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A B S T R A C T   

Purpose: To develop a QA procedure, easy to use, reproducible and based on open-source code, to automatically 
evaluate the stability of different metrics extracted from CT images: Hounsfield Unit (HU) calibration, edge 
characterization metrics (contrast and drop range) and radiomic features. 
Methods: The QA protocol was based on electron density phantom imaging. Home-made open-source Python 
code was developed for the automatic computation of the metrics and their reproducibility analysis. The impact 
on reproducibility was evaluated for different radiation therapy protocols, and phantom positions within the 
field of view and systems, in terms of variability (Shapiro-Wilk test for 15 repeated measurements carried out 
over three days) and comparability (Bland-Altman analysis and Wilcoxon Rank Sum Test or Kendall Rank 
Correlation Coefficient). 
Results: Regarding intrinsic variability, most metrics followed a normal distribution (88% of HU, 63% of edge 
parameters and 82% of radiomic features). Regarding comparability, HU and contrast were comparable in all 
conditions, and drop range only in the same CT scanner and phantom position. The percentages of comparable 
radiomic features independent of protocol, position and system were 59%, 78% and 54%, respectively. The non- 
significantly differences in HU calibration curves obtained for two different institutions (7%) translated in 
comparable Gamma Index G (1 mm, 1%, >99%). 
Conclusions: An automated software to assess the reproducibility of different CT metrics was successfully created 
and validated. A QA routine proposal is suggested.   

1. Introduction 

Computed Tomography (CT) imaging is a consolidated modality for 
the diagnosis, staging, treatment, and prevention of multiple diseases, 
consolidated and highly available [1,2]. Among all its possible appli
cations, it highlights its relevance in oncology, playing a pivotal role in 
cancer early diagnosis and monitoring treatment effects [3,4]. CT im
ages play a crucial role in radiotherapy planning, allowing the delin
eation of tumors and organs at risk. Moreover, CT is commonly used for 

dose calculation [5,6], where the dose of the different organs is calcu
lated from the electronic density obtained from the CT images. 

Technical improvements have made possible to extract high- 
throughput quantitative features from images, known as radiomics 
[7], allowing data mining and analysis. Radiomic features provide in
formation about tumor shape, microarchitecture, and heterogeneity. 
Radiomics are used to construct either descriptive or predictive models 
that facilitate clinical decision making. This is particularly relevant in 
oncology, where radiomics may thus give important surrogate 
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phenotypic information [8], providing significant data to determine 
survival and tumor response [9]. Nevertheless, radiomics features have 
proven to be sensitive to variations in acquisition parameters, signal to 
noise ratios, image processing methods and tumor delineation [9], 
limiting the generality of prediction models built from radiomic 
features. 

Quality Assurance (QA) protocols are needed to assess CT systems 
performance, the quality of the obtained images, and the robustness and 
reproducibility of the different features. Periodic QA tests regarding 
image quality are recommended in the AAPM TG-66 report [10] and by 
international authorities such as ICRP and IAEA [11]. Moreover, in
stitutions like ICRU and the American College of Radiologists (ACR) 
emphasize the effectiveness of quantitative tools for evaluating phantom 
images in QA tests [12,13]. Although most CT manufacturers provide 
their own commercial software for routine QA programs, they rely upon 
the vendor and require the use of their specific phantoms. In addition, 
their implemented metrics are rather elementary and far from being 
clinically relevant. Moreover, the closed software approach does not 
allow user interaction, denying the possibility of adding new features 
more suitable for the user requirements. Consequently, multiple open- 
software QA programs have been developed, which require the use of 
specific phantoms [14–16]. However, they do not evaluate the repro
ducibility of the calculated metrics, neither integrate the characteriza
tion of tissues interface borders nor radiomic features. 

In this study, an open-source software solution is presented for the 
automation of QA in CT systems, fully developed using Python. It au
tomates the QA process by using reference segmentations. The QA 
procedure calibrates the HU, characterizes tissue interface borders and 
extracts radiomic features using the PyRadiomics platform [17]. To 
assess generality, the tool was validated in six CT scanners using two 
different phantoms. As a proof of concept, the proposed QA software was 
used to evaluate the dependence of the acquisition protocols, the posi
tion of the phantom and the CT scanner on reproducibility. 

2. Methods 

2.1. Experimental phantoms 

Two different experimental phantoms were used: the Electron Den
sity Phantom Model 062 M (CIRS) and the Tomotherapy Cheese Phan
tom (Accuray). Both consist of a cylindrical container with a similar to 
water electronic density and different holes where inserts simulating 
different human tissues are placed. 

2.2. CT scanners 

Six different CT systems from two different institutions were used. 
From Center 1: Philips Gemini TF 64 PET/CT from Nuclear Medicine 
department (PET/CT-NM); Philips Gemini TF BigBore CT from Radia
tion Oncology department (CT-RT) and from Diagnostic Radiology 
department the Philips Brilliance iCT 256 (CT-DR-1) and the Toshiba 
Aquilion 64 CT (CT-DR-2). From Center 2: Philips Gemini TF PET/CT 
from Nuclear Medicine department (PET/CT-NM-F) and Philips Bril
liance 16 CT from Radiation Oncology department (CT-RT-F). 

2.3. Protocols 

The different protocols evaluated in each PET/CT system can be 
found in the Supplementary Material (Table S1). 

2.4. Metrics 

The evaluated metrics were divided in three groups. 

2.4.1. HU calibration 
The software characterizes the electronic density from the measured 

HU. For this purpose, the reference segmentations are placed in the 
middle of each one of the inserts of the phantom (Fig. 1a) and a cali
bration curve relating the physical density and the HU is calculated. 

2.4.2. Edges characterization 
The reference segmentations cover completely the insert up to the 

edge (Fig. 1b). The software uses contrast and drop range to characterize 
the edges. Contrast metric evaluates the intensity difference between the 
insert and the phantom body calculating an intensity gradient in all the 
voxels that make up the edge region. Drop Range characterizes how 
steep the intensity drop is on the edge of the insert. For this purpose, the 
pixel intensities along four directions on the transversal plane (covering 
the interface between the insert and the phantom body) are computed to 
create an intensity profile. Then, an interval was defined taking the 
pixels where the intensity values laid between the 10% and the 90% of 
the maximum intensity value of the intensity profile. Thinner intervals 
represent more defined borders and higher intensity drops. 

2.4.3. Radiomic features 
The reference segmentations defined for the computation of radio

mic features were nine inhomogeneous areas with different electronic 
densities and two homogeneous areas in air and water (Fig. 1c). A total 
of 45 different metrics were calculated, classified as First Order metrics, 
Gray Level Co-occurrence Matrix metrics (GLCM), Gray Level Size Zone 
Matrix metrics (GLSZM), Gray Level Run Length Matrix metrics 
(GLRLM) and Neighboring Gray Tone Difference Matrix (NGTDM) 
radiomic features. 

2.5. Automatic quality assurance workflow 

The software uses a reference image of the phantom to automate the 
QA process. The tool resizes and rigidly registers the reference image to 
the new image, saving the result in a transformation matrix. The 
transformation matrix is subsequently used to transform the reference 
segmentations to fit to the new images and are then used to calculate the 
metrics. (Fig. 2). 

2.6. Reproducibility analysis 

2.6.1. Variability 
For the intrinsic variability, the CIRS phantom was imaged with the 

PET/CT-NM system from Center 1 with the protocol commonly used in 
clinical practice (protocol C from Table S1). The phantom was imaged 5 
times per day, 3 different days. The variability of each metric was 
studied over the 15 acquisitions, evaluating the goodness-of-fit of the 
data distribution to a normal gaussian distribution, by using the Shapiro- 
Wilk normality test [18]. 

2.6.2. Comparability 
The comparability of the metrics was analyzed in terms of the 

implemented protocol, the position of the phantom inside the field of 
view (FoV) and the CT system used. The protocol C from PET/CT-NM 
(Table S1) was used as reference protocol. An overview of the assess
ment of the comparability of the metrics is shown in Fig. 3. 

A Bland-Altman analysis [19] was carried out to assess the compa
rability of the HU calibration. For edge characterization metrics, Kendall 
Rank Correlation Coefficient (KRCC) [20] was implemented to evaluate 
the similarity between two ordinal classifications. Finally, both in HU 
calibration and radiomic features characterization a Wilcoxon Rank Sum 
Test (WRST) [21] was also carried out. 

2.6.3. Gamma index 
To assess the effect that the different calibration curves may have in 

radiotherapy planning the gamma index [22] was calculated for four 
different radiotherapy plannings in different cancer sites: lung, brain, 
prostate and head and neck areas. The planning results using the 
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calibration curve from NM department at Center 1 were compared to the 
ones obtained by implementing the curve from RT department at Center 
1 and the curve obtained from Center 2. The dose difference criterion 
was set to a 1 % and the distance-to-agreement (DTA) to 1 mm. 

3. Results 

Our open-source code for automatic CT QA can be downloaded from 
https://github.com/juandasm/CT_Metrics_Reproducibility. 

3.1. Intrinsic variability of the metrics 

For the segmentations shown in Fig. 1, the code was employed to 
evaluate if the values of the HU, edge parameters and radiomics features 
followed a normal distribution across the 15 acquisitions. All acquisi
tions were performed with the same protocol (C), same CT scanner 
(PET/CT-NM at Center 1) and same position of the CIRS phantom 
(center of FoV). Results are shown in Table 1. In 15 out of the 17 inserts, 
the HU values followed a normal distribution. For edge parameters, both 
contrast and drop range followed a normal distribution in 5 out of the 8 
inserts. From the contrast and drop range values a classification of the 

Fig. 1. Reference segmentations for the computation of (a) HU calibration, (b) edges characterization and (c) radiomic features in CIRS phantom (left) and Cheese 
phantom (right). 
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inserts was obtained for each measurement; the most repeated classifi
cations are presented in Fig. 4. When comparing classifications by KRCC, 
both contrast and drop range were comparable. Therefore, classification 
instead of absolute values is employed in the following sections. Finally, 

for the 45 radiomic features evaluated, 37 showed a normal distribution 
in at least 8 of the 11 segmentations. Only these 37 radiomic features 
will be evaluated in the following sections. 

3.2. Comparability of metrics 

All results are summarized in Table 2. 

3.2.1. Protocol dependency 
Impact of protocol was evaluated with the PET/CT-NM system at NM 

department in Center 1 and with the CIRS phantom placed at the center 
of the FoV. The results derived from protocol C were compared with the 
other three protocols for the PET/CT-NM system (Table S1). Analyzing 
the measurement of the HU, both the BA analysis, and the WRST 
confirmed that all protocols were comparable. Based on these results, a 
recommended calibration curve was calculated averaging across all 
protocols of NM. Calibration curves for each protocol and the recom
mended calibration curve are shown in Fig. 5. The HU calculated with 
this recommended calibration curve differed in less than a 5% with 
respect to the HU calculated with the calibration curve obtained for each 

Fig. 2. Automatic QA software workflow.  

Fig. 3. Diagram showing the comparability analysis divided in dependency on protocol, position, and CT system.  

Table 1 
Mean value and standard deviation of HU, contrast and drop range for each 
tissue density. Values in bold if the measurements did not fit to a normal dis
tribution in all the inserts and in white if they did. Measurements carried out 
with PET/CT-NM from Center 1 implementing protocol C.  

Insert HU Contrast Drop range 

Trabecular Bone 216 ± 4 840 ± 31 0.57 ± 0.09 
Breast − 41 ± 3 116 ± 14 0.49 ± 0.18 
Muscle 30 ± 5 146 ± 14 0.46 ± 0.12 
Adipose − 75 ± 2 141 ± 14 0.49 ± 0.10 
Dense Bone 827 ± 9 10394 ± 1625 0.67 ± 0.15 
Lung (Exhaling) − 487 ± 2 2845 ± 124 0.52 ± 0.08 
Lung (Inhaling) − 787 ± 4 7808 ± 280 0.62 ± 0.11 
Liver 41 ± 3 170 ± 29 0.49 ± 0.15 
Water − 18 ± 3    
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protocol. In addition, the edge characterization based on the values of 
contrast and drop range was comparable for all the protocols, according 
to the KRCC test. 22 out of the 37 radiomic features (59%) were com
parable independently of the protocol. 

3.2.2. Position dependency 
For the same system and protocol (protocol C from PET/CT-NM at 

Center 1), different positions of the phantom inside the FoV were eval
uated, positioning the phantom centered and off-centered. Neither the 
position of the phantom nor the ring (inner ring or outer ring in CIRS 
phantom) affected the comparability of the HU and the classification 
based on contrast values. However, position within the FoV showed a 
significant effect on drop range, reducing edge-sharpness, with an 
average 12% decay in the metric value when the phantom was placed 
off-centered, and the classifications obtained were not comparable 
based on KRCC, as seen in Table 2. 29 radiomic features (78%) were 

comparable independently of the position. 

3.2.3. Acquisition system dependency 
Measurements done with protocol C from NM department at Center 1 

were compared with the ones realized with other CT systems at Center 1. 
For all systems and protocols, HU and edge contrast classification were 
comparable. Drop range classification was not comparable with other 
CT systems. Regarding radiomic features, different results were obtained 
for QA protocols compared to clinical protocols: 20 radiomic features 
(54%) were found to be comparable along all clinical protocols, 
compared to 13 radiomic features if QA protocols were implemented. 

3.2.4. Comparability of calibration curves for CT systems in different 
institutions 

To prove the feasibility of the proposed method for the comparison of 
CT performance across institutions, the calibration curve averaged over 
the four protocols at PET/CT-NM system of Center 1 (recommended 
calibration curve in Fig. 5) was compared to the calibration curves 
derived from the CT systems at NM and at RT department in the Center 
2. Calibration curves for the two scanners in Center 2 were comparable, 
based on BA and WRST. Therefore, they were averaged to establish a 
recommended calibration curve for Center 2. This curve was comparable 
to the recommended curve at NM in Center 1. However, larger differ
ences were obtained between the calibration curves of the different 
hospitals (NM (Center 1) and Center 2) with an average value of − 7%, 
than between the calibration curves within the same institution (NM 
(Center 1) vs RT (Center 1)), with an average value of − 4%, as shown in 
Table 3. 

Dose difference due to the use of different calibration curves was 
assessed by calculating the gamma index for 4 different radiotherapy 
plannings in different cancer sites: brain, prostate, head and neck and 
lung. The results are shown in Table 4. As it is shown, the effect that the 
different calibration curves have in radiotherapy planning is negligible, 
Gamma (1 mm, 1%) > 99%. Nevertheless, differences increased (more 
points failed) for the calibration curve that showed larger relative dif
ferences in HU quantization (Table 3). A Dose-Volume-Histogram for 
Bronchial Carcinoma implementing the different calibration curves is 
shown in Fig. 6. 

Fig. 4. Axial view of the CIRS phantom. In black the most repeated classifi
cation for contrast is shown. In white the most repeated classification for drop 
range is represented. 

Table 2 
Comparability of calibration, edge characterization and radiomics measurements taken using protocol C from NM department at Center 1, used as reference protocol, 
and comparison between NM and RT department at Center 2. Bold used when the test showed the measurements where not comparable, left in white if they were.  

Comparability to reference protocol (PET/CT-NM protocol C) Calibration Edge characterization Radiomics 

HU (WRST) Contrast (KRCC) Drop range (KRCC) Feature Extraction (max. 37, WRST) 

Protocol dependency Protocol p-value N◦ comparable features 

PET/CT-NM A 0.77 <0.001 0.03 24 
B 0.77 <0.001 0.01 30 
D 0.96 <0.001 0.02 24 

Position Dependency Compared Positions p-value N◦ comparable features 

PET/CT-NM Centered – In/Centered – Out 0.83 – – – 
Centered – In/Off-centered – In 0.92 0.002 0.18 29 
Centered – Out/Off-centered – In 0.83 – – – 
Centered – Out/Off-centered – Out 0.83 – – – 

System dependency Protocol p-value N◦ comparable features 

CT-RT A 0.80 0.002 0.98 26 
B 0.72 <0.001 0.55 30 
C 0.80 <0.001 0.11 32 
D 0.80 <0.001 0.90 28 

CT-DR-1 QA 0.90 <0.001 0.40 18 
C’ 0.96 0.013 0.11 32 

CT-DR-2 QA 0.74 < 0.001 0.40 15 
C’ 0.85 0.002 0.18 30 

Center 2 Comparability Protocol p-value N◦ comparable features 

PET/CT-NM-F and CT-RT-F C’ 0.75 0.02 0.48 31  
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4. Discussion 

This open-sourced automated QA software for CT images is fully 
developed in Python in conjunction with PyRadiomics for the radiomic 
features extraction and adapts to multiple phantoms. The software can 
assess the reproducibility of different CT metrics, including HU cali
bration, edge characterization and radiomic features. 

The use of experimental phantoms is recommended by international 
committees [10,23,24] within QA programs for CT scanners. As to 
which phantom to use, there is not an agreement on the standard. Some 
of the proposed phantoms are the CatPhan Phantom [11,14,25], the 
American Association of Physicist in Medicine (AAPM) CT Performance 
Phantom [26–28] and the ACR CT Phantom [13,27,29,30]. Both ACR CT 

Phantom and CatPhan Phantom are equipped with dedicated software 
for image analysis and have been implemented for QA in radiotherapy 
[29,31], but additional software is required for the radiomics features 
extraction. Furthermore, none of them has dedicated areas to simulate 
the electron density of the different tissues present in human anatomy. 
Other proposals [14–16] may feature an automatic QA process for a 
specific phantom, but do not adapt to other phantoms. The presented QA 
software is suitable for most phantoms, as it only requires reference 
segmentations and few adaptations on the software to work with a new 
phantom. Moreover, in contrast to other free access QA software, the 
rigid transformation implemented within our code allows the automa
tion of the QA process. Therefore, once there are new images to be 
analyzed no additional work is needed other than adding them to the 
data base. 

As a proof of concept, the proposed software has been tested with 
multiple images acquired from different CT systems and two different 
phantoms. No significant difference was observed between the different 
protocols regarding HU calibration, which is in line with what has been 
stated in different articles where neither the changes in the slice thick
ness [32] nor in the mAs [33] affect the measured HU. HU where 
comparable in different positions of the phantom, although moving the 
phantom away from the FoV lead to measurements slightly increasing 
[34]. In the comparison between Center 1 and Center 2, curves were 
comparable, although with a greater difference between Center 2 and 
NM department at Center 1 than between RT and NM at Center 1. It must 
be remarked that, because the phantoms employed were different 
depending on the institution, different density inserts were evaluated, 
and it could have contributed to the differences observed in the cali
bration curves. Moreover, based on the results of Gamma analysis, it 
could be concluded that calibration curve comparison by WRST and BA 
is a reasonable criterion for ensuring dose computation comparability. 
Regarding edges characterization metrics, both are pertinent as they 
have been used in the literature to study edges [35]. However, in our 
study drop range showed generally a poor comparability. Some studies 
emphasize the importance of image smoothing before edge detection as 
they are very noise sensitive [36]. This could have affected edge metrics 
reproducibility since no pre-processing was applied to the images. 

Fig. 5. Calibration curves for all measured protocols from NM at Center 1, 
recommended calibration curve and measured HU. 

Table 3 
Percentage deviation in electronic density derived from the recommended curve 
of the PET/CT-NM system at Center 1 with respect to the values derived from 
calibration curve for the RT system at Center 1 and the recommended calibration 
curve (averaged across NM and RT) in Center 2.  

Deviation from NM (Center 1) recommended curve (%) 

Insert RT (Center 1) Center 2 

Trabecular Bone 2 6 
Breast 1 4 
Muscle 1 5 
Adipose 1 3 
Dense Bone 3 10 
Lung (Inhale) − 7 − 14 
Lung (Exhale) − 37 − 89 
Liver 1 5 
Water 1 4 
Mean deviation (%) − 4 − 7  

Table 4 
Gamma results comparing radiotherapy planning from the calibration curve 
from NM at Center 1 to the planning done with RT department curve and Center 
2 curve. Results Gamma represents the percentage of voxels that were compa
rable and in parenthesis the number of voxels that failed. In Max Gamma the 
value in parenthesis represents the effect in dose that the different calibration 
curve has.  

Accelerator Results Gamma (1 
mm, 1%) 

Mean Gamma Max Gamma 

Center 
1 (NM 
vs RT) 

(Center 
1 NM) 
vs 
Center 2 

Center 
1 (NM 
vs RT) 

(Center 
1 NM) 
vs 
Center 2 

Center 
1 (NM 
vs RT) 

(Center 
1 NM) 
vs 
Center 2 

Brain 
(Clinac 
Static 6X 
7Angle) 

100% 
(13 
failed) 

100% 
(0 
failed)  

0.053  0.056 1.724 
(0.005 
Gy) 

1.000 
(0.005 
Gy) 

Prostate 
(Clinac 
VMAT 
15X 2Arc) 

100% 
(0 
failed) 

100% 
(20 
failed)  

0.071  0.258 1.000 
(0.002 
Gy) 

1.261 
(0.015 
Gy) 

Head and 
neck 
(Synergy 
Static 6X 
3Angles) 

100% 
(7 
failed) 

99.8% 
(7654 
failed)  

0.045  0.104 1.140 
(0.006 
Gy) 

2.820 
(0.016 
Gy) 

Lung 
(Clinac 
VMAT 6X 
3Arc) 

100% 
(0 
failed) 

99.3% 
(85147 
failed)  

0.075  0.341 0.900 
(0.006 
Gy) 

2.036 
(0.031 
Gy)  
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Previous studies have evaluated radiomic features variability in PET 
[37–39] and MR [40,41] and it has been observed that voxel size 
showed a significant effect [37], which was also observed in this study. 

Different QA routines for the evaluation of the CT system perfor
mance can be recommended. Firstly, a QA in the case of developing 
radiomic models with multicenter cohorts is recommended. By applying 
the software, it can be identified the different radiomic features that are 
comparable among all the CT systems. It will allow to implement in 
radiomic models only the most robust metrics, making possible not to 
mistake radiomic variation due to the equipment and not related with 
the patient, as in multiple studies CT scanner was found out to be a 
disruptive parameter in radiomics robustness [42]. In Table S2 at Sup
plementary Material a list of the radiomic features found out to be 
comparable among all CT scanners in this study is shown. Secondly, a 
consistency tests is proposed for QA of CT systems. In this case, 3 images 
should be taken for every clinical protocol. HU are expected to be 
comparable with respect to the last measurements based on WRST and 
calibration curves showing relative difference lower than 5%. Regarding 
edge characterization, contrast classification should be comparable to 
the last measurements based on KRCC test. If no differences in HU and 
edge contrast classification have been observed, those radiomic features 
previously determined to be robust are expected to remain so. We 
recommend performing the consistency test once per year for CT sys
tems employed in diagnosis and every 6 months for CT systems involved 
in RT workflow, since in RT accurate HU quantification is needed to 
correctly compute the dose delivered to the patient and well-defined 
edges play an important role for an accurate and precise contouring of 
tumors and their surrounding organs-at-risk. 

As a limitation of our study, no pre-processing was applied before 
metrics calculation and may be of interest to define the effect that image 
pre-processing could have in metrics reproducibility. Moreover, the 
CIRS phantom was not stored in facilities with controlled humidity and 
temperature, which could lead to a small absorption of water. However, 
while the phantom was not used to take measurements, it was kept in an 
insulated case proportioned by CIRS, so we expect the effect of humidity 
to be small. Furthermore, as the CIRS phantom has two different rings 
and the inner ring moves freely respect to the outer one, if it has not been 
fixed so that it does not move, a rigid transformation might not be able to 
successfully register the images and additional dedicated segmentations 
would be necessary. 

5. Conclusions 

An open-source software for the automatic evaluation of the analysis 

and reproducibility of CT metrics has been developed. It has the capacity 
to adapt its functioning to multiple phantoms. The viability of the 
project has been tested with six different CT systems, two phantoms and 
two positions within the FoV, analyzing the metrics of the acquired 
images. Based on the obtained results assessing the reproducibility of the 
metrics different QA routines have been proposed. 
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