on detected Patterns of crop rows. The other presented
techniques including the Crop Row data association, the End of the Field detection
as well as the definition of the sensor measurements and implementation of the lo-
calization algorithms are the main contributions of this author. Christian Dornhege,
Freya Fleckenstein and the author of this thesis collected the data and performed
the experimental evaluation presented in this thesis. Large parts of Chapter 4 are
published in the work by Winterhalter et al. [2021].

• The data association technique on individual plants as well as all other techniques
presented in Chapter 5 except for the SEP detection network are the sole contribu-
tion of this author and are previously unpublished. The SEP detection network was
developed by Nina Pant for her Bachelor thesis, who was supervised by the author
of this thesis and Nicolai Dorka.





Chapter 2

Basics and Definitions
In this chapter, we discuss topics that are relevant for the techniques as well as the exper-
imental evaluation presented in this thesis. The agricultural setting is quite different from
other more commonly researched indoor or urban outdoor scenarios. In the first section
of this chapter, we therefore provide an introduction into autonomous navigation in agri-
culture. Solving the data association problem is an important part of any feature-based
localization and mapping technique. In the second section, we thus give an overview of
different terms and definitions that we will use throughout the thesis to efficiently intro-
duce our novel data association techniques.

2.1 Precise Autonomous Navigation in Agriculture
In this section, we introduce the agricultural terms used in this thesis. We also explain
in more detail the special requirements for the accuracy of the pose estimate to guide an
autonomous vehicle across an agricultural field without damaging the crops. Furthermore,
we discuss the hardware and software components that are relevant in an autonomous
navigation system and their setup using the BoniRob as an example (see Figure 2.2).
Finally, we also give a brief overview over the different experiment locations where we
collected the data sets used in the experimental evaluation sections of this thesis.

2.1.1 Terms and Accuracy Requirements
For better understanding of the special requirements for precise autonomous navigation
on agricultural fields, we give an overview of a crop field and the usually desired s-shaped
path of the agricultural vehicle when traversing the field in Figure 2.1. First, the vehicle
needs to approach the field and align itself with the crop rows to enter the field without
damaging the crops. Second, the autonomous vehicle should track the crop rows and
determine its pose relative to the crops with high precision in order to drive along the
crop rows without driving over the crops. Third, the vehicle leaves the crop field, while
still driving aligned with the crop row structure until it has completely left the field. If
desired, the vehicle then performs a turning maneuver on the area just outside the field, to
re-align itself with the next set of crop rows that should be traversed. These steps are then
iterated to traverse the entire field. In this thesis, we distinguish between the second type
of driving behavior, called driving in-row, where the vehicle is driving inside the field
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Figure 2.1: This figure shows an overview of an agricultural field. The crop row structure
is visualized using red lines. In this example, the crops are sown in rows of three between
adjacent wheel tracks (olive lines). The BoniRob is traversing the field aligned with the
direction of the crop rows on the wheel tracks. The path that the vehicle should take to
traverse the field is shown using purple and rose arrows. The purple arrows denote the
in-row driving, transition maneuvers are highlighted in rose. The headlands are the area
free of crops to the left and right side of the green dashed lines.

aligned with the crop row structure and the other driving maneuvers outside the field,
called transition maneuvers. These transition maneuvers include turning outside the field
as well as entering and leaving the field. The area just outside the field that serves as free
space for the agricultural machines to perform transition maneuvers is called headlands.

Another important parameter on a crop field is the spacing between the crop rows,
which we call (crop) row spacing. The value of this crop row spacing depends on the
space requirements of the crop types cultivated on the field but is also restricted by the
track width of agricultural vehicles. Therefore, depending on the space requirements of
the crop type, usually two or three crop rows are sown between adjacent wheel tracks.
We give an example for a set of three crop rows between the wheel tracks in Figure 2.1.
Since most agricultural vehicles have a normed track width of 1.5 m, crop rows are usually
sown with a spacing of around 0.5 m for three crop rows and 0.75 m for two crop rows.
Together with the fact that larger agricultural vehicles usually have large and wide wheels
to prevent slippage on muddy soil and decrease soil compression, this usually leaves only
little clearance of few centimeters between the wheels of the agricultural vehicle and
adjacent crop rows as already shown in Figure 1.3.

In Chapter 1, we already mentioned the terms heading as well as lateral and longitudi-
nal position of the agricultural vehicle. While the heading is commonly used in robotics
and denotes the direction the autonomous platform is facing, we use the terms lateral
and longitudinal in this thesis with a meaning specific to the agricultural environment
using the direction of the crop rows on the field: The longitudinal direction is always
parallel to the crop rows. The lateral direction is orthogonal to the longitudinal direction
and therefore orthogonal to the direction of the crop rows. During evaluation, due to the
different requirements for the accuracy of the lateral and longitudinal position of the ve-
hicle, it is crucial to evaluate the position of the vehicle with respect to both directions
separately. Usually, a longitudinal position accuracy of 1 m and below is sufficient to en-
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sure autonomous turning maneuvers at the end of the field without damaging the crops.
In contrast, due to the low clearance between the wheels of larger vehicles and adjacent
crop rows, a high lateral and heading accuracy of 0.1 m and 10◦ respectively are crucial
for precise autonomous navigation within the field.

2.1.2 Autonomous Navigation System
The navigation system of an agricultural vehicle usually consists of several hardware and
software components to perform precise and reliable autonomous navigation on a crop
field. In the following we give an overview of the most important components of such
a navigation system and also briefly discuss important setup steps that enable precise
autonomous navigation. As an example for such an autonomous navigation system, we
reference the BoniRob.

In order to perceive the environment around an autonomous vehicle, at least one or
multiple sensors that collect information about the surrounding structures and objects are
mounted on the vehicle. The most common sensor modalities are vision or depth-based
such as, for example, RGB cameras or LIDAR sensors. If the perceived sensor informa-
tion is intended for the purpose of autonomous navigation, it is usually mounted so that it
faces in the main driving direction of the vehicle to collect information about the area the
vehicle is going to traverse. On the BoniRob, these sensors are a PointGrey Blackfly that
provides RGB images at a resolution of five megapixels and a frame rate of 5 Hz and a
Nippon-Signal FX-8 that captures depth information in form of a three-dimensional point
cloud at 5 Hz. Another purpose of such sensors is to provide information about the local
environment to ensure the safety of the autonomous vehicle by detecting objects in the
environment and analyzing the terrain. This information is then used to prevent collision
with objects in the environment as well as damage to the platform by traversing terrain
that is unsuited to capabilities of the platform. Sensors used to ensure safe driving behav-
ior are therefore mounted so that they perceive as much of the surrounding environment
as possible in order to minimize the blind spots of the vehicle. On the BoniRob, we use
two Velodyne VLP-16 LIDAR sensors for this purpose capturing point clouds at 10 Hz.
We give an overview of the sensors and their mounting position on the BoniRob as well
as examples for the sensor data used in this thesis in Figure 2.2.

Additionally to the local sensors that perceive the environment, an autonomous vehicle
for outdoor environments is usually also equipped with a GPS sensor that provides global
position information. While agricultural machines on production fields are often equipped
with expensive high precision GPS receivers, we decided to use a standard precision GPS
receiver, a u-blox EVK-7, with an accuracy of around 3 m running at 4 Hz. We also
measure changes in the orientation of the BoniRob using the IMU sensor SBG Ellipse2-
A as well as the traversed distance using the wheel odometry provided by the BoniRob.
Both sensors provide data at a high rate of 100 Hz for the IMU sensor and 20 Hz for the
odometry measurements. To provide enough computing power for the navigation system
we used two Pokini i2 with Intel Core i7-4600U CPU and 16 GB RAM. The first is used
to run all required drivers and handle data flow and communication between the software
modules of the navigation system. The second Pokini i2 is reserved for the navigation
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Figure 2.2: This figure gives an overview of the sensor setup of the BoniRob platform.
The left image shows the BoniRob. The sensors of the platform that are visible in this
image are highlighted in orange. This includes one of the Velodyne VLP-16 sensors in
the top left as well as the Nippon-Signal FX-8 and the PointGrey Blackfly. On the right,
we show the two sensors and corresponding example sensor data that are used during the
experimental evaluation in this thesis.

software to ensure stable online performance of all navigation algorithms.
One crucial requirement when handling different data streams from different sensors

that are received at different frequencies is time synchronization. We therefore setup the
navigation system to provide accurate time stamps for each sensor measurement of all
sensors. Using the time stamps, we can synchronize the data from all sensors to obtain
data tuples dt for a certain point in time t containing one measurement of each sensor at
approximately the same time stamp: dt = (Ct, It, ot, it, gt), where Ct is the corresponding
point cloud information captured by the Nippon-Signal FX-8, It is the RGB image of
PointGrey Blackfly, gt the GPS position information and it and ot are the relative motion
measurements from the IMU and the wheel odometry.

Another important setup step is intrinsic and extrinsic sensor calibration. Both are
essential to enable comparison and fusion of information obtained from different sensors.
Intrinsic calibration of a sensor is required to properly interpret the raw sensor data of
each specific sensor to, for example, rectify an RGB image and remove lens distortion
effects. Extrinsic calibration usually describes the exact mounting position and orientation
of the sensor on the vehicle. This information is also necessary to relate measurements
from different sensors, for example, to consistently merge point cloud information from
two different LIDAR sensors into one larger point cloud. The intrinsic and extrinsic
calibration of the camera and LIDAR sensors of the BoniRob is explained in more detail
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in the work by Chebrolu et al. [2017]. The PointGrey Blackfly was added at a later point,
therefore it is not mentioned by Chebrolu et al. [2017]. We manually determined the
extrinsic calibration parameters between the PointGrey Blackfly and the Nippon-Signal
FX-8 using a calibration target visible in the data of both sensors.

The navigation modules of an autonomous system are usually divided into perception,
localization, path planning and execution. Additionally, there usually also exists a – not
necessarily online – mapping module. While the first four components need to run on-
line at a stable rate to precisely and reliably navigate the vehicle, the mapping module is
usually applied offline on manually recorded data to create a map of the environment. In
general, the perception module is responsible for interpreting the local sensor data such as
images and point clouds and detect objects of interest. In the context of localization and
mapping, these objects of interest, called landmarks or features, are used to localize the
vehicle by comparing the detected features with the features in the map. On crop fields,
the main focus therefore lies on detecting the crop and sometimes also other plants such as
weeds. The localization module then uses the map provided by the mapping module, the
detections from the perception module as well as other sensor information such as GPS
position, IMU and odometry measurements to estimate the pose of the vehicle at the cur-
rent time step. An accurate pose estimate is crucial for any autonomous navigation system
since the path planning and execution modules depend on this pose estimate. Based on
the pose estimate of the localization module the path planner determines the path that the
vehicle should follow and can also determine if a new plan is required. Similarly, the ex-
ecution module sends motion commands to the vehicle based on the given path from the
path planning module and the pose estimate of the vehicle. An overview of all modules
of the navigation system can be found in the work by Pretto et al. [2021]. The path plan-
ning and execution modules are presented in detail in the publications by Fleckenstein
et al. [2017] and Fleckenstein et al. [2019] respectively. The focus of this thesis is on the
perception, localization and mapping modules of the autonomous navigation system.

While all data collection as well as experimental evaluation presented in this thesis was
performed using the BoniRob, the developed techniques and algorithms are transferable
to other agricultural machines, if they have a comparable sensor setup.

2.1.3 Experiment Locations

The experimental evaluation in this thesis uses many different data sets recorded with
the BoniRob. Each data set contains time synchronized and calibrated data of all sensors
as described above. In this section, we give a brief overview of the different data sets
including location, season and crop types.

The majority of the data sets was recorded on different production fields in Eichstetten,
which is close to Freiburg im Breisgau in Germany1. The other data sets were recorded in
the course of the Flourish project on different fields either during consortium meetings at
the crop science research station of ETH Zurich in Eschikon, Switzerland, or during the

1We thank Herbert Rinklin who kindly allowed us to perform our experiments and data collection on his
vegetable production fields.
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"Flourish Demo" on fields prepared for the presentation of the Flourish project in Ancona,
Italy.

In Chapter 3, we evaluate on data recorded in all three locations on varying crop types
as well as during different seasons: The sugar beet data sets were recorded in Ancona in
late spring 2018. In the summer of 2016 we recorded the leek data set on a production
field in Eichstetten and in autumn of the same year, we also recorded the canola and
corn data sets in Eschikon. For the evaluation in Chapter 4 and Chapter 5, we again
recorded data on the production vegetable field in Eichstetten in the summer of 2018.
This vegetable field is different to the other crop fields presented in this thesis since it
features three different crop types on the same field that even change mid row: kohlrabi,
Chinese cabbage and sweetheart cabbage. Another difference of this field compared to
the others is that it has irregular crop row spacing with a larger spacing between crop rows
adjacent to the wheel tracks. Due to these two differences this production field is quite
interesting for the evaluation of our presented techniques, since it provides further insight
into the advantages of our presented techniques as well as additional challenges. Just two
weeks later, we collected another data set on a field with sugar beets in Eschikon for our
evaluation in Chapter 5. We give an overview of the recorded data including example
images for each crop type in Figure 2.3.

Overall, we evaluate the techniques presented in this thesis on data collected at three
different locations in three different countries during spring, summer and autumn on re-
search as well as production fields featuring a total of seven different crop types.

2.2 Terms and Definitions for Data Association
Data association is an important part of feature-based pose estimation in localization and
mapping. In this section, we therefore introduce terms and mathematical notation that
are used throughout the thesis to efficiently define several different data association tech-
niques. First, we formulate the general problem statement for data association. Second,
we describe different data association techniques found in the literature. We extract and
name different concepts and ideas from these techniques so that we can refer to them
more easily throughout this thesis. Finally, we also discuss how the accuracy of a data
association algorithm can be evaluated.

2.2.1 The Data Association Problem
In feature-based localization and mapping, locally detected features need to be compared
to the features in the map to correct the pose estimate accordingly. For this comparison,
knowledge about which detected feature corresponds to which mapped feature is crucial.
A mapped and detected feature should only be associated if they describe the same lo-
cation or object in the environment. However, the correct data association is often not
known, for example, due to uncertainty in the pose estimate or indistinguishable features.
Finding the correct data association between the set of detected features, also called ob-
servations or observed features Fo, and the mapped features Fm is the data association
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� 08/31/2016
½ Eichstetten
3 production
¨ leek

� 10/13/2016
½ Eschikon
3 research
¨ corn

� 10/14/2016
½ Eschikon
3 research
¨ canola

� 05/14/2018
½ Ancona
3 research
¨ sugar beet (medium)

� 05/15/2018
½ Ancona
3 research
¨ sugar beet (tiny)

� 08/30/2018
½ Eichstetten
3 production
¨ kohlrabi, Chinese cabbage,

sweetheart cabbage

� 09/13/2018
½ Eschikon
3 research
¨ sugar beet

Figure 2.3: This figure gives an overview of the different crop fields on which we recorded
data with the BoniRob for our experimental evaluation. On the right we show two to three
images of each data set from different locations on the field.
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problem. While there are many different notations and terms for the solution of the data
association problem in the literature, we decided to describe the solution as a set of pair-
wise matches M , where the first element of a match is from the set of observed features
Fo and the second element of a match is from the set of mapped features Fm:

M := {(o,m) ∈ Fo × Fm | ∀ (o′,m′) ∈M : o = o′ ⇒ m = m′}

In order to ensure well defined correspondences between the observed and mapped fea-
tures, a set of data association matches M can only match an observed feature once. This
definition explicitly allows duplicate matches in the sense of assigning different obser-
vations to the same mapped feature as well as not matching an observed feature o ∈ Fo
by not having an element that contains this observation. Thus, the size |M | of a set of
data association matches M is always smaller or equal to the number of observed features
|Fo| := nFo . Throughout this thesis, we use this representation of a set of matches M
to describe a possible solution to the data association problem. Furthermore, we define
the set of all possible sets of data association matchesM ⊂ P (Fo × Fm). This setM
contains all sets of data association matches for a given set of observed and mapped fea-
tures Fo and Fm. Depending on the size nFo of Fo and the size nFm of Fm, the number of
possible solutions to the data association problem, i. e., the size ofM can become quite
large due to its combinatorial complexity: |M| = (nFm + 1)nFo .

Given a set of observed features Fo and set of mapped features Fm, the goal of a data
association technique can then be formulated as finding the correct data set of matches
M c∗ ∈ M between the observations in Fo and the mapped features of Fm. As stated
before, a mapped and observed feature are associated if they are generated from the same
instance in the environment. This can be, for example, the same tree in a park, the same
edge or corner in a hallway, or the same plant on a crop field. Therefore, the correct
data association M c∗ matches each observation to its true correspondence in the map, if
such a correspondence exists in the map. If the observed feature is not within the map,
the correct data association M c∗ does not contain a match for this observation. Solving
the data association problem then amounts to finding the correct set of data association
matches M c∗ , or at least a good approximation M∗ ∈ M that is close to the correct data
association M c∗ . In the context of defining the data association as a set of matches, we
need to define a function c∗ that measures how close a set of matches M is to the correct
set of matches M c∗ . Such a function c∗ could, for example, be defined as follows:

c∗ (M) :=
∣∣M ∩M c∗

∣∣− ∣∣M \M c∗
∣∣ ∈

[
− |M | ,

∣∣M c∗
∣∣]

A set of matches M ∈M is therefore close to the correct set of matches M c∗ , if it con-
tains many elements of M c∗ and only few or no incorrect matches. The data association
problem can then be formulated as follows:

M∗ = argmax
M∈M

c∗ (M)
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Since this correct data associationM c∗ is unknown, we cannot directly compare the sets
of data association matches M ∈ M to the correct data association M c∗ . Therefore, one
of the major challenges of any data association approach is to find a good approximation
or model of c∗ that can reliably measure, if a certain set of data association matches M is
close to the correct data association M c∗ without knowing M c∗ . Throughout our thesis,
we call this model the Target function t.

Many techniques in the literature additionally also constrain the number of sets of data
association matches that are considered to find the correct data association. This not only
notably reduces the complexity of the search space M, but it can also be used to shift
the responsibility of finding the correct data association from the Target function t to the
constraints by filtering out all incorrect matches. In this thesis, we call this subset of data
association matches that fulfill certain constrains and are therefore considered for data
association the valid set of matchesMvalid ⊂M.

A general approach for solving the data association problem can then be formulated as
follows:

M∗ ≈ argmax
M∈Mvalid⊂M

t (M)

In practice, both the constrains that defineMvalid as well as the definition of the Target
function t, are highly dependent on the application scenario. Therefore, there is no one
solution to the general data association problem, which is why there are many different
data association approaches tackling different challenges in the literature. In the follow-
ing, we discuss different data association techniques presented in the literature and extract
different properties and principles used by these techniques, so that we can more easily
refer to them in this thesis.

2.2.2 Data Association Techniques
There are many different data association approaches found in the literature, each solving
the data association problem for a specific scenario. However, some of the ideas presented
in those approaches can be formulated into general data association principles, which can
be useful tools for designing novel data association techniques for different scenarios such
as associating detections of crops or crop rows on an agricultural field. In the following,
we briefly introduce some of the more common data association techniques, explain how
they translate into our formalization of the data association problem and name the con-
cepts used in these techniques. We use some of these concepts to develop the novel data
association techniques presented in this thesis. For a better overview, we distinguish be-
tween concepts that constrain the set of valid data associations, called hard requirements,
and concepts for modeling the Target function, called soft criteria.

Since we are investigating data association for the purpose of associating indistinguish-
able crop features, we focus on data association techniques that are based on geometric
information provided by the observed and mapped features. The main assumption of
all geometry-based data association techniques is that a set of data association matches
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M is close to the correct data association M c∗ , if it explains the data well. Defining
what exactly this means is highly dependent on the application scenario and depending
on the complexity of the features and their distribution also quite challenging. In gen-
eral, sparse feature distributions are more likely to show unique geometric patterns and
therefore usually require less intricate data association techniques. More densely and uni-
formly distributions have an increased chance of forming ambiguous patterns that are not
easily resolved and therefore require more complex data association techniques. In order
to compare the observed with the mapped features, in geometry-based data associations
the current pose estimate is often used to project the observed features according to the
pose estimate into the reference frame of the mapped features. Therefore, the accuracy
of the pose estimate also plays an important role in finding the correct data association.
In the following introduction of data association techniques, unless otherwise stated, we
assume that the observations have been projected using the current pose estimate in order
to facilitate a direct geometrical comparison between observed and mapped features.

The Nearest Neighbor (NN) Data Association The Nearest Neighbor data association
strategy is one of the most commonly used geometry-based data association techniques.
The key idea of this strategy is that a set of data association matches M explains the data
well, if the distance between individual matches is small. This results in a rather strong
hard requirement for a set of data association matches to be valid, the Nearest Neighbor
requirement: A set of matches M is only valid, if all of the matches (o,m) ∈ M only
match an observed feature o ∈ Fo to its closest correspondence in the map, i. e., only if
m ∈ Fm is the nearest neighbor of o. This Nearest Neighbor requirement is based on the
assumption that all features are independent and thus that the matched mapped feature
for each observed feature can be determined independently. Also, the vanilla NN strategy
always assigns a match to all observations, even if the nearest neighbor is not actually
close to the observation. This results in only one valid set of data association matches
MNN, which is the solution to the data association problem according to the NN strategy.
Modeling the Target function t can be neglected since there is only one valid set of data
association matches, i. e.,Mvalid := {MNN}.

In order to improve the results of the NN strategy many different approaches have
been presented in the literature. One variant of the NN strategy introduces a distance
threshold ε to define the maximum allowed distance between matched features to account
for outliers or spurious detections and therefore increase the overall robustness of the NN
data association. Throughout the thesis, we therefore always use the NN data association
together with a distance threshold ε.

MNN :=
{(
o,mNN (o)

)
∈ Fo × Fm |

∥∥o−mNN (o)
∥∥ < ε

}
mNN (o) := argmin

m∈Fm
‖o−m‖

While the basic idea of the NN strategy that the closest mapped feature is the correct
data association is valid in many situations, it is not true in cases where the current pose
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estimate is inaccurate. Similarly, while the independence assumption of the NN strategy
allows efficient data association even on larger feature sets, it often prevents the NN strat-
egy from finding a good solution in case of ambiguous feature distributions. Overall, the
NN strategy is a powerful data association on large feature sets with unambiguous fea-
ture distributions that finds the correct data association, if the pose estimate is sufficiently
accurate.

The Joint Compatibility Branch and Bound (JCBB) Data Association In more chal-
lenging environments where the pose estimate is not always sufficiently accurate or fea-
tures might be more ambiguously distributed, more complex data association techniques
are necessary. Therefore, many data association techniques presented in the literature
drop the independence assumption and explicitly consider dependency between features,
for example, in form of geometrical relations or joint compatibility and consider a wider
range of valid sets of data association matches instead of only the closest mapped feature
to account for inaccuracies in the pose estimate.

One example for such a data association technique is the probabilistic approach pre-
sented by Neira and Tardos [2001] called Joint Compatibility Branch and Bound (JCBB)
data association. The key idea of this approach is that, if the pose estimate as well as
the observed and mapped features are modeled in a probabilistic framework, the depen-
dency between features is also captured in this model. Based on this idea, the authors
present a branch and bound technique that iteratively constructs the solution to the data
association problem by efficiently searching a tree representation of all possible data as-
sociation matchesM. Each node of the tree represents a different set of data association
matches M ∈M. The root of the tree is the empty set. At the i-th depth the tree branches
by matching one observation oi ∈ Fo to all possible mapped features Fm including one
branch for not matching the observation. For example, the nodes at a depth of 1 represent
all singleton sets of matches M that associate the first observation o1 ∈ Fo with one of
the mapped features. The sets of matches M at depth 2 then contain two matches each,
where the second element matches the second observation o2.

Since performing a full search on this tree is computationally quite demanding, the au-
thors propose the joint compatibility test jc, that, due to its iterative definition, allows to
prune the search tree to a manageable size for many application scenarios with a reason-
able amount of observed and mapped features. This joint compatibility test leverages the
information contained in the probabilistic representation of the localization and mapping
framework to determine whether the set of matches M at a certain node in the tree are
all jointly compatible. If they are not compatible, the tree is pruned at this node and ex-
panded otherwise. In the JCBB technique, passing the joint compatibility test is a hard
requirement, since only these sets of matches are considered. Therefore, the set of valid
matchesMvalid is equal to all sets of jointly compatible matches.

When performing the tree search, the JCBB method keeps track of the best data associ-
ation M found so far. Due to the strong hard requirement of joint compatibility, similarly
to the NN strategy, all valid sets of matches M ∈ Mvalid already explain the data well.
Therefore, the authors define the best data association as simply the one with the most
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matches. Thus, the Target function t of the JCBB method is defined by the soft criterion
of counting the number of matches, leading to the following formulation of the JCBB
method in our framework:

Mvalid := {M ∈M | jc (M)}
t (M) := |M |
M JCBB = argmax

M∈Mvalid
t (M)

In the publication by Neira et al. [2003] the authors also introduce a variant of the
JCBB based on geometric constraints and thus called Geometric Constraints Branch and
Bound (GCBB). This variant uses a geometric constraints test gc consisting of unary and
binary geometric constraints to model geometric dependencies between features to prune
the tree during the branch and bound search. In order to ensure joint compatibility of
the considered sets of matches, the joint compatibility test is also performed whenever
the algorithm reaches a leaf node of the tree. Formulating geometric constrains to define
the valid set of data association matches is an interesting concept also used by other data
association approaches found in the literature, for example in the work by Bailey et al.
[2000]. In the context of our data association definitions, we call this concept the hard
requirement of geometric consistency.

Another concept presented by Neira et al. [2003] is the principle of locality. The key
idea of locality is that the number of valid sets of matchesMvalid can be further reduced
by only considering mapped features that are close enough to the current pose estimate so
that they could have been observed. This notably reduces the number of mapped features
considered during data association without affecting the result of the data association
method, since mapped features that are far away would be anyways discarded because
they always result in geometrically inconsistent or not jointly compatible matches. Using
the hard requirement of locality is especially advantageous on maps that are notably larger
than the feature detection range. Note that the local subset of considered mapped features
depends on the current pose estimate. Thus, the main precondition for the principle of
locality is that the current pose estimate is accurate up to a certain limit and therefore
that the true pose of the vehicle is within these limits. If the current pose estimate is not
accurate enough, the local subset of considered mapped features might not contain the
detected features, which can result in incorrect data association. Using this observation,
we can re-formulate the hard requirement of locality as follows: Only consider data as-
sociation matches that result in a corrected pose estimate that is reasonably close to the
current pose estimate, i. e., within the limits of the accuracy of the current pose estimate.

Positive and Negative Information Another common concept in feature-based local-
ization and mapping is positive and negative evidence mentioned, for example, by Mon-
temerlo et al. [2003]. The authors use the term positive evidence to describe features that
have been observed, since this observation provides positive evidence of their existence.
The counterpart to this are features that have not been observed although they are within
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the detection range and therefore should have been detected. This "missing detection"
hints towards the fact that this feature might actually not exist in the environment and
therefore provides negative evidence. In the publication by Montemerlo et al. [2003] this
information is used for feature management in the presented simultaneous localization
and mapping approach, i. e., to decide whether an observed feature should be added to the
map or not depending on the evidence. However, the idea of considering both, positive
as well as negative evidence can also be beneficial to resolve ambiguous situations during
data association. Many data association approaches found in the literature focus solely
on how well the observed features are overlaid onto the mapped features to model the
Target function t using only the Positive Information criterion such as, for example, the
NN strategy as well as the JCBB and GCBB algorithms. Additionally, also considering
Negative Information by penalizing sets of data association matches that leave mapped
features within the detection range unmatched can improve the discriminative ability of
a Target function t. This additional Negative Information is especially helpful in ambigu-
ous situations where it is hard to determine the correct data association based on Positive
Information alone. Depending on the application scenario, modeling the Target function t
according to the Positive Information as well as the Negative Information criterion should
be considered.

In summary, different data association techniques use different hard requirements to
constrain the search space of all possible sets of data association matchesM to a man-
ageable subset of valid sets of matches Mvalid ⊂ M. Constraining the number of con-
sidered data association matches not only increases computational efficiency of the data
association method, but it is also used to create a small subset of high quality data as-
sociation candidates. Depending on the application scenario different or even opposite
hard requirements might be applicable. Based on the NN, the JCBB and the GCBB data
association techniques, we defined the Nearest Neighbor, the joint compatibility as well
as the geometric consistency requirements.

Similarly, different data association methods use different soft criteria to measure how
well a set of matches explains the data. While the NN strategy is based on minimizing
the distance between individual matches, the JCBB and GCBB focus on maximizing the
number of matched features. Therefore, these techniques determine how close a set of
matches is to the correct data association solely based on the soft criterion of Positive
Information. Additionally considering the soft criterion of Negative Information to obtain
a more discriminative Target function can improve data association results in ambiguous
situations.

2.2.3 Accuracy of a Data Association Algorithm

In order to evaluate the performance of a data association algorithm, information about
the correct data association is required. In an experimental evaluation, this information
can be obtained by manually determining which detection originates from which object in
the environment. To define evaluation methods on data association algorithms, we assume
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that this ground truth information is available in form of a set of ground truth (GT) data
association matches MGT.

Our main observation is that localization or mapping techniques usually correct the
pose estimate by rotating and translating the current pose estimate according to an iso-
metric transform T ∈ T that can be described by a rotation parameter θ and a translation
parameter t. The pose correction inferred by a set of data association matches M ∈ M
can thus be described as the transform TM ∈ T that overlays the projected observed fea-
tures onto the corresponding mapped features according to the matches contained in M .
Mathematically, we define this inferred pose correction TM for any set of data association
matches M ∈M as follows:

TM := argmin
T∈T

1

|M |
∑

(o,m)∈M

‖T (o)−m‖2

For point-based feature sets Fo and Fm this transform can be easily computed using
Principal Component Analysis. The main advantage of this formulation is that it enables
comparing the effect of different sets of data association matches on the pose estimate in-
dependent of the underlying localization or mapping application. To obtain a measure of
accuracy, we use the GT data association matches MGT to determine a GT inferred pose
correction TMGT . Given the solution M∗ ∈ M of the investigated data association algo-
rithm with corresponding inferred pose correction TM∗ , we compute the pose difference
∆T between both transforms:

∆T := T−1
MGT · TM∗

Intuitively, this transform ∆T describes how much the pose correction inferred by the
data association matchesM∗ of the investigated algorithm differs from the pose correction
inferred by the GT data association matches MGT. The rotation parameter ∆θ of ∆T
measures the difference in the heading of the inferred pose correction and the translational
parameter ∆t of ∆T measures the difference in translation of the inferred pose correction.
For our evaluation we therefore use the parameters ∆θ and ∆t of the difference transform
∆T to measure the heading and translational accuracy of M∗ with respect to MGT.

Since the actual amount of pose correction applied to the pose estimate might be dif-
ferent depending on the underlying localization or mapping technique, the accuracy mea-
sures obtained with this technique can only provide an estimate for the attainable accuracy
of a localization or mapping algorithm. Nevertheless, this technique provides a method
to compute an accuracy measure for data association algorithms based on their expected
effect on the pose estimate. We will use this measure in this thesis to evaluate the accuracy
of data association algorithms.
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Robust Crop Row Detection
Robust perception and detection of objects in the environment is
an integral part of any autonomous navigation framework. This
is especially true for autonomous navigation applications in agri-
culture. When an agricultural vehicle traverses a crop field, there
is usually only a few centimeters clearance between the wheels of
the vehicle and the value crop of the field. Therefore, an accu-
rate heading and lateral position estimate of the vehicle is crucial to
guide this vehicle along the crop rows of the field without damaging
the crops. This is usually facilitated by extracting crop rows from
data captured by sensors that are mounted in front of the vehicle.
For such a crop row detection technique to be useful in real-world
agricultural autonomous navigation applications, a wide applica-
tion range, i. e., detecting crop rows on different crop types and at
different growth stages and adaptability to various hardware spec-
ifications, is crucial. Furthermore, robust detections throughout
the entire field, i. e., not only while driving in-row but also during
transition maneuvers at the headlands, are essential to enable full
autonomous navigation. In this chapter, we present two novel crop
row detection approaches that achieve these goals. Our key idea to-
wards more robust crop row detection, especially during transition
maneuvers, is to consider all available data to detect all visible crop
rows jointly. To facilitate this joint detection, we propose to model
the crop rows as a set of parallel and equidistant lines, that we call a
Pattern. In extensive experiments on real-world data captured from
five different crop fields we confirm that both our approaches are
well suited to provide robust and accurate crop row detections for
autonomous navigation throughout entire crop fields with a wide
application range across different crop types and sizes as well as
sensor modalities and sensor mounting positions. Additionally, we
employed one of our approaches successfully in our autonomous
navigation framework on the BoniRob, achieving fully autonomous
traversal of entire crop fields.
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3.1 Introduction
A successful autonomous navigation framework is usually based on a reliable perception
module that robustly detects objects of interest in the environment. For autonomous nav-
igation in agriculture this means that a reliable detection of the value crops is crucial to
guide the vehicle while it traverses the crop field without damaging the crops. More pre-
cisely, an accurate pose estimate of the vehicle, and especially its wheels, relative to the
value crop is mandatory. Even small errors in the heading or lateral position estimate of
the vehicle can cause damage to the crops, since there is not much free space between
the wheels of the vehicle and adjacent crops as also shown in Figure 1.3. This is usually
facilitated by extracting the crop row structure from data perceived by sensors that are
mounted in front of the vehicle. This row information is then used to accurately guide the
vehicle along the crop rows of the field.

For fully autonomous navigation the vehicle should traverse the entire crop field au-
tonomously including driving in-row, i. e., while it traverses the field aligned with the
crop rows, as well as transition maneuvers at the headlands such as entering the field,
turning at the end of the field and re-entering the field after turning or leaving the field.
Therefore, the employed crop row detection algorithm needs to be reliable not only while
the vehicle is driving in-row, but it also needs to be reliable during transition maneuvers,
where detecting the crop row structure from the perceived sensor data is usually more
challenging. We show example images captured during transition maneuvers (bottom)
and while the vehicle is in-row (top) in Figure 3.1. These example images illustrate that
detecting crop rows during these transition maneuvers is more challenging than in-row
for three reasons:

First, during transition crop rows are only partially visible in the sensor data, since the
vehicle is leaving or entering the field as can be seen in the image on the bottom left of
Figure 3.1. Therefore, less information about the perceived row structure is available to
detect the crop rows. Second, the heading of the vehicle is not necessarily aligned with
the crop rows since it might be turning towards or away from the crop rows as shown
in the image on the bottom mid of Figure 3.1. A crop row detection algorithm for fully
autonomous navigation therefore needs to be able to extract crop rows that are perceived
at an arbitrary angle in the sensor data. Third, since the vehicle is leaving or entering the
field, less crop row structure is visible and more area of the headlands surrounding the
traversed field is perceived instead. It is not uncommon for these headlands to contain
wild growing vegetation, such as grass, weed or even bushes and trees as shown in the
image on the bottom right of Figure 3.1. This additional vegetation causes a large amount
of non-crop vegetation feature detections in the perceived sensor data so that the crop
row structure is harder to detect. A reliable crop row detection therefore also needs to be
robust against large amounts of non-crop vegetation feature detections in the input data.

Another important requirement for a crop row detection algorithm intended for an au-
tonomous navigation framework is that it should not be tailored to specific scenarios, but
have a wide application range instead to be useful in real-world applications. This is espe-
cially true in agriculture, where vehicles – autonomously or manually steered – are quite
expensive and not invested in lightly. A wide application range of the employed crop row
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Figure 3.1: This figure shows examples for image data perceived while traversing the
field in-row (top) and during transition (bottom). When traversing the field in-row, the
crop rows are visible throughout the entire image, the rows are aligned with the heading
of the vehicle and only little vegetation that disturbs the crop row structure, such as weed,
is present. During transition, crop rows are only partially visible (bottom left), not nec-
essarily aligned with the heading of the vehicle (bottom mid) and a lot of wild growing
vegetation that disturbs the crop row structure is visible on the headlands (bottom right).

detection algorithm is therefore a key requirement. More specifically, this includes detect-
ing crop rows on various crop types, at different growth stages, different sensor modalities
and sensor mounting positions to facilitate autonomous navigation on a multitude of crop
fields. We show examples for different crop types at different growth stages as well as
data obtained from an RGB camera and a LIDAR sensor in Figure 3.2.

In this chapter we present a novel approach for crop row detection on agricultural fields
that is reliable and accurate during the entire traversal of the field, explicitly including
data perceived during transition maneuvers. While providing robust crop row detections
throughout the entire field, our novel crop row detection technique is also aimed at a wide
application range for a flexible autonomous navigation framework with a multitude of
real-world applications. These goals impose the following challenges on our crop row
detection approach:

1. Partial Row Structure: During transition less row information is available, since the
field and its crop rows are only partially observed.

2. Arbitrary Crop Row Orientation: The heading of the vehicle relative to the crop
rows changes during turning maneuvers. Thus, the crop row detection method can
not assume that the crop rows are always oriented at a fixed angle in the sensor data.
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Figure 3.2: This figure shows examples of image (top) and LIDAR (bottom) data on
different crop types at different growth stages. The point cloud is colored according to the
height of the points above ground, i. e., their z-coordinate, where red indicates lower and
green up to blue higher values. The overgrown canola plants (mid) cover the soil between
the crop rows and therefore occlude the row structure in the image. The crop rows show
more clearly in the LIDAR data (green clusters on yellow background). In contrast, with
a high enough resolution, the much smaller sugar beet plants (right) are easy to detect
using greenness information. Due to their small size of around 1 cm these tiny plants are
hard to distinguish from ground in the LIDAR data.

3. Large Amounts of Non-Crop Vegetation: During transition the sensor data also cap-
tures the headlands, which possibly contains wild growing vegetation that can cause
large amounts of noise.

4. Wide Application Range: For a wide application range, crop rows should be de-
tected on a large variety of crop types at different growth stages. Additionally, the
detection method should be adaptable to changes in hardware specifications and
different sensor modalities.

For our approach to overcome these challenges our key idea is to develop a crop row
detection technique that considers all available information to jointly extract all crop rows
visible in the sensor data. A joint detection that considers all available data is by design
robust to large amounts of noise as well as more accurate when only partial crop rows
are perceived. To facilitate such a joint crop row detection on all available data, we
propose to model the crop rows of the field as set of parallel and equidistant lines, called
a Pattern. Using this representation of the crop rows, we introduce two novel approaches:
Our first approach is based on the well known Hough Transform, that is often used to
extract lines from image data [Hough, 1962]. Our second approach leverages the random
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sample consensus (RANSAC) strategy to detect a crop row Pattern [Fischler and Bolles,
1981]. Based on these concepts, we design both our approaches so that they detect a
Pattern of crop rows on all available data by estimating all required parameters, including
the orientation of the crop rows, jointly. This ensures that our approaches can detect crop
rows independent of their orientation in the sensor data. For a wide application range, our
second key idea is to design our crop row detection approaches independent from the raw
data perceived by the sensor. We achieve this independence through a segmentation step,
in which we compute a vegetation feature map as described by Winterhalter et al. [2018].
This segmentation step is a powerful tool that can be easily adapted to different sensor
modalities as well as other hardware specifications such as sensor mounting position and
orientation. The resulting vegetation feature map is a two-dimensional grid map defined
on the ground plane in front of the vehicle. Each cell in the grid map contains a weight,
where values larger than 0 indicate the presence of vegetation at the location of the cell.
An important property of these vegetation feature maps is that they recover the actual
geometric relations between the crop rows independent of the sensor modality that was
used to capture the raw data. For example, although crop rows do not appear parallel in
image data, their Euclidean geometric relations are recovered during this segmentation
step. The vegetation features therefore form parallel and equidistant lines in the resulting
vegetation feature map. This requirement is crucial for our approach, since it is based on
the assumption that a set of parallel and equidistant lines, i. e., a Pattern, can be extracted
from the input data, the vegetation feature maps. However, while these vegetation feature
maps ensure the adaptability of our approach to changing hardware specifications, crops
of different types and different sizes still result in a wide variety of vegetation feature
maps that display different vegetation feature distributions. We therefore perform our
experimental evaluation on a large variety of different crops types and sizes, to confirm
that our novel crop row detection can handle different crop types and sizes. Our key ideas
and contributions towards a robust crop row detection approach can be summarized as
follows:

1. Detecting Crop Rows Jointly: For a more robust crop row detection, especially
during transition maneuvers, consider all available data and detect the crop rows
jointly.

2. Model Row Structure as Pattern: For a joint detection of crop rows, we propose to
model the crop row structure as a set of parallel and equidistant lines, which we call
a Pattern.

3. Two Novel Pattern Detection Approaches: We present two novel approaches that
use the definition of our crop row structure, the Pattern, to detect all crop rows
visible in the sensor data jointly.

4. Independence from Segmentation: Our crop row detection approaches use the veg-
etation feature maps presented by Winterhalter et al. [2018] to segment the input
data. This makes our approaches independent from the segmentation step allowing
for a wide application range.
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5. Applicability for Autonomous Navigation: We perform extensive experimental eval-
uation on real-world data featuring different types of crops at different growth
stages using two different sensor modalities. The results confirm the suitability
of our crop row detection approaches for a wide range of autonomous navigation
applications on entire agricultural fields.

In the following sections, we first give an overview off state-of-the-art crop row de-
tection approaches and discuss how they relate to our approach. In the third section, we
present our two novel crop row detection approaches, including the definition of a Pattern
as well as similarity measures between Patterns. In the fourth section, we evaluate our
crop row detection approaches in-depth on five different real-world data sets. The results
of this evaluation confirm that both our approaches are well suited for crop row detec-
tion in an autonomous navigation framework, since they yield reliable detection results
on varying crop types and sizes not only in-row, but also during transition.

3.2 Related Work
In this section, we give an overview of state-of-the-art crop row detection approaches and
discuss their relation to our crop row detection approach as well as how our approach
contributes to the state of the art.

Crop row detection for navigation purposes has received much attention in past decades.
Most crop row detection approaches rely on image data captured by a front facing camera
to detect row structure of the crops on agricultural fields. Usually a vegetation segmen-
tation step, that produces a segmented image similar to the feature maps that we use for
our approach, is performed. The crop row structure is then detected on this preprocessed
data. Some approaches as, for example, the method presented by Kise et al. [2005] in-
corporate additional depth information computed from a stereo camera setup for more
robust results. In the work by Kise et al. [2005] this additional depth information is used
to compute an elevation map. Given the spacing between crop rows and assuming that the
crop rows are roughly aligned with the heading of the sensor four crop rows are extracted
from the elevation map. Other approaches, such as the methods described by Søgaard
and Olsen [2003] and Tillett and Hague [1999], purely rely on vision data and divide the
image into a low number of horizontal strips, determine the center points of crop rows
in each strip and connect these points to lines. The authors also present another method
that computes a band-pass filter given the crop row spacing to create crop row templates.
These templates are then matched against the image to detect the crop rows [Tillett et al.,
2002]. These approaches not only assume a given row spacing, but also expect the crop
rows to be roughly aligned with the vertical axis of the image. However, while template
matching can also be used to estimate the row spacing and offset – even of curved – crop
rows as the approach presented by Vidović et al. [2016] demonstrates, the approximately
vertical orientation of the crop rows in the image data is still required. The crop row
detection presented by Montalvo et al. [2012] has even stronger assumptions. Given the
number of crop rows and their location in the image, regions of interest are determined
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and a linear regression on these regions of interest is performed to obtain the individual
line parameters of each crop row.

One of the most recent approaches by English et al. [2014] is based on an idea similar
to the idea for our feature map: Before detecting the crop rows, the image is converted
into a top-down view. On this image, the green values of each column in the image are
summed and the variance over these sums is computed. After performing a skew operation
on the image, this procedure is repeated. The skew that resulted in the highest variance
then corresponds to the orientation of the crop rows. Peaks in the sums of each column
denote centers of crop rows. This technique stands in contrast to the before mentioned
approaches, as it not only detects the position of the crop rows in the image, but also esti-
mates the orientation. English et al. extend their approach by employing a learning-based
technique and also fusing additional depth information for more robust results [English
et al., 2015]. The major drawback of this learning-based approach is that it is dependent
on the data of the field it was trained on. As the authors state, on a new field an image
with manually annotated crop rows as well as a training run over 20 seconds is required.

There are also more closely related crop row detection techniques that, similar to one
of our approaches, are based on the Hough Transform [Hough, 1962]. Given the crop
row spacing, these approaches either detect a single line or multiple lines [Åstrand and
Baerveldt, 2005, Bakker et al., 2008, Leemans and Destain, 2006, Marchant, 1996]. The
difference between these approaches is how they apply the Hough Transform. For exam-
ple, the work by Åstrand and Baerveldt [2005] adds an additional parameter, the width
of a line, so that neighboring pixels are also considered during line detection. This in-
creases the robustness of the crop row detection on cluttered input data. The approach
presented by Bakker et al. [2008] assumes that the number of crop rows perceived in the
image data is a fixed number, namely three. Given also the crop row spacing in pixels,
the image is split into three parts, where the width of these parts is equal to the provided
spacing. Assuming parallel lines, these image parts are overlaid and corresponding pixel
values accumulated. The Hough Transform is then applied on the resulting image. Again
assuming parallel lines and a given spacing, the approaches presented by Leemans and
Destain [2006] and Marchant [1996] compute the sum of the weights in the Hough Space
accumulator over all parallel lines to detect parallel and equidistant crop rows. These ap-
proaches have similarities in terms of assumptions with our approach, since they require
neither precise knowledge of the number of perceived crop rows nor the orientation of
the crop rows to be vertically aligned. In contrast to our approach, they still require exact
knowledge of the spacing between crop rows.

Overall, the main difference between these Hough-based approaches and our Hough-
based crop row detection is that they all employ the classical Hough Transform by Hough
[1962], which is based on the model of one single line to detect crop rows. In contrast, our
Hough-based approach is inspired by the generalized Hough Transform as presented by
Ballard [1981], since we adapt the model estimated by the Hough Transform to directly fit
the desired crop row structure of parallel and equidistant lines, i. e., to fit our Pattern. Our
assumptions for this model, i. e., that crop rows can be represented as a set of parallel and
equidistant lines, are often also found in the literature. Since many approaches, especially
the more closely related Hough-based approaches, impose similar assumptions on the
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geometric structure of crop rows, our decision to model the crop rows as a Pattern is well
supported.

So far, research in this area has been mainly focused on detecting crop rows from image
data, using depth information only rarely [English et al., 2015, Kise et al., 2005]. In con-
trast, our approach is explicitly designed to be adaptable to different sensor modalities,
since it uses the feature maps as presented by Winterhalter et al. [2018] to segment the
perceived raw data. Independence of the segmentation step also enables our approach to
detect crop rows on a large variety of different crop types and sizes. This allows for a flex-
ible detection of crop rows on different crop fields without the need of additional labeling
and retraining for every crop field [English et al., 2015]. We showcase this adaptability in
our experimental evaluation, where we detect crop rows from data captured with an RGB
camera as well as data perceived by a LIDAR sensor on different crop types in different
growth stages. Our approach therefore goes beyond state-of-the-art approaches as it is
adaptable to different sensor modalities and not tailored to one specific modality, thus
allowing for a wide application range.

Our main contribution to the state of the art is that we design our approach to robustly
detect crop rows not only while driving in-row, but also during transition maneuvers. We
achieve this flexibility by making only two assumptions: First, we assume that the crops
are distributed in parallel and equidistant rows. Second, we assume that a rough range of
the crop row spacing is known. In contrast other approaches are based on assumptions
that only hold while the vehicle is driving in-row. By design these approaches cannot
detect crop rows during transition maneuvers.

For example, a common assumption is that the crop rows are always roughly found
along the vertical axis of the image [Bakker et al., 2008, Kise et al., 2005, Søgaard and
Olsen, 2003, Tillett and Hague, 1999, Tillett et al., 2002, Vidović et al., 2016], which
constrains the heading of the vehicle to be always roughly aligned with the crop rows. As
discussed in the previous section, this is not an issue while driving only in-row. However,
during transition, the heading of the vehicle is not aligned with the orientation of the crop
rows. These approaches are therefore not suited to detect crop rows during transition
maneuvers.

Another common assumption is that the number of crop rows visible in the sensor data
is always the same [Bakker et al., 2008, Kise et al., 2005, Montalvo et al., 2012]. These
techniques are therefore – by design – constrained to always detect a fixed number of crop
rows from the image data. However, during transition maneuvers the number of perceived
crop rows is not always constant, which makes approaches based on this assumption un-
suited for crop row detection during transition maneuvers. Additionally, this assumption
also limits the transferability of the technique to other agricultural vehicles and crop fields
with a different number of crop rows in the field of view due to a different spacing between
the crop rows. These limitations can only be overcome by either adapting the technique –
if possible – to detect a varying number of crop rows depending on the vehicle and crop
field it should be used on, or changing the mounting position of the sensor on the vehicle
to match the expected number of crop rows in the field of view of the sensor.

Another assumption is that the exact spacing between crop rows is known a priori [Lee-
mans and Destain, 2006, Marchant, 1996, Tillett et al., 2002]. In contrast to the previous
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assumptions, having a fixed crop row spacing is a feasible assumption since it is inde-
pendent of the hardware configuration and the orientation of the vehicle. Furthermore,
in practice this parameter can be easily determined in advance as it directly correlates to
the type of crop growing on the field. However, the actual spacing between individual
crop rows on the field can still vary since the crops are not always sown with perfectly
constant spacing. Therefore, estimating the crop row spacing based on a rough range of
the expected crop row spacing should yield more robust results than depending on an a
priori fixed spacing value.

Overall, due to fewer assumptions and feasible choice of parameters, our crop row
detection approaches contribute to state-of-the-art research towards robust and adaptable
crop row detection for navigation across entire fields.

3.3 Detecting Crop Rows as a Pattern
For autonomous navigation on agricultural fields, an accurate pose estimate of the vehicle
is required to prevent the vehicle from accidentally crushing value crops. More precisely,
the localization algorithm of the navigation framework needs to provide precise heading
and lateral pose information. This is usually realized by detecting the crop row structure
of the field to correct the pose estimate relative to the crop rows. In this section, we
present our approach for reliable and accurate detection of the crop row structure, which
is crucial for precise navigation along agricultural fields.

For our approach to be independent of the sensor modality we assume that the sensor
data has been segmented into a two-dimensional vegetation feature grid map as presented
by Winterhalter et al. [2018]. This vegetation feature grid map encodes information about
the presence of vegetation in each cell, where values larger than 0 imply that vegetation
was perceived at the location indicated by the corresponding cell. We show examples for
feature maps created from different sensor modalities from real-world data in Figure 3.3.
A key requirement for this feature map is that it describes the location of vegetation fea-
tures in Euclidean, i. e., metrical, space and therefore displays the undistorted, actual,
geometric distribution of vegetation features. For vegetation features obtained from im-
age data, this means that the raw data obtained from the sensor has to be transformed and
projected accordingly. As our examples in Figure 3.3 show, this ensures that the vegeta-
tion features in the grid map appear true to their actual geometric distribution as parallel
and equidistant rows. For crop row detection, we are only interested in the cells c of the
feature map that contain a vegetation feature, i. e., cells c with a weight larger than 0. In
the following, we therefore only consider the set of feature cells C that contains cells c
with a weight larger than 0.

For reliable and accurate detection of crop rows, our key idea is to extract all rows
visible in the feature map jointly. To implement this idea, we derive a mathematical
formulation for the set of crop rows visible in the feature map based on the observation
that crop rows are usually sown in parallel and equidistant lines. Leveraging that these
crop rows also appear as a set of parallel and equidistant distributed lines in the feature
map, we define a mathematical model of this set of lines, called a Pattern. We also
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Figure 3.3: This figure shows the information obtained by different sensor modalities
(left) and the corresponding vegetation feature maps (right). The point cloud is colored
according to the height of the points above ground, i. e., their z-coordinate, where red
indicates lower and green up to blue higher values. The cells of the feature map that
contain vegetation are highlighted in green. Note that the vegetation features form parallel
lines in both feature maps.

discuss how measures of similarity can be computed between two Patterns and use the
presented similarity measures to determine the robustness and accuracy of the results of
our approach in our experimental evaluation. Based on this representation of crop rows as
a Pattern, we then present two approaches that extract a Pattern of crop rows from feature
maps.

3.3.1 Pattern - a Mathematical Model for Crop Rows

In this section, we present our mathematical model for a set of parallel and equidistant
lines. To this end, we first define a mathematical model of an individual line. Based on
the model for an individual line, we then present our definition of a Pattern and explain
how we measure similarity between two Patterns.
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Figure 3.4: This figure shows illustrations for the Line (left) and Pattern models (right).
The line Lθ,r (blue) has an angle parameter of θ = 60◦ and an offset parameter r = 2.0 m.
The Pattern Pθ,s,o has the same angle parameter θ = 60◦, a spacing of s = 0.7 m and an
offset of o = 0.6 m. The parameters that define the models are annotated in orange.

Line In the two-dimensional Euclidean space R2, we define a line Lθ,r using two pa-
rameters: the angle θ of the normal vector, i. e., the vector that points in the direction that
is orthogonal to the direction of the line, and the offset r of the line to the origin, i. e., the
Euclidean distance between the origin and the point on the line that is closest to the origin.
This line is then mathematically described using its Hesse normal form:

Lθ,r :=
{

(x, y) ∈ R2 | r = x · cos (θ) + y · sin (θ)
}
. (3.1)

We show an example illustration on how the angle θ and offset r define a line Lθ,r on
the left of Figure 3.4. The Hesse normal form of a line Lθ,r can also be used to compute
the signed distance d (Lθ,r, p) of a point p = (px, py) ∈ R2 to the line Lθ,r:

d (Lθ,r, p) := [px · cos (θ) + py · sin (θ)]− r. (3.2)

Pattern We use this line representation to define the Pattern P as a set of parallel and
equidistant lines in the two-dimensional Euclidean space R2. Such a Pattern is defined by
three parameters: the angle θ of the pattern, the spacing s of the pattern and the offset o
of the pattern:

Pθ,s,o := {Lθ,r | ∃n ∈ Z : r = n · s+ o} (3.3)

Since all lines of the pattern are parallel, they all share the same angle parameter θ.
Therefore, the angle of the pattern θ describes the direction that is orthogonal to the direc-
tion of the set of parallel lines. Since all lines of the Pattern are equidistant, the distance
between adjacent lines, i. e., the spacing s, is constant and can therefore be used to de-
scribe the Pattern. The third parameter, the offset o, is analogue to the offset parameter r
of an individual line and describes the offset of the Pattern to the origin. An illustration
of a Pattern is shown in Figure 3.4.
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Similarity between Patterns Since a Pattern is described by three parameters, we can
define a similarity based on these three parameters. Therefore, two Patterns are simi-
lar, if their corresponding parameter values are similar. This yields three measures that
should be considered when comparing two Patterns: the angular difference ∆θ, the spac-
ing difference ∆s and the lateral difference ∆lat. Given two Patterns P1 and P2 with
corresponding parameters, the definition of the first two measures is straightforward:

∆θ (P1, P2) := |θ1 − θ2| (3.4)
∆s (P1, P2) := |s1 − s2| (3.5)

We normalize the angular difference ∆θ to the range [0, π). However, the straightfor-
ward definition for the lateral difference ∆lat (P1, P2) = |o1 − o2|, is a priori not well
defined since the offset parameter o of the pattern is not unique: The offset of the pattern
o can describe the offset of any line in the Pattern. For example, for a Pattern Pθ,s,o using
o′ = s+ o yields the same set of lines, i. e.,Pθ,s,o = Pθ,s,o′ . To compute the lateral differ-
ence, we therefore use the offset parameter r∗ of the line closest to the origin. This yields
the following lateral difference measure:

∆lat (P1, P2) := |r∗1 − r∗2| (3.6)
Lθ,r∗ := argmin

Lθ,r∈Pθ,s,o
|r| (3.7)

This lateral similarity measure computes the lateral distance relative to the origin since
it uses the line offset parameters r that are the signed distance of the line from the origin.
However, when using line features for pose correction, the lateral distance between the
lines relative to a reference point pref in front of the vehicle is more relevant. We illustrate
this idea in Figure 3.5, where we show an example situation of a vehicle and two Patterns.
We highlight the lateral similarity measure relative to the origin ∆lat (bottom left of the
image) and the similarity measure ∆pref

lat relative to a reference point pref in front of the
vehicle. This example shows how different reference points pref affect the resulting lateral
difference value. In order to evaluate the lateral difference between Patterns relative to a
reference point pref, we define a more general lateral difference measure ∆pref

lat that depends
on the reference point pref:

∆pref
lat (P1, P2) := |d (P1, pref)− d (P2, pref)| (3.8)

d (Pθ,s,o, pref) := d
(
Lpref
θ,r∗ , pref

)
(3.9)

Lpref
θ,r∗ := argmin

Lθ,r∈Pθ,s,o
|d (Lθ,r, pref)| (3.10)

Here, the lateral difference of two patterns to a reference point pref is defined using the
signed distances d

(
Lθ1,r∗1 , pref

)
and d

(
Lθ2,r∗2 , pref

)
of the lines Lθ1,r∗1 and Lθ2,r∗2 of each

pattern, that are closest to the reference point. In the following, we show that this is
indeed a generalization of ∆lat, since we obtain ∆lat from ∆pref

lat by using the origin O as
reference point pref, i. e., we need to proof that ∆lat = ∆O

lat.
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Figure 3.5: This figure illustrates the lateral difference measure between two Patterns
(purple and blue dashed lines). The Pattern lines that are used to compute the lateral
difference measure are drawn as solid lines. We annotate the lateral distance using orange
lines and points. The simplified difference ∆lat, where the reference point is equal to
the origin O is located at the bottom left of the image. We also show the generalized
difference ∆pref

lat to a reference point pref located in front of the vehicle.

Proof. The key observation is that using the origin O as reference point means that the
signed distance between a line Lθ,r and the reference point pref = O is equal to the neg-
ative line offset −r per definition, and consequently, the absolute distance is equal to the
absolute value of the line offset r:

d (Lθ,r, O)
Eq. (3.2)

= [0 · cos (θ) + 0 · sin (θ)]− r = −r (3.11)
|d (Lθ,r, O)| = |r| (3.12)

Therefore Lθ,r∗ from Eq. (3.7) and Lpref
θ,r∗ Eq. (3.10) are the same for pref = O and it

follows that:

∆O
lat (P1, P2)

Eq. (3.8)
= |d (P1, O)− d (P2, O)|

Eq. (3.9)
=

∣∣d (Lθ1,r∗1 , O)− d (Lθ2,r∗2 , O)∣∣
Eq. (3.11)

= |−r∗1 − (−r∗2)|
= |r∗1 − r∗2|

Eq. (3.6)
= ∆lat (P1, P2)
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In summary, we introduced our mathematical model for sets of parallel and equidistant
lines, the Pattern, and explained how we measure similarity between Patterns with respect
to all three parameters of the model. In the next section, we present our two crop row
detections approaches that are based on our Pattern representation and therefore are able
to extract all visible crop rows jointly.

3.3.2 Extracting Crop Row Patterns
In this section, we present two different approaches to extract a Pattern of crop rows from
a feature map. The first approach is based on the well known Hough Transform. The
key advantage of this approach is that it determines the model that best fits the data of
the feature map over all available Patterns. In our case, this means that the globally best
Pattern for the given feature map is found. However, depending on the feature density in
the provided feature map, finding the globally best Pattern can become computationally
expensive. We therefore also present a second approach based on a random sample con-
sensus (RANSAC) scheme, that can be stopped at any time if necessary to provide Pattern
detections at a high frequency. For a better intuition on how our Pattern Hough Trans-
form differs from the well known Line Hough Transform, we first explain the Line Hough
Transform and its key ideas. We then present our variation of the Hough Transform that
operates on Patterns instead of lines. Finally, we introduce a sampling-based RANSAC
method to extract Patterns from feature maps at an adjustable rate.

Line Hough Transform Traditionally, the Hough Transform is well known in image
processing applications, where it is used to detect lines in image data. This Line Hough
Transform is based on the fact that lines in the two-dimensional Euclidean space can be
represented by a two-dimensional parametrization over the angle θ and the offset r of the
line using the Hesse normal form (see Eq. (3.1)). In order to obtain a unique parameterized
representation for each line Lθ,r, we define the Line Hough SpaceHL as follows:

HL := {Lθ,r | θ ∈ [0, π) ∧ r ∈ R} . (3.13)

This definition of the Line Hough SpaceHL still contains all lines of the two-dimensional
Euclidean space, but each line can only be represented by one unique pair of parameters.
Thus, a unique mapping between the Line Hough Space to the parameter space is en-
sured. The power set of the Line Hough Space P (HL) then contains all possible sets of
two-dimensional lines in the Euclidean space. The idea of the Line Hough Transform is
that this parameterized representation of a line can be used to determine the set of lines
hL (c) ∈ P (HL) that pass through the same cell c ∈ C in a grid map, or the same pixel in
an image. This mapping from a cell c ∈ C to a set of lines hL (c) ∈ P (HL) is called the
Line Hough Transform hL and defined as follows:

hL : C → P (HL)

(cx, cy) 7→ {Lθ,r ∈ HL | r = cx · cos (θ) + cy · sin (θ)} (3.14)
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Figure 3.6: This figure shows an example for the Line Hough Transform. The Line
Hough Transform hL maps the cell c (black point) to the set of lines passing through this
cell c. In this example, we show all lines in hL (c) with an angular resolution of 30◦.

For a better intuition of the Line Hough Transform hL, we show an example in Fig-
ure 3.6. Given a feature map with non-empty feature cells c ∈ C, the Line Hough Trans-
form computes the line Lθ∗,r∗ that is best supported by the features cells c ∈ C, i. e., the
line that passes through the most cells c ∈ C:

Lθ∗,r∗ := argmax
Lθ,r∈HL

|{c ∈ C | Lθ,r ∈ hL (c)}|

This is usually computed by discretizing the two-dimensional parameter space [0, π)×
R as a two-dimensional histogram with a bin size of θres×rres, where θres is the angular res-
olution of the first dimension and rres is the offset resolution of the second dimension in the
histogram. Each bin in the histogram then corresponds to a specific parameter set (θ, r)
and represents a unique line Lθ,r. The histogram bins are then filled by iterating over all
cells that contain a feature c ∈ C, computing its Hough Transform hL (c) and increasing
the bin of each line Lθ,r ∈ hL (c) by 1. Each bin then contains the number of cells that the
corresponding line passes through, i. e., it contains the value of |{c ∈ C | Lθ,r ∈ hL (c)}|.
The bin of the histogram with the highest value then yields the best line Lθ∗,r∗ .

Computing a finite set of lines hL (c) for a cell c ∈ C is possible, since we are only
interested in the lines that are represented in the histogram. Since the angle parameter
θ is bounded between [0, π) by definition (see Eq. (3.13)), one usually iterates over all
possible values for θ at the resolution θres of the histogram. Since a line is already defined
given a point c that it passes through and an angle θ, the corresponding line offset r is
then computed according to its definition in Eq. (3.1) as shown in Eq. (3.14).

Pattern Hough Transform For our Pattern Hough Transform approach, we transfer the
ideas of the Line Hough Transform to our mathematical model of parallel and equidistant
crop rows, the Pattern. Similar to the Line Hough Transform, we constrain the parameter
space to ensure a unique parameterized representation of our Patterns. We therefore define
the Pattern Hough SpaceHP as follows:
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Figure 3.7: This figure shows an example for the Pattern Hough Transform. The Pattern
Hough Transform hP maps a cell c (black point) onto all Patterns that pass through c. On
the left, we visualize all Patterns in hP (c) with an angular resolution of 60◦ and spacing
0.7 m. On the right, we show the Patterns in hP (c) with an angular parameter of 60◦ and
varying spacing parameter values of 0.3 m, 0.7 m and 0.8 m.

HP := {Pθ,s,o | θ ∈ [0, π) ∧ s ∈ R+ ∧ o ∈ [0, s)} . (3.15)

All possible Patterns are still represented in HP but with a unique set of parameters.
The power set P (HP ) of the Pattern Hough Space then contains all possible sets of Pat-
terns. Analogue to the Line Hough Transform algorithm, we define a Pattern Hough
Transform hP that maps a cell c ∈ C of a grid map to all Patterns that pass through this
cell. Since a Pattern is a set of lines, we say that a Pattern P passes through a cell c,
if there is a line L ∈ P that passes through c. We therefore define the Pattern Hough
Transform hP (c) of a cell c ∈ C as follows:

hP : C → P (HP )

c 7→ {Pθ,s,o ∈ HP | ∃Lθ,r ∈ Pθ,s,o : Lθ,r ∈ hL (c)} (3.16)

For a better intuition of the Pattern Hough Transform hP , we show an example in
Figure 3.7. Given a feature map with non-empty feature cells c ∈ C, the Pattern Hough
Transform can then be used to determine the pattern Pθ∗,s∗,o∗ that is best supported by the
feature cells c ∈ C, i. e., the pattern that passed through most cells:

Pθ∗,s∗,o∗ := argmax
Pθ,s,o∈HP

|{c ∈ C | Pθ,s,o ∈ hP (c)}|

Again, analogue to the Line Hough Transform algorithm, we compute this best Pattern
Pθ∗,s∗,o∗ by discretizing the three-dimensional parameterized Pattern Hough Space HP

with bin size θres × sres × ores, where θres is the angular resolution of the first dimension,
sres is the spacing resolution of the second dimension and ores is the offset resolution of
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the third dimension. We then count the number of cells c that pass through each Pattern
Pθ,s,o represented by a bin in the histogram.

We compute the Pattern Hough Transform hP (c) for a cell c = (cx, cy) ∈ C over all
Patterns represented in the histogram according to the following equation:

hP (c)
Eq. (3.16)

= {Pθ,s,o | ∃Lθ,r ∈ Pθ,s,o : Lθ,r ∈ hL (c)}
Eq. (3.14)

= {Pθ,s,o | ∃Lθ,r ∈ Pθ,s,o : r = cx · cos (θ) + cy · sin (θ)}
Eq. (3.3)

= {Pθ,s,o | ∃n ∈ Z : r = n · s+ o ∧ r = cx · cos (θ) + cy · sin (θ)}
= {Pθ,s,o | ∃n ∈ Z : n · s+ o = cx · cos (θ) + cy · sin (θ)}
= {Pθ,s,o | o = [cx · cos (θ) + cy · sin (θ)] mod s} (3.17)

We can therefore compute the set of all Patterns that pass through a cell c ∈ C by
iterating over all values of θ and s represented as bins in the histogram and computing the
offset parameter o using the modulo operation as shown in Eq. (3.17). In order to obtain
a finite set of Patterns hP (c), we constrain the spacing parameter values s to the range
of s ∈ [s−, s+], where s− is the lowest and s+ is the highest considered spacing value.
This yields a finite set of Patterns hP (c) that are associated with a bin in the histogram.
Using this procedure, we iterate over all feature cells c ∈ C and accumulate the number of
cells a Pattern passes through in the histogram as described for the Line Hough Transform
algorithm. The best Pattern Pθ∗,s∗,o∗ is then represented by the bin with the highest value
in the histogram.

Pattern RANSAC This Pattern detection approach is based on the random sample con-
sensus technique. The idea of this technique is that given a set of data points the model
that best fits the data points can be found by generating multiple candidate models from
randomly sampled data points and keeping the model that is best supported by all data
points of the set. For a Pattern RANSAC algorithm, we therefore need to define how
we generate a candidate Pattern from randomly sampled data points, as well as how we
measure the support of this candidate Pattern on the data points.

To generate a candidate Pattern, we first sample three cells c1, c2 and c3 from the set
of vegetation feature cells C. The first two cells c1 and c2 define a line Lθc,rc . Using the
distance of the third cell c3 to this line as spacing sc the parameters of the Pattern Pθc,sc,oc
are computed as follows:
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(dx, dy) := c1 − c2

(nx, ny) :=


(−dy, dx) , if dx > 0

(|dy| , 0) , if dx = 0

(dy,−dx) , if dx < 0

θc := tan−1 (ny, nx) ∈ [0, π)

rc
Eq. (3.14)

:= c1
x · cos (θc) + c1

y · sin (θc)

sc :=
∣∣d (Lθc,rc , c3

)∣∣
oc

Eq. (3.17)
:= rc mod sc

If the resulting spacing parameter sc is not within reasonable range, i. e., the third sam-
pled cell c3 is too close to or too far from the line Lθc,rc , we reject this candidate Pattern
and sample a new set of cells. Analog to the Hough-based approach, we determine the
support of the candidate Pattern Pθc,sc,oc by counting the number of all cells c ∈ C that lie
on the candidate Pattern Pθc,sc,oc . Our Pattern RANSAC approach always samples a fixed
amount of candidate Patterns and retains the candidate Pattern with the best support out
of all candidate Patterns.

Both our presented approaches aim at finding the best supported Pattern, i. e., the Pat-
tern that passes through the most feature cells. The key difference between both ap-
proaches is that the Pattern Hough algorithm searches the full (discretized) space of pos-
sible Patterns, and therefore always finds the best supported Pattern within this space. In
contrast, the Pattern RANSAC is based on sampling and therefore does not necessarily
find the best supported pattern. The advantage of the RANSAC-based approach is that it
is not constrained by a discrete parameter set and therefore can potentially find a better
fitting Pattern than the Pattern Hough approach.

In this section, we presented the Pattern, our mathematical model of parallel and equidis-
tant lines, that enables detecting all visible crop rows jointly, without prior assumptions
on the orientation or location of the crop rows within the sensor data. Based on this Pat-
tern, we introduced two techniques, one based on the Hough Transform, the other based
on RANSAC, that extract all visible crop rows jointly from a given feature map. In the
next section, we perform an extensive evaluation on several real-world data sets, featur-
ing different crop types in different growth stages to confirm that our crop row detection
approach is well suited for guiding a vehicle along the crop rows of an agricultural field.

3.4 Experimental Evaluation
The goal of our Pattern-based crop row detection approach is enabling localization rela-
tive to the crops of the field in an autonomous navigation framework. Thus, we design our
experimental evaluation towards confirming the suitedness of our approach for this appli-
cation. The most crucial requirement for any perception algorithm that should provide
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information to a localization algorithm is that the information extracted from the sensor
data is reliable, i. e., that the provided information is sufficiently accurate throughout all
parts of the environment. Therefore, we extensively evaluate the robustness of our ap-
proach on a large variety of crop fields – and throughout the entire crop field. The latter
means, that we not only consider data recorded while the vehicle traverses the field in-row
and is thus aligned with the crop rows, but we also explicitly evaluate the more challeng-
ing situations during turning maneuvers or when the vehicle leaves or enters the field,
i. e., during transition. We provide in-depth results for the detection accuracy of our ap-
proach on especially challenging data sets. Another important requirement for application
in a localization algorithm of an autonomous navigation framework is that the crop rows
are detected fast enough to ensure that it runs online. We therefore present the computa-
tion times for all investigated crop row detection algorithms. Furthermore, we reference
autonomous navigation sessions with the BoniRob that illustrate the applicability of our
crop row detection approach in a localization algorithm. To provide a use case beyond
localization, we also show an example mapping application for our crop row detection
approach.

3.4.1 Methodology

In this section, we first give an overview over the different data sets on which we perform
our evaluation. Then, we explain how we obtained ground truth information to compute
the accuracy of a detected crop row Pattern. For comparison, we introduce two algorithms
that do not leverage our key idea of extracting crop rows jointly, but instead detect indi-
vidual lines, which is a common approach in the literature. Finally, we discuss how we
set the parameter values for all investigated algorithms during our evaluation.

Data Set Overview For our experimental evaluation, we recorded data on a large vari-
ety of crop fields, featuring different crop types as well as crops at different growth stages.
This allows an extensive evaluation of the robustness of the investigated crop row detec-
tion algorithms with respect to different crop types and sizes. We recorded all data sets
using our agricultural robot BoniRob as explained in Section 2.1.2 with a maximum speed
of 1.0 m/s. The only exception from that is the data recorded on a field of sugar beets in
Ancona, Italy. This data was recorded during autonomous navigation of the BoniRob,
where we set a maximum speed of 0.2 m/s. Since these sugar beets have a medium size
of around 5 cm we call this data set the Medium Sugar Beets data set. On a neighbor-
ing field, we also recorded data manually on much smaller sugar beets that just emerged
with a size of around 1 cm, resulting in the Tiny Sugar Beets data set. Since the crops on
these two fields are at a comparatively early growth stage and therefore still quite small,
they are hard to detect in LIDAR data. On the other hand, they can be easily detected
in high-resolution image data. Therefore, we use the vision information obtained with
the PointGrey Blackfly to compute the feature maps as described by Winterhalter et al.
[2018]. We provide example images as well as corresponding feature maps for each data
set in Figure 3.8. As can be seen in the image for the Tiny Sugar Beets data set, the crops
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Figure 3.8: This figure shows vision data (left) and corresponding feature maps (mid)
with ground truth (GT) Pattern (right) for the Medium Sugar Beets and Tiny Sugar Beets
data sets. The image data was recorded with the PointGrey Blackfly mounted in front
of the BoniRob at about 1 m above the ground and tilted downwards at about 25◦. The
feature map shows a top-down view of the extracted vegetation features and is located on
the ground plane in front of the vehicle. The manually labeled GT Pattern is shown in
magenta.

are barely visible to the human eye.

We also recorded data of crops in later growth stages. Since larger crops tend to grow
into the space between crop rows and even start overlapping with crops from adjacent
rows, they occlude the ground otherwise visible between adjacent crop rows. Detect-
ing crop row structure based on vision information is therefore quite challenging, since
the row structure might be occluded by overlapping plants. In contrast, these oversized
crops are easily detected in LIDAR data. Thus, we use the information recorded with the
Nippon-Signal FX-8 LIDAR sensor to extract feature maps as described by Winterhalter
et al. [2018] from the data recorded on the following fields: a production crop field in
Eichstetten with leek, the Leek data set, and on a research field in Eschikon with canola,
the Canola data set. In Eschikon, we also recorded data on a fifth crop field, where only
corn stubbles remained. Detecting corn stubbles to compute a feature map is hard on both
vision and LIDAR data. In image data it is challenging, since the corn stubbles have a
similar color to the ground and in LIDAR data the corn stubbles are hard to detect due to
their small size. Nevertheless, we chose to use LIDAR data to obtain feature maps for our
evaluation, yielding the fifth data set, the Corn data set. We provide examples showing
a point cloud rendered from the LIDAR information as well as the corresponding fea-
ture map for each data set in Figure 3.9. We provide more details on each crop field in
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Figure 3.9: This figure shows LIDAR data (left) and corresponding feature maps (mid)
with GT Pattern (right) for the Leek, Canola and Corn data sets. The LIDAR data was
recorded with the Nippon-Signal FX-8 mounted in front of the BoniRob at about 1 m
above the ground and tilted downwards at about 25◦. The feature map shows a top-down
view of the extracted vegetation features and is located on the ground plane in front of the
vehicle. The manually labeled GT Pattern is shown in magenta.

Section 2.1.3.
A perception algorithm for autonomous navigation applications such as localization

needs to be reliable throughout the entire environment. In our setting, a crop row de-
tection algorithm is therefore reliable, if it not only produces robust results while the
vehicle traverses the field in-row, but also in more challenging situations when the ve-
hicle approaches the end of the field or re-enters the field after a turning maneuver. In
our evaluation, we explicitly include these more challenging situations, where the vehicle
is not in-row, but rather in transition, i. e., leaving, entering or re-entering the field after
turning. To distinguish between both situations during our evaluation, we split all data
sets into an In-Row subset, that contains all data recorded while the vehicle was travers-
ing the field in-row and a Transition subset that contains the remaining data, where the
vehicle was in transition. We give an overview over the most important properties of each
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In-Row Transition
# R # FM ∆d [m] VD [%] # FM ∆a [◦] VD [%]

Canola 3 47 43.94 0.7 59 1.98 0.6
Corn 2 24 35.69 1.6 61 8.00 0.6
Leek 2 79 383.36 0.5 87 45.84 0.7
Medium Sugar Beets 3 70 70.81 0.6 55 49.46 0.3
Tiny Sugar Beets 3 63 109.00 0.5 88 62.72 0.3

Table 3.1: This table shows the properties of all data sets. Depending on the crop type,
a different number of crop rows (# R) is sown between the wheel tracks. We also display
the number of feature maps (# FM) evaluated and the mean vegetation density (VD) as
percentage of cells in a feature map that contain vegetation features. When driving in-row,
the heading of the vehicle stays almost constant. Therefore, we only show the translational
distance covered (∆d) for the In-Row data sets. During transition, the vehicle does not
move far but usually performs a turning maneuver. Therefore we give the angular distance
covered (∆a), i. e., the change in heading of the vehicle, for the Transition data sets.

data set in Table 3.1. The comparatively small changes in the heading of the vehicle (∆a)
during transition in the Canola and Corn data sets indicate that the vehicle was entering
or leaving the field instead of performing a turning maneuver. This is in contrast to the
larger angular distance covered during transition in the Leek, Medium Sugar Beets and
Tiny Sugar Beets data set, where the vehicle was performing a turning maneuver to tran-
sition between crop rows. Since we only evaluate on transition data with visible crop row
structure, the table shows the change in heading of the vehicle while the crop rows are
still visible in the sensor data during the turning maneuver. Therefore, the angular dis-
tance ∆a is smaller than the full amount of a turning maneuver, which is usually around
180◦ or more. During transition, where the vehicle might change its heading by large
amounts, the part of the field perceived by the sensors of the vehicle also changes rapidly.
We therefore extract a feature map from sensor data every 0.1 sec for the Transition data
sets. Since the heading stays mostly constant while the vehicle is in-row and the vehicle
was moving at a maximum speed of 1.0 m/s, we extract a feature map every 5 sec for the
In-Row data sets. This yields different numbers of feature maps (# FM) for each data set
as shown in Table 3.1.

Ground Truth Labels and Accuracy Measures For evaluation of the accuracy of a
detected Pattern, we need to determine the correct Pattern for each feature map in our
data set. To this end, we manually labeled the crop row structure to obtain a ground truth
(GT) Pattern PGT for each feature map. To produce labels that are independent from the
feature maps – and the underlying vegetation feature extraction pipeline – we labeled the
GT labels directly on the (integrated) raw sensor data as shown on the left of Figure 3.8 for
vision data and Figure 3.9 for LIDAR data. To illustrate that the labeled GT Patterns PGT,
on which we base our quantitative evaluation, overlay well with the features extracted
from the raw data, we show an example for each data set on the right of Figure 3.8 and
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Figure 3.9.
In our quantitative evaluation, we are interested in the Angular Error, Spacing Error

and Lateral Error of the detected Pattern Pθ,s,o. Therefore, we use our similarity mea-
sures ∆θ,∆s and ∆pref

lat from Section 3.3.1 defined in Eq. (3.4), Eq. (3.5) and Eq. (3.8) to
Eq. (3.10) respectively. For each detected Pattern Pθ,s,o, we compute the error measure
for all three Pattern parameters as the corresponding difference between the detected Pat-
tern Pθ,s,o and the GT Pattern PGT. A detected Pattern then has a high accuracy if the
corresponding error measure is close to 0. For the Lateral Error, we choose the reference
point pref = (1.0, 0.0), which corresponds to a position that is directly 1.0 m in front of the
vehicle. This is a good choice for the reference point, since the accuracy of the detections
directly in front of the vehicle are most important during autonomous navigation.

Comparison Algorithms To confirm that our key idea to extract all visible crop rows
jointly improves the robustness of a crop row detection algorithm, we also evaluate on two
approaches that do not extract crop rows jointly. We base both comparison approaches
on the traditional Hough Transform by [Hough, 1962], since this algorithm is often used
to detect crop rows. Both comparison algorithms detect an individual line Lθ∗,r∗ over all
feature cells c ∈ C in the given feature map using the Line Hough Transform presented
in Section 3.3.2. Both approaches then need to determine the detected crop row pattern
Pθ∗,s∗,o∗ according to the detected line Lθ∗,r∗ and additional information.

Analogue to many approaches from the literature that assume that the exact crop row
spacing sprior is known a priori [Åstrand and Baerveldt, 2005, Bakker et al., 2008, Leemans
and Destain, 2006, Marchant, 1996], we also incorporate this information in our first
comparison algorithm: Using the detected line Lθ∗,r∗ and the spacing parameter sprior, we
define the detected Pattern Pθ∗,s∗,o∗ as follows: Each line of the Pattern Pθ∗,s∗,o∗ is parallel
to the detected line Lθ∗,r∗ and has a distance to the detected line that is a multiple of the
given spacing sprior. The angular parameter of the detected Pattern is therefore equal to the
angular parameter of the detected line and the spacing parameter s∗ is equal to sprior. The
offset parameter of the Pattern is then computed according to the definition of the Pattern
as o∗ := r∗ mod sprior. Since this algorithm detects only a single line and uses a given
spacing sprior to extend it into a Pattern, we call it the Line Hough (LH) algorithm.

Extracting additional lines using only the histogram computed by the traditional Hough
Transform is not straightforward: For example, extracting the second best line Lθ∗∗,r∗∗
according to the Hough Transform histogram means determining the bin with the second
highest value. However, this bin is usually close to the best bin and therefore, the second
best line is usually quite similar to the best line with only slightly different θ∗∗ and r∗∗

parameters, i. e., the second best line in the histogram usually represents the same crop
row as the best line. However, the goal of extracting multiple lines is usually to obtain
lines that represent different crop rows.

While extracting a second line representing a different crop row is not straightforward,
it is not impossible: To extract a second line Lθ∗∗,r∗∗ that represents a different crop row,
we rely on a rough estimate of the spacing between crop rows in form of a range of pos-
sible spacing values. This is in contrast to the Line Hough algorithm that requires the
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exact spacing sprior. We therefore assume that a rough estimate of the spacing between
crop rows in form of a minimum spacing s− and a maximum spacing s+ is known before-
hand. Given the first detected line Lθ∗,r∗ and the range of possible values for the spacing
between crop rows [s−, s+], we define a subsetH′L of the Line Hough SpaceHL:

H′L :=
{
Lθ∗,r ∈ HL | |r − r∗| ∈

[
s−, s+

]}
By design, this subset H′L contains only lines Lθ,r that are parallel to the best line Lθ∗,r∗ ,
i. e., lines where the angular parameter θ is equal to θ∗. It also only contains lines Lθ,r with
a distance d := |r − r∗| to the best line Lθ∗,r∗ within the required boundaries [s−, s+].
Since the definition of H′L only restricts the available value range of the line parameters,
the histogram over H′L is also a subset of the histogram over HL. Therefore, computing
the second best line Lθ∗∗,r∗∗ only requires the additional computation of finding the bin
with the highest value in the histogram overH′L.

With this technique for extracting a second crop row represented by the second best
line Lθ∗∗,r∗∗ , we introduce our second comparison algorithm, called Dual Line Hough
(DLH). This Dual Line Hough algorithm uses the Hough Transform to extract a second
line Lθ∗∗,r∗∗ that is parallel to the first detected line Lθ∗,r∗ , i. e., the angular parameters
θ∗ and θ∗∗ of both lines are the same, but with sufficient distance to the first line Lθ∗,r∗
to represent a different crop row as described above. This second line then defines the
spacing parameter s∗ of the detected Pattern Pθ∗,s∗,o∗ as the distance |r∗ − r∗∗| between the
first and the second line. The angular parameter of the detected Pattern is then again equal
to the angular parameters of both lines θ∗. The offset parameter o∗ is computed analogue
to the Line Hough algorithm as o∗ = r∗ mod s∗, which is the same as o∗ = r∗∗ mod s∗,
since s∗ = |r∗ − r∗∗|.

Both comparison approaches, the Line Hough and the Dual Line Hough, do not detect
a Pattern by considering all visible crop rows jointly. Instead they only use parts of the
available information (Dual Line Hough) or depend on prior knowledge of the exact crop
row spacing sprior (Line Hough) to extract a Pattern. They therefore provide a good com-
parison to our Pattern Hough and Pattern RANSAC approaches, that detect the crop row
Pattern on all available data.

Parameter Values Before we can evaluate the investigated algorithms on our data sets,
we need to clarify how we choose the required parameter values for each approach. Al-
most all parameters, except for the spacing parameters, are independent of the crop type.
Therefore, all parameters, except for the spacing parameters, remain the same throughout
all data sets as well as all investigated algorithms. These parameters are the histogram
resolutions and value ranges for the Hough-based algorithms, as well as the number of
iterations performed for the Pattern RANSAC algorithm.

For the Hough-based algorithms all resolutions of the histogram bins stay the same
with an angular resolution of θres = 0.57◦ and the offset and spacing resolution set to
sres = ores = 0.01 m. The value range for the angular dimension of the histogram is
θ ∈ [0, π) per definition ofHL (see Eq. (3.13)). The same holds for the value range of the
Pattern offset parameter o ∈ [0, s) according to the definition ofHP (see Eq. (3.15)).
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Regarding the value range for the spacing parameter, i. e., s− and s+ as well as the
required exact value of the crop row spacing sprior, we choose these values depending
on the crop type of the data set. As discussed in Section 2.1.1, on agricultural fields,
there is usually a distance of 1.5 m between the tracks created by the wheels of the ve-
hicles. The crops are therefore sown in rows with an even spacing so that the rows have
as much clearance from the wheel tracks as possible. Since different crops types have
different requirements on the space between adjacent crop rows, this usually results in
either 2 or 3 crop rows being sown between adjacent wheel tracks. We show the num-
ber of crops (# R) between adjacent wheel tracks for each crop type in Table 3.1. This
prior knowledge allows the direct computation of sprior depending on the crop type: For
crops with 2 crop rows, we use sprior = 1.5 m/2 = 0.75 m and for 3 crop rows, we have
sprior = 1.5 m/3 = 0.5 m. This exact spacing parameter sprior is only required for the Line
Hough algorithm. All other algorithms, i. e., the Dual Line Hough and the Pattern Hough
as well as the Pattern RANSAC-based algorithms only require a rough expected range
[s−, s+] of spacing values, which we set to be within 15 cm around the expected spacing
sprior.

Due to the probabilistic nature of the Pattern RANSAC approach, we repeat each evalu-
ation five times. We also decided to evaluate the Pattern RANSAC approach for three dif-
ferent amounts of candidate Patterns: 2500, 5000 and 25000 and call the resulting Pattern
RANSAC algorithms Pattern RANSAC 2500 (R2500), Pattern RANSAC 5000 (R5000)
and Pattern RANSAC 25000 (R25000). We chose the number of sampled candidate Pat-
terns, so that the Pattern RANSAC 2500 algorithm has a lower computation time than the
Pattern Hough algorithm, the Pattern RANSAC 5000 algorithm has a computation time
comparable to the Pattern Hough algorithm and the Pattern RANSAC 25000 algorithm
gets close to an optimal solution with the highest amount of sampled candidate Patterns.

3.4.2 Robust Row Detection On Challenging Crops
In this experiment, we evaluate the robustness of all investigated crop row detection al-
gorithms. A crop row detection algorithm is robust, if it has a high success rate, i. e., if
most Pattern detections are successful. Therefore, we first explain how we determine,
whether a Pattern detection was successful. We then present the success rates for each
algorithm on each data set, split into the In-Row data set and the Transition data set and
discuss the results of our evaluation. The success rates also enable us to draw conclusions
on the overall reliability of the algorithms when applied in an autonomous navigation
framework.

We determine whether a Pattern detection was successful based on the conditions for
successful autonomous navigation. In the navigation framework, the detected Pattern is
used to correct the heading and sideways tracking of the vehicle relative to the crop rows.
We therefore call a Pattern detection successful, if the detected Pattern is accurate enough
to ensure that the vehicle stays on track and does not accidentally crush value crops. We
measure this Pattern accuracy by computing the Angular Error and Lateral Error values of
the detected Pattern as explained in Section 3.4.1, where the Angular Error correlates with
the heading error of the vehicle and the Lateral Error with the sideways tracking of the
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Figure 3.10: This figure shows the success rates for all algorithms on all data sets. The
success rate is shown as percentage of the number of successful Pattern detections. Each
bar shows the result of a different crop row detection algorithm on the In-Row data sets
on the top and on the Transition data sets on the bottom. In each plot, from left to right the
algorithms are: Pattern Hough, Dual Line Hough, Line Hough, Pattern RANSAC 2500,
Pattern RANSAC 5000 and Pattern RANSAC 25000.

vehicle. Based on real-world experiments with the BoniRob, we determined that an Angu-
lar Error below 10◦ and a Lateral Error below 0.10 m suffices for successful autonomous
navigation (see Section 2.1.1). We thus say that a Pattern was detected successfully, if
the Angular Error is below 10◦ and the Lateral Error does not exceed 0.10 m. Further-
more, we call a crop row detection algorithm robust if it has a high success rate, where
the success rate is the percentage of successfully detected Patterns. The success rates for
each algorithm on each data set, split into the In-Row and Transition subsets, are shown
in Figure 3.10. We also show the detected Patterns on an example feature map of each
data set in Figure 3.11 for the In-Row data sets and in Figure 3.12 for the Transition data
sets.

Our first observation is that the success rate of each algorithm is dependent on the
data set. This is not surprising, since we already explained in Section 3.4.1, that some
data sets are more challenging than others, depending on the size and type of crop as
well as whether the vehicle was in-row or in transition. Considering the data sets that
contain smaller crops, i. e., the vision data sets Medium Sugar Beets and Tiny Sugar Beets,
the results show a high success rate on the In-Row data sets for all algorithms. These
results are expected since smaller plants allow for an accurate extraction of feature points
and thus provide feature maps with clearly visible crop row structure. Therefore, all
algorithms perform well on crops in earlier growth stages, when perceived in-row (see
also Figure 3.11, first and second row). On the Medium Sugar Beets – In-Row data set,
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the Pattern Hough algorithm performs best with a success rate of 85 %, while all other
algorithms show a similar performance. This is the same for most other In-Row data
sets including the LIDAR data sets Leek and Corn. This is also not surprising since the
corn stubbles in the Corn data set also allow for an accurate feature extraction and clearly
visible crop row patterns, given good segmentation parameters to distinguish them from
the ground despite their small height (see Figure 3.11, third row). Since the leek plant
grows quite tall above the ground, it is easily detected in the LIDAR data. Furthermore,
due to its large stalks, it also produces accurate feature maps with clearly visible row
structure (see Figure 3.11, fourth row). The only exception is the Canola data set. Here,
the success rate drops notably for all detection algorithms. This confirms that the Canola
data set is more challenging than the other data sets – even in-row. This is again caused
by the properties of the crop type and the late growth stage of the crop: As discussed in
Section 3.4.1, the canola crop in a late growth stage is hard to segment in both vision and
LIDAR data, since the plant grows into the space between crop rows, covering the soil
and it also does not rise high above the ground. This causes less accurate feature maps
with a row structure that is not always clearly visible as can be seen on the bottom row in
Figure 3.11. Here, the Pattern Hough outperforms all others.

Looking at the results for the Transition data sets, we see that the overall success rates
of all algorithms drop compared to the In-Row counterparts except for the Canoladata
set. This again confirms our expectation that detecting the crop row Pattern successfully
is in general more challenging during transition than while traversing the field in-row.
This is explained by the fact that the sensors perceive different information, i. e., the head-
lands, that is not part of the field during transition. Since the crop row structure is only
present on the field, there is less row structure visible in the sensor data during transi-
tion. Furthermore, additional vegetation features from plants that grow on the headlands
cause an increased amount of noise in the feature maps. A good example for this fact is
the Corn data set: Since the stubbles produce accurate feature maps – if segmented cor-
rectly, all algorithms have an almost perfect success rate of around 100 % on the In-Row
data set. However, segmenting the corn stubbles during transition in the LIDAR data is
more challenging and noise is introduced into the feature maps. Additionally, less crop
row structure is visible while the vehicle is entering or leaving the field. Therefore, the
success rates drop to around 75 % throughout. However, crop rows are still successfully
detected as shown in the example in Figure 3.12 in the third row. On larger crops such
as in the Canola, the Leek or the Medium Sugar Beets data sets, more vegetation feature
points are distributed across a larger surface of the crops. In general, this causes feature
maps with larger clusters of vegetation features compared to the sparser feature maps
obtained from smaller sized crops, such as the Tiny Sugar Beets. The example feature
maps shown in Figure 3.8 and Figure 3.9 illustrate this difference in vegetation feature
distribution on all data sets. These denser feature maps already cause slight differences
in performance on the In-Row data sets of Canola, Leek and Medium Sugar Beets, while
all algorithms perform almost the same on the sparser feature maps of Corn and Tiny
Sugar Beets. On the Transition data set, these differences in performance become more
evident, since the Transition is in general already more challenging. In these challenging
situations, i. e., during transition on larger sized crops with denser feature maps, on the
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Figure 3.11: This shows In-Row detection results for all evaluated algorithms as well as
the manually labeled GT Patterns for comparison. These are from left to right: the GT
Pattern, all Hough-based detections, all Pattern RANSAC-based detections.
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Transition data set of the Canola, Leek and Medium Sugar Beets, our approaches that use
all available information to jointly detect the crop row Pattern outperform the comparison
algorithms, that can not leverage all available information. While our Pattern RANSAC
method performs overall better on the Leek and Medium Sugar Beets data sets during
transition, our Pattern Hough algorithm performs especially well on the most challenging
Canola data set. In comparison to the Line Hough or Dual Line Hough the Pattern Hough
is always similar or better in performance than the Dual Line Hough. Note that the Line
Hough does not estimate the spacing and gets the ground truth spacing sprior as an input.

Overall our evaluation of the robustness confirms that all investigated algorithms show
reliable results while the vehicle is in-row on most data sets, with the exception being
the challenging Canola data set, where the Pattern Hough is more robust. Regarding the
reliability during transition, our evaluation confirms that our Pattern-based approaches
detect an accurate Pattern more often than the comparison algorithms, especially on the
more challenging data sets with larger sized crops. Interestingly, the results also show that
there is a large difference of performance between our Pattern-based approaches during
transition: While the Pattern Hough is more robust on the Canola data set, the Pattern
RANSAC-based approaches perform better on the Leek and Medium Sugar Beets data
sets. We therefore investigate the results on these data sets in more detail in our next
experimental evaluation.

3.4.3 Row Detection during Transition
The previous evaluation confirms that the overall robustness of our Pattern-based ap-
proaches is reliable enough both in-row and during transition to accurately guide a ve-
hicle on an agricultural crop field. However, the results on the Transition data sets are not
as clear as the results on the In-Row data sets. Therefore, we investigate the individual
errors, i. e., the Angular Error, the Spacing Error and the Lateral Error, in more detail in
this evaluation. In particular, we are interested in those data sets, where the performance
of our Pattern-based approaches notably deviates, i. e., the Canola, the Leek and Medium
Sugar Beets data sets during transition as seen in Figure 3.10.

For the Medium Sugar Beets – Transition data set, we take a closer look at the Spacing
Error and Lateral Error values shown in Figure 3.13. The first observation is that the Dual
Line Hough has a larger Spacing Error than all other algorithms. By design, the Dual
Line Hough only considers the second best parallel line to estimate the spacing parameter
s∗ of the detected Pattern Pθ∗,s∗,o∗ . These results show, that on real-world data, where
crops are not sown in perfectly equidistant crop rows, considering all visible crops jointly
is preferable and even crucial for robust results. While the Pattern Hough only finds a
Pattern with suitable Lateral Error about 60 % of the time, the Lateral Error still remains
low with most values only 2 − 3 cm above the success threshold of 10 cm. By definition
of our success rate, the Pattern Hough does have a lower success rate than the Pattern
RANSAC algorithms. However, most of the unsuccessful Pattern extractions still have a
low Lateral Error close to the threshold. We can therefore conclude, that the performance
of the Pattern Hough is still reasonable on the Medium Sugar Beets data set, while only
slightly exceeding the success threshold for the Lateral Error.
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Figure 3.12: This shows Transition detection results for all evaluated algorithms as well
as the manually labeled GT Patterns for comparison. These are from left to right: the GT
Pattern, all Hough-based detections, all Pattern RANSAC-based detections.
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Spacing Error [m] Lateral Error [m]

Figure 3.13: This figure shows the Spacing Error (left) and the Lateral Error (right)
on the Medium Sugar Beets – Transition data set. The individual error values for each
measurement are shown in ascending order. The horizontal axis shows the position of
the measurement in the sorted list in percent ([%]). The error value is plotted along the
vertical axis. Since we repeated the RANSAC algorithms five times, they have five times
more measurements than the Hough-based algorithms.

Regarding the Angular Error and Lateral Error on the Leek – Transition data set shown
in Figure 3.14, we see that the Pattern Hough has a larger Angular Error than the Pattern
RANSAC-based algorithms between the 75 % and 95 % mark. This is caused by several
feature maps in the Leek data set that only contain quite sparse amounts of vegetation
features in comparison to the other feature maps of this data set. Due to the sparse distri-
bution of vegetation features, detecting a Pattern-based on samples as done in the Pattern
RANSAC algorithms is beneficial since it increases the chance of finding an accurate
Pattern. This is in stark contrast to the Hough-based approaches: They are less suited
for sparse feature distribution since the accuracy of a detected Pattern is always limited
by the fixed resolution for each Pattern parameter in the histogram. Therefore, on very
sparse feature maps, the Hough-based approaches might not be able to detect the crop row
Pattern with sufficient accuracy. While the Angular Error of the Hough-based approaches
is about 4◦ larger than the Angular Error of the Pattern RANSAC-based methods, with 7◦

error in total it is still accurate enough according to our success threshold of 10◦. How-
ever, the Lateral Error depends on an accurate detection of the angular parameter θ∗ of the
Pattern Pθ∗,s∗,o∗ . Therefore, the increase in the Angular Error also causes an increase in
the Lateral Error for the Hough-based approaches, leading to a Lateral Error that exceeds
the lateral success threshold of 0.10 m. We therefore conclude that on sparse data, using
a sampling-based method such as the Pattern RANSAC can lead to more robust results
than employing a full search on a discretized search space as done by the Hough-based
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Angular Error [◦] Lateral Error [m]

Figure 3.14: This figure shows the Angular Error (left) and the Lateral Error (right)
on the Leek – Transition data set. The individual error values for each measurement are
shown in ascending order. The horizontal axis shows the position of the measurement in
the sorted list in percent ([%]). The error value is plotted along the vertical axis. Since
we repeated the RANSAC algorithms five times, they have five times more measurements
than the Hough-based algorithms.

approaches.
Transferring the findings for sparse vegetation feature distributions encountered on the

Leek data set to the dense vegetation feature distributions of the Canola – Transition data
set, it follows that the success rate results are inverted: the Pattern RANSAC-based meth-
ods show much lower success rates than the Hough-based approaches (see Figure 3.10).
The Angular Error and Lateral Error on the Canola – Transition data set shown in Fig-
ure 3.15 confirm this conclusion, since here also the results are inverted when compared
to the Angular Error and Lateral Error on the Leek – Transition data set in Figure 3.14. In
the Canola data set, the Angular Error values of the Pattern RANSAC-based approaches
diverge starting at different percentages depending on the amount of candidate Patterns
sampled. This makes sense, since sampling more candidates has a higher chance of find-
ing a set of samples with an accurate angular parameter θ∗. Therefore, the Angular Error
of the Pattern RANSAC 2500 starts to diverge first at about 20 %, followed by Pattern
RANSAC 5000 and Pattern RANSAC 25000 at about 25 %. Analogue to our observa-
tions for the Hough-based algorithms on the Leek data set, this also causes a notable
increase of the Lateral Error, resulting in a small amount of successful Pattern detections
of around 50 % for Pattern RANSAC 2500 and up to 65 % for Pattern RANSAC 25000.
This is in contrast to the Leek – Transition data set, where the Hough-based approaches
still show sufficient angular accuracy and reasonable lateral accuracy resulting in a man-
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Angular Error [◦] Lateral Error [m]

Figure 3.15: This figure shows the Angular Error (left) and the Lateral Error (right)
on the Canola – Transition data set. The individual error values for each measurement
are shown in ascending order. The horizontal axis shows the position of the measurement
in the sorted list in percent ([%]). The error value is plotted along the vertical axis. Since
we repeated the RANSAC algorithms five times, they have five times more measurements
than the Hough-based algorithms.

ageable success rate of almost 80 % on this data set. Another interesting observation is
that although the Pattern Hough algorithm shows an impressive 100 % success rate on the
Canola – Transition data set, the Lateral Error still approaches the success threshold with
values up to 7 cm.

In summary, our detailed evaluation on the challenging Transition data sets shows,
that both the Pattern RANSAC methods as well as the Hough-based approaches, have
advantages and disadvantages depending on the feature distribution of the provided data.
Due to the sampling-based nature of the Pattern RANSAC methods, these algorithms are
better suited for sparsely distributed vegetation features, e. g., on crops in early growth
stages or crops that grow slim and tall, such as the Leek crop. In contrast, the Hough-based
approaches are more robust on denser vegetation feature distributions that are usually
observed on crops in later growth stages, and especially on crops that grow wide and stay
close to the ground such as the Canola crop. While the robustness of the Pattern Hough
algorithm on the Leek – Transition and Medium Sugar Beets – Transition data sets is
lower than the robustness of the Pattern RANSAC approaches, these results are inverted
on the Canola – Transition data set. However, the detailed analysis of the individual errors
on these three data sets shows, that the accuracy of the Pattern Hough over all three data
sets combined is higher than the accuracy of the Pattern RANSAC-based methods.



60 Chapter 3: Robust Crop Row Detection

[msec] LH DLH PH R2500 R5000 R25000
Canola 8 8 89 34 69 340
Corn 13 12 119 40 79 391
Leek 8 8 71 33 64 319
Medium Sugar Beets 9 9 53 27 53 259
Tiny Sugar Beets 8 8 41 27 52 255

Table 3.2: This table shows the computation times for all algorithms in milliseconds.

3.4.4 Application in Autonomous Navigation

In order to apply the perception algorithm in an autonomous navigation framework not
only robust results are important, but also computational efficiency. Using the detected
crop rows as the input for pose correction in, for example, a localization algorithm re-
quires that large amounts of data, i. e., images from cameras or point clouds from LIDAR
sensors are processed in time. This is crucial to facilitate a high update rate for the pose
correction step of the localization algorithm, and thus ensure an accurate pose estimate
relative to the value crops and in turn guiding the vehicle across the crop field without
damaging the crops.

We therefore also report the computation times for all investigated algorithms in Ta-
ble 3.2. These timings include the time required for preprocessing the raw data into a
feature map for a better intuition about the applicability of each algorithm in an online
navigation framework. We evaluated all data sets on an Intel Core i7-4770 CPU with 16
GB RAM, which is comparable to the Pokini i2 of the BoniRob that is equipped with an
Intel Core i7-4600U CPU and 16 GB RAM.

The Line Hough and Dual Line Hough are an order of magnitude faster than the Pattern
Hough. This is to be expected since the dimension ofHL andH′L is one dimension lower
than the dimension of HP , i. e., the pattern spacing parameter is explicitly considered in
the Pattern Hough algorithm and therefore adds an additional dimension to the histogram.
By design (see Section 3.4.1), the Pattern RANSAC 2500 is faster than the Pattern Hough,
the Pattern RANSAC 5000 has comparable computation times and the Pattern RANSAC
25000 is five times slower than the Pattern Hough. The larger timings for all algorithms on
the Corn data set are caused by the higher vegetation density (see Table 3.1) while driving
in-row. A higher number of vegetation features notably increases the computation times
for all algorithms, since they all need to iterate over all vegetation features: The Pattern
RANSAC methods compute the support over all vegetation features for each candidate
Pattern. The Hough-based approaches compute the Hough transform for each vegetation
feature. Overall, all computation times are feasible for online application.

In this section we also provide qualitative information on the applicability of our crop
row detection approach for autonomous navigation. We used the Pattern Hough algorithm
for autonomous navigation with our BoniRob to correct the pose estimate in a localization
algorithm relative to the detected crop rows on many different occasions. For example, in-
stead of manually steering the BoniRob, we used this navigation system to autonomously
collected data from entire crop fields. One of the data sets collected autonomously is
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Figure 3.16: This figure shows screenshots from two different videos referenced in this
section. The pictures on the top are captured from the first video showing crop row de-
tection on the Medium Sugar Beets data set on the left and on the Tiny Sugar Beets on
the right. The pictures on the bottom show detections from the second video on the Leek
data set on the left and on tiny sugar beet plants on a different crop field on the right.

the Medium Sugar Beets data set of our experimental evaluation as already mentioned
in Section 3.4.1. Furthermore, we have recorded several data sets and videos where the
BoniRob navigates autonomously on different crop fields using our Pattern Hough crop
row detection. The most relevant video for this chapter that also features autonomous nav-
igation is the video Crop Row Detection on Tiny Sugar Beets1(see Figure 3.16 on the top).
In this video, we show data from the Medium Sugar Beets, the Leek and the Tiny Sugar
Beets data sets. The sections of the video where the BoniRob is driving autonomously,
show medium sized sugar beets from the Medium Sugar Beets data set. Towards the end
of the video, we also show data from the Tiny Sugar Beets data set (see Figure 3.16 on the
top). Another relevant video that also illustrates the performance of our Pattern Hough
algorithm is Crop Row Detection2(see Figure 3.16 on the bottom). Here, data from the
Leek data set and a field located in Bonn featuring tiny sugar beets are shown.

There are also other possible use cases for our crop row detection method, such as
mapping. In Figure 3.17 we show an example, where we used our Pattern Hough algo-
rithm to extract crop rows from a GPS-referenced overhead image acquired with a UAV3.
This GPS-referenced image with crop row annotations acquired from our Pattern Hough
method can then be used to create a GPS-referenced map of crop rows. As we will see

1https://youtu.be/Bsa1o6vwof0
2https://youtu.be/0VIwuCaTHPM
3Thanks to Raghav Khanna from ETH Zurich for providing the image.

https://youtu.be/Bsa1o6vwof0
https://youtu.be/0VIwuCaTHPM
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Figure 3.17: This figure shows an example for a mapping application of our crop row
detection approach. We use our Pattern Hough algorithm to detect the crop rows of an
entire crop field on a GPS-referenced overhead image (left). The close-up on the right
shows that the detected Pattern nicely overlays with the crop rows.

in the following chapter, such a GPS-referenced map of crop rows is necessary to enable
localization beyond crop row following.

In summary, our experimental evaluation confirms that extracting a Pattern, i. e., all vis-
ible crop rows jointly yields robust results especially during transition, which is crucial
for application in an autonomous navigation framework. The in-depth evaluation of in-
dividual errors shows that our Pattern Hough algorithm is overall more reliable than the
other investigated approaches and produces reasonable results on all data sets. Our exten-
sive experience on applying the Pattern Hough algorithm in our autonomous navigation
framework on the BoniRob confirms these results since we performed several successful
autonomous runs over entire crop fields with the BoniRob.

3.5 Conclusion

In this chapter, we presented two reliable crop row detection approaches for autonomous
navigation, in-row and during transition, with a wide application range. Our extensive
experimental evaluation confirms, that our key idea of considering all available data to
extract visible crop rows jointly improves the robustness of crop row detections, espe-
cially during transition. We also evaluated our crop row detection approaches on a variety
of crop types at different growth stages, as well as on data from different sensor modal-
ities, i. e., from an RGB camera and a LIDAR sensor, which where mounted at different
positions in front of the vehicle. This confirms the wide application range of both our
approaches. Overall, our Pattern Hough algorithm produces more reliable results than the
Pattern RANSAC-based algorithms in most situations. We therefore employ the Pattern
Hough algorithm in our navigation framework on the BoniRob, which resulted in many
successful autonomous traversals of entire crop fields.
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An interesting general direction for future work is to investigate additional sensor
modalities and develop techniques to extract vegetation feature maps from these modal-
ities as this would also extend the application range and adaptability of our crop row
detection approaches. For example, cameras that capture images of different wavelengths
in the near infrared spectrum are interesting since plant material, i. e., vegetation features,
can be easily segmented on these images. For a similar reason, plant material also has
higher reflectance in LIDAR data. Therefore, if the LIDAR sensor also provides intensity
information and not only the depth, this additional intensity information could be used to
improve vegetation segmentation on LIDAR data. Additionally, the use of state-of-the-
art machine learning techniques can be investigated to achieve more robust segmentation
results.

Another interesting research direction is to extend our key idea of joint crop row detec-
tion to different crop row patterns. For example, in areas with large amount of flat terrain,
e. g., in the United States, Australia or Brazil, large center-pivot irrigation systems are
often used to water the crops. Since these systems can efficiently distribute water on a
circular shaped area, the crops on these fields are also sown in a circular pattern. Our
crop row detection approach can be easily adapted to the structure of these types of field
by modifying the definition of the Pattern. Similarly, during our data recording sessions
on production fields, we encountered situations, where the crop rows were not sown in
equidistant lines throughout. Instead, a slightly larger spacing s> was used between crop
rows that are adjacent to the wheel tracks. This makes sense as it increases the clear-
ance between the wheels of a vehicle and the crops thereby decreasing the chance of
damaging the crops while traversing the field. However, this irregular spacing results in a
slightly different crop row pattern, where two spacing parameters, i. e., the original Pattern
spacing parameter s describing the spacing between crops and the slightly larger spacing
parameter s>, are required to model the crop row structure.

These ideas for extending the application range of our crop row approach are another
indicator of its flexibility and usefulness in real-world applications.

Another idea for increasing the overall robustness of the entire navigation framework,
is to extend the amount of information returned by our crop row detection approach. More
precisely, instead of only returning the detected Pattern our approach could be extended
so that it also provides an estimate of the reliability of this detected Pattern. Such an
estimate for the reliability of a detection is always valuable in a navigation framework.
For example, if the detected Pattern is intended as an input to a localization algorithm
for pose correction, this localization algorithm can use the reliability estimate to decide
whether to perform pose correction based on the detected Pattern: If the detection has
a high reliability, the detection is used to correct the pose estimate. If the detection has
a low reliability, it is discarded and the localization algorithm waits for a more reliable
detection. Such a reliability measure, called the quality of a Pattern was introduced by
Winterhalter et al. [2021].

In the next chapter we present our localization approach that employs the presented
Pattern Hough algorithm for pose correction.
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Chapter 4

Beyond Crop Row Following

For autonomous navigation on entire crop fields an accurate pose
estimate is required to guide the vehicle along the crop rows with-
out damaging the crops. A common approach is to use the heading
and lateral offset information of locally detected crop rows to steer
the vehicle along crop rows with high precision. However, these ap-
proaches cannot provide information about the position of the ve-
hicle in the direction of the crop rows, usually limiting autonomous
navigation to pure crop row following without the ability to perform
transition maneuvers at the headlands. In contrast, GPS-based lo-
calization approaches, while providing accurate pose estimates to
enable autonomous traversal of entire crop fields, do not contain
any information of the pose of the vehicle relative to the crops.
However, for precision agriculture applications, where individual
treatment on a per plant basis might be required, a pose estimate
relative to the crops is crucial. We therefore propose to leverage the
advantages of crop row following and GPS-based localization in a
fused localization approach that uses the heading and lateral off-
set information from local crop row detections as well as the global
information from GPS measurements to estimate the longitudinal
position of the vehicle. Since fusing sensor modalities that are de-
fined in different frames is challenging, we contribute to the state
of the art as follows: We fuse both modalities in a common frame
defined by a map of GPS-referenced crop rows. For associating the
local crop row detections with the mapped crop rows, we present a
novel Crop Row data association. We fuse the measurements of both
sensor modalities by defining the fused sensor measurement using a
heading, lateral and longitudinal component. Additionally, we also
develop an End of the Field detection to improve the longitudinal
position estimate of our fused localization approach. In-depth ex-
periments on two real-world data sets confirm that our localization
approach consistently fuses the information contained in both sen-
sor modalities, and that additionally detecting the end of the field
notably improves the accuracy of the longitudinal position estimate.
Our fused localization approach estimates the pose of the vehicle
relative to the crops while also enabling autonomous transition ma-
neuvers at the headlands – thereby going beyond the limitations of
crop row following.
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4.1 Introduction

For autonomous navigation on agricultural fields accurate knowledge of the pose of the
vehicle relative to the crops is crucial to allow precise navigation without damaging the
value crops as well as enable precision agriculture applications. While traversing the field
in-row, a highly accurate estimate of the heading and lateral offset of the vehicle relative
to the crop rows is required to guide the vehicle along the crop rows of the field with-
out damaging crops. When approaching the end of the field, additionally to the heading
and lateral offset of the vehicle, an accurate estimate of the longitudinal location of the
vehicle in the direction of the crop rows is crucial to enable autonomous transition ma-
neuvers, such as turning at the headlands. For example, while driving in-row, even a
slightly inaccurate lateral offset estimate can cause the autonomous vehicle to drive over
the valuable crops as illustrated in the top row of Figure 4.1. Here, the estimated position
of the vehicle is too far above the tracked crop rows, so that the wheels of the vehicle are
located on the crop row above. Therefore, the navigation system will correct the position
of the vehicle and steer to the right to continue tracking the crop rows without driving
over crops. However, considering the true position shown on the top right of Figure 4.1,
steering to the right actually causes the vehicle to drive over the crop rows below. This
example illustrates the importance of precise heading and lateral offset estimates of the
vehicle relative to the crop rows while driving in-row. We also show two examples on the
mid and bottom row of Figure 4.1 that explain why an accurate estimate of the position
of the vehicle in the direction of the crop rows, i. e., in the longitudinal direction, is re-
quired to enable transition maneuvers at the headlands. The first situation in the middle
of Figure 4.1 illustrates an incorrect longitudinal position estimate, where the vehicle has
already left the crop field according to the localization module. Therefore, the navigation
system initiates a turning maneuver to transition to the next set of crop rows. However,
considering the true position of the vehicle on the right, the vehicle is actually still inside
the field. Due to the incorrect longitudinal position estimate, the autonomous vehicle is
initiating the turning maneuver too early and therefore causes damage to the crops located
at the end of the field. The other example shows the opposite situation, where the vehicle
is still inside the field according to the longitudinal position estimate as shown on the
bottom left of Figure 4.1. Assuming that the vehicle is still inside the field, the navigation
system does not stop but continues driving forward. Since the true position of the vehicle
as shown on the right of Figure 4.1 is already outside of the field, a continued forward
motion might cause the vehicle to leave the headlands and drive into possibly harmful
terrain such as, e. g., bushes or even ditches. These examples demonstrate that not only
a precise estimate of the heading and lateral offset of an autonomous vehicle but also an
accurate longitudinal position estimate are required to traverse an entire crop field without
driving over the crops.

In the literature two separate approaches exist for localizing a vehicle in a crop field for
autonomous navigation. The first approach is based on detecting crop rows using a sensor
mounted in front of the vehicle. These crop row detections contain information about
the heading and lateral offset of the vehicle relative to the crop rows as shown on the
right of Figure 4.2. Since these heading and lateral offset measurements are only defined
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Figure 4.1: This figure shows different examples how an incorrect pose estimate (left)
can cause critical navigation failure (magenta arrows). For comparison, we also show
the correct pose of the vehicle on the right. The crop rows are visualized as red lines
and possibly harmful terrain such as ditches or bushes at the far end of the headlands is
highlighted in orange. We also show the pose of the vehicle after executing the navigation
command (magenta arrows) as semi-transparent projection. On the top row the incorrect
pose estimate is too far to the left of the crop rows, so that the vehicle is steering to the
right to correct its position, which in reality then causes the vehicle to drive over crops as
shown on the right. In the middle row the vehicle is turning too early and again damaging
the crops, since the estimated position of the vehicle incorrectly suggests that the vehicle
has already left the field. On the bottom row, we show the opposite situation, where the
pose estimate incorrectly locates the vehicle inside the field, when it in fact has already
left the field, causing the vehicle to drive into potentially harmful terrain at the edges of
the headlands.
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Global Frame Common Frame Local Frame

GPSbased Localization Our Fused Localization Crop Row Following

Figure 4.2: This figure shows GPS-based localization (left), our fused localization (mid)
and the crop row following (right) approaches for pose estimation on crop fields. Sensor
measurements such as the GPS position as well as detected crop rows are shown in blue.
The resulting correction measurements for the pose estimate are highlighted in cyan. The
origin and axes of each frame are shown in black. Our GPS-referenced map of crop rows
is visualized as red lines. We also highlight the data association problem in orange.

within the local frame of the vehicle, we say that the detected crop rows contain local
information. The vehicle then uses these local heading and lateral offset measurements
to follow the detected crop rows without damaging the value crops. We therefore call
such approaches crop row following approaches. While detecting crop rows provides
precise heading and lateral offset measurements, it cannot provide any information about
the position of the vehicle in the direction of the crop rows, i. e., about the longitudinal
position of the vehicle. Thus, a crop row following approach can guide a vehicle along the
crop rows with high precision, but it cannot provide the information required for transition
maneuvers, such as turning at the headlands.

The second localization approach found in the literature is based on precise GPS in-
formation that can reach up to sub-centimeter accuracy. These approaches determine a
highly accurate position of the vehicle within a global reference frame as shown on the
left of Figure 4.2. If a differential GPS is used, the heading of the vehicle can also be
estimated. Since these approaches purely rely on global GPS measurements, they do not
have any information about the pose of the vehicle relative to the crops rows. However,
as explained in more detail in Section 2.1, a key requirement for autonomous navigation
in precision agriculture is an accurate pose estimate relative to the crops to enable reliable
and accurate autonomous navigation in agricultural fields without damaging the crops.

While the crop row following approach provides accurate heading and lateral offset
estimates relative to the crop rows but no longitudinal measurements, the GPS-based ap-
proach can only localize the vehicle in a global reference frame without any relation to the
crops. Autonomous navigation for precision agriculture applications, however, requires
an accurate pose estimate of the agricultural vehicle relative to the crops in all three di-
mensions, i. e., heading, lateral offset as well as longitudinal direction. In this chapter, we
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therefore present our novel localization approach that fully localizes a vehicle relative to
the crop rows in all three dimensions.

The key idea for our localization approach is to leverage the advantages of both local-
ization approaches by fusing the local crop row detections used in a crop row following
approach with the global GPS measurements used in the GPS-based approach. More
precisely, we propose a localization approach that is based on crop row following and
therefore utilizes the crop row detections to determine the heading and lateral offset of
the vehicle relative to the crop rows. By correcting the longitudinal position of the vehi-
cle according to the global position information obtained from a GPS sensor, our approach
goes beyond simple crop row following.

While the idea of fusing crop row detections with GPS information for localization
is straightforward, consistently fusing both sensor modalities in one localization is not
straightforward. We already hinted at the first challenge in our introduction of the two
existing localization approaches as well as in their illustration in Figure 4.2: While the
crop row detections provide information relative to the local frame of the vehicle, the GPS
measurements are independent of the crop rows and provide information within a global
reference frame. For a fused localization that estimates a pose based on both local and
global information, we need to be able to relate the local crop row detections with the
global GPS measurements. Second, the information provided by both modalities, i. e., the
detected crop rows and the GPS positions, provides measurements of the lateral position
of the vehicle with a different accuracy in the corresponding reference frames. Integrating
this information in a localization can result in inconsistent pose estimates. Third, if only
a standard GPS sensor with an accuracy of around 3.0 m is used, we need to obtain an
even more accurate longitudinal position estimate with an accuracy of around 1.0 m or
below for autonomous transition maneuvers at the headlands. Fusing crop row detections
with global position information from a standard GPS sensor to obtain consistent pose
estimates therefore yields the following challenges:

1. Relate Local and Global Information: To localize the vehicle according to both,
the global and local information, we need to be able to relate the local crop row
detections with the global GPS measurements.

2. Consistent Pose Estimates: Both sensor modalities contain information about the
lateral position of the vehicle with different accuracies in different coordinate frames.
Therefore, our localization approach needs consider the crop row structure of the
field when fusing both measurements to obtain consistent pose estimates.

3. Improve Longitudinal Accuracy: The accuracy of a standard GPS sensor of around
3.0 m is not sufficient for autonomous transition maneuvers at the headlands. There-
fore, we need to increase the accuracy of the estimated longitudinal position.

In order to realize our idea of a fused localization approach that estimates the full pose
of an agricultural vehicle relative to the crops, we propose the following solutions to these
challenges: Our first idea is to use a GPS-referenced map of the crop field that contains
the location of each crop row of the field relative to the global GPS coordinate system as
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illustrated in the middle of Figure 4.2. The pose of the vehicle is then estimated in this
common map frame. While the GPS information can be directly integrated since the map
frame is in the GPS coordinate system, integrating the local information from the detected
crop rows is not straightforward. The key idea of a GPS-referenced map of crop rows is
that the pose estimate of the vehicle within the map frame can be used to project the local
crop row detections into the common map frame (see middle of Figure 4.2). Comparing
the orientation and lateral offset of the projected observed crop rows with the crop rows of
the map then yields the required heading and lateral offset measurements in the common
map frame.

For this comparison, we need to determine which of the observed crop rows corre-
sponds to which crop row of the map. This is called the data association problem. As
can be seen from our example, determining the right association is usually not easy, since
individual lines cannot be distinguished from each other. To facilitate localization relative
to the observed crop rows with respect to the GPS-referenced map, we present a novel
Crop Row data association method that determines the correct association between ob-
served and mapped crop rows. This data association is based on the idea of geometric
consistency, i. e., the idea that relative distances and angles should be preserved when as-
signing observed features to mapped features. We give a more detailed introduction of
geometric consistency in Section 2.2.2.

To obtain consistent pose estimates despite the difference in accuracy of the lateral
offset measurements of both sensor modalities, our key idea is to split the measurements
into a heading, a lateral and a longitudinal component, if available. This allows us to select
the desired sensor modality for each individual component. More explicitly, we expect
highly accurate heading and lateral offset measurements from the detected crop rows and
therefore use the measurements of the detected crop rows to estimate the heading and the
lateral offset of the vehicle. Since standard GPS measurements do not provide heading
information and we expect a lower position accuracy from the GPS, we only use the GPS
measurements to estimate the longitudinal position of the vehicle.

To facilitate autonomous transition maneuvers at the headlands, we improve the GPS-
based longitudinal position estimate of our fused localization method by extracting a lon-
gitudinal measurement from the local sensor data. Our key observation is that if the vehi-
cle approaches the end of the field, the row structure used to detect the crop rows does not
span the whole field of view of the sensor anymore. This fact can be used to detect the end
of the crop rows and therefore the End of the Field (EOF). This End of the Field detection
then provides a longitudinal measurement, since it determines the distance of the vehicle
to the end of the field in the direction of the crop rows. Analogous to the detected crop
rows, the detected end of the field can then be projected into the map frame and compared
with the expected end of the field to obtain an accurate longitudinal position estimate of
the vehicle.

In summary, our novel fused localization approach goes beyond the limitations of state-
of-the-art agricultural localization approaches, since it leverages the advantages of both
crop row following as well as GPS-based approaches to estimate the full pose of an agri-
cultural vehicle relative to the crops. We successfully fuse local crop row detections
with global GPS measurements by providing the following contributions to localization



72 Chapter 4: Beyond Crop Row Following

in agriculture:

1. GPS-referenced Map of Crop Rows: For fusing crop row following and GPS-based
localization, we propose to use a GPS-referenced map of crop rows to combine
global GPS measurements with local crop row detections in a common map frame.

2. Crop Row Data Association: In order to derive heading and lateral offset measure-
ments from the observed crop rows in the common map frame, we present a novel
Crop Row data association based on geometric consistency.

3. Split Measurements: For consistent pose estimates we propose to split the measure-
ments of both sensor modalities into a heading, a lateral and a longitudinal com-
ponent, where lateral means orthogonal to the crop rows and longitudinal means
aligned with the crop rows.

4. End of the Field Detection: For an improved longitudinal position estimate that
enables autonomous transition maneuvers at the headlands, we present our End of
the Field detection. This detection uses the crop row structure perceived in local
sensor data to determine the distance of the vehicle to the end of the field.

In the next section we present different crop row following and GPS-based localization
approaches found in the literature and discuss how they compare to our approach. We
then present our fused localization approach in detail. This includes our Crop Row data
association, the End of the Field detection as well as the mathematical formulations for
splitting the measurements of each sensor modality into heading, lateral and longitudinal
measurements and integrating them into two different localization methods. We analyze
the performance of our fused localization approach and compare it to crop row following
and pure GPS-based localization in our experimental evaluation on two real-world data
sets. In this evaluation we use our crop row detection presented in the previous chapter to
detect crop rows in the recorded image data. Our evaluation investigates in how far our
fused localization approach leverages the advantages of both the crop row following as
well as the GPS-based approaches found in the literature. Furthermore, we investigate,
if using the End of the Field detection notably increases the accuracy of the longitudinal
position estimate to also enable autonomous transition maneuvers at the headlands. While
our fused localization approach is based on crop row following, it estimates the full pose
of the vehicle – thereby going beyond the limitations of crop row following and enabling
autonomous transition maneuvers at the headlands.

4.2 Related Work
Estimating the pose of an agricultural vehicle on a crop field has received much attention
in the last decades. Most research focuses on estimating the pose of the vehicle to create
data rich maps of the field. These maps are then used to determine properties of interest in
certain areas of the field such as, for example, the amount of fertilizer or water at different
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locations of the field or the health of the crops including weed pressure or infection with
pests. These mapping applications usually determine the pose of the vehicle in an offline
post processing step of data recorded by manually steering the agricultural vehicle across
the field. In contrast to our approach, these techniques are not explicitly designed to pro-
vide an online pose estimate to guide an autonomous vehicle along the crop rows without
damaging the crops. However, they still provide insights about the challenges of estimat-
ing the pose of a vehicle in a crop field. Thus, we first give an overview of localization
techniques that estimate the pose of a vehicle to create maps by post-processing recorded
raw data offline. Then, we discuss the crop-based localization techniques that estimate
the pose of the vehicle to achieve precise autonomous navigation on agricultural fields.
Finally, we also present more closely related work that uses both sensor modalities, local
crop row detections as well as GPS information for autonomous navigation.

For the purpose of creating data rich maps, the vehicles used to record these data sets
are usually equipped with a multitude of sensors that perceive the crops of the field. De-
spite that fact, most of the offline mapping approaches usually rely on an additional high
precision GPS receiver mounted on the vehicle to obtain a globally accurate position of
the vehicle during data recording. During post-processing, these highly accurate positions
are then used integrate the collected information into a map of the crop field. For exam-
ple, the approach presented by Hague et al. [2006] uses GPS-referenced data to evaluate
the crop and weed density to determine on which areas of the field weed treatment is re-
quired. Another approach by Dong et al. [2017] uses high precision GPS measurements
together with a robust data association on RGB images to overlay maps over time. Maps
that contain information across multiple weeks or even months store valuable informa-
tion such as, e. g., how fast the crops grow. This information can be used by the farmer to
determine whether the crops are healthy since they grow at the expected rate, or whether
further investigation is required as to why the crops are not growing at the expected rate.
Another example use case is the approach by Baia et al. [2016], where they use high pre-
cision GPS measurements to collect information about different phenotypes of soybean
and wheat. In fact, phenotyping has received much interest as a use case of high pre-
cision GPS-based offline mapping approaches [Mueller-Sim et al., 2017, Ruckelshausen
et al., 2009, Underwood et al., 2017]. However, the authors of these works also state the
challenges they encountered by relying only on high precision GPS information for pose
estimation. For example, Mueller-Sim et al. [2017] had problems with the accuracy of
the received high precision GPS signal, when the antenna of the vehicle was covered by
foliage, e. g., due to large growing crops such as corn or large growing vegetation at the
headlands such as trees. As solution, the authors propose to use additional local sensor
information such as LIDAR or vision data in future work to increase robustness in case of
lower accuracy of the received high precision GPS signal. Having made similar observa-
tions, Ruckelshausen et al. [2009] also plan to investigate the use of LIDAR information
in future work to increase the robustness of the pose estimate. Another – often not men-
tioned – requirement to obtain consistent high precision GPS paths over longer periods of
time is a fixed reference point to align the previously recorded GPS path with the current
GPS measurements. Such an alignment is necessary to overlay data recorded at differ-
ent points in time for offline mapping applications. This fixed reference also facilitates
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continued deployment of an autonomous vehicle as it enables the vehicle to navigate a
crop field by following the previously recorded GPS path according to the current GPS
measurements [Underwood et al., 2017, Watanabe, 2018]. According to the work by
Watanabe [2018] this dependency on a fixed high precision reference infrastructure can
be resolved by instead using a local marker as reference. However, this only shifts the
dependency from a fixed high precision GPS reference to the accuracy of the measured
high precision GPS position of the local reference marker. In summary, the related work
shows that under optimal conditions, i. e., no signal outages and availability of a fixed
high precision GPSreference infrastructure, autonomous navigation based solely on high
precision GPS data is possible. However, many of these works also suggest that for robust
long-term autonomous navigation considering additional information from local sensors,
such as LIDAR or vision data, is advisable.

While the high precision GPS approach seems to be mostly used for offline mapping
applications, using local sensor information for pose estimation is more commonly used
to guide an autonomous vehicle across a crop field without driving over crops. This makes
sense, since a highly accurate heading and lateral offset estimate relative to the crops are
required to steer a vehicle along the crop rows with high precision. Despite its apparent
advantages for precise autonomous navigation on a crop field, using local sensor data for
localization relative to the crops has received less interest than the high precision GPS
localization approach. Nevertheless, research on localization relative to crops using local
sensor information has made interesting advances and also uncovered some challenges.
While high precision GPS signals are often used in mapping applications, crop-based lo-
calization approaches usually do not leverage any GPS information. Instead, they detect
the local crops on the field, usually in form of crop rows, and estimate the pose of the ve-
hicle relative to these detections. For example, Åstrand and Baerveldt [2005] detected the
crop rows in image data and directly convert these line detections into steering commands
for the autonomous vehicle. Another crop-based approach by Xaud et al. [2019] proposes
the use of infrared cameras for more accurate segmentation of the vegetation features
in the image data to obtain more robust localization results. However, pure crop-based
approaches that directly convert the detected crop structure into steering commands can
only operate the autonomous vehicle as long as crop rows are visible in the sensor data.
As the vehicle approaches the end of the field less crops are visible in the sensor data
until the vehicle needs to stop since no more crops are perceived. Consequently, these
approaches can only guide the vehicle while it is in-row. For transition maneuvers addi-
tional information is required, such as, for example, wheel odometry as presented in the
localization approach by Riggio et al. [2018]. Another idea was presented by Libby and
Kantor [2011], where markers were placed at the end of each crop row. These markers
can then be used as reference by the navigation system to determine when to initiate a
turning maneuver as well as to realign the vehicle with the crop rows after turning. While
placing markers might be feasible on small research fields, it is tedious and impractical
on large production fields. In contrast, as shown by Riggio et al. [2018], turning at the
headlands based on wheel odometry is possible. The results in the publication by Rig-
gio et al. [2018] confirm that autonomous navigation on crop fields is possible without
high precision GPS measurements. Another crop-based localization approach, that also
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leverages wheel odometry to localize the vehicle during turning at the headlands is pre-
sented by Chebrolu et al. [2019]. The main difference to previous approaches is that
the authors of this work propose to use individual detections of crops, weeds and gaps,
i. e., locations where crops are missing in the row structure, instead of detections of whole
crop rows. This is an interesting approach as it enables to also track the longitudinal po-
sition of the vehicle while in-row, thereby achieving a maximum global localization error
of 0.17 m. While these are interesting global localization results, there is no mention of
autonomous navigation performed based on these pose estimates. Also, the authors do
not provide results for the maximum error in the lateral offset of the pose estimate relative
to the crops, as reported by other related work on localization for autonomous navigation
[Bakker et al., 2011, Ball et al., 2017]. Thus, it remains unclear, whether this approach
is suited to steer a large agricultural vehicle with only few centimeters clearance to adja-
cent crop rows without driving over the crops. Overall, the results in the literature show
that crop-based localization is well suited for guiding a vehicle along a crop field with
high precision, at least while driving in-row. The challenge for crop-based approaches is
turning at the headlands when the crops are not in the field of view of the sensor and thus
tracking is lost. However, as Riggio et al. [2018] and Chebrolu et al. [2019] show, esti-
mating the pose of the vehicle based on wheel odometry during turning can be sufficient
for successful localization.

In the literature we also find works that – similarly to our approach – are based on
the idea of using GPS information as well as detections of crop rows to localize the
autonomous vehicle. Analogue to the localization techniques used for offline mapping
applications, most of these works depend on a high precision GPS receiver as primary
sensor for localizing the vehicle.

This usually results in two separate localization modules, one GPS-based localization
that is used for localization during transition maneuvers, and a crop row following-based
localization that is used to guide the vehicle along the crop rows while traversing the field
in-row [Bakker et al., 2011, Biber et al., 2012]. For example, Biber et al. [2012] use depth
and color information to detect the crop rows and guide the vehicle in-row and switch to
GPS-based localization for turning at the headlands. A similar approach is presented by
Bakker et al. [2011], where the authors propose to use two separate localization modules.
The crop row following module uses the crop row detection developed by the authors to
localize the vehicle relative to the crop rows [Bakker et al., 2008]. The other localiza-
tion module is based on high precision GPS information. They compare the accuracy
of both approaches relative to the crops in their evaluation. As expected, the GPS-based
localization reaches centimeter accuracy when using a high precision GPS. For their crop-
row-following-based method, the authors report lateral errors of up to 0.1 m while driving
in-row. They also experience an increase in the lateral error when approaching the end of
the field, so that they conclude that the accuracy of the pose estimate provided by their
crop row following approach is only well suited for autonomous navigation while driving
in-row. These results are well aligned with the results of our evaluation of crop row detec-
tion accuracy in the previous chapter. There is also a localization approach that is more
closely related to our approach than the other techniques discussed so far, since the authors
also use both sensor modalities, i. e., global GPS information as well as local crop row de-
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tections in one localization module [Ball et al., 2017, English et al., 2013, 2014, 2015]. In
the first presentation of their approach, the authors use a particle-filter-based localization
method to integrate high precision GPS signals as well as crop row tracking results to
guide an autonomous vehicle along a crop field [English et al., 2013]. Later works focus
on improving the accuracy and robustness of the presented localization approach [English
et al., 2014, 2015]. However, in the most recent work by Ball et al. [2017], the authors
state that they now use a high precision GPS sensor as primary source of information.
The crop row information is only used as redundancy measurement in case of GPS out-
ages. This shift of focus away from fusing both sensor measurements towards GPS-based
localization is also evident in the experimental evaluation. Using a customer grade high
precision GPS the authors report an average accuracy of around 0.2 m for the purely GPS-
based localization. During GPS outages the error slowly increases up to 1.5 m after 2 min
of GPS outage. This is in contrast to the lateral offset error when the approach of the
authors is tracking the crop rows without GPS corrections, where the lateral offset error is
around 0.1 m and stays below a maximum of 0.2 m. These results are again aligned with
our results from the previous chapter for the attainable lateral accuracy when using crop
row detections for pose estimation. These approaches that use high precision GPS-based
localization as well as crop row following to autonomously navigate a crop field confirm
the strong need of using both sensor modalities to enable precise autonomous traversal of
entire crop fields. While both approaches, GPS-based localization as well as crop row fol-
lowing, have been investigated, evaluated and applied independently, only little research
was targeted at fusing both sensor modalities into one consistent pose estimate. We there-
fore contribute to state-of-the-art localization for autonomous navigation on crop fields,
by presenting a novel localization approach that fuses – not necessarily high precision
– GPS information with crop row detections to go beyond the limitations of crop row
following and achieve precise autonomous navigation of entire crop fields.

4.3 Crop Row Localization on a GPS-referenced Map
In this section, we present our novel approach for a fused localization method that fully es-
timates the pose of a vehicle relative to crops to enable autonomous navigation across en-
tire fields. The goal of our localization approach is to fuse the local information from crop
row detections with global position information in a common reference frame to obtain
accurate pose estimates of the vehicle relative to the crops. This common reference frame
is defined by a GPS-referenced map of the crop field that contains the GPS-referenced
start and end points of each crop row on the field. However, fusing both sensor modali-
ties is challenging. In this section we therefore present our novel techniques required for
successfully fusing both modalities to obtain consistent pose estimates.

In order to transfer the local crop row detections into the common map frame, we
need to associate each observed crop row with its corresponding crop row in our GPS-
referenced map. Therefore, we first present our novel Crop Row data association based on
geometrical consistency in the following. Then, we explain in detail how our End of the
Field detection method leverages vegetation feature information as well as the detected
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crop row structure to extract the end of the field. The detected location of the end of the
field is then used to improve the longitudinal position estimate in our fused localization
approach. Finally, we mathematically define our fused sensor model and explain, how
we integrate information with different accuracy from different sensor modalities. We
also derive the mathematical formulations required to implement our sensor model in two
different localization techniques.

4.3.1 Data Association on Crop Rows
For a crop-row-based localization to be able to fuse the global information obtained from
GPS data with the information of crop rows detected in the local reference frame of the
vehicle, the detected crop rows need to be associated with the provided GPS-referenced
set of mapped crop rows. We thus present a data association approach that determines a
matching between the set of detected lines from the Pattern, i. e., the set of observations
Fo, and the set of GPS-referenced mapped lines, i. e., the set of mapped features Fm.
As explained in Section 2.2.1, the general solution to a data association problem can be
formulated as follows:

Mvalid ⊆M ⊂ P (Fo × Fm) M∗ = argmax
M∈Mvalid

t (M)

In this formulation, the subset of valid data association matchesMvalid is determined
by hard requirements for a set of data association matches M ∈ M to be valid. The
Target function t assigns a value, or score, to a set of data association matches M ∈ M
depending on how well this set of matches M explains the observed features given the
mapped features. How this score t (M) is computed depends on the soft criteria relevant
to the given data association problem. We provide a more detailed definition of these
terms and introduce different hard requirements and soft criteria based on data association
techniques in the literature in Section 2.2.2.

The soft criteria for this data association problem are straightforward. Since our Pat-
tern Hough crop row detection robustly extracts all crop row information from the given
sensor data, we do not expect a large amount of false positive or false negative detections.
Therefore, for this row-based data association, we only use the criterion of Positive Infor-
mation to design our Target function, i. e., the better the observed lines overlap with their
corresponding mapped lines in a set of matches M ∈M, the higher is the score t (M).

For the hard requirements, we focus on preserving the geometry between features of
the same set. More precisely, a set of data association matches M ∈ M is valid, only
if the relative distances between the crop rows of each set are preserved. We call such
a valid set of data association matches geometrically consistent. For a better intuition
of geometrically consistent sets of data association matches, we illustrate examples for
consistent and inconsistent matches in Figure 4.3. Since this data association is intended
for a localization application, we can assume that the current pose estimate of the vehicle
is correct up to a certain limit, i. e., we can assume that the vehicle is localized. We
therefore also include the hard requirement of locality. This means, that we only want to
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Consistent Inconsistent

Figure 4.3: This figure shows an example for a geometrically consistent set of matches
on the left and a set of geometrically inconsistent matches on the right. The set of ob-
served lines Fo = {Lo1 , Lo2 , Lo3} is visualized as blue lines, the set of mapped lines
Fm = {Lm1 , Lm2 , Lm3 , Lm4} are shown in red. The matches of each set are shown as
gray and orange lines that connect matched line pairs. The relative distances between
matched lines ∆ (L∗, L∗∗) of the same set are shown as black lines. The match as well
as the corresponding relative distances that cause the set of matches on the right to be
geometrically inconsistent are highlighted in orange.

consider data association matches, that infer a reasonable amount of pose correction onto
the current pose estimate.

In the following, we first define the Line to Line Distance between two pairs of lines
and discuss important properties of this distance measure. Based on the Line to Line
distance measure and our definition of the Target function, we present our approach for
computing the set of valid matchesMvalid. This set of valid matchesMvalid only contains
matches M that fulfill the geometrical consistency as well as the locality requirements.
Finally, we also use this Line to Line distance measure to model our Target function t
according to the Positive Information criterion.

Line to Line Distance Based on our definitions in the previous chapter, where we de-
fined the lateral difference ∆lat of a Pattern relative to a reference point pref, we define
the Line to Line Distance on two lines Lθ1,r1 and Lθ2,r2 analogously to the definition in
Eq. (3.8) to Eq. (3.10):

δpref (Lθ1,r1 , Lθ2,r2) := d (Lθ1,r1 , pref)− d (Lθ2,r2 , pref) (4.1)
∆pref (Lθ1,r1 , Lθ2,r2) := |δpref (Lθ1,r1 , Lθ2,r2)| , (4.2)

where d (L, pref) is the signed point to line distance as defined in Eq. (3.2) in the previ-
ous chapter. Similar to the lateral difference measure between two Patterns, this distance
measure is independent of the orientation of the lines (see Figure 4.4).

Another interesting observation is that shifting a line laterally by the amount of a lateral
shift slat ∈ R, also changes the distance of a point to the line that amount. Given a line Lθ,r
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Figure 4.4: This illustrates the Line to Line Distance. The lines are drawn as solid blue
and red lines. The rotated dashed blue line L′o demonstrates that the Line to Line Distance
measure is independent of the orientation of the lines relative to the reference point pref,
since d (Lo , pref) = d

(
L′o , pref

)
. The point to line distances of each line to the reference

point pref are visualized using arrows to indicate the sign of the distance. The resulting
Line to Line distance ∆ (Lo , Lm) is highlighted as black solid line between L′o and Lm .

and a lateral shift slat ∈ R, we say that the line is shifted laterally and denote the shifted
line as Lθ,r (slat) := Lθ,r+slat . According to the definition of the point to line distance in
Eq. (3.2), we obtain for any point p = (px, py):

d (Lθ,r (slat) , p) := [px · cos (θ) + py · sin (θ)]− (r + slat)

= [px · cos (θ) + py · sin (θ)]− r − slat

= d (Lθ,r, p)− slat (4.3)

More importantly, this means that the Line to Line Distance remains constant, when
two lines Lθ1,r1 and Lθ2,r2 are shifted using the same lateral shift slat ∈ R:

δpref (Lθ1,r1 (slat) , Lθ2,r2 (slat))
Eq. (4.1)

= d (Lθ1,r1 (slat) , pref)− d (Lθ2,r2 (slat) , pref)
Eq. (4.3)

= d (Lθ1,r1 , pref)− slat − [d (Lθ2,r2 , pref)− slat]

= d (Lθ1,r1 , pref)− d (Lθ2,r2 , pref)

= δpref (Lθ1,r1 , Lθ2,r2) (4.4)

In the following, since we are computing the data association to correct the pose xt
of the vehicle, we use the current position pt of the vehicle as reference point pref and
therefore omit the pref parameter. Using the vehicle position as reference is desirable, as
it ensures that two lines have a line to line distance of zero, if and only if they have the
same signed distance from the vehicle, i. e., if they are located at the same distance from
the vehicle, independent of their orientation.
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Geometrically Consistent Data Association Matches Given a set of data association
matches M ∈ M, we can now define whether this set M := {(Loi , Lmi)}i∈[1,...,n] is
geometrically consistent (gc) by enforcing that the distances between observed lines are
similar to the distances between the matched mapped lines:

gc (M) := ∀i, j ∈ [1, n] :
∣∣δ (Loi , Loj)− δ (Lmi , Lmj)∣∣ < ε (4.5)

Since the number of observed and mapped lines is usually not too large, the set of all
geometrically consistent data association matches gc (M) can be explicitly computed by
testing the geometric consistency of all possible sets of data association matches, i. e., by
computing gc (M) = {M ∈M | gc (M)}.

However, for a more efficient computation of the set of valid data association matches
Mvalid, we can considerably reduce the number of sets of data association matches that
need to be tested for geometric consistency based on our observation that the Line to Line
Distance between two lines is preserved when shifting both lines laterally by the same
amount of lateral shift slat ∈ R. Based on this observation, we propose to efficiently
generate sets of data association matches M (slat) that are geometrically consistent by
laterally shifting all observed lines Lo ∈ Fo over the set of mapped lines using this lateral
shift parameter slat ∈ R and associating the shifted observed lines Lo (slat) with their
closest mapped line, according to the Nearest Neighbor data association strategy. To
ensure geometrically consistent matches, we only consider lateral shifts slat ∈ S ⊂ R
that result in a set of matches M (slat), where the Line to Line Distance between the
shifted observed line and its matched mapped line does not exceed the threshold of 1

2
ε.

Mathematically, this parametrization M (slat) of the set of data association matches using
the lateral shift slat ∈ S is defined as follows:

Lm∗ (Lo , slat) := argmin
Lm∈Fm

∆ (Lo (slat) , Lm)

M (slat) := {(Lo , Lm∗ (Lo , slat))} ∈ M

slat ∈ S ⇔ ∀ (Lo , Lm) ∈M (slat) : ∆ (Lo (slat) , Lm) <
1

2
ε

slat ∈ S ⇒ gc (M (slat)) (4.6)

Since it is crucial for our approach that we only consider geometrically consistent
matches, we proof that the last implication, Eq. (4.6), actually holds for all slat ∈ S.

Proof. Let slat ∈ S be a lateral shift parameter so that M (slat) = {(Loi , Lmi)}i∈[1,n]

is a set of data association matches where all matches (Loi , Lmi) ∈ M (slat) satisfy the
condition ∆ (Loi (slat) , Lmi) <

1
2
ε. An equivalent formulation of this condition is:

∆ (Loi (slat) , Lmi) <
1

2
ε⇔ δ (Loi (slat) , Lmi) ∈

(
−1

2
ε,

1

2
ε

)
⇔ d (Loi (slat) , pref)− d (Lmi , pref) ∈

(
−1

2
ε,

1

2
ε

)
(4.7)
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Given any two pairs of matches (Loi , Lmi) ,
(
Loj , Lmj

)
∈ M (s), we conclude that the

difference between the Line to Line distance of the i-th and j-th matches is limited as
follows:

∣∣δ (Loi , Loj)− δ (Lmi , Lmj)∣∣
Eq. (4.4)

=
∣∣δ (Loi (slat) , Loj (slat)

)
− δ

(
Lmi , Lmj

)∣∣
Eq. (4.1)

=
∣∣d (Loi (slat) , pref)− d

(
Loj (slat) , pref

)
−
[
d (Lmi , pref)− d

(
Lmj , pref

)]∣∣
Eq. (4.7)

= | d (Loi (slat) , pref)− d (Lmi , pref)︸ ︷︷ ︸
∈(− 1

2
ε, 1

2
ε)

−
[
d
(
Loj (slat) , pref

)
− d

(
Lmj , pref

)]︸ ︷︷ ︸
∈(− 1

2
ε, 1

2
ε)

|

< ε

This means that

∀i, j ∈ [1, n] :
∣∣δ (Loi , Loj)− δ (Lmi , Lmj)∣∣ < ε.

And therefore, the set M (slat) is geometrically consistent as defined in Eq. (4.5) for all
slat ∈ S.

For a better intuition for the lateral shift parametrization, we show four examples for
different lateral shift parameters in Figure 4.5 in the bottom two rows. The shift parame-
ters s1 and s2 shown in the second row result in matches with large distances (highlighted
in orange) and therefore s1, s2 /∈ S. These large distances indicate that the set of matches
is not geometrically consistent. In contrast, the shifts s3, s4 in the bottom row result in
matches that only have small distances and therefore s3, s4 ∈ S yield geometrically con-
sistent sets of matches.

Considering the fact that the set of observed and mapped lines are quite sparsely dis-
tributed, similar lateral shift parameters result in the same set of data association matches,
since for a small lateral shift, the closest mapped line remains the same for all observed
lines. It therefore makes sense to only consider a discrete set of lateral shifts that result
in different sets of data association matches. Our key idea for determining these discrete
lateral shift parameters si ∈ S is that we can use a single observed line as reference line
Loref ∈ Fo and match it to all mapped lines Fm = {Lmi}i∈[1,|Fm|]. The resulting signed
Line to Line Distance between the i-th mapped line Lmi and the reference line Loref then
defines the lateral shift parameter si := δ (Lmi , Loref). If the i-th shift si is contained in
S and therefore yields a geometrically consistent set of data association matches M (si),
we add it to the set of discrete and geometrically consistent shift parameters Sgc, so that
Sgc :=

{
s1, . . . , s|Fm|

}
∩ S. This yields our set of geometrically consistent data associa-

tion matchesMgc := {M (slat) | slat ∈ Sgc}.
Since our crop row data association is designed for application in a localization tech-

nique, correcting the pose relative to the crop rows closer to the vehicle is more important
than the crop rows at the edge of the field of view. Therefore, we define the reference line
Loref ∈ Fo to be the observed line that is closest the current position of the vehicle pt:
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Figure 4.5: This figure shows an example for a set of valid data association matches
Mvalid for k = 4. The reference line Loref (solid blue) is the observed line closest to the
position of the vehicle pref (black point). The k = 4 map lines Lm1 , Lm2 , Lm3 and Lm4 that
are closest to the reference line Loref according to the Line to Line distance are shown in
red. The other observed lines Lo1 and Lo2 are shown as blue dashed lines. Shifting the ref-
erence line Loref onto each of the 4 closest mapped lines yields a different shift parameter
s1, s2, s3 and s4 respectively. The first two shifts s1 and s2 results in matches (Lo2 , Lm2)
for s1 and (Lo1 , Lm2) for s2 that exceed the Line to Line distance threshold (orange).
Therefore s1, s2 /∈ S and the corresponding set of matches M (s1) ,M (s2) /∈Mvalid. The
sets of valid matches for this example is thereforeMvalid = {M (s3) ,M (s4)}.
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Loref := argmin
Lo∈Fo

d (Lo , pt) (4.8)

Towards satisfying our second requirement of only considering matches that infer a
reasonable amount of pose correction, we constrain the number of considered lateral
shifts si ∈ Sgc – and therefore the number of considered sets of data associations by
only using the k map lines Lm1 , . . . , Lmk that are closest to the reference line Loref . Re-
stricting the number of considered data association matches to the k closest mapped line
matches limits the amount of lateral shift considered to a maximum of sk = δ (Lmk , Loref)
which is directly correlated to the amount of inferred lateral pose correction. Com-
bining the locality and the geometrical consistency requirements, we define the set of
valid lateral shifts Svalid as the subset of shifts of s1, . . . , sk that are also contained in
Sgc, so that Svalid := {s1, . . . , sk} ∩ Sgc. Consequently, the set of valid data associa-
tion matches Mvalid, that are both geometrically consistent and local is then defined as
Mvalid :=

{
M (slat) | slat ∈ Svalid

}
. We give a detailed example for this definition of the

set of valid data association matches in Figure 4.5.

Measuring the Overlap between Observed and Mapped Lines For designing our
Target function according to the Positive Information criterion, we need to measure how
well a given set of data association matches M ∈Mvalid overlaps the observed crop rows
Fo onto the mapped crop rows Fm. Based on the parametrization of a two-dimensional
line Lθ,r into its orientation θ and offset from the origin r, we know that two lines are
perfectly overlapping, i. e., they are the same lines, if their corresponding parameters are
equal. However, since crop rows are usually sown in approximately parallel lines, the
angular difference between the matched crop rows will always be approximately constant,
i. e., |θo, θm| ≈ c ∀ (Lo , Lm) ∈ Fo × Fm. Since this yields the same angular difference
value |θo − θm| ≈ c independent of the set of data association matches M this measure
does not yield any discriminative information and should therefore not be considered
when designing the values of our Target function t (M). Thus, we measure how well a
set of data association matches M ∈ Mvalid overlaps the observed lines onto the mapped
lines according to the second line parameter, the offset parameter r. Here, we leverage
again our definition of the Line to Line distance and define that an observed line overlaps
well with its mapped line, if they have the same signed distance from the vehicle, i. e., if
∆ (Lo , Lm) is small. These considerations lead to the following definition of our Target
function:

t (M) := −
∑

(Lo ,Lm )∈M

∆ (Lo , Lm) ∈ R≤0 (4.9)

Since ∆ (Lo , Lm) is a distance measure, smaller values correspond to a better overlap
between observed and mapped data. We therefore use the negative sum of the Line to Line
Distance over all matches in M to define the score t (M). This definition yields a higher
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score, i. e., values closer to zero, for matches that have a small Line to Line Distance and
a lower score for matches with a larger Line to Line Distance.

Using our definition of the valid set of data association matchesMvalid, as set of local
and geometrically consistent data association matches as well as the definition of our
Target function t, our data association approach can be summarized as follows:

Svalid := {s1, . . . , sk} ∩ Sgc ⊂ R Mvalid :=
{
M (slat) | slat ∈ Svalid} ⊂M

t (M) := −
∑

(Lo ,Lm )∈M

∆ (Lo , Lm) M∗ := argmax
M∈Mvalid

t (M)

In this section, we introduced our Crop Row data association technique that is guar-
anteed to find geometrically consistent sets of matches. A consistent data association
between the detected Pattern of crop rows and a GPS-referenced map of crop rows is a
crucial requirement when fusing global GPS position information with the local informa-
tion of a detected crop row Pattern. While the crop rows provide accurate heading and
lateral information, they inherently do not contain longitudinal information. However,
when the vehicle approaches the end of the field so that the end of the crop row structure
is also visible in the sensor data, this information can be used to obtain longitudinal infor-
mation about the position of the vehicle as well. In the next section, we therefore present
our approach for detecting the end of the field in local sensor data.

4.3.2 Detecting the End of the Field

In this section, we focus on the longitudinal measurement δlong required to correct the
pose estimate in a localization algorithm in direction of the crop rows. To this end, we
first need to detect the end of the field in the provided sensor data. Then, we explain how
we use this information as well as the measurements from the GPS to obtain a longitudinal
measurement δlong for the localization algorithm.

While the detected crop row Pattern Pθ,s,o contains information about the orientation (θ)
and lateral position (s, o) of the crop rows, it does not provide any information about the
length of the crop rows. This is not critical when only driving in-row, where the crop rows
usually span the whole field of view of the sensor. However, as the vehicle approaches
the end of the field, the crop rows perceived in the sensor data do not necessarily span the
whole field of view anymore. This means, that an end of the crop row structure is visible
in the sensor data, which defines the end of the field. We show an example for the end
of the field in sensor data on the left of Figure 4.6. Therefore, by explicitly determining
the end of the crop row structure, which we call the extent of a Pattern, we also detect the
end of the field. To determine the end of the crop row structure, the extent of a Pattern,
we need to compare the detected Pattern with the perceived information about the crop
row structure. This information is contained in form of the vegetation feature distribution
in our Feature Map. When comparing the Feature Map with the Pattern as shown on the
right of Figure 4.6, the extensions of the Pattern are clearly visible as the border between
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Figure 4.6: This figure shows the end of the field in the raw image data on the left and on
the processed vegetation information on the right. We visualize the vegetation features in
the Feature Map as dark green cells. The detected Pattern Pθ,s,o is shown using blue lines.
The Pattern extensions Lmin and Lmax, i. e., the lines orthogonal to the Pattern that include
all parts of the Pattern that are supported by the vegetation information of the Feature
Map, are illustrated as magenta lines. The line further away from the vehicle Lmax then
represents the end of the field.

the parts where the Pattern lines are supported by the vegetation feature distribution and
where they are not supported.

Based on this observation, we therefore propose an End of the Field detection approach
by distinguishing supported and unsupported parts of the detected Pattern, where we call
the supported parts of a Pattern a Pattern segment. In the following, we properly define
these supported parts of the Pattern, the Pattern segments, and then use this definition to
determine the extensions of a Pattern Lmin and Lmax, where the maximum extension line
Lmax, i. e., the line further away from the vehicle, then represents the detected end of the
field.

To determine the supported parts of a Pattern based on the information contained in
the Feature Map, we transfer the continuous definition of the Pattern Pθ,s,o into the grid
representation of the Feature Map by computing the set of Pattern cells CP , which contains
all cells cP of the Feature Map that are passed by a line of the Pattern. We illustrate this
set of Pattern cells CP as blue cells in Figure 4.7. To determine the supported parts of the
Pattern, the Pattern segments, we first define the support on each individual Pattern cell
cP ∈ CP . We then use this definition of the support of individual Pattern cells to cluster
well supported Pattern cells into Pattern segments.

Support of a Pattern Cell Our key idea is that we can measure the support sup (cP ) of
any Pattern cell cP by measuring if the vegetation features of the crop row at this position
are distributed according to the detected crop row structure. Using the detected spacing
between the crop rows, i. e., the pattern spacing parameter s of the detected Pattern Pθ,s,o,
all features that lie within a lateral distance of half the spacing belong to the corresponding
crop row. We illustrate this in Figure 4.7 using a solid light blue line for the 1

2
s threshold to

separate the vegetation features of neighboring crop rows. We denote the set of vegetation
feature cells that belong to the Pattern cell cP as C 1

2
s (cP ) (light green cells in Figure 4.7).

The support of a Pattern cell cP is then computed by accumulating all vegetation feature
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Figure 4.7: This figure shows the Pattern cells CP of the detected Pattern Pθ,s,o as blue
cells. We also visualize the relevant threshold of 1

2
s that separates the vegetation features

(dark green cells) of adjacent crop rows as solid light blue lines. We show the Feature
Map cells within this threshold for every fifth pattern cell cP in gray and highlight the
cells that contain vegetation feature cells in light green. For each Pattern cell cP , the
highlighted light green vegetation feature cells are contained in the set C 1

2
s (cP )

cells that belong to this Pattern cell cP . Since vegetation features closer to the detected
crop row, and therefore closer to the Pattern cell, support the detected Pattern better, we
reward vegetation features closer to the Pattern cell cP by using a larger weight and punish
vegetation features that have a distance close to 1

2
s, since this means that they lie between

two crop rows and therefore oppose the detected Pattern. Vegetation features that lie
between those two extremes, i. e., at a distance of around one quarter of the spacing, do
neither support nor oppose the detected crop row structure. Therefore, we assign them a
weight of zero. For smooth transitions between those weights, we decide to use a sigmoid
function Ss that is scaled and shifted according to the detected spacing parameter s and
our weight value requirements as shown in Figure 4.8.

Additionally, we also need to take into account that a Pattern line might be slightly
offset to individual vegetation feature clusters, i. e., crops, due to irregular plant growth,
or crops that are not sown in perfectly straight lines. Thus, we also shift the Pattern cell
cP in lateral direction of the detected crop rows, i. e., in direction of θ, to find the best
supported cell c∗ (cP ) within a window C 1

4
s (cP ) of a quarter pattern spacing s around the

Pattern cell cP . Per definition, this best supported cell c∗ (cP ) either lies at the center of
the vegetation cluster or at the edge of the window C 1

4
s (cP ) if the vegetation cluster is

outside of the window C 1
4
s (cP ). We therefore call this best supported cell the crop row

center of the Pattern cell cP . The support computed at the crop row center c∗ (cP ) then
defines the support sup (cP ) of the according Pattern cell cP :
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Figure 4.8: This show the sigmoid function Ss (orange) used for computing the support
of a Pattern cell cP . It is scaled, shifted and mirrored, so that the weights are computed
according to our requirements: Vegetation features that coincide with the detected Pattern
(blue line), i. e., vegetation feature cells with a distance of 0, support the detected Pattern
best and therefore are assigned the highest weight of 1. In contrast, vegetation features
close to the maximum distance of 1

2
s (solid light blue line) are punished with a low neg-

ative weight down to −1. Vegetation features that lie in the middle at around 1
4
s (dashed

light blue line) do not contain much information and therefore only contribute by a small
amount with weights close to 0.

sup (cP ) := sup (c∗ (cP ))

c∗ (cP ) := argmax
cshift∈C 1

4 s
(cP )

sup (cshift)

sup (cshift) :=
∑

c∈C 1
2 s

(cP )

Ss (|c− cshift|)

In Figure 4.9, we illustrate the shifted cells C 1
4
s (cP ) considered when computing the

support of a Pattern cell cP as well as the resulting crop row center c∗ (cP ).

Supported Part of a Pattern – The Pattern Segment Using the support sup (cP ) of
individual Pattern cells, we can now determine which parts of each line of the Pattern
are supported by the crop row structure. Since the support sup (cP ) of a Pattern cell cP
is by design positive, if the vegetation features around the Pattern cell P show a crop
row structure that supports the detected crop row Pattern, we say that a Pattern cell is
supported, if sup (cP ) is larger than zero. All supported Pattern cells of our example are
highlighted in Figure 4.10.

We use this definition of a supported Pattern cell to cluster all supported Pattern cells
into Pattern segments, where each Pattern segment only consists of Pattern cells that be-
long to the same line. We also split each line into multiple Pattern segments, if there is
a large gap between adjacent supported Pattern cells, i. e., if there is a large unsupported
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Figure 4.9: This figure shows the crop row centers for all Pattern cells cP ∈ CP (orange).
We also visualize the shifted cells C 1

4
s (cP ) considered during support computation in

gray as well as the corresponding distance threshold 1
4
s using a dashed light blue line.

The threshold 1
2
s that separates vegetation features of adjacent crop rows is again shown

as solid light blue line. The vegetation feature cells of the Feature Map are shown in dark
green and the Pattern cells in blue. Most crop row centers coincide with the Pattern cells
due to the sparse distribution of vegetation features.

Figure 4.10: This figure shows the supported Pattern cells (magenta) as well as their
corresponding crop row center cells (orange). Unsupported Pattern cells or cells without
vegetation feature information and therefore a support value equal to 0 are shown in blue.
The vegetation feature cells of the Feature Map are shown in dark green.
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part along the line of more than 1.0 m. A Pattern Segment SP is therefore a cluster of
mostly supported Pattern cells: SP ⊂ CP .

Due to noisy vegetation feature distribution as well as wild vegetation growing at the
headlands, this segmentation step can also lead to small fragmented Pattern segments.
We therefore choose one Pattern segment as representative for each line L in the detected
Pattern Pθ,s,o according to the following criteria: First, the Pattern segment should exceed
a minimum length l (SP ) of 1.5 m to ensure that it corresponds to a large part of a crop
row. Second, it should also be well supported and therefore contain a large amount of
supported cells depending on its length, i. e., it should have a high enough density d (SP )
of at least 0.2 supported cells per meter. Third, to ensure that the Pattern Segment does
not correspond to a large unstructured cluster of vegetation features at the headlands, it
should also contain only few Pattern cells with a negative support value, i. e., the invalid-
valid ratio r (SP ) of the number of Pattern cells with negative support value divided by
the number supported Pattern cells should also not be larger than 90 %. These properties
are computed on the Pattern cells cP of the Pattern Segment SP as follows:

l (SP ) := max
c′P ,c

′′
P∈SP

‖c′P − c′′P‖

d (SP ) :=
|{cP ∈ SP | sup (cP ) > 0}|

|SP |

r (SP ) :=
|{cP ∈ SP | sup (cP ) < 0}|
|{cP ∈ SP | sup (cP ) > 0}|

If more than one Pattern Segment satisfies these conditions, we choose the Pattern Seg-
ment that is closer to the position of the vehicle, since the vehicle is still within the field
and therefore the crop rows are located closer to the vehicle than the headlands. If such
a representative Pattern Segment SP for a Pattern line L ∈ Pθ,s,o is found, it defines the
support of this Pattern line sup (L) = SP as a set of mostly supported Pattern cells. If
no such representative is found, the corresponding Pattern line L is not supported and
therefore not considered in the following steps. This yields a finite set of supported Pat-
tern lines L1, . . . , Ln with corresponding Pattern Segments sup (L1) , . . . , sup (Ln) which
represents the support of the whole Pattern sup (Pθ,s,o) := {sup (L1) , . . . , sup (Ln)}. An
illustration of these supported lines and their Pattern segments is shown in Figure 4.11.

The Pattern Extensions Using the support of the Pattern sup (Pθ,s,o) extracting the
extent of the Pattern is now straightforward: We shift a line Lθ⊥,r that is orthogonal to the
direction of the Pattern across the entire Feature Map and determine the two lines Lmin

and Lmax that are closest to and furthest from the current position pt of the vehicle while
still passing through a cell in the Pattern support sup (Pθ,s,o) :
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Figure 4.11: This figure shows the Pattern Segments (purple) based on the supported
Pattern cells (magenta). The resulting supported Pattern lines L1, L2 and L3 are shown in
blue. The Pattern extensions computed from this information is shown as magenta lines
Lmin and Lmax. The vegetation features cells of the Feature Map are shown in dark green.

Rvalid :=
{
r ∈ R | ∃ cP ∈ sup (Pθ,s,o) ∩ Lθ⊥,r

}
⊂ R

Lmin := argmin
r∈Rvalid

d
(
Lθ⊥,r, pt

)
Lmax := argmax

r∈Rvalid
d
(
Lθ⊥,r, pt

)
We show the resulting minimum and maximum Pattern extensions Lmin and Lmax in

Figure 4.11.
Since the Pattern extensions are well defined, we can always determine the maximum

Pattern extension Lmax. However, the maximum extension of the Pattern Lmax is not al-
ways the same as the end of the field. In fact, while the vehicle is traversing the field
in-row, the Pattern extensions usually coincide with the edges of the Feature Map since
the crop rows span the whole field of view of the sensor. These extensions do not rep-
resent the end of the field, but rather the end of the Feature Map. Therefore, we only
say that the end of the field was detected if the following two conditions hold: First, the
current position pt of the vehicle is close enough to the end of the field so that the vehicle
could perceive the end of the field. Second, the Pattern extensions do not coincide with
the edges of the Feature Map. If both conditions hold, the maximum extension Lmax actu-
ally represents the end of the field and thus we say that the end of the field in form of the
maximum Pattern extension Lmax was detected.

In this section, we presented our End of the Field detection to provide additional lon-
gitudinal information obtained from the crop row structure perceived in the local frame
of the vehicle. In the following section, we explain in-depth how our End of the Field
detection as well as the Crop Row data association from the previous section can be used
to consistently fuse the information from the GPS in the global reference frame with the
detected crop row structure in the local frame of the vehicle.
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4.3.3 Fusing GPS data and Crop Row Detections for Localization

The problem of localizing a vehicle in an environment based on relative motion mea-
surements and sensor measurements is usually formulated as follows: Given a map m
of the environment as well as time-synchronized relative motion measurements ut and
sensor measurements zt for every time step t, a localization algorithm should estimate the
pose x̂t of the vehicle inside the map m for every time step t. Most localization tech-
niques intended for online localization compute this pose estimate x̂t iteratively. Given
the previous pose estimate x̂t−1 these iterative techniques use the current relative motion
measurement ut and the current sensor measurement zt to derive an estimate for the cur-
rent pose x̂t of the vehicle. First, the relative motion measurement ut is used to predict
the pose estimate x̄t depending on the previous pose estimate x̂t−1. This step is there-
fore called the Prediction Step. Next, the sensor measurement zt is used to correct the
predicted pose estimate x̄t, which yields the pose estimate x̂t for this time step t. This
second step is called the Correction Step.

Since our approach is focused on localization of a ground vehicle, estimating the pose
of the vehicle on the two-dimensional plane is sufficient. We therefore define the pose of
the vehicle x as three-dimensional vector consisting of a heading parameter θ ∈ [−π, π]
and a position parameter p = (x, y)T ∈ R2. The heading parameter describes the orien-
tation and the position parameter the translation of the vehicle relative to the coordinate
system defined by the mapm of the environment. We therefore call this coordinate system
the map frame. The pose of the vehicle x also defines a local coordinate system relative
to the map frame. This local frame has its origin at the position p of the vehicle and is
rotated so that the x-axis is facing in the direction of the heading θ of the vehicle.

Relative motion measurements ut that measure the difference between the previous
pose xt−1 and the current pose xt, are usually obtained from wheel odometry and an IMU
by directly formulating the raw data as relative transforms between both vehicle poses
with parameters δθt for the measured change in the heading of the vehicle and δxt and δyt
for the measured change in position of the vehicle. In the following we use ⊕ to denote
the operation that transforms the previous pose xt−1 onto the current pose xt using ut,
i. e.,xt = xt−1 ⊕ ut, so that the heading of the vehicle is first rotated by δθt and then
translated according to (δxt, δyt)

T .
The more challenging part is to derive the sensor measurement zt from the raw data

of the sensors that are intended to be used to correct the pose of the vehicle. In our sce-
nario, these are the GPS position data in form of a position pGPS

t in the map frame as well
as the detected Pattern Pt from the perceived image data It in the local frame. Along
with the definition of the sensor measurement zt, we also need to define a measurement
prediction function h (xt) that predicts a sensor measurement z̄t based on a given vehi-
cle pose xt and the map m. This prediction function h (xt) is required to compute the
residual yt := zt − h (xt) that describes how the measured information deviates from the
expected information and therefore defines how the predicted pose estimate x̄t needs to
be corrected.

In the following, we therefore first explain how we define the zt and the measurement
prediction function h (xt) to fuse the information provided from the GPS position data
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pGPS
t as well as the detected Pattern Pt. Then, we demonstrate how this fused sensor

measurement can be used in the Correction Step of a localization algorithm by deriving
the mathematical formulations for two different localization techniques.

The Sensor Measurement Our key observation for fusing GPS position information
pGPS
t with the information of the detected Pattern Pt = Pθ,s,o is that the detected Pattern

can only provide heading and lateral corrections, since it consists of lines that have an
orientation θ and a lateral offset depending on the s and o parameters. On the other hand,
while the GPS position information cannot provide heading information, it can provide
lateral and longitudinal corrections. We therefore propose to define the sensor measure-
ment zt as a three-dimensional vector zt := (zθ,t, zlat,t, zlong,t)

T ∈ [−π, π] × R2. The first
component zθ,t describes the orientation of the crop rows relative to the heading θt of the
vehicle. The second component zlat,t defines the lateral offset, or distance, of the crop
rows to the position pt of the vehicle. The third component zlong,t defines the measured
longitudinal offset, i. e., in direction of the crop rows, of the corresponding information.

The crucial advantage of this definition is that we can now explicitly control which
type of sensor information determines which component of the sensor measurement. The
detected Pattern Pt = Pθ,s,o, for example, only contains information about the orientation
and lateral offset of the crop rows. It should therefore influence the first and second
component of the sensor measurement zθ,t and zlat,t but not the third component zlong,t.
In contrast, the GPS position pGPS

t only contains position information and no information
about the orientation of the vehicle. It should therefore only affect the zlat,t and zlong,t

sensor measurement components. If the end of the field is detected, the Pattern also
contains the longitudinal information in form of the maximum extension line Lmax. In
this case, the detected Pattern also influences the third component zlong,t.

For a better intuition we illustrate all four components of the sensor measurement in
the left column of Figure 4.12 in detail. We define the heading measurement zθ,t as the
difference between the normal of the crop rows θ and the heading of the vehicle θt. For
the second component zlat,t recall that Loref is defined in Eq. (4.8) in Section 4.3.1 as the
observed line that is closest to the vehicle. Our lateral measurement zlat,t is therefore the
by amount smallest signed distance of any detected crop row to the position of the vehicle
pt. The longitudinal sensor measurement according to the end of the field information
zEOF

long,t is the signed distance of the maximum extension line Lmax to the position of the
vehicle pt. In order to define the longitudinal GPS measurement zGPS

long,t, we project the
GPS position pGPS

t onto the unit vector v
(
θGPS
m

)
that points in the direction of the mapped

line LGPS
m ∈ Fm that is closest to the vehicle position pt. The vector v (α) denotes the

directional vector of the angle α on the unit circle: v (α) := (cos (α) , sin (α))T . This
yields the following definition for the sensor measurement zt given the GPS position pGPS

t

and the detected Pattern Pt = Pθ,s,o with the detected end of the field Lmax:
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zθ,t := θ − θt
zlat,t := d (Loref , pt)

zGPS
long,t := v

(
θGPS
m

)
· pGPS

t

zEOF
long,t := d (Lmax, pt) .

Whenever different sources of information, i. e., the Pattern and the GPS, provide in-
formation for the same component, i. e., the lateral and longitudinal sensor measurements
zlat,t and zlong,t, we choose the information that we expect to be more accurate. For the
lateral component we use the information from the detected Pattern, since we expect it to
be more accurate (below 0.1 m) than the GPS information (around 3.0 m). For the lon-
gitudinal component, we use the information provided by the GPS, unless the end of the
field was detected.

The Expected Measurement Based on the definition of each component of the sen-
sor measurement zt, we also define the measurement prediction function h (xt) that pre-
dicts the expected sensor measurement z̄t from the pose of the vehicle xt and the GPS-
referenced map of crop rows m. Since we used the observed line Loref that is closest to the
vehicle for the lateral component of the sensor measurement zlat,t, we also need to define
the expected lateral sensor measurement relative to the associated mapped line Lmref ∈ m.
We determine this associated mapped line using our Crop Row data association from
Section 4.3.1. To compute the data association between the detected Pattern Pt and the
map m, we first use our definition of the support of a Pattern from Section 4.3.2 to extract
a finite set of supported lines {Lo1 , . . . , Lon} from the detected Pattern Pt and thus define
the set of observed line features Fo := {Lo1 , . . . , Lon}. Using Fm := m, our Crop Row
data association then finds the best geometrically consistent set of matches M∗, where
set match (Loref , Lmref) ∈ M∗ defines the our associated mapped line Lmref . Using this
mapped reference line Lmref := LlineThetaMapRef,rmref

, we define the measurement predic-
tion function z̄t = h (xt) as follows:

hθ (xt) := θmref − θt
hlat (xt) := d (Lmref , pt) = v (θmref) · pt − rmref

hGPS
long (xt) := v

(
θGPS
m

)
· pt

hEOF
long (xt) := d

(
Lmax
m , pt

)
= v (θmax

m ) · pt − rmax
m .

For better intuition, we visualize these definition in the center column of Figure 4.12.
Analogue to the observed measurement zt, we define the angular and lateral offset using
the associated mapped line Lmref instead of the observed reference line Loref . Thus, we
compute the difference between the angular parameter θmref of the associated mapped line
Lmref and the heading of the vehicle θt, as well as the signed distance of the associated
mapped line Lmref to the position of the vehicle pt. Similar to the longitudinal observed
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Figure 4.12: This figure shows an overview of the angular, lateral and longitudinal com-
ponents (top to bottom) of the observed sensor measurement z (left), the expected sensor
measurement z̄ (mid) and the resulting residual y (right). The illustrated measurements
are highlighted in orange. The sensor information contained in the GPS position pGPS

t as
well as the detected Pattern Pt = Pθ,s,o are shown in blue colors, while the information
from the map is shown in red. The vehicle pose as well as the origin O and the coordinate
system are shown in black.
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measurement for the GPS information zGPS
long,t, we also project the position of the vehicle

pt onto the same unit vector v
(
θGPS
m

)
, thereby using the longitudinal projection of the

position of the vehicle pt as expected measurement z̄GPS
long,t.

For the expected longitudinal measurement according to the end of the field z̄EOF
long,t, we to

determine the end of the field Lmax
m in the map m. To this end, we use the same procedure

as described for determining the end of the field from the support of the Pattern, i. e., we
compute the extensions of the field over the mapped lines Lm ∈ Fm, where we assume
that the start and end point of each crop row is known, so that the support of these lines
can be easily computed. Since the vehicle is inside the field, this yields two extension
lines Lmin

m and Lmax
m , where the minimum extension line Lmin

m lies behind the vehicle and
the maximum extension line Lmax

m lies in front of the vehicle. The expected end of the
field measurement z̄EOF

long,t is therefore the signed distance of the maximum map extension
line Lmax

m to the position of the vehicle pt.

The Residual Using our definitions of the sensor measurement zt and the expected
sensor measurement z̄t = h (xt), we obtain the following definition for the residual yt =
zt − h (xt):

yθ,t = zθ,t − hθ (xt) = θ − θt − (θmref − θt)
= θ − θmref =: δθ

ylat,t = zlat,t − hlat (xt) = d (Loref , pt)− d (Lmref , pt)

= δ (Loref , Lmref) =: δlat

yGPS
long,t = zGPS

long,t − hGPS
long (xt) = v

(
θGPS
m

)
· pGPS

t − v
(
θGPS
m

)
· pt

= −d
(
LGps
⊥ , pt

)
=: δGPS

long

yEOF
long,t = zEOF

long,t − hEOF
long (xt) = d (Lmax, pt)− d

(
Lmax
m , pt

)
= δ

(
Lmax, Lmax

m

)
=: δEOF

long

All components of the residual are also shown in the right column of Figure 4.12. Here,
we call the component-wise residuals the angular correction δθ, the lateral correction δlat

and the longitudinal correction δlong, so that the residual is yt = (δθ, δlat, δlong)
T . Note

that the lateral and longitudinal corrections relative to the detected Pattern δlat and δEOF
long

are computed using our Line to Line Distance measure δ. Also note that the longitudinal
correction for the GPS δGPS

long yields the negative point to line distance of the position of
the vehicle pt to the line LGps

⊥ that is perpendicular to the mapped line LGPS
m and passes

through the GPS position pGPS
t .

For convenience, we call the angular parameter θmref of the mapped line Lmref associated
with the observed reference line Loref , according to which the expected lateral measure-
ment z̄lat,t is computed, the lateral correction angle θlat := θmref , since it also defines the
orientation in which the lateral correction δlat should be applied. Analogue, we define the
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longitudinal correction angles θGPS
long := θGPS

m and θEOF
long := θmax

m as these are the angles used
for computing the expected longitudinal sensor measurement z̄long,t and therefore also the
angles under which the longitudinal correction δlong should be applied.

The Gradient Descent (GD) The Gradient Descent (GD) localization tracks is an intu-
itive technique that directly tracks the pose of the vehicle. The state estimate sGD

t at a time
step t is therefore equal to the pose estimate x̂t at that time step. In the prediction step, the
measured relative motion of the vehicle ut is directly applied to the previous pose estimate
x̂t−1 to predict the pose estimate x̄t of the current time step. Similarly, the heading δθ,
the lateral δlat and the longitudinal δlong correction measurements are also applied to the
predicted pose of the vehicle in a straightforward fashion. Here, we require the reference
angles θlat and θlong to compute the direction in which the position of the vehicle should
be corrected. This results in the following mathematical definition of the GD localization
method:

sGD
t := x̂t

x̄t := x̂t−1 ⊕ ut

x̂t := x̄t ⊕ αθ ·

δθ0
0

⊕ αlat ·

 0
δlat · cos (θlat)
δlat · sin (θlat)

⊕ αlong ·

 0
δlong · cos (θlong)
δlong · sin (θlong)


The scaling parameters αθ, αlat, αlong ∈ R>0 determine how strongly we correct the

predicted pose estimate x̄t in the direction of the corresponding correction measurement.

The Extended Kalman Filter (EKF) The Extended Kalman Filter (EKF) is a proba-
bilistic localization approach that estimates the current pose of the vehicle using a Gaus-
sian distribution NΣt,µt , where the mean µt is the current pose estimate x̂t and the co-
variance matrix Σt estimates the uncertainty of the current pose estimate x̂t. The state
estimate sEKF

t is therefore comprised of both Gaussian parameters µt and Σt at every time
step t.

sEKF
t := (µt,Σt)

The prediction step of the EKF then predicts the current state s̄t by shifting the Gaus-
sian distribution according to the measured relative motion ut and adding uncertainty by
widening the covariance matrix according to the expected accuracy of the measured rela-
tive motion ut modeled by the matrix Qut .



4.3 Crop Row Localization on a GPS-referenced Map 97

s̄EKF
t :=

(
µ̄t, Σ̄t

)
µ̄t := µt−1 ⊕ ut
Σ̄t := Fut · Σt−1 · F T

ut +Qut

For our implementation, we define the motion model Fut and the uncertainty introduced
by a motion Qut for a relative motion ut = (δθt, δxt, δyt) as follows:

Fut :=

 1 0 0
fx 1 0
fx 0 1

 , with
(
fx

f y

)
=

− sin
(
θ̂t

)
− cos

(
θ̂t

)
cos
(
θ̂t

)
− sin

(
θ̂t

) · (δxt
δyt

)

Qut :=

qθ 0 0
0 qx 0 0
0 0 qy

 , with
(
qθ qx qy

)
= A ·

|δθt||δxt|
|δyt|

+ a.

The matrix A ∈ R3 × R3 and the vector a ∈ R3 are parameters of the motion model
that need to be determined depending on the accuracy of the measured relative motion.

Given a measurement prediction function h (xt) and a measurement noise matrixR, the
EKF corrects the predicted pose estimate using the residual yt and the Jacobian matrix H
of the measurement prediction function h (xt) by computing the Kalman Gain K. The
correction step of the EKF is then defined by the following equations:

µt := µ̄t +K · yt
Σt := (I −K ·H) · Σ̄t

yt := zt − h (xt)

K := Σ̄t ·HT ·
[
H · Σ̄t ·HT +R

]
The Jacobian matrix H contains the partial derivatives of each component of our mea-

surement prediction function h (xt) and is therefore defined as follows:

H :=

−1 0 0
0 cos (θlat) sin (θlat)
0 cos (θlong) sin (θlong)

 ,

We model the measurement noiseR using component-wise parameters rθ, rlat, rGPS
long and

rEOF
long :

R :=

rθ 0 0
0 rlat 0
0 0 rlong

 ,
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where rlong is set to either rGPS
long , if the longitudinal measurement residual was computed

using the GPS position measurement pGPS
t and to the rEOF

long otherwise.
In this section, we presented our novel approach for fusing local information from crop

row detections with global GPS information to enable accurate pose estimation in all three
parameters of the pose of a ground vehicle. This includes our Crop Row data association
that finds a geometrically consistent set of matches between the GPS-referenced set of
mapped lines and the detected crop rows, as well as an End of the Field detection that
provides additional longitudinal information to the heading and lateral information usu-
ally obtained from the crop row structure of the field. Finally, we explain in-depth how the
information obtained from global GPS information and local crop row detections should
be fused, by splitting the provided information into a heading, lateral and longitudinal cor-
rection measurement for each modality. We also derive the mathematical models for two
different localization techniques to demonstrate how to apply these heading, lateral and
longitudinal corrections in a localization algorithm. In the next section, we perform an
extensive evaluation of both localization algorithms on data collected from a production
vegetable field. The results will show, that our approach of fusing GPS information with
crop row detections is well suited for autonomous navigation applications, since it accu-
rately tracks not only the heading and lateral position of the vehicle relative to the crops,
but also provides an accurate longitudinal pose estimate within a global GPS reference
frame.

4.4 Experimental Evaluation
In this section, we evaluate the performance of our fused localization approach on two
real-world data sets recorded on a production vegetable field in Eichstetten. For an unbi-
ased evaluation of the performance of our localization algorithms, we need to ensure that
the Patterns Pt are reliably and accurately detected on the three new crop types encoun-
tered in the two data sets of this evaluation. To confirm our findings from the previous
chapter that the detected Patterns Pt are well suited as input to a localization algorithm,
we perform the evaluation from the previous chapter on both data sets of this evaluation
in our first experimental evaluation. After determining the accuracy and robustness of our
crop row detection on the two data sets of this evaluation, we evaluate the performance of
our fused localization approach in the following experiments. In our second evaluation,
we first compare the performance of our fused localization approach with the performance
of a pure crop row following approach as well as a pure GPS-based localization. The goal
of this comparison is to confirm that our proposed fused localization can indeed lever-
age the advantages of both localization approaches while also maintaining the accuracy
of each individual approach. In the third experimental evaluation, we then investigate
how additionally integrating the information from detecting the end of the field improves
the longitudinal position estimate, especially compared to our vanilla fused localization,
where the longitudinal position estimate is based on GPS information. Finally, we also
show qualitative results of the investigated localization algorithms and discuss relevant
facts and findings for applying our proposed localization method in an autonomous nav-
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igation system. In the following section, we first give an overview of the recorded data
sets as well as the experimental setup required for our experimental evaluation.

4.4.1 Methodology

In this section, we give an overview over the data on which we perform the experimental
evaluation in the following sections. This also includes a brief explanation of the required
preprocessing steps to obtain the information required as input for the investigated local-
ization methods. We also explain how we obtained the necessary ground truth poses to
evaluate the Heading Error, the Lateral Error as well as the Longitudinal Error of each
localization algorithm. Finally, we present seven different localization algorithms, where
two are representatives for pure crop-row-following-based localization, one represents a
pure GPS-based localization, and the remaining four are based on our fused localization
approach. During our evaluation we use the first three of these localization algorithms for
comparison.

Data Set Overview and Preprocessing For our experimental evaluation, we recorded
two data sets on the production vegetable field in Eichstetten presented in Section 2.1.3.
The field features three different crop types, Kohlrabi, Chinese Cabbage and Sweetheart
Cabbage, that even change mid row. We recorded both data sets with our robotic platform
the BoniRob while driving at different speeds of up to 4 m/s. We call the first data set
that was recorded in the morning the Run 1 data set and the second data set that was
recorded in the afternoon of the same day the Run 2 data set. This yields two sets of time
synchronized data streams, where we have the following measurements for each time
step t of the data set: The wheel odometry information ot, the IMU measurements it, the
GPS data gt as well as images It. A detailed overview of the sensors mounted on the
BoniRob, that were used to record this data is given in Section 2.1.2. In the following,
we explain how we preprocess the recorded raw data into the required input information
for our localization algorithms. This includes computing the measured relative motion
ut according to the odometry and IMU readings ot and it, defining the map frame and
transforming the GPS data gt into this map frame, generating a map m of GPS-referenced
crop rows as well as detecting crop rows as Pattern Pt from the recorded image data It.

Given the sensor readings from odometry ot and IMU it, we directly integrate both into
a unified relative motion measurement ut = (δθt, δxt, δyt) for every time step t. We use
the relative translational motion measured by the wheel odometry ot as the translational
part (δxt, δyt) of the relative motion ut. The change in the yaw orientation according to
the IMU it measurement determines the heading component δθt of the relative motion.
Since the IMU readings start to notably drift when the vehicle is not moving, we only in-
tegrate IMU readings it, if the vehicle is moving according to previously integrated wheel
odometry measurements ot′ , . . . , ot−1. Note that these relative motion measurements are
defined in the local frame of the vehicle.

The raw GPS data gt is in the format of latitude and longitude that describes a global
position on the earth in angular units. We convert these global GPS positions into metrical
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units relative to a manually defined fixed GPS reference position gref using the UTM
conventions. This defines our map frame in metrical units, where the GPS reference gref

is the origin, the x axis points towards east and the y axis towards north. In the following,
we convert all GPS measurements gt into the metrical GPS-referenced format pGPS

t of our
map frame.

To generate a GPS-referenced map m of crop rows, we need to determine the position
of each crop row of the field in our map frame. To this end, we performed a separate
Mapping Run, where we drove the BoniRob around the edges of the field and stopped
at the start and end of each crop row. We then use the average over all GPS position
data while the BoniRob was standing at the corresponding start or end of a crop row to
determine a GPS-referenced position of the start and end point of each crop row of the
field. Using this information, we obtain a GPS-referenced map m of crop rows, i. e., a
set of mapped lines m := {Lm1 , . . . , Lmm}, where each line is defined using the GPS-
referenced start and end points of each row. In our experimental evaluation, we use this
map m of GPS-referenced crop rows as input to our localization algorithms for both data
sets Run 1 and Run 2. For a qualitative overview of the size of the field as well as the
distribution of crop rows, we show a visualization of our map m in Figure 4.13. While
obtaining the mapm as described above is reasonable for our evaluation, it is quite tedious
in practice. However, such a map m could also be obtained more efficiently as described
in the previous chapter in Section 3.4.4.

For an overview of the fused odometry and IMU measurements ut as well as the trans-
formed GPS data pGPS

t passed to our localization algorithms, we visualize both relative
to our map m in Figure 4.13 for both data sets. Note that the fused odometry and IMU
measurements ut are defined in the local frame of the vehicle. To display these local mea-
surements ut in comparison with the global GPS position data pGPS

t , we need to transform
the local measurements into the map frame. To this end, we manually labeled the initial
pose xman

0 of the vehicle, i. e., the heading and position of the vehicle at time step t = 0
for each data set. We then iteratively apply the relative motion measurements ut on this
initial pose xman

0 to obtain the trajectory shown in Figure 4.13.
For detecting crop rows from a given image It, we use our crop row detection approach

presented in the previous chapter in Section 3.3. For an overview of the input data pro-
vided to our crop row detection in this evaluation, we list the most important properties
of the vegetable field for Run 1 and Run 2 in Table 4.1. We also show an example image
with corresponding Feature Map for each of the three different crop types that need to be
detected by our crop row detection in Figure 4.14. While the Kohlrabi and the Sweetheart
Cabbage are still at an early growth stage and therefore produce sparser Feature Maps
with a mean vegetation density of 2.78 %, the Chinese Cabbage is at a later growth stage
causing a denser vegetation distribution in the corresponding Feature Maps of around 5 %
during transition and up to 9 % in-row (see Table 4.1). Considering our findings from
the previous evaluation, we expect that detecting crop rows on the denser Feature Maps
of the Chinese Cabbage is more challenging. Therefore the amount of successful Pattern
detections will most likely be lower on this crop type than on the other two crops.

In contrast to the crop fields on which we evaluated our crop row detection approach in
the previous chapter, this vegetable field has an irregular crop row spacing, which can also
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Figure 4.13: This figure shows the GPS positions pGPS
t (gray) as well as the fused tra-

jectory of the wheel odometry ot and IMU it measurements (cyan) relative to our map of
GPS-referenced crop rows (red) for both data sets Run 1 (top) and Run 2 (bottom). The x-
and y-axis of the map coordinate frame are labeled in meters. The fused trajectory shows
a drift in orientation typical for IMU measurements. While the vehicle is standing at the
marker positions for measuring the ground truth poses, the GPS measurements also drift,
which explains the jumps in the GPS positions at the start, the end and in the middle of
each track.

be seen in our GPS-referenced map of the crop rows of the field in Figure 4.13. As men-
tioned in Section 2.1.3, some fields might have a larger spacing between the crop rows
that are adjacent to the wheel tracks to increase clearance between the wheels of agricul-
tural vehicles and the crop. Since our crop row detection is based on the assumption of a
constant spacing between crop rows, we restrict the size of the Feature Map in this eval-
uation so that only the inner crop rows, i. e., the crop rows between the wheel tracks, are
visible in the Feature Map (see Figure 4.14). While reducing the size of the Feature Map
is reasonable to facilitate the evaluation of our localization algorithms in this chapter, such
a restriction is not desirable in practice. We already mentioned a possible solution to this
problem in Section 3.5, where our formulation of a crop row Pattern could be extended to
also account for the irregular spacing of crop rows that are adjacent to wheel tracks. Since
all three crop types are sown in pairs of three crop rows between adjacent wheel tracks,
we set our expected minimum and maximum spacing parameters s− and s+ accordingly.
Except for these adjustments, we do not need to change any other parameters to detect the
crop rows on this field. We give a detailed overview of the quality of the detected Patterns
Pt in our first experimental evaluation in Section 4.4.2.

Ground Truth Information and Measuring Accuracy For the evaluation of the crop
rows, we manually labeled ground truth (GT) Patterns PGT in Feature Maps and compute
the Angular Error, the Spacing Error as well as the Lateral Error with respect to these
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Figure 4.14: This figure shows vision data (left) and corresponding feature maps (mid)
with GT Pattern (right) on all three crop types. The image data was recorded with the
PointGrey Blackfly mounted in front of the BoniRob at about 1 m above the ground and
tilted downwards at about 25◦. The feature map shows a top-down view of the extracted
vegetation features and is located on the ground plane in front of the vehicle. The manu-
ally labeled GT Pattern is shown in magenta.
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In-Row Transition
# R # FM ∆d [m] VD [%] # FM ∆a [◦] VD [%]

Kohlrabi 3 86/83 153 1.54/1.57 91/101 63/65 1.34/1.61
Chinese Cabbage 3 126/130 246 9.14/9.20 151/249 68/85 5.87/4.74
Sweetheart Cabbage 3 55/60 110 2.78/1.97 95/112 19/29 1.04/0.51

Table 4.1: This table shows the properties of the Run 1 / Run 2 data sets for all three crop
types split into In-Row and Transition data. On this vegetable field the same number of
crop rows (# R) is sown between the wheel tracks for all three crop types. We also display
the number of feature maps (# FM) evaluated in our first experimental evaluation and the
mean vegetation density (VD) as percentage of cells in a feature map that contain veg-
etation features. When driving in-row, the heading of the vehicle stays almost constant.
Therefore, we only show the translational distance covered (∆d) for the In-Row data.
During transition, the vehicle does not move far but usually performs a turning maneuver.
Therefore we give the angular distance covered (∆a), i. e., the change in heading of the
vehicle, for the Transition data.

GT Patterns PGT as described in Section 3.4.1. The number of manually labeled Feature
Maps and therefore evaluated Pattern detections is shown in Table 4.1. An example for
the labeled GT Pattern for each crop type is shown on the right in Figure 4.14.

For our evaluation of the accuracy of the localization algorithms, we need to determine
the ground truth (GT) pose xGT of the vehicle in our map frame. To this end, we man-
ually measured the heading as well as the lateral and longitudinal position of the vehicle
at critical points, i. e., the start and end of each row, relative to these crop rows. We also
measured the heading and lateral offset of the vehicle in the middle of each row to also
have information about the tracking accuracy while driving in-row. To obtain these mea-
surements, we placed ground truth markers (M) into the field at the start, the end and the
middle of each set of traversed crop rows as shown on the left of Figure 4.15. We aligned
these markers with the direction of the crop rows and noted their relative position to the
adjacent crop rows. Using this information, we determined the location of the ground
truth markers M in our map frame. During data recording, we stopped the BoniRob at
these marker locations to measure the pose of the vehicle relative to the ground truth
marker using a fixed laser pointer that projects a cross onto the coordinate system printed
on the marker as shown on the right in Figure 4.15. Given the pose of the marker in our
map frame as well as the relative pose of the BoniRob to each marker during data record-
ing enables us to compute a ground truth pose xGT

i for the i-th marker M i. We visualize
the resulting ground truth poses xGT for each data set in Figure 4.16. We estimate that
this method of measuring the ground truth poses xGT has an accuracy of 3◦ in the heading
of the vehicle and 5 cm in the lateral and longitudinal position of the vehicle relative to
the crop rows. Since these ground truth measurements are defined relative to naturally
grown plants, the relative position cannot be measured more precisely. However, a higher
measurement accuracy is not required, since a localization error within this magnitude is
well suited for navigation applications. Analog to the thresholds from the evaluation of



104 Chapter 4: Beyond Crop Row Following

Figure 4.15: This figure shows one of the markers next to the crop rows (left) and a
marker with the projected cross of the laser pointer (right). We marked the pose of the
vehicle according to the projected position and orientation of the four dots of the laser
pointer that form a cross on each marker in the field. We also noted the position of each
marker relative to the crop rows. We then used this information to obtain the ground truth
pose of the BoniRob during data recording at each marker position.
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Figure 4.16: This figure shows the manually measured ground truth poses xGT (black
arrows) at each marker position for Run 1 on the top and Run 2 on the bottom. The
ground truth poses are defined in the map frame relative to the GPS-referenced crop rows
(red).

the previous chapter, we define the localization as successful, if the heading error does not
exceed 10◦ and the lateral error stays below 10 cm (see also Section 2.1.1).

Due to the different requirements for the accuracy of the position estimate with a high
lateral accuracy of below 10 cm and much lower requirements for the longitudinal ac-
curacy in the magnitude of meters, we evaluate the localization error of the investigated
algorithms by splitting the position error into a Lateral Error and a Longitudinal Error
component. Analog to our definitions for the sensor measurements, we define the lateral
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and longitudinal direction at each marker position using the angular parameter θmref (i) of
the mapped crop row that is closest to the ground truth position xGT

i at the i-th marker M i.
We then use the i-th ground truth pose xGT

i to compute the Heading Error ∆θ (i), the Lat-
eral Error ∆ lat (i) and the Longitudinal Error ∆ long (i) of the pose estimate xti , where
the vehicle was standing at the corresponding location of the i-th marker as follows:

∆θ (i) :=
∣∣θGT
i − θti

∣∣
∆ lat (i) :=

∣∣∣∣(− sin (θmref (i))
cos (θmref (i))

)
·
[(

xGT
i

yGTi

)
−
(
xti
yti

)]∣∣∣∣
∆ long (i) :=

∣∣∣∣(cos (θmref (i))
sin (θmref (i))

)
·
[(

xGT
i

yGTi

)
−
(
xti
yti

)]∣∣∣∣
Note that we always normalize the angular orientation appropriately to obtain ∆θ (i)

error values between 0◦ and 360◦.

Localization Algorithms The goal of our experimental evaluation is to demonstrate
how fusing GPS information with the detected crop row Pattern enables accurate local-
ization of a vehicle not only in the heading and lateral component but also along the crop
rows. In literature, localization in agriculture either purely depends on the local informa-
tion obtained by detecting crop rows, called crop row following, or on purely GPSbased
approaches that only leverage the global position information for pose estimation. We
therefore compare our approach to both a crop row following localization as well as a GPS
Localization. Additionally, to demonstrate that detecting the end of the field further im-
proves the longitudinal position estimate compared to only fusing GPS information with
the detected crop row Pattern, we evaluate our localization approach with and without the
additional information from end of the field detections. Since we introduced mathemati-
cal formulations for two different localization algorithms, the EKFand the GDlocalization
method, we also evaluate all localization variants on both localization techniques. This
yields the following representatives for each localization variant:

• GPS Localization: A purely GPS-based localization algorithm that only uses pGPS
t

to correct the predicted pose estimate. We implemented this algorithm using the
EKF localization method.

• Pattern – GD Localization & Pattern – EKF Localization: Two crop row following
localization algorithms that only use the detected Pattern Pt to correct the predicted
pose estimate. The first uses the GD method, the second is based on the EKF
algorithm.

• Pattern GPS – GD Localization & Pattern GPS – EKF Localization: Both algo-
rithms fuse the GPS information pGPS

t with the detected Patterns Pt to correct the
predicted pose estimate. The first uses the GD method, the second is based on the
EKF algorithm.
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• Pattern GPS EOF – GD Localization & Pattern GPS EOF – EKF Localization:
Both algorithms fuse the GPS information pGPS

t with the detected Patterns Pt to
correct the predicted pose estimate. If the end of the field was detected, the lon-
gitudinal information from the detected end of the field is used instead of the GPS
information. The first localization is based on the GD method, the second uses the
EKF algorithm.

Since the GPS data only contains information of the position of the vehicle, we use
the direction of the difference between the previous pGPS

t−1 and the current pGPS
t position

measurement to obtain a correction measurement for the heading of the vehicle. Note
that this assumes that the vehicle only performs translational motion in the direction of
its heading, i. e., moving sideways or rotating on the spot cannot be modeled by this GPS
Localization. However, this is not an issue in this evaluation, since the BoniRob always
moved in the direction of its heading in the data sets for this evaluation. In practice, a
correction measurement for the heading of the vehicle for purely GPS-based localization
can be obtained by mounting two highly accurate GPS receivers at opposite positions on
the vehicle. Instead of using the previous measurement the heading is then computed as
the difference between the measured position of both receivers.

For all other algorithms, that use the detected Pattern Pt to correct the pose estimate,
we also use our definition of the support of a Pattern to compute a measure of quality for
the detected Pattern as described by Winterhalter et al. [2021]. All Pattern-based localiza-
tion algorithms use this quality measure to determine whether a Pattern was successfully
detected or not according to a given threshold. If the quality is high enough, the Pattern
is used to correct the pose estimate and a Correction Step is performed. If the quality of
the Pattern is too low, it is rejected and no Correction Step is performed.

Another problem when leaving the traversed field is that the vehicle might perceive
misleading Pattern detections from unmapped neighboring fields. To prevent these local-
ization errors, we automatically disable Pattern integration when the vehicle is leaving
the traversed field and the sensors do not perceive the traversed field anymore. We enable
Pattern integration as soon as the vehicle faces the traversed field again so that the sensors
perceive the crops of the traversed field. The localization algorithm then automatically
re-localizes the vehicle relative to the detected crop row Pattern.

During the Correction Step, the Pattern-based localization algorithms use our Crop Row
data association to determine how the set of detected crop rows Fo = {Lo1 , . . . , Lon},
which are the supported lines of the Pattern Pt should be associated with the mapped
crop rows m = Fm. However, if the spacing of the detected Pattern is incorrect, the
detected crop rows cannot be aligned with the mapped crop rows, so that the geometrical
consistency criterion can not be satisfied. Therefore, the set of valid data association
matchesMvalid is empty and no data associationM∗ can be found. Since this is caused by
an incorrect spacing of the detected Pattern, an unsuccessful data association implies that
the detected Pattern is incorrect. In these cases, the localization also rejects the detected
Pattern and does not perform a Correction Step.

For the Pattern GPS EOF – GD Localization and Pattern GPS EOF – EKF Localization
algorithms that leverage the additional information from the end of the field detections,
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we already mentioned in Section 4.3.3 that by default the longitudinal measurement ac-
cording to the GPS data is integrated unless the end of the field was detected.

In the next section, we evaluate the accuracy and robustness of our crop row detection
on the three crop types, the Kohlrabi, the Chinese Cabbage and the Sweetheart Cabbage.
This evaluation enables an unbiased evaluation of the performance of crop-row-following-
based approaches, since the accuracy of the detected Patterns strongly relates to the ex-
pected accuracy of the heading and lateral offset estimates of a crop-row-following-based
localization method.

4.4.2 Robustness and Accuracy of Crop Row Detections
In our first experimental evaluation, we demonstrate that our crop row detection approach
from the previous chapter can reliably detect the crop row Pattern on the three crop types
of the data sets Run 1 and Run 2 that we use to evaluate our localization algorithms in
this chapter. To this end, we perform the evaluation of the previous chapter as described
in Section 3.4.1 on the image data of Run 1 and Run 2. In this evaluation, our focus lies
on the Angular Errorand the Lateral Errorof the detected Patterns as well as the overall
success rate of the crop row detection algorithms described in the previous chapter. Recall
that the comparison algorithms Line Hough and Dual Line Hough do not detect the Pattern
on all visible data jointly, but instead rely on detecting individual lines. We therefore call
the two comparison algorithms the line-based crop row detection methods. This is in
contrast to our Pattern-based approaches the Pattern Hough and the Pattern RANSAC-
based techniques that detect the crop row Pattern on all available information jointly. For
our evaluation, we show the success rates of the line-based as well as the Pattern-based
crop row detection algorithms in Figure 4.17.

Overall, the success rates do not differ notably between the Run 1 and the Run 2 data
sets except for the results of the line-based approaches, the Line Hough and the Dual Line
Hough, on the Transition data of Kohlrabi. Recall that Run 1 was recorded in the morning
and Run 2 was recorded in the afternoon of the same day. The comparable performance
of our Pattern-based algorithms on both data sets suggests that detecting all visible crop
rows jointly also improves robustness against different lighting conditions.

Looking at the results for the In-Row data of both data sets, our Pattern-based ap-
proaches have a high success rate of at least 94 % throughout all three crop types. This
is in contrast to the considerably lower success rates of the line-based comparison algo-
rithms on the Chinese Cabbage for both data sets with the lowest success rate of only 72 %
of the Line Hough on the Run 2 data set. This confirms our findings from the evaluation
of the previous chapter, that our Pattern-based approaches are more robust especially on
crops at later growth stages with a denser vegetation feature distribution such as Chinese
Cabbage. In summary, all our Pattern-based crop row detection approaches are well suited
for in-row navigation with a success rate of at least 94 % on the In-Row data of both data
sets.

For a more detailed discussion of the overall lower success rate of all investigated
algorithms on the Chinese Cabbage while traversing the field in-row compared to the
other two crop types Kohlrabi and Sweetheart Cabbage, we show the Lateral Error of
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Figure 4.17: This figure shows the success rates for all algorithms on all data sets. The
success rate is shown as percentage of the number of successful Pattern detections. Each
bar shows the result of a different crop row detection algorithm on the In-Row data sets
on the top and on the Transition data sets on the bottom. In each plot, from left to right the
algorithms are: Pattern Hough, Dual Line Hough, Line Hough, Pattern RANSAC 2500,
Pattern RANSAC 5000 and Pattern RANSAC 25000.

the In-Row data for all crop types in Figure 4.19. On the Kohlrabi and the Sweetheart
Cabbage the Lateral Error stays below 5 cm for most of the detected Patterns. This is in
contrast to the Chinese Cabbage, where the Lateral Error exceeds 5 cm for about 25 %
of the evaluated data for our Pattern-based approaches and even more for the line-based
algorithms with up to 50 % for the Line Hough. As already mentioned in Section 4.4.1,
the main difference between the Chinese Cabbage and the other two crop types is that
the Chinese Cabbage crops are larger than the other two crops, which causes a denser
vegetation feature distribution in the Feature Map (see Table 4.1). On such clusters of
vegetation features, the Pattern can be shifted in the lateral direction without decreasing
the support of the Pattern on the Feature Map (see also Figure 4.14). Therefore, the best
Pattern is not clearly defined which causes an overall larger Lateral Error in comparison
to the sparser Feature Maps of the other two crop types.

The more challenging Chinese Cabbage data also reveals the advantage of estimating
the spacing parameter instead of relying on a predefined, fixed spacing. Recall that the
Line Hough uses such a predefined, fixed spacing value to obtain a crop row Pattern
by extending an individual detected line with this spacing parameter into a set of lines.
Therefore, the Line Hough can not adapt to the varying crop row spacings present on this
vegetable field, which in turn causes an increased Lateral Error for the Patterns detected
by the Line Hough compared to the other algorithms (see Figure 4.19). In contrast, the
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Figure 4.18: This figure shows Pattern detection results for the Line Hough (light green),
the Dual Line Hough (green) and the Pattern Hough (magenta) on the Chinese Cabbage
In-Row data. The Line Hough cannot adjust the spacing of the detected Pattern, therefore
the Pattern lines are offset to the crop rows. In contrast, the Pattern Hough and even
the other line-based approach, the Dual Line Hough, can estimate the correct spacing
parameter and correctly detect the Pattern.

other line-based approach, the Dual Line Hough, is more flexible than the Line Hough as
it uses a second detected line to estimate the spacing of the Pattern. Therefore, the Lateral
Errors of the Patterns detected by the Dual Line Hough are much closer (Run 2) or even
comparable (Run 1) to our Pattern-based approaches that all estimate the spacing between
crop rows jointly. We also show an example for such a situation in the In-Rowdata on
the Chinese Cabbagein Figure 4.18. Here, the Pattern detected by the Line Hough is
offset to the correct Pattern due to an incorrect fixed spacing parameter. In contrast, our
Pattern Hough and even the line-based Dual Line Hough estimate the correct spacing and
therefore find the correct Pattern.

Considering the results for the Transition data of both data sets, we again see our rea-
soning from the previous chapter confirmed that – in general – the data perceived during
transition maneuvers is more challenging, since the lower bound of the success rate drops
notably for all algorithms compared to the lower bound on the In-Row data. These results
are expected since less crop row structure is perceived during transition and additional
vegetation that grows on the headlands adds noise to the Feature Maps. For Chinese Cab-
bage and Sweetheart Cabbage the success rates are reasonable for all investigated algo-
rithms with at least 80 % for the line-based approaches and a bit higher with at least 83 %
for our Pattern-based approaches. While 80 % of successful Pattern detections should still
be feasible in a localization application, this result clearly shows that a crop-row-based lo-
calization needs to be robust against unsuccessful Pattern detections. For our localization
approach, we employ different measures including the quality of the Pattern as well as an
empty set of valid data association matches, to determine whether a Pattern was detected
successfully and should be used to correct the pose estimate or whether the detection was
unsuccessful and therefore the Pattern should be rejected.

While the success rates on the Chinese Cabbage and the Sweetheart Cabbage are suf-
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Figure 4.19: This figure shows the Lateral Error[m] on the In-Row data sets for all
three crop types over both Runs. The individual error values for each measurement are
shown in ascending order. The horizontal axis shows the position of the measurement in
the sorted list in percent ([%]). The error value is plotted along the vertical axis. Since
we repeated the RANSAC algorithms five times, they have five times more measurements
than the Hough-based algorithms.

ficient, they drop considerably on the Kohlrabiwith as low as 40 % for the line-based
methods and 66 % for our Pattern-based approach. This result is counterintuitive, since
we would expect the larger – and therefore more challenging – Chinese Cabbage to also
have the lowest success rate on the Transition data to be consistent with our findings on
the In-Row data. An even more surprising result is that the success rates of the Chinese
Cabbage on the Transition data are comparable to the results on the In-Row or even in-
crease for the line-based algorithms. This is unexpected, since the Transition data set is
supposed to be more challenging than the In-Row. For a better understanding of these
results, we show the individual Angular Error and Lateral Error on the Transition data on
Kohlrabi shown in Figure 4.20. The most prominent observation is that the Angular Error
of all algorithms exceeds the success threshold and completely diverges on the Run 1 data
set for around 20 % of the detected Patterns. In correspondence this also causes the Lat-
eral Error to diverge and exceed the success threshold after around 80 % of successfully
detected Patterns for all algorithms, except the Line Hough. The Lateral Error of the Line
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Figure 4.20: This figure shows the Angular Error (left) and the Lateral Error (right) for
Transition data on the Kohlrabi crops. The individual error values for each measurement
are shown in ascending order. The horizontal axis shows the position of the measurement
in the sorted list in percent ([%]). The error value is plotted along the vertical axis. Since
we repeated the RANSAC algorithms five times, they have five times more measurements
than the Hough-based algorithms.

Hough diverges much earlier and therefore exceeds the success threshold after only 60 %
of successfully detected Patterns. We show an example for such an unsuccessful Pattern
detection on the Kohlrabi during transition on the top row of Figure 4.21 as well as an
example for successful Pattern detection on the Chinese Cabbage during transition on the
bottom.

The vegetation distribution of the Feature Maps in the example as well as the corre-
sponding images explain both counterintuitive results for the Kohlrabi and the Chinese
Cabbage on the Transition data: During the transition maneuver between crop rows of
the Kohlrabi, the camera also perceives the neighboring crop rows that contain the larger
Chinese Cabbage (see top left of Figure 4.21). This results in a dense vegetation feature
distribution in the corresponding Feature Map with barely visible crop row structure (see
top right of Figure 4.21). Even for a human, without prior knowledge of the true heading
of the vehicle relative to the crop rows, it is hard to determine the correct orientation of
the Pattern. Thus, in the example for the Kohlrabi, none of the investigated algorithms
are able to detected the Pattern successfully. This observation can be transferred to the
Chinese Cabbage as well, where during transition parts of the neighboring crop rows con-
taining the Sweetheart Cabbage are also visible as shown in the example on the bottom
row of Figure 4.21. Since the Sweetheart Cabbage results in vegetation Feature Maps
with a clearly visible row structure, it makes sense that the success rate might increase on
the Chinese Cabbage Transition data as it also contains Sweetheart Cabbage.

Since we traversed the crop rows in the same order for both data sets. The same expla-
nation also holds for Run 2. While the Angular Error is accurate for most of the detected
Patterns on the Kohlrabi Transition data, the Lateral Error still diverges and exceeds the
success threshold for a large amount of detected Patterns which causes the low success
rates seen in Figure 4.17. Analogue to Run 1, these diverging Lateral Error values are
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Figure 4.21: This figure shows Pattern detection results for all algorithms on the Tran-
sitiondata for the Kohlrabi (top) and the Chinese Cabbage (bottom). During transition
between the Kohlrabi crop rows, the Chinese Cabbage are perceived in the sensor data
causing dense Feature Maps with barely visible crop row structure (top, right). There-
fore, the GT Pattern is not detected by any of the algorithms. During transition between
the Chinese Cabbage crop rows, the Sweetheart Cabbage are perceived resulting in more
clearly visible crop row structure (bottom left). Therefore, all algorithms can find the
correct Pattern (bottom, right).

caused by the fact that the neighboring Chinese Cabbage is visible in the sensor data
during turning. This results in a Lateral Error distribution similar to the Lateral Error
distribution observed for the Chinese Cabbage on the In-Row data set.

Overall, the results of this evaluation are consistent with our findings from the crop
row detection evaluation from our previous chapter. Our Pattern-based crop row detec-
tion is more robust than the line-based methods, especially on denser vegetation feature
distributions as observed on larger crops in later growth stages such as the Chinese Cab-
bage, as well as during more challenging transition maneuvers. Therefore, we use our
Pattern Hough approach to detect the Patterns Pt passed to the localization algorithms to
determine the trajectory of the BoniRob on the Run 1 and Run 2 data sets. Our follow-
ing evaluation of the localization algorithms will show that even with a success rate of
only 66 % on the Kohlrabi Transition data our localization approaches can still accurately
localize the vehicle on the vegetable field.
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Figure 4.22: This figure shows the Angular Error for the GD (left) and the EKF (right)
algorithms for Run 1 (top) and Run 2 (bottom). The error values are plotted along the
y-axis in degrees. The x-axis shows the error value at each marker M. We highlight the
markers located at the start and end of each row in gray. Note that the Angular Error for
Pattern – GD and Pattern – EKF are identical to Pattern GPS – GD and Pattern GPS –
EKF respectively. Thus they are occluded by the Pattern GPS variants.

4.4.3 Performance of Fused Localization

One important challenge when fusing information from different sensor modalities is that
the information from different modalities is not necessarily uncorrelated. For example,
both the GPS data as well as the detected Pattern can provide information about the po-
sition of the vehicle. In the first evaluation of our localization approach, we therefore
compare the performance of our fused localization variant, the Pattern GPS, with the
performance of the purely GPS-based localization, the GPS Localization, as well as the
purely crop-row-following-based localization, the Pattern localization. Our goal is to
confirm that our fused localization approach, the Pattern GPS localization, leverages the
advantages of both sensor modalities and therefore maintains at least the same accuracy
as the vanilla comparison algorithms. We therefore compare the Heading Error, the Lat-
eral Error as well as the Longitudinal Errorof the GPS Localization, the Pattern as well
as the Pattern GPS localization algorithms. We show the individual errors of each of the
investigated algorithms at each marker position in Figure 4.22 for the Angular Error, in
Figure 4.23 for the Lateral Error and in Figure 4.24 for the Longitudinal Error.

The most prominent observation is that the results for the Pattern localization algo-
rithms (green) are not visible in the Heading Error and Lateral Errorfor both the GD as
well as the EKF-based localization algorithms, since they perfectly coincide with the cor-
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Figure 4.23: This figure shows the Lateral Error for the GD (left) and the EKF (right)
algorithms for Run 1 (top) and Run 2 (bottom). The error values are plotted along the
y-axis in meters. The x-axis shows the error value at each marker M. We highlight the
markers located at the start and end of each row in gray. Note that the Angular Error for
Pattern – GD and Pattern – EKF are identical to Pattern GPS – GD and Pattern GPS –
EKF respectively. Thus they are occluded by the Pattern GPS variants.

responding error values of the fused Pattern GPS localization variants (see Figure 4.22
and Figure 4.23). This confirms that the fused Pattern GPS can maintain the accuracy
of pure crop row following localization regarding the heading and lateral offset of the
vehicle relative to the crop rows. These results confirm our design of the fused Pattern
GPS localization in Section 4.3.3, where we use the heading and lateral offset information
contained in the detected Pattern to correct the heading and lateral offset of the vehicle
relative to the crop rows.

Another choice was to not use the heading and lateral offset information that can be
obtained from the GPS information in our fused Pattern GPS localization. Looking at the
Heading Error and Lateral Errorof the GPS Localization, we see our choice confirmed:
While the GPS Localization still shows decent Heading Error results that only slightly
exceed the success threshold of 10◦ at few marker positions it is outperformed by the crop-
row-based localization approaches that mostly have an Heading Error below or around
our measurement accuracy of 3◦, except for for Run 2 at marker M 16. The results for
the Lateral Error are even more extreme: While the Lateral Error of the GPS Localization
frequently exceeds the success threshold of 0.1 m with an Lateral Errorof up to 1.34 m, the
Pattern localization is successfully localized at all measurement positions, except for Run
1 at marker M 7 where it slightly exceeds the threshold with an Lateral Errorof 0.11 m.
Therefore, using the heading and lateral offset corrections obtained from the detected
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Figure 4.24: This figure shows the Longitudinal Error for the GD (left) and the EKF
(right) algorithms for Run 1 (top) and Run 2 (bottom). The error values are plotted along
the y-axis in meters. The x-axis shows the error value at each marker M. We highlight
the markers located at the start and end of each row in gray. We only measured the
Longitudinal Error at the start and end of each row. Therefore, there is no measurement
for the markers located in the middle of the field (white background).

Pattern is always preferable over the heading and lateral offset information obtained from
GPS sensor.

As expected, the results are inverted for the Longitudinal Error(see Figure 4.24). Here,
the GPS Localization shows better localization results as it stays below a maximum of
3.0 m while the error values for the purely crop-row-based Pattern localization even ex-
ceed 4.0 m. This again confirms our choice of using GPS information to correct the longi-
tudinal position of the vehicle in our fused localization approach. The results also confirm
that we succeeded in leveraging the longitudinal information contained in the GPS data,
since the Pattern GPS localization algorithms show Longitudinal Error values close to the
GPS Localization, except for Run 2 at marker M 16. However, the larger Longitudinal
Errorof our Pattern GPS compared to the purely GPS-based localization is explained by
the also larger Heading Error of the Pattern GPS at this marker, since the heading estimate
of the vehicle is correlated to the longitudinal position estimate.

Our evaluation of the individual Heading Error, the Lateral Error and the Longitudinal
Error shows, that our fused localization approach indeed estimates the full pose of the ve-
hicle, i. e., it corrects the pose of the vehicle in all three dimensions. This is facilitated by
integrating the heading and lateral offset information obtained from the detected Pattern to
correct the heading and sideways tracking of the vehicle relative to the crop rows, as well
as correcting the position of the vehicle along the crop rows using the GPS data. We also
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confirm, that our fused localization approach maintains the accuracy in the heading and
lateral component of a crop row following approach as well as the longitudinal position
accuracy of a GPS Localization. By fusing GPS information with crop row detections,
our localization approach shows a localization accuracy that is well suited to guide an
agricultural vehicle along the crop rows of a field with high heading and sufficient lateral
accuracy. In our next evaluation, we investigate in how far the longitudinal pose estimate
of our fused localization approach can be improved by also integrating information from
detecting the end of the field, thereby enabling localization beyond crop row following.

4.4.4 Improving the Longitudinal Position Estimate
In the previous evaluation, we confirmed that our fused localization approach can accu-
rately track crop rows like a crop-row-following-based localization, while at the same
time also maintaining an accurate longitudinal position estimate according to GPS in-
formation. However, to enable autonomous turning at the headlands, the accuracy of
3.0 m of a standard GPS sensor is not sufficient. If the vehicle overestimates the distance
traveled along the crop rows, it might initiate the turning maneuver while still inside the
crop field, potentially harming the crops. On the other hand, some headlands are quite
narrow, so that underestimating the traveled distance could cause the vehicle to acciden-
tally leave the headlands which in turn could not only result in damage to the vehicle
but also to surrounding objects or even animals or people. Therefore, an accurate lon-
gitudinal pose estimate of the vehicle as it approaches the end of the field is crucial for
autonomous traversal of an entire field, including turning maneuvers at the headlands. In
this evaluation, we therefore analyze how much detecting the end of the field improves
the longitudinal pose estimate of our fused localization approach.

For our analysis of the longitudinal position accuracy attainable by detecting the end of
the field, we show the Longitudinal Error of all investigated algorithms in Figure 4.25. As
we have already discussed in the previous evaluation, the Pattern localization has the worst
longitudinal pose estimate, that periodically exceeds 4.0 m at marker positions M 3 and M
4, M 9 and M 10 as well as M 15 and M 16. This directly correlates to the vehicle reaching
the far end of the field, i. e., the opposite side of where we started the data recording, which
can also be seen in our overview of the marker positions in Figure 4.16. This is explained
by the fact that the detected Pattern contains no information of the longitudinal position of
the vehicle relative to the crop rows. Therefore, a pure crop row following approach can
not correct the longitudinal position estimate, so that the longitudinal position estimate of
the vehicle is based purely on the relative motion measurements obtained from the wheel
odometry of the vehicle. The fact that the longitudinal position estimate is constantly
overshooting at the far end of the field and returning to the correct longitudinal position
estimate at the near end of the field is therefore simply explained by the wheel odometry
overestimating the traversed distance.

In contrast to a pure row following localization, our Pattern GPS localization can lever-
age the GPS position information to correct the longitudinal position estimate similar to
a GPS Localization. Therefore, the Longitudinal Error of our Pattern GPS localization
algorithms is within the GPS measurement accuracy of around 3.0 m.
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Figure 4.25: This figure shows the Longitudinal Error for the GD (left) and the EKF
(right) algorithms for Run 1 (top) and Run 2 (bottom). The error values are plotted along
the y-axis in meters. The x-axis shows the error value at each marker M. We highlight
the markers located at the start and end of each row in gray. We only measured the
Longitudinal Error at the start and end of each row. Therefore, there is no measurement
for the markers located in the middle of the field (white background).

Looking at the results of our Pattern GPS EOF localization variant that received addi-
tional longitudinal information if the end of the field was detected, we can see an increased
accuracy at the corresponding measurement locations. At first glance, it only seems like
the end of the field was only detected on few occasions. However, recall that the end of the
field can only be detected, if the vehicle was traversing the crop field and is approaching
the end of the field. This means that the end of the field can only be detected at every third
marker position, i. e., at markers M 3,M 6,M 9,M 12,M 15 and M 18. At measurement lo-
cations, where the longitudinal position estimate of the Pattern GPS EOF localization did
not improve compared to the Pattern GPS localization, i. e., at markers M 3 and M 9 for
Run 1 and markers M 15 and M 18 for Run 2, either the end of the field was not detected
or the whole Pattern was rejected because of a low Pattern quality value. However, when-
ever the end of the field was detected, the longitudinal position estimate is considerably
improved even down to 0.21 m with a maximum error of 1.1 m. This confirms that addi-
tionally including end of the field detections considerably increases the accuracy of the
longitudinal position estimate to 1.1 m and below. Such an accurate longitudinal position
estimate is crucial to enable autonomous turning on the headlands.

After this extensive quantitative evaluation, we also show some qualitative localization
results in our last evaluation, where we not only give a qualitative overview over the
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localization accuracy but also investigate interesting localization results at certain marker
positions in detail. Finally, we also discuss facts and findings that are relevant for applying
our localization approach in an autonomous navigation system.

4.4.5 Autonomous Navigation on Entire Crop Fields
In our last evaluation, we show qualitative results of some localization algorithms. This
includes an overview over the position estimates for a better intuition of the performance
of our fused localization approach compared to the pure crop row following and GPS-
based localization approaches. We also discuss interesting localization results at certain
maker positions by providing detailed illustrations of the available data overlaid with
the resulting pose estimate at these marker locations. Finally, we also discuss facts and
our findings from multiple autonomous navigation runs, where we employed our fused
localization approach to provide an accurate pose of the vehicle to our navigation system.

For our qualitative evaluation, we first show an overview of the performance of different
localization algorithms by overlaying the trajectory of the vehicle according to the Pattern
GPS EOF – EKF Localization, the Pattern – GD Localization and the GPS Localization
onto our map of the crop field in Figure 4.26. The results of our quantitative evaluation
are visible in the different trajectories of each localization algorithm: For the crop row
following localization, the Pattern – GD Localization, we can see that it nicely tracks the
position of the vehicle along the crop rows, since there are no jumps in the trajectory as
can be observed for the trajectory of the GPS Localization. On the other hand, the crop
row following localization clearly overshoots at the far end of the field as discussed in the
previous evaluation, since it cannot correct the pose estimate in the direction of the crop
rows. While the GPS Localization fails to track the position of the vehicle relative to the
crop rows, visible in the jumps of the trajectory, it can correct the overshooting caused
by the wheel odometry. This overview also illustrates how our approach, the Pattern
GPS EOF – EKF Localization, can leverage the advantages of the other two localization
techniques: Our fused localization does not overshoot at the far end of the field while at
the same time it also tracks the position of the vehicle along the crop rows without any
jumps. Additionally, it also improves the longitudinal pose estimate compared to the GPS
Localizationsince the trajectory of the Pattern GPS EOF – EKF Localization stays closer
to where we actually turned on the headlands relative to the crop rows.

This overview, as well as the evaluation of the Lateral Errorin Figure 4.23 also con-
tain an implicit result regarding our Crop Row data association: Recall that localizing
the vehicle relative to the mapped crop rows is only possible due to our Crop Row data
association that determines a geometrically consistent data association between the ob-
served crop rows and the mapped crop rows. If this data association would have found
an incorrect solution while the vehicle is tracking the crop rows, there would have been
a notable jump in the trajectory as well as a high Lateral Error measurement, similar to
the results observed for the GPS Localization. However, since there are no such jumps or
high Lateral Error, we can conclude that our crop row detection always finds the correct
data association on the evaluated data sets. This means that only considering geomet-
rically consistent sets of line matches yields a robust data association technique. This
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Figure 4.26: This figure shows the localization results of the GPS Localization (black),
the Pattern – GD Localization (olive) and the Pattern GPS EOF – EKF Localization (pur-
ple). The pose estimates of each localization algorithm are visualized as trajectory (solid
lines) by connecting the position of consecutive estimates. For reference, the trajectories
are overlaid on the mapped crop rows (red lines).

robust Crop Row data association in turn is crucial for our fused localization since it fa-
cilitates fusing the local Pattern detections with the global information obtained from a
GPS sensor.

Additionally to the qualitative overview, we also provide more detailed illustrations
of the localization results at marker positions with interesting results. Recall our first
evaluation, where the Heading Error of our fused localization as well as the crop-row-
following-based approach was higher than the Heading Error of the GPS Localization
in Run 2 at marker M 16 (see Figure 4.22). Another interesting result from our first
evaluation is the Lateral Error in Run 1 at marker M 7. For a more detailed discussion of
these two results, we show the estimated pose of the GPS Localization in comparison to
the estimated pose of our Pattern GPS EOF – EKF Localization in Figure 4.27.

While the Heading Error in Run 2 at M 16 is larger than the Heading Error of the
GPS Localizationat this measurement location, it is still within our success threshold.
From the visualization of the pose of the vehicle relative to the crop rows on the right of
Figure 4.27, we see that the detected crop rows (blue) do not overlap with the mapped
crop rows (red) when projecting them using the pose estimated by our Pattern GPS EOF
– EKF Localization. This means that the pose of the vehicle was not corrected according
to the detected Pattern, due to an insufficient Pattern quality. Thus, the heading of the
vehicle after turning was not yet corrected when we took the measurement at marker M
16. However, just after measuring the pose at marker M 16, the quality of the Pattern
increases and the heading is corrected, resulting in a successful localization across the
entire field for Run 2 for our Pattern GPS EOF – EKF Localization. This is in contrast to
the pose of the GPS Localization at this location shown on the top right of Figure 4.27.
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Figure 4.27: This figure shows detailed results for the GPS Localization (top) and the
Pattern GPS EOF – EKF Localization (bottom) for interesting marker positions. In Run 1
at marker M 7 (left), our Pattern GPS EOF – EKF Localization shows a high Lateral Error
and in Run 2 at marker M 16 (right) a high Heading Error. We show the pose estimates of
each localization algorithm as trajectory (solid line) relative to our mapped lines of crop
rows (red lines). We also visualize the Feature Map (green cells) as well as the detected
Pattern (blue lines) perceived at the marker location.

Despite the fact that the Heading Error is lower compared to the crop-row-following-
based approaches, the Lateral Error of the GPS Localization at this marker considerably
exceeds our success threshold of 0.1 m with a value of over 0.2 m. Thus, the estimated
position of the vehicle is offset to the true position of the vehicle so that the wheels of
the vehicle are directly located on top of a crop row. During autonomous navigation such
an incorrect localization result has catastrophic consequences as it causes the navigation
system to correct its allegedly undesirable position by steering to the right, when in fact
the true position of the vehicle was correct. This in turn causes the vehicle to actually drive
over the crop row located on the right side of the wheels. To prevent these situations, it is
crucial that the localization algorithm provides an accurate lateral position of the vehicle
relative to the crop rows.

Therefore, we also take a closer look at the Lateral Error results in Run 1 at marker
M 7 on the left of Figure 4.27, where our Pattern GPS EOF – EKF Localization also ex-
ceeds the Lateral Error success threshold. While our localization only slightly exceeds the
lateral success threshold of 0.1 m with an Lateral Error of 0.11 m, the GPS Localization
considerably exceeds the success threshold with a Lateral Error of above 0.4 m. This dif-
ference in the measured Lateral Error is also clearly visible when overlaying the estimated
pose of the vehicle onto our map of crop rows. While our localization slightly exceeds
the success threshold, the wheels of the vehicle are still located between the correct pairs
of crop rows and also not located on the crop rows. Therefore, the navigation system will
continue to track the correct crop rows without driving over the valuable crop rows. This
is in contrast to the pose estimate of the GPS Localization, which shows another good
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example for a too large Lateral Error. This situation can have two different outcomes,
depending on the constrains of the navigation system. First, if there is no constraint that
prevents the navigation system from intentionally driving over crop rows, it will attempt
to correct the position of the vehicle to track the correct crop row and therefore steer to-
wards the right, again resulting in crushed crops. If there is a constraint that prevents the
navigation system from driving over crop rows, the vehicle will continue driving straight
thereby following the crop rows, but potentially track an incorrect set of crop rows. Since
the second option usually results in driving behavior that does not damage crops despite
an incorrect lateral position of the vehicle, enforcing a constraint on the navigation system
that prevents it from driving over crops is advisable. Therefore, a large Lateral Error does
not necessarily lead to catastrophic failure of the whole navigation system, where crops
are crushed by the wheels of the vehicle, but can instead be lessened into a simply inef-
ficient traversal of possibly already traversed neighboring crop rows instead of the target
crop rows.

The detailed analysis of these interesting localization results highlights the require-
ments for the accuracy of the heading and lateral offset pose estimate for successful and
precise autonomous navigation on crop fields. Although the Lateral Error of the crop-
row-following-based approaches slightly exceeds our success threshold for Run 1 at M
7, it does not cause navigation failure or divergence of the pose estimate in this situation.
Therefore, this detailed analysis reaffirms that the heading and lateral accuracy of a crop-
row-following-based approach are sufficient to guide a vehicle along crop rows, if the
crop rows are detected with an accuracy similar to the accuracy of our crop row detection
approach.

Overall, the performance of the two different localization methods, i. e., the GD and the
EKF localization, is comparable, where the Pattern GPS EOF – EKF Localization shows
slightly lower Longitudinal Error values with a mean Longitudinal Error of 0.39 m com-
pared to the Pattern GPS EOF – GD Localization with a mean of 0.45 m. However, since
we did not perform any parameter fine tuning for either of the algorithms, there might be a
better parameter configuration for the GD method. On the other side, this also shows that
both methods are not too sensitive regarding the exact choice of parameters. For our au-
tonomous navigation system, we used the Pattern GPS EOF – EKF Localization to obtain
a GPS-referencedpose estimate of the vehicle relative to the crops. During these runs, our
crop row detection method took the major share of the computation time with 0.2 sec per
image. Therefore, our Pattern GPS EOF – EKF Localization performs a Correction Step
at a frequency of around 5 Hz, which is still sufficient for successful autonomous naviga-
tion on crop fields. We used our localization to guide the BoniRob along crop rows (for
example shown in Autonomous Navigation on a Field1), and also to successfully navigate
entire crop fields fully autonomously (for example shown in Autonomous Navigation on
Sugar Beets2).

In summary, our evaluation shows that our fused localization approach can indeed
leverage the advantages of both the crop row following as well as the GPS-based lo-

1https://youtu.be/1alnCUsQc1Y
2https://youtu.be/jy_VZIA7Rp0

https://youtu.be/1alnCUsQc1Y
https://youtu.be/jy_VZIA7Rp0
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calization on agricultural fields. We also confirm, that including the end of the field as
additional longitudinal measurement for pose correction notably improves the accuracy
of the longitudinal pose estimate compared to only integrating GPS information. This
is especially valuable when aiming for an autonomous traversal of an entire crop field,
including turning at the headlands.

4.5 Conclusion
In this chapter, we presented a fused localization approach that estimates the full pose
of the vehicle relative to crops in a global GPS-referenced frame. Our fused localiza-
tion therefore enables autonomous navigation of entire crop fields, while also providing
a pose estimate relative to crops, which is crucial for precision agriculture applications.
Our in-depth experimental evaluation on two real-world data sets shows that our fused
localization successfully estimates the pose of the vehicle on both data sets. These results
therefore confirm our idea of fusing local crop row detections with GPS information us-
ing a GPS-referenced map of crop rows to provide a common reference frame. Implicitly,
these results also demonstrate that our Crop Row data association finds the correct associ-
ation between detected and mapped crop rows using geometrical consistency constraints.
Furthermore, since our fused localization approach is able to maintain the accuracy of a
crop row following approach in the heading and lateral estimate, while at the same time
having the longitudinal accuracy of at least a GPS-based localization, we show that we
consistently fuse both sensor modalities with our fused sensor measurements. Our evalu-
ation of the longitudinal accuracy when additionally also integrating longitudinal position
information from detecting the end of the field reveals an increased accuracy of at least
1.1 m and down to 0.21 m compared to standard GPS accuracy of around 3.0 m. The
overall Heading Error and Lateral Error of the crop-row-following-based localization ap-
proaches also indicate that the Angular Error and the Lateral Error of a crop row detection
algorithm are directly transferable to the expected accuracy of a localization algorithm
that uses these crop row detections for pose correction. In summary, the quantitative re-
sults show that our fused localization provides a full pose estimate relative to crops with
sufficient accuracy for autonomous traversal of entire crop fields including transition ma-
neuvers at headlands. These results are also validated by our qualitative evaluation as well
as several successful autonomous runs on different crop fields, where we employed our
fused localization to provide an accurate pose estimate to the navigation system.

During these autonomous navigation runs, we realized that the critical part of traversing
the entire crop field is turning at the headlands. This is caused by the fact that the vehicle
looses track of the crop rows while leaving the crop field. It then performs the turning
maneuver based only on the relative motion measurements without correcting its pose
until the crop rows appear again in the field of view of the sensor. Therefore, uncertainty
in the pose estimate accumulates during the turning maneuver and the vehicle needs to be
re-localized when it perceives the crop rows again after turning. Finding the correct data
association between the mapped and observed crop rows after turning "blindly" at the
headlands is a critical point for efficient traversal of an entire crop field as it determines
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the success of re-localizing the vehicle after turning.
As we briefly discussed in our qualitative evaluation, we implicitly know that our Crop

Row data association always found the correct data association after turning on both data
sets. Otherwise, we would have observed large Lateral Error values of a multiple of the
spacing between crop rows, i. e., Lateral Error values of 0.45 m or above, if the a neigh-
boring crop row would have been incorrectly associated. This confirms that our Crop Row
data association based on geometric consistency is well suited for crop fields with a crop
row structure similar to this vegetable field with irregular spacing of crop rows adjacent
to wheel tracks (see also Figure 4.16). However, as we have discussed in the previous
chapter, crop fields not necessarily have this irregular spacing. In fact, most of the crop
fields that we have seen, have a more equidistant spacing between crop rows, so that it
is sometimes not even clear where the tracks for the wheels are located. On these crop
fields, with equidistant crop row spacing, data association is highly ambiguous, if it can
only rely on the geometry of the crop rows as line features. These ambiguities can cause
an incorrect data association that matches the wrong crop rows, which in turn localizes
the vehicle relative to the wrong set of crop rows. While this is an incorrect localization
result, it does not necessarily result in driving behavior that damages crops: Since the
vehicle is localized offset by a multiple of the row spacing, it still traverses the crop rows
with high precision by following the tracked set of rows. In practice, such a localization
error thus causes the vehicle to skip a few crop rows or to traverse the same part of the
field twice. Therefore, incorrect data association does not necessarily result in damaged
crops, but definitely reduces the efficiency of the autonomous system. Our motivation for
the next chapter is therefore to investigate how we can improve the capabilities of data
association, especially in the critical situation of re-localizing the vehicle after turning on
the headlands.

Another point for improvement is the longitudinal position estimate. As mentioned in
our evaluation, the end of the field was not always detected, especially when the vehicle
was approaching headlands that were overgrown with vegetation. One possible direction
of further research is therefore to improve the robustness of the End of the Field detection.

However, since the End of the Field detection only provides a longitudinal position
estimate when the vehicle approaches the end of the field so that it is visible in the sensor
data, it can not improve the overall longitudinal position estimate throughout the field.
In the next chapter we therefore investigate a different approach that can by design yield
accurate heading, lateral and longitudinal estimates relative to the crops throughout the
entire field.





Chapter 5

Data Association on Individual Plants

In the previous chapter we presented techniques to obtain a full
pose estimate across the entire field including transition maneuvers
at the headlands to enable precise and reliable autonomous naviga-
tion on crop fields. However, the presented techniques might not al-
ways re-localize the vehicle after turning resulting in a pose estimate
with a large lateral offset to the correct crop rows. This results in
inefficient driving behavior, since the vehicle might skip crop rows
or traverse the same crop row multiple times. We therefore propose
to use individual plant positions as additional features to associate
the correct crop rows after turning at the headlands. Finding the
correct data association based on individual plant positions is chal-
lenging, since plants of the same type are indistinguishable and al-
most uniformly and densely distributed along the crop rows result-
ing in many highly ambiguous feature distributions. Inspired by
our Crop Row data association of the previous chapter, we present a
novel data association technique that leverages slight irregularities
in the plant distribution along each crop row to find the correct data
association. This technique is based on an efficient representation
of data association matches that preserves the row structure as well
as a novel method that counts the number of matches in a contin-
uous fashion. We evaluate our approach in extensive experiments
on real-world data, including a comparison to other non row-based
data association techniques. We demonstrate the suitedness of our
approach for localization and mapping applications as well as a de-
tailed analysis of the behavior of our approach depending on the
amount and quality of the provided input data. We also provide
a proof of concept showing qualitative results in form of maps of
plant positions of entire agricultural fields obtained by employing
our data association approach in a real-world simultaneous local-
ization and mapping (SLAM) application. Overall, we present a
powerful row-based data association approach that robustly and ef-
ficiently associates indistinguishable, almost uniformly and densely
distributed point features to enable re-localization after turning at
the headlands.
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5.1 Introduction

In the previous chapter we obtained a full pose estimate to enable reliable and precise
autonomous traversal of entire crop fields based on detecting the crop row structure in
local sensor data. Since a front mounted sensor only captures the crop row structure while
driving in-row or after turning when the vehicle faces the crop field again, tracking is lost
during the turning maneuver at the headlands. While an autonomous vehicle can perform
a turning maneuver solely based on relative motion measurements and GPS information,
errors in the pose estimate can accumulate and result in an inaccurate pose estimate after
turning. Therefore, the vehicle might continue autonomous traversal of the crop field
offset to the desired set of crop rows and thus skip some of the crop rows or travel along the
same crop rows multiple times, which is inefficient navigation behavior. In this chapter,
we therefore investigate, how the vehicle can be re-localized after turning "blindly" at the
headlands. The key requirement to this re-localization is associating the correct crop rows
after turning despite the comparably larger error in the pose estimate of the vehicle. Our
Crop Row data association from the previous chapter successfully re-localized the vehicle
in our experimental evaluation leveraging the irregular spacing between crop rows. Since
crop fields usually have more equally distributed crop row spacing, our Crop Row data
association will most likely not perform well on these fields. We therefore propose a novel
data association approach that determines the correct data association based on individual
plant positions instead of entire crop rows. Inspired by our Crop Row data association,
this novel data association leverages slight irregularities in the plant distribution along
each crop row to find the correct data association. While using individual plant positions
as features enables re-localization after turning at the headlands, it also provides more
accurate longitudinal position information while the vehicle drives in-row thereby further
improving the localization accuracy in the longitudinal direction. Such a precise pose
estimate of the vehicle relative to the crops throughout the field does not only enable
accurate localization for autonomous navigation, but also opens the door for creating
accurate and detailed maps of a crop field from ground vehicle data without having to rely
on highly accurate GPS information. In order to correct the pose estimate of the vehicle
with respect to a set of mapped plant position features Fm the observed plant position
features Fo need to be correctly associated with their correspondence in the map. This
means a data association algorithm needs to find a set of matches between the observed
and mapped featuresM∗ ∈M ⊂ P (Fo × Fm) that correctly associates observed features
with their corresponding mapped features. We give a more detailed definition of M in
Section 2.2.1.

In computer vision, the correct association between observed and mapped features is
often established using the appearance of the detected objects, e. g., the pixel information
of the local area around the point of interest in the image. The information contained in
this local area is usually encoded in a feature descriptor and used to associate features if
their descriptors have similar values. These appearance-based data association approaches
rely on the assumption that the objects used as features can be reliably identified and
therefore distinguished from one another. However, in our setting, with the crops as
features, this cannot easily be assumed, since crops of the same type look fairly similar
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Figure 5.1: This figure shows two different locations around 14 m apart on the same
crop row while the vehicle traverses the crop field. The images on the top show the first
location. The bottom images show the second location. Images of the same location are
only one second apart.

and are hard to distinguish by their appearance. To emphasize this we show four example
images from a crop field featuring two different locations on the same field in Figure 5.1.
Images of the same location differ only slightly in their point of view since they were
captured only one second apart. Without knowing which image shows which location,
it is hard to determine whether the plants shown in these images are the same or not
– they all look alike. Since crops of the same type are fairly indistinguishable from one
another, a data association on individual plants cannot rely on additional information such
as appearance to determine the correct association between features. Therefore, we use
the information provided by the position of the plant features in both, the observed and
mapped set of features.

In literature this is usually realized by leveraging the implicit information contained
in the geometry of the features of each set. More explicitly, to associate indistinguish-
able features, the geometry of the observed features Fo is compared with the geometry
of the mapped features Fm to find similar patterns. In our setting where the geometry
of a feature is a single point, the geometry of a set of features is described by relative
distances and angles between these features, or short by the distribution of features. The
main idea of a geometry-based data association approach is that a similar pattern, i. e., a
similar distribution in the observed and mapped features indicates that the corresponding
features forming this pattern are the same and therefore should be associated. Intuitively,
a geometry-based data association approach assumes that the correct data association can
be found by maximizing the overlap between the observed features Fo and mapped fea-
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Figure 5.2: This figure shows an example for the distribution of plants positions obtained
from real-world data. The observed plant position features Fo are shown as blue points
and the mapped plant position features Fm as red points. The top shows the correct
overlay of observed and mapped features. The bottom shows an incorrect overlay. Since
this shows data taken from a mapping application, a large amount of observed data (blue
points in the bottom crop rows) is not yet part of the map. Therefore, the correct data
association shown on the top only overlaps two out of six observed crop rows. This in turn
causes a large amount of around two thirds of all observed features to remain unmatched.

tures Fm. This works well, if the distribution of features is not uniform so that unique
patterns exist to determine the correct data association – or more intuitively, if the best
overlap between observed and mapped features is clearly visible. However, in our envi-
ronment where the crops are sown in equidistant and parallel crop rows at approximately
the same distance within a crop row the feature distribution is quite the opposite of non-
uniform. Instead, the feature distribution obtained from crop positions on agricultural
fields can rather be described as almost uniform and dense, where dense refers to a large
amount of features within a small area. We show examples for the feature distribution
on crop fields extracted from real-world data in Figure 5.2. Due to the dense and almost
uniform distribution of crops it seems close to impossible to determine the best overlap
and therefore the correct data association. Using the examples shown in Figure 5.2, we
can determine the challenges that arise for a geometry-based data association approach on
indistinguishable, densely and almost uniformly distributed point features more precisely:

First, due to the dense and almost uniform feature distribution it is not clear how to best
overlay the observed features over the mapped features. This is due to the multitude of
ambiguous situations caused by the similar distribution of features throughout the field.
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Therefore, for a geometry-based data association approach to succeed, it needs to detect
subtle differences in the feature distribution, i. e., it needs to have a high discriminative
ability, to resolve ambiguities and find the correct data association.

Second, due to the dense distribution of features, the data association approach also has
to be able to handle a large amount of features efficiently. This is crucial since the search
space of all possible data association matchesM⊂ P (Fo × Fm) grows exponentially in
the number of features. Handling large amounts of features is especially challenging for a
geometry-based data association approach that requires high discriminative ability, since
the commonly applied independence assumption, i. e., associating each feature indepen-
dently from the other features of the set to facilitate data association on large feature sets
cannot be applied.

To differentiate even slight differences in the feature distribution, the relative geom-
etry between features needs to be considered. However, considering relative geometry
such as angles and distances between points directly contradicts associating features in-
dependently from each other. Therefore, the third challenge for a relative geometry-based
data association approach for our scenario is that it cannot assume independence between
features.

While the data association needs to be highly sensitive to detect subtle differences in the
feature distribution to find the correct data association, it still needs to be robust against
inaccurate information such as noisy feature positions or false positive or missing feature
detections caused by the feature detection pipeline. This is a crucial requirement for the
data association to be applicable in real-world applications and therefore poses the fourth
challenge since being robust against noisy input data is directly opposite to being highly
sensitive to slight differences in the feature distribution.

For mapping applications we also need to consider a fifth challenge: During mapping,
only parts of the environment are represented in the map. Therefore, the data association
algorithm needs to be able to handle situations, where parts of the observation are not
represented in the map. This means that some of the observed features might not yet
be represented in the map and thus cannot be associated and should remain unmatched.
Usually, on sparse and non-uniformly distributed features only few observed features fall
into this category, so that there is no need to explicitly handle these unmapped features
during data association. In our environment though, due to traversing the field aligned
with the crop rows, usually a large subset of the observed features, i. e., entire crop rows,
fall into the category of these unmapped features. In combination with the large amount
of ambiguous situations caused by the dense and almost uniform feature distribution,
correctly handling situations with unmapped observed features becomes a challenge. In
summary, a relative geometry-based data association on individual plants needs to satisfy
the following requirements:

1. Highly Discriminative: Detect subtle difference in feature distribution to resolve
ambiguous situations caused by almost uniformly distributed features.

2. Efficient: Efficiently handle large amounts of features due to densely distributed
features.
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3. No Independence: Independence between features cannot be assumed since the
geometric relations between them are key.

4. Robustness: Robustness against noisy input data is crucial for real-world applica-
tion.

5. Unmapped Features: For mapping applications, unmapped observed features need
to remain unmatched.

In this chapter, we present a relative geometry-based data association approach on in-
dividual plant positions that tackles all these challenges and therefore efficiently and ro-
bustly associates large amounts of indistinguishable, densely and almost uniformly dis-
tributed point features. The key idea of our approach is to leverage the row structure
of crop fields to obtain an efficient and discriminative data association that can resolve
the multitude of ambiguous situations caused by the dense and almost uniform feature
distribution. Therefore, we mathematically define this row structure in form of a set of
Plant-Rows.

We then use this set of Plant-Rows to define a two-dimensional parametrization that
maps a parameter s ∈ S ⊂ N × R to a corresponding set of data association matches
M (s) ∈ M, so that only data association matches M ∈ M that preserve the crop
row structure are represented. This dramatically reduces the number of possible data
association matches, since only sets of matches M ∈ M (S) that preserve the crop row
structure need to be considered during data association and therefore enables our data
association to efficiently process large amounts of features.

Based on our definition of the row structure, the Plant-Rows, and our parametriza-
tion of the data association matches, we present a novel method of measuring how well
observed data Fo is overlaid with the mapped data Fm given a set of data association
matches M ∈ M (S). Our key idea for this novel method is that we use our parame-
terized representation of data association matches to define a continuous measure for the
overlap between observed and mapped features over all features jointly. Traditional ap-
proaches usually count the overlap as the discrete number of matched observations. Since
our method leverages the parameterized representation of the data association matches,
it does not require an explicit definition of pairs of matched features and thus can de-
fine a continuous measure of the overlap between observed and mapped features. Our
assumption behind measuring the overlap in this way is that without an explicit decision
on whether two features are matched or not, our method is more robust against noisy in-
put data, while still maintaining its discriminative ability. Computing the overlap based
on our parameterized representation has additional advantages: First, since it represents
a whole set of data association matches, all features are considered jointly by design as
required. Second, since the parametrization only represents matches that preserve the
row structure, it also ensures that geometric relations between features are preserved and
therefore allows for an efficient computation of the overlap between observed and mapped
features.

To enable our data association approach to properly handle unmapped crop rows, we
introduce a regularization technique. Since the vanilla version of our proposed method is



5.1 Introduction 131

biased towards matching as many crop rows as possible, we introduce this regularization
technique to mitigate this bias. We also present an improved variant of our method that can
measure the overlap between observed and mapped features without bias and therefore
does not require any regularization.

We also provide a proof of concept of our row-based data association approach by
employing it in a simultaneous localization and mapping (SLAM) application on real-
world data. To this end, we present our data preprocessing pipeline as well as a pose
graph-based SLAM framework that utilizes the results of our data association to build
maps of individual plant positions over entire crop fields relying only on data collected
from a ground vehicle. We summarize our contributions towards data association on
indistinguishable, densely and almost uniformly distributed features as follows:

1. Plant-Rows: We mathematically define the row structure of crops as sets of Plant-
Rows.

2. Parametrization: We define a efficient two-dimensional representation of data as-
sociation matches that preserves the row structure and therefore the relative geom-
etry between features. This representation enables efficient computations on large
amounts of features without assuming independence between features.

3. Continuous Measure of Overlap: We define a novel method for measuring the over-
lap between observed and mapped features. Based on our parameterized represen-
tation of sets of data association matches we compute the overlap as a continuous
measure to increase the robustness of our data association algorithm against noisy
input data.

4. Regularization Technique: We introduce a regularization technique to counter the
bias of our vanilla method towards matching as many observed crop rows as possi-
ble. Mitigating this bias is crucial for mapping applications.

5. Unbiased Variant for the Continuous Measure of Overlap: We also present an im-
proved variant of our novel method that is unbiased and therefore does not require
any regularization.

6. Proof of Concept: We provide a proof of concept for our data association approach
by utilizing it in a SLAM application on real-world data.

In the following, we first give an overview on related data association algorithms. In the
next section, we present our row-based data association approach in detail, including our
definition of Plant-Rows, the parametrization of data association matches and our novel
method that defines a continuous measure of the overlap between observed and mapped
features. We also present the preprocessing pipeline as well as the SLAM framework
that we utilize to provide the proof of concept for our data association approach in a sep-
arate section. In our experimental evaluation, we first compare the performance of our
data association to other data association algorithms to confirm that considering the row
structure is crucial for efficient and robust data association. In the second experiment,
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we determine the success rate of our data association as well as the accuracy of our data
association to confirm that it is well suited to enable localization and mapping applica-
tions for autonomous navigation on crop fields. The third experiment is focused on the
performance of our data association approach along entire crop rows to demonstrate that
it can indeed improve the longitudinal component of the pose estimate while the vehicle
traverses the field. Finally, we provide a qualitative evaluation of our data association
employed in a SLAM framework on real-world data to provide a proof of concept for our
approach.

5.2 Related Work
The problem of data association can be described as finding the correct association be-
tween a set of observed and a set of mapped features. A solution to the data association
problem therefore defines a set of associations that match a feature of the set of observa-
tions to an element of the set of mapped features. The problem of data association is well
studied in the literature. For a better overview, we divide these data association techniques
into different categories and sub-categories and discuss their relevance for data associa-
tion on indistinguishable, densely and almost uniform point feature distributions as well
as how they relate to our data association approach.

Many state-of-the-art techniques for associating points of interest detected in image
data are based on the idea that these points can be distinguished by their appearance in the
image, i. e., by the pixel information contained in a local patch around the detected point.
Examples for such appearance-based techniques are SIFT, BRIEF or ORB [Calonder
et al., 2010, Lowe, 1999, Rublee et al., 2011]. While how the appearance of an object,
i. e., the information contained in this patch, is described varies for each method, they
are all based on extracting additional information about the appearance of an object from
the image data and can therefore be categorized as appearance-based data association
techniques. This additional information is usually stored in a descriptor for each detected
feature. The data association then uses this descriptor to determine the correct association
between features. The key assumption is that features with similar descriptors represent
the same object and should therefore be associated. However, since crops of the same type
look quite similar, such appearance-based data association approaches usually struggle to
find the correct data association on images of agricultural fields as confirmed by Chebrolu
et al. [2018].

Since individual crops on an agricultural field are indistinguishable, appearance-based
data association approaches are not well suited for this setting. Without additional in-
formation such as appearance, the information contained in the geometry of the detected
point features needs to suffice to determine the correct data association. There are many
data association techniques in the literature that consider only the geometric information
of the provided features, which we therefore categorize as geometry-based data associa-
tion techniques. The key assumption of geometry-based algorithms is that if the geomet-
ric properties of an observed feature are similar to the geometric properties of a mapped
feature, these features correspond to the same object in the environment.
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A well-known geometry-based technique is the Nearest Neighbor data association. The
idea of this approach is that an observed feature corresponds to a mapped feature if it is
the nearest neighbor, i. e., closest to the mapped feature. In practice this works well if
the pose estimate required to project the observed features onto the mapped features is
accurate. If the pose estimate is inaccurate, the projected observed features might not
necessarily lie close to their corresponding mapped feature and therefore, the Nearest
Neighbor data association fails to find the correct data association in these cases. This
means that in applications, where pose correction occurs at high frequency so that the
error accumulated between consecutive pose correction steps remains small, such as pose
tracking or localization applications, the Nearest Neighbor data association is a good
choice [Bar-Shalom and Fortmann, 1988, Castellanos et al., 1999, Feder et al., 1999].
Another advantage of the Nearest Neighbor data association is that it treats features inde-
pendently, i. e., observed features are independent from each other and mapped features
are independent from each other. This assumption allows associating each observed fea-
ture independently and therefore enables efficient computation of a solution on a large
number of feature points, e. g., measurements from a three-dimensional LIDAR sensor.

However, since the Nearest Neighbor data association relies on this independence as-
sumption, it struggles to find the correct data association in ambiguous situations, i. e., in
situations where multiple mapped features lie close to an observed feature. As discussed
in the introduction, we expect to encounter many ambiguous situations in our scenario
where the features are densely and almost uniformly distributed. For a geometry-based
data association to disambiguate these situations, additional information contained in the
relative geometry between features needs to be considered during data association. We
summarize these kind of approaches as the sub-category of relative-geometry-based data
association techniques.

A common approach to enforce geometric relations while partially maintaining the
efficiency of the Nearest Neighbor data association is employing the Nearest Neighbor
data association in a random sample consensus (RANSAC) algorithm. The key idea of
a RANSAC-based data association is that certain geometric relations are preserved if
the matches can be described by a geometric transform. Therefore, the model of the
RANSAC data association is a geometric transform that can be efficiently sampled by a
small set of pairwise point matches. Using the sampled transform, the observed feature
points are overlaid with the mapped feature points and the matches are determined using
the Nearest Neighbor data association. The number of matched features is used as the
score for this candidate model of the RANSAC iteration. The RANSAC loop continues
sampling transforms based on point matches until a good model is found. The best trans-
form and its corresponding matches are the output of this RANSAC data association. In
computer vision, where matching sets of points detected in images is also an interesting
problem, approaches with a similar idea to the RANSAC data association approach have
been presented. The idea these approaches have in common with the RANSAC data asso-
ciation is that the matches should be estimated in conjunction with a geometric transform
to ensure that geometric relations are preserved. This includes the approach presented
by Gold et al. [1998], where an affine transform is estimated jointly with the point set
matches, as well as the approach by Cross and Hancock [1998], where the relative ge-
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ometry is encoded on a graph structure. Cross and Hancock use this graph structure to
formulate a dual-step expectation maximization algorithm, where the transform and the
matches between point sets are alternately optimized. The algorithm presented by Car-
cassoni and Hancock [2003] is based on the expectation maximization algorithm by Cross
and Hancock [1998], but uses a spectral graph representation to be more robust against
noisy point positions and missing points. The idea of representing geometric relations in
a graph structure has also been employed by Bailey et al. [2000] for a robotics applica-
tion: Bailey et al. represent geometric relations between point and line features in a graph
structure and obtain the data association by computing the maximum clique of this graph.
In contrast to the graph-based approaches from computer vision, the solution is directly
computed based on the graph structure without a dual optimization including a geometric
transform.

Another idea from the field of computer vision by Wolfson and Rigoutsos [1997] is to
represent the geometric structure of point sets in a hash table. This hash table is based on
the idea that each two points of the point set define their own reference coordinate system.
A more recent approach in computer vision by Yang et al. [2015], inspired by Wolfson
and Rigoutsos [1997], leverages the idea of representing relative geometry using reference
coordinate frames. In the approach presented by Yang et al. [2015], they use this idea to
encode local geometric relations in a descriptor, similar to the appearance-based data
association approaches. The main difference to the appearance-based descriptors is that
is does not encode pixel information of a local patch around the point, but instead encodes
relative geometric information of the k nearest neighbors around the point. As stated by
Yang et al. the key assumption of this technique is that “points are randomly distributed”
so that “the relative positions between points in a local point set is very characteristic”.
The almost uniform distribution of plant positions in our application scenario directly
contradicts this assumption and thus the geometric descriptor presented by Yang et al.
is not well suited for our scenario. Nevertheless, the work by Chebrolu et al. [2018]
successfully applies the idea of a geometric descriptor to register UAV images of crop
fields. The authors present an approach based on the geometric descriptor presented by
Yang et al. [2015] but instead of plant positions, as in our approach, the authors use Gaps
within the crop row structure of the field as feature points. Since Gaps, i. e., locations
within a crop row where crops are missing, are more non-uniformly distributed compared
to the crop positions, they encode characteristic relative positions and enable successful
data association as by Chebrolu et al. [2018]. Another beneficial effect of considering
Gaps instead of crops is that there are inherently less Gaps than crops to be found on
a crop field, which in turn significantly reduces the amount of features that need to be
considered during data association.

A more traditional data association technique from robotics that is also based on ge-
ometric relations is the Geometric Constraints Branch and Bound algorithm presented
by Neira et al. [2003]. This technique is based on the more commonly known proba-
bilistic Joint Compatibility Branch and Bound data association introduced by Neira and
Tardos [2001]. In the JCBB algorithm, the best data association is computed by finding
the largest set of jointly compatible pairings. The key idea of this approach is that the
joint compatibility test can be used to perform an efficient branch and bound tree search
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on the space of all possible pairings. The GCBB algorithm is a more efficient variant
of the JCBB algorithm since it employs the same branch and bound technique presented
by Neira and Tardos [2001] but instead of the joint compatibility test uses a geometric
constraints test during tree search. In the GCBB algorithm the joint compatibility test is
only applied at the end of the search, i. e., when a leaf of the tree is found, to validate the
set of data association matches.

Since the work by Chebrolu et al. [2018] already shows that appearance-based data
association techniques are not well suited in agricultural environments, we compare our
data association to three geometry-based data association techniques in our experimental
evaluation inspired by the following techniques:

1. Nearest Neighbor: This data association is a widely used technique for localization
and mapping applications that can efficiently handle large amounts of features in
contrast to most other geometry-based data association approaches.

2. Geometric Constraints Branch and Bound by Neira et al. [2003]: This algorithm
can find the optimal data association due to its efficient tree search over the whole
space of possible data associations.

3. Gaps Descriptor by Chebrolu et al. [2018]: This is a closely related data association
technique used to register UAV images of crop fields.

At first glance, the tracking algorithm for moving indoor systems equipped with a LI-
DAR sensor presented by Weiss et al. [1994] does not seem related to our data association
problem. However, when considering LIDAR scan lines as a large set of points arranged
along a row, or in this case, scan line, the relevance for our setting with large amounts
of points aligned in crop rows becomes apparent. The key idea of this tracking approach
is to leverage the cross-correlation between two LIDAR scans to find the correct orienta-
tion of the vehicle. Inspired by Weiss et al., we also use the cross-correlation over points
distributed along a line to maximize the overlap between both sets of points in our data
association approach.

5.3 Row-Based Data Association on Individual Plants
In this section, we present our row-based data association approach for localization and
mapping applications on individual plant positions. In order to enable a localization or
mapping technique to correct its pose estimate with respect to the information obtained
from individual plant positions, a robust data association between the set of observed plant
features Fo and the set of mapped plant features Fm is crucial. In our scenario, where the
features are densely and almost uniformly distributed plant positions, determining the
correct data association is challenging. For a better intuition, we also provide an example
of a set of observed and mapped features in Figure 5.2 obtained from real-world data. For
a human it is hard to determine, whether the top or the bottom data association is correct
due to the high density of the features as well as the high ambiguity caused by the almost
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uniform distribution. However, the key assumption for our data association approach on
individual plants is that we can leverage the row structure present in crop fields to resolve
enough ambiguity, which then facilitates robust data association. In order to create such a
row-based data association technique we first need to specify the requirements and criteria
that are crucial for successful data association in our scenario. As discussed in detail in
Section 2.2, this entails defining hard requirements on the set of data association matches
that determine whether a set of data association matches is valid and should be considered
as a possible solution to the data association problem. These hard requirements then
define a subset of the set of all possible data association matches M, called the set of
valid data association matchesMvalid. Additionally to these hard requirements, designing
a data association technique also includes defining soft criteria to quantify whether a set
of data association matches is close to the correct data association. These soft criteria are
then used to define a Target Function t :M→ R, that assigns a value to each set of data
association matches M ∈M, where higher values correspond to a set of data association
matches that is closer to the correct data association. The best data association M∗ is then
found by searching the space of valid data association matches Mvalid to find the set of
data association matches with the highest value t (M). Recalling Section 2.2.1 using these
hard requirements and soft criteria to define the set of valid matchesMvalid and the Target
Function t the solution to the data association problem for a set of observed features Fo
and a set of mapped features Fm can be defined as follows:

Mvalid ⊆M ⊂ P (Fo × Fm) M∗ = argmax
M∈Mvalid

t (M)

We first state the hard requirements. Our key idea is to leverage the information con-
tained in the row structure of crop fields to define, whether a set of data association
matches M ∈ M is valid or not. In Figure 5.3, we show examples for a valid set of
matches based on crop rows on the top left and based on feature matches on the top right.
Below the valid set of matches we show invalid sets of matches, that for different rea-
sons do not preserve the row structure. We use those four examples of invalid matches
to formulate our hard requirements. The most obvious requirement, which follows from
the example of inconsistent feature matches (second row on the right), is to enforce row-
wise matches, i. e., observed plant features of the same crop row should also be matched
to the same corresponding mapped crop row. Additionally, looking at the bottom row
of invalid examples, we have matches that either change the relative order between crop
rows (left) or between features within a row (right). This leads to two hard requirements:
The order between crop rows should be preserved, i. e., preserve inter row order. The
order between features within the same crop row should be preserved, i. e., preserve intra
row order. Finally, considering what we learned from the data association in the previ-
ous chapter, we also include the requirement, that matches between crop rows should be
consistent. An example of an inconsistent row match is shown in Figure 5.3 on the left of
the second row. Here, the relative distances between adjacent crop rows are not similar,
i. e., the distance between the observed crop rows ∆Ro is much smaller than the distance
between the corresponding mapped crop rows ∆Rm. We give a more detailed explanation
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Figure 5.3: This figure shows different data association matches on an example set of
observed (blue points) and mapped features (red points) as well as their corresponding
crop rows (blue and red lines respectively). We indicate matched observed and mapped
features by connecting them with lines on a per row basis on the left and per plant position
on the right. Valid matches are shown in gray, matches that cause a set of matches to
be invalid are highlighted in orange. The top row shows an example for a valid set of
matches, the lower two rows show examples for invalid matches. These four examples
of invalid matches illustrate the ideas behind the first four hard requirements of our row-
based data association approach.

about the definition of consistent crop row matches in Section 4.3.1. Additionally to the
hard requirements that are specific to the row structure of our data, we also include the
hard requirement of locality. This means, that we only consider data association matches,
that infer a reasonable amount of pose correction onto the current pose estimate. This
constraint is usually used to reduce the number of valid data association matches for com-
putational feasibility. However, in our case, we also apply the locality requirement to
reduce the amount of ambiguous data association matches to increase the robustness of
our data association approach. In summary, a set of data association matches is valid for
our data association approach, if it satisfies the following five hard requirements:

1. Row-Wise Matches: Features from the same observed row should be matched to the
same mapped row.

2. Preserve Inter Row Order: Adjacent observed rows should be matched to corre-
sponding adjacent mapped rows.

3. Preserve Intra Row Order: Adjacent observed features within the same row should
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be matched to corresponding adjacent mapped features.

4. Consistent Row Matches: The relative distance between adjacent observed rows
and the corresponding adjacent mapped rows should be similar.

5. Locality: Data association matches should only infer a bounded amount of correc-
tion on the current pose estimate.

The soft criteria define, how close a given set of data association matches is to the
correct data association. Since the correct data association is, of course, not known,
the distance between a set of data association matches and the correct data association
cannot be measured directly. Therefore, it is usually assumed that a set of data associa-
tion matches is close to the correct data association, if it explains the observed data well
given the information from mapped data. A Target Function thus needs to quantify, how
well a set of matches M ∈ Mvalid overlays the observed data Fo onto the mapped data
Fm. As discussed in Section 2.2.2, the most common strategy to quantify this overlap is
counting the number of matched observations based on the Positive Information criterion.
This works well on data association problems with a distinctive feature distribution, since
only the correct data association can match all observed features (see Figure 5.4, top).
With an almost uniform feature distribution as in our setting, many sets of data associa-
tion matches maximize the number of matched observed features, although they are not
necessarily close to the correct data association (see Figure 5.4, bottom). For a higher
discriminative ability, our Target function should therefore also consider Negative Infor-
mation. As explained in Section 2.2.2, the Negative Information criterion is based on the
idea that the absence of an observation also contains valuable information. If a mapped
feature lies within the detection range, but no observation is associated with the mapped
feature, the observed data does not overlay well with the mapped features. Therefore,
the Target function should penalize sets of data association matches, if mapped features
within the detection range remain unmatched. In Figure 5.4 we illustrate how additionally
considering Negative Information increases the discriminative ability of a Target Function
and thus improves the robustness of the data association strategy on ambiguous feature
distributions.

Strategies that consider both, Positive and Negative Information are usually realized by
counting the number of matched observations and subtracting the number of unmatched
mapped features to define the values of the Target Function. However, counting matches
would require a hard decision on whether two features match or not, which is difficult
in ambiguous situations. Since we expect to encounter many ambiguous situations in
our setting with almost uniform and densely distributed features, we aim at designing a
Target Function that does not require a discrete decision on whether two features match.
Without this discrete decision, the number of matches cannot be counted as a discrete
number. Instead, the Target Function needs to define a continuous measure on how well
the observed features overlap the mapped features. Therefore, we call this the Continuity
criterion.

Finally, we need to add a fourth criterion, which is important for mapping applications,
where the map is only partially known. In these applications, the vehicle is exploring the
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Figure 5.4: This figure showcases the Positive and Negative Information criteria for dis-
criminative and sparsely distributed features on the top and uniform and densely dis-
tributed features on the bottom. The observed and mapped features are shown as blue
and red points respectively. The detection range, which determines the mapped features
relevant for the Negative Information criterion, is illustrated as blue outline. The correct
set of matches, i. e., the correct data association, is shown on the left. An example for
an incorrect set of matches is shown on the right. The sets of matches are visualized by
connecting the observed feature with its corresponding mapped feature using a gray line.
In the top setting with discriminative and sparsely distributed features, both, Positive and
Negative Information can distinguish the correct from the incorrect set of matches. In the
bottom example, with uniform and densely distributed features, the Positive Information
criterion cannot discriminate the incorrect set of matches from the correct set of matches,
since all observations are matched in both cases. In contrast, the Negative Information cri-
terion can distinguish between both, since the incorrect set of matches has an unmatched
map feature within the detection range.

environment to create a map by incorporating previously unobserved data into the current
incomplete map of the environment. Thus a certain amount of observed data is usually not
part of the map. In our case, the unmapped portion of observed data corresponds to crop
rows at the edge of the field of view. In these cases the correct data association includes
not matching the observed crop rows that are not part of the current state of the map.
This directly contradicts the Positive Information criterion of maximizing the number
of matched observed features. This means that a Target Function strictly following the
Positive Information criterion will always be biased towards matching as many observed
features and thus as many crop rows as possible. Since this is usually not correct for
mapping applications we introduce a fourth criterion: The Target Function should not
be biased towards matching as many crop rows as possible. In summary, we design a
Target Function that quantifies data association matches according to the following four
soft criteria:
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1. Positive Information: Maximize the number of matched observations.

2. Negative Information: Minimize the number of unmatched map features within the
detection range.

3. Continuity: Measure overlap as a continuous value without deciding whether two
features match.

4. No Bias: No bias towards matching as many rows as possible.

To define the set of valid data association matches Mvalid according to our hard re-
quirements we first need to establish a mathematical definition of a row structure on a
set of plant features, called a set of Plant-Rows. In addition to the set of Plant-Rows,
we also define properties and operations on these sets of Plant-Rows that are required to
properly define the set of valid data association matchesMvalid. We then use these sets
of Plant-Rows to define a two-dimensional parametrization of the set of data association
matches and define the set of valid matchesMvalid with respect to this parametrization.
Finally, we use the soft criteria to design variations for the Target Function t and discuss
the properties of each variation in detail.

5.3.1 Definition and Properties of Plant-Rows
The main idea of our data association approach is to leverage the distribution of plant
features in crop rows to determine whether a set of data association matches is valid.
Therefore, we need to mathematically define this row structure of plant features, called
Plant-Rows, as well as the properties and operations on these Plant-Rows that are relevant
to define the set of valid data associations.

In the following, we assume that the knowledge about which plant feature belongs
to which crop row is given a priori. This means that for a given set of plant features
Fp :=

{
p1, . . . , pnFp

}
⊂ R2 and k crop rows, we know the mapping row: Fp →

{1, . . . , k} , p 7→ j, that assigns each feature p to its corresponding j-th crop row. In
Section 5.4, we explain in detail how we extract this information from raw data to ob-
tain this mapping row for a set of features Fp. For better intuition, we give an example
in Figure 5.5, where each crop row and its associated plant features are highlighted in a
different color.

Using this mapping row, we now define our set of Plant-Rows based on a two-dimensional
reference coordinate system that is aligned with the direction of the crop rows. The first
coordinate describes the position of a feature along the crop rows, i. e., a longitudinal co-
ordinate, and the second coordinate describes the position of a feature in the direction
that is orthogonal to the crop rows, called lateral coordinate. We then use this coordinate
system to define an order on the plant features according to the longitudinal component
as well as an order on the crop rows according to the lateral component. These orders
then enable us to validate the hard requirements of preserving inter and intra row order
for a given set of data association matches. We also utilize this reference coordinate
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Figure 5.5: This figure shows an example for a set of Plant-Rows R (Fp) with features
of different colors for each crop row R1 (Fp) , . . . , R6 (Fp) ∈ R (Fp). The position of the
centroid c1, . . . , c6 of each crop row is marked using a circle. The reference coordinate
system defined by this set of Plant-Rows according to {dp, np} is illustrated with black
arrows. The longitudinal and lateral coordinates are annotated as black dotted lines for
a point pi ∈ Fp (j) in the j-th crop row Rj (Fp). The indexed annotations of the crop
rows R1 (Fp) , . . . , R6 (Fp) as well as the indexed annotations of the plant features of the
j-th crop row (red crosses) demonstrate how the crop rows and plant features are ordered
according to the corresponding lateral and longitudinal coordinates.

system to define a distance measure between crop rows based on the lateral coordinate.
This distance measure then allows us to validate the fourth requirement of consistent row
matches, where relative distances between pairs of matched crop rows need to be pre-
served. In order to determine whether the order between plant features is preserved, we
define a projection that transfers an observed plant feature from its crop row to its position
in the corresponding matched row.

Plant-Rows Given a set of plant position features Fp :=
{
p1, . . . , pnFp

}
⊂ R2 and k

crop rows with a mapping row: Fp → {1, . . . , k} , p 7→ j, that assigns each feature p to
its corresponding j-th crop, we define a set of Plant-RowsR (Fp) as follows:

Fp (j) := {p ∈ Fp | row (p) = j}
nj := |Fp (j)|

Rj (Fp) := (cj, Fp (j))

R (Fp) := (dp, np, {R1 (Fp) , . . . , Rj (Fp) , . . . , Rk (Fp)})

The set of Plant-Rows R (Fp) contains plant features in Fp assigned to their corre-
sponding crop rows R1 (Fp) , . . . , Rk (Fp). We also compute the centroid cj for each crop
row Rj (Fp) as the average over all plant features of that row. Assuming approximately
parallel crop rows, we define a direction dp ∈ R2 and its orthogonal component np ∈ R2
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on the set of Plant-Rows R (Fp), where dp and np are the direction and the normal di-
rection of the longest row of the set. We show an example for a set of Plant-Rows in
Figure 5.5.

Order on Plant-Rows The direction dp and normal direction np define a coordinate
system in R2 on Fp, i. e., we can split each point p ∈ Fp into a longitudinal component
longFp (p) and a lateral component latFp (p) using the linear combination:

p = longFp (p) · dp + latFp (p) · np

The longitudinal coordinate longFp (p) describes, where along a crop row the point p is
located relative to the origin. The lateral coordinate latFp (p) describes the displacement
of p from the origin along the normal direction np (see Figure 5.5). We also define the
longitudinal and lateral distance between two points q1, q2 ∈ Fp as the component-wise
absolute distance:

∆ longFp (q1, q2) :=
∣∣∣longFp (q1)− longFp (q2)

∣∣∣
∆ latFp (q1, q2) :=

∣∣latFp (q1)− latFp (q2)
∣∣

The lateral and longitudinal coordinates then define an order on the set of Plant-Rows
as well as each set of plant features within each row Rj (Fp) respectively (see Figure 5.5).
Using the lateral coordinate of the centroids cj of the j-th crop row Rj (Fp), we sort
the set of Plant-Rows in ascending order, such that R1 (Fp) has the centroid with the
smallest lateral coordinate andRk (Fp) has the centroid with the largest lateral coordinate.
Similarly we arrange the plant features in each crop row pi ∈ Rj (Fp) in ascending order
according to their longitudinal coordinate. This results in the sorted set of Plant-Rows
R (Fp):

R (Fp) := (dp, np, {R1 (Fp) , . . . , Rk (Fp)})
Rj (Fp) := (cj, Fp (j))

Fp (j) :=
{
p1, . . . , pnj

}
, where

∀j ∈ [1, k − 1] : latFp (cj) ≤ latFp (cj+1)

∀i ∈ [1, nj − 1] : longFp (pi) ≤ longFp (pi+1)

In the following we always assume that the set of Plant-Rows is sorted. During data
association, we usually have two sets of plant features Fo and Fm, where the first cor-
responds to the set of observed features and the second to the set of mapped features.
For the following definitions, let R (Fo) be the set of Plant-Rows for Fo and R (Fm) the
corresponding set of Plant-Rows for Fm.
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Figure 5.6: This figure illustrates our definition of the line to line distance between two
matched crop rows Rj (Fo) ∈ R (Fo) (blue) and Rl (Fm) ∈ R (Fm) (red). The corre-
sponding centroids cj and cl are annotated using a blue and red circle respectively. The
signed line to line distance δ between the rows is shown as a black arrow.

Line to Line Distance When computing the valid set of data association matches, the
distance between matched crop rows is an important criterion. Therefore, we define the
signed line to line distance δ, and the absolute line to line distance ∆ between two crop
rows Rj (Fo) and Rl (Fm) of not necessarily the same set of Plant-Rows as follows:

δ (Rj (Fo) , Rl (Fm)) := latFm (cj)− latFm (cl)

∆ (Rj (Fo) , Rl (Fm)) := |δ (Rj (Fo) , Rl (Fm))|
= |latFm (cj)− latFm (cl)|
= ∆ latFm (cj, cl)

For this line to line distance measure, we use the lateral distance according to R (Fm)
between the centroids cj and cl of the lines Rj (Fo) and Rl (Fm). We give an intuition of
this line to line distance in Figure 5.6.

Projection During data association, when we consider matches between crop rows, we
project observed plant features q ∈ Fo from their crop row into the matched crop row
Rl (Fm) ∈ R (Fm) (see Figure 5.7). This operation translates the original point q to the
same position of q along its corresponding row, but projected as if it were in the target
row Rl (Fm), i. e., the longitudinal coordinates of the original point q and its projection
q′ are equal. Since we want to project the point q onto Rl (Fm), we also need to define
a lateral coordinate that puts the projected point onto the crop row Rl (Fm). To this end,
we compute a reference point yq ∈ Rl (Fm) that is close to the longitudinal position of q
and use its lateral coordinate for our projected point. If no point y ∈ Rl (Fm) is close to
q, we use the centroid cl of Rl (Fm) as a reference. Therefore, the projected plant feature
q′ = prjRl(Fm) (q) is defined as follows:
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Figure 5.7: This figure demonstrates how a point q ∈ Fo is projected onto the crop row
Rl (Fm) ∈ R (Fm). The point q and the corresponding coordinate system are shown in
blue. Its projection q′ and corresponding longitudinal coordinate in the target coordinate
system R (Fm) are highlighted in orange. The lateral components considered during
projection, i. e., the points on Rl (Fm), including yq, and the centroid cl are visualized in
red.

prjRl(Fm) (q) := longFo (q) · dm + latFm (yq) · nm

yq :=

{
y∗ (q) , if

∣∣longFo (q)− longFm (y∗ (q))
∣∣ < 0.3

cl, otherwise

y∗ (q) := argmin
y∈Rl(Fm)

∣∣longFo (q)− longFm (y)
∣∣

In this section, we defined the row structure called Plant-Rows as well as a reference
coordinate system that is split into a longitudinal coordinate along the crop row direction
and a lateral coordinate that is orthogonal to the direction of the crop rows. We use
these coordinates to define an order on crop rows and plant features as well as a distance
measure between crop rows. We also present a technique to project a feature from an
observed crop row onto the corresponding mapped crop row. In the following, we use
these definitions on Plant-Rows to define the set of valid data association matchesMvalid

according to our hard requirements.

5.3.2 Parametrization of Data Association Matches

In this section, we use the definitions of the set of Plant-Rows to define the set of valid
data association matches Mvalid, i. e., the subset of all possible sets of data association
matches M, that satisfy the five hard requirements: Row-Wise Matches, Preserve Inter
Row Order, Preserve Intra Row Order, Consistent Row Matches and Locality. To this end,
we first define a two-dimensional parametrization of the set of data association matches.
The sets of matches that can be expressed by this parametrization are guaranteed to satisfy
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the first three hard requirements. We then restrict the value range of the parametrization
to enforce the last two requirements and define our set of valid data association matches
Mvalid using this restricted two-dimensional parametrization.

Parameterized Search Space Our definition for the two-dimensional parametrization
of sets of plant feature matches is inspired by our one-dimensional parametrization of
sets of crop row matches in the Crop Row data association presented in Section 4.3.1.
For our one-dimensional parametrization we shift the observed crop rows in the lateral
direction according to the lateral shift parameter slat ∈ R to overlay them with the mapped
crop rows and efficiently generate geometrically consistent sets of crop row matches. We
transfer this idea to sets of plant features as follows: First, analogously to the lateral shift
parameter slat we use a row-shift parameter r ∈ Z, to align the observed crop rows with
the mapped crop rows. In contrast to the lateral shift slat that describes the amount of
lateral shift, the row-shift r uses the fact that the crop rows of the set of Plant-Rows are
ordered and therefore assigns crop row pairs based on their indices, i. e., the i-th observed
crop row is assigned to the (i+ r)-th mapped crop row. In order to align the plant features
of the matched crop row pairs, we introduce a second shift parameter, called long-shift
parameter l ∈ R that shifts the observed plant features in the longitudinal direction. Both
parameters together then define the two-dimensional shift parameter s = (r, l) ∈ Z×R of
our two-dimensional parametrization of sets of plant feature matches. We illustrate how a
shift parameter s overlays a set of observed Plant-Rows onto a set of mapped Plant-Rows
in Figure 5.8. We call the operation that shifts an observation o ∈ Fo according to a given
shift parameter s ∈ Z × R the projection prjs (o). Analogously to the one-dimensional
parametrization, we determine a set of feature matches M (s) ∈ M for a shift parameter
s by projecting all observed features o ∈ Fo according to the shift s and computing the
Nearest Neighbor data association between the projected observations and the mapped
features Fm. We illustrate how the shift projects the observed features onto the mapped
features as well as the set of matches represented by that shift in Figure 5.8.

Given the set of observed plant features Fo and the set of mapped plant features Fm, we
arrange both sets into ordered sets of Plant-Rows, R (Fo) with ko rows and R (Fm) with
km rows respectively. Our two-dimensional parametrization is then defined as follows:

s := (r, l) ∈ Z× R (5.1)
prjs (o) := prjRj+r(Fm)

((
longFo (o) + l, latFo (o)

))
∀ o ∈ Fo (j) , ∀ j ∈ [1, ko](5.2)

ms (o) := argmin
m∈Fm(j+r)

‖prjs (o)−m‖ (5.3)

M (s) := {(o,ms (o)) | ∀ o ∈ Fo : ‖prjs (o)−ms (o)‖ < ε} (5.4)

Since adjacent crops are usually planted around 0.3 m apart within the crop rows, we
choose half the distance of ε := 0.15 m as the distance threshold for the Nearest Neighbor
data association. Of course, this parameter can be adapted for crop fields with different
intra-row spacing if necessary.
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Figure 5.8: This figure illustrates how a shift s = (r, l) (black arrows) defines a matching
between the set of observed Plant-RowsR (Fo) (blue points) and the mapped Plant-Rows
R (Fm) (red points). The set of data association matches M (s) recovered from the shift
s is shown by connecting paired plant positions with gray lines. As an example, we
highlight how the observed crop row Rj (Fo) is shifted onto the corresponding mapped
crop row Rj+r (Fm) with darker colors. We illustrate how a point q ∈ Fp (j) is projected
according to the shift s by first shifting q onto the mapped crop row according to the row-
shift r and then shifting along the crop row by its longitudinal coordinate longFo (q) as
well as the long-shift l. The resulting projected point q′ and its longitudinal coordinate
are visualized in orange.

When computing the matching mapped feature ms (o) for an observed feature, we only
consider m ∈ Fm (j + r), i. e., features o in the j-th crop row are only mapped on fea-
tures m that are in the associated (j + r)-th crop row. This ensures that the set of matches
M (s) only contains Row-Wise Matches and thus requirement 1 is satisfied. The second
requirement to preserve inter row order is satisfied, since the crop rows of both sets are
ordered in ascending order and we use the same row-shift r to match observed crop rows
with mapped crop rows. Therefore, any neighboring observed row Rj+1 (Fo) will be
matched onto the mapped crop row R(j+1)+r (Fm) that is adjacent to the corresponding
mapped crop row Rj+r (Fm) by definition. Regarding the third requirement of preserving
intra row order, we need to confirm that the order of the plant features within corre-
sponding rows is preserved, while it is allowed to match different observed plant features
onto the same map feature. During projection, the feature order is preserved since the
longitudinal position of each feature is always shifted by the same amount l. Therefore,
for any crop row Rj (Fo) a plant feature oi+1 ∈ Fo (j) adjacent to oi ∈ Fo (j) within
the same crop row remains a direct neighbor after projecting, since the new longitudi-
nal coordinates longFo (oi) + l and longFo (oi+1) + l still have the same relative distance∣∣longFo (oi) + l −

(
longFo (oi+1) + l

)∣∣ =
∣∣longFo (oi)− longFo (oi+1)

∣∣. Using a Nearest
Neighbor data association on the projected observations also maintains the order of plant
features. For a better intuition, we give an example in Figure 5.9. Confirming that the
order of plant features is preserved for all matches is equivalent to showing that no match
can be found that breaks the order as shown in this example. Recalling that we always
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Figure 5.9: This figure illustrates a valid set of data association matches (gray lines) of
projected observations (blue points) along a mapped crop row (red points) according to
the Nearest Neighbor data association. An example for feature matches that break the
order of plant features and would therefore cause the set of matches to be invalid are
highlighted with dashed orange lines. The neighborhood around each mapped feature
defined by the Nearest Neighbor data association is visualized by dashed red lines that
separate adjacent neighborhoods. All observed features inside a neighborhood are clos-
est to the corresponding mapped feature and therefore matched with this feature by the
Nearest Neighbor data association (gray lines). Thus, the invalid feature matches (orange
lines) cannot occur in the Nearest Neighbor data association, since the observed features
would not be matched to the closest mapped feature, i. e., the observed features lie not
inside the neighborhood of the mapped feature they would be matched to.

match an observation o to the map feature ms (o) closest to its projected position prjs (o),
we can immediately conclude that the situation shown in the example can not occur in our
algorithm. In summary, our technique to represent matches using shifts s ∈ S = Z×R al-
ways yields sets of data association matchesM (s) that satisfy the first three requirements.
Thus, we use this parametrization to define our search space during data association as a
subset of the set of all possible matches M (S) ⊂ M. In the following, we also call the
parametrization S search space, since it implicitly defines the data association matches
M (S).

Valid Search Space Using the set of shifts S as our search space during data asso-
ciation, we know that the resulting sets of data association matches M (S) satisfy the
first three requirements. However, there can be instances, where a shift s ∈ S results
in an empty set of data association matches M (s) = ∅, or cases, where multiple shifts
{s1, . . . , sn} ∈ S result in the same set of data association matches M (s1) = · · · =
M (sn). Therefore, we constrain the row-shift and long-shift parameters of our search
space S, so that no duplicate sets of matches and no empty matches are considered dur-
ing data association. We further constrain both parameters to ensure that the last two
requirements of Consistent Row Matches and Locality are satisfied.

The same set of data association matches is only represented by shifts si, sj ∈ S that
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have the same row-shift ri = rj and similar long-shifts |li − lj| < ε. In these cases,
the observed crop rows are matched onto the same mapped crop rows and the difference
in the long-shift is not large enough, so that the closest mapped feature ms (o) is still
the same for all o ∈ Fo. To avoid shifts that are too similar, we discretize the space
of considered long-shifts Lvalid by a given resolution lres. This ensures, that the distance
between consecutive long-shifts is always equal to lres. If the resolution lres is too large,
some sets of data association matches might get excluded from the set of valid matches.
Therefore, we choose a sufficiently small long-shift resolution lres = 0.01 m for our data
association approach. The set of discretized valid long-shifts Lvalid is then defined as:

Lvalid := {li ∈ R, i ∈ Z | l0 = 0, li+1 = li + lres}

The Locality requirement, as explained in Section 2.2.2, is based on the idea that the
corrected pose estimate should remain reasonably close to the current pose estimate.
Therefore, only a local set of valid data association matchesM ∈Mlocal that infer a small
amount of pose correction TM onto the current pose estimate should be considered during
data association. Since the observed and mapped crop rows are approximately parallel,
the inferred amount of angular pose correction θ is similar for all data association matches
M ∈M that preserve the crop row structure. It thus suffices to constrain the translational
component t of the inferred pose correction TM . Since our parametrization of sets of data
association matches as shifts s ∈ S by design models the inferred translational pose cor-
rection t, we define the set of local data association matchesMlocal in our parameterized
space S as follows: In order to determine the shifts s ∈ S that only infer a small amount
of translational pose correction, we first determine the shift scurrent that infers the smallest
possible amount of pose correction relative to the current pose estimate. We then use
this shift scurrent as a reference to define the set of local shifts S local := Rlocal × Llocal that
represent the local set of data association matchesMlocal := M

(
S local

)
.

Given the current pose estimate of the vehicle, we determine the corresponding ref-
erence shift scurrent = (rcurrent, lcurrent) ∈ S as follows: The long-shift l of the shift s
determines how far the plant positions should be shifted in the longitudinal direction rel-
ative to the current pose estimate. Therefore, minimizing the longitudinal component of
the inferred pose correction is equal to lcurrent := 0. Finding the value that minimizes the
inferred lateral pose correction, i. e., determining the row-shift component rcurrent is more
complex. In contrast to the long-shift, the row-shift is not defined relative to the pose
estimate. Instead, it is a crop row index that depends on the observed and mapped crop
rows. To find the row-shift rcurrent that minimizes the introduced lateral shift, we find the
pair of observed and mapped crop rows (Rj∗ (Fo) , Rl∗ (Fm)), where the matched rows
are closest to each other according to the crop row distance ∆. This then defines the
row-shift rcurrent := l∗ − j∗ with the smallest inferred lateral translation. In summary, the
current shift scurrent that infers minimal lateral and longitudinal correction and therefore
best represents the current pose estimate is defined by scurrent := (l∗ − j∗, 0).

To apply the locality principle, we need to determine the expected pose estimate accu-
racy. From our previous experiments we know that during navigation of an entire crop
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field, the largest pose errors occur after the turning maneuver at the headlands before
traversing the next set of crop rows. Here, the vehicle usually looses track of the features
as it leaves the field. Therefore the pose cannot be corrected and errors accumulate in the
estimate. The error in the pose estimate at this point usually spans around two crop rows
to the left and right and around 3 m longitudinally – assuming the accuracy of a standard
GPS without corrections from the End of the Field detection. Therefore, we define the set
of local shifts S local = Rlocal × Llocal as follows:

Rlocal := [rcurrent − 2, rcurrent + 2]

Llocal := [lcurrent − 3, lcurrent + 3]

Note, that we choose these thresholds conservatively, i. e., we will most likely not ex-
clude the correct shift parameter. To ensure that no empty matches are represented in our
search space, we constrain the row-shift parameter, so that at least one observed crop row
is matched with a mapped crop row. We therefore compute the smallest and largest pos-
sible row-shifts rmin and rmax so that at least one observed crop row is matched. These are
exactly the row-shifts, where the last observed row ko is matched with the first mapped
row and vice versa. This determines the range of valid row-shift values rmin := 1−ko and
rmax := km − 1. According to the Consistent Row Matches requirement, only row-shifts
that define crop row pairs with similar relative distances are valid.

Therefore, we check for every row-shift r ∈
[
rmin, rmax

]
, whether the crop row pairs de-

fined by that row-shift are geometrically consistent as defined in Section 4.3.1 in Eq. (4.5).
Recall, that we used a continuous lateral shift parameter slat ∈ R to shift the observed crop
rows in the lateral direction and determine a set of crop row data association matches
MR (slat) ∈ P

(
{Rj (Fo)}j∈[1,ko]

× {Rl (Fm)}l∈[1,km]

)
according to the Nearest Neighbor

strategy. We also proofed that the implication of Eq. (4.6) holds: If shifting the observed
crop rows by slat results in a set of crop row matches MR (slat) with a pairwise line to
line distance below 1

2
ε for a given threshold ε, we can conclude that the set of crop row

matches is geometrically consistent and gc (MR (slat)) holds.
In this chapter, we use the discrete row-shift parameter r to determine the matched crop

row pairs MR (r) ∈ P
(
{Rj (Fo)}j∈[1,ko]

× {Rl (Fm)}l∈[1,km]

)
. To apply our findings

from the previous chapter, we therefore determine the continuous lateral shift parameter
slat (r) corresponding to each row-shift parameter r ∈

[
rmin, rmax

]
. We then use Eq. (4.6)

to determine whether the set of matched crop rows MR (r) according to our row-shift
parameter r is geometrically consistent, i. e., whether gc (MR (r)) holds, by shifting the
observed crop rows by slat (r) and checking that the shifted observed crop rows have
a lateral distance of below 1

2
ε to their corresponding matched crop row. By defining

the lateral shift slat (r) inferred by a given row-shift parameter r as the smallest signed
distance of all matched crop rows in MR (r), we determine geometric consistency of
MR (r) as follows:
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MR (r) := {(Rj (Fo) , Rl (Fm)) | l = j + r}
(Rj∗ (Fo) , Rj∗+r (Fm)) := argmin

(Rj(Fo),Rj+r(Fm))∈MR(r)

∆ (Rj (Fo) , Rj+r (Fm))

oref := cj∗

slat (r) := δ (Rj∗ (Fo) , Rj∗+r (Fm))

gc (MR (r)) ⇐ ∀ (Rj (Fo) , Rj+r (Fm)) ∈MR (r) :

∆oref (Rj (Fo) , Rj+r (Fm) (slat (r))) <
1

2
ε (5.5)

Note that ∆ and δ are the line to line distances defined in this chapter on our Plant
Row structure. This distance measure is used to determine the reference point oref, which
is the centroid cj∗ of the reference observed crop row Rj∗ (Fo) as well as the lateral shift
parameter slat (r). For determining whetherMR (r) is geometrically consistent, we use the
line to line distance measure ∆oref as defined in Eq. (4.2) with reference point oref. Note
that we shift the mapped lines Rj+r (Fm) by slat resulting in Rj+r (Fm) (slat (r)) instead
of the observed lines Rj (Fo) for convenience. We only keep row-shifts r that yield crop
row matches MR (r) that are geometrically consistent according to the condition on the
right of Eq. (5.5). Using this testing procedure, we define the set of valid row-shifts Rvalid

as follows:

Rvalid := (r ∈ [1− ko, km − 1] | gc (MR (r)))

Combining all search space constraints, we define the set of valid shifts Svalid as well
as the resulting set of valid matchesMvalid and state our data association approach more
precisely as follows:

Svalid := S local ∩
(
Rvalid × Lvalid)

Mvalid := M
(
Svalid)

M∗ = argmax
M∈Mvalid

t (M) = argmax
{M(s)|s∈Svalid}

t (M (s)) = M (s∗)

s∗ := argmax
s∈Svalid

t (M (s))

The set of valid shifts Svalid contains all shifts s = (r, l) that have valid row- and
long-shift values r ∈ Rvalid and l ∈ Lvalid and only introduce a reasonable amount of
pose correction s ∈ S local. The resulting set of valid data association matchesMvalid =
M
(
Svalid

)
then only contains sets of data association matches M ∈ Mvalid that fulfill all

five hard requirements. We leverage our parametrization of valid data association matches
using shifts s ∈ Svalid to find the best data associationM∗ according to the Target function
t. This is equivalent to finding the best shift s∗ according to the Target function t with
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M∗ = M (s∗). Next, we explain how we design the Target Function t for our row-based
data association approach to achieve a robust and accurate data association on dense and
almost uniformly distributed features.

5.3.3 Counting Matches on Challenging Feature Distributions

In this section, we explain how we design our Target Function to measure the overlap
between observed and mapped features for a set of data association matches. In our
setting with dense and almost uniformly distributed features, the main challenge is to
derive a Target Function t that can efficiently quantify a large amount of possible feature
matches as well as robustly discriminate highly ambiguous situations. To this end, we
introduced four soft criteria to incorporate in our Target Function: Positive Information,
Negative Information, Continuity and No Bias. Recalling that we define the set of valid
matches Mvalid using our parametrization Mvalid = M

(
Svalid

)
, the search space during

data association is the set of valid shifts Svalid. Therefore, we define our Target Function t
as a function that operates on shifts s ∈ Svalid and considers the corresponding set of data
association matches M (s) ∈ M to determine a value t (M (s)) ∈ R. We call this value
t (M (s)) ∈ R a score for the corresponding shift s and our corresponding Target Function
that is designed to operate on shifts a Score Function sf : S → R, sf (s) := t (M (s)).
Accordingly, we then define the solution to our data association problem as finding the
best shift defined by our Score Function sf:

s∗ = argmax
s∈Svalid

t (M (s)) = argmax
s∈Svalid

sf (s)

In the following, we first present our vanilla Score Function, that uses a continuous
measurement to quantify the overlap between observed and mapped features, thereby sat-
isfying criterion 1 and 3. However, this vanilla Score Function is biased towards matching
as many crop rows as possible. Therefore, we also introduce a regularization technique
to counter the bias of our vanilla Score Function. Since the vanilla Score Function does
not consider Negative Information, we then present three variations of the vanilla Score
Function that consecutively improve on criteria 2 and 4. We also discuss different prop-
erties of the presented Score Functions to give an intuition about the expected behavior
for each Score Function and discuss properties of a Score Function that is well suited for
a localization or mapping application on challenging feature distributions.

Cross-Correlation to Continuously Count Matches In contrast to many other data
association approaches that count the number of matched observed features, our Score
Function should compute a continuous measurement. The main idea for our Score Func-
tion, inspired by Weiss et al. [1994], is that we use the cross-correlation to design a contin-
uous equivalent to the discrete match counting strategy and therefore satisfy the Positive
Information and Continuity requirements. The continuous cross-correlation cc and the
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discrete cross-correlation ccdisc measure the similarity of two continuous or discrete func-
tions over a displacement τ or z respectively:

cc : R→ R

τ 7→
∫
R
f (t) · g (t+ τ) dt ∀f, g : R→ R

ccdisc : Z→ R

z 7→
∑
i∈Z

f (i) · g (i+ z) ∀f, g : Z→ R

Our key idea is to transfer the properties of the cross-correlation to our Score Function.
Given a shift s = (r, l) ∈ S the row-shift r determines which rows to match and the long-
shift l defines the longitudinal displacement. We therefore compute the continuous cross-
correlation between each pair of crop rows and use the long-shift l as the displacement
τ .

For a better intuition, we first show how the discrete version of the cross-correlation
can be used to count the number of data association matches for a given displacement z
and a distance threshold ε that determines whether two features match. Afterwards, we
explain how this approach can be transferred to the continuous case to count the number
of matches in a continuous matter without defining a hard distance threshold ε.

We obtain a discrete match counting strategy with distance threshold ε using the dis-
crete cross-correlation ccdisc as follows: Given a set of observed Plant-Rows R (Fo) and
mapped Plant-Rows R (Fm), we compute the cross-correlation between pairs of crop
rows Rj (Fo) ∈ R (Fo) and Rj+r (Fm) ∈ R (Fm), where j+ r is the index of the mapped
crop row that is paired with the j-th observed crop row according to the row-shift param-
eter r. The overall number of matched observations No for a given displacement z ∈ Z is
then given by the sum over the pairwise crop rows:

No (z) :=
∑

j∈[1,...,ko]

ccdisc
j,j+r (z)

To compute the cross-correlation between a pair of crop rows, we represent the feature
distribution along each rowRj (Fo) andRj+r (Fm) as a discrete function f disc

j , gdisc
j+r : Z→

R. Our key idea is to leverage the coordinate system defined by the corresponding set of
Plant-Rows. The longitudinal direction do and dm respectively define the domain of the
discrete functions f disc

j , gdisc
j+r. We discretize this domain using a threshold ε to obtain a

discrete set of bins {ti}i∈Z = Tε. All observed features o ∈ Fo (j) that fall into the same
bin ti as a mapped feature m ∈ Fm (j + r) are per definition within the distance threshold
ε to any mapped feature in ti and therefore count as matched observations. We thus define
the values of the discrete observed function f disc

j for each bin ti as the number of observed
features o ∈ Fo (j) that fall into ti. For the values of the discrete mapped function gdisc

j+r it
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suffices to check for each bin ti whether at least one mapped feature falls into each bin ti.
If a mapped feature m ∈ Fm (j + r) falls into ti, we set the value of gdisc

j+r (ti) to 1 and to
0 otherwise. The product over both functions at each bin ti is then equal to the number of
matched observed features at each bin ti. We give an example for the discrete functions
of a pair of crop rows as well as the resulting product over both functions on the left of
Figure 5.10. Mathematically, the observed and mapped discrete functions are defined as
follows:

ti ∈ Tε := {ti ∈ R, i ∈ Z | t0 = 0, ti+1 = ti + ε}
f disc
j (ti) :=

∣∣{q ∈ Fo (j) | ti ≤ longFo (q) < ti+1

}∣∣
gdisc
j+r (ti) :=

{
1, if ∃q ∈ Fm (j + r) : ti ≤ longFm (q) < ti+1

0, otherwise

Given a displacement z ∈ Z the corresponding discretized cross-correlation on a pair
of crop rows Rj (Fo), Rj+r (Fm) is then defined as:

ccdisc
j,j+r (z) :=

∑
i∈Z

f disc
j (ti) · gdisc

j+r (ti+z)

By definition of f disc
j and gdisc

j+r, the product over both function values is equal to the
number of observed features at bin ti that are matched to a mapped feature at bin ti+z using
a displacement of z ∈ Z. Since the discretized cross-correlation ccdisc

j,j+r (z) computes the
sum over this product for a given displacement z ∈ Z over all bins ti, the resulting value
ccdisc
j,j+r is equal to the number of matched observations for a pair of crop rows using

displacement z (see bottom left of Figure 5.10).
To apply the idea of continuously counting the number of matched features using the

continuous cross-correlation, we only need to replace our discrete function representation
of crop rows with a continuous function representation (see Figure 5.10, right). While
we retain the idea from the discrete case to use the longitudinal coordinates of the feature
positions, we adapt how we encode the feature information along the crop rows to obtain
a continuous function. For a set of Plant-RowsR (Fp) of a set of plant features Fp with k
crop rows, we define a continuous function f jp for the j-th crop rowRj (Fp) with j ∈ [1, k]
as follows:

f jp : R→ R≥0

t 7→ (1j ∗ N (0, σ)) (t)

1j (t) :=

{
1, if ∃ q ∈ Fp (j) : longFp (q) = t

0, otherwise

Analogue to the discrete case, we encode the presence of a feature at position t with
a non-zero value. Initially, this value is equal to one as defined by the 1-function. To
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Figure 5.10: This figure shows an example for the discrete and continuous crop row func-
tions and cross-correlation. Observed and mapped features with corresponding functions
fo, fm are visualized using blue and red respectively. The bins of the discretized function
domain along the crop row are illustrated with dashed lines and the corresponding func-
tion values are printed in each bin between the dashed lines. The observed and mapped
continuous functions are visualized as blue and red lines. The product function of fo, fm
is shown in green in the second row. In the bottom row, the discrete and continuous
cross-correlation are computed.

account for inaccuracies in the feature position, we apply a Gaussian kernelN (0, σ) with
a predefined sigma σ on the values of the 1-function to obtain a continuous function
f jp . This σ parameter is the analogon of the hard distance threshold ε from the discrete
counting strategy as it serves a similar purpose: It enables the algorithm to robustly handle
inaccurate information about the feature position, i. e., sensor noise or slightly inaccurate
detection results. We choose a value of σ = 0.1, which corresponds to the accuracy of the
employed plant detection method.

Let R (Fo) be the set of ko observed Plant-Rows and R (Fm) be the set of km mapped
Plant-Rows, where j + r ∈ [1, km] is the index of the mapped crop row Rj+r (Fm) that
is matched with the j-th observed crop row Rj (Fo) for a j ∈ [1, ko]. Using the con-
tinuous function f jo for the j-th observed crop row and the continuous function f j+rm for
the (j + r)-th mapped crop row, we define the continuous cross-correlation between both
crop rows for a displacement τ ∈ R as follows:

ccj,j+r (τ) :=

∫
R
f jo (t) · f j+rm (t+ τ) dt

By design of the continuous functions this continuous cross-correlation measures the
number of matched observations as a continuous value for the same reason as in the dis-
crete case: When integrating over the product of the function values f jo (t) and f j+rm (t+ τ),
the integral value only increases if both function values are non-zero. Again, this is only
true for locations, where an observed and mapped feature are close to each other (see
Figure 5.10, right).

By computing the sum of the continuous cross-correlation for a displacement τ ∈ R
over all crop row pairs we obtain our continuous match counting method and define our
vanilla Score Function sf as follows:
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sf : S → R

(r, l) 7→
ko∑
j=1

sfj,j+r (l)

sfj,j+r (l) :=

{
ccj,j+r (l) , if j + r ∈ [1, km]

0, otherwise

The score sfj,j+r for the j-th observed crop row is equal to the value of the cross-
correlation between the corresponding continuous function pair, if the mapped crop row
with index j + r exists. If a mapped crop row with index j + r does not exist, the j-th
observed crop row is unmatched. This means that there are no matched observed features
for this crop row and we therefore assign a score of zero.

This works well for a localization application, where the full map is already known,
and therefore all observed crop rows should be paired with a mapped crop row. However,
in a mapping application, where the map is only partially known, row-shifts that do not
match all observed rows also need to be considered during data association. This is crucial
since parts of the observed information might not yet be part of the mapped features and
therefore some observed crop rows have to remain unmatched to find the correct data
association. However, since we do not know the part of the map, that we have not yet
observed, we cannot easily compute a score for the unmatched observed crop row. Since
our Score Function counts the number of matched observations, we assign a value of
zero in these cases, because no observed features are matched for this crop row. We
give an example for the behavior of this vanilla Score Function on real-world data in the
top, left corner of Figure 5.11. This figure shows the score distribution of our vanilla
Score Function over different shifts s ∈ S for ko = 5 observed crop rows and km = 10
mapped crop rows. For a better overview of the behavior of the Score Function we show
the complete results for all row-shifts, where at least one observed row is matched with
a mapped row, ignoring the Locality and Consistent Row Matches requirement for the
row-shifts. Therefore, the smallest row-shift rmin = −4 corresponds to pairing the last
observed row with index ko = 5 with the mapped crop row at index 1 and the largest row-
shift rmax = 9 corresponds to matching the first observed row with the last mapped crop
row with index km = 10. Row-shifts towards the center, i. e., row-shifts −3, −2, −1 and
8, 7, 6 consecutively match one more observed crop row until the row-shifts at the center,
i. e., row-shifts 0, 1, 2, 3, 4 and 5 match all observed crop rows. This distribution clearly
shows, that our vanilla Score Function is biased towards matching as many observed
crop rows as possible, since row-shifts in the center, where more observed crop rows are
matched, receive larger values. This behavior is caused by our choice of assigning a score
of zero to unmatched crop rows, which is the worst possible score a crop row can receive
from our vanilla Score Function. As stated before, in form of the No Bias criterion,
mitigating such a bias is crucial to achieve robust data association results, especially for
the mapping use case. Therefore, in the next paragraph, we introduce a regularization
technique to counter the bias introduced by unmatched crop rows.
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Figure 5.11: This figure shows the score distribution for all Score Function variants for
ko = 5 observed crop rows and km = 10 mapped crop rows. For each Score Function,
the score distribution over all shifts s = (r, l) ∈

[
rmin, rmax

]
×
(
Lvalid ∩ Llocal

)
is arranged

in a table, where the rows of the table define the row-shift values r, and the columns the
long-shift values l. Therefore, each cell of the table visualizes the score for a certain shift
s according to a blue color scale. Darker blues correspond to higher scores and lighter
colors to lower scores.
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Regularization Technique to Handle Unmatched Crop Rows To counter the bias of
our vanilla Score Function towards matching as many observed crop rows as possible,
we need to define a better score for unmatched crop rows. However, defining such a
score without knowing the true feature distribution of the observed crop row is difficult.
Intuitively, this unmatched crop row score depends on how much we expect a crop row
to remain unmatched. For example, in the localization use case we would not expect to
observe any crop row that is not already part of the map. Here, assigning an unmatched
score of zero would be correct, i. e., an unmatched crop row should receive the worst pos-
sible score. In contrast, during a mapping application we expect that a certain amount of
observed data is not yet part of the map since we do not have the full map and are ex-
ploring the environment to obtain more information that can then be added to the partial
map. The score for an unmatched crop row therefore needs to incorporate this prior infor-
mation about how many crop rows are expected to remain unmatched. For this purpose,
we introduce a trade-off parameter λ ∈ [0, 1] ⊂ R with the goal to define an unmatched
score unmλ (j) for the j-th observed crop row, where a value of λ = 0 corresponds to a
score, where no or few unmatched crop rows are expected and λ = 1 corresponds to all,
or at least many, crop rows remaining unmatched. The main idea of our regularization
technique is that a representative unmatched score unmλ (j) for an observed crop row
Rj (Fo) ∈ R (Fo) can be found by approximating the best and worst possible score for
this crop row and interpolating between these two extreme values using the trade-off pa-
rameter λ. Since a Score Function is a measure of how well the observed data is explained
by the matched mapped data, we can approximate the worst and best possible score by
creating two extreme situations. For the worst possible case, the observed data is not at all
explained by the matched mapped data. Therefore, we can approximate such a situation
by not matching any of the observed features, i. e., matching the observed crop row with
an entirely empty row. Regarding the best possible case, which means that the observed
data is fully explained by the matched mapped data, we simply match the observed crop
row with itself, i. e., all observed features are perfectly matched. The best and worst possi-
ble scores are then defined by the score of the j-th crop row when matched with an empty
crop row and with itself:

sfj,0 := cc (0) , for f = f jo and g = 0

sfj,j := cc (0) , for f = g = f jo

The worst possible score sfj,0 matches the j-th crop row with an empty row. There-
fore the corresponding functions used in the cross-correlation are f = f jo representing the
observed features of the j-th crop row and g = 0 the function that is equal to zero every-
where for the empty crop row. Using these approximations of the best and worst possible
score, we can now define our unmatched crop row score unmλ (j) for an observed crop
row Rj (Fo) and a trade-off parameter λ as the linear interpolation between both extreme
values as follows:

unmλ (j) := λ · sfj,j + (1− λ) · sfj,0
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Incorporating this unmatched crop row score into our Score Function then defines a
regularized version of the vanilla Score Function:

sf : S → R

(r, l) 7→
ko∑
j=1

sfj,j+r (l)

sfj,j+r (l) :=

{
ccj,j+r (l) , if j + r ∈ [1, km]

unmλ (j) , otherwise

=

{
ccj,j+r (l) , if j + r ∈ [1, km]

λ · sfj,j + (1− λ) · sfj,0, otherwise

sfj,0 := cc (0) , for f = f jo and g = 0

sfj,j := cc (0) , for f = g = f jo

We obtain the vanilla Score Function from the regularized Score Function by applying
λ = 0 as the trade-off parameter. For λ = 0 the unmatched score is equal to unmλ (j) =
sfj,0 = 0 for all crop rows Rj (Fo) ∈ R (Fo), since the product over all function values of
f jo with 0 is equal to zero. To demonstrate how our regularization technique influences the
Score Function distribution, we also show the behavior of the regularized Score Function
with a trade-off parameter of λ = 0.75 on the top right of Figure 5.11. The positive effect
on the score distribution is evident, since the scores are more evenly distributed over all
row-shifts. A bias towards matching all crop rows, i. e., towards the center row-shifts, as
observed for the vanilla Score Function without regularization on the left, is not visible
anymore.

So far we created a regularized Score Function that satisfies the Positive Information
and Continuity criteria as well as the No Bias criterion. However, the Negative Informa-
tion criterion, i. e., that unmatched mapped features should be minimized, is not satisfied.
We explain, why this is the case using the examples given in the upper rows of Fig-
ure 5.12 until the row labeled prod. In this figure we show two different situations for
each criterion to explain if and why the corresponding criterion is satisfied. The first
situation for the Positive Information criterion, labeled Matched, shows two matched ob-
served features. The second situation, labeled Unmatched, has one matched and one
unmatched observation. According to the Positive Information criterion the Matched sit-
uation should therefore receive a higher score than the Unmatched situation, since more
observed features are matched. As visualized by the product function in the row labeled
prod, our vanilla Score Function correctly assigns a higher score to the Matched situation
and therefore satisfies the Positive Information criterion. Regarding the Negative Infor-
mation criterion, we again have a Matched and an Unmatched example situation. Here,
the Matched situation shows one matched observation and no unmatched mapped feature.
The Unmatched situation illustrates the same matched observed feature but adds an un-
matched mapped feature. According to the Negative Information criterion, the Matched
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situation should receive a higher score than the Unmatched situation, since the Matched
situation has no unmatched mapped feature while the Unmatched situation has one un-
matched feature. However, since the vanilla Score Function uses the product over the
continuous functions to compute the score, it assigns the same value to both situations.
This is caused by the fact that the product over two values is zero as soon as one of the
values is zero. Therefore, the vanilla Score Function cannot differentiate between situ-
ations with and without unmatched mapped features, since the absence of an observed
feature causes the product to be zero, irrespective of the presence of a mapped feature. In
the following, we therefore present different variations of our vanilla Score Function that
– in addition to the other three criteria – also satisfy the Negative Information constraint.

Variations of the Score Function From our analysis we learned that the product as
the inner function of the cross-correlation prevents our Score Function from recognizing
unmatched mapped features. We thus propose to replace this inner function of the cross-
correlation with different, better suited, functions γ : R × R → R. Using this inner
function γ, we define a new cross-correlation inspired measurement ccγ as follows:

ccγ : R→ R

τ 7→
∫
R
γ (f (t) , g (t+ τ)) dt ∀ f, g : R→ R

For γ = prod, i. e., γ (x, y) = prod (x, y) := x · y, ∀x, y ∈ R, we obtain the cross-
correlation ccγ = ccprod = cc. Therefore, to distinguish between different variations of
our Score Function, we call the vanilla Score Function based on the cross-correlation as
defined above the Product Score Function sfprod.

To obtain a Score Function that also considers unmatched features and therefore incor-
porates Negative Information, we define a second Score Function that uses the negative
squared difference as the inner function, called Difference Score Function sfdiff as follows:

ccdiff : R→ R

τ 7→
∫
R
− |f (t)− g (t+ τ)|2 dt ∀ f, g : R→ R

The corresponding Difference Score Function sfdiff is then defined analogue to the
Product Score Function, where cc = ccprod is replaced with ccdiff as follows:
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Figure 5.12: This illustrates the behavior of Score Functions for different inner functions
γ regarding the Positive and Negative Information criteria. The Matched and Unmatched
example situations at the top visualize the observed and mapped features as blue and red
points as well as the corresponding continuous functions fo, fm as blue and red lines. For
each inner function γ ∈ {prod, diff, inter, union}, we plot the resulting function for each
situation and compute the corresponding score ccγ in the row below. For the Positive
Information on the left, the number of matched observations should be maximized. For
the Negative Information on the right, the number of unmatched mapped features should
be minimized. Therefore, the Positive or Negative Information criterion is satisfied (3),
if the score for the corresponding Matched situation is strictly greater than the score for
the corresponding Unmatched situation and not satisfied otherwise (7).



5.3 Row-Based Data Association on Individual Plants 161

sfdiff : S → R

(r, l) 7→
ko∑
j=1

sfdiff
j,j+r (l)

sfdiff
j,j+r (l) :=

{
ccdiff
j,j+r (l) , if j + r ∈ [1, km]

λ · sfdiff
j,j + (1− λ) · sfdiff

j,0 , otherwise

sfdiff
j,0 := ccdiff (0) , for f = f jo and g = 0

sfdiff
j,j := ccdiff (0) , for f = g = f jo

Using the squared negative distance between function values as the inner function en-
ables the Difference Score Function to penalize unmatched mapped features, while at the
same time rewarding locations where observed features are matched with mapped fea-
tures. This becomes evident, when considering the same example situations as for the
Product Score Function, but this time with γ = diff as the inner function as shown in
the row labeled diff in Figure 5.12. For both criteria, the Unmatched situations contain
locations with different function values. Therefore, the integral over the diff function ac-
cumulates negative values and the Unmatched situations receive smaller scores than the
Matched situations. This confirms that the Difference Score Function sfdiff satisfies both,
the Positive as well as the Negative Information criterion.

The Difference Score Function is the first Score Function that satisfies all four require-
ments. However, as we can see in the score distribution in Figure 5.11 in the second row,
we still need our regularization technique to mitigate the bias introduced by unmatched
crop rows. Here, a trade-off value of λ = 0.3 seems well suited since the value distribution
of the regularized Difference Score Function on the right does not show a bias towards
matching as many crop rows as possible. In our regularization technique, we approxi-
mate the best and worst possible score for the Difference and Product Score Function to
compute a score for unmatched crop rows. This is due to the fact that the functions we
used so far, i. e., the product- and negative-squared-distance-based functions ccprod and
ccdiff are in general not bounded. Because of the integral term that accumulates all inner
function values along the crop rows, they can produce arbitrarily large, or small, scores
for different crop rows depending on the length of the individual crop rows. Thus, we
need to approximate the best and worst possible score to compute the unmatched crop
row score for each crop row individually. Thus, our next goal is to find a Score Func-
tion that considers Positive as well as Negative Information and additionally also stays
within a bounded value range for any crop row score. For such a bounded Score Func-
tion, the best and worst possible score are explicitly defined as the bounds of this function,
which eliminates the approximation step for the best and worst possible crop row score
in our regularization technique. With a bounded Score Function, we get more accurate
unmatched crop row scores, which in turn improves the data association results, espe-
cially in a mapping application, where a good estimate of the unmatched crop row score
is crucial.
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To obtain a Score Function with similar discriminative abilities as the Difference Score
Function, i. e., satisfying Positive and Negative Information, but bounded value range for
individual crop rows, we propose a second variation of the Product Score Function based
on the Intersection over Union (IoU) measure. The IoU is a robust measure with bounded
value range between zero and one that determines how well two areas overlap by com-
puting the ratio of the intersection over the union of both areas. This IoU measure is
commonly used in computer vision to, for example, measure the accuracy of an object
detection algorithm by computing the IoU of the detected and ground truth detection
bounding boxes. In order to find the best overlap between two pairs of crop rows Rj (Fo)
and Rj+r (Fm), we are interested in measuring how well the corresponding continuous
functions f jo and f j+rm overlap. Our key idea is that we obtain a robust and bounded mea-
sure for this overlap by computing the IoU of the areas of both continuous functions. To
this end, we first introduce the two functions ccunion and ccinter, where ccinter computes
the intersection of the area of two functions f, g : R → R≥0 and ccunion the union of the
area respectively:

R→ R

ccinter : τ 7→
∫
R

min (f (t) , g (t+ τ)) dt ∀ f, g : R→ R≥0

ccunion : τ 7→
∫
R

max (f (t) , g (t+ τ)) dt ∀ f, g : R→ R≥0

The area A (f) under a function f : R → R≥0 is defined as the integral over the func-
tion, i. e.,A (f) :=

∫
R f (t) dt. We can omit taking the absolute value of the integral,

since the integral is always non-negative for positive valued functions. The intersection
area A (f) ∩A (g) for two non-negative functions f, g : R→ R≥0 is then given as the in-
tegral over the minimum function values. Similarly, the unionA (f)∪A (g) is the integral
over the maximum value of both functions. Since the IoU is the value of the intersection
area over the union area, it is defined by the fraction ccinter

ccunion
. The values of this IoU ra-

tio are always bounded between zero and one, since the intersection of two areas is by
definition always smaller or equal to the union of the same areas.

Consulting Figure 5.12 again, we see the behavior for IoU-based Score Functions in
the row labeled inter, union and the resulting score in the row below labeled ccinter

ccunion
. Here,

the intersection and union area are the same in the Matched situations, which yields the
best possible score of 1 in these scenarios. This is in contrast to the Unmatched examples,
where the intersection area is half the size of the union area, which yields a smaller inter-
section over union score of 1

2
. Since the score for the Matched situations is always larger

than the score for the Unmatched situations, IoU-based Score Functions satisfy both, the
Positive and the Negative Information criteria. Therefore, we can now define a bounded
Score Function that also satisfies all four criteria, the IoU per Row Score Function:
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sf iou-per-row : S → R

(r, l) 7→
ko∑
j=1

sf iou-per-row
j,j+r (l)

sf iou-per-row
j,j+r (l) :=


ccinterj,j+r(l)

ccunionj,j+r(l)
, if j + r ∈ [1, km]

λ · sf iou-per-row
j,j + (1− λ) sf iou-per-row

j,0 , otherwise

sf iou-per-row
j,0 :=

ccinter (0)

ccunion (0)
, for f = f jo and g = 0

sf iou-per-row
j,j :=

ccinter (0)

ccunion (0)
, for f = g = f jo

Looking at our regularization technique, we can now explicitly compute the unmatched
row score unmλ (j) for the j-th observed crop row as follows:

sf iou-per-row
j,0 =

ccinter (0)

ccunion (0)
, for f = f jo and g = 0

=

∫
R min (f jo (t) , 0) dt∫
R max

(
f jo (t) , 0

)
dt

=

∫
R 0dt∫

R f
j
o (t) dt

=
0

A
(
f jo
) = 0

sf iou-per-row
j,j =

ccinter (0)

ccunion (0)
, for f = g = f jo

=

∫
R min (f jo (t) , f jo (t)) dt∫
R max

(
f jo (t) , f jo (t)

)
dt

=

∫
R f

j
o (t) dt∫

R f
j
o (t) dt

=
A (f jo )

A
(
f jo
) = 1

unmλ (j) = λ · sf iou-per-row
j,j + (1− λ) · sf iou-per-row

j,0

= λ · 1 + (1− λ) · 0 = λ

This means that in the IoU per Row Score Function the unmatched crop row score is
always equal to the trade-off parameter λ for all crop rows. As desired, we now have
a Score Function that yields bounded scores over any crop row. As discussed before, a
Score Function based on the IoU ratio also considers the Positive and Negative Informa-
tion. We show the score distribution for the IoU Per Row Score Function in the third
row for the unregularized version on the left with λ = 0 and a regularized version with
λ = 0.4 on the right of Figure 5.11. The distribution of the IoU per Row Score Function
is similar to the distribution of the Difference Score Function. The main advantage of the
IoU per Row Score Function over the Difference Score Function is that the unmatched
crop row score does not depend on the crop row anymore.

Inspired by our idea of using the IoU to find a better unmatched row score, we go one
step further and use the IoU to define a Score Function without any bias towards matching
as many crop rows as possible – and therefore a Score Function that does not require any
regularization or unmatched row score. Our key idea is that this can be achieved by
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computing the IoU jointly over all observed crop rows. We thus propose a third variation
of the Score Function, called IoU Score Function:

sf iou : S → R

(r, l) 7→
∑

j∈J(r) ccinter
j,j+r (l)∑

j∈J(r) ccunion
j,j+r (l)

∈ [0, 1]

J (r) := {j ∈ [1, . . . , ko] | j + r ∈ [1, . . . , km]}

The difference between the IoU per Row and the IoU Score Function is that for the IoU
function we first accumulate the intersection and union areas over all matched crop rows
and take the fraction of the overall intersection and union to obtain one joint IoU score.
This is in contrast to the IoU per Row Score Function, where we compute an individual
IoU score for each crop row. Also, this IoU Score Function only considers the matched
crop rows j ∈ J (r) when computing the score for a shift s. This means that it does
not require the unmatched row score unmλ. Recall that we introduced this unmatched
score for our regularization technique in order to mitigate the bias of the other three Score
Functions towards row-shifts that have more matched crop rows. Taking a look at the
score distribution of the IoU function shown in the bottom row of Figure 5.11, we confirm
that the IoU Score Function is not biased towards matching as many crop rows as possible,
although we are not using any regularization. This is explained by the fact that for the IoU
Score Function matching more crop rows does not necessarily result in a higher score: For
additional pairs of crop rows the intersection as well as the union area increase. While a
larger intersection area results in a higher score, a larger union area decreases the score.
Therefore, the IoU Score Function is by design not biased towards matching as many crop
rows as possible, i. e., neither a regularization technique nor considering unmatched crop
rows is necessary. Another advantage of the IoU Score Function is that not the individual
crop row scores as in the IoU per Row Score Function, but the overall score for a shift
is bounded between zero and one. Since the IoU Score Function, like the IoU per Row
Score Function, is based on the intersection over union between crop row functions, the
same arguments regarding the Positive and Negative Information criteria also hold for
this Score Function (see Figure 5.11). Therefore, the IoU Score Function satisfies all four
criteria, like the other two variations, i. e., the Difference and IoU per Row Score Function,
required for a robust data association algorithm. The main advantage of the IoU Score
Function over the other two variants is that it does not require our regularization technique
to be unbiased towards the number of matched crop rows.

In this section we defined the Search Space S for our data association approach by
introducing a parametrization M (s) of a set of data association matches into a tuple of
a row- and long-shift, called shift s ∈ S. This parameterized representation of sets of
data association matches ensures that only matches that preserve the crop row structure
are considered for data association. We further constrained our Search Space to a set of
valid shifts Svalid according to the Consistent Row Matches and Locality requirements.
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Finally, we presented four different Score Functions that can be used as the Target Func-
tion t for our data association approach. These Score Functions operate on shifts s ∈ S
and measure how well a shift s overlays the observed data onto the mapped data. The
presented Score Functions are specifically designed for data association on densely and
almost uniformly distributed features for both localization and mapping applications. This
includes the ability to quantify how well the observed data is overlaid with the mapped
data in a continuous matter to enable robust and efficient score computation, as well as
the introduction of a regularization technique crucial for mapping applications. Our data
association approach can therefore be summarized using the following equations:

Svalid = S local ∩
(
Rvalid × Lvalid) Mvalid = M

(
Svalid)

s∗ = argmax
s∈Svalid

sf (s) M∗ = M (s∗)

sf ∈
{

sfprod, sfdiff , sf iou-per-row, sf iou
}

Before we present the experimental evaluation of our row-based data association ap-
proach, we explain how we obtain the input for our approach, i. e., the Plant-Rows, from
raw data. Extracting Plant-Rows from raw data requires many different techniques rang-
ing from detecting plant positions on the field from image data, over integrating those
plant positions to obtain a set of plant features of reasonable size to then extract crop
rows, as well as tracking those detected crop rows to assign the plant features to their
corresponding crop rows. In the next section, we explain the techniques that we used to
extract the Plant-Rows for our experimental evaluation in detail.

5.4 Extracting a Set of Plant-Rows
Our data association approach on individual plants is based on the row structure found on
crop fields. In the previous Section 5.3.1, we defined this row structure as sets of Plant-
Rows R (Fp) given a set of plant position features Fp and a mapping row (p) for each
feature p ∈ Fp to the index of the crop row it belongs to. However, several preprocessing
steps of the recorded raw data are required to obtain this set of features Fp as well as the
corresponding assignment to crop rows. In this section, we give an overview of these
steps that we used to extract the required information from our real-world data.

As explained in Section 2.1.2, our real-world data contains timestamped high-resolution
RGB image data It as well as odometry ot, IMU it and GPS gt information. Using the
timestamps, we arrange our data set D = {dt} as chronological sequence of time syn-
chronized tuples dt = (It, ot, it, gt) containing one element of each data type at each time
step t. When creating this sequence, we only add a tuple dt to the sequence, if the motion
of the vehicle between time step t − 1 and t is sufficiently large, i. e., either the heading
of the vehicle changed by more than 4◦ or the vehicle traversed a distance of more than
0.1 m. We extract the Plant-Rows from this raw information in three steps: First, we de-
tect the plant positions z ∈ Zt in each image It. Second, we accumulate the detected
plant positions Zt while the vehicle traverses the field in the direction of the crop rows,
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i. e., until it reaches the end of the field at time step teof, to obtain a larger set of plant
positions Fp. To this end, we iteratively build and optimize a pose graph Gt from data set
elements d1, . . . , dt that jointly estimates the poses of the vehicle x̂1, . . . , x̂t as well as the
plant feature positions ẑ ∈ Ẑt for all plants detected in I1, . . . , It in a common reference
frame. Third, we apply our Pattern Hough Transform on the accumulated set of plant
position estimates Ẑt to first detect and then track the crop row structure of the field dur-
ing the construction of the graph. In each iteration, we use this crop row information to
determine a crop row index row (ẑ) for the plant positions ẑ ∈ Ẑt that are not yet assigned
to a crop row. By repeating these three steps until the vehicle reaches the end of the field
at time step teof, we obtain a pose graph Gt for each time step 1, . . . , teof. After reaching
the end of the field, we create a new pose graph to integrate plant positions over the next
set of traversed crop rows. Therefore, each pose graph always represents one traversal of
the field along the same subset of crop rows. The set of plant features F t

p at each time step
t is then equal to the feature nodes Ẑt of Gt. Together with the corresponding mapping
row (ẑ) for each feature ẑ ∈ F t

p we can construct the set of Plant-Rows R
(
F t
p

)
at each

time step t as defined in the previous section.
Additionally to the preprocessing required to obtain the row structure of the field, we

also need to determine the detection range, which is the area where the vehicle could have
detected plant features. This information is crucial to correctly apply the Positive and
Negative Information criteria when computing scores with our Score Functions: Both cri-
teria are based on rewarding matched and punishing unmatched features. However, there
are situations where a feature remains unmatched because it is not within the detection
range, i. e., the vehicle did not gather any information about this area. Due to the limited
sensor range, the vehicle could not have detected any feature close to the unmatched fea-
ture. Therefore, we cannot and should not reason about features outside of the detection
range of the vehicle, i. e., any data association algorithm based on Positive or Negative In-
formation should ignore these features. In the following, we present the techniques used
in each step of our raw data preprocessing.

5.4.1 Stem Emerging Point Detection

For localization and mapping applications on individual plants, we first need to detect
plants in the images It of our data set. Common object detection approaches return bound-
ing boxes that surround the outline of the target object in the image. If a position of the
detected object is required, this position is usually defined as the center of this bound-
ing box c = (ci, cj) in image coordinates. However, since the size of the bounding box
depends on the outline of the object in the image, which in turn depends on the point of
view from which the object is observed, the center of the bounding box also depends on
the point of view (see Figure 5.13).

However, in our application scenario, where the detected plant positions are used to
correct the pose estimate of a localization or mapping algorithm, detecting plants with
a position that does not depend on the point of view is crucial. Therefore, instead of
detecting the whole plant, we decide to detect a unique point on the plant so that this
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Figure 5.13: This figure shows a close up of the same plant in two images captured about
2.5 sec apart. Even slight changes in the view point cause bounding boxes of different
sizes when detecting the whole plant (orange outline). Using the center of the bounding
box to define the position of the detection (orange point) therefore results in different
detected locations for the same plant. In contrast, when only detecting the SEP of the
plant with a fixed-sized bounding box (blue outline), so that the SEP is located at the
center of the bounding box (blue point), yields more accurate detections.

point is always located in the center of the bounding box. Detecting this unique point on a
plant instead of the whole plant then yields stable plant positions independent of the point
of view (see Figure 5.13). This unique point, that exists on every plant, and therefore can
be detected on all crop types, is the stem emerging point (SEP), i. e., the location where
the stem of the plant emerges from the ground. It is unique since a stem of a plant has
exactly one location where it can emerge from the ground. To detect these SEPs in our
RGB image data It, we decided to use an off-the-shelf neural network for object detection.
This network was then retrained on a subset of our image data, where the SEP position of
each plant was labeled in each image. A constant-sized bounding box centered around the
labeled position was added to facilitate training. We define the SEP position of a detection
by computing the center of the detected bounding boxes c in image coordinates1.

Processing an image It of our data set with the retrained network then yields a set of
plant feature positions Ct in image coordinates. However, to incorporate this information
into our pose graph in the second preprocessing step, we need to project the SEP posi-
tion from the image coordinate frame into the coordinate frame of the vehicle, i. e., into
metrical measurements z that describe the position of the detected SEP relative to the
pose of the vehicle. The projection prj of the detected SEP position c in the image is
defined by the intrinsic and extrinsic calibration of the camera sensor (see Section 2.1.2
for details on the calibration procedure). Geometrically, this projection is described by a
ray rc that emerges from the origin of the camera sensor mounted on the robot pcamera and

1The SEP detection network was developed by Nina Pant for her Bachelor Thesis.
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Figure 5.14: This illustrates the projection prj for the detection of a plant in front of the
vehicle. The image plane It (solid line) and its projection onto the ground (dotted lines)
are shown in light blue. The detection of the SEP in the image plane c and its projection
onto the ground z = prj (c) are shown as blue points. The ray that projects c to the ground
is visualized as blue dashed line.

passes through the detected SEP position c on the image plane in the direction dc (see Fig-
ure 5.14). To determine the position of the SEP in the coordinate frame of the vehicle, we
leverage the fact, that the SEP, i. e., the stem emerging point, is always located where the
stem emerges from the ground. Therefore, the SEP is always located where the projected
ray rc intersects the ground G in the vehicle coordinate frame. Assuming that the ground
around the vehicle is locally flat, we model the ground plane G in the frame of the vehicle
as the plane where the z-coordinate is equal to 0. The metrical position z of the SEP in
the vehicle coordinate frame is then defined as the intersection of the projected ray rc with
the ground plane G, i. e., the point on the ray with a z-coordinate equal to 0. Applying
this projection prj to all detections c, we obtain the set of metrical SEP positions Zt for
each image It:

rcn := pcamera + s · dcn Ct := {c1, . . . , cnc} (5.6)

prj (cn) := rcn ∩G G :=
{

(x, y, z) ∈ R3 | z = 0
}

(5.7)
zn := prj (cn) Zt := {z1, . . . , znc} (5.8)

To confirm that the detections of this algorithm are accurate enough to be used for
pose correction in localization and mapping applications, we evaluate the SEP detection
algorithm on the Eichstetten and Eschikon data sets recorded in 2018 (see Section 2.1.3).
A qualitative example for the detection results on each of the four crop types Kohlrabi,
Chinese Cabbage, Sweetheart Cabbage and Sugar Beet is shown in Figure 5.15.

We list the quantitative results sorted by crop type in Table 5.1. Overall, the mean de-
tection error stays below 5 cm on all crop types while missing at most 2 % on Sugar Beet
of the plants. These results confirm that the SEP detection algorithm produces accurate
detections with a low false negative rate (FNR) and therefore should be well suited for
our application scenario. Notably, the results also show slight variation in performance
on different crop types: On Chinese Cabbage we see the highest mean error of over 4 cm
compared to an error of around 3 cm on the other crop types. Similarly on Sugar Beet,
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Kohlrabi Chinese Cabbage

Sweetheart Cabbage Sugar Beet

Figure 5.15: This figure shows the plant positions found by the SEP detection algorithm
(blue) for each crop type.

we observe the highest false negative rate of 2 % compared to almost negligible false neg-
ative rates on the other crop types. This is an interesting fact to keep in mind for the
evaluation of our row-based data association, since less accurate detections and a higher
false positive rate cause more ambiguous situations during data association. Therefore,
data recorded on Chinese Cabbage and Sugar Beet poses a greater challenge for our data
association approach. We discuss how the difference in performance of the detection
algorithm affects the performance of our data association approach in our experimental
evaluation. In the next section, we explain how we integrate the detected SEP positions
Zt over time to obtain a set of plant position features Fp.

5.4.2 Building the Graph Structure

We obtain a larger set of plant position features Fp by integrating the position measure-
ments z ∈ Zt of detected plants along the crop rows. To this end, we use a pose graph
optimization that jointly estimates the poses x̂1, . . . , x̂t of the vehicle as well as the po-
sitions ẑ ∈ Ẑt of the plants detected in I1, . . . , It in a common reference frame. The set
of estimated plant positions Ẑt after optimization of the pose graph Gt then yields a set of
plant position features F t

p for every time step t.
To estimate the vehicle pose x̂ as well as the position of the plant features ẑ in a pose

graph, we need to represent both estimates as different types of nodes. Since our approach
is focused on data from a ground vehicle, it suffices to estimate the pose of the vehicle
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Crop Type Mean TP FN FNR GT
Kohlrabi 0.027 2196 3 0.1 2036
Chinese Cabbage 0.043 843 0 0.0 724
Sweetheart Cabbage 0.033 1073 0 0.0 838
Sugar Beet 0.029 843 17 2.0 673

Table 5.1: This table shows the detection performance of the SEP detection algorithm
used in our preprocessing pipeline on each crop type. We compute the error of a detection
as metrical distance to the closest labeled plant position by projecting both onto the ground
plane G using prj. The mean column shows the mean error over all detections of a crop
type. The detected plant positions are counted as true positive detections (TP). The missed
plants, i. e., labeled plant positions that remained unmatched, are counted as false negative
detections (FN). Since multiple detections of the same plant are allowed, we can have
more true positive (TP) detections than labeled plant positions (GT). The false negative
rate (FNR = FN

FN+TP ) is shown in percent.

x̂ and the plant feature position ẑ on the ground plane, i. e., in a two-dimensional space.
The pose of the vehicle is therefore represented as

x̂t =
(
p̂t, θ̂t

)
at a time step t with a two-dimensional position p̂t = (p̂x,t, p̂y,t) and a heading θ̂t. The
feature estimate ẑ is a two-dimensional position

ẑ = (ẑx, ẑy)

of the detected plants. The pose graph Gt for a time step t therefore consists of

Gt =
(
X̂t, EX̂t , Ẑt, EẐt

)
,

where X̂t := {x̂1, . . . , x̂t} is the set of pose nodes, EX̂t is the set of pose edges that only
constrain pose nodes, Ẑt is the set of plant feature position nodes and EẐt is the set of
feature edges that constrain a feature node relative to a pose node.

To create our pose graph Gt from the time synchronized data d1, . . . dt, we extend the
previously constructed graph Gt−1 that already contains the information from data ele-
ments d1, . . . , dt−1 with the information contained in dt. To incorporate the information
of time step t with dt = (It, ot, it, gt), we first add a new pose node x̂t to X̂t−1 to ob-
tain the set of pose nodes X̂t at time step t. For the information about the vehicle pose
from incremental measurements, i. e., the odometry ot and IMU it measurements, we add
two binary edges between consecutive pose nodes x̂t and x̂t−1. The IMU information is
used to constrain the heading estimate θ̂t of the pose node x̂t relative to the previous pose
estimate x̂t−1 and the odometry information constrains the position estimate (p̂x,t, p̂y,t)
relative to x̂t−1. To obtain globally referenced pose and feature positions, we also add
a unary edge that constrains the position estimate of x̂t according to the measured GPS



5.4 Extracting a Set of Plant-Rows 171

Figure 5.16: This figure shows the nodes and edges of the pose graph Gt for a time step
t. The pose estimates x̂ ∈ X̂t are visualized as RGB colored axes objects (top, first).
The set of pose edges EX̂t is shown as straight, light blue lines for the odometry (top,
second), curved yellow lines for the IMU (top, third) and as pink lines with a pink square
indicating the measured GPS location of the vehicle (top, fourth). In the bottom row, we
show an example for the set of feature position estimates Zt (blue squares) on the left and
the feature nodes with the corresponding set of feature edges EẐt (blue lines) on the right.

coordinates gt. Since these edges purely operate on the pose nodes, we add them to the
set of pose edges EX̂t−1

to obtain EX̂t . An example for the set of pose nodes X̂t and
corresponding pose edges EX̂t of a pose graph Gt created from real-world data is shown
on the top row of Figure 5.16.

For the image It, we first apply the SEP detection algorithm on It to obtain a set of
SEP detections in image coordinates. We then project these detections onto the ground
plane with the pose of the vehicle at its center as described in the previous section. This
yields metrical measurements of the position of each plant feature z ∈ Zt relative to the
pose estimate x̂t at time step t. Next, we need to determine whether a plant detected
in image It was already observed in a previous time step and therefore, whether a fea-
ture position estimate ẑ ∈ Ẑt−1 corresponding to the measurement z already exists in
our graph structure. Since the vehicle is traversing the field aligned with the crop rows,
we know that the change in heading and position remains small between two consecu-
tive timestamps t − 1 and t. Therefore, the amount of accumulated error between two
consecutive pose estimates x̂t−1 and x̂t should also remain small. Thus, we can assume
that a plant detected in It and projected using x̂t is close to a feature position estimate
ẑ∗ ∈ Ẑt−1, if the detected plant is represented by this feature node ẑ. This means that
we can use the Nearest Neighbor algorithm to associate measurements of detected plant
positions z ∈ Zt with the corresponding feature position estimate ẑ ∈ Ẑt−1 of previous
time steps: For each measurement z ∈ Zt, we compute the estimated position of this
feature z′ by projecting the measurement z into the global reference frame of our pose
graph using the corresponding pose estimate x̂t. If the plant position feature ẑ∗ ∈ Ẑt−1
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Figure 5.17: This figure shows the pose graph Gt for different time steps: At the beginning
t = 1 (top), in the middle of the field at t = 1

2
teof (mid) and at the end t = teof when the

vehicle reaches the end of the field (bottom).

closest to the projected measurement z′, i. e., its nearest neighbor, is closer than 0.15 m,
we associate the measurement z with the feature position estimate ẑ∗. If no such estimate
exists, we insert a new feature position estimate ẑ∗ = z′ into the graph. The measurement
z ∈ Zt is then modeled as binary edge between the associated feature position estimate
ẑ∗ and the pose estimate x̂t of the corresponding timestamp t. Since these binary edges
formulate constraints between feature and pose nodes of the graph, they are added to the
set of feature edges EẐt−1

to obtain EẐt . An example for the full pose graph Gt including
feature nodes and edges is shown on the bottom of Figure 5.16.

This procedure iteratively constructs a pose graph Gt for each time step t of the data set,
where the data d1, . . . , dt from time steps 1, . . . , t is represented in the graph Gt. Before
repeating this procedure for the next data set element dt+1 and thereby constructing Gt+1,
we optimize the pose graph structure using the g2o framework by Kümmerle et al. [2011].
Optimizing the graph structure in each iteration ensures that the pose graph converges to
the correct solution.

We repeat this procedure for all data set elements dt until the vehicle reaches the end
of the field teof. This creates an optimized pose graph Gteof that contains the pose of the
vehicle as well as the position of all observed plant features while traversing a set of crop
rows (see Figure 5.17). The set of plant feature nodes Ẑt of the graph Gt then defines
the set of plant features F t

p for a time step t. In the next section, we explain how we
assign each plant position ẑ ∈ Ẑt in the graph Gt to its crop row during the construction
of the graph, i. e., how we obtain the mapping row (ẑ) required to determine the set of
Plant-RowsR (Fp) on a set of plant position features Fp.

5.4.3 Plant-Row Extraction
In this section, we explain how we extract the crop row structure from a set of plant
position features F t

p using the information accumulated until time step t in the pose graph
Gt. We then use this row structure to define a mapping row (ẑ) for all features ẑ ∈ F t

p

as required to define the set of Plant-Rows R
(
F t
p

)
. To this end, we first detect the crop

row structure on a local subset of plant features ẑ ∈ F t
p (x̂t) ⊂ F t

p around the latest pose
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node x̂t. Second, we associate the detected crop rows with the crop row structure of Gt−1

to track the crop rows while the vehicle traverses the field. Finally, we use these indexed
crop rows to assign the crop row index to each plant position feature which defines the
mapping row.

Given a set of plant position features F t
p , we first extract the local crop row structure

around the current pose estimate of the vehicle

x̂t =
(
p̂t, θ̂t

)
.

To this end, we only consider plant position features in F t
p that are within 4 m to the

current position estimate p̂t, i. e., we compute a subset of local plant position features

F t
p (x̂t) :=

{
ẑ ∈ F t

p | ‖ẑ − p̂t‖ < 4.0
}
.

On these local plant position features, we extract the crop row structure using our crop row
detection algorithm, the Pattern Hough Transform, presented in Chapter 3. We directly
use the plant position features ẑ ∈ F t

p (x̂t) as vegetation feature input to create the Feature
Map required for the Pattern Hough Transform algorithm. This yields a set of sorted,
parallel and equidistant local crop rows Pθ,s,o with offset o, normal direction θ and spacing
s:

Pθ,s,o =
{
Rj

(
F t
p (x̂t)

)}
j∈Z

Rj

(
F t
p (x̂t)

)
:=

{
p ∈ R2 | dj (p) = 0

}
dj (p) := |p · nθ − (o+ j · s)|

nθ := (cos (θ) , sin (θ))T

We show an example for the set of local plant position features and the detected crop
rows as well as the following definitions in Figure 5.18.

According to the definition of the pattern Pθ,s,o, we obtain an infinite set of indexed crop
rows R

(
F t
p (x̂t)

)
Z :=

{
Rj

(
F t
p (x̂t)

)}
j∈Z with equidistant spacing s between neighbor-

ing crop rows Rj−1

(
F t
p (x̂t)

)
, Rj

(
F t
p (x̂t)

)
and Rj+1

(
F t
p (x̂t)

)
. We use this equidistant

spacing to assign a feature ẑ ∈ F t
p (x̂t) to the j-th crop row, if it is considerably closer to

the j-th crop row than to its neighbors. A point p ∈ R2 is closer to the j-th crop row than
its neighbors, if its distance to the crop row is smaller than half the spacing. We therefore
assign a plant feature ẑ ∈ F t

p (x̂t) to the j-th crop row, if its distance is smaller than 75 %
of half the spacing:

rowF tp(x̂t) (ẑ) := j, such that dj (ẑ) < 0.75 · s
2
.

If no such crop row can be found, i. e., the plant feature lies in the middle between two
crop rows, it does not belong to either crop row and the feature ẑ remains unassigned
(see Figure 5.18). Features that are not assigned to a crop row are outliers and therefore
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Figure 5.18: This figure shows an example of the rowF tp(x̂t) (ẑ) assignment for the local
features ẑ ∈ F t

p (x̂t) (blue and orange points). The infinite set of crop rows defined by
the detected pattern Pθ,s,o is visualized as blue lines (solid and dotted). We illustrate the
distance equal to half the spacing 1

2
s as dotted orange line. The distance threshold used

in rowF tp(x̂t) (ẑ), i. e., 75 % of 1
2
s is shown as dashed orange line around each crop row.

Blue features lie within the threshold and are therefore assigned to their corresponding
crop rows, while the orange feature lies between crop row 1 and crop row 2 and therefore
remains unassigned. The length l (−1) of crop row −1 is illustrated in black. The finite
set of detected crop rows Fo is comprised of the solid blue lines.

not considered in the following steps. The mapping rowF tp(x̂t) then also defines the set of
features F t

p (x̂t, j) for each crop row Rj

(
F t
p (x̂t)

)
:

F t
p (x̂t, j) :=

{
ẑ ∈ F t

p (x̂t) | rowF tp(x̂t) (ẑ) = j
}
.

For more robust results, we remove outlier crop rows Rj

(
F t
p (x̂t)

)
that are not well sup-

ported by their set of plant features F t
p (x̂t, j). To this end, we define two criteria, the crop

row length l (j) and density d (j), that describe the distribution of plant features F t
p (x̂t, j)

along the j-th crop row Rj

(
F t
p (x̂t)

)
. Given the set of features F t

p (x̂t, j), we define the
length l (j) and density d (j) of the j-th crop row as follows:

n (j) :=
∣∣F t

p (x̂t, j)
∣∣

l (j) := max
ẑ1,ẑ2∈F tp(x̂t,j)

‖ẑ1 − ẑ2‖

d (j) :=
n (j)

l (j)

The length of a detected crop row is therefore equal to the longest distance between two of
its associated features in meters (see Figure 5.18). The density, i. e., the number of plant
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features per meter, is then equal to the number of plant features n (j) divided by the length
l (j) of the crop row. A crop row is regarded as an outlier, if it is considerably shorter than
the other detected crop rows or if its overall plant density is smaller than expected. We
therefore compute the average length l̄ over all non-empty crop rows:

l̄ :=
1

|J>0|
∑
j∈J>0

l (j)

J>0 := {j′ ∈ Z | n (j′) > 0} .

We then disregard a crop row, if either its length l (j) is smaller than 50 % of the average
crop row length l̄ or its overall density d (j) is smaller than 1.5 plants per meter. After
filtering the outliers, we obtain the finite set of detected crop rows (see Figure 5.18)

Fo :=
{
Rj

(
F t
p (x̂t)

)
| l (j) ≥ 0.5 · l̄ ∧ d (j) ≥ 1.5

}
.

Since we detect the crop rows locally around the current pose estimate x̂t, the indices of
the crop rows are not consistent with the indices of the crop rows from previous iterations,
i. e., until time step t − 1. We therefore need to associate the detected crop rows Fo with
the already tracked crop rows Fm =

{
Rl1

(
F t−1
p

)
, . . . , Rlkm

(
F t−1
p

)}
.

For this crop row tracking, we present a row-based data association algorithm, designed
for tracking the crop row structure while the vehicle traverses the field along the crop rows.
Again, we first explain how we model the space of sets of data association matchesM and
define the valid subset of data association matchesMvalid considered for this application
as well as an appropriate Target function t. The row-based data association algorithm for
crop row tracking is then formulated as:

M∗ := argmax
M∈Mvalid

t (M) Mvalid ⊂M ⊂ P (Fo × Fm)

Analogue to our previously presented row-based data association algorithms, we again
use a row-shift parameter r to represent a set of data association matches between the set
of detected (Fo) and tracked (Fm) crop rows. This row-shift parameter maps a detected
row onto a tracked crop row by shifting the index j of a detected crop row onto its mapped
crop row j + r. Let Fo be the set of detected crop rows with smallest crop row index jmin

and largest crop row index jmax and let Fm be the set of tracked crop rows. We then define
the valid range of row-shifts Rvalid as all shifts that represent non-empty sets of crop row
matches, i. e., all shifts that match at least one pair of crop rows:

rmin := min (rleft, rright) rleft := l1 − jmax

rmax := max (rleft, rright) rright := lkm − jmin

Rvalid =
[
rmin, rmax] ⊂ Z

Similarly to previous definitions, we define the set of valid data association matches as
Mvalid := M

(
Rvalid

)
, where

M (r) :=
{(
Rj

(
F t
p (x̂t)

)
, Rj+r

(
F t−1
p

))
, j ∈ [jmin, jmax] | j + r ∈ [l1, . . . , lkm ]

}
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is the parametrization of a set of matched crop rows defined by the row-shift r.
Since we represent the set of valid data association matches Mvalid using row-shifts

r ∈ Rvalid, we need to define a Target Function t that operates on row-shifts r. For our
crop row tracking data association, we can leverage that F t

p (x̂t) ∩ F t−1
p is not empty,

i. e., we have features ẑ ∈ F t
p (x̂t) ∩ F t−1

p that are assigned to both a detected crop row in
Fo as well as a tracked crop row in Fm. We use these features to find the correct row-shift
and therefore the correct assignment of detected to tracked crop rows. Our main idea is
that each feature ẑ ∈ F t

p (x̂t)∩F t−1
p defines its own row-shift rẑ as the difference between

the indices of its assigned tracked and detected crop rows:

rẑ := row (ẑ)− rowF tp(x̂t) (ẑ) .

We then count for each valid row-shift r ∈ Rvalid how many features ẑ ∈ F t
p (x̂t) ∩ F t−1

p

support this row-shift r to obtain our Target Function t:

t : Rvalid → R
r 7→

∣∣{ẑ ∈ F t
p (x̂t) ∩ F t−1

p | rẑ = r
}∣∣

The best data association M∗ between the detected and tracked crop rows, is therefore
defined by the best row-shift r∗, that is best supported by the already tracked features:

Rvalid =
[
rmin, rmax] Mvalid = M

(
Rvalid)

r∗ = argmax
r∈Rvalid

t (r) M∗ = M (r∗)

An example for this row tracking data association is shown in Figure 5.19. We use this
row-shift r∗ to assign the crop row index row (ẑ) := j + r∗ to each feature ẑ ∈ F t

p (x̂t)

that is associated with a detected crop row Rj

(
F t
p (x̂t)

)
but does not yet have a row (ẑ)

index. This implicitly creates new tracked crop rows, since the index j + r∗ might not
yet be represented in the set of tracked crop rows. For the first iteration, where the set of
tracked crop rows Fm is empty, we skip the data association step and directly assign the
index of the detected crop rows. This preprocessing step robustly tracks the detected crop
row structure along the field as shown in Figure 5.20.

As a result, we obtain sets of plant feature positions F t
p , that are assigned to their

respective crop row by the mapping row. With this information, we can compute the set
of Plant-Rows R

(
F t
p

)
at any time step t in our data set as required for our row-based

data association. We use these preprocessing steps to obtain sets of Plant-Rows for our
experimental evaluation.

5.4.4 Partial Crop Rows
As explained in Section 5.3.3, we use the criteria of Positive and Negative Information in
our Score Functions. To correctly apply both criteria in our row-based data association,
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Figure 5.19: This illustrates our key idea for the row tracking data association. The set
of detected crop rows Fo with corresponding features is shown as blue points and lines.
The set of tracked crop rows Fm and features is visualized in red. The features assigned
to both, the detected as well as the tracked crop rows are highlighted in orange. For
example, a feature ẑ assigned to the detected row 2 is also assigned to the tracked crop
row 4, therefore the row-shift rẑ is equal to 4 − 2 = 2. In this example, all row features
ẑ ∈ F t

p (x̂t)∩F t−1
p define the same row-shift rẑ = 2 and therefore r∗ returned by our row

tracking data association is equal to 2.

t Gt
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of
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Figure 5.20: This figure shows the extracted row structure during construction of the
pose graph for different time steps. The detected plant features are shown as points. Blue
features are assigned to a crop row, gray features are unassigned. The crop row structure
is visualized by connecting neighboring plant features of the same crop row with lines.
The index of each row is printed at the start and end of each row.
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we should only consider features as unmatched, if they lie within the detection range of
the sensor. We call the detection range Observed Area for the set of observed features
Fo and Mapped Area for the set of mapped features Fm. For the Positive Information
criterion, this means that an observed plant feature is only unmatched, if it lies within the
Mapped Area. Analogue for the Negative Information, a mapped plant feature only counts
as unmatched, if it lies within the Observed Area. In general, this is already ensured by
the design of our Score Functions: Given a shift s, we only integrate over the part of the
mapped crop rows, that are overlaid with the observed crop rows. Thereby, we ensure
that only unmatched mapped features within the Observed Area are considered. The
unmatched observed features that are not within the Mapped Area are explicitly handled
by our regularization technique (No Bias criterion). However, since some of the crop
rows are close to the edge of the field of view (FoV) of the sensor, they are not always
visible in the sensor data. This can lead to crop rows, where only a small amount of
the plants is detected. We therefore call such a crop row with many unobserved plant
features a partial crop row. A good example of a partial crop row is crop row 0 shown in
Figure 5.20. During graph construction, this row is only occasionally visible in the sensor
data. Therefore, a large part of the plants of this crop row remain undetected causing a
sparse feature distribution along this row. These partial crop rows cause problems for a
data association algorithm, since the plant feature distribution of such a partial crop row
is far from the true feature distribution. Correctly matching this partial crop row with its
corresponding crop row therefore yields many unmatched features. This in turn would
cause a Score Function based on Positive and Negative Information to diverge from the
correct data association. To prevent wrong data associations caused by these partial crop
rows, a fourth preprocessing step is required, where partial crop rows are identified and
removed from both sets of Plant-RowsR (Fo) andR (Fm). The filtered inputR (Fo) and
R (Fm) to our row-based data association algorithm then only contains fully observed and
fully mapped crop rows respectively. In the following, we explain how we determine the
partial crop rows for a set of Plant-Rows F t

p with corresponding pose graph Gt for a time
step t. For our experimental evaluation, we apply this procedure to both, the observed as
well as the mapped set of Plant-Rows, before passing them as input to our row-based data
association.

Given a set of Plant-Rows R
(
F t
p

)
for a time step t with corresponding pose graph Gt,

we first determine the detection range Dt, which is the area of the FoV of the vehicle,
as well as the area A

(
Rj

(
F t
p

))
of each crop row Rj

(
F t
p

)
within the set of Plant-Rows

R
(
F t
p

)
. We consider a crop row Rj

(
F t
p

)
partial, if less than 50 % of its area A

(
Rj

(
F t
p

))
lies within the detection range Dt, and therefore if more than 50 % of its plant features
might be undetected.

The detection range Dt of the vehicle until time step t, is the union of the FoV of the
sensor at time step t′ over all time steps t′ ≤ t. Let x̂t′ ∈ X̂t of Gt be the estimated pose
of the vehicle at time step t′. We compute the FoV for this time step t′ by projecting the
four corners of the detection areaAI of our SEP detection algorithm from the image plane
onto the ground plane centered around the robot pose x̂t′ . We use the same projection prj
as defined in Section 5.4.1 with Equations 5.6–5.8 for the SEP detections. This yields
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a polygon defined by the four projected corner points that describes the detection range
AG on the ground plane centered around the pose x̂t′ . By transforming this polygon with
the pose estimate x̂t′ we obtain the detection area At′ for time step t′. Using the CGAL
library2, we compute the union over all these polygons to obtain a polygon, possibly with
holes, that describes the detection range Dt of the vehicle at time step t:

AI := {clb, crb, clt, crt}
AG := {prj (clb) , prj (crb) , prj (clt) , prj (crt)}
At′ := {x̂t′ · prj (clb) , x̂t′ · prj (crb) , x̂t′ · prj (clt) , x̂t′ · prj (crt)}
Dt :=

⋃
t′≤t

At′

Regarding the area of a crop row Rj

(
F t
p

)
∈ R

(
F t
p

)
, we first represent the crop row

as a set of connected linear segments with the plant features ẑ ∈ Fp (j) ⊂ F t
p of the

crop row as anchors. The area of the row A
(
Rj

(
F t
p

))
is then defined as a polygon that

envelopes these linear segments using a width of 0.3 m. Again, we use CGAL to compute
the polygon A

(
Rj

(
F t
p

))
. An example for the envelopes around the crop rows and the

detection range is shown in Figure 5.21. Finally, we use both the detection range Dt and
the area of the crop row A

(
Rj

(
F t
p

))
to determine, whether a crop row Rj

(
F t
p

)
is only

partially observed Rj

(
F t
p

)
∈ Rpartial

(
F t
p

)
or fully observed Rj

(
F t
p

)
∈ Rfull

(
F t
p

)
:

Rpartial
(
F t
p

)
:=

{
Rj

(
F t
p

)
∈ R

(
F t
p

)
|
∣∣A (Rj

(
F t
p

))
∩Dt

∣∣∣∣A (Rj

(
F t
p

))∣∣ < 0.5

}
Rfull

(
F t
p

)
:= R

(
F t
p

)
\ Rpartial

(
F t
p

)
Using this procedure, we determine the subset of fully observed crop rows Rfull

(
F t
p

)
for any time step t of our data set. During our experimental evaluation, we always pass
the subset of fully observed crop rows to our row-based data association algorithm.

In this section, we explained all four steps of our preprocessing pipeline. We use this
procedure to extract the row structure of a crop field from our real-world raw data. This
entails detecting plant position features by detecting the SEP of different types of crops
on raw image data, integrating these detections over time using a pose graph, as well
as extracting and tracking the crop row structure on accumulated plant features using
our Pattern Hough Detection algorithm from Chapter 3 and a data association technique
specifically designed to track the crop rows. Additionally, we also explain how we com-
pute the detection range from integrated raw data to filter crop rows that are not fully
observed, i. e., rows that only partially lie within the detection range. This last prepro-
cessing step is crucial to obtain robust results for data association techniques, that are
based on the Positive and Negative Information criteria such as our data association ap-
proach. For our extensive experimental evaluation in the following section, we use the

2https://www.cgal.org/index.html, Accessed: 2022-10-31

https://www.cgal.org/index.html
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Figure 5.21: This visualizes the detection range (orange) and the envelopes around a set
of crop rows (orange outline) for an example from real-world data on the top. Close ups
of the same example are shown on the bottom. As already stated in the previous example,
crop row 0 is only partially observed: The envelope around crop row 0 is not fully inside
the detection range. Since more than 50 % of the envelope are outside of the detection
range, this crop row is considered partial and therefore filtered and not considered in our
row-based data association algorithm.

presented preprocessing pipeline to obtain sets of Plant-Rows and pass them as input to
our data association algorithm.

5.5 Experimental Evaluation

We develop our row-based data association approach to enable accurate localization and
mapping techniques relative to individual plant positions. To show the relevance and ap-
plicability of our approach for localization and mapping scenarios on agricultural fields,
we design our experimental evaluation towards the following aspects: First, our experi-
mental setup evaluates the investigated data association algorithms within the framework
of a localization or mapping application. Second, the performance of the data association
is measured with respect to properties that are relevant in navigation applications. This
not only includes the robustness in form of a success rate, but also the accuracy of the
data association method split into an angular, lateral and longitudinal component. In Sec-
tion 2.2.3, we explain in more detail how we define the accuracy of a data association
method. Third, to highlight the potential of our approach as well as its limitations, we
perform our evaluation on challenging real-world input data.

In Section 5.5.1 we present our experimental setup in detail, the GT data association
used for the quantitative evaluation, as well as the properties and challenges of our real-
world data sets for data association algorithms. In our first experiment we determine the
impact of our approach by comparing the performance of our row-based data association
with other promising data association techniques inspired from the literature. Here, we
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evaluate the success rate as well as angular and translational accuracy. The results show
that a row-based approach is indeed required to address individual plant position data
association problems. Regarding the expected accuracy during localization or mapping
applications, the angular accuracy of our approach is well suited for these kind of prob-
lems. However, the overall translational accuracy seems low. Therefore, in the second
evaluation, we investigate the translational accuracy of our approach in more detail by
splitting it into a lateral and longitudinal component. The results of the second evaluation
show, that our approach has sufficient lateral and longitudinal accuracy for localization
and mapping applications. In the third evaluation we discuss interesting properties as
well as limitations of our approach. We investigate in detail how the performance of our
data association approach depends on the amount and quality of input data provided. This
information is highly relevant for any real-world localization and mapping application as
it influences the decision on when to perform data association. Finally, we show qualita-
tive results of our real-world application that we used as the experimental setup. These
give an intuition on the quality that can be obtained when using our approach in real-world
localization and mapping applications on crop fields.

5.5.1 Methodology

In this section we first present our experimental setup in the form of a SLAM application.
We then illustrate how we obtain a set of ground truth data association matches that we
use to quantify the performance of a data association algorithm. Finally, we give a qual-
itative and quantitative overview of the data sets used for evaluation and discuss multiple
interesting and challenging data set properties.

Experimental Setup For our experiments we recorded data on two different fields con-
taining different crop types. The first field is a production field located in Eichstetten near
Freiburg. The other field is a sugar beet field of ETH Zurich located at their crop science
research station in Eschikon (see Section 2.1.3). We give a detailed overview of both
fields and discuss their properties at the end of this section. Using our agricultural robot
BoniRob, we collect odometry, IMU, GPS and image data as explained in Section 2.1.2
on both fields. We call the data collected on the field in Eichstetten the Eichstetten data
and the data collected on the field in Eschikon Eschikon data respectively.

For a meaningful evaluation, our first goal is to design a experimental setup that evalu-
ates the investigated data association algorithms on real-world data within a localization
or mapping framework. In general, a SLAM application, where the map is built simulta-
neously to localizing the vehicle, is more challenging than a localization task, where the
map is prior knowledge. More precisely SLAM is more challenging for a data association
algorithm since some of the observed features might not yet be part of the map. Therefore,
not matching an observed feature might be correct in a SLAM application. In contrast,
during localization, where all map features are already known, maximizing the number
of matches is usually the best strategy. For a SLAM application however, the data as-
sociation needs to trade-off maximizing the number of matched observations against not
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matching observations that do not have a correspondence in the map. Therefore, we eval-
uate the investigated data association algorithms in the more challenging scenario of a
SLAM application.

To this end we process the recorded raw data to iteratively construct a SLAM pose
graph

Gt =
(
X̂t, EX̂t , Ẑt, EẐt

)
for every time step t as described in Section 5.4.2. The resulting pose graph contains a set
of pose nodes X̂t, a set of unary and binary edges between the pose nodes corresponding
to the GPS, odometry and IMU measurements EX̂t , a set of plant position nodes Ẑt and
the corresponding set of binary edges EẐt between the plant position nodes and the pose
nodes according to the detections from the image data. A realistic application scenario
also requires us to consider the influence of the employed perception method. Thus, we
do not rely on manually labeled plant positions during graph construction. Instead, we
extract the plant positions from the raw image data using the SEP detection algorithm
described in Section 5.4.1.

We start building the pose graph and continue integrating data until the vehicle reaches
the end of the first set of crop rows. The graph built so far is defined as the global graph

Gglobal :=
(
X̂global, Eglobal

X̂
, Ẑglobal, Eglobal

Ẑ

)
and contains the already mapped part of the field during our evaluation. We then build a
separate local graph

G local :=
(
X̂ local, E local

X̂
, Ẑ local, E local

Ẑ

)
starting from where we stopped constructing the global graph until the vehicle reaches the
end of the field for the second time (see Figure 5.22, top). This local graph contains the
observed part of the field during our data association evaluation. Whenever the vehicle
reaches the end of the field, we merge the local graph into the global graph using ground
truth data association information, reset the local graph and restart the procedure until we
have processed the whole data set (see Figure 5.22, mid and bottom). We use ground truth
information for this merge to ensure an objective evaluation. Using the investigated data
association algorithm to perform the merge would make the input data dependent on the
investigated algorithm. In the next paragraph we explain, how we obtain the ground truth
data association information to merge both graphs.

Given a set of data association matches

M ∈M ⊂ P
(
Ẑ local × Ẑglobal

)
between the observed plant position features Ẑ local and the mapped plant position features
Ẑglobal, we merge the local graph into the global graph as follows:
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Gglobal ∪ G local :=
(
X̂global ∪ X̂ local, Eglobal

X̂
∪ E local

X̂
, Ẑglobal ∪ Ẑnew, Eglobal

Ẑ
∪ Emerged

Ẑ

)
Ẑnew :=

{
ẑ ∈ Ẑ local | ẑ 6= oi ∀ (oi,mi) ∈M

}
Emerged
Ẑ

:=
{
emerged (elocal) | elocal ∈ E local

Ẑ

}
elocal := (x̂, ẑ, z) ∈ X̂ local × Ẑ local × R2

emerged (elocal) :=

{
(x̂,mi, z) , if ∃ (oi,mi) ∈M : oi = ẑ

(x̂, ẑ, z) , otherwise

First, we copy all pose nodes X̂ local and edges connected only to pose nodes E local
X̂

into the global graph. Then, we iterate over all plant position nodes ẑ ∈ Ẑ local of the
local graph. If ẑ is not matched to any global plant position node, i. e., there is no match
(oi,mi) ∈ M so that ẑ = oi, we add ẑ to the set of plant position nodes Ẑnew and
therefore to the plant position nodes of the global graph. We also transfer all local graph
edges, that contain this unmatched feature ẑ to the global graph. If the plant position node
ẑ is matched with a mapped plant position node, i. e., there is a match (oi,mi) ∈ M so
that ẑ = oi, we do not transfer the local plant position node ẑ as the feature is already
represented in the global graph by feature mi. We transfer all local graph edges, that
contain the matched feature ẑ into the global graph, maintaining the pose node x̂ as well
as the measurement z for all edges, but exchange the plant position feature node ẑ with
the corresponding feature node from the map mi.

Since the local graph is merged into the global graph before each turning maneuver,
we count the number of merges by counting the number of turns performed. This proce-
dure iteratively constructs a full SLAM graph over the whole data set. We also use this
technique in the last experiment of our evaluation to provide a proof of concept for the
applicability of our data association approach in a SLAM use case on real-world data. In
that experiment we merge the local graph into the global graph using the set of matches
M produced by the data association algorithm instead of ground truth information.

To evaluate our row-based data association approach, where the global graph Gglobal

provides the mapped features Fm := Ẑglobal and the local graph G local the observed fea-
tures Fo := Ẑ local, we extract and track the row structure of the plant features during
graph construction as described in Section 5.4.3. We also filter out all partial crop rows,
i. e., crop rows that are only partially observed, using the procedure described in Sec-
tion 5.4.4. This results in an observed and mapped set of Plant-Rows,R (Fo) andR (Fm)
that only contain fully observed crop rows.

While processing the recorded raw data, we create several data points that form the
Eichstetten data set and the Eschikon data set respectively as follows: During construction
of the local graph we save the state of both, the local and the global graph every time 20
new pose nodes have been added to the local graph. Each pair of local and global graph
and their corresponding Set of Plant-Rows then defines a data point of the corresponding
data set. Since we add a new pose node after a distance of 0.1 m has been traversed,
this corresponds to creating a data point every 2 m along each traversed set of crop rows.
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Figure 5.22: This figure shows different steps during local and global graph construction.
The feature nodes Ẑglobal of the global graph are shown as red dots, the trajectory connect-
ing the pose nodes X̂global of the global graph is shown as a light blue line. The feature
nodes Ẑ local of the local graph are marked as blue dots and the corresponding trajectory is
visualized as blue line. The top image shows the local and global graph at the end of turn
1, just before merging. The middle image shows both graphs directly after merging. The
local graph is empty and therefore not visible. The bottom image shows both graphs at
the beginning of turn 2.

During evaluation the feature nodes of the global graph Ẑglobal are used as mapped features
Fm with Plant-Rows R (Fm) and the feature nodes of the local graph Ẑ local are used as
observed features Fo with Plant-RowsR (Fo). The number of data points created for each
data set are shown in Table 5.2. Creating multiple data points along each traversed set of
crop rows not only enables a more detailed evaluation, but also allows us to analyze data
association results with respect to the amount of distance traversed along crop rows.

Ground Truth Data Association For the evaluation of data association algorithms we
need to know, whether a certain match between two features, in our case plant positions,
is correct, i. e., whether both features describe the same plant. To this end, we manually
assign a unique number, called id, to each plant on the field. During evaluation, we use
these unique numbers to compute a set of GT data association matches MGT for each data
point, where a match between two features is correct and part of the GT data association,
if the ids of both features are the same. In the following, we first describe how we obtain
a unique number for each plant in each image of the data set. Then, we explain how we
use those plant ids to compute a set of GT data association matches MGT at each data
point. Finally, we explain how we use this set of GT data association matches to quantify
the performance of a data association algorithm.

To assign a unique number to each plant, we placed markers into the field as shown in
Figure 5.23 in the top left image. With these markers we can identify and assign an id to
each plant by its relative position to the marker. We then record one Marker data set with
these markers distributed in the field and visible in the image data and one Empty data set
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without any markers for each of the fields. The second Empty data set is necessary since
we need marker free images for a realistic evaluation. After recording this data, we first
manually label plant position (i. e., the SEP) and id for plants in the lower part of each
image in the Marker data set (see Figure 5.23, top right). We only label the lower part
of the image, since plants in the upper part appear smaller and the SEP is therefore hard
to determine precisely for those plants. This ensures manual labels with high accuracy.
Next, we use the labels from the Marker data set to label plant position and id in the
Empty data set by manually transferring the id for the plant from the Marker data set onto
the same plant in the Empty data set. Here, we use the fact, that we traversed the rows of
the field in the same order and at roughly the same velocity for both data sets. Therefore,
we can track the plants by replaying both data sets simultaneously image by image. This
yields annotated images for the Empty data set where each plant is described by a position
in image coordinates (pixel) and a unique plant id (see Figure 5.23, bottom left). Since
we evaluate on detections from a plant detection algorithm, i. e., we use the detections of
the SEP detection algorithm during graph construction, the last step is to transfer the ids
from the manually labeled plant positions to the detections of the algorithm. In this step,
it is crucial that we only generate high quality id labels for the detections, as the ids on
the detections determine, whether a match is correct during the evaluation. Therefore,
we assign ids to detections conservatively, i. e., only if the detection is reasonably close
to a manually labeled position. We choose a straight line distance smaller than 60 pixels.
This has two effects: First, false positive detections, which are not close to a labeled plant
position, do not receive an id and are not considered in our evaluation. Second, plants in
the upper part of the image that are detected by the algorithm, but have not been labeled,
are also not considered in our evaluation. Both effects, i. e., removing false positives and
considering only high accuracy plant positions, ensure that we create only high quality
id labels for the evaluation. All detections that are not assigned to a plant receive the
id −1. After transferring the ids, we obtain a set of plant detections for each image in
the Empty data set, where each detection is annotated with an id, that either is the id of
the plant this detection originates from or −1 if no labeled plant is close enough (see
Figure 5.23, bottom right). During evaluation we use these ids to determine, whether a
match within a set of data association matches M is correct. Given a set of observed and
mapped plant features F id

o and F id
m, where features o ∈ F id

o and m ∈ F id
m are assigned a

unique plant id (o) and id (m), we define a ground truth data association algorithm based
on these unique plant ids id and call it the ID data association (ID). This data association
computes a set of data association matches M ID as follows: For each observation o ∈ Fo,
we determine the map feature m ∈ Fm, that has the same id as the observed feature o. If
such a map feature is found, it is added to the set of matches M ID. If no such map feature
can be found, the observation remains unmatched.

M ID :=
{(
o,mid) ∈ Fo × Fm | id (o) 6= −1 ∧ id (o) = id (m)

}
(5.9)

Since a match between observed and mapped features is only added to M ID if both
features have the same plant id and since having the same id implies that the features
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Figure 5.23: This figure shows images from the Marker (top) and Empty (bottom) data
set. The markers are used to assign a unique id (white number) to each plant and its
labeled position (purple). The ids from the images in the Marker data set are transferred
to the plants and their labeled position (purple) in the Empty data set. These are then used
to assign ids to the detections (blue) of the plant detection algorithm.

represent the same plant on the field, this ID data association computes the correct data
association according to our ground truth labels. We therefore use this ID data association
to compute sets of ground truth data association matches MGT = M ID. However, the ID
data association can only match observations, that have an id different from −1. This
situation only occurs if either the observation is a false positive detection or labeling
the plant position with high accuracy was not possible. In the case of a false positive
detection, it is in fact correct to leave the observation unmatched. The case of an unlabeled
observation remaining unmatched does not impede the validity of using M ID as ground
truth in our evaluation either, since this means that we only evaluate on a smaller subset
of GT matches instead of the maximal possible set of GT matches. It rather ensures
evaluation results of high quality, since we only evaluate on GT matches that can be
inferred with a high accuracy and therefore certainty.

With an id for each plant feature, we can compute the ID data association on the feature
nodes of the local and global graph to obtain a set of GT data association matches MGT

for each data point. During our evaluation, we use these GT matches to quantify, how
well any data association algorithm approximates the GT data association and therefore
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the correct data association. Given the set of GT matches MGT with n matched observa-
tions and a set of matches M of the investigated data association algorithm we quantify
the performance of this data association algorithm by counting the number of correctly
associated observations c (M) as follows:

c (M) :=
∣∣M ∩MGT

∣∣ ∈ [0, n] (5.10)

c#>0
ratio (M) :=

1

n
· c (M) ∈ [0, 1] (5.11)

In the following experiments, we use the number of correctly associated observations
c to quantify the performance of the investigated data association algorithms. Since the
number n of GT data associations matches in MGT is different for each data point, we
also use its ratio c#>0

ratio , where we normalize with the number of GT matches in MGT. This
ensures comparability of the performance throughout all data points.

Data Set Overview and Properties We give an overview of the structure of both fields
as well as an intuition about the quality of the input and ground truth data for both data
sets. For a ground truth visualization of both fields we need to obtain ground truth po-
sitions of the crops as well as a ground truth trajectory of the vehicle. To this end, we
process the recorded data using a traditional SLAM technique, where we build one pose
graph by continuously integrating data into the graph. The input data is processed as de-
scribed in Section 5.4.2 but instead of the Nearest Neighbor data association we use the
ID data association as defined by Eq. (5.9) to associate the plant position measurements
z ∈ Zt from an image at time step It with the already existing feature nodes of the graph
Ẑt−1. Here, we use the feature nodes Ẑt−1 of the graph built so far as mapped features
Fm, where we obtain ids for each features using the feature edges as described above. The
observed features Fo are the plant positions measurements Zt and their ids are the corre-
sponding id of the plant. For the same reasons as mentioned above, we obtain ground
truth data association matches M ID = MGT using the ID data association. The resulting
pose graph therefore computes the ground truth map of plant positions and the ground
truth vehicle trajectory that can be obtained using a traditional pose-graph-based SLAM
technique. Thus, we call such a pose graph obtained using the ID data association the GT
pose graph GGT. For an overview over the quality of our manual plant position and id
labels that we use to define the GT data association during our evaluation, we compute a
manual GT pose graph GGT, man, where we use the manually labeled plant positions and ids
as input during graph construction. For a qualitative comparison between the manually
labeled plant positions and the plant positions detected by the SEP detection algorithm,
we also compute a detections GT pose graph GGT, det, where we use the detected SEP
positions and the transferred id labels. The detections GT pose graph GGT, det shows all
detections of the SEP detection algorithm that are used as an input during construction
of the local graph construction. In other words, all plant position features visible in this
graph have to be associated by the data association algorithms during our evaluation. Of
course, this includes the detections with an id equal to −1, i. e., detections that either are
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width row length # rows # Turns # data points
Eichstetten 13 m 90 m 22 6 272
Eschikon 15 m 35 m 30 9 164

Table 5.2: Data set statistics for both fields.

false positive detections or correspond to plants located in an unlabeled area of the image.
However, the set of GT matchesMGT only contains observed features with an id not equal
to −1, i. e., true positive, labeled detections. To also give an intuition about the subset of
observations on which we perform our quantitative evaluation, i. e., the observations con-
tained in MGT, we show a second visualization of the detections GT pose graph GGT, det,
where we only draw the plant position feature nodes that have an id other than −1. We
visualize all three types of pose graphs in Figure 5.24 for the Eichstetten data set and in
Figure 5.25 for the Eschikon data set. Using these GT pose graphs, we compute the di-
mensions of both fields and also give a summary of other interesting data set dimensions
in Table 5.2.

The Eichstetten data set has two interesting properties: First, the spacing between crop
rows is not always the same. Every three crop rows the spacing between adjacent rows
is slightly larger. This irregular crop row spacing decreases the amount of consistent
crop row matches considered during data association and therefore makes finding the
correct crop row matches easier on the Eichstetten data set (see Section 5.3.2). Second,
as highlighted by the different colors overlaid on the field in Figure 5.24, the Eichstetten
data set contains three different kinds of crop: Kohlrabi, Chinese Cabbage and Sweetheart
Cabbage. The crop types even change mid row. As we discuss in Section 5.4.1, the
detection algorithm used to create the input data for our evaluation has varying accuracy
and false positive rate depending on the type of crop. Therefore, during evaluation, we
can directly infer from the results, if and how the difference in perception performance
affects the results of the data association algorithm. Both properties make Eichstetten an
interesting data set.

Another noteworthy observation is that the last half of the last turn does not have any
labeled plant positions. We did not put markers in that part of the field, and therefore ids
could not be assigned to these plants. However, we still apply the detection algorithm to
evaluate on the full data set. Since there are no labeled plant positions for this part of
the field, the detections of the algorithm are assigned the id −1. By definition of the set
of GT matches MGT in Eq. (5.9), detections with an id of −1 are not included in MGT.
Therefore, these additional detections of the last half of the last turn are not considered
during our qualitative evaluation. As we discussed earlier, this does not invalidate our
evaluation, as we are only evaluating on a smaller subset of the full set of GT matches.

Looking at the manual GT graph GGT, man, we see very clear individual plant features
throughout the map. This is caused by the fact that all manually labeled plant positions
have an id, and therefore all plant position nodes are properly associated in the graph.
In contrast to the manual GT graph GGT, man that has no duplicate plant position nodes,
the detections GT graph GGT, det has many duplicate plant position nodes. This is to be
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GGT, man GGT, det GGT, det
id 6=−1

Figure 5.24: This figure shows the manual GGT, man and detections GGT, det GT pose graphs
on the Eichstetten data set. The estimated plant positions Ẑ are shown as red dots. The
estimated trajectory of the vehicle is shown as blue or black line connecting consecutive
pose nodes (X̂). The number of each turn is shown next to the turn. We use different
colors to illustrate the location of different crop types throughout the field: Kohlrabi in
orange, Chinese Cabbage in blue and Sweetheart Cabbage in rose. On the right we omit
the colors that indicate the crop type, so that the plant positions are more clearly visible.
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Figure 5.25: This figure shows the manual GGT, man and detections GGT, det GT pose graphs
on the Eschikon data set. The estimated plant positions Ẑ are shown as red dots. The
estimated trajectory of the vehicle is shown as blue or black line connecting consecutive
pose nodes (X̂). The number of each turn is shown next to the turn. This field only
contains Sugar Beet highlighted in yellow. On the bottom we omit the colors that indicate
the crop type, so that the plant positions are more clearly visible.
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expected, since not all detections received a plant id and therefore some detections remain
unassociated. This graph gives a good overview of the quality of the input data, including
the false positive and unlabeled detections that need to be associated by the investigated
algorithms during our evaluation. To give an intuition about the subset of detections on
which we perform our quantitative evaluation, i. e., the set of GT matches MGT, we also
show the detections GT graph containing only plant position nodes that are part of the
set of detections GT matches on the right of Figure 5.24. We see that the resulting graph
closely resembles the manual GT graph GGT, man. Therefore, we can conclude, that we
indeed created a high quality set of GT matches MGT for the detections by transferring
the manual labels.

The graphs of the Eschikon data set in Figure 5.25 show that this field has contrasting
properties to the Eichstetten crop field: The spacing between the crop rows is uniform, so
that resolving ambiguity and associating the correct crop rows is more challenging on this
field. Also, the Eschikon data set only features one crop type, the Sugar Beet. However, as
explained in Section 5.4.1, the perception quality on this kind of crop is lower compared
to the other three crop types. Therefore, the Eschikon data set is overall more challenging
than the Eichstetten data set.

Similar to the manual GT graph GGT, man of Eichstetten, the manual GT graph GGT, man

of Eschikon shows clear individual plant features and crop row structure. This means,
that the ids were transferred correctly from the Marker data set to the Empty data set.
Comparing the detections GT graph GGT, det of Eschikon with the one from Eichstetten, the
detections appear more spread out in the Eschikon data set, making it harder to distinguish
adjacent crop rows in some parts of the field. This confirms the notably lower detection
accuracy of the detection algorithm on Sugar Beet compared to the other three crop types.
However, comparing the detections GT graph GGT, det to the graph GGT, det

id 6=−1, that only shows
the detections with ids, i. e., the features included in the set of GT matches MGT, we again
see a clear row structure with individual plant features. Furthermore, the graph closely
resembles the manual GT graph GGT, man, confirming also for the Eschikon data set, that
we have a high quality set of GT matches MGT on which we perform our quantitative
evaluation.

In the following evaluation we use the data points from the Eichstetten and the Eschikon
data set to evaluate the performance and properties of our data association algorithm as
well as comparison algorithms. We always perform data association on the detections of
the perception algorithm. We evaluate the results of all data association algorithms with
respect to the set of GT matches MGT. The Eichstetten data set poses an interesting chal-
lenge with its three different crop types. The Eschikon data set is overall more challenging
due to its uniform crop row spacing and the low performance of the perception algorithm
on its crops. In the next section we perform our first evaluation, where we compare the
performance of our row-based data association approach with the results of other data
association algorithms to confirm that our row-based data association approach is indeed
required in this kind of scenario.



192 Chapter 5: Data Association on Individual Plants

5.5.2 Impact of Row-Based Data Association

In this experimental evaluation we investigate, whether leveraging information about the
row structure of the crop field facilitates robust data association on individual plant posi-
tions. To this end, we compare the performance of our row-based data association with
other data association approaches that do not use information about the row structure of
the field. Therefore, we implemented the following data association approaches that do
not utilize the row structure:

• Nearest Neighbor (NN) data association

• Geometric Consistency Branch and Bound (GCBB) data association

• Gap Descriptor (Gaps) data association

Since these data association techniques do not require row structure information, the
input to these is the set of plant positions Ẑglobal of the global graph for the mapped features
Fm and the set of plant positions Ẑ local of the local graph for the observed features Fo. The
output is a set of data association matchesM ∈M ⊂ P (Fo × Fm) that contains pairwise
matches between observed and mapped features.

Nearest Neighbor The Nearest Neighbor (NN) data association is a widely used tech-
nique. As the name suggests, each observed feature is associated with its closest, and
therefore nearest, feature in the mapped set of features. This strategy strongly relies on
the assumption that the pose estimate is accurate, because only then are the observed fea-
tures close to their corresponding mapped features. To increase the robustness of the NN
data association, a match between mapped and observed feature is rejected and the ob-
servation remains unmatched, if the distance to the closest mapped feature is larger than
a given threshold. Another key assumption of the NN data association technique is inde-
pendence between the features in each set. This independence then allows for an efficient
computation of each match individually. The NN data association is introduced in more
detail in Section 2.2.2. For our implementation, we use the straight line, i. e., Euclidean,
distance between observed and mapped features and reject matches with a distance larger
than 0.15 m. The set of NN data association matches MNN is therefore computed as:

MNN :=
{(
o,mNN (o)

)
∈ Fo × Fm |

∥∥o−mNN (o)
∥∥ < 0.15

}
mNN (o) := argmin

m∈Fm
‖o−m‖

We compute the set of NN data association matches MNN for all data points on both
data sets for our evaluation.

Geometric Consistency Branch and Bound This data association approach is inspired
by the Joint Compatibility Branch and Bound (JCBB) algorithm presented by Neira and
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Tardos [2001]. The JCBB algorithm is a probabilistic approach that explicitly uses infor-
mation about the dependency between features. This approach defines the Target func-
tion as the number of matches, i. e., observations matched to map features. Therefore this
technique solely relies on Positive Information when comparing different sets of data as-
sociation matches M ∈ M, called data association hypotheses H =M⊂ P (Fo × Fm)
in the JCBB approach. The best data association hypothesis H∗ ∈ H according to the
JCBB technique is thus the one that maximizes the number of matches. However, the
key idea of this approach does not lie in the design of the Target function. Instead, the
authors of the JCBB algorithm focus on efficiently traversing the space of possible data
association hypothesesH with a branch and bound technique. During this tree search, an
entire branch might be skipped for one of the following reasons: First, adding a match
to a data association hypothesis would make it fail the joint compatibility test. Second,
not matching an observation will always lead to a data association hypothesis with less
number of matches than the currently best hypothesis. For a more in-depth introduction
of the JCBB algorithm refer to Section 2.2.2.

Since we do not have the required probabilistic information to compute the joint com-
patibility test in our setting, we apply a geometric consistency test instead, similar to the
idea of the Geometric Consistency Branch and Bound algorithm presented by Neira et al.
[2003]. We call a set of data association matches M = {(oi,mi)}i∈[1,n] ∈ M geomet-
rically consistent, if it passes our geometric consistency test gc, i. e., if it belongs to the
subset of geometrically consistent data association matches gc (M) ⊂M:

gc (M) := {M ∈M | gc ((oi,mi) ,Mi)∀i ∈ [1, n]}
Mi := M \ {(oi,mi)}

gc ((oi,mi) ,Mi) :=

{
‖oi −mi‖ < 3.0 m∧
|‖oi − oj‖ − ‖mi −mj‖| < 0.15 m ∀j 6= i ∈ [1, n]

Our geometric consistency test gc consists of two parts. First, due to the large amount
of features, we use the locality requirement and constrain the absolute distance between
matched point features. Analogously to the locality threshold for the long-shift parameter
l used for our row-based data association we use a threshold of 3.0 m to that the matched
features are close enough to each other. Second, we test for geometrically consistent
matches using the binary constraint that the relative distance between matched feature
pairs should be similar. Since this binary constraint has to be true for all pairwise matches,
this implicitly ensures that the matched point features form similar geometric patterns.
For a better intuition consider the following example: Given two sets of three points
both sets form two congruent triangles and can therefore be overlaid, only if their relative
distances are the same. As the similarity threshold we use 0.15 m analogue to the NN
data association threshold. Using the relative distance between point features to test for
geometric consistency between sets of point features is suggested by Neira et al. [2003].

Due to the iterative definition of the geometric consistency test gc, we can iteratively
determine, whether adding a match (oi,mi) to a set of geometrically consistent data asso-
ciation matchesM = {(oj,mj)}j∈[1,i−1] ∈ gc (M) preserves the geometrical consistency,
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i. e., whether M ∪ {(oi,mi)} ∈ gc (M). This iterative definition is required to efficiently
search the set of all possible data association matchesM. During the tree search as pre-
sented in the JCBB technique, only branches yielding geometrically consistent data asso-
ciation matches are explored. Therefore, the set of valid data association matchesMvalid

is defined by the geometrically consistent data association matchesMvalid := gc (M) in
this data association approach.

We use the Target function and branch and bound search as described in the publication
by Neira et al. [2003] for our implementation of the Geometric Consistency Branch and
Bound (GCBB) algorithm. Due to the large number of features in our setting, and the
computational complexity of the approach (exponential in number of features), we stop
the search after 300 sec and use the best set of data association matches found so far in
our evaluation. The matches of the GCBB algorithm MGCBB are therefore defined as:

MGCBB := argmax
M∈gc(M)

|M |

We apply the GCBB algorithm on both data sets to obtain a set of MGCBB data association
matches for each data point. We use these matches MGCBB to evaluate the performance
of the GCBB algorithm.

Gap Descriptor The Gap Descriptor (Gaps) data association is inspired by Chebrolu
et al. [2018], which presents a descriptor-based data association approach for registering
UAV images of crop fields. The main idea is to use gaps, i. e., locations within the crop
rows where plants are missing, as features instead of plant positions. Therefore, this
Gaps data association computes data association matches MGaps on Gaps between a set of
observed gap features FGaps

o and a set of mapped gap features FGaps
m . Given the sets of

gap features the authors first compute a gap descriptor dg for each gap feature g based
on geometric relations to its k closest gap features. For each gap feature g the values of
the descriptor dg consist of k − 1 relative distances δg and k − 1 angles αg between the
gap feature g and its k neighbors. These descriptor values are designed to be rotation,
translation and scale invariant to be robust against different UAV poses (orientation and
position including height) during data recording as follows: Given a gap g its local k-
neighborhood of gaps is defined as the k closest gaps {g1, . . . , gk}. Let gk be the gap
farthest away from g and the other elements {gi}i∈[1,k−1] be sorted by their angle ∠gk, g, gi
in ascending order. Then, the descriptor values dg = (αg, δg) ∈ R2(k−1) are defined on the
k-neighborhood as follows:

(αg)i =
∠gk, g, gi

2 · π
, ∀i ∈ [1, k − 1]

(δg)i =
‖g − gi‖
‖g − gk‖

, ∀i ∈ [1, k − 1]

The authors define the distance between two descriptors as the Euclidean L2-Norm
over the descriptor values. This distance is used in conjunction with a threshold to restrict
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the number of considered data association hypotheses as well as the Target function to
determine the best data association hypothesis.

The data association approach presented by Chebrolu et al. [2018] is divided into three
steps. First, a set of valid matches

MGaps on Gaps
valid ∈MGaps on Gaps ⊂ P

(
FGaps
o × FGaps

m

)
between observed gap features FGaps

o and mapped gap features FGaps
m is computed accord-

ing to the following criteria:

MGaps on Gaps
valid :=

{
(o,m∗) ∈ FGaps

o × FGaps
m | valid (o,m∗)

}
m∗ := argmin

m∈FGaps
m

‖do − dm‖

m∗∗ := argmin
m∈FGaps

m \{m∗}
‖do − dm‖

valid (o,m∗) :=

{
‖do − dm∗‖ < ε∧
‖do−dm∗‖
‖do−dm∗∗‖

≤ 0.8

Only matches where the descriptor distance is smaller than a given threshold ε are con-
sidered, which ensures that only gaps with similar descriptor values, and therefore similar
local geometric structure, are matched. Also, to avoid ambiguous matches the authors
compute the distance ratio between the two best matches m∗ and m∗∗ that have the small-
est and second smallest descriptor distance. Only if the ratio is smaller or equal to 0.8,
i. e., the second smallest distance value is considerably larger than the smallest distance
value, the best match is considered unambiguous and therefore added to the set of valid
matches MGaps on Gaps

valid . This first step yields a set of high quality gap matches MGaps on Gaps
valid .

Second, to reject outliers, the authors compute similarity transforms in a RANSAC loop
on the set of candidate matches MGaps on Gaps

valid resulting in a set of data association matches
MGaps on Gaps ⊂MGaps on Gaps

valid on gap features with corresponding two-dimensional similar-
ity transform TMGaps on Gaps . In the last step, the authors refine the solution MGaps on Gaps from
the first two steps using the Hungarian Method to recover more matches from the matches
discarded in the previous steps.

For our implementation, we first extract two sets of gaps FGaps
o and FGaps

m from our
Plant-Row data structure as follows: We iterate over the plant positions that are sorted
in ascending order along the row. If the distance between consecutive plant positions
is larger than a given threshold of 0.5 m, we add a gap in between these two positions.
We perform this procedure on each Plant-Row on both, the mapped and observed data,
and get two sets of gaps FGaps

o and FGaps
m respectively. As threshold ε for the descriptor

distance, we empirically determined 0.1. In contrast to the paper, in the second step, we
do not sample in a RANSAC loop, but rather test each pairwise subset from the set of high
quality matches MGaps on Gaps

valid , since two matches suffice to compute a similarity transform
to test on. We compute the similarity transform TMGaps on Gaps using the procedure described
in Section 2.2.3 for the computation of the inferred pose correction transforms. We do
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not perform the third step to refine the result by recovering more matches. Since we
are interested in matches between plant positions MGaps, we use the similarity transform
TMGaps on Gaps obtained at the end of the second step to instead recover matches between plant
positions MGaps ∈ M ⊂ P (Fo × Fm) from the matches between gaps MGaps on Gaps ∈
MGaps on Gaps ⊂ P

(
FGaps
o × FGaps

m

)
. Here, we apply a similar technique as described in

Section 5.3 to recover plant position matches from our row-based data association: We
correct the position of the observed plant features using transform TMGaps on Gaps . Then, we
perform the NN data association as described above on the transformed observations to
compute a set of data association matches MGaps on plant positions. We use this set
of matches MGaps as the result of the Gap Descriptor data association algorithm in our
evaluation.

In this first experimental evaluation, our goal is to compare the performance of different
non row-based data association algorithms with our row-based data association approach.
Since we expect the IoU Score Function to perform better than the other three Score
Functions, we equip our row-based data association with the IoU Score Function for this
evaluation and call the matches returned by our approach M our. Although each data asso-
ciation determines the best set of data association matches M∗ according to its respective
Target function, they are all designed to find the correct data association. As explained in
Section 5.5.1, our GT data association matches MGT obtained from the manually labeled
ground truth plant ids is a subset of the correct data association. We can therefore use
this set of GT data association matches MGT to objectively compare the performance of
the investigated data association algorithms. To this end, we compute the number of cor-
rectly associated observations c (M) for the matches M of the different data association
algorithms over all data points for the Eichstetten and Eschikon data set (see Eq. (5.10)).
Since the number n =

∣∣MGT
∣∣ of GT matches changes for each data point, we compute the

percentage of correctly associated observations using c#>0
ratio for comparable results over all

data points (see Eq. (5.11)). In Table 5.3, we present the number of data points, where at
least one correct match was found (first column, c > 0 [# ]) and the average amount of
correct matches found (second column, c#>0

ratio [ %]). Since most algorithms only rarely find
any correct matches, we compute the average amount only over the data points, where at
least one correct match was found.

We also evaluate the angular and translational accuracy of a data association algo-
rithm that can be expected during a localization or mapping application as defined in Sec-
tion 2.2.3: Both applications, localization and mapping, use the data association matches
M to correct the pose estimate of the vehicle. Therefore, we can compute the inferred
pose correction transform TM for the evaluated data association algorithm as well as a
transform TMGT based on the GT matches MGT. The angular ∆θ and translational ∆t ac-
curacy of a data association algorithm are then defined as the transform parameters of the
relative transform ∆T between both inferred pose correction transforms TM and TMGT:

∆T = (∆θ,∆t)

∆T := TM · T−1
MGT

We evaluate the accuracy on all data points for both data sets and show the average
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Eichstetten Eschikon
c > 0 c#>0

ratio ∆θ ∆t c > 0 c#>0
ratio ∆θ ∆t

[#] [%] [◦] [m] [#] [%] [◦] [m]
NN 16/272 1.06 0.73 1.14 2/164 14.58 1.98 1.93
GCBB 1/272 1.49 9.43 7.18 0/164 0.00 5.84 3.51
Gaps 1/272 0.41 46.64 46.79 0/164 0.00 90.05 32.24
our 204/272 63.57 0.11 0.70 113/164 61.91 0.60 0.70

Table 5.3: This table shows the results of our evaluation. The first column (c > 0 [#]) lists
the number of times at least one correct match was found out of the whole number of data
points (272, 164). The second column presents the average number of correct matches in
percent (c#>0

ratio [%]). The average is computed over all data points where the correspond-
ing data association found at least one correct match. The third column (∆θ [◦]) and
fourth column (∆t [m]) show the average angular and translational error compared to the
transform inferred from the GT matches over all data points.

angular (∆θ) and translational (∆t) accuracy in the third and fourth columns of Table 5.3
respectively.

The results show that our data association approach is well suited to find good data
associations as it often finds GT matches, i. e., 204 of 272 times on the Eichstetten data
set and 113 of 164 times on the Eschikon data set. Additionally, out of all investigated
data association algorithms, it finds the most GT matches with around 60 % on average.
However, the other data association approaches that do not use the row structure infor-
mation, almost never find any GT data association matches. The reason for this is that
these approaches are not designed for the specific challenges of this environment, where
the features are densely and almost uniformly distributed.

The Gaps data association, which was designed for agricultural environments, cannot
find the correct data association in our evaluation. This can be explained by the different
target application in the work by Chebrolu et al. [2018] of registering images captured by a
UAV flying over the field. Here, the focus is on designing a rotation, translation and scale
invariant feature descriptor to robustly match gap features in UAV images. This invariance
is important since the UAV is flying freely above the field and thus perceives the same part
of the field from many different orientations and positions at different heights. However,
in our scenario, where the trajectory of the ground vehicle is highly restricted by the
crop row structure of the field and the height of the ground vehicle also does not change,
these invariances are less important in our scenario. Additionally, the portion of the field
observed in one image is magnitudes smaller in ground vehicle images than in the images
recorded by a UAV. Therefore, a much smaller amount of gaps can be observed with a
ground vehicle, which additionally decreases the performance of a gap-based descriptor.
The design towards invariance also explains the high angular and lateral errors of this
approach. Since, by design, large changes in rotation between images are ignored, the
Gaps data association can find matches as shown in Situation 1 in Figure 5.26, where the
data association infers a large rotation of the observed features to match them onto the
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Figure 5.26: These images illustrate two example situations for the Gaps data association.
Both situations visualize results taken from two data points of the Eichstetten data set.
The mapped and observed features Fm and Fo are shown as red and blue dots respectively.
Matches between features are highlighted using a solid line connecting the paired features.
On the left, the matches MGaps found by the Gaps data association are shown in green.
For comparison, the GT matches MGT for this data point are shown in black on the right.

mapped features. This results in an angular error of 179.97◦ for this data point. However,
since the Gap descriptor uses information about relative geometry in form of relative
angles and distances, it can sometimes find the correct angular orientation as shown in
Situation 2 in Figure 5.26. Here, the angular error of 0.03◦ is almost perfect. A small
angular error also results in row-wise matches, i. e., plants of the same observed crop row
are only associated with plants in the corresponding mapped crop row. This can also be
seen in Situation 2. However, due to the translation invariance and only few observed
gaps, the translational error is still high with 7.09 m and therefore no correct matches are
found. Our results show, that – though designed for data association on crop fields – the
Gaps data association is not well suited for our scenario, i. e., data association on ground
vehicle images, where only a small part of the field is observed and descriptor invariance
is not a strong requirement.

The GCBB approach shows similar results to the Gaps approach with almost no GT
matches found. In contrast, the angular error of 9.43◦ and 5.84◦ as well as the transla-
tional errors with 7.18 m and 3.51 m are much lower. In comparison to our approach, the
angular and translational errors are still high, though. Since GCBB does not specifically
aim at rotational and translational invariance, it produces matches with smaller angular
and translational displacement on average. Similar to the Gaps algorithm, due to the use
of relative distances in the GCBB test, GCBB can find row-wise matches with low an-
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Figure 5.27: These images illustrate two example situations for the GCBB data associa-
tion. Both situations visualize results taken from two data points of the Eichstetten data
set. The mapped and observed features Fm and Fo are shown as red and blue dots respec-
tively. Matches between features are highlighted using a solid line connecting the paired
features. On the left, the matches MGCBB found by the GCBB data association are shown
in olive. For comparison, the GT matches MGT for this data point are shown in black on
the right.

gular errors of 2.35◦ and 0.66◦ respectively as shown in Situation 1 and Situation 2 in
Figure 5.27. However, since the Target function of the GCBB algorithm is to maximize
the number of matched observations, i. e., only Positive Information, and no Negative In-
formation is considered, the GCBB data association tends to pull the observed features
into the map, producing as much overlap and therefore as many matches as possible.
Since this is usually not correct in our scenario as large parts of the observation are not
yet mapped (No-Bias criterion), this results in high translational errors of 2.27 m and
2.61 m respectively and no GT matches for our two example situations.

The NN algorithm performs slightly better than the GCBB data association approach as
it finds around 15% of the GT matches in 2 data points of the Eschikon data set and at least
one GT match in 16 data points of the Eichstetten data set. It also shows the best angular
and translational errors of all three non row-based data association approaches. This is
surprising as it is the least sophisticated approach with no notion of geometric relations
and instead assuming independence between features. This is caused by the fact, that
for few data points in each data set the pose estimate before data association is already
quite accurate. In these cases, the observations lie close to their correct correspondence in
the map. Therefore, the NN strategy, which associates the features closest to each other,
finds correct matches in these situations. An example with an accurate pose estimate is
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Figure 5.28: These images illustrate two example situations for the NN data association.
Both situations visualize results taken from two data points of the Eichstetten data set.
The mapped and observed features Fm and Fo are shown as red and blue dots respectively.
Matches between features are highlighted using a solid line connecting the paired features.
On the left, the matches MNN found by the NN data association are shown in light blue.
For comparison, the GT matches MGT for this data point are shown in black on the right.

shown in Situation 1 in Figure 5.28. Here, the NN algorithm finds 8 of 490 GT matches
resulting in a low angular error of 0.02◦ and also comparably low translational error of
0.38 m. In most other situations, where the pose estimate is not sufficiently accurate, the
NN algorithm cannot find correct matches. In contrast to the Gaps and GCBB approach
that use geometric relations between features in their data association, the NN algorithm
assumes independence between features. Therefore, unlike the other two non-row-based
data association approaches, it usually cannot preserve the row structure of the field, i. e., ,
it cannot produce row-wise matches. Thus, observed features belonging to the same crop
row are often associated with map features from different rows as shown in Situation 2 in
Figure 5.28. In this situation, although the angular error with 0.30◦ and the translational
error of 0.75 m are reasonably low, the NN data association does not find any correct
matches.

In contrast to non row-based data association approaches, our approach shows much
better results, with GT matches found 204 out of 272 times on the Eichstetten data set and
113 out of 164 times on the Eschikon data set. The average amount of GT matches found
in these situations is also much higher with around 60 % for both data sets. This confirms
that leveraging row structure improves data association results in this kind of setting.
Considering the row structure is especially beneficial to the angular accuracy, where our
approach has an average error below 1◦ on both data sets. Combined with a comparatively
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Figure 5.29: These images illustrate two example situations for our data association.
Both situations visualize results taken from two data points of the Eichstetten data set.
The mapped and observed features Fm and Fo are shown as red and blue dots respectively.
Matches between features are highlighted using a solid line connecting the paired features.
On the left, the matches M our found by our data association are shown in purple. For
comparison, the GT matches MGT for this data point are shown in black on the right.

low translational error of 0.70 m, this often yields a successful data association as shown
in Situation 1 in Figure 5.29. Here, our approach finds a large amount of 379 out of 446
GT matches resulting in an angular error smaller than 0.01◦ and a translational error of
0.01 m. At first glance, an average translational error of 0.70 m seems too high for precise
navigation on a crop field. However, this high average translational error stems from few
situations where the data association misaligns the crop rows and therefore causes a high
lateral error as shown in Situation 2 in Figure 5.29. Here, our approach fails to associate
the correct rows and shifts the observed rows too far into the map. Since our approach
– by design – preserves the crop row structure, e. g., plants of the same row are matched
into the same row, the angular error is still low with 0.01◦ in this situation. However,
associating the wrong crop rows causes a large lateral and longitudinal misalignment,
resulting in a large translational error of 3.74 m and thus no GT matches are found.

The results of this evaluation show that leveraging the row structure of crop fields is
crucial for a successful data association. More generally applicable data associations
that do not use the row structure of crop fields struggle to find correct data association
matches. In contrast, our row-based data association can leverage the row structure of
the crop field to find correct matches. Therefore, we will focus on our row-based data
association approach in the following experiments. In the next section, we present a more
detailed evaluation of the translational error of our approach to confirm its suitability for
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precise navigation in agriculture.

5.5.3 Suitability for Precise Navigation on Crop Fields
The evaluation of the previous experiment confirmed that considering row structure is
crucial to finding a good data association on individual plant positions. Therefore, our
focus now lies on our row-based data association approach and showing its suitability
for precise navigation on agricultural fields. To this end, we evaluate the robustness and
translational accuracy of our approach in more detail as this is crucial for autonomous
navigation on crop fields. We also investigate and compare the performance of our ap-
proach when equipped with the different Score Functions presented in Section 5.3.3.

Precise navigation on crop fields requires robust results and high angular and lateral
accuracy to navigate the narrow space between crop rows without driving over the crops.
For autonomous turning at the headlands a lower longitudinal accuracy suffices. The
evaluation of the first experiment shows that the average angular accuracy of our approach
with less than 1◦ is well suited for navigation on an agricultural field. However, evaluating
the average translational error as in the previous experiment does not take into account
the different requirements on lateral and longitudinal accuracy when traversing the rows
of a crop field. In this experiment, we therefore investigate the translational accuracy in
more detail by evaluating the lateral and longitudinal accuracy separately. Using the fact
that our row-based data association already returns a result that is split into a lateral and
longitudinal component, i. e., the shift s∗, we perform our evaluation on the shift returned
by the row-based data association.

To evaluate the performance of our approach with respect to the GT data association
based on shifts, we compute the best possible shift according to the GT data association
matches MGT, called the ground truth shift (GT shift) sGT. Recalling that each shift s ∈ S
is a parametrization of a set of matches M (s) (see Eq. (5.1) to Eq. (5.4) in Section 5.3.2),
we define the GT shift sGT as the shift s ∈ S that represents a set of matches M (s),
such that M (s) contains as many GT matches m ∈ MGT as possible. In other words, to
determine the shift sGT ∈ S, so that the corresponding set of matches M (s) maximizes
the number of correctly associated observations c (M (s)) as defined in Eq. (5.10):

sGT := argmax
s∈S

∣∣M (s) ∩MGT
∣∣

= argmax
s∈S

c (M (s))

Since our data association approach returns the shift s∗ with the highest score for a
given Score Function, we can compute the GT shift sGT by equipping our row-based data
association approach with a GT Score Function sfGT, that returns the number of correctly
associated observations c for any shift s ∈ S:

sfGT : S → N
s 7→ c (M (s))
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We call the row-based data association equipped with the GT Score Function GT data
association algorithm, or short GT algorithm to distinguish it from our data association
approach equipped with the Score Functions presented in Section 5.3.3.

For each data point in our data sets, we split the translational error into a lateral compo-
nent, called row-shift error ∆r, and a longitudinal component, called long-shift error ∆l,
where the row- and long-shift error are the component-wise, absolute difference between
the shift s∗ = (r∗, l∗) of our data association approach and the GT shift sGT =

(
rGT, lGT

)
of the GT algorithm:

∆r
(
s∗, sGT) :=

∣∣r∗ − rGT
∣∣ ∈ N

∆l
(
s∗, sGT) :=

∣∣l∗ − lGT
∣∣ ∈ R≥0

Since the long-shift quantifies how far the observed features are shifted along the crop
rows in metrical units, the long-shift error ∆l is the longitudinal component of the trans-
lational error. The row-shift error ∆r is a natural number, where 0 means, that the correct
row-shift was found and a number larger than 0 implies that the data association is off by
that many rows. Any row-shift error other than 0 infers a high lateral error of the magni-
tude of at least one spacing between crop rows. Since a high lateral accuracy is required,
any row-shift other than 0 is not sufficient. Therefore, we do not evaluate the lateral error
metrically, but instead use it to define a data association as successful if the row-shift error
∆r
(
s∗, sGT

)
is equal to 0 and thus the correct rows are associated.

We evaluate our data association approach on the four different Score Functions in-
troduced in Section 5.3.3: Product, Difference, IoU per Row and IoU. To mitigate the
bias towards matching as many observed crop rows as possible of the first three Score
Functions, we introduced a regularization technique with a trade-off parameter λ ∈ [0, 1].
Higher values of this parameter λ correspond to a stronger regularization of the natural
behavior of the Score Function and a value of λ = 0 disables the regularization. We
therefore use a parameter of λ = 0 to disable the regularization technique and evaluate
the natural behavior of the first three Score Functions. Additionally, we also evaluate a
regularized version of the first three Score Functions. To this end, we tested the perfor-
mance of different parameter values for each of the three Score Functions on a small test
set of data points. Based on these tests we empirically determined the following regular-
ization parameter values λ for the first three Score Functions given in round brackets: IoU
per Row (0.4), Difference (0.3) and Product (0.75).

In Table 5.4 we present the robustness of our data association approach for the inves-
tigated Score Functions. We quantify the robustness of our data association approach as
the number of successful data associations over all data points in each data set. For the
Eichstetten data set, we get a success rate of more than 90 % for all Score Functions. This
is due to the uneven spacing between the crop rows on this field as it generates many
inconsistent row associations. We detect these inconsistent row associations using the
data association presented in the previous chapter as explained in Section 5.3.2. Inconsis-
tent row associations are labeled as invalid and therefore not considered in our row-based
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%(#) Eichstetten (# 272) Eschikon (# 164)
IoU 90.81 (247) 70.73 (116)
IoU per Row 91.91 (250) 9.76 (16)
IoU per Row (0.4) 91.54 (249) 40.85 (67)
Difference 92.28 (251) 15.85 (26)
Difference (0.3) 91.91 (250) 51.83 (85)
Product 91.91 (250) 9.76 (16)
Product (0.75) 91.54 (249) 44.51 (73)

Table 5.4: This table shows the robustness for the different Score Functions and both data
sets. We quantify the robustness by the number of times (#) the row-shift error is 0 and
therefore the data association successful. For better comparison, we show the success rate
as the percentage of successful data associations over the whole data set.

data association approach. Thus, only a small number of consistent row-shifts remains
and therefore the chance of finding the correct row-shift is quite high on this data set. In
the more challenging Eschikon data set, the Score Functions have different success rates.
Here, the crop row spacing is more uniform and thus more row-shifts are consistent and
therefore considered for data association. The IoU Score Function clearly outperforms
all other Score Functions with a 70 % success rate compared to the second best Score
Function Difference (0.3), which performs considerably worse with a success rate of only
52 %. Another clear result is the positive influence of the regularization technique for all
three Score Functions, since the success rate is more than quadrupled on the Eschikon
data set for each of them compared to the respective vanilla Score Function without reg-
ularization.

In Figure 5.30 we visualize the distribution of the longitudinal error as box plots. We
show the overall longitudinal error over all data points on the top row. On the bottom
row, we evaluate the longitudinal error only the data points, where the corresponding data
association was successful, i. e., where the correct row-shift was found. This properly
determines the longitudinal accuracy of our approach, since we only consider those val-
ues, where the rows are associated correctly and therefore the correct longitudinal shift
can be found. The results of the overall longitudinal error (top row) confirm the findings
from our robustness evaluation: The IoU performs best on both data sets with a median
of 0.07 m on Eichstetten and 0.09 m on Eschikon. Furthermore, the upper quartiles of
0.69 m on Eichstetten and 0.77 m on Eschikon infer that 75 % of all data points have an
error below 1.0 m respectively. This is comparable to the overall longitudinal error of
1.1 m we achieved in the previous chapter using the end-of-field detection. The important
difference is, that here we achieve this overall longitudinal error over the whole field and
not only towards the end of a crop row, where we approach and detect the end of the field.
Again in line with the results of the robustness evaluation, the regularization technique
improves the longitudinal error on the Eschikon data set for all three Score Functions but
is not required on the Eichstetten data set due to its non-uniform row spacing. For the
longitudinal accuracy over the data points with successful row association (bottom row),
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Figure 5.30: This figure shows the distribution of long-shift errors for the Eichstetten
(left) and Eschikon (right) data set for all Score Functions in box plots. In the top row the
longitudinal errors over all data points are shown. In the bottom row only the longitudinal
errors at data points, where the data association is successful, i. e., where the row-shift
error is equal to 0, are considered. The box plots are in the order of the legend from left
to right.

we get an exceptionally high median accuracy of 0.09 m or higher throughout. This is
an order of magnitude higher than the requirements for autonomous turning at the end of
a field and therefore shows that our row-based data association approach is indeed well
suited for precise navigation on agricultural fields. Furthermore, this high longitudinal
accuracy enables the creation of maps featuring individual crop positions from ground
vehicle data as we will show in the last experiment of our evaluation. At first glance, the
IoU does not perform much better on Eschikon than the other three Score Functions, since
the median error values of all Score Functions are all similarly small and additionally the
vanilla variants have smaller boxes. However, the smaller boxes of the vanilla Score Func-
tions originate from a much smaller number of considered values of 16 and 26 compared
to 116 of the IoU Score Function, i. e., a much lower success rate compared to the IoU
Score Function. The same holds for the median values of the Score Functions. Consid-
ering both, robustness and longitudinal accuracy jointly, the IoU Score Function clearly
performs best, as it is more robust than the other Score Functions while maintaining a
similar longitudinal accuracy.

The in-depth evaluation of the translational accuracy – split into lateral and longitudi-
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nal accuracy – shows that our row-based data association approach is indeed well suited
for precise navigation on crop fields. Our approach performs best when combined with
the IoU Score Function, resulting in a robustness of 70 % up to 90 % and a longitudinal
accuracy of below 0.1 m. This longitudinal error is an order of magnitude smaller than
the requirements for autonomous turning at the end of the field and enables longitudinal
corrections not only when approaching the end of the field but also throughout the whole
field. These results encourage further investigation into how our approach can be applied
in localization and mapping techniques. Therefore, we discuss relevant properties as well
as limitations of our approach in the following experiment of our evaluation, where we
focus on how the performance of our approach depends on the amount and the quality of
the provided input data.

5.5.4 Longitudinal Accuracy Along Crop Rows
The previous experiment confirms that the overall robustness and accuracy of our ap-
proach are well suited for localization and mapping applications based on individual plant
positions. When implementing a localization or mapping algorithm, there is the critical
question of when to perform data association. In our environment, this question translates
to when within the crop field, i. e., how far along the crop row, should data association
be performed. Depending on the application, different strategies are preferable: A local-
ization algorithm needs to frequently correct the pose estimate. Therefore, the observed
information has to be frequently associated with the information provided by the map.
Here, being able to perform data association as early as possible, i. e., early within the
crop row, is important. On the other hand, during a SLAM application, associating the
observed data later might be beneficial as there is more time to collect information and
therefore to improve the chance of correct data association. In this evaluation we inves-
tigate, whether our approach can be used for an early data association in a localization
application as well as a later data association preferable in the SLAM use case. To this
end we evaluate, how the results of our approach depend on where along the crop row the
data association is performed.

Another important aspect for real-world application is the behavior of our data asso-
ciation depending on data of different input quality. As explained in Section 5.5.1 we
therefore chose to evaluate on two real-world data sets posing different challenges to our
data association approach: The Eichstetten data set has on the one hand non-uniform row
spacing, which makes correct row association easier. On the other hand, it contains three
different crop types, where the Chinese Cabbage is detected with lower accuracy, which
makes finding the correct data association more challenging. The Eschikon data set is
especially challenging as it features uniformly spaced crop rows as well as sugar beet
plants that are detected with a comparatively higher false positive rate. Investigating the
performance of our approach in detail in this evaluation also allows us to discuss how
these challenges in the input data affect the performance of our approach.

We investigate the robustness and longitudinal accuracy of our approach depending on
where along the crop row the data association is performed using the row-shift and long-
shift errors from the previous evaluation. Here, we show the individual results for each
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data point in both data sets for the Score Functions with the best performance, i. e., the IoU
Score Function and the Difference (0.3) Score Function (see Figure 5.31). We visualize
the row- and long-shift error in a table, where each row corresponds to one turn and the
columns are the corresponding data points in chronological order. This means that cells
on the left contain results for short local graphs, where the vehicle has traveled only a
short distance and is still close to the beginning of the crop row. In turn, cells further to
the right show results for longer local graphs as the vehicle moves through the field along
the crop rows. As explained in Section 5.5.1, the distance traveled between one data point
to the next within the same turn is approximately 2 m. Therefore, this table describes
in detail how the performance of our data association approach depends on the distance
traveled along the crop rows.

To discuss interesting results at certain data points, we also show the distribution of
Score Function values over the different row- and long-shifts considered in our data as-
sociation approach at these data points. Additionally to the distribution of the IoU Score
Function and the Difference (0.3) Score Function, we also present the distribution of
the GT Score Function. This distribution is interesting, as it shows for which shifts GT
matches MGT can be found. Ideally, the GT Score Function should show a clear global
maximum at the GT shift sGT as for example in Figure 5.32. However, in some cases, the
GT Score Function distribution also shows a more ambiguous distribution, with multiple
local maxima along the same row shift as for example in Figure 5.34 in the middle and
bottom image. Errors and inaccuracies in the detection algorithm and the NN data asso-
ciation during local graph construction cause some plant positions to be shifted along the
crop rows. Therefore, GT matchesMGT can be found for different long-shift values along
the same row-shift. This also means that the pattern of plant positions passed as input
to the data association approach is less discriminative. Therefore, a less ideal GT Score
Function distribution hints at more ambiguous and thus more challenging input data for
our data association algorithm at the corresponding data point. For the IoU and Difference
(0.3) Score Functions sf iou and sfdiff , we also highlight the shifts with values close to the
maximum value at the best shift s∗. Given the Score Function distribution we highlight all
values v ∈ V0.95 that are larger than the 95 %-quantile of the Score Function value range.
These highlighted values v ∈ V0.95 show alternative solutions for the data association as
they also receive a high score. This gives an intuition about the uniqueness of the solution
found by the corresponding Score Function. In other words, the more shifts receive a
comparatively high score, the more ambiguous is the result of the data association.

The results for the Eichstetten data set on the left of Figure 5.31 show that performing
data association after approximately half of the crop row was traversed results in a suc-
cessful and accurate data association. This confirms the general intuition that integrating
more data and therefore traversing a longer distance along the crop rows improves the
success rate and accuracy of our data association approach. We also observe that we get
good results already at the beginning of turn 1, 5 and 6. This directly correlates with the
type of crop observed at the beginning of these turns versus the other turns. Recalling
Figure 5.24, turn 1 starts with Kohlrabi and turn 5 and 6 start with Sweetheart Cabbage,
where the detection algorithm has high accuracy and a low false positive rate. The other
turns start with Chinese Cabbage, where the detections are less accurate. This directly
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Figure 5.31: This figure shows the row- and long-shift errors for each turn on the Eich-
stetten and Eschikon data set for the IoU and Difference (0.3) Score Functions. The
row-shift error is shown in shades of red. For cells with a row-shift error of 0, we show
the long-shift error in shades of blue instead.

correlates the performance of our approach to the performance of the detection algorithm.
We therefore conclude that our approach is able to find the correct data association early
in the crop row, under the condition that the quality of the input data is high enough as is
the case for turns 1, 5 and 6. We also conclude that our approach can handle input data
of lower quality, if enough information is provided, i. e., a longer distance along the crop
rows is traversed.

This is especially evident in turn 4, where initially both Score Functions find a data
association that is 3 rows off from the correct row association until around 40 m into the
crop rows. However, both Score Functions can recover and continuously find the correct
data association after about half of the crop row length was traversed. The distribution of
the Score Functions in Figure 5.32 show, how this is possible: The first observation is,
that the distribution of the GT Score Function is ideal, meaning that the local graph does
not have any grave errors. Still, both Score Functions cannot find the correct shift after
40 m into the crop rows. The Difference Score Function gives a very low overall score to
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Figure 5.32: This figure shows the distribution of the IoU, Difference (0.3) and GT Score
Functions at turn 4 of the Eichstetten data set. Each row visualizes the Score Function
distribution for a different location along the crop rows. We visualize the score distribu-
tion as image, where each pixel corresponds to the score sf (s) of a shift s = (r, l) ∈ Svalid.
The row-shift r is plotted along the vertical axis and the long-shift l along the horizontal
axis. Following a blue color scale, pixels in darker blues indicate higher scores while
pixels in lighter colors indicate lower scores. We annotate the GT shift sGT with a red
cross and the best shift s∗ of the corresponding Score Function with a white circle. The
corresponding scores sf

(
sGT
)

and sf (s∗) are shown in red and black respectively. Scores
v ∈ V0.95 that are close to the best score sf (s∗) are highlighted using yellow dots.

the correct row-shift of 12. On the other hand, it also gives very uniformly distributed,
high scores to many shifts with row-shift 9 as indicated by the yellow markers along this
row-shift. This score distribution leads to the conclusion that a discriminative match be-
tween the pattern of plant positions in the map and in the observed features has not been
found and therefore many shifts yield a similarly good score. In contrast, although also
not finding the correct shift, the IoU Score Function yields more discriminative results.
The correct row-shift, although not yet highlighted, is already visible as a local maximum.
There are also more distinguishable local maxima at row-shift 9 compared to the Differ-
ence (0.3) Score Function. This again confirms the good discriminative ability of the IoU
Score Function and its suitedness for this kind of scenario. At the end of turn 4, both
distributions have converged towards the correct shift. The ambiguity present at 40 m has
been resolved and the distribution shows only one global maximum.

Against the general intuition that more information yields better data association re-
sults, turn 3 is an example of the Eichstetten data set, where the longitudinal accuracy of
our approach decreases as the vehicle approaches the end of the row. The distribution of
the GT Score Function shows, that this is not due to large errors in the local graph (see
Figure 5.33). From the distributions of the IoU and Difference (0.3) we also observe,
that they both find the correct row-shift with high certainty, as all high values are located
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Figure 5.33: This figure shows the distribution of the IoU, Difference (0.3) and GT Score
Functions at turn 3 of the Eichstetten data set. Each row visualizes the Score Function
distribution for a different location along the crop rows. We visualize the score distribu-
tion as image, where each pixel corresponds to the score sf (s) of a shift s = (r, l) ∈ Svalid.
The row-shift r is plotted along the vertical axis and the long-shift l along the horizontal
axis. Following a blue color scale, pixels in darker blues indicate higher scores while
pixels in lighter colors indicate lower scores. We annotate the GT shift sGT with a red
cross and the best shift s∗ of the corresponding Score Function with a white circle. The
corresponding scores sf

(
sGT
)

and sf (s∗) are shown in red and black respectively. Scores
v ∈ V0.95 that are close to the best score sf (s∗) are highlighted using yellow dots.

along row-shift 9. However, the pattern of plant positions is not discriminative enough
to find the correct long-shift with high certainty. We can see multiple local maxima in
both distributions at both data points. Again, we can observe, that the IoU Score Function
shows more discriminative results with fewer local maxima. Although the correct shift is
found at the end of the turn, the ambiguity remains for both Score Functions.

The results on the Eichstetten data set show that our data association approach can find
the correct data association, even on less accurate input data, after traversing about half
of the crop row length. Our approach can also find good data association solutions early
along the crop row, if the quality of the input data is high enough. We also see, how the
distribution of the Score Functions allows reasoning about the ambiguity of the given data
association problem.

Confirming the results from the previous experiment, our approach shows lower per-
formance on the Eschikon data set (see Figure 5.31). This is not surprising, as we already
discussed, that the Eschikon data set is more challenging than the Eichstetten data set.
Recalling Section 5.5.1, the crop rows in the Eschikon data set are more uniformly dis-
tributed than in the Eichstetten data set. Also, the detection algorithm has a higher false
positive rate on the sugar beets planted throughout the Eschikon crop field. Therefore,
the Eschikon data set is well suited to showcase some limitations, but also the potential



5.5 Experimental Evaluation 211

IoU Difference (0.3) GT
at

4
m

at
12

m
at

th
e

en
d

Figure 5.34: This figure shows the distribution of the IoU, Difference (0.3) and GT Score
Functions at turn 6 of the Eschikon data set. Each row visualizes the Score Function dis-
tribution for a different location along the crop rows. We visualize the score distribution
as image, where each pixel corresponds to the score sf (s) of a shift s = (r, l) ∈ Svalid.
The row-shift r is plotted along the vertical axis and the long-shift l along the horizontal
axis. Following a blue color scale, pixels in darker blues indicate higher scores while
pixels in lighter colors indicate lower scores. We annotate the GT shift sGT with a red
cross and the best shift s∗ of the corresponding Score Function with a white circle. The
corresponding scores sf

(
sGT
)

and sf (s∗) are shown in red and black respectively. Scores
v ∈ V0.95 that are close to the best score sf (s∗) are highlighted using yellow dots.

of our approach. The most prominent observation is that the Difference (0.3) Score Func-
tion shows overall less robust results compared to the IoU Score Function, especially in
turns 5 and 8 but also in turns 2 and 9. In contrast to the Eichstetten data set, where both
performed quite similarly, the Eschikon data set with lower quality input data pushes to-
wards the limits of our approach but also showcases the high discriminative ability of the
IoU Score Function. Inline with the findings on the Eichstetten data set, waiting until at
least half of the field was traversed before performing data association is a good strategy.
However, earlier data association can also yield good results especially during the first
half of the field for turns 1 to 4.

Interesting exceptions to these findings are turn 6 and 9, where the correct shift cannot
be found for the most part of the crop row length. In Figure 5.34 we show the distribution
of the Score Functions for turn 6, where the correct shift is only found once by the IoU
Score Function throughout the whole turn. The distribution of the GT Score Function



212 Chapter 5: Data Association on Individual Plants

IoU Difference (0.3) GT
at

10
m

at
24

m
at

th
e

en
d

Figure 5.35: This figure shows the distribution of the IoU, Difference (0.3) and GT Score
Functions at turn 3 of the Eschikon data set. Each row visualizes the Score Function dis-
tribution for a different location along the crop rows. We visualize the score distribution
as image, where each pixel corresponds to the score sf (s) of a shift s = (r, l) ∈ Svalid.
The row-shift r is plotted along the vertical axis and the long-shift l along the horizontal
axis. Following a blue color scale, pixels in darker blues indicate higher scores while
pixels in lighter colors indicate lower scores. We annotate the GT shift sGT with a red
cross and the best shift s∗ of the corresponding Score Function with a white circle. The
corresponding scores sf

(
sGT
)

and sf (s∗) are shown in red and black respectively. Scores
v ∈ V0.95 that are close to the best score sf (s∗) are highlighted using yellow dots.

shows multiple local maxima at 12 m and at the end of the turn instead of one the local
maximum at the beginning (at 4 m). Multiple maxima indicate that there are multiple good
solutions to the data association problem according to the Score Function. This showcases
that with more detections accumulated along the crop rows, errors also accumulate and
therefore the pattern of the observed plant positions can become less accurate and less
distinguishable. This in turn makes it more challenging for our data association algorithm
to find the correct shift, since the distribution of the observed plant positions does not
match the distribution of the mapped plant positions. In this example more information
does not improve the results of our approach, so that our data association cannot find the
correct shift almost throughout the whole turn. Considering the highlighted shifts, we see
that there are multiple local maxima. This again implies, that our approach did not find a
unique solution and that therefore the data association results are ambiguous.

Another interesting set of data points is found in turn 3. Here, we observe results
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similar to turn 3 of Eschikon, where the longitudinal accuracy decreases when travers-
ing further along the crop rows. The distribution of the Score Functions for this turn is
shown in Figure 5.35. We see that the GT Score Function distribution is similar to the
distribution in turn 6, except for the distribution at the beginning of turn 3 at 10 m. Here,
the distribution is close to ideal with only one global maximum. However, with more
information accumulated, as the vehicle traverses along the crop rows, the quality of the
local graph decreases and the GT Score Function distribution fans out along the correct
row-shift producing several local maxima. In this turn, we see a good example of how
the initial local graph has already enough information for our approach to find the correct
data association: Both Score Functions find the correct shift as a unique solution, since
no other shifts are highlighted. As more data is accumulated, the plant pattern becomes
less clear. Similar to the Eichstetten example the correct row-shift is still found. How-
ever, both Score Functions find the correct shift further to the right and are quite certain
about it, since no other shifts are highlighted. This causes the long-shift error to increase
although more information is available as the vehicle progresses along the crop rows.

The results of the more challenging Eschikon data set showcase the potential and limi-
tations of our approach well. The results on Eschikon confirm that our approach can still
find the correct data association, even with lower quality input data throughout the entire
field and almost uniformly spaced crop rows. It confirms the findings on the Eichstetten
data set, that performing data association after about half of the crop rows have been ob-
served usually yields good data association results. However, if the quality of the input
data is low and too much error is accumulated, performing data association earlier might
be beneficial.

This evaluation shows that the performance of our approach not only depends on the
amount of information gathered along the crop rows. It also depends on the quality of the
input data and how much error is accumulated, while traversing the crop rows. Therefore,
we conclude that with good quality input data, it is preferable to delay data association
as much as possible to reduce ambiguity and ensure a successful data association. On
the other hand, with lower quality input data, where errors accumulate faster, it might be
beneficial to perform data association earlier to prevent introducing ambiguity caused by
the accumulated error. Our results show that our data association approach can be applied
towards the end of the crop rows as might be preferable in a SLAM use case. Especially,
when the input data is accurate enough, an earlier and more frequent data association is
also possible as required for localization applications. The results also show that it might
be helpful to consider the whole distribution of the Score Function during data association
to obtain a measure of the ambiguity of the input data and therefore about the quality of
the computed data association. Such a measure is valuable in both application scenarios
as it allows us to determine, whether the result of the data association can be trusted
or whether data association should be delayed until ambiguities are resolved. In future
work, further research towards obtaining such a measure of ambiguity using the Score
Function distribution is quite interesting. Our extensive evaluation of the robustness as
well as angular and translational accuracy confirms the suitedness of our approach for
localization and mapping applications on agricultural fields. To go one step further, we
provide a proof of concept of our approach by applying our row-based data association in
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a SLAM application on real-world data in the last experiment of our evaluation.

5.5.5 Use Case SLAM - Qualitative Evaluation
In this evaluation we show qualitative results of our data association approach in a SLAM
application. This experiment therefore provides a proof of concept for the applicability
of our data association approach in a SLAM framework. To this end, we use a graph-
based SLAM algorithm to build maps with individual plant positions from our Eichstetten
and Eschikon data sets. Within this SLAM algorithm, we use our approach for data
association in the most challenging situation, i. e., after the vehicle performed a turning
maneuver at the end of the field. These situations are especially challenging, since the
vehicle looses track of the crop rows during the turning maneuver and therefore needs to
re-localize its pose relative to the crop field after turning. We show the maps created by
our data association algorithm and qualitatively compare them to the maps created using
the GT algorithm and the GT data association matches MGT.

To create maps featuring individual plant positions of the whole crop field, we itera-
tively build a SLAM graph using the global and local graph as described in Section 5.5.1.
To accumulate as much information as possible, we merge the local graph into the global
graph whenever the vehicle reaches the end of the field. In contrast to the merging strategy
described in Section 5.5.1, we use the set of data association matchesM (s∗) computed by
our data association to merge the local graph into the global graph instead of ground truth
matches. After merging, we optimize the global graph. Since we perform a merge when-
ever the vehicle reaches the end of the field, we track the number of merges performed by
counting the number of turns the vehicle executed so far. Using the same procedure, we
build a pose graph using the GT algorithm and its GT shifts sGT inferred from the GT data
association matches MGT. Recall that the GT algorithm is our row-based data association
equipped with the GT Score Function, which by design is as close as possible to the GT
data association, since it counts the number of GT matches for each shift. In other words,
the GT algorithm computes the best possible data association, when modeling the space of
data associations as a set of shifts (Eq. (5.12)). Therefore, the results of the GT algorithm
demonstrate how our choice of parameterizing the space of data association matchesM
using shifts s ∈ S affects the quality of the maps. Additionally, we show the detections
GT pose graph GGT, det as defined in Section 5.5.1. Recall that this graph is built relying
only on the GT data association matches MGT to associate plant features detected by the
SEP detection algorithm and does not use the crop row structure. For an easier compar-
ison, we show only the plant features that are associated with a plant, i. e., that have an
id not equal to 0. This GT graph GGT, det serves as the ground truth comparison in our
qualitative evaluation as it is built using a traditional SLAM technique with GT data asso-
ciation matches MGT. The feature nodes Ẑ in each of the (global) pose graphs then define
the map of plant positions. For a better comparison, we also show the resulting trajectory
of the vehicle by connecting consecutive pose nodes x̂t−1, x̂t ∈ X̂ of each graph. For an
easier comparison, using the fact that the pose nodes of all graphs are GPS-referenced,
we also overlay the GT vehicle trajectory obtained from the GT graph GGT, det. We show
the final maps of the IoU and Difference (0.3) Score Functions next to the maps of the
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GT algorithm and the GT graph GGT, det in Figure 5.36 for the Eichstetten data set and in
Figure 5.37 for the Eschikon data set.

Looking at the map quality as well as the trajectory of the GT algorithm, we see that
both are very similar to the results obtained using the GT matches for the GT graph
GGT, det. This means that given a Score Function that models the GT data association
well, i. e., the GT Score Function, our approach is able to closely match the results of
the GT data association. This confirms, that the quality of the map is not diminished by
representing sets of data association matchesM as shifts s and therefore supports our idea
to parameterize data association matches using shifts.

The results of the IoU and Difference (0.3) Score Functions on the Eichstetten data
set show that both Score Functions are able to robustly and accurately associate the plant
features after each turn. Both trajectories are close to the trajectory defined by the GT
graph, the map features can be clearly distinguished and the row structure is visible. Re-
garding the longitudinal accuracy, we do not see errors such as the trajectory being too
long or too short compared to the trajectory defined by the GT matches. We also do not
see longitudinally misaligned crop rows, which we would expect to see if there were large
errors in longitudinal alignment. This shows, that given enough information to distinguish
adjacent crop rows, our data association approach can be used to create accurate maps of
individual plants in crop fields. These results are also supported by our evaluation of the
row- and long-shift errors in the previous evaluation (see Figure 5.31), where the correct
data association is found for each turn by both Score Functions as the vehicle approaches
the end of the crop rows (for traversed distance larger than 50 m).

On the Eschikon data set the longitudinal alignment is also good for both investigated
Score Functions as we do not see any longitudinally misaligned crop rows or too long
or too short trajectories. Still, the Eschikon data set is clearly more challenging, as the
IoU and Difference (0.3) Score Functions do not always find the correct data association
and crop rows are misaligned. This leads to shifted trajectories, that run in parallel to
the GT trajectory, more noisy and duplicate plant features, as well as distorted and – in
some parts of the map – unrecognizable crop row structure. In an extreme case of crop
row distortion, the Difference (0.3) Score Function shows a crop row gap between turn
5 and turn 6 (at y ≈ 6 m). In contrast, the IoU Score Function does not show such
extreme errors. Again, these results coincide with our evaluation of the row- and long-
shift errors in the previous evaluation (see Figure 5.31), where the Difference (0.3) Score
Function cannot find the correct data association for both turns 5 and 6. In contrast, the
IoU Score Function only fails to associate the crop rows correctly in turn 6, which explains
the more accurate mapping results of the IoU Score Function. Overall, these qualitative
results further confirm the higher robustness of the IoU Score Function compared to the
Difference (0.3) Score Function as evaluated in the previous experiments. In most parts
of the map, however, both Score Functions show good mapping results, with individual
plant features and clear crop row structure.

For a better understanding on how an incorrect row association affects the map quality,
we show two intermediate steps during graph creation in Figure 5.38 for the IoU Score
Function. Until turn 4 the results of the IoU Score Function are quite similar to the GT
graph. After merging the local graph into the global graph at the end of turn 5, we can see
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Figure 5.36: This figure shows the SLAM results on the Eichstetten data set. The map
features, i. e., plant position nodes Ẑ of the graph, are shown as red dots. The trajectory
of the vehicle is shown as a blue line by connecting the pose nodes X̂ of the graph. The
number of each turn is shown next to the turn. The GT vehicle trajectory defined by the
GT graph GGT, det is shown as a black line.
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Figure 5.37: This figure shows the SLAM results on the Eschikon data set. The map
features, i. e., plant position nodes Ẑ of the graph, are shown as red dots. The trajectory
of the vehicle is shown as a blue line by connecting the pose nodes X̂ of the graph. The
number of each turn is shown next to the turn. The GT vehicle trajectory defined by the
GT graph GGT, det is shown as a black line.
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Figure 5.38: This figure shows intermediate SLAM results on the Eschikon data set for
the IoU Score Function. The map features, i. e., plant position nodes Ẑ of the graph, are
shown as red dots. The trajectory of the vehicle is shown as a blue line by connecting the
pose nodes X̂ of the graph. The number of each turn is shown next to the turn. The GT
vehicle trajectory defined by the GT graph GGT, det is shown as a black line.

that the data association is one row-shift off, since the trajectory is pulled one row down
and runs in parallel to the trajectory of the GT graph. Here, we also see that the crop rows
below are pulled up and get distorted during the optimization. This makes them harder to
recognize, especially in the area at the beginning of turn 3 at x ≥ 30 m and y ≈ 11 m. As
the graph construction and optimization continues, the crop rows in this area keep being
pulled up, which explains the result that we see in Figure 5.37, where the crop rows in
this area are not recognizable anymore. However, for the rest of the data set the IoU Score
Function finds the correct data association. Therefore, the graph built using the IoU Score
Function recovers from this wrong data association and converges towards the GT graph,
with the trajectory before turn 5 slightly pulled up and after turn 5 slightly pulled down
respectively. This detailed analysis shows that if crop row misalignments occur during the
graph construction, they cause a shift of the trajectory parallel to the crop row direction
and distortion of the crop row structure. Since these data association errors only affect
local areas of the graph, during optimization the graph can partially correct these errors
and still converge to a good solution, with most of the crop row structure clearly visible.

Overall, the evaluation shows that the quality of the maps mostly depends on the cor-
rect row alignment. Furthermore, the longitudinal accuracy is more than sufficient for
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a mapping application. Using our row-based data association approach, we can create
accurate maps with individual plant features.

Our extensive experimental evaluation confirms that row-based data association en-
ables data association on individual plant positions. In-depth evaluation of the robustness
as well as angular, lateral and longitudinal accuracy of our approach proves that it is well
suited for localization and mapping techniques in real-world applications. Furthermore,
we demonstrate that – depending on the quality of input data – our approach can be ap-
plied to successfully associate data already shortly after turning as well as further along
the crop rows. Therefore, it is suited to correct the longitudinal pose estimate in a local-
ization application throughout the entire field – not only at the end of the field as in the
previous chapter. It is also suited for SLAM applications, where data association might
be performed only once at the end of each traversed set of crop rows, as demonstrated in
the last experiment.

5.6 Conclusion
When performing a turning maneuver at the headlands, errors in the pose estimate usually
accumulate since the crop row structure of the field is not perceived in this situation. Re-
localizing the vehicle after turning is therefore crucial for efficient autonomous navigation
behavior, where the vehicle does not skip crop rows or traverses the same crop rows
multiple times. This requires associating the observed crop rows with the mapped crop
rows, which is hard due to the uniform distribution of the crop rows and the larger error
in the pose estimate. In order to resolve these ambiguous situations, our key idea is to
consider individual plant positions, i. e., point features, instead of the crop rows, i. e., line
features. The slight irregularities of the distribution of plant features along the crop rows
then enable us to distinguish different crop rows and find the correct data association.
Data association on plant features poses its own challenges: First, plants of the same crop
type look similar and therefore are hard to distinguish. Second, the plants are uniformly
distributed along parallel and equidistant rows. This results in a dense and almost uniform
feature distribution across the whole field, which is highly ambiguous.

In this chapter, we presented our data association algorithm that tackles these chal-
lenges by leveraging slight differences in the distribution of individual plants along the
crop rows to find the correct data association after turning. This includes our parametriza-
tion of data association matches that constrains the search space of all possible data asso-
ciation matches to a feasible subset of data association matches that preserve the crop row
structure. We also introduced a novel continuous match counting strategy based on the
cross-correlation to obtain a highly discriminative data association method that can detect
slight irregularities in the plant feature distribution to find the correct data association.

We performed an extensive experimental evaluation on real-world data captured on
two different crop fields. In this evaluation, we first compare our approach to other data
association approaches that are not designed for our specific scenario. The results of
this evaluation confirm that considering the crop row structure of the field is required to
find the correct data association on individual plant positions as features. In our second
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experiment, we investigate the translational accuracy of our approach in more detail by
evaluating the longitudinal and lateral component separately. Our IoU Score Function
shows the best performance with 70 % and up to 90 % of correct crop row alignment
and a longitudinal accuracy below 0.1 m, which is well suited for precise autonomous
navigation on agricultural fields. In our third experiment, we analyze the behavior of our
data association approach depending on where along the crop rows the data association
is executed. Our evaluation shows that an early execution while the vehicle is still at
the beginning of the crop rows is possible if the quality, i. e., false detection rate and
accuracy, of the input data is sufficient. In general, a later execution, when the vehicle has
collected more data while traversing along the crop rows, usually results in more robust
data association results. In our last experiment we showcase our data association approach
in a SLAM application on real-world data.

Interesting further application scenarios of our data association algorithm in the field
of autonomous navigation in agriculture include: deploying our data association in an
online localization algorithm to autonomously navigate entire crop fields leveraging the
highly accurate pose estimate including the position along crop rows while traversing the
field; exploring different agricultural use cases of the maps containing individual GPS-
referenced plant positions produced by our data association algorithm to, e. g., create
detailed reports on the status of each individual plant of the field, which is especially
interesting for high value crops or crop research such as phenotyping.

Overall, our experimental evaluation confirms that leveraging the row structure is cru-
cial for successful data association on this kind of feature distribution. It thus confirms
that our key ideas of defining Plant-Rows and our Parametrization based on Plant-Rows
as well as counting the measure of overlap continuously enables robust computations on
large amounts of almost uniformly distributed features while at the same time maintain-
ing high discriminative ability since all features are considered jointly. The experiments
also confirm that our regularization technique can mitigate the bias of the first three Score
Function variants, the Product, Difference and IoU per Row Score Functions, which en-
ables these variants to handle unmapped features. Additionally, our extensive evaluation
highlights the performance of the IoU Score Function, which is an improved version of
the other three Score Functions as it is by design an unbiased variant for the continuous
measure of overlap. All our results confirm that this unbiased variant is best suited for
robust and accurate data association in mapping applications. Our last experiment, which
is a SLAM application on real-world data that utilizes our data association approach, ex-
tends our quantitative evaluation, since it also confirms qualitatively that our approach is
well suited for localization and mapping applications in agricultural fields.

In this chapter, we presented a row-based data association technique that can handle
indistinguishable, densely and almost uniformly distributed point features. We show that
it enables estimating the full pose of the vehicle for re-localization after turning, which is
important for precise, reliable and efficient autonomous navigation on agricultural fields.



Chapter 6

Discussion

In this thesis we presented novel techniques that enable estimating the full pose of an
agricultural vehicle relative to the plants of a crop field. In order to obtain an accurate and
robust estimate of the heading, the lateral offset as well as the longitudinal position of an
agricultural vehicle relative to the crops we had to overcome the following challenges:

First, the crops need to be detected reliably across many different crop types at dif-
ferent growth stages. Therefore, a crop detection method should detect crops of a large
variety of shapes and sizes, while at the same time being able to distinguish them from
wild growing vegetation such as weeds. Second, the local detections need to be fused
with information from other sensor modalities such as, for example, GPS information to
obtain a consistent pose estimate in all three dimensions, and enable transition maneuvers
at the headlands, where the crops are not visible in the local sensor data. This is espe-
cially challenging since the crops are hard to distinguish and therefore data association is
not straightforward. Third, finding the correct data association after performing turning
maneuvers at the headlands is even more challenging, since tracking of the crops in the
field is lost during turning. While re-localizing the vehicle after turning is not required to
prevent driving over crops, it is important for efficient traversal of crop fields. Fourth, the
pose estimate needs to be highly accurate in the heading and lateral offset component to
enable the autonomous navigation system to guide the agricultural vehicle along the crop
rows without damaging crops.

Our first technique focuses on robust detection of crop rows on a large variety of crop
types at different growth stages. We contribute to state-of-the-art techniques by leverag-
ing the crop row structure of the field and extracting all crop rows jointly to achieve more
robust crop row detections. Our experimental evaluation on real-world data of crop fields
featuring many crop types at different growth stages confirms that our crop row detection
approach can robustly detect the crop row structure of the field even in challenging situ-
ations during transition maneuvers, where the crop row structure is only partially visible.
Overall, the heading and lateral accuracy of the detected crop rows is also well suited to
guide a vehicle along the crop rows without damaging crops.

We also presented several techniques that enable integration of the local crop row de-
tections with other sensor modalities such as GPS information to obtain a consistent pose
estimate in all three components, the heading, the lateral and the longitudinal position
of the vehicle. These include our novel Crop Row data association approach based on
geometric consistency between the detected and the mapped crop rows, as well as our
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End of the Field detection to obtain more accurate longitudinal position estimates as the
vehicle approaches the headlands. Furthermore, we also proposed to split the sensor
measurement into a heading, lateral and longitudinal component to enable fusing mea-
surements from different sensor modalities with different accuracy into a consistent pose
estimate. Our evaluation of two different localization methods equipped with our novel
techniques on real-world data confirms the relevance of our techniques: Using local crop
row detections and GPS information in separate localization algorithms clearly shows the
advantages and disadvantages of each sensor modality. In contrast, employing our tech-
niques to obtain one fused localization method based on both sensor modalities enables
the localization to fully leverage the advantages of both sensor modalities without being
affected by their respective disadvantages. In conclusion, our techniques for a fused lo-
calization method enable full pose estimation with sufficient accuracy to enable precise
and reliable autonomous traversal of entire crop fields – beyond crop row following.

For more efficient autonomous traversal of a crop field, we also investigated re-localizing
the autonomous vehicle after performing transition maneuvers at the headlands. To this
end, we presented a novel data association that uses individual plant positions along
each crop row to find the correct data association required for re-localization. Finding
the correct data association using the distribution of individual plants along the crops is
not straightforward, since they are usually sown with regular spacing between individual
plants along the each crop row. This results in highly ambiguous data due to the dense
and almost uniform distribution of plant features. Inspired by our Crop Row data asso-
ciation, our data association on individual plants leverages the crop row structure of the
field to represent possible data association matches using an efficient two-dimensional
parametrization. The correct data association is then determined based on slight differ-
ences in the distribution of the plant features using our novel continuous match counting
strategy. This allows our data association to pick up on slight irregularities in the fea-
ture distribution, while at the same time being robust to missing, duplicate or inaccurate
plant feature detections. Our experiments on real-world data confirm that our novel data
association approach can successfully resolve highly ambiguous situations to determine
the correct data association. To provide a proof of concept, we applied our novel data as-
sociation in a mapping framework to re-localize the vehicle after turning and present the
resulting maps in a qualitative evaluation. Furthermore, the evaluation results show that
our data association technique on individual plants not only enables re-localizing the ve-
hicle after turning, but it also has the potential to provide highly accurate pose estimates
throughout the entire field in all three components, especially improving the attainable
accuracy of the longitudinal position estimate.

The methods presented in this thesis were used in the autonomous navigation system of
the BoniRob to achieve multiple successful fully autonomous runs on entire crop fields.
Since our techniques are easily transferable to different platforms, as long as they provide
similar sensor modalities, interesting future work would be to apply our techniques on
machines that are already widely used in agriculture, such as tractors. This showcases
how our methods can help to bridge the gap between research and real-world applica-
tions as well as uncover new and unforeseen challenges for fully autonomous vehicles in
agriculture.
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In this thesis we presented techniques that contribute towards more accurate and ro-
bust pose estimation which is an integral part of any localization or mapping method and
crucial for precise and reliable autonomous navigation across entire crop fields. Develop-
ing techniques, such as ours, towards precise and more reliable autonomous navigation is
essential for fully autonomous execution of agricultural tasks on crop fields. Performing
agricultural tasks autonomously has not only large potential to increase the efficiency of
conventional agriculture, but it can also open the door to many precision farming applica-
tions that are otherwise not feasible at all or at least economically not feasible – thereby
contributing towards more sustainable precision agriculture.
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