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A B S T R A C T   

Browsing damages to young trees can have lasting impacts on forest structure. Roe deer (Capreolus capreolus), the 
most common and widespread large herbivore in central Europe, create a vast majority of this damage. To lessen 
the impact, it is important to understand the relationship between roe deer and the landscape matrix, and which 
factors such as food availability and cover will drive the use of habitat by roe deer. In this study, we explored how 
small scale-food availability (5 × 5 m2), forest structure (100 × 100 m2) and landscape heterogeneity (500 m 
radius) influenced the use of habitat by roe deer in an intensively managed temperate mountainous mixed forest 
with implemented retention forestry practices. Using camera-trap detections of roe deer from 130 study plots in 
the southern Black Forest, monitored for 2.5 years, we found that local forest structure had the strongest in
fluence on roe deer habitat use. Contrary to our expectations, landscape features, such as edge density between 
forest and non-forest, did not affect roe deer detections, probably because overall anthropogenic pressure is high 
and homogenous throughout our study system. Small-scale food availability also had little influence, which is 
likely due to widespread availability throughout the study area. Roe deer were also detected less where there 
were higher amounts of lying deadwood in autumn, indicating that retention forestry methods may have a 
negative impact on roe deer habitat use. Since forest structure was the strongest driver of roe deer habitat use, 
this study supports earlier claims that forests may be managed by affecting roe deer habitat use, thereby 
browsing damage intensity, through manipulation of food availability and cover.   

1. Introduction 

Deer (Cervidae) are among the winners of climate change, as indi
cated by range expansions and increasing abundance despite severe 
hunting pressure (Valente et al., 2020). High deer population densities 
are problematic for forest managers due to the damage they may cause 
to young trees, through browsing (Gill, 2001, Partl et al., 2002, Côté 
et al., 2004, Milner et al., 2006, Hothorn and Müller, 2010), although 
browsing damage is not solely related to deer population densities 
(Jarnemo et al., 2014, Felton et al., 2022). Selectively browsing by deer 
on more palatable tree species can hinder future tree species diversity 
(Boulanger et al., 2009, Kupferschmid et al., 2015a, Rozman et al., 
2015). This is of particular concern in the light of recent and ubiquitous 
bark beetle outbreaks throughout European forests dominated by Nor
way spruce (Picea abies (L.) H.KARST.) (Fernandez-Carrillo et al., 2020, 

Bárta et al., 2021). To increase resilience against such calamities and to 
adapt to climate change, forest managers are promoting mixed-species 
continuous-cover forests (Jactel et al., 2017, Groot et al., 2019, Ber
thelot et al., 2021). In mountainous regions in central Europe, for 
example, greater shares of silver fir (Abies alba MILL.) and beech (Fagus 
sylvatica L.) are incorporated into spruce-dominated forests (Pretzsch 
et al., 2013, Vitali et al., 2018, Bottero et al., 2021). However, these 
efforts may be undermined by browsing of deer, that are particularly 
attracted to a range of deciduous tree species as well as silver fir (Senn 
and Suter, 2003, Häsler and Senn, 2012, Kupferschmid et al., 2015b). 

Roe deer (Capreolus capreolus L.) are the most widespread large 
herbivore species throughout central Europe (Andersen, 1998, Linnell 
et al., 2004, Aulagnier et al., 2018). Roe deer are well-adapted to make 
use of heterogeneous, human-dominated landscapes (Gill et al., 1996, 
Mysterud et al., 1999, Ferretti et al., 2011), thus can occur in a multitude 
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of different habitat types. Habitat selection by roe deer tends to be 
driven by food availability, hiding cover and thermal cover (Tufto et al., 
1996, Mysterud and Østbye, 1999, Vospernik and Reimoser, 2008, 
Heinze et al., 2011, Bobrowski et al., 2020); and is affected by predators, 
and human-activity, such as hunting, forestry and outdoor recreation 
(Coulon et al., 2008, Bonnot et al., 2013, Kuijper et al., 2013, Möst et al., 
2015, Scholten et al., 2018). Despite opportunistic feeding behaviour 
(Dahl et al., 2020, König et al., 2020), roe deer are generally considered 
concentrate selectors, preferring a high diversity of food plants with low 
fibre content (Tixier and Duncan, 1996). Forest management practices 
shape the distribution of food availability and cover for roe deer 
(Oheimb and Härdtle, 2009, Petzold et al., 2018), thereby influencing 
where roe deer are present, and the spatial extents of browsing pressure 
(Häsler and Senn, 2012, Gerhardt et al., 2013, Mattila and Kjellander, 
2016, Meier et al., 2017). 

Roe deer habitat selection can be influenced by forest characteristics, 
i.e., food availability, cover availability and access, at varying scales. At 
the small scale, roe deer habitat selection within forest patches, may be 
influenced by the type and quality of forage available (Aulak and 
Babinska-Werka, 1990, Welch et al., 1990, Tufto et al., 1996, San José 
et al., 1997, Massé and Côté, 2012). At the stand-level, the forest 
structure can effect food availability through e.g., canopy openness, 
stand age, forest heterogeneity, light transmittance and leaf-litter 
characteristics (Chamagne et al., 2016, Márialigeti et al., 2016, Sercu 
et al., 2017). Canopy closure influences thermal cover for deer, by 
providing protection from cold temperature and adverse weather 
(Mysterud and Østbye, 1995, Vospernik and Reimoser, 2008, Ewald 
et al., 2014). Vertical structure, variation in tree age and shrub cover 
influence the availability of hiding opportunities, which are essential to 
reduce the risk of detection by predators. Lastly, at the stand-level, forest 
structure may be significantly altered by retention forestry practices 
(Lindenmayer et al., 2012, Gustafsson et al., 2020), which are imple
mented in commercial forests to support biodiversity. Among the mea
sures of retention forestry, higher amounts of deadwood are left in the 
forest (Farnell et al., 2020), which can physically obstruct the access of 
roe deer to potential feeding patches (Smit et al., 2012, Hagge et al., 
2019), and may provide ambush sites to predators such as lynx (Lynx 
lynx L.), and deer may avoid deadwood-rich sites (Bonnot et al., 2013, 
Kuijper et al., 2013). Finally, roe deer habitat use is not only affected by 
the local forest structure but also by the surrounding landscape 
(Kjøstvedt et al., 1998, Saïd and Servanty, 2005, Abbas et al., 2011, 
Tinoco Torres et al., 2011, Bonnot et al., 2013). While roe deer are able 
to adapt to a variety of habitat types, the landscape matrix will influence 
how resources are distributed and accessible. This can create trade-offs, 
and thereby influence where roe deer occur. For example, individuals 
may choose lower-quality foraging patches that are in close proximity to 
other resources such as cover, rather than high-quality patches that only 
offer single resources (Morellet et al., 2011). Thus, habitat selection by 
roe deer may depend on characteristics of the forest at different scales. 

The goal of this study was to assess the relative impacts of small-scale 
food availability, local-scale forest structure, lying deadwood, and the 
landscape-scale variables such as edge density and vicinity to open 
habitat types on roe deer habitat use. While much research has been 
conducted on roe deer habitat use, we assess the relationship between 
roe deer and habitat use in an intensively managed, multiple-use 
mountainous mixed forest in the context of retention forestry. Addi
tionally, the current literature tends to investigate food availability, 
forest structure and landscape individually, while in this study we 
explore the relative importance of these factors and include all of them 
into the analysis together. To do so, we used roe deer detection rates 
from camera traps as an index of relative habitat use, as well as detailed 
forest inventory data and landscape variables from remote sensing im
agery. We explored habitat use at three different spatial scales, i.e., at 
the small-scale camera-trap locations (5 × 5 m2), local scale (100 × 100 
m2) as well as landscape-level (500 m radius). We hypothesized that: 

Roe deer habitat use is driven by the availability of food and cover at 

all three scales. Specifically, we predict that roe deer habitat use will:  

a. be positively associated with small-scale direct measures of herb- 
layer cover, young trees, abundance of preferred food plants as 
well as shrub-cover and canopy openness,  

b. increase with tree species diversity, structural heterogeneity in stand 
age and vertical complexity on the local scale while it will decrease 
as the amount of deadwood in the plot increases.  

c. be positively associated with landscape variables forest edge-density 
and the proportion of open land-use in a 500 m radius around camera 
trap positions. 

2. Material and methods 

2.1. Study area 

We conducted this study in the southern Black Forest Region, Ger
many (Latitude: 47.6◦–48.3◦N, Longitude: 7.7◦–8.6◦E, WGS 84, Fig. 1). 
The annual average temperature of the region is about 7.1 ◦C with a 
yearly average precipitation of 1484 mm (AM Online Projects, 2018). 
The study area is characterized by a mosaic of mountainous-mixed 
forest, with some scattered villages and open land-use (extensive 
grassland and pastures; MLR, 2023) throughout. Retention forestry is 
obligatory in state-owned forests, with the goal to enhance old-growth 
elements and to conserve biodiversity. Measures of retention forestry 
are the protection of 10–15 trees per 2–3 ha over their full lifecycle as 
well as to increase the amount of old and deadwood (ForstBW, 2016, 
Storch et al., 2020). The most common ungulate species in this region is 
roe deer, however, red deer (Cervus elaphus L.), sika deer (Cervus nippon 
TEMMINCK), chamois (Rupicapra rupicapra L.) and wild boar (Sus scrofa 
L.) are also present. All ungulates in this area are hunted, and roe deer 
are hunted from early May until the end of January. Large carnivores are 
largely absent, although individual lynx and wolves (Canis lupus L.) 
occur (MLR, 2019). Red foxes (Vulpes vulpes L.), which are potential 
predators of roe deer fawns, occur throughout the study area (Jarnemo 
and Liberg, 2005). 

We collected data on a study system with 130 established one- 
hectare research plots that are used for systematic survey of various 
aspects of forest structure and biodiversity since 2016. The plot system 
has been established for the Research Training Group ConFoBi (Con
servation of Forest Biodiversity in Multiple-use Landscapes of Central Europe) 
assessing the effects of retention forestry and forest fragmentation on 
forest biodiversity (Storch et al., 2020). Plots were chosen in at least 60- 
year-old forest stands, along gradients of forest structural complexity 
based on the number of standing dead trees, as well as the forest cover 
within 25 km2 of the plot. Plots were located in temperate montane (443 
to 1334 m a. s. l.) mixed forest with Norway spruce (41.1 %, estimates 
based on 15 dominant trees per plot), beech (22.4 %) and silver fir (19.4 
%) as dominating tree species (Gärtner and Reif, 2004, Asbeck et al., 
2019). All plots were in state-owned forest stands, with a minimum 
distance between plots of 760 m. Distance to the next forest edge varies 
from only a few meters to >1.5 km. As overall few sites in the study area 
matched the plot selection criteria, they were not randomly sampled but 
actively selected. For more information on plot selection see Storch et al. 
(2020). 

2.2. Relative abundance of roe deer 

We assessed relative roe deer abundance with 130 camera traps 
(Bushnell Trophy Cam HD Aggressor Low Glow) in 5 sampling rounds in 
spring (April–early July) and autumn (late August–November) from 
2019 to 2021. Cameras were placed at the centre, northwest, or south
east corner of each one-hectare plot (Fig. 1). The first camera location 
was randomly assigned in spring 2019 and systematically shifted be
tween those three positions afterwards (Fig. 2). Cameras were attached 
to trees, and oriented so that they had at least six meters of space to 
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detect wildlife. Where sites were on a slope, cameras always faced 
parallel to the slope. Paths and roads were avoided, but cameras were 
placed on forest tracks if no other spot met the requirements. 

We aggregated camera trap pictures in events, consisting of a 
sequence of detections of the same species with fewer than five minutes 
between pictures using the software FFM2 (Rahm, 2021). For each 
event, we identified the species, and the maximum number of recog
nizable individuals. To describe the relative abundance, we calculated 
the sum of all roe deer individuals per detection event, for the entire 
sampling round (Carbone et al., 2001, Rovero and Marshall, 2009, 

Güthlin et al., 2014, Dénes et al., 2015). 

2.3. Small-scale food availability 

We assessed the small-scale food availability on 5 × 5 m2 squares in 
front of the camera traps (three per plot, Table 1). We collected data on 
the percentage of cover of the total herb layer, percentage of cover by 
Rubus spp., percentage of cover by Vaccinium myrtillus and the number of 
young trees. We specifically addressed Rubus spp., and Vaccinium myr
tillus since these are known preferred plant species for roe deer (Tixier 
and Duncan, 1996, Heinze et al., 2011, Bobrowski et al., 2020). All 
small-scale variables were estimated upon installation and collection of 
camera traps and averaged later, to account for changes in vegetation 
cover within the growing season. 

2.4. Forest structure 

To account for the affects forest structure has on food availability and 
cover on the local scale, we used canopy closure (Canopy-cover), per
centage of conifers (Conifer-share) and species richness of trees in the 
canopy (SR-trees) for each plot. These data along with the mean (Mean- 
DBH) and standard deviation (Std-DBH) of tree diameter at breast height 
(DBH) of all trees above 7 cm DBH were collected during full-plot level 
inventories conducted in 2018 (Storch et al., 2020). We also described 
the shrub cover (Shrub-cover) and used an index of vertical complexity 
(VC-Index) derived from LiDAR data. To assess the effect of lying 
deadwood, we counted the number of logs above 10 cm diameter in a 
ten-meter radius around the camera (hereafter referred to as the ‘Logs’ 
variable). 

2.5. Landscape variables 

To account for the influence the landscape matrix has on roe deer 
densities and distributions, we used two variables and calculated forest 
edge density and the percentage of open land using openly available 
forest cover data from the Copernicus land use monitoring service 
(https://land.copernicus.eu). We used a 500 m buffer around camera 
trap locations to calculate the landscape variables, so that the resulting 
area (approximately 78.5 ha) corresponds closely to the observed mean 

Fig. 1. Study area in the southern Black Forest, German with 130 research plots. The right part exemplifies the positioning of the plots in the landscape with varying 
levels of forest cover and open land-use. The blue circle indicates the scale on which the landscape data further below were calculated. 

Fig. 2. Schematic set-up of camera traps on 100 × 100 m2 research plots. 
Cameras were shifted between positions at the centre, northwest and southeast 
corner from one trapping session to the next. 
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monthly fixed-kernel 90 % home range size of roe deer of 76.5 ha 
(Morellet et al., 2013). 

2.6. Analysis 

To test the effects of small-scale food availability, forest structure, 
and landscape context on habitat use of roe deer, we fitted generalized 
liner mixed models (GLMMs), with roe deer abundance as the response 
variable. Abundance was estimated using events of roe deer detections 
on the camera traps as a proxy and measured separately for autumn and 
spring in order to account for seasonal differences in roe deer behaviour. 
All explanatory variables (Table 1) were tested for collinearity (Zuur 
et al., 2010, Dormann et al., 2013, Wei and Simko, 2017) and contin
uous variables were scaled. Confounding variables were integrated into 
the model to account for detection probability (Resistance, Slope, Trail) 
and yearly variations (Year). We also included a random effect for each 
plot to account for the repeated measurements, as well as an offset for 
the number trapnights to account for biases in effort. We fitted models 
assuming a negative-binomial distribution, to account for high spread of 
our count data. We conducted all analysis in R 4.1.2 (R Core Team, 
2021). GLMMs were run using the ‘glmmTMB’ function (Brooks et al., 
2017). We selected and averaged the best fitting models (ΔAICc < 2), 
using the MuMln package (Barton, 2020). We did not expose 

Table 1 
Variables used to describe the relative habitat use of roe deer. Variables sampled 
on the camera position scale correspond to the ‘small-scale’ variables and were 
sampled on a 5 × 5 m2 square in front of the camera trap, Variables sampled at 
the plot scale correspond to ‘local-scale’ variables, and were sampled on 100 ×
100 m2, with two exceptions for canopy cover and logs, which were sampled at a 
10 m radius around the camera trap location. Variables sampled on the land
scape scale correspond to ‘landscape-scale’ and were sampled within a 500 m of 
the camera trap. In addition, we also incorporated Year, Resistance, Trail, and 
Slope into the model as potential confounder variables.  

Variable Description Unit Sampling 
Scale 

Mean SD 

Small-scale food availability 
Herb layer Estimated total 

vegetation cover in the 
herb layer. Grass, fern, 
herbs, shrubs, and 
young trees up to 1.3 m 
are included. 

% Camera 
position 

26.3 25.7 

Rubus cover Estimated cover of 
Rubus spp. 

% Camera 
position 

2.6 8.6 

Vaccinium 
cover 

Estimated cover of 
Vaccinium myrtillus 

% Camera 
position 

8.2 17.5 

Young-trees Number of young trees 
(8–130 cm) of the 
dominating tree 
species (Abies alba, 
Fagus sylvatica, Picea 
abies) 

% Camera 
position 

4.2 9.3 

Forest structure 
Canopy- 

cover 
Estimated canopy 
closure in the crown 
based on a 10 m radius 
around the camera 
location. 

% Camera 
position 

53.5 22.1 

SR-trees Canopy tree species 
richness on the plot. 

Count Local/Plot 5.5 2.2 

VC-Index Vertical complexity 
index from uav LiDAR 
data calculated by Frey 
et al. (2018) after van 
Ewijk et al. (2011) 

Index Local/Plot 0.9 0.1 

Mean-DBH Mean diameter at 
breast height of all 
trees >7 cm DBH 

mm Local/Plot 299.6 82.1 

Std-DBH Standard deviation of 
diameter at breast 
height of all trees >7 
cm DBH 

mm Local/Plot 148.3 35.5 

Conifer- 
share 

Proportion of 
coniferous trees on the 
plot based on basal 
area, for all trees > 7 
cm. 

% Local/Plot 71 26.3 

Shrub-cover Estimated shrub cover 
(1.3–3 m). 

% Camera 
position 

3.2 6.7 

Logs Count of fallen trees 
with>10 cm diameter 
found in a 10 m radius 
around camera 
location. 

Count Camera 
position 

2.8 2.6 

Landscape 
Forest- 

cover 
Proportion of forest 
cover, calculated from 
the forest type 
classification for the 
year 2018, from the 
EAA Copernicus land 
monitoring service 
(https://land.cope 
rnicus.eu), by merging 
deciduous and 
coniferous forests into 
one class. The 
percentage of forest 
was then calculated for 

% Landscape 82.9 15.5  

Table 1 (continued ) 

Variable Description Unit Sampling 
Scale 

Mean SD 

every 10 × 10 m pixel 
using a circular moving 
window with a 500 m 
radius. The percentage 
forest cover was then 
extracted for the 
camera locations. 

Forest-edge- 
density 

Total length of all 
forest edges in the 
landscape in relation to 
the available area. The 
edge density was 
calculated using the 
package ’landscape 
metrics’ (Hesselbarth 
et al., 2019). A forest 
edge was designated 
where an edge of a 10 
× 10 m pixel with 
forest was adjacent to a 
pixel without forest. (8- 
neighboorhood rule). 
The forest 
classification was 
obtained from 
Copernicus for the year 
2018, which we used to 
combine deciduous 
and coniferous forests 
into one class. 

m/ha Landscape 37.7 21.9 

Confounder 
Year Spring model: 2019, 

2020, 2021; Autumn: 
2019, 2020 

Category NA NA NA 

Resistance Estimated blockage for 
roe deer movement by 
e.g., boulders, logs, 
woody debris 

% Camera 
position 

5.6 9.4 

Trail Binary variable of 
whether or not camera 
placement was on 
visible game trail or 
skid road. 

Category Camera 
position 

NA NA 

Slope Estimated slope of the 
terrain at the camera 
position in degrees 

Degree Camera 
position 

11.3 15.9   
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confounding variables to the selection process and reported conditional 
averaged model results. All included candidate models can be found in 
the Appendix. 

3. Results 

3.1. Camera trapping 

We collected 10,151 roe deer events over 48,474 trapnights from 
654 individual camera-trap locations in the 130 plots (Fig. 2). In the 
spring model, we included 5,582 roe deer events over 27,497 trapnights 
from 393 camera trap locations, while in the autumn model, we 
included 4,569 roe deer events over 20,977 trapnights from 261 camera 
trap locations (Fig. 3). On average, the camera traps yielded 0.217 roe 
deer events per trapnight in spring and 0.221 roe deer events per trap
night in autumn. We detected roe deer at least once on every plot. 

3.2. Roe deer habitat use 

The best fitting model for spring retained all variables apart from 
Young-trees, while the best fitting model for autumn retained all vari
ables except for Mean-DBH and Edge-density (Table 2, Fig. 3). Variables 
describing the local food abundance (Herb-layer, Vaccinium-cover, Rubus- 
cover, Young-trees) had negative effects on roe deer detection, however 
these relationships were only significant for Herb-layer in the spring (p =
0.001), and cover of Vaccinium in autumn (p < 0.001; Table 2 & Fig. 4). 
Roe deer tended to use habitats with greater canopy openness (p < 0.001 
& p < 0.05, spring and autumn respectively), while Shrub-cover was not 
found to be significant in either model. 

Roe deer were detected more on plots with higher vertical 
complexity (p < 0.001 & p < 0.05, spring and autumn respectively) and 
tree species richness in the canopy (p < 0.001 & p < 0.01, spring and 
autumn respectively). While mean stand age (Mean-DBH) did not affect 
roe deer, a high variation in DBH (Std-DBH) negatively affected roe deer 
habitat use (p < 0.001 & p < 0.01, spring and autumn respectively). The 
proportion of coniferous trees (Conifer-share) on the research plots did 
not affect roe deer habitat use. The number of logs in the plot negatively 
influenced habitat use in autumn (p < 0.05), however there was no 
significant relationship between number of logs and roe deer detections 
in spring. On the landscape-scale, forest cover and edge density did not 
affect roe deer habitat use. Finally, the confounder variables (Year, 
Slope, Resistance) significantly affected roe deer habitat use in both 
seasons, while the Trail variable increased detection of roe deer only in 
autumn (p < 0.01). Fewer roe deer were detected in 2020 and 2021 
compared to 2019 (p < 0.001). A steep slope (p < 0.001, p < 0.01) and 

high resistance (p < 0.01, p < 0.001) negatively affected roe deer 
detections. 

4. Discussion 

Overall, we found that forest structure variables on the local scale 
were the most important factors affecting roe deer habitat use. Contrary 
to our expectations, we did not find a positive relationship of small-scale 
food availability, nor the expected effect of landscape-level forest 
structure on roe deer habitat use. 

4.1. Small-scale food availability 

To assess the influence of small-scale food availability on roe deer 
habitat use, we evaluated how relative abundance of roe deer changed 
with the availability of desirable vegetation, i.e., Rubus spp. and Vacci
nium myrtillus, as well as the total herb layer cover and abundance of 
young trees (Tixier and Duncan, 1996, Moser et al., 2006, Barančeková 

Fig. 3. Male (left) and female (right) roe deer on camera trap pictures in spring in the Black Forest.  

Table 2 
Conditional averaged Negative Binomial regressions results for relative habitat 
use of roe deer in spring and autumn. Significant relationships (α = 0.05) are 
shown through bold text.  

Variable Spring Autumn 

Estimate Std 
Error 

p-value Estimate Std 
Error 

p-value 

Intercept ¡1.218 0.092 <0.001 ¡1.608 0.085 <0.001 
Herb-layer ¡0.233 0.072 0.001 − 0.137 0.075 0.068 
Rubus-cover − 0.052 0.058 0.372 − 0.087 0.063 0.168 
Vaccinium- 

cover 
− 0.101 0.067 0.132 ¡0.315 0.072 <0.001 

Young-trees    − 0.078 0.064 0.224 
Canopy cover ¡0.260 0.055 <0.001 ¡0.148 0.068 0.031 
SR-trees 0.175 0.052 0.001 0.185 0.068 0.007 
VC-Index 0.268 0.072 <0.001 0.209 0.087 0.016 
Mean-DBH 0.042 0.054 0.439    
Std-DBH ¡0.215 0.066 0.001 ¡0.247 0.081 0.002 
Conifer-share 0.028 0.055 0.614 0.101 0.072 0.0161 
Shrub-cover − 0.071 0.053 0.185 − 0.098 0.058 0.091 
Logs − 0.060 0.057 0.288 ¡0.123 0.059 0.039 
Forest-cover − 0.042 0.056 0.457 − 0.076 0.063 0.229 
Forest-edge- 

density 
0.038 0.051 0.466    

Year 2020 ¡0.720 0.123 <0.001 ¡0.409 0.112 <0.001 
Year 2021 ¡0.609 0.127 <0.001    
Slope ¡0.111 0.036 0.002 ¡0.239 0.066 <0.001 
Resistance ¡0.157 0.052 0.003 ¡0.253 0.063 <0.001 
Trail − 0.011 0.156 0.942 0.437 0.150 0.004  
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et al., 2010). We did not find a positive influence of small-scale food 
availability on habitat use of roe deer. Instead, we found fewer roe deer 
detections with increasing herb cover in spring and with increasing 
Vaccinium spp. cover in autumn. This is in contrast with previous studies 
that have reported positive effects of Rubus spp. and Vaccinium spp. on 
abundance of roe deer pellet groups (Heinze et al., 2011, Bobrowski 
et al., 2020). These findings may reflect the changes in availability and 
palatability of plants across seasons. Previous studies were conducted in 
winter when few herbs are available (Fielitz and Albers, 1996, Heinze 
et al., 2011, Bobrowski et al., 2020), while we conducted our study in 
the autumn and spring when herbs may be more accessible. As such, we 
may not have demonstrated the same intensity of food resource use as 
previous studies, because roe deer forage was readily available and 
browsing intensity was consequently diffused across the study area. Roe 
deer avoidance of areas with high Vaccinium spp. cover in autumn is also 
in direct contrast to previous studies (Heinze et al., 2011, Bobrowski 
et al., 2020). Vaccinium spp. tends to outperform other understory plants, 
creating communities that are poor in species richness (Petersson et al., 
2019). In our study, plots dominated by Vaccinium spp. may have be 
avoided by roe deer, a concentrate selector that is attracted to plots with 
a variety of plant species (Tixier and Duncan, 1996, Barančeková et al., 
2010). In spring, Vaccinium spp. was neither avoided nor preferred, and 
this may be because herb availability is lower in early spring and Vac
cinium spp. shoots in spring may be more palatable. 

We expected plots with many young trees to be attractive for roe deer 
since they provide food as well as hiding cover (Gill et al., 1996, 
Bobrowski et al., 2020), however, we did not find evidence of this 
attraction in our study. Similar to herb-availability, it may be possible 
that, during spring and autumn, there are more attractive food sources 
than young trees (Tixier and Duncan, 1996, Barančeková et al., 2010, 
Häsler and Senn, 2012). Also, while young trees are important in 
providing hiding cover for deer, it may be that the forests in our study 
area provide ample hiding opportunities overall, so that no effect on roe 
deer habitat use was detected. 

In our study, small-scale measures of food availability are unsuitable 
for predicting roe deer habitat use. Foraging selection may be better 
predicted at a different scale, however which scale that is, is not clear. 
Future studies could assess at which scales direct estimates of food 
availability influences habitat use of roe deer by comparing the effects of 
direct food availability on roe deer on multiple scales and in different 
seasons. Furthermore, while we expected small-scale measures of food 
availability to attract roe deer, the vegetation itself may have had a 
negative impact on detection probability of animals. We installed our 
camera traps in early spring prior to vegetation growth, thus growing 
vegetation over time might have reduced detection probability. Future 
studies could assess at which scales direct estimates of food availability 
influences habitat use of roe deer by comparing the effects of direct food 
availability on roe deer on multiple scales and in different seasons, 
rather than using proxies of food availability as we did in this study. 
Additionally, it would be valuable to study the influence of small-scale 
food availability in winter when overall forage is scarcer and might 
play a more important role. 

4.2. Forest structure 

Forest structure was the strongest predictor of roe deer habitat use. 
As we stated previously, the small, 5 × 5 m2 scale may not be appro
priate to explore the influence of food-availability on roe deer occur
rence. Instead, at a greater scale, such as the local scale (100 × 100 m2) 
that we used for measuring forest structure, the influence of forage 
availability on roe deer may be better represented. As expected, we 
found higher roe deer habitat use in areas with little canopy closure. 
While roe deer in forests often rest in sites with closed canopies (Mys
terud, 1996), they forage frequently on sites with little canopy cover 
(Ewald et al., 2014). This is probably due to higher forage abundance 
with little canopy closure (Gill et al., 1996, Kuijper et al., 2009, Lashley 
et al., 2011). Thus, it appears that thermal cover provided by the canopy 
is of low relevance in spring and autumn, but might be important in 

Fig. 4. Effect plot displaying the model results of the conditionally averaged Generalized Linear Mixed Models for relative roe deer habitat use in spring and autumn. 
***: p-value < 0.001, **: p-value < 0.01, *: p-value < 0.05, ◦: p-value < 0.1. 
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winter (Massé and Côté, 2009). Furthermore, species richness in trees 
tends to cooccur with a high species richness in the herb layer on our 
plots (Helbach et al., 2022), so tree species-rich forests may better meet 
the diverse feeding preferences of roe deer as concentrate selectors 
(Chamagne et al., 2016, Márialigeti et al., 2016, Sercu et al., 2017). 

Forest structure also influences hiding cover availability. We found 
that vertical complexity, derived from LiDAR data, had a positive in
fluence on the relative roe deer abundance. While this relationship has 
not previously been investigated, we believe that vertical complexity 
decreases horizontal visibility in our study plots, thus increasing cover 
for roe deer and sheltering them from human disturbance. 

The size and variety of sizes of trees in a given plot could have 
influenced roe deer habitat use, particularly due to the cover provided 
(Aulak and Babinska-Werka, 1990, Massé and Côté, 2009, Bergqvist 
et al., 2018). Knowing this, we expected roe deer to prefer areas with 
larger trees, and plots with high heterogeneity in DBH. However, we 
found no significant influence of mean tree DBH and a negative effect of 
DBH heterogeneity on roe deer habitat use. This could be explained by 
the selection of research plots, which exclusively targeted >60 years old 
forest stands with mean DBH of about 30 cm and a standard deviation of 
8.2 cm. Our study plots may not have varied enough in mean DBH to 
detect an influence on roe deer habitat use. The negative effect of 
variation in DBH might be explained high abundance of relatively small 
trees (however no smaller than 7 cm DBH, as per the methods) forming 
thickets that can impede roe deer movement. Future studies should 
assess how variation of DBH relates to direct estimates of food and cover 
available to deer, to better understand how this variable affects roe deer. 

Proportion of coniferous forest had no influence on roe deer habitat 
use. Massé and Côté (2009) reported a negative effect of conifer density 
on habitat selection of white-tailed deer (Odocoileus virginianus ZIM
MERMANN). As coniferous and deciduous trees strongly diverge in how 
they affect the understory characteristics (e.g. litter quality, light 
regime, microclimate) and thus also influence the quality and quantity 
of available forage, we expected an effect of the proportion of conifer 
trees on roe deer habitat use (Laganière et al., 2010, Arx et al., 2012, 
Rawlik et al., 2018). Future studies could assess whether roe deer exhibit 
foraging preferences towards specific understory communities, that are 
related to specific tree species in the canopy. While we found no effect of 
the proportion of conifers on roe deer habitat use in spring autumn, it is 
possible, that deer seek out coniferous stands in winter as they provide 
better thermal cover than deciduous stands. Another aspect to be 
assessed in more detail in future studies is the potential difference be
tween male and female roe deer in their habitat use between seasons (e. 
g., territoriality). In this study we were not able to assess this, as we 
didn’t have sex-specific data due to the low quality of some camera trap 
pictures (e.g., at night). 

Lying deadwood can create a physical obstruction to roe deer 
movement, which would be apparent through reduced roe deer de
tections on plots with high amounts of deadwood. We found no influ
ence of deadwood on roe deer habitat use in the spring, however in 
autumn, we detected roe deer more often on plots with less deadwood. 
The seasonal differences may be due to the need for more mobility of roe 
deer in autumn, during the peak hunting season when deadwood might 
hinder sudden and reactive movements of deer. While there is an 
argument that lying deadwood can increase predation risk for deer in 
areas with large predator like wolf and lynx (Kuijper et al., 2015, van 
Ginkel et al., 2019), this argument is not relevant in our study region 
since large predators are largely absent. In our study area, retention 
forestry was only implemented within the last decade (ForstBW, 2016). 
As deadwood accumulates over time, a stronger effect on roe deer 
habitat use may be detected in the future. This may have a positive 
impact on the forest, since deadwood can create protective barriers 
against browsing on a small-scale (Chantal and Granström, 2007, Pel
lerin et al., 2010, Hagge et al., 2019), and accumulated deadwood might 
reduce the access of roe deer to young trees, thus protecting young trees 
from browsing and facilitating succession of young trees. To improve 

our understanding of the impact deadwood has on roe deer habitat use, 
and the consequence to young forest succession, effects of deadwood 
volumes should be investigated in more detail over time and across 
different spatial scales. 

Our study is among the first to investigate relationships of LiDAR 
based forest structure indices and ungulates (Ciuti et al., 2018). Overall, 
LiDAR based methods allow a precise and objective description of forest 
structures and are therefore increasingly used to understand forest- 
fauna relationships (Moreira-Arce et al., 2016, Ciuti et al., 2018, 
Schooler and Zald, 2019). We found this method reliable in quantifying 
vertical complexity and allowing us to investigate the influence of an 
otherwise under-explored aspect of forest structure on roe deer habitat 
use. 

4.3. Landscape patterns 

While edges between forest and open forms of land-use can provide 
high quality resources and habitat for ecotone species like roe deer, 
particularly when adjacent to forests (Tufto et al., 1996, Saïd and 
Servanty, 2005, Morellet et al., 2011), we did not find effects of edge- 
density and forest cover on roe deer habitat use. This may be due to 
the high anthropogenic pressure in open habitat through recreation and 
hunting in the Black Forest, that may have reduced selection for edge 
habitats by roe deer (Linnell et al., 2004, Chassagneux et al., 2019, Mols 
et al., 2022). Future studies could compare the influence of these vari
ables between areas of different intensity of anthropogenic influences (e. 
g., recreational activities). 

5. Conclusion & management implication 

In our study, we demonstrated that roe deer habitat use in multiple- 
use forests is strongly affected by the local forest structure, rather than 
by small-scale food availability or characteristics of the surrounding 
landscape. The knowledge gained in this study can be applied to reduce 
the conflict between deer and forestry, e.g., browsing and bark stripping 
damage (Gerhardt et al., 2013, Kupferschmid et al., 2020). Previous 
studies show that food availability affects the level of deer damages on 
woody vegetation (Jarnemo et al., 2014, Felton et al., 2022). In our 
study however, roe deer habitat use is driven most strongly by canopy 
cover, tree species richness and vertical complexity, rather than small- 
scale food availability and cover, forest managers can direct roe deer 
away from sites of interest, by for example, reducing canopy closure and 
maintaining high tree species richness in the canopy and attracting roe 
deer to unproblematic areas (“pull-strategy”, Cook et al. (2007) & Jar
nemo et al. (2014)). Alternatively, increasing the amount of deadwood 
may also be an effective way to reduce roe deer access and movement, 
thereby limiting browsing damages. Knowledge about roe deer habitat 
use can be helpful directing hunters towards habitats where they are 
more likely to encounter roe deer. Future studies could assess how direct 
estimates of food and cover relate to variables of forest structure at 
multiple scales to better understand roe deer habitat use. These findings 
provide foresters with a powerful tool to affect roe deer behaviour 
through managing forest structure and thus providing forage and cover. 
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Appendix 

Appendix 1. AICc table for the candidate models describing the detection of roe deer in spring, displaying the top performing models (ΔAICc < 2), 
the first model ΔAICc > 2 and the null model. Confounder variables refer to: Year, Resistance, Slope and Trail.   

Candidate Models - Spring AICc delta AICc Weight 

Intercept + Herblayer + Canopy + SR_trees + VC-Index + Std-DBH + Confounder  2838.645  0.000  0.021 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Confounder  2838.798  0.153  0.020 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Shrublayer + Confounder  2839.231  0.586  0.016 
Intercept + Herblayer + Canopy + SR_trees + VC-Index + Std-DBH + Shrublayer + Confounder  2839.576  0.930  0.013 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Shrublayer + Logs + Confounder  2839.842  1.196  0.012 
Intercept + Herblayer + Canopy + SR_trees + VC-Index + Std-DBH + Logs + Confounder  2839.946  1.301  0.011 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Logs + Confounder  2839.970  1.325  0.011 
Intercept + Herblayer + Canopy + SR_trees + VC-Index + Mean-DBH + Std-DBH + Confounder  2840.030  1.385  0.011 
Intercept + Herblayer + Rubus + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Confounder  2840.254  1.609  0.009 
Intercept + Herblayer + Canopy + SR_trees + VC-Index + Std-DBH + Edge-density + Confounder  2840.278  1.632  0.009 
Intercept + Herblayer + Canopy + SR_trees + VC-Index + Std-DBH + Forest-cover + Confounder  2840.327  1.681  0.009 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Edge-density + Confounder  2840.386  1.741  0.009 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Forest-cover + Confounder  2840.440  1.795  0.009 
Intercept + Herblayer + Canopy + SR_trees + VC-Index + Std-DBH + Shrublayer + Logs + Confounder  2840.475  1.830  0.008 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Mean-DBH + Std-DBH + Confounder  2840.498  1.853  0.008 
Intercept + Herblayer + Rubus + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Shrublayer + Confounder  2840.530  1.885  0.008 
Intercept + Herblayer + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Confounder  2840.577  1.931  0.008 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Shrublayer + Forest-cover + Confounder  2840.626  1.981  0.008 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Confounder  2840.639  1.993  0.008 
Intercept + Herblayer + Canopy + SR_trees + VC-Index + Mean-DBH + Std-DBH + Shrublayer + Confounder  2840.670  2.025  0.008 
Intercept + Confounder (“Null”)  2903.500  64.855  0.000  

Appendix 2. AICc table for the candidate models describing the detection of roe deer in autumn, displaying the top performing models (ΔAICc < 2), the 
first model ΔAICc > 2 and the null model. Confounder variables refer to: Year, Resistance, Slope and Trail.  

Candidate Models – Autumn AICc delta AICc Weight 

Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Shrublayer + Logs + Confounder  1943.097  0.000  0.009 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Shurblayer + Logs + Confounder  1943.601  0.504  0.007 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Logs + Confounder  1943.790  0.694  0.006 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Logs + Confounder  1943.796  0.699  0.006 
Intercept + Rubus + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Shurblayer + Logs + Confounder  1943.911  0.814  0.006 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Shurblayer + Logs + Confounder  1943.964  0.867  0.006 
Intercept + Herblayer + Rubus + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Shurblayer + Logs + Confounder  1944.314  1.218  0.005 
Intercept + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Shurblayer + Logs + Confounder  1944.315  1.218  0.005 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Forest-cover + Logs + Confounder  1944.329  1.233  0.005 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Forest-cover + Logs + Confounder  1944.550  1.453  0.004 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Shurblayer + Forest-cover + Logs +

Confounder  
1944.632  1.535  0.004 

Intercept + Rubus + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Shurblayer + Logs + Confounder  1944.639  1.542  0.004 
Intercept + Herblayer + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Confounder  1944.728  1.632  0.004 
Intercept + Vaccinium + Young-trees + Canopy + SR_trees + VC-Index + Std-DBH + Shurblayer + Logs + Confounder  1944.773  1.676  0.004 
Intercept + Rubus + Vaccinium + Young-trees + Canopy + SR_trees + VC-Index + Std-DBH + Shurblayer + Logs + Confounder  1944.783  1.686  0.004 
Intercept + Herblayer + Vaccinium + Young-trees + Canopy + SR_trees + VC-Index + Std-DBH + Shurblayer + Logs + Confounder  1944.834  1.737  0.004 
Intercept + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Shrublayer + Logs + Confounder  1944.893  1.796  0.004 
Intercept + Rubus + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Logs + Confounder  1944.943  1.846  0.004 
Intercept + Vaccinium + Young-trees + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Shurblayer + Logs + Confounder  1944.944  1.847  0.004 
Intercept + Herblayer + Rubus + Vaccinium + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Shurblayer + Logs + Confounder  1944.951  1.855  0.004 
Intercept + Vaccinium + Young-trees + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Logs + Confounder  1945.082  1.985  0.003 
Intercept + Herblayer + Vaccinium + Young-trees + Canopy + SR_trees + VC-Index + Std-DBH + Conifershare + Shurblayer + Logs +

Confounder  
1945.102  2.005  0.003 

Intercept + Confounder (“Null”)  1986.200  43.103  0.000  
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2006. Temporal and spatial development of red deer harvesting in Europe. Biological 
and cultural factors. J. Appl. Ecol. 43, 721–734. 

MLR, 2019. Wildtierbericht für Baden-Württemberg 2018. Ministerium für Ländlichen 
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