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1   |   INTRODUCTION

The cardiovascular system adapts quickly and dy-
namically in anticipation of and in response to a vari-
ety of mental and physical conditions. Tracking these 

perturbations by a measurement with high temporal reso-
lution is a promising approach for identifying physiologi-
cal responses to psychological drivers such as motivation, 
challenge, coping or stress as well as physical demands 
(Blascovich, 2013; Cieslak et al., 2018; Obrist, 1981; Richter 
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Abstract
We describe methods and software resources for a bioimpedance measurement 
technique, ‘trans-radial electrical bioimpedance velocimetry’ (TREV) that al-
lows for the non-invasive monitoring of relative cardiac contractility and stroke 
volume. After reviewing the relationship between the measurement and cardiac 
contractility, we describe the general recording methodology, which requires im-
pedance measurements of the forearm. We provide open-source Jupyter-based 
software (operable on most computers) for deriving cardiac contractility from the 
impedance measurements. The software includes tools for removing variance 
associated with heart rate and respiration. We demonstrate the ability of this 
bioimpedance measurement for tracking beat-to-beat changes of contractility 
in a maximal grip force production task. Critically, the results demonstrate both 
a reactive increase in contractility with force production, and suggest there is a 
learned increase in contractility prior to grip onset, consistent with anticipatory 
allostatic autonomic regulation mediated by sympathetic inotropy. The method 
and software should be of broad utility for investigations of event-related cardiac 
dynamics in psychophysical studies.
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& Gendolla,  2009). Bioimpedance methods, particularly 
impedance cardiography (ICG), have long been used to 
investigate modulation of the autonomic nervous system 
to the heart by capturing electromechanical modulation 
of cardiovascular activity during cognitive tasks (Miller 
& Horvath,  1978). ICG uses a high-frequency electrical 
current typically delivered with as few as four electrodes 
placed on the neck and thorax, while additional electrodes 
are required to record the electrocardigram. Using the 
combination of impedance cardiography and electrocar-
diography, a number of cardiodynamic parameters can be 
derived. These include intervallic electromechanical pa-
rameters such as the pre-ejection period (PEP) as well as 
estimates of left ventricular ejection time (LVET), stroke 
volume (SV) and cardiac output (CO) based on idealized 
models of the thorax (Bernstein, 2009; Trakic et al., 2010).

While ICG is a powerful approach, the method has 
drawbacks. There are diverse physiologic and anatomic 
sources that influence changes in thoracic impedance, un-
dermining the ability to estimate peak aortic blood flow, 
an indicator of contractility (Wang & Patterson,  1995). 
Because the measurements are acquired across the tho-
rax, the normal respiratory cycle introduces additional 
confounds due to changes of thoracic size and shape that 
undermine the application of ideal models. Pragmatically, 
operational challenges related to applying electrodes to 
the naked torso pose additional limitations. More prob-
lematic has been the modelling of the resultant thoracic 
impedance waveform. The analysis depends on the iden-
tification of the b-point, a subtle inflection of the thoracic 
impedance wave corresponding to the opening of the 
aortic valve. Despite the development and distribution of 
semi-automated software tools by our laboratory for expe-
diting the labelling of the b-point, we find that for many 
studies b-point identification continues to require exten-
sive hands-on expert quality control for labelling ambig-
uous time points. While the variability in labelling the 
b-point can be overcome by averaging heartbeats over a 
sliding time window, this compromises the goal of mea-
suring alterations of PEP, LVET or SV on a fast time scale 
(Cieslak et al., 2018).

Given the challenges that ICG analysis presents for 
the estimation of cardiac contractility, we have inves-
tigated other bioimpedance measurement techniques. 
Here we present a particularly promising method called 
trans-radial electrical bioimpedance velocimetry (TREV) 
(Bernstein et al., 2012). TREV is a user-friendly approach 
that measures impedance signals along the length of the 
volar forearm. Changes of the impedance signal are di-
rectly related to a pressure/pulse wave propagating along 
the radial and ulnar arteries that arises after the opening 
of the aortic valve. In the following sections, we review 
the factors that influence contractility, and then describe 

the underlying biomechanical and electrical properties of 
TREV that lead to the estimation of cardiac contractility. 
We note that while others have measured bioimpedance 
in the periphery, specifically in the leg, their experimental 
goal was to estimate blood velocity and peripheral vascu-
lar compliance through simultaneous acquisition of tho-
racic bioimpedance (Sel et al., 2021). A key innovation of 
TREV is to derive the peak acceleration of the impedance 
wave, which directly relates to peak aortic pulse pressure 
and hence, end systolic intraventricular pressure, a proxy 
of contractility. We demonstrate the utility of TREV with 
an isometric grip force task to capitalize on the known in-
crease in contractility while humans apply a brief maxi-
mum force to a grip transducer (Stanek & Richter, 2016; 
Stanek & Richter,  2021). From this, we present prelimi-
nary evidence that TREV is capable of capturing beat-by-
beat allostatic anticipatory changes in contractility. The 
observed contractility changes are independent of heart 
rate increases and cyclic respiration, suggesting that par-
ticipants can learn to develop increased sympathetic drive 
to the heart prior to hand grip onset. Finally, we provide 
an appendix describing signal processing software, amal-
gamating multiple python packages (Gramfort et al., 2013; 
Hunter, 2007; Vack, 2023; Virtanen et al., 2020), and oper-
able on most computers, and a tutorial for streamlining 
the conversion of TREV impedance measurements into 
beat-by-beat estimates of contractility.

1.1  |  Background physics and physiology

1.1.1  |  Red blood cells and impedance

Several biophysical properties contribute to the changes of 
electrical impedance measured with TREV. Under static 
conditions (without blood flow or arterial pressure gradi-
ents but with constant blood volume and constant alveo-
lar gas partial pressure), the red blood cells, constituting 
approximately 40% of blood volume in a vessel, will be 
randomly oriented. Due to the random orientation of the 
biconcave red blood cells, an increased resistance within 
the plasma is observed and the artery exhibits a maximal 
level of electrical resistivity measurable as impedance Z 
in units of Ohms (Ω) (Bernstein, 2009). In contrast, when 
blood flow traverses the radial and ulnar arteries, the 
short axis of red blood cells aligns perpendicularly to the 
flow axis, leading to a decrease in impedance (Figure 1). 
This impedance signal Z depends on both blood veloc-
ity (v) and blood volume. If these are held constant (as in 
physics), then measured impedance Z remains in units of 
Ω. Yet, because each heartbeat causes blood to flow and 
experiences a pressure wave the measured impedance Z 
becomes a dynamic, as opposed to a static (as in physics) 
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measure. Therefore, it is appropriate to report Z in physi-
ology studies in units of Ω/s (Bernstein et al.,  2012). As 
shown in Figure 1 there is a potential for blood volume 
to increase with each heartbeat. While this clearly oc-
curs in the proximal aorta (the windkessel phenomenon), 
ultrasound-measured pulsatile changes of blood volume 
in the upper arm and forearm vasculature are negligible 
(Chuang et al., 2002; Green et al., 2002; Lott et al., 2002).

1.1.2  |  Peak acceleration of 
blood and impedance

During diastole of the cardiac cycle, the aortic valve is 
closed, isolating aortic blood pressure from intraventricu-
lar pressure as blood fills the ventricle, boosted by atrial 
contraction. With systole, the ventricular myocardium 
contracts, the mitral valve closes and isovolumic intraven-
tricular pressure rapidly rises until pressure in the ven-
tricle surpasses aortic pressure, at which point the aortic 
valve opens. A pressure surge is transmitted into the aorta 
leading to a rapid rise in proximal arterial blood velocity. 
Distally, the pulse pressure in the radial artery is approxi-
mately 1/3 of the peak pressure generated by the heart. 
Continuous flow is dependent on the compliance of the 
proximal aorta which expands and then contracts dur-
ing systole (windkessel). Mean velocity is affected by the 
downstream tapering of the peripheral arteries, where the 
pulse pressure encounters reduction in vessel compliance 
and time varying increased elastance ΔP/ΔV, which are 
caused by progressive vessel thickening and reduced lu-
minal radius, reduced cross-sectional area and reduced in-
traluminal volume. Thus, caution is advised in comparing 

individual differences of pulse pressure height or blood 
velocity between participants, who may differ in vascular 
integrity due to age or disease.

Cardiac contractility, or the vigour with which the heart 
contracts, is determined by the magnitude of intraventric-
ular pressure that is generated during systole and hence 
arterial blood acceleration. Multiple factors in turn can 
potentially influence contractility. In ex vivo experimental 
preparations, abrupt increases in afterload, that is, the pres-
sure that the heart must work against to eject blood, can 
cause a small increase in contractility (the Anrep effect). 
Under normal conditions blood pressure is the primary de-
terminant of afterload and its impact on cardiac function 
is to reduce stroke volume and not contractility (Mahler 
et al., 1975). Likewise, under normal conditions changes of 
peripheral vascular resistance influence blood pressure and 
stroke volume but do not influence contractility (Chemla 
et al., 1996). Preload, which is the amount of stretch experi-
enced by cardiac muscle cells at the end of diastole, will in-
crease contractility due to the length–tension relationship 
of muscle (Frank–Starling mechanism). Ventricular filling 
in turn is dependent on venous blood pressure and the 
rate of venous return. For typical psychophysiology experi-
ments in healthy participants obtained during physical in-
activity, the primary modifier of preload is respiration due 
to cyclic changes of intrathoracic pressure and the volume 
of venous return during diastole. Respiration is also asso-
ciated with low-frequency variation of heartrate (Angelone 
& Coulter Jr.,  1964) mediated primarily via vagal tone 
(Borovkova et al., 2022). A premature ventricular contrac-
tion (PVC) can lead to a significant reduction of preload. 
In the provided software, these beats can be identified and 
manually removed. Increased heart rate causes an increase 

F I G U R E  1   Alterations in red blood 
cell orientation and impedance during 
pulsatile blood flow through the artery of 
the forearm. During systole, the pressure 
wave both dilates the blood vessel and 
rapidly aligns red blood cells, resulting 
in decreased impedance. Adapted from 
Bernstein (2009).

 14698986, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/psyp.14411 by A

L
bert-L

udw
igs-U

niversitaet, W
iley O

nline L
ibrary on [07/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 13  |      STUMP et al.

in contractility (the Bowditch effect) (Balcazar et al., 2018; 
Richmond et al., 1975). In a physically inactive person this 
is due mainly to reduced parasympathetic drive. The other 
main determinant of increased contractility (inotropy) as 
well as accelerating heart rate (chronotropy) is elevated 
sympathetic drive to the heart. Thus, measures to account 
for sympathetic effects of heart rate could potentially co-
vary with effects on contractility. However, sympathetic 
chronotropy is a weak effect for a person at physical rest. 
To summarize, after adjusting for changes of heart rate and 
respiration and removing PVCs, measured contractility is 
a particularly useful variable of interest for tracking what 
is primarily sympathetic drive to the heart in psychophys-
iological studies of healthy non-medicated, physically sta-
tionary participants.

1.1.3  |  Modelling the impedance signal

In the arm, peak blood velocity occurs approximately 
100 ms and peak acceleration occurs 50 ms after aortic 
valve opening. In the following and Table 1, we summa-
rize the relationship between flow, TREV measures and 
impedance derivatives (for details see Bernstein,  2009). 
With TREV, impedance Z is proportional to blood flow 
velocity. To estimate the magnitude of contractility with 
TREV, we first take the derivative of velocity dZ/dt meas-
ured in units of Ω/s2. Note that dZ/dt reaches a maximum 
around 50–60 ms, in close correspondence to the peak ac-
celeration of measured flow after aortic valve opening. 
The magnitude of this peak can be estimated by taking the 
derivative of acceleration (in engineering, this is known 
as ‘jerk’), (d2Z/dt2), in Ω/s3. This value is proportional to 
the strength at which the acceleration is generated, which 
occurs soon after the aortic valve opens, and reflects the 
contractility-dependent maximal end systolic isovolumic 
ventricular pressure. Critically, the derivative of accelera-
tion is insensitive to afterload effects such as blood pres-
sure whereas flow velocity is sensitive to afterload effects. 
As noted above, the magnitude of d2Z/dt2 will vary with 

heart rate and respiration, which can be measured and 
accounted for by modelling. In addition to contractility, 
stroke volume can also be calculated by integrating the 
normalized complete acceleration curve. This estimate 
depends on systolic flow time and velocity and is thus 
sensitive to afterload (blood pressure). A previous valida-
tion study demonstrated good correlation between cardiac 
MRI stroke volume and an impedance measured along 
the brachial artery of the arm (Bernstein et al., 2015).

The key advantage of TREV for estimating contrac-
tility is that the measure is based on blood flow through 
the linear axially oriented segments of the radial (and 
ulnar) artery. Contrast this simple arterial geometry 
with the multi-oriented flow directions in the heart, aor-
tic arch and heavily branching thoracic vasculature that 
underlie ICG measurements (Trakic et al., 2010; Wang & 
Patterson, 1995). The complex arterial geometry within the 
thorax limits the ability to use d2Z/dt2 of the ICG signal as 
a reliable estimator of proximal aorta blood acceleration 
and hence contractility (Kauppinen et al.,  1998; Kosicki 
et al., 1986). Instead, the most commonly employed ICG 
estimate of contractility is PEP, an electromechanical time 
interval measure dependent on the temporal precision 
of estimating the b-point. TREV estimates are generated 
without this difficult temporal estimation. Because of the 
sharpness of the dZ/dt and d2Z/dt2 waveforms, it is possi-
ble to estimate directly heart rate from the TREV signal, 
obviating the need for an independent measure of heart 
rate by EKG. This capability is included in the Jupyter 
software described in the accompanying Appendix S1. To 
account for the influence of respiration and heart rate on 
contractility, the methodology presented below used a re-
spiratory belt and EKG. These independent timeseries can 
be fed into our software for modelling out respiration or 
heart rate effects. Alternatively, we added to the Jupyter 
software the capability of deriving the respiratory cycle 
and heart rate directly from Z waveforms, obviating the 
need for independent measurements. As with other bio-
impedance measurements recorded through surface elec-
trodes, TREV is exceptionally sensitive to motion artefact 
of the arm. The quality of the recordings will vary as a 
function of skin turgor and the quality of the electrodes. 
Impedance Z depends on the distance between electrode 
pairs. While the distance can be adjusted to maximize 
signal-to-noise in an individual, it should be standardized 
within an individual for repeated-measures experiments. 
The system described below, with the addition of appro-
priate patch panel filters, is fMRI-compatible and scans 
can be obtained in axial or coronal sections. Additional 
information on the mathematical derivation of contractil-
ity, the effect of arterial compliance and extension to es-
timations of stroke volume are available as a supplement 
that accompanies the Jupyter software described in the 

T A B L E  1   Relationship between arterial blood flow, impedance 
and units.

Axial blood flow

Impedance 
along the 
radial 
arterya Units Comments

None Z Ω Time invariant

Velocity Z Ω/s Time varying

Acceleration dZ/dt Ω/s2

Peak acceleration d2Z/dt2 Ω/s3 Contractility
aAssumes no change in blood volume or arterial gas concentration.
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Appendix  S1, and available at https://github.com/caitg​
regor​y/SCOT.

1.2  |  Changes of cardiac contractility 
with isometric force production

In this section, we demonstrate changes in TREV meas-
ures of contractility (after adjusting for variation associ-
ated with heart rate and respiration) associated with the 
production of brief isometric force of maximum hand grip 
strength obtained for either hand. Using repeated meas-
ures of short duration grips, we observed evidence suggest-
ing there is the development of an anticipatory change in 
contractility prior to grip onset, consistent with allostatic 
regulation by the autonomic nervous system (McEwen & 
Wingfield, 2003).

2   |   METHOD

2.1  |  Participants and experimental 
overview

Thirty-one young healthy humans (mean age = 23.4, 
19 females) provided informed consent in accordance 

with the University of California, Santa Barbara (UCSB) 
Institutional Review Board. Participants self-reported no 
cardiovascular abnormalities. One participant was ex-
cluded due to excessively noisy data, leaving a final sam-
ple of n = 30. Participants were compensated $10/h plus a 
potential $10 bonus depending on task performance (see 
Grip task below).

Participants performed two blocks of a 2-s duration 
maximum Grip task (see Grip task), each block corre-
sponding to three sequential grips of one hand and then 
the other (with hand order randomized across subjects). 
Three simultaneous physiological timeseries were re-
corded during each block. The first timeseries was time-
varying cardiac impedance acquired with TREV where 
electrodes were attached to the forearm contralateral 
to the hand administering grips (Figure  2). The second 
timeseries was a standard electrocardiogram (EKG). The 
last timeseries recorded the continuous respiration cycle 
with an abdominal belt.

2.2  |  Recording apparatus

TREV colloid strip electrodes (BIOPAC EL526), each 
measuring 1.5 × 16.5 cm and connected by a 15 cm cable 
were attached to the forearm. In participants with smaller 

F I G U R E  2   Electrode placement of trans-radial electrical bioimpedance velocimetry system. Four electrodes placed on the forearm; two 
outer current electrodes (I+ and I−) and two inner voltage sensing electrodes (V+ and V−). I+ and I− create an alternating current field (I) 
through the forearm, and any changes in forearm impedance are directly correlated with changes in voltage ΔV between V+ and V−.
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wrist sizes the distal two electrodes on the forearm can be 
trimmed so that they do not wrap over themself when data 
are obtained during MRI. A simple skin cleaning proce-
dure, without use of an abrasive exfoliant or application of 
a salt gel was used (see General Procedure). The electrodes 
were amplified by an NICO100D (BIOPAC Systems, Inc.) 
smart amplifier. A current field is applied across the fore-
arm by means of a constant magnitude, high-frequency 
(50–100 kHz) low-amplitude alternating current (4 mA 
RMS). The constant current (I) is introduced through the 
two outer electrodes (I+ and I−) and the resulting volt-
age (V) is measured via the inner electrodes (V+ and V−). 
Using Ohm's Law, we can use the voltage differential V 
and applied current I to calculate impedance Z:

Here, I and V are the root mean square values of the 
known current and measured voltage. Because the mag-
nitude of the current I is constant, any change in voltage 
V over time will vary in direct proportion to changes in 
impedance Z. This method allows us to capture moment-
to-moment fluctuations in bioimpedance, reported as Ω/s 
rather than Ω.

Electrocardiogram electrodes were amplified by 
an ECG100D (BIOPAC Systems, Inc.) smart amplifier. 
Respiration cycle was recorded using a TSD221-MRI 
(BIOPAC Systems, Inc.) respiration belt. Force exerted 
in the Grip task was recorded using an SS56L (BIOPAC 
Systems, Inc.) grip bulb. All continuous signals were in-
tegrated using an MP160 (BIOPAC Systems, Inc.) ampli-
fier and processed online using BIOPAC AcqKnowledge 
software (BIOPAC Systems, Inc.). Visual stimuli were 
presented on a 21″ monitor using Microsoft PowerPoint. 
Offline preprocessing of recorded timeseries was con-
ducted using the Moving Ensemble Analysis Pipeline 
(MEAP) and MATLAB (Cieslak et al.,  2018). Bayes 
models were fitted using No U-Turn sampling (NUTS) 
Hamiltonian Monte Carlo, fitted with PyMC3 Python3 
functions (Salvatier et al., 2016).

2.3  |  General procedure

All data were recorded in a single session lasting ap-
proximately 45 min (including initial equipment setup). 
Participants first washed their hands and forearms with 
water and regular soap to remove dirt or oily residues 
then pat dry. In a private setup room, an experimenter 
then placed four TREV electrodes on the forearm con-
tralateral to the grip hand of the first block (see Grip task). 
Two electrodes were placed ventrally on the distal region 
of the forearm, just below where the wrist meets the hand. 

Then, two electrodes were placed on the proximal region 
of the forearm, just below where the elbow meets the 
forearm (Figure 2). Each electrode pair was spaced 1 cm 
apart. TREV electrodes are bioimpedance strip electrodes 
(BIOPAC EL526 – size 1.3  × 16.5 cm). These electrodes 
establish circumferential equipotential lines at the four 
electrode locations.

The experimenter placed two EKG electrodes on the 
participant's chest: one below the right collarbone and 
one where the deltoid meets the chest (without any skin 
cleaning). Participants were then brought to the testing 
room where the experimenter connected electrodes to the 
associated amplifiers, applied a respiration belt around 
the participant's abdomen and directed participants to sit 
at the testing table 3 feet from a computer screen. Once 
seated, participants were taught how to properly hold and 
squeeze the grip bulb, with the tubing facing down and in 
a manner that involved the whole hand. Participants were 
also instructed to maintain the same posture and to keep 
their arms relaxed, still, and in the same positioning on 
the table throughout the entirety of the experiment.

2.4  |  Grip task

Prior to collecting experimental data, participants were 
first instructed to grip the bulb as hard as possible with 
each hand to obtain their maximal force. During these 
trials the participants' maximum forces were recorded 
and used as (max thresholds). The experimenter then ex-
plained the experimental protocol, which is depicted in 
Figure  3. The protocol consisted of two blocks of three 
trials, gripping with the opposite hand in each block 
(block-hand order was determined with uniform (p = .50) 
probability for each participant). Prior to the start of the 
first block of trials, participants were instructed to sit 
idly for 3 min to acclimate to the exam room. The experi-
menter then quietly entered the room to start the physi-
ological recording and associated computer task. Once the 
experiment started, the experimenter departed the room. 
Trials began with an on-screen countdown timer, where 
participants were instructed to look at the screen during 
a 2-min rest period. At the end of the rest period, a ‘go’ 
cue would appear, signalling to the participants to squeeze 
the bulb maximally for 2 s. This short duration grip has 
previously been shown to minimally recruit peripheral 
vascular autonomic responses (Lott et al., 2002). The gen-
erated force was recorded covertly throughout the trial to 
determine off-line if participants had achieved their prior 
max threshold. After the 2 s passed, the countdown pe-
riod of the next trial's rest period then began. This cycle 
continued for two more grips. At the end of the third trial 
on each block, a timer counted down to a visual stimulus 

Z(t) =
V (t)

I(t)
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that instructed participants to ring a bell to alert the ex-
perimenter that they had finished. Each of the three trials 
was therefore preceded and followed by a 2-min rest. To 
incentivize participants to grip with maximum strength, 
we imposed a bonus system, whereby participants who 
reached a threshold of ±0.04 kg/m2 of their hand-specific 
max thresholds on all three grips would win a $10 bonus. 
The experimenter disclosed this rule to participants after 
recording the max thresholds and did not inform partici-
pants if they had achieved the bonus until after all testing 
was completed. After completing the first block, the ex-
perimenter transferred the TREV electrodes to the other 
arm and the Grip task was repeated. Participants were 
provided with performance feedback after all trials had 
been completed.

2.5  |  Cardiovascular preprocessing

During recording, the AcqKnowledge software was used 
to apply an online lowpass filter (max cutoff = 20 Hz) 
to the raw impedance timeseries Z(t) recorded by the 
TREV electrodes. From this the same software was used 
to generate a continuous timeseries dZ/dt (acceleration) 
and d2Z/dt2 (peak-acceleration = contractility). The raw 
contractility timeseries was then imported together with 
the raw EKG and respiration timeseries to the MEAP 
software for minimal offline processing. MEAP first au-
tomatically labelled the R-peaks of the EKG timeseries, 
which we used as an index for the moment in time to 
define each individual heartbeat. We next used these R-
peak time indices to extract epochs spanning ±350 ms 
around each heartbeat from the raw contractility time-
series (contractility epochs). MEAP also computed esti-
mates of heart rate at each beat from the R-peaks. MEAP 

outputs were then transferred to MATLAB, where the 
maximum amplitude in each contractility epoch was 
computed as an estimation of each heartbeat's contrac-
tility (beat-wise contractility timeseries). Then, sepa-
rately for each subject, and each block, we conducted 
an additional regression procedure (Dundon et al., 2020; 
Dundon et al., 2021) to remove the additional confound-
ing effects of heart rate and respiration from the beat-
wise contractility timeseries. Using a multiple regression 
model, we regressed the vector beat-wise contractility as 
a function of an intercept and three regressors: (i) the 
phase of respiration at each heartbeat, (ii) the amplitude 
of respiration at each heartbeat and (iii) the heart rate 
at each heartbeat. To down-sample each regressor to 
beat-wise estimates, we used the value from raw time-
series closest to the time of each R-peak. We added the 
estimated intercept to the residuals from this model as 
the ‘residualized’ contractility timeseries, that is, with the 
effects of the above three regressors removed. Given both 
between-subject and within-subject variation in heart 
rate, we next applied temporal resampling of each block's 
residualized timeseries to allow meaningful comparisons 
across participants. For this, we used one-dimensional 
linear interpolation across time to recreate residualized 
timeseries sampled at equal time intervals. Specifically, 
we took 479 estimates, spaced exactly 1 s apart, from 2 s 
post-block onset until 480 s post-block onset (interpo-
lated contractility timeseries). Finally, these interpolated 
contractility timeseries were normalized as a t-statistic, 
that is, each interpolated contractility estimate expressed 
as a t-statistic relative to the timeseries's remaining 478 
values. We refer to this t-statistic-normalized timeseries 
from now on as the ‘contractility’ timeseries. A grand 
average contractility timeseries across participants, sepa-
rately for each block, is presented in Figure 4.

F I G U R E  3   Within-block timing of Grip task and rest. This structure was performed for each hand.

F I G U R E  4   Grand average time series of contractility across participants for left- and right-hand blocks of trials.
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2.6  |  Bayesian modelling framework

The primary objective of this analyses was to determine 
whether TREV could reliably capture increases in group-
level contractility that corresponded to the events in the 
Grip task, either in response to, or in anticipation of a grip. 
We additionally required evidence robust to type I error, 
given our sample size (n = 30). Given these requirements, 
we accordingly used a hierarchical Bayesian framework 
which hypothesized that the (n = 30) group distribution 
of contractility estimates at each timepoint (t) formed a 
Student's T distribution, T(t) ~ Student's T (mu(t), sig(t), 
nu). In doing so we obviate the need to correct for multi-
ple comparisons inherent with null hypothesis testing. We 
formally considered contractility to have increased beyond 
baseline at a given moment where the estimated mean of 
a timepoint's distribution (mu(t)) credibly exceeded the 
mean across all timepoints (Mmu). Mmu is itself fitted in the 
same model as the mean of a hierarchical Gaussian dis-
tribution (Gmu) which constrains estimates of each mu(t) 
by serving as their prior (Gmu ~ N (Mmu, Smu)). This hierar-
chical relation between Mmu and each measure of mu(t) 
minimizes type I risk. Specifically, Bayes theorem ascribes 
joint probabilities to both the prior and the observed data 
in posterior estimates, meaning that outlier datapoints 
will have minimal impact on broader estimates. For ex-
ample, if most values for mu(t) are within a tight range (as 
we would expect in a data set of contractility values with 
long rest periods between grips), the hierarchical distribu-
tion will be characterized by a more certain mean and low 
variance (low value of Smu), which would then serve as a 
strict prior on mu(t) estimates, biasing them towards the 
group mean (i.e. a nail that stands out gets hammered in). 
This hierarchical framework therefore requires strong evi-
dence before any mu(t) is formally accepted as a credible 
departure. In other words, in a context requiring multi-
ple hypothesis tests, the hierarchical Bayesian framework 
imposes an adjustment to the level of evidence needed 
for credible effects, where the data itself determine that 
level of adjustment instead of an arbitrary criterion (e.g. 
Bonferroni).

We fitted a hierarchical model separately for blocks 
where grip was administered with the right and left hand. 
In each case, the specific free parameters of our model 
were mu(t) and sigma(t), that is, the 479 timepoint-specific 
mean and standard deviation parameters for group-level 
SNS distributions at each timepoint across each block. We 
did not fit the nu parameter hierarchically and assigned it 
the same uninformed prior (ν = 1) in each model. As men-
tioned above, each mu(t) parameter was constrained by a 
hierarchical Gaussian distribution (Gmu) with free param-
eters Mmu and Smu corresponding respectively to its mean 
and standard deviation. Mmu was assigned an uninformed 

Gaussian prior, N (0, 1), while Smu was assigned an unin-
formed half-Gaussian prior (forcing values to be positive), 
half N (1). Each sigma(t) was also constrained by hierar-
chical Gaussian distribution (Gsigma), which respectively 
used an uninformed Gaussian and half-Gaussian prior for 
its two free parameters, that is, its mean (Msigma ~ N (0, 1)) 
and standard deviation (Ssigma ~ half N (1)). We formally 
compared each mu(t) posterior with that of the Mmu by 
computing the minimum-width Bayesian credible inter-
val (highest density interval (HDI)) of mu(t) – Mmu and 
only considered strong evidence of a departure at each 
timepoint, that is, where resulting HDIs did not contain 
zero.

Contractility timeseries were z score normalized prior 
to fitting across all participants. Each model's posterior 
distributions were sampled across four chains of 5000 
samples (20,000 total), after burning an initial 5000 sam-
ples per chain to tune the sampler's step-size to reach 0.95 
acceptance. We estimated HDIs using the default setting 
in the arviz package (Kumar et al., 2019).

2.7  |  Sliding window rate of change

We performed a sliding window deterministic regression 
to enumerate the rate of change in contractility at each 
point in our timeseries. At each timepoint we estimated 
the rate of change in contractility over the ensuing 20 s of 
the timeseries. Specifically, for each timepoint(t) we fit-
ted a distribution of coefficients (B(t)), containing 5000 
coefficients (b(k)), where each b(k) estimated the relation 
between an arbitrary time vector [1, …, 20] and independ-
ent draws from the proceeding 20 posteriors of mu, that 
is, the 20-element vector [[mu(t)](k), …, [mu(t + 19)](k)]. 
To identify credibly positive rates of change, we tested 
whether 97% of each deterministic distribution (B(t)) was 
above zero.

3   |   RESULTS

We tested whether a thorax-independent monitor of 
cardiac impedance (TREV) could reliably describe fluc-
tuations in cardiac contractility that credibly exceed 
baseline as human participants perform a task known to 
increase cardiovascular sympathetic demand (Stanek & 
Richter, 2016; Stanek & Richter, 2021). Thirty participants 
completed both blocks of three incentivized max-intensity 
grips, with rest periods of 2 min both between each grip 
and following the final grip. Participants showed strong 
motivation to grip at maximum intensity, supported by 
29 of 30 achieving a bonus payment (contingent on beat-
ing their predetermined max threshold) with at least one 
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hand, and 21 of 30 achieving the bonus payment with both. 
Figure 5 depicts exemplar contractility for two heartbeats 
from a single subject, one in the rest phase prior to the sec-
ond grip with their right hand, and another in the grip's 
immediate aftermath.

After linear resampling to temporally align contractil-
ity across participants and normalizing each block sepa-
rately as a t-statistic, group-level contractility in temporal 
approximation to each grip was assessed. The results of 
the hierarchical Bayesian model fitted to contractility 
timeseries accompanying left-hand grips are depicted in 
the left panel of Figure  6. TREV reliably captured con-
tractility exceeding baseline following grips with the left 
hand. Left-hand grips were accompanied by credible base-
line departure in seconds after grip onset at grip 1: [11, 
12, 13, 15], grip 2: [−8, 5, 10, 11, 13] and grip 3: [8, 12, 
13, 14, 15]. Each grip was therefore accompanied by at 
least 4 individual seconds of credible baseline departure. 
Departures mostly followed the grips and never followed 
a grip by more than 15 s. Each grip was associated with at 
least two consecutive seconds of baseline departure, with 
grip 3 associated with the longest sustained peak contrac-
tility (four consecutive points).

The results of the hierarchical Bayesian model fitted to 
contractility timeseries accompanying right-hand grips are 
depicted in the right panel of Figure 6. Right-hand grips 
were accompanied by credible baseline departure after 

grip onset (in seconds) for grip 1: [−114, 5, 6, 7, 8, 9, 12, 13], 
grip 2: [4, 5, 6, 7, 8, 9] and grip 3: [11, 66]. Discounting the 
two outliers (preceding grip 1 and following grip 3), each 
grip was therefore accompanied by at least 1 s of credible 
baseline departure. Departures all followed the grips and 
never followed a grip by more than 13 s. Grip 2 was associ-
ated with the longest sustained peak contractility (six con-
secutive points). TREV again appeared to reliably capture 
contractility exceeding baseline following grips with the 
right hand, although a pair of outliers were present and 
the duration of peak contractility seemed to abate over the 
course of the three grips.

3.1  |  Sliding window rate of change

As depicted in Figure 7, for both the left- and right-hand 
grips, the rate of change estimate over a sliding 20-s time 
window was credibly positive at numerous timepoints in 
the series preceding each grip. For the left hand, the earli-
est of these credible pre-grip changes occurred at t = 62, 
that is, 58 s prior to the first grip; at t = 185, that is, 55 s 
prior to the second grip; and at t = 349, that is, 11 s prior 
to the third grip. For the right hand, the earliest of these 
credible pre-grip changes occurred at t = 45, that is, 75 s 
prior to the first grip; at t = 178, that is, 62 s prior to the 
second grip; and at t = 348, that is, 12 s prior to the third 
grip. Interestingly, therefore, we observed a trend in both 
hands, whereby the rate of change became credibly posi-
tive much closer to the initiation of the grip by the third 
grip, consistent with the allostatic principle of participants 
learning task requirements and reserving a potentially ex-
pensive increase in cardiac contractility until the time it 
was most critically needed.

4   |   DISCUSSION

There is expanding interest across multiple human re-
search disciplines in robustly capturing event-related 
perturbations of the sympathetic response in the heart. 
Consequently, there is a need for new assays of cardiac 

F I G U R E  5   Top row is a sample timeseries of contractility 
estimated at 100 heartbeats. Bottom row shows how contractility is 
estimated from impedance jerk timeseries at two single heartbeats.

F I G U R E  6   Results of hierarchical Bayesian model depicting credible departures from baseline contractility (in red) for left- and right-
hand grips.
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contractility that both reduce preparatory requirements 
and offer increased signal strength in the face of back-
ground noise. In this study we used a novel trans-radial 
electrical bioimpedance velocimetry device (TREV), at-
tached to the forearm of human participants, and in-
vestigated whether it could reliably capture changes in 
group-level contractility that corresponded to events 
known to increase sympathetic drive, a max Grip task 
(Grip task). We observed that TREV electrodes can be ap-
plied relatively quickly with minimal training and prepa-
ration, and can even be repositioned (from one arm to the 
other) efficiently between blocks of a task. We further ob-
served TREV to register visually identifiable beat-to-beat 
signals from the radial and ulnar artery corresponding to 
the second derivative of the measured impedance wave. 
In preprocessing, we could readily control for potential 
confounding effects of respiratory activity and heart rate 
on beat-wise contractility timeseries. We observed the 
contractility timeseries to reliably depart baseline at key 
events in the Grip task. Remarkably, these departures 
were seen at the single-trial level across participants (i.e. 
without averaging across trials). We therefore conclude 
that TREV offers an exciting development in cardiac au-
tonomic research for human researchers interested in 
event-related capture of cardiac contractility.

We employed a data-driven analysis within a hier-
archical Bayesian framework, which used the entire 
timeseries of data recorded across sessions, to determine 

when contractility estimated by TREV credibly exceeded 
baseline fluctuations. The primary advantage of this 
framework is that it removed all need to impose arbitrary 
criteria on grip events or contractility activity, that is, a 
priori deciding epochs around task events to refine anal-
ysis, or a priori deciding a criterion that constituted ‘cred-
ibly exceeding baseline’. The analysis was not assisted by 
any averaging across events to reduce signal to noise. The 
hierarchical Bayesian framework also imposed conserva-
tiveness with respect to credible departures from baseline 
across a large number of hypothesis tests. Despite the 
moderate sample size, the analytic approach nonetheless 
revealed reliable group-level increases in contractility at 
each of the six grips executed by participants. These in-
creases were corroborated with post hoc confidence in-
tervals of contractility relative to individual baselines. We 
propose that the observed significant change in contrac-
tility to the physical challenge imposed by the Grip task is 
driven primarily by a sympathetic response (as heart rate 
and respiration were adjusted for). Note that the heart rate 
adjustment might attenuate the magnitude of the contrac-
tility estimate if there is concomitantly strong sympathetic 
chronotropy. The other potential modifier of the measure-
ment would be an acute rise in blood pressure mediated 
through sympathetic alpha stimulation to the vascular 
bed of muscles. However, there are several factors that 
make this unlikely. We used a brief isometric grip force 
paradigm where a bulb was squeezed maximally for only 

F I G U R E  7   Sliding window rate-of-change. Each column of raster plots are 50 samples from distributions of regression coefficients 
measuring change in contractility over next 20-s window. Yellow colours are positive (increasing contractility). Markers below each panel 
reflect timepoints when 97% of distribution is positive, that is, credibly positive increase in contractility.
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2 s. Previous studies demonstrating a blood pressure ef-
fect have relied entirely on sustained isometric force pro-
duction (El Sayed et al., 2016; Gandevia & Hobbs, 1990; 
MacDougall et al., 1992). In contrast, short duration grip 
has been used to avoid changes of blood pressure (Lott 
et al., 2002). Furthermore, a combined study of sustained 
isometric grip force, blood pressure and muscle sympa-
thetic nerve activity demonstrated that blood pressure 
rises slowly; mean arterial pressure increased only ~7% 
over the first 15 s after grip onset (El Sayed et al., 2016). 
The changes observed with TREV are far greater in mag-
nitude and develop more rapidly. More importantly, blood 
pressure changes should primarily influence afterload 
and stroke volume, but not peak acceleration of flow as 
measured by TREV. Given these points, the main effect on 
this measurement is likely to be a sympathetic inotropic 
effect to the heart, consistent with motivational intensity 
theory. This theory posits that the sympathetic response 
should scale with the level of task difficulty, an effect 
which has been observed in both cognitive and Grip tasks 
(see Richter et al., 2016, for a review).

Note that our criterion for baseline was the average 
value across all datapoints in the timeseries, which the-
oretically incorporates all preparatory increases in sym-
pathetic activity leading up to grip execution. When we 
employed a slope-based analysis strategy, we addition-
ally observed credible anticipatory changes of contrac-
tility just prior to grip onset for all trials and with either 
hand. This observation is consistent with the role of the 
sympathetic nervous system in allostatic regulation, pro-
viding just enough input and just in time (McEwen & 
Wingfield, 2003).

In conclusion, we observed that TREV reliably captures 
contractility increases to individual events. Capturing 
these contractility changes has the potential to greatly 
contribute towards improving our knowledge of how 
humans synchronize autonomic regulation while moni-
toring broader state information, allowing us to develop 
more holistic technologies for human-machine integra-
tion that can assist with situational awareness, manoeu-
vrability and decision making.
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SUPPORTING INFORMATION
Additional supporting information can be found online in 
the Supporting Information section at the end of this article.

Appendix S1. Jupyter-based signal processing software.
Figure S1. Cell 1 GUI.
Figure S2. GUI for cell 2. Note the peak threshold is 
inputted as 0.5. This threshold value helps avoid flutter 
between acceleration peaks. The participant has a 
premature ventricular contraction at time 16.5 s (causing 
a reduction of contractility due to reduced ventricular 
filling). Also note the onset of MRI scanning at 18 s. 
Despite the associated MRI noise, acceleration peaks are 
still visible and robust.
Figure S3. Cell 3 GUI. The acceleration time series plotted 
over time with detected peaks. The user is able to use the 
slider along the bottom of the graph to scroll through the 
data and adjust the peak location as needed.
Figure S4. Cell 4 GUI. The contractility timeseries plotted 
over time.
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