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Lonie, Björn Grüning, Sergei L. Kosakovsky Pond, Anton Nekrutenko. Ready-to-
use public infrastructure for global SARS-CoV-2 monitoring. Nature Biotechnol-
ogy, Volume 39, pages 1178–1179, 29 September 2021, https://doi.org/10.1038/s41587-
021-01069-1

• Qiang Gu, Anup Kumar, Simon Bray, Allison Creason, Alireza Khanteymoori,
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Abstract

Drug development is a long, complex and expensive process. In particular, the first
step of obtaining an initial list of drug candidates is challenging. Experimental
screening, for example using protein-ligand binding assays, is fundamentally limited,
and as a result, the concept of virtual screening comes into play. Virtual screening
involves the use of in silico experiments such as statistical analyses, protein-ligand
docking, and free energy calculations based on molecular dynamics (MD) simulation,
in order to predict whether a particular compound is likely to bind to a particular
target protein. Often, an initial list of candidates is generated by a fragment-
approach, where a fragment is a small organic compound that can serve as a
substructure for a putative drug candidate. Fragments can be found in either an
experimental or theoretical manner, and can then be combined, or amended by
the addition of other functional groups, in order to produce a list of candidate
molecules.

There is then a need to determine the likelihood that these candidates bind to the
target protein. There are several computer-based methods that can be of service in
this task; these methods are not mutually exclusive, but on the contrary are typically
used sequentially as well as in parallel. However, they require different amounts
and types of computational resources, and careful planning is therefore required to
manage resources, organise the software tools as complete workflows, and then to
deploy them. To organise and perform the analysis, the scientist can use a workflow
management system. Such systems allow multiple tools to be concatenated into
a single pipeline, which can then be can be executed via the command line or a
graphical interface. This has the advantage of being more convenient than the
tedious execution of individual tools one after the other and helps avoid any manual
errors. For highly complex analyses that require several different software tools with
stepwise repetition, such as MD simulations for hundreds of ligands against a single
target protein, the use of a workflow management system is the only viable option.
Another challenge in virtual screening is reproducibility. In a reproducible scientific
work, other scientists must be able to critically evaluate the work by performing
the same experiments or simulations themselves and thus verifying the results. The
issue of reproducibility has received much attention recently, including in the field of
computational chemistry and virtual screening. The use of a workflow management
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system helps to increase the reproducibility of a study, because the details of all tools
run, with parameters and all versions of the tool software, are recorded to make the
analyses repeatable for other scientists who want to verify their work.

The focus of this work was to develop a platform for fragment-based virtual screening
based on the Galaxy workflow management system. This platform can be used
either through a graphical web-based interface or through the command-line - the
latter is a useful alternative for complex simulations or analyses that may require
additional scripting. In order to make the use of the command line easier, significant
contributions were made to Planemo and BioBlend, two Python libraries that allow
direct access to Galaxy via the Application programming Interface (API). In order
to demonstrate the utility of the platform developed, two projects were carried out
using the developed tools and workflows.

First, a study was performed on the T4 lysozyme mutant L99A in complex with
benzene using the dcTMD technique as a model system for fragment-protein binding.
T4L-L99A is a commonly used model system for free energy calculations, and is
especially useful as a model for fragment binding, due to the small size of the pocket
and the benzene ligand, which is typical for the compounds and pockets generally
used in fragment-based screening studies, and the fact that benzene binds rather
weakly. Like many MD methods, dcTMD requires the execution of a large number
of steps in sequence, and requires the creation of an ensemble of simulations, both
features which benefit from the use of a workflow management system. The analysis
was able to uncover multiple unbinding pathways, an essential feature of the dcTMD
method, and to characterise the thermodynamics and kinetics of several of these.
The final results were comparable to experimental benchmarks.

Second, a virtual screening was performed with the aim of identifying effective
inhibitors of the major protease of the SARS-CoV virus; 53,000 compounds were
generated based on 22 non-covalent crystallographic fragments, and their binding
ability was analysed sequentially by protein-ligand docking, MMGBSA calculations
and dcTMD simulations. Several million docking poses were generated, and scored
by experimental validation against the crystallographic fragment structures. Over
200 compounds were then assessed by MMGBSA, followed by a further filtering and
execution of a dcTMD workflow for 50 compounds. One fragment, which enforces a
conformational change on the protein binding site, was found to confer particularly
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strong binding ability on derived compounds, and it was shown that particular
interactions correlated especially strongly with both MMGBSA and dcTMD scores.

Zusammenfassung
Die Entwicklung von Medikamenten ist ein langer, komplexer und teurer Prozess.
Vor allem der erste Schritt, eine Liste von Wirkstoffkandidaten zu erstellen, ist
eine Herausforderung. Das experimentelle Screening, z. B. mit Protein-Ligand-
Bindungsassays, ist grundsätzlich begrenzt, sodass das Konzept des virtuellen Screen-
ings ins Spiel kommt. Das virtuelle Screening umfasst in silico Experimente wie
statistische Analysen, Protein-Ligand-Docking und Berechnungen der freien En-
ergie auf Grundlage von Molekulardynamiksimulationen (MD-Simulationen), um
die Bindungswahrscheinlichkeit eines bestimmten Protein-Liganden-Systems zu
vorherzusagen. Häufig wird eine initiale Liste von Kandidaten mit Hilfe eines
Fragment-Ansatzes erstellt, wobei ein Fragment eine kleine organische Verbindung
ist, die als Substruktur für einen mutmaßlichen Wirkstoffkandidaten dienen kann.
Fragmente können entweder auf experimentelle oder theoretische Weise gefunden
werden und dann kombiniert oder durch andere funktionellen Gruppen ergänzt
werden, um eine Liste von Kandidatenmolekülen zu erstellen.

Anschließend muss ermittelt werden, inwieweit diese Kandidaten geeignet sind, an
das Zielprotein zu binden. Es gibt mehrere computergestützte Methoden, die bei
dieser Aufgabe hilfreich sein können; diese Methoden schließen einander nicht aus,
sondern werden vielmehr in der Regel sowohl aufeinanderfolgend als auch parallel
eingesetzt. Sie erfordern jedoch unterschiedliche Mengen und Arten von Rechen-
ressourcen, so dass eine sorgfältige Planung erforderlich ist, um die Ressourcen
zu verwalten, die Software-Tools als vollständige Workflows zu organisieren und
sie dann einzusetzen. Um die Analyse zu organisieren und durchzuführen, kann
der Wissenschaftler ein Workflow-Management-System verwenden. Solche Systeme
ermöglichen es, mehrere Tools zu einer einzigen Pipeline zu verketten, die dann über
die Befehlszeile oder eine grafische Schnittstelle ausgeführt werden kann. Dies hat
den Vorteil, dass es bequemer ist als die mühsame Ausführung der einzelnen Tools
nacheinander und hilft, manuelle Fehler zu vermeiden. Für hochkomplexe Analysen,
die mehrere verschiedene Softwaretools mit schrittweiser Wiederholung erfordern,
wie z.B. MD-Simulationen für Hunderte von Liganden gegen ein einziges Zielprotein,
ist der Einsatz eines Workflow-Management-Systems die einzige praktikable Option.
Eine weitere Herausforderung beim virtuellen Screening ist die Reproduzierbarkeit.
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Bei einer reproduzierbaren wissenschaftlichen Arbeit müssen andere Wissenschaftler
in der Lage sein, die Arbeit kritisch zu bewerten, indem sie dieselben Experimente
oder Simulationen selbst durchführen und somit die Ergebnisse verifizieren. Die
Frage der Reproduzierbarkeit hat in letzter Zeit viel Aufmerksamkeit erhalten, auch
im Bereich der computergestützten Chemie und des virtuellen Screenings. Der
Einsatz eines Workflow-Management-Systems trägt dazu bei, die Reproduzierbarkeit
einer Studie zu erhöhen, da die Details aller ausgeführten Tools mit Parametern und
allen Versionen der Software aufgezeichnet werden, um die Analysen für andere
Wissenschaftler, die ihre Arbeit überprüfen wollen, wiederholbar zu machen.

Der Schwerpunkt dieser Arbeit lag auf der Entwicklung einer Plattform für fragment-
basiertes virtuelles Screening auf der Grundlage des Workflow-Management-Systems
Galaxy. Diese Plattform kann entweder über eine grafische, webbasierte Oberfläche
oder über die Kommandozeile verwendet werden - das letzteres ist eine nützliche Al-
ternative für komplexe Simulationen oder Analysen, die möglicherweise zusätzliche
Skripte erfordern. Um die Nutzung der Kommandozeile zu erleichtern, wurden
wesentliche Beiträge zu Planemo und BioBlend geleistet, zwei Python-Bibliotheken,
die einen direkten Zugriff auf Galaxy über die Application Programming Interface
(API) ermöglichen. Um die Nützlichkeit der entwickelten Plattform zu demonstri-
eren, wurden zwei Projekte mithilfe der entwickelten Werkzeuge und Workflows
durchgeführt.

Erstens wurde eine Studie über die T4-Lysozym-Mutante L99A im Komplex mit
Benzol unter Verwendung der dcTMD-Technik als Modellsystem für die Fragment-
Protein-Bindung durchgeführt. T4L-L99A ist ein häufig verwendetes Modellsystem
für Berechnungen der freien Energie und eignet sich besonders gut als Modell für die
Bindung von Fragmenten, da die Tasche und der Benzol-Ligand klein sind, was typ-
isch für die Verbindungen und Taschen ist, die im Allgemeinen in fragmentbasierten
Screening-Studien verwendet werden, und da Benzol eher schwach bindet. Wie viele
MD-Methoden erfordert dcTMD die Ausführung einer großen Anzahl von Schritten
in Folge und die Erstellung eines Ensembles von Simulationen, beides Eigenschaften,
die von der Verwendung eines Workflow-Management-Systems profitieren. Die
Analyse konnte mehrere Abbindungspfade aufdecken, ein wesentliches Merkmal
der dcTMD-Methode, und die Thermodynamik und Kinetik mehrerer dieser Pfade
charakterisieren. Endergebnisse waren mit experimentellen Daten vergleichbar.

Zweitens wurde ein virtuelles Screening mit dem Ziel durchgeführt, wirksame In-
hibitoren der Hauptprotease (main protease) des SARS-CoV-Virus zu identifizieren.
53.000 Verbindungen wurden auf der Grundlage von 22 nichtkovalenten kristallo-
graphischen Fragmenten generiert, und ihre Bindungsfähigkeit wurde reihenweise
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durch Protein-Ligand-Docking, MMGBSA-Berechnungen und dcTMD-Simulationen
analysiert. Es wurden mehrere Millionen Docking-Posen generiert und durch experi-
mentelle Validierung anhand der kristallographischen Fragmentstrukturen bewertet.
Über 200 der Verbindungen wurden anschließend mit MMGBSA bewertet, gefolgt
von einer weiteren Filterung und der Durchführung eines dcTMD-Workflows für 50
Verbindungen. Es wurde festgestellt, dass ein Fragment, das eine Konformation-
sänderung an der Proteinbindungsstelle erzwingt, eine besonders starke Bindungs-
fähigkeit an abgeleitete Verbindungen verleiht, und es wurde gezeigt, dass bestimmte
Wechselwirkungen besonders stark mit den MMGBSA- und dcTMD-Bewertungen
korrelierten.
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Introduction 1
Proteins are the workhorses of the cell. They are responsible for the broad range of
functionality which is essential for life, from proteins which play a structural role, to
those which catalyse biochemical reactions, to signalling, to mediating biological
processes such as transcription and post-translational modifications [1]. The classical
view of a protein is a stable globular three-dimensional structure, though this is
limited in many respects. The function of the protein is highly dependent on its
structure. For example, for proteins with a catalytic function, the structure generally
contains a pocket in which amino acids with a catalytic role are exposed. Globular
proteins generally contain multiple small pockets, some of which are suitable for
small molecules (so-called ligands) to bind. These ligands may have a biological
role, for example as co-factors or as inhibitors which modulate the functionality of
the protein. The binding pockets are also of interest to drug designers, who may be
able to design a small compound capable of binding to a protein and altering its
activity and thus the biology of the organism.

Drug development is a long, complex and expensive process. In particular, the initial
step of obtaining a list of candidate compounds is challenging. The chemical space is
estimated to consist of 1060 compounds with potential pharmacological activity [2];
drug designers need to locate a tiny subspace which is capable of interacting with
the target protein. Experimental screening, for example by means of protein-ligand
binding assays or X-ray crystallography experiments, is fundamentally limited in
scope; thus, the concept of virtual screening comes into play. Virtual screening entails
the application of in silico experiments such as molecular dynamics simulation, or
statistical approaches, to predict whether a given compound is likely to bind to a
given target protein.

Another concept that has gained importance in the last couple of decades is fragment-
based screening [3]. Here, a fragment refers to a small organic compound, which
is generally not itself a feasible drug candidate, but can act as a substructure for
a putative drug molecule. The process of elaborating fragment structures and
combining them to form candidate compounds has been approached in several ways.
The so-called “fragment network” approach treats compounds as nodes in a graph
[4]; compounds which share common substructures or fragments are connected
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together. Recent publications also make use of generative neural networks to produce
a list of compounds based on one or more input fragment molecules [5].

Once a list of compounds has been generated, either by fragment screening or some
other method, the need arises to score, rank and filter them on some measure relating
to their binding affinity and likely usefulness as potential drug molecules. There are
various approaches which differ in computational complexity and resource demands,
including both simple heuristics like Lipinski’s rule of five [6] and more complex
methods which make use of machine learning. Among the most accurate methods,
though also the most computationally expensive, are free energy calculations based
on molecular dynamics (MD) simulations. As a first step, if the system consists
of a protein and a ligand, but the position of the ligand in the binding site is not
already known, docking software is used in order to find a physically reasonable
hypothesis for the complex structure. This structure can then be used as a basis
for MD simulation. Molecular dynamics is a physical simulation method which
is often applied to biochemical systems. In its simplest form, MD is based on
classical Newtonian mechanics, treating atoms as masses and bonds as springs which
connect them [7]. An initial set of forces are applied to the component atoms of
the system, the changes in position and velocity over a short time step (typically
1-2 femtoseconds) is calculated, and the process is iterated to produce a so-called
trajectory which describes the motion of the system on the atomic level. While the
resulting trajectory is inherently of interest, as it can reveal important aspects of
biomolecular mechanisms, a key motivation when using MD to study protein-ligand
binding affinity is to calculate a value for the free energy of binding. This value
relates to the proportion of time a molecule is likely to spend in the bound compared
to the unbound state. There are several methods for deriving free energy methods,
each with a different physical basis. One of the most common is the MMGBSA or
MMPBSA method, which also requires relatively little simulation (and thus compute)
time, although it is acknowledged to be less accurate than other methods [8]. Others
include alchemical calculations and thermodynamic integration. Some methods
make use of equilibrium MD, in which the component molecules of the system are
allowed to move undisturbed, analogous to their in vivo behaviour, whereas other
use non-equilibrium MD, in which an artificial force is introduced to perturb the
system and provoke some interesting response which cannot be observed in an
equilibrium simulation.

All the methods mentioned so far (fragment network, docking, MD, machine learn-
ing based approaches) are not mutually exclusive, but indeed often need to be
combined and then applied in sequence or in parallel. Creating and executing such
workflows creates new difficulties for the scientist; the methods require widely dif-

2 Chapter 1 Introduction



fering amounts and types of computational resources, and careful design is required
to ensure that workflows make optimal use of the available resources and that the
large amount of data is organised in a manner which facilitates later analysis. The
more computationally demanding methods generally provide more accurate insight
into the binding between the protein and the ligand. For example, an initial list of
target compounds might be first filtered based on some statistical methods, followed
by docking of the shortlist and further filtering based on some methodology for
scoring the docked poses. The remaining compounds might then be filtered further
via several MD-based free energy methods, each with increasing computational
demands as well as increasing accuracy. Finally, the compounds which pass all
the stages successfully might be purchased for experimental testing. At workflow
complexity grows, requiring the execution of numerous of parallel and consecutive
steps the scientist may choose to make use of a workflow management system to
organise and run the analysis.

Several workflow management systems already exist for organising scientific work-
flows [9]; among the most prominent are Nextflow, Snakemake and Galaxy in the
field of bioinformatics, and KNIME in the field of cheminformatics. Smaller, more
specialist systems are constantly under development, such as Icolos, a Python-based
tool for virtual screening of newly generated molecular structures [10]. These
systems allow chaining multiple tools together into a single pipeline, which can then
be executed via the command line (or in some cases, via a graphical interface). This
has the advantage of convenience over the laborious execution of individual tools in
sequence, and ensures no manual errors can creep in. For highly complex analyses
employing tens of different software tools, which need to be repeated in a stepwise
manner (for example, running MD simulations for hundreds of ligands against a
single target protein), employing a workflow management system becomes the only
feasible option, compared to the classic approach of a shell script.

Another challenge in molecular simulation is reproducibility. A fundamental principle
for any scientific work, regardless whether experimental or theoretical, is that it
should be possible for other scientists to critically assess the work by performing
the same experiments, simulations and analyses themselves and thus verifying the
results. The issue of reproducibility has received increased attention in recent years
among scientists in general and there have been claims of a “crisis of reproducibility”
[11]. Molecular simulation and computational chemistry is no exception, since
small changes in starting coordinates, user choices during parameterisation and
the choice of MD engine (including even the particular software version used) can
have a substantial effect on the outcome of the simulation. Employing a workflow
management system has the additional benefit of helping to combat this issue,
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since it can act as a “lab notebook” which records the details of all tools and
workflows executed, together with parameters and all tool software versions. Thus,
full reproducibility of all analyses and simulations is ensured for either the scientists
themselves or others who wish to verify their work.

1.1 Thesis outline

The main focus of this thesis has been the development of a platform based on
the workflow management system Galaxy for fragment-based virtual screening.
This development entailed the creation of multiple Galaxy tools and workflows,
packages for the Conda package manager, and Docker and Singularity containers.
This platform can be used either through a graphical web-based interface or via the
command line; the latter is a useful alternative for complex simulations or analyses
which may require additional scripting. In order to more easily enable command-line
usage, substantial contributions were made to Planemo and BioBlend, two Python
libraries which allow Galaxy to be accessed directly via the application programming
interface (API).

Two projects making of use of the developed tools and workflows were carried out;
these have a scientific value of their own, but demonstrate the utility of the platform
developed. Firstly, a study of the T4 lysozyme L99A mutant in complex with benzene
was performed, using the dcTMD technique, as a model system for fragment-protein
interaction. Secondly, virtual screening was carried out with the aim of identifying
effective inhibitors of the main protease of the SARS-CoV virus; 40000 compounds
were generated, using an initial set of 22 non-covalent crystallographic fragments,
and screened using protein-ligand docking, MMGBSA calculations, and dcTMD
simulations.
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Background 2
2.1 Proteins

Proteins are fundamentally, on the microscopic level, the biological machinery of life,
with a functionality ranging from catalysis (enzymes), carrying biochemical signals,
to structural roles [1]. Proteins are polymers of amino acids, i.e. chains of amino
acids connected by covalent chemical bonds [1]. Unlike synthetic polymers, such
as polystyrene or polypropylene, the monomer units which make up the polymer
are not identical, or randomly distributed, but precisely determined by a complex
biochemical machinery, following instructions encoded in DNA. The monomer units
in question are amino acids; 20 of them are commonly used in protein synthesis
and are thus referred to as proteogenic amino-acids (Figure 2.1). The precise
composition and sequence of the protein chain endows it with unique properties.

The instructions for biochemical protein synthesis are stored in the genome of each
organism, generally in the form of deoxyribonucleic acid (DNA). The DNA is itself
a polymer, made up of nucleotide subunits. There are four different nucleotides
commonly used in nature: adenine, thymidine, cytidine, and guanidine. The regions
of DNA which encode protein can be split into codons of three nucleotides each;
each codon corresponds to a single amino acid. There are 43 = 64 possible codons,
which is more than enough to encode the 20 constitutive amino acids [1].

Two processes are necessary to extract the information encoded in the DNA and to
use it to synthesise the encoded protein. The first is transcription, in which DNA is
used as a template to synthesise a related molecule, ribonucleic acid (RNA), with an
identical but complementary sequence. Transcription is performed by an enzyme
named RNA polymerase. RNA is considerably less stable than DNA and functions as a
short-term information store, carrying the genetic information from the DNA, which
in complex, eukaryotic organisms is generally sequestered in a cell nucleus, to the
ribosome, the site of protein synthesis. The second process is translation, in which
the ribosome reads the RNA molecule codon by codon and iteratively appends the
corresponding amino acid to the nascent protein chain. When synthesis is complete,
the chain is released and is subjected to various post-translational modifications
before it can perform its function in the cell.
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Fig. 2.1: Structures of the proteogenic amino acids. Information on the image source is
provided in the List of Figures.
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The essential factor which determines the function of a protein is the three-dimensional
structure which it adopts during and after synthesis. This three-dimensional confor-
mation (the tertiary structure) results deterministically from the protein sequence
(the primary structure), with some influence from the cellular environment, such
as post-translational modifications; despite this, prediction of 3D structure from 1D
sequence is a highly challenging problem. The tertiary structure (Figure 2.2) results
from the total sum of molecular interactions between the component amino acids,
as well as the interactions between the amino acids and the surrounding solvent
molecules. These interactions can vary in nature: they can be hydrogen bonds,
hydrophobic interactions, van der Waals forces, salt bridges, or even covalent bonds,
such as sulfide bonds [1].

Secondary structures occupy the level between the amino acid sequence and three-
dimensional structure - they consist of helical, sheet-like and loop regions, which
combine together to form the entire tertiary structure. In addition, a protein may
be composed of more than one protein chain. In that case, the additional layer of
protein structure is referred to as quaternary structure [1].

Fig. 2.2: Levels of protein structure. Information on the image source is provided in the
List of Figures.
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While the number of amino acids encoded directly in the genetic code is limited to
twenty, they have diverse chemical properties. Some have aliphatic carbon chains,
such as leucine or valine; some are aromatic, allowing pi-pi interactions, such as
tryptophan; some are positively or negatively charged, depending on the pH. In
addition, the properties of each amino acid are modulated by those surrounding it in
the tertiary structure. For example, in certain hydrolytic enzymes, a serine residue,
which is normally very difficult to deprotonate, can be rendered highly acidic due
to the influence of neighbouring histidine and glutamine residues - the so-called
catalytic triad [12].

Many, even a majority, of proteins do not have a defined three-dimensional structure;
these are the so-called intrinsically disordered proteins [13]. Nonetheless, they
possess important functionality; however, due to the difficulty of elucidating this
functionality from the structure the attention of scientists has been heavily biassed
towards globular proteins.

2.1.1 Experimental methods for protein structure determination

Due to the intrinsic difficulty of predicting three-dimensional structure from the
amino acid sequence, experimental techniques for structure determination are essen-
tial. Several of these exist. The most important continues to be X-ray crystallography,
which relies on overexpression and purification of the protein of interest, followed
by crystallisation of the protein out of solution. The protein molecules in the crystal
have a highly ordered position and orientation; as a result, when X-rays are fired at
the crystal, they are deflected in a highly amplified manner to create signals which
can be easily detected. The diffraction pattern thus created can be decoded to obtain
the averaged three-dimensional structure [14].

Another method is nuclear magnetic resonance (NMR), a spectroscopic technique
which allows measurement of local magnetic fields around atomic nuclei, from
which interatomic distances and thus the entire 3D structure can be deduced [15].
NMR is the only technique which allows structural determination on the atomic
level of proteins which do not possess a fixed three-dimensional structure, i.e.
intrinsically disordered proteins. A third method is electron microscopy (EM), which
makes use of the smaller frequency of electron radiation to achieve a much higher
resolution than is possible with light microscopy, allowing imaging of the surface of
individual protein molecules. However, while EM has gained much ground on X-ray
crystallography in recent years, the achievable resolution still lags somewhat behind
that of crystallography and NMR [14].
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While purely computational prediction of the three-dimensional structure from the
primary structure was previously considered an extremely difficult problem, indeed
one of the major unsolved scientific problems [16], a major step forward was made
in 2021 with the publication of AlphaFold2 [17], a machine learning method trained
on experimental data and capable of predicting atomic coordinates from input pro-
tein sequences. The method consists of two main stages. Firstly, multiple sequence
alignment from protein subsequences are used to provide structural information on
evolutionarily related protein structures and to generate two matrices: one repre-
senting the multiple sequence alignment for those proteins, and one representing
residue pairs. Secondly, these matrices are used to generate geometric (rotation and
translation) attributes for each residue. The entire method is training in an end-to-
end manner, rather than individually training network components as in previous
versions of AlphaFold, and iterative refinement (dubbed recycling) using the whole
network is also employed. The predicted structure is then relaxed by molecular
dynamics simulation using the Amber force field [18] for gradient descent.

2.2 Drug design

Proteins are responsible for a huge range of biological functionality and thus their
malfunctioning can quickly lead to disease. One of the aims of drug developers is to
identify a protein involved in a particular disease and to design a small molecule
which is capable of interacting chemically with it. On binding, this ligand alters
the behaviour of the protein, for example by blocking its active site, or by forcing
a change in conformation, so the protein activity is lowered (or alternatively, in-
creased). The binding consists of interatomic interactions, similar in type to those
responsible for the maintenance of the protein tertiary structure: hydrogen bond-
ing, hydrophobic interactions, π-stacking, etc. In principle, a ligand which binds
more quickly and tightly will be more effective at modifying the target protein’s be-
haviour, and hence a more potent drug - hence the motivation behind computational
investigations of ligand binding.

Experimentally, protein-ligand binding affinity is measured by means of binding
assays. Commonly, fluorescent labelling of the ligands is employed, such that the
behaviour of the fluorophore is modified depending on whether the ligand is in the
bound or unbound state. In fluorescence polarisation assays, the extent to which
the emitted light is depolarised correlates with the amount of time spent in the free
unbound state [19]. A method which does not require fluorescent labelling of the
ligand is surface plasmon resonance [20]; here, polarised light is reflected from a
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surface, on the reverse side of which protein molecules are immobilised, with free
ligand able to bind. The extent to which binding occurs affects the angle at which
the light is reflected - the surface plasmon resonance angle.

Drug development is a highly costly process with a very high failure rate in clinical
trials [21]. Computational methods can contribute with the task of identifying
and optimizing chemical structures with high binding probability or affinity. While
the data obtained from binding assays and other experimental methods is much
more valuable than computational studies, binding assays are limited due to the
expense of synthesizing and testing a large number of compounds. Virtual screening
- especially the kind of high-throughput screening with thousands or even millions
of compounds which this work aims to facilitate - allows filtering out a subset of
promising compounds which can then be subjected to experimental testing.

Computational approaches for drug design can be divided into two main categories.
Ligand-based drug design involves extracting features (molecular descriptors) from
the candidate compounds to make predictions about their binding affinity, based on
knowledge of binding affinity obtained from other compounds [22]. Structure-based
drug design makes use of three-dimensional structural information, including the
protein structure and conformation [23]; methods include protein-ligand docking
and molecular dynamics, which will be described in more detail below.

2.3 Fragment-based screening

The essence of fragment-based screening is that drug candidates are based on one or
multiple substructures or “fragments”. These are typically responsible for a particular
set of intermolecular interactions with the protein binding site, or confer a particular
molecular property on the ligand. Drug candidates can thus be generated by taking
a list of fragments as a basis and combining multiple fragments, or modifying a
single fragment by appending various functional groups (Figure 2.3).

Fragments may be experimental entities; for example, in crystallographic fragment
screening, protein crystals are soaked in solutions of various candidate compounds
before performing diffraction experiments [3]. The resulting crystal structures show
the positions of any bound fragments within the protein binding site. From this
information, important binding interactions can be deduced, which is useful in
designing lead compounds based on the structures of one or more crystallographic
fragments. Another option is to deduce fragments by comparing known structures
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of known protein-ligand complexes and identifying common substructures and
interactions.

A major advantage of fragment screening compared to high-throughput screening is
that smaller compounds bind more indiscriminately and subpockets can be sampled
more thoroughly. Thus, the overall amount of chemical information about the site
gathered is higher. A disadvantage is the required sensitivity of the experimental
methods; the binding of smaller compounds tends to be weaker and thus screening
by a crystallographic or another method is significantly more challenging. Once a set
of confirmed fragments has been assembled, however, it allows bottom-up design of
drug candidates starting from the component functional groups, compared to the
blinder approach adopted by high-throughput screening.

Fig. 2.3: An illustration how a ligand can be designed using a fragment-based approach.
A number of subpockets are identified within the binding site, and fragment
screening identifies molecular fragments that bind into each. A compound is
then designed which either incorporates multiple fragments as substructures, or
extends a single fragment into the neighboring subpockets. Information on the
image source is provided in the List of Figures.

2.4 Free energy

Free energy (also known as Gibbs free energy) is an essential concept in molecular
biophysics and computational chemistry. The change in free energy resulting from
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a chemical or physical process is defined as the maximum non-expansion work
performed. A negative change in free energy (∆G < 0) indicates that a process
is spontaneous at constant temperature and pressure. The free energy has two
components, the enthalpy H and the entropy S:

G = H − TS (2.1)

where T is the temperature. The enthalpy corresponds to the energy supplied to the
system from the environment as heat, whereas the entropy is often informally related
to the “disorder” associated with a process. Related to protein-ligand binding, the
bound state generally has a lower entropy than the unbound state, where the two
components diffuse in solution free from one another. The bound state also has a
lower enthalpy, as heat has to be supplied to the system to break the intermolecular
bonds binding the ligand to the protein binding site. Thus, the enthalpic and
entropic components tend to counteract one another; which of the two components
is stronger depends on the temperature of the system.

Fig. 2.4: A simple illustration of a free energy landscape for protein ligand association and
dissociation. The bound state has in general a lower free energy than the unbound
state (assuming that binding is energetically favoured) but there is also a kinetic
barrier between the two states with a higher free energy.

The free energy can also be related to the equilibrium between the two states by the
following equation:

14 Chapter 2 Background



∆G = −RT lnK (2.2)

where K is the equilibrium constant:

K = [PL]
[P ][L] (2.3)

where [P ], [L] and [PL] represent the concentrations of protein, ligand and complex
respectively.

Thus, the free energy tells us something about the proportion between the number
of ligand and protein molecules in the bound compared to the unbound state; the
more negative the free energy, the more are in the bound state. However, the free
energy tells us nothing about the rate at which binding and unbinding occurs; it
only provides information about the proportion of time spent in each state and
thus the same value for free energy is consistent with both rapid and slow transfer
between the two states. In relation to Figure 2.4,∆G is represented by the difference
between the bound and unbound states, whereas the rate of transfer between the
two is represented by the height of the barrier between the two states; there is not
necessarily any relation between the two. This is the essential difference between
thermodynamics and kinetics; both require consideration when designing potential
drug molecules.

A concept which has attracted attention in recent years is drug residence time [24].
This posits that a key factor affecting the effectiveness of a putative drug is average
length of time which the drug remains bound prior to dissociation, as the longer the
drug remains bound, the longer the protein’s behaviour will be modified and thus
the more effective the drug is. The residence time is related to the kinetics of the
drug, as it is inversely proportional to the rate of ligand dissociation:

τ = 1
kdiss

(2.4)
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2.5 Computational methods

2.5.1 Cheminformatics

Cheminformatics refers to the use of techniques from information technology to
solve problems related to chemical structures. An example of a problem in chemin-
formatics is a so-called similarity search - given two particular chemical structures,
how can the level of similarity between them be evaluated? The main approach
employed is fingerprinting, for which numerous implementations exist [25]. The
chemical properties of a compound are encoded as a bitstring, with each bit repre-
senting the presence or absence of a particular property (Figure 2.5). The bitstrings,
or their hashes, can then be compared.

Fig. 2.5: An illustration of a simple fingerprinting system. Each digit of the bitstring
represents the presence or absence of a feature in the molecule. In the example
above, the presence of phenyl, amine and carboxylic acid groups in the compound
are encoded. Information on the image source is provided in the List of Figures.

An important concept in cheminformatics is chemical space, closely related to the
fingerprinting concept. This assumes that chemical compounds can be described by
a number of properties, which form the dimensions of the chemical space - these
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dimensions could also be composite, e.g. derived by a dimensionality reduction
technique such as principal component analysis from the raw properties. Molecules
which are close in the chemical space are thus chemically similar. Despite the
vastness of the total chemical space, the proportion of molecules which are actually
biologically relevant is comparatively minute; the identification of these relevant
molecules is the major challenge of cheminformatics [26]. As an example, a chemist
might identify particular regions of the chemical space which are promising for a
certain application and then search them in more detail for candidate compounds.
Alternatively, the chemist might wish to create a compound library which samples
the chemical space as evenly as possible; here, the task would be to identify sparsely
occupied regions in the library and then to fill them with additional compounds.

Several ideas from the field of cheminformatics can be applied to the problem of
predicting protein-ligand binding affinity. Experimental data (for example, from a
binding assay) provides information about the kind of ligands which are likely to
bind effectively to a particular protein. Statistical methods (e.g. machine learning
[27]) can be used to extract this information as a statistical model which can then
be applied to new, experimentally untested compounds to predict the likelihood
or strength of their binding affinity. Such approaches are traditionally known as
quantitative structure-activity or quantitative structure-property relationships (QSAR
or QSPR) [28, 29].

Cheminformatics is characterised by a very wide range of file formats [30]. Some
formats depict only the graph of the molecular structure, such as SMILES or InChI,
whereas others, such as SDF, provide three-dimensional coordinates for all the
atomic positions [31]. As a result, any flexible software which aims to be used by
cheminformaticians must be able to deal with the range of datatypes used in the
field. For example, a scientist might retrieve a list of SMILES strings from a chemical
database to obtain a compound library for investigation, but need to generate three-
dimensional structures (conformers) in order to assess the molecular interactions
with a target protein, requiring a conversion to SDF or a similar format. One of
the most commonly used command-line tools for converting between file formats is
OpenBabel [31]. In general, there is more than a single possible three-dimensional
structure producible from the molecular graph. Often, it is desirable to exhaustively
enumerate all such structures for virtual screening projects. Gypsum-DL is a recently
published software which focuses on generating small-molecule libraries for this
purpose [32, 33]; this entails the generation of three-dimensional coordinates from
flat molecular graphs such as SMILES strings, but also enumeration of various
tautomers, isomers, and conformers.
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2.5.2 Protein-ligand docking

Protein-ligand docking entails generation of hypothetical three-dimensional struc-
tures of the protein and ligand in complex. Generally, most docking software employs
an iterative approach to optimise the coordinates of the ligand in the active site. For
example, the rDock software employs a genetic algorithm, in which the chromosome
consists of the ligand centre of mass, the orientation, the rotatable dihedral angles
of the ligand, and the rotatable dihedral angles of the receptor. These are mutated
by a random distance or angle at each step. The initial state is selected by placing
the three-dimensional conformer of the ligand at a random grid point within the
volume defined for docking. After each mutation, a “score” is calculated and if
this ceases to decrease, convergence is considered to have been reached [34]. A
standard scoring function, combining intermolecular interactions and intramolecular
interactions for both protein and ligand, as well as user-defined restraint functions,
is used as default; however, many docking programs give users the option to make
use of custom scoring functions.

In general, protein-ligand docking is recognised to produce realistic poses, which
correspond to experimental reality. Nonetheless, they are considerably weaker at
evaluating the goodness of a particular pose, or ranking poses based on the likelihood
of corresponding to experiment. Thus, a sensible view of docking is as a hypothesis
generator, which produces multiple potential binding poses for a given protein-
ligand pair; the process of verifying which of these is closest to the truth should be
performed by a different method (for example, comparison with experimental data, if
available). If docking is followed by MD simulations for free energy calculations, the
identification of the most accurate docking pose is essential for obtaining high-quality
free energy results [35], which indicates the importance of developing methods
capable of confirming or rejecting proposed poses. One possibility is validation using
experimental data (such as known crystallographic structures), or alternatively, MD
simulations can be used to verify or refine hypothetical docking poses [36]. Recently,
techniques based on deep learning, such as GNINA [37] and TransFS [38] have
also been proposed to solve the problem of rescoring. A major challenge for these
methods is obtaining good training data, in particular negative data.

2.5.3 Molecular dynamics

Molecular dynamics (MD) is a molecular simulation technique in which the system
(protein, ligand and solvent) are modelled using Newtonian mechanics. While these
systems are more accurately described by quantum mechanics, traditional molecular
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dynamics is a compromise solution to avoid the very high computational costs of
quantum mechanics-based simulation; for example, compute time for Hartree-Fock
simulations increases at a rate of k4, where k is the number of electrons in the
system [39], limiting its usefulness to very small molecules. At the beginning of
an MD simulation, random forces are assigned to all atoms, which are modelled
as masses connected by springs (covalent bonds). The movement of all atoms is
calculated over the course of a time step and the process is then iterated to generate
a trajectory which describes the evolution of system over time. Due to the high
computational cost of MD simulations, MD simulations cannot be realistically used
to model larger biological entities such as entire cells [40]; they are used primarily
to focus on the behaviour or interaction of one or two molecules (not counting
solvent), for example ligand binding or debinding to a protein, or changes in protein
conformation [41].

A MD simulation proceeds by solving the Newtonian equations of motion for a system
iteratively, which results in a trajectory describing the motion of the component
atoms during the course of the simulation:

mir̈i = fi, fi =
dUi

dri
(2.5)

where fi are the forces acting on atom i, U the potential energy, and r the atomic
coordinates. A force field is used to calculate U , which has both an intermolecular
and intramolecular component:

U = Uinter + Uintra (2.6)

The bonds, bond angles and torsion angles within the molecules which make up
the system all exert an influence on Uintra. The force field determines how exactly
Uintra is calculated from these variables. Uinter is determined by electrostatic and
van der Waals interactions, which are modelled by Coulomb and Lennard-Jones
potentials respectively [7] [42].

MD simulations require application of multiple tools in sequence. Firstly, both the
protein and ligand require parameterisation for the particular force field which has
been chosen for simulation. Secondly, a simulation box is defined and filled with
solvent. Thirdly, equilibration of the system is performed, before the production
simulation can begin. In addition, MD simulations are often performed as ensembles,
i.e. the same simulation is repeated multiple times. The motivation here is often
statistical robustness; carrying out a free energy calculation based on a single MD
simulation will have a large error associated, which can be reduced by repeating
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the simulation multiple times and calculating an ensemble average [8]. Some kinds
of free energy calculations inherently require multiple simulations, for example
methods based on the Jarzynski equality, as will be discussed. Thus, the process of
running MD calculations can be quite complex, requiring the execution of multiple
steps both in series and in parallel.

From a technical point of view, MD has a heavy demand for computational resources,
although it benefits greatly from the advent of general purpose GPU hardware;
typically, the nonbonded force calculations, the most computationally demanding,
are performed on the GPU. While the exact requirements vary massively based on
the size of the system and the specific hardware used, GPU/CPU compute times on
the order of hours may be required to calculate one simulation of 1 ns in length for
a protein system. It should be noted that biochemical transitions are occurring on a
timescale far longer than a nanosecond; the fastest enzymes have a turnover rate of
1 microsecond, while protein folding occurs on a millisecond or second timescale.
Conformational changes, such as domain motion, may likewise last microseconds to
milliseconds [43]. The computational cost means that the maximum simulation time
for which MD can be performed is limited; the maximum time period that can be
reached is on a level of milliseconds, and even then, specialist computing resources
such as Anton [44] and Folding@home [45] are required.

Nonetheless, many biochemical and biophysical process take place on an even longer
time scale than this; in particular, ligand residence times can be on the order of
minutes or even hours. As a result, non-equilibrium simulations are often utilised,
in which a bias is introduced to force the system artificially to cross an otherwise
impassable kinetic barrier [46]. One of the currently most popular techniques is
metadynamics; here, as the system moves over the free energy landscape, biassing
potentials are added periodically to discourage the system from returning to pre-
viously visited states. Once all states have been sampled, the sum of the biassing
potentials is inverted to reconstruct the free energy landscape [47]. Another example
is random acceleration molecular dynamics (RAMD), in which an artificial constraint
force is simply applied to the ligand with random direction, to encourage it to depart
from the binding site [48]. Scaled (or "smooth potential") molecular dynamics
(SMD) is another alternative [49]; here, the potential energy term is scaled down by
a factor, which has the consequence of reducing the kinetic barriers for the system, at
the cost of losing some detail of the free energy landscape [50]. Steered molecular
dynamics involves the application of an external force at a constant velocity to one or
more atoms in the system; the original study sought to mimic the effect of an atomic
force microscope cantilever [51]. An example of a method which makes use of
steered molecular dynamics is dynamic undocking (DUck), which uses the external
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force to break an identified key intermolecular bond and reach a "quasi-bound" state,
where the work profile reaches a maximum. This work WQB required to travel from
the initial to the quasi-bound state was demonstrated experimentally to relate to
binding affinity [52].

A technique which in some ways is conceptually similar to dynamic undocking is
dissipation-corrected targeted molecular dynamics [53]. It makes use of targeted
molecular dynamics, a technique similar to steered molecular dynamics, in that a
force is used to enforce a change in a structure. Unlike steered molecular dynamics,
however, in which the force applied obeys Hooke’s Law, this constraint force is
constant over the whole simulation, regardless of the size of the energy barrier; thus,
the energy landscape is sampled completely evenly [54]. Like dynamic undocking,
dcTMD uses the force to pull the ligand away from its initial position; in contrast, it
requires not a single simulation but an ensemble of TMD simulations. The Jarzynski
equality is then applied to this ensemble to derive equilibrium free energy and friction
profiles. dcTMD thus depends on a theoretical physical justification, in contrast to
dynamic undocking, which is rationalised in an empirical manner. The free energy
and friction profiles thus generated represent a coarse graining of the system - they
represent reduction of the system’s dimensionality from 3N (where N is the number
of atoms) to two. These profiles can then be used to run simulations based on the
Langevin equation, which requires substantially fewer compute resources than MD
simulations and thus can provide kinetic information based on a long simulation
time, ranging even to multiple seconds.

An alternative method to circumvent the gap between the timescales of biochemi-
cal processes and MD simulations is the so-called supervised molecular dynamics
(SuMD) [55], which avoids the use of a biasing force. Multiple short simulations
are run in sequence; after each, progress towards a target (for example, ligand
unbinding) is monitored, and if not sufficient, the simulation is restarted with
random reassignment of atomic velocities. This allows a path through the energy
landscape to be found efficiently, without employing an unphysical external force as
used in SMD or TMD. Nonetheless, SuMD is more effective at uncovering molecular
mechanisms of unbinding than providing quantitative kinetic measurements.

2.6 Galaxy

The wide range of tools which are applied during the course of virtual screening
means that using a workflow management system is helpful to create complex
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workflows, execute them, and monitor the results. In this thesis, the workflow
management system Galaxy was used extensively [56].

Galaxy provides a web-based graphical environment in which scientific software can
be executed. Wrapper files map inputs, parameters and outputs between the web
interface and the command line, so that after a user launches a tool in the graphical
interface, a corresponding command is constructed by Galaxy. The command is then
executed on a remote server; to ensure reproducibility, this is done in a separate
environment, insulated from the rest of the server. This environment may be, for
example, a Conda [57, 58] environment, or a Singularity [59] container. This
ensures that the results of simulations and analyses remain the same, if analyses are
repeated, as identical software builds are used, together with identical tool versions
for all dependencies. Another advantage of Galaxy from the user’s point of view
is that it takes care that all executed software is allocated appropriate resources;
for example, MD jobs will be assigned to a node with GPUs, cheminformatics tools
which process a very large number of molecules are assigned a high amount of
memory, and docking jobs which can be highly parallelised are assigned to nodes
with multiple CPUs.

While the ability to execute jobs via a graphical, web-based browser can be conve-
nient, especially as it allows easy sharing of simulation and data analyses [60], the
main advantage of Galaxy for the computational chemist is the fact that they can
compose complex workflows in the Galaxy interface and execute them. For example,
a workflow can be assembled which docks compounds into a protein binding site,
sorts and filters them, and runs the multiple steps required for an MD simulation.
Galaxy workflows can also deal with a large amount of input data, using Galaxy’s
collection feature, which allows grouping of related datasets; Galaxy tools can be
run on collections just like individual datasets, triggering a separate job for each
component dataset of the collection. This makes a high level of parallelisation
possible. Another use of collections is to run ensembles of simulations; the user can
specify an integer value upon execution and a collection of that size will be created,
with a separate MD simulation run for each component.

While Galaxy provides a graphical interface, it can often be useful to execute
workflows via the command line, for example if a workflow needs to be executed
a large number of times. Another use-case could be optimisation of workflow
parameters; here, the same workflow could be executed multiple times, varying the
parameters of the various component tools slightly each time. The outcomes of the
runs can then be compared and a decision made which combination of parameters
is preferred for the workflow. For these kinds of use-cases, Galaxy provides access
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directly to the backend via a REST API, allowing users to circumvent the graphical
frontend and execute tools and workflows programmatically [61]. As the scale
of analyses increases, the demand for such programmatic solutions also increases.
Thus, there is a need for user-friendly, command-line interfaces which can be used
to scale up complex analyses.

2.6.1 Conda

Conda is a package manager associated with the Python ecosystem, but capable
of packaging software written in any language. It doubles as a manager of virtual
environments, into which Conda packages can be installed. For scientific software,
where reproducibility has a very high value, Conda is an extremely useful tool, as
it allows managing of packages on the level of software versions and builds. If a
user runs a Galaxy tool with the same version twice, or on two different servers,
even several years apart, they can therefore be confident that the software being
used, including all dependencies, is identical. Other advantages of Conda are its
language-agnostic nature, the installation of binaries without compilation, and that
installation does not require any special user permissions.

As part of this thesis, several widely-used computational chemistry software packages
were integrated and maintained into the conda-forge [58] and Bioconda [57]
channels, two open-source community-run repositories for the development of
Conda packages. Conda-forge is general purpose and is the biggest channel by
number of packages, while Bioconda has a more narrow focus on bioinformatics
software.

2.6.2 BioContainers

The BioContainers project is developed in parallel to the Bioconda project, with the
aim of increasing the reliability and reproducibility of research software even further
[62]. This is achieved by containerisation, a technology first used in cloud computing;
containerisation involves the creation of an isolated computational environment in
which all required software is preinstalled and which cannot interact with the host
system. While the level of isolation is not as complete as for a virtual machine, as
the container still shares the underlying operating system with the host machine,
it is considerably improved compared to a Conda environment. Containerisation
is a necessary component of the software stack supporting workflow management
systems such as Nextflow or Galaxy, as it allows straightforward installation of
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the numerous software dependencies and environments required for a complex
scientific workflow [63]. The BioContainers project supports two different types of
containers: Docker and Singularity. For every individual Bioconda package, as well
as every combination of packages required by a Galaxy tool, Docker and Singularity
containers are automatically built and stored, the latter by the Galaxy project in
a shared Cern Virtual Machine File System (CVMFS) [64]. Once built, containers
are distributed via the BioContainers Registry [65] with a RESTful API, allowing
software developers to access the Registry programmatically.
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The ChemicalToolbox:
computational chemistry in
Galaxy

3

This chapter summarises the work originally described in the following publica-
tions:

• Simon A. Bray, Tharindu Senapathi, Christopher B. Barnett, Björn A. Grüning.
Intuitive, reproducible high-throughput molecular dynamics in Galaxy: a
tutorial. Journal of Cheminformatics, Volume 12, Article number: 54, 10
September 2020, https://doi.org/10.1186/s13321-020-00451-6

• Simon A. Bray, Xavier Lucas, Anup Kumar, Björn A. Grüning. The Chemical-
Toolbox: reproducible, user-friendly cheminformatics analysis on the Galaxy
platform. Journal of Cheminformatics, Volume 12, Article number: 40, 01 June
2020, https://doi.org/10.1186/s13321-020-00442-7

• Tharindu Senapathi, Simon Bray, Christopher B. Barnett, Björn Grüning,
Kevin J. Naidoo. Biomolecular Reaction and Interaction Dynamics Global Envi-
ronment (BRIDGE). Bioinformatics, Volume 35, Issue 18, pages 3508–3509,
15 September 2019, https://doi.org/10.1093/bioinformatics/btz107.

3.1 Introduction

Cheminformatics and computational chemistry are complex fields utilizing a wide
variety of different tools, but data analysis and simulation is still done in a more or
less ad hoc fashion, relying heavily on throwaway bash scripts or Python notebooks,
which are often not reusable or reproducible, even by the original data analyst. Data
analysis is often performed on both local environments and on a HPC cluster, and
software installation itself is generally installed by a mixture of methods, including
compilation by either the user or a system administrator, or via various package
managers, with an emphasis on quick solutions rather than following best practices.
As a result, much time is wasted dealing with dependencies and many analyses
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are, realistically speaking, impossible to reproduce. A few efforts have been made
to improve the situation in recent years - examples include the Conda channel
Omnia [66], which distributes binaries of the OpenMM simulation software [67] and
related packages, analogous to the role of Bioconda in the bioinformatics community,
and the BioExcel initiative, which unites several leading software packages in the
field of molecular simulation, including GROMACS [68] for MD, HADDOCK [69]
for docking, and PMX [70] for free energy calculation. One result has been the
publication of the biobb package [71] for interoperable computational chemistry
analysis. In particular, an emphasis has been laid on engaging with the Common
Workflow Language community [72].

By contrast, the bioinformatics community has also faced similar challenges to those
described above and made some progress towards solutions, including the Bioconda
and BioContainers projects for distributing software and workflow management
systems such as Snakemake, Nextflow and Galaxy. The motivation for the work
described in this chapter is to propose some solutions to these problems for the
field of computational chemistry, based on the solutions already applied by bioin-
formaticians, in particular the Galaxy platform. Galaxy is a data analysis platform
widely used in bioinformatics, but less so in the fields of cheminformatics, computa-
tional chemistry and biophysics. In cheminformatics, the most prominent workflow
management system employed is KNIME, whereas use of such a framework for
organising and executing molecular simulations is currently rare. As part of this
thesis, much work has gone into developing tools to make Galaxy a useful contender
for developing and running cheminformatics and simulation workflows. Numerous
contributions have also been made to neighboring ecosystems, for example Bioconda
and BioContainers.

3.2 Methods

3.2.1 ChemicalToolbox

As a first step, work was done to create a comprehensive platform for cheminformat-
ics and computational chemistry analysis based on the Galaxy system. A selection
of tools were integrated, and existing tools were also updated and modified where
necessary. The result was the creation of the ChemicalToolbox, an open, accessible
webserver for cheminformatics. Unlike the typical webserver, however, for which the
software is executed in an unknown environment and perhaps not even published
for the user to use independently, the tools are completely reproducible; if desired,
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the user can install the tools onto a local Galaxy server and continue their work, or
just install the Conda packages or containers if they prefer to work in a command
line environment.

Firstly, tools for downloading chemical structures from public databases such as
PubChem [73], ChEMBL [74], and ZINC [75] were added, and a workflow pub-
lished which downloaded all structures from all of these databases, standardising
and removing duplicates. A workflow was also created and published for the “hole
filling” problem, which is encountered when a compound library is used in which
compounds are unevenly distributed through the chemical space. In other words,
there are “holes” in the chemical space where only very few compounds are located.
The workflow proceeded by calculating fingerprints for all input molecules, identi-
fying these sparse regions by clustering, and “topping-up” by selecting only small
clusters and adding compounds from PubChem which are chemically similar to
them.

Once a satisfactory initial compound library has been created, various tools provide
a range of cheminformatics functionality for further analysis. Apart from the finger-
printing tools already mentioned, users may wish to interconvert between various
chemical formats, generate three-dimensional conformers for a ligand based on a
chemical graph, or generate charge forms at a particular pH value. To enable this,
tools were written leveraging the open-source RDKit and OpenBabel packages. For
the next stage in a typical virtual screening project, multiple tools for molecular mod-
elling are also provided. In particular, tools for the open-source docking software
AutoDock Vina and rDock have been incorporated into the ChemicalToolbox. These
tools parallelise the command-line software, to allow rapid processing of compound
libraries containing multiple chemical structures. Prior to docking, tools based on
RDKit and fpocket can be used to identify potential protein pockets or binding sites.
Typical workflows for such projects, based on both rDock and AutoDock Vina, have
been published.

As part of this thesis, contributions were also made to Galaxy-ML, a Galaxy-based
workbench for machine learning [76]. A workflow was created combining Galaxy-ML
and ChemicalToolbox tools to perform QSAR-like analyses. Binding assay data can
be downloaded from PubChem and submitted to this workflow; chemical descriptors
are calculated for each compound using RDKit and a classification model is trained
to assign the labels “active” or “inactive” based on these descriptors.
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3.2.2 BRIDGE

In addition to the ChemicalToolbox, a more specialised toolkit for molecular dy-
namics simulation and analysis was developed in collaboration with partners at the
University of Cape Town in South Africa. The basis of this toolkit is the GROMACS
[68], CHARMM [77] and NAMD [78] molecular dynamics software, and analysis
tools based on MDAnalysis [79] and Bio3d [80]. My contribution to the paper was
the development of the GROMACS tools. GROMACS is a highly-performant MD code
and is crucially open-source, allowing deployment of the Galaxy tools developed
onto public servers.

GROMACS is a complex piece of software; its functionality is split over 99 sub-
commands, as of the 2022 release [81], and it has been under development for
over thirty years (since 1991). Therefore, the process of wrapping it as for use in
Galaxy required some design choices to be made. Only a subset of the functionality,
sufficient for setting up and running MD simulations, was incorporated. Some of
the subcommands were converted directly into Galaxy tools, e.g. solvate as a tool
for solvation, pdb2gmx as a tool for parameterizing PDB files prior to simulation. In
some cases, however, a direct mapping between GROMACS commands and Galaxy
tools proved to be unintuitive. For example, running MD simulations in GROMACS,
assuming parameterisation is complete and a valid set of GROMACS files is available,
requires two commands: the grompp and mdrun subcommands. The former acts as a
preprocessor which reads all input files, including topology, structure and the MDP
file which specifies a configuration for the simulation, and records all data as a single
binary file. This is then used as input for the second command, which actually runs
the simulation. For the Galaxy implementation, the decision was made to combine
both into a single tool. Thus, a user can run MD simulations on Galaxy without even
being aware of this implementation detail chosen by the GROMACS developers.

For the original publication, tools for simulation setup, solvation, energy minimisa-
tion, NPT and NVT equilibration and production simulation were written. Develop-
ment continued in the years after the original publication with the addition of more
specialised tools: merging GROMACS topologies, calculating energy components
from MD simulations, modifying the simulation box, generating GROMACS index
files for molecular groups, generating restraints for simulations, and manipulating
GROMACS trajectories.
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3.3 Results

3.3.1 Workows

A selection of workflows were developed and described in the ChemicalToolbox
paper [82]. These are discussed in brief again below.

Fig. 3.1: The protein-ligand docking workflow described below, as viewed in the Galaxy
workflow editor. For clarity, simplified schematics of the workflows are provided
here.

Data collection

There are a huge number of chemical structures stored in different locations online
- some of the most well-known resources include PubChem, ChEMBL and ZINC,
as well as many smaller, more specialised databases such as Drugbank [83]. A
workflow was developed which accesses several of the largest of these resources
and downloads all available compounds, before standardizing (e.g. at a constant
pH, or to remove tautomers) and removing any duplicated structures (Figure 3.2).
This provides an extensive list of compounds which users can make use of for
further cheminformatics analysis, e.g. filtering for compounds containing a specific
substructure.

Hole lling

Often, chemists and cheminformaticians face the issue of uneven occupation of the
chemical space, a concept introduced in the Background section. This may be, for
example, due to lack of synthetic routes to reaching certain chemical structures,
leading to sparsely occupied areas in the chemical space. Nonetheless, it may well
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Fig. 3.2: Simplified schematic of the data collection workflow. Information on the image
source is provided in the List of Figures.

be undesirable that these regions are neglected in the data analysis. A workflow
(Figure 3.3) is proposed for “hole filling”, entailing calculation of fingerprints for
all the molecules in the Therapeutic Target Database (TTD) [84], followed by
clustering according to the Taylor-Butina algorithm [85]. Singletons in the dataset
are identified as candidates representing “holes” in the chemical space, which can
be “filled” in the subsequent step; here, the PubChem database is searched for
compounds which are close in the chemical space to each of the identified singletons
and these compounds added to the TTD database.

Fig. 3.3: Simplified schematic of the hole filling workflow. Information on the image source
is provided in the List of Figures.

Protein-ligand docking

The third workflow (Figure 3.4) builds on Galaxy tools for protein-ligand docking,
using the AutoDock Vina [86] software. The ChemicalToolbox also provides access
to the rDock software [87] as an alternative, as well as fpocket [88], which can be
used to locate protein pockets prior to docking. The workflow takes a PDB file, and
optionally, a compound library in SMILES format; if the latter is not provided, a
search is made of the ChEMBL database for structurally similar compounds to any
ligand present in the PDB file. The files are then prepared for docking, generating
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3D structures for the compounds to be docked, converting the receptor PDB file to
PDBQT format, and locating a box surrounding the pocket into which the compounds
should been docked. Docking itself is then performed, and the results presented in
SDF as well as in tabular format.

Fig. 3.4: Simplified schematic of the protein-ligand docking workflow. Information on the
image source is provided in the List of Figures.

QSAR

The fourth workflow (Figure 3.4) makes use of machine learning techniques to
make predictions about unseen chemical compounds. Data from PubChem is used
and cleaned using the OpenBabel toolkit to standardise formatting and remove
duplicated molecules, before the Mordred library [89] is used to calculate 21 chemi-
cal descriptors, which are used as features for training a classification model. The
dataset used as a case study is made up of around 8000 compounds which are
classified as active or inactive as agonists of the estrogen receptor signalling (ERα)
pathway [90]. A test-train split of 0.3:0.7 is used and a model based on the random
forest classification algorithm, as implemented by the scikit-learn Python library
[91], is trained. The trained model can be used directly within Galaxy to make
predictions on unseen compounds, or its quality can be assessed using the figures
and statistics automatically generated by the workflow (e.g. Figure 3.6).

Fig. 3.5: Simplified schematic of the machine learning workflow. Information on the image
source is provided in the List of Figures.
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Fig. 3.6: Receiver operating curve generated by the QSAR workflow, as displayed in the
Galaxy interface.

3.3.2 Capacity building

As mentioned, computational chemistry is a complex field, encompassing a multi-
tude of concepts and software packages. High-quality online tutorials, which are
accessible for newcomers, are missing for many of these - for example, protein-ligand
docking. The Galaxy community has spearheaded a training initiative, the Galaxy
Training Network [92], which provides tutorials for a range of topics, primarily in
bioinformatics, but increasingly in other scientific fields, which make use of free,
public Galaxy servers which give students access to a wide range of open-source tools
via a graphical interface for users, ensuring that lack of knowledge of the command-
line interface does not pose a barrier to learning scientific concepts. Eight different
tutorials, covering protein-ligand docking, scoring, MD parameterisation, simulation,
and analysis, QSAR-based prediction of biodegradation, and pharmacophore-based
virtual screening were written. One of these, “High Throughput Molecular Dynamics
and Analysis” was published as a standalone paper.

The aim of this paper was twofold: firstly, to provide a clear guide to the conduct
of MD simulations on protein-ligand complexes using the Galaxy platform for the
help of beginners to MD; and secondly, to demonstrate the use of Galaxy workflows,
collections and command-line scripts for scaling up MD simulation, so that simula-
tions of hundreds of ligands can be started simultaneously against a single protein
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at a single click. These ideas will be discussed more extensively in the subsequent
chapter.

3.4 Conclusion

In conclusion, a complete web-based workbench for cheminformatics, computational
chemistry, and molecular biophysics has been developed, together with training
material to help introduce the topic to newcomers to the field. The ChemicalToolbox
allows individual tools to be combined to form complex workflows, which can be
executed either via the graphical interface or the command line. The latter case
allows the scaling up of simulation and analysis to a massive scale. The remainder
of this thesis describes some scientific use-cases in more detail, as well as the work
done to enable command-line execution of the scientific workflows which have been
developed.
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Abstract 

Here, we introduce the ChemicalToolbox, a publicly available web server for performing cheminformatics analysis. The 
ChemicalToolbox provides an intuitive, graphical interface for common tools for downloading, ltering, visualizing 
and simulating small molecules and proteins. The ChemicalToolbox is based on Galaxy, an open-source web-based 
platform which enables accessible and reproducible data analysis. There is already an active Galaxy cheminformatics 
community using and developing tools. Based on their work, we provide four example workows which illustrate the 
capabilities of the ChemicalToolbox, covering assembly of a compound library, hole lling, protein-ligand docking, 
and construction of a quantitative structure-activity relationship (QSAR) model. These workows may be modied and 
combined exibly, together with the many other tools available, to t the needs of a particular project. The Chemical-
Toolbox is hosted on the European Galaxy server and may be accessed via https ://chemi nform atics .usega laxy.eu.
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Introduction
Open-source software packages are now available for 
a wide range of cheminformatics applications, ranging 
from downloading [1, 2], manipulating, and processing 
small molecules [3–5], to protein-ligand docking calcu-
lations [6, 7], to quantum chemistry [8]. However, with 
the growth in the number of applications, the diculty 
in combining these tools into easily usable, reproduc-
ible analysis workows increases. Many tools require 
the user to possess some level of programming skill, or 
at least ability to use the command line; some also rely 
on unique le formats. Some tools require compilation 
of the source code for their use, which not only poses a 
challenge for computationally inexperienced scientists, 

but also muddies the waters if another user attempts to 
reproduce the analysis in another environment [9].

Use of technologies such as Conda [10] and contain-
erization (most notably Docker and Singularity [11–13]) 
helps to mitigate some of these issues. Conda enables 
reproducible analyses and simplies installation, while 
containerization technologies provide a common work-
ing environment across operating systems. However, 
knowledge of the command line is still required to run 
software, and the user is responsible for maintaining 
the thorough records (e.g. through use of a traditional 
lab book) that are required for full reproducibility of 
analyses.

Here, we present the ChemicalToolbox, a modular, 
intuitive platform for cheminformatics analysis, built 
within the Galaxy system [14, 15]. It combines numerous 
open-source cheminformatics tools, and integrates them 
into an intuitive, web-based user interface; requested jobs 
can then be sent to a high-performace computing (HPC) 
cluster for execution. us, the user has access to a range 
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of useful tools and substantial compute resources, with-
out being exposed directly to the HPC environment, or 
to the command-line interface used by much cheminfor-
matics software. Tools can be run individually, or com-
bined into workows, which can then be shared with 
collaborators. All tools are made publicly available on 
the European Galaxy server, under the subdomain https 
://chemi nform atics .usega laxy.eu. As an alternative, the 
ChemicalToolbox can also be easily installed on personal 
computers, clusters, and cloud services; once installed, 
the system can be accessed simultaneously by multiple 
users, using current standard web browsers.
e ChemicalToolbox provides a range of tools for 

dierent applications, as depicted in Fig.  1. Chemical 
structures can be accessed from online databases such as 
PubChem [2] and ChEMBL [1]. Manipulation of chemi-
cal structures can be performed with OpenBabel [4] and 
RDKit [3], while calculation of molecular descriptors for 
QSAR studies may be done using Mordred [16] or PaDEL 
[17], which rely on RDKit and the Chemical Develop-
ment Kit (CDK) [5] respectively. Protein-ligand docking 
may be performed using AutoDock Vina [6] and rDock 
[7]. Furthermore, the previously published BRIDGE plat-
form [18] extends the core functionality of the Chemi-
calToolbox into molecular dynamics, providing a suite of 
tools which draws on the GROMACS [19], AmberTools 

[20], Parmed [21], and MDAnalysis [22] software. Apart 
from tools, the Galaxy codebase has been extended to 
provide features particularly useful for cheminformatics. 
ese include support for a range of letypes commonly 
used for reporting chemical structures, including PDB, 
SMILES, InChI, SMILES, SDF/MOL and MOL2, as well 
as tools for interconverting between these formats, based 
on OpenBabel. e most common GROMACS letypes 
have also been made available. Another feature integrated 
directly into the Galaxy codebase is the NGLviewer [23], 
which may be used for visualization of compounds and 
macromolecules. Furthermore, apart from the features 
of the ChemicalToolbox itself, the inherent exibility of 
the Galaxy system allows combination of the Chemical-
Toolbox with existing platforms developed by research-
ers working in other related areas, such as the Galaxy 
Genome Annotation project, metabolomics (Workow-
4Metabolomics [24], Metaboloow [25]), proteomics 
(Galaxy-P [26]), and machine learning—enabling the 
development of new, transdisciplinary workows.

A number of other workow management systems are 
commonly used in cheminformatics; the most promi-
nent are Pipeline Pilot [27] and KNIME [28, 29]. Pipeline 
Pilot is a workow management software developed by 
Accelrys Enterprise Platform and published as a propri-
etary application. It oers tools bundled into ‘component 

Fig. 1 Tools and visualizations available via the ChemicalToolbox. Colored boxes represent other related Galaxy communities, each with their own 
tools and workows which can be exibly combined with those of the ChemicalToolbox
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collections’; two of which, the Chemistry and ADMET 
collections, provide similar functionality to the Chemi-
calToolbox. Pipeline Pilot is known for its user-friendly 
interface and ease of use for new users [30]. However, 
its proprietary nature makes reproducible research and 
sharing data very dicult or impossible, and the cost of 
purchasing a license is prohibitive for many research-
ers. KNIME, like the ChemicalToolbox, is open-source 
and free-of-charge, and also leverages well-known open-
source software such as the CDK [5, 31] and RDKit in its 
extensions. KNIME ‘nodes’ are analogous to Galaxy tools, 
and are assembled into workows in a similar manner. 
However, unlike the ChemicalToolbox, the free version of 
KNIME is not scalable for usage with an HPC or cloud 
environment; for this, a commercial license for KNIME 
Server must be purchased. Furthermore, the experience 
of using KNIME is comparable to programming with a 
graphical interface; KNIME describes its workows as a 
‘graphic equivalent to a script’. By contrast, the Chemical-
Toolbox explicitly aims for accessibility to users without 
programming experience, as the majority of life scientists 
do not possess these skills.

Oering a cheminformatics toolbox as part of Galaxy 
has a number of advantages. Firstly, the Galaxy platform 
is a well-developed, mature project, and while originally 
developed for genomics research, it is fundamentally 
agnostic regarding the eld of research. e Chemical-
Toolbox allows chemists to also access the features pro-
vided by the Galaxy platform, including a curated body 
of training material provided by the Galaxy Training Net-
work [32]. Secondly, all ChemicalToolbox tools can be 
used via the European Galaxy server, which provides free 
access to generous computational resources for compu-
tational analysis, based on the de.NBI cloud [33] and the 
ELIXIR network [34]. However, the exibility of the Gal-
axy system also allows users to download the Chemical-
Toolbox and run it locally or on their own server. ere is 
already a small but active Galaxy computational chemis-
try community, constantly maintaining and contributing 
tools.

Implementation
While the ChemicalToolbox is primarily available via 
the European Galaxy instance, it has been designed as a 
dynamic cheminformatics platform, which can be imple-
mented in diverse working environments and architec-
tures. As it is built on top of the Galaxy framework, the 
ChemicalToolbox can be congured to run on diverse 
compute clusters, e.g. Kubernetes [35], TORQUE [36], 
DRMAA [37], Condor [38], or Pulsar [39]. is scalability 
allows users to perform compute-intensive cheminfor-
matics calculations, including ltering, converting, and 

calculating hundreds of physicochemical properties and 
descriptors for many millions of compounds in a matter 
of hours.

Any software tool that is parameterizable and can 
be executed through a terminal command line can be 
wrapped as a Galaxy tool and included into the Chemi-
calToolbox, regardless of the programming language 
used for the implementation of the algorithm. Using the 
Galaxy ToolShed, each tool can be installed through the 
user’s web browser by clicking on the required software—
analogous to the ‘app stores’ provided by companies such 
as Apple or Microsoft. Moreover, the associated depend-
encies are automatically downloaded, compiled, and 
made accessible within the Galaxy environment. As the 
Galaxy ToolShed supports tool dependency versioning, 
the ChemicalToolbox is able to keep track of tool ver-
sions, enabling reproducibility and maintaining software 
provenance over time. Tool execution triggers creation 
of a Conda environment or download of a container with 
all software requirements installed, all with the speci-
ed versions. When executing outdated workows in the
ChemicalToolbox, the user is notied about newer ver-
sions of the tools and is allowed to choose specic ver-
sions for execution.

Many kinds of calculations in computational chemistry 
can be easily parallelized; an example is protein-ligand 
docking, where each of thousands of compounds in a 
library needs to be assessed individually. In the Chemi-
calToolbox, this is achieved by the use of collections. 
A Galaxy collection allows related les to be grouped 
together and processed identically. Input les (for exam-
ple, a docking library in SDF format) are split according 
to dened parameters (the SDF delimiter), and when the 
AutoDock Vina or rDock tool is run on the resulting col-
lection, docking is performed for each element of the col-
lection separately and in parallel. Such a parallelization 
process is carried out automatically in the background, 
and can be easily parameterized and scaled-up by the 
server administrator responsible for maintaining the 
ChemicalToolbox as a suitable platform for high-perfor-
mance computing.

Results
Here we present a number of case studies which demon-
strate the capabilities of the ChemicalToolbox. For each 
case study, tools are chained together to form a ‘work-
ow’, which in the Galaxy system can be used much like 
an individual tool, thus enabling the exible creation and 
combination of new functionalities as desired. Each of 
the workows is published online under https ://usega 
laxy.eu/work ows/list_publi shed and labelled with the 
‘cheminformatics’ tag, as are sample Galaxy histories for 
each of the workows under https ://usegalaxy.eu/histo 
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ries/list_published. Simplied schematic diagrams of the
workows are provided in Additional le 1, together with 
individual links to each workow and history.

Hole lling and library optimization
e correct choice of chemical libraries is a crucial step
in high-throughput virtual screening [40]. By using 
larger libraries, the chances of identifying hits increase, 
[41] along with the complexity and resources required 
for proper storage and testing. Moreover, it has been 
estimated that the chemical space contains more than 
10

60 molecules, a number impossible to handle cur-
rently or in the near future [42]. As a consequence,
pre-ltered and focused libraries are commonly used in 
drug discovery, at the risk of exploring a minute por-
tion of the chemical space (from hundreds to millions
of compounds) and leaving large regions of the chemi-
cal space unexplored. As a result, hole lling and library
optimization have assumed a major role in the elds of 
cheminformatics and drug discovery.

Here we demonstrate a ChemicalToolbox workow 
which can be used to optimize a compound library 
using hole-lling. Downloading all drugs listed on the 
erapeutic Target Database [43] (TTD) provides a 
small library of around 20,000 compounds. For the 
purpose of this workow, our aim is to ‘top-up’ this 
library to 50,000, ensuring that added compounds 
are located in more sparsely occupied regions of the 
chemical space. Initially, we download the entirety 
of the PubChem database, which serves as the source 
for the new molecules, before calculating molecular 
ngerprints (using the Chemfp library [44]) for both 
PubChem and TTD compounds. Taylor-Butina cluster-
ing [45] is then performed on the TTD and singletons
are identied, i.e. clusters which contain only a single 
molecule; these are used as seeds for expansion of the 
compound library. We then perform a similarity search 
to identify PubChem compounds within a distance 
threshold of the TTD singletons just found, which 
yields a total of around 2 million. In order to select 
compounds evenly, we perform Taylor-Butina cluster-
ing once again on our pool of 2 million molecules. A
single compound is then selected from each of 30,000 
dierent clusters, and added to the compound library, 
topping it up to 50,000.

Ligand library preparation
e preparation of ligand libraries is an important aspect 
of in silico high-throughput virtual screening, where 
small molecules are systematically tested in the catalytic 
or binding site of a protein (for example, via protein-
ligand docking) aiming at the selection of candidate 

compounds with specic structural and physicochemical 
features. We provide a ChemicalToolbox workow which 
oers an ecient solution for the large-scale manage-
ment of data sets containing millions of molecules.

Initially, the workow queries several freely available 
databases (including PubChem, ChEMBL and ZINC 
[46]) and automatically loads and converts all molecules 
to canonical SMILES for uniformity using OpenBabel. A 
specialist tool is used to extract all structures from the 
PubChem FTP site, while a general download tool can 
be used to access the other databases. After concatenat-
ing the resulting SMILES les and removing counteri-
ons and fragments, a nal, cleaned dataset of almost 200
million unique compounds in the SMILES format was 
obtained (databases accessed on 04.10.2019). It is worth 
mentioning that the ChemicalToolbox has been speci-
cally designed to automatically handle many format les
(SDF and SMILES in the present workow) encoding 
from a few hundreds or thousands up to many millions 
of molecules.

Protein‑ligand docking
A common aim in cheminformatics is assessing the inter-
actions of compounds with a protein. Protein-ligand 
docking involves estimating the interaction energy and 
the optimal recognition pose of a given ligand in complex 
with a protein [47, 48]. e ChemicalToolbox contains 
a number of tools which can be used for protein-ligand 
docking, including docking software AutoDock Vina and 
rDock. e fpocket tool can also be used for automatic 
identication of pockets which are suitable for docking 
[49].

Firstly, a protein structure and a compound library 
are created, either uploaded by the user or downloaded 
directly from online databases such as the PDB or 
ChEMBL. ese can be processed using the Filter tool,
which can apply either a commonly-used ruleset, such 
as Lipinski’s rule-of-ve [50], or a set of user-dened 
properties. In this case, we use two very dierent sys-
tems as illustrative examples: the Hsp90 chaperone pro-
tein (structure published under PDB accession code 2brc 
[51]) and the β2-adrenergic receptor (structure published 
under PDB accession code 3pds [52]). Identication of 
a binding site allows the denition of a 3D box which is 
searched (using AutoDock Vina, though rDock is also 
available) to nd a variety of possible binding positions 
for each of the compounds in the library. Results can be 
extracted from the output SD les and plotted, or used 
for further analysis.
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Machine learning for predicting small molecule protein 
interactions
e Galaxy platform contains tools from multiple dis-
ciplines, which oers the opportunity to conduct inter-
disciplinary analyses. Recently, a suite of statistical and 
machine learning tools has been made available. is 
allows the development of quantitative structure-activity 
relationship (QSAR) models in the ChemicalToolbox.

As an illustrative example, we have published a Galaxy 
workow for constructing a random forest classier for 
predicting the activity of compounds as agonists of the 
estrogen receptor alpha signaling (ERα ) pathway. Data 
are downloaded directly from the relevant PubChem 
assay, which forms part of the Tox21 program [53]. Ini-
tially, tools based on OpenBabel are used to remove 
counterions or small fragments from the compound 
library, as well as any duplicated molecules. For the 
remaining 7459 compounds, over 1800 two- and three-
dimensional molecular descriptors are calculated using 
the Mordred tool [16] and 21 selected as features for 
building the classication model. A training/test split of 
0.7/0.3 was used and a classication model built using the 
random forest method (in this case, the number of trees 
used by the classier is 100) based on the descriptor val-
ues calculated for the training data. e random forest 
algorithm is applied using the implementation published 
as part of the scikit-learn Python library [54]. Aside from 
generation of a model that can be applied to new data, 
the eectiveness of the model can be tested and the 
results visualized in the form of a ROC curve, precision, 
recall and f-score plots, and confusion matrix. Here, an 
AUC value of 0.72 is achieved, which is reasonable con-
sidering the simple approach to feature and parameter 
selection applied here.

Training material
In addition to publishing the workows described 
above, we have also created online tutorials providing 
an introduction to the features of the ChemicalTool-
box, made available via the Galaxy Training Network 
[32], which already provides a range of introductory 
and advanced training material for analysis on the Gal-
axy platform. ese tutorials may be found under https 
://train ing.galax yproj ect.org/train ing-mater ial/topics/
compu tatio nal-chemi stry. For example, the tutorial on 
protein-ligand docking follows the workow described 
above, using a small library of ligands downloaded from 
ChEMBL and docking them to the Hsp90 protein using 
AutoDock Vina. In addition, the tutorial guides the user 
through several other analyses of the compound library, 
using OpenBabel-based tools to visualize compounds 
and convert between dierent formats as required, and 

performing Taylor-Butina clustering based on calculated 
chemfp ngerprints.
e Galaxy computational chemistry community has 

developed a number of other more specialized tutori-
als, mainly focusing on molecular dynamics simulation
and analysis. Other tutorials cover free energy per-
turbation and the application of machine learning to
cheminformatics.

Conclusions
We have prepared the infrastructure and software for 
the ChemicalToolbox, a Galaxy-based cheminformat-
ics webserver available via https ://chemi nform atics 
.usega laxy.eu, and made a number of workows avail-
able which demonstrate its capabilities, together with
accompanying online introductory tutorials. Such a 
project can by its nature never be complete or com-
prehensive; new scientic advances will always result 
in the development of new software and new analytical 
approaches. However, the ChemicalToolbox is already 
suciently developed to be used to perform novel and
interesting analyses, as well as for pedagogical pur-
poses. We hope that the work published so far will 
provide a useful resource for chemists and cheminfor-
maticians alike. With this publication, we hope to grow 
the Galaxy computational chemistry community fur-
ther and to provide an impetus for further development 
of the ChemicalToolbox.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1332 1-020-00442 -7.
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Abstract

Motivation: The pathway from genomics through proteomics and onto a molecular description of

biochemical processes makes the discovery of drugs and biomaterials possible. A research frame-

work common to genomics and proteomics is needed to conduct biomolecular simulations that will

connect biological data to the dynamic molecular mechanisms of enzymes and proteins. Novice bio-

molecular modelers are faced with the daunting task of complex setups and a myriad of possible

choices preventing their use of molecular simulations and their ability to conduct reliable and repro-

ducible computations that can be shared with collaborators and verified for procedural accuracy.

Results: We present the foundations of Biomolecular Reaction and Interaction Dynamics Global

Environment (BRIDGE) developed on the Galaxy platform that makes possible fundamental mo-

lecular dynamics of proteins through workflows and pipelines via commonly used packages, such

as NAMD, GROMACS and CHARMM. BRIDGE can be used to set up and simulate biological macro-

molecules, perform conformational analysis from trajectory data and conduct data analytics of

large scale protein motions using statistical rigor. We illustrate the basic BRIDGE simulation and

analytics capabilities on a previously reported CBH1 protein simulation.

Availability and implementation: Publicly available at https://github.com/scientificomputing/

BRIDGE and https://usegalaxy.eu

Contact: kevin.naidoo@uct.ac.za or bjoern.gruening@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Molecular mechanisms underlie biological phenomena. Consequently,

locating molecular modeling tools within a genomics research plat-

form consolidates the three components of the bioinformatics ecosys-

tem that enables a seamless progression from (i) DNA, RNA or

protein sequence analysis to (ii) gene expression profiling, metabolic

and functional pathway analysis to (iii) molecular structural analysis

of proteins—identification of therapeutic targets, development of

biomarkers and examination of protein alterations. It is this intention

to link genomic analytics to molecular simulations that motivates our

development, reported here, of the Biomolecular Reaction and

Interaction Dynamics Global Environment (BRIDGE) within the

Galaxy platform (Afgan et al., 2018; Goecks et al., 2010). BRIDGE is

a web server, based on the Galaxy framework, to perform molecular

dynamics (MD) simulations of biomolecules and conduct statistical

analyses on the trajectory data produced.

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3508
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Protein functions are carried out by atomistic scale binding inter-

actions of their residues in catalytic/binding domains in the case of

enzymes/lectins/antibodies and conformational changes of their

backbones and loops that regulate transport, folding, etc. (Fersht,

1999). It is now universally accepted that probing the molecular

mechanisms of reaction and interactions are best made using MD

simulations.

The Galaxy software platform is an open-source platform that has

historically focused on sequencing analysis of all kinds (Goecks et al.,

2010), but now is a general framework for data analysis, functioning

beyond life sciences. Here we add molecular modeling functionalities

to Galaxy, specifically the capability to perform (i) MD simulations,

(ii) statistical mechanics analyses (PDFs, time correlation functions,

etc.) on dynamics trajectories and (iii) statistical analysis and big data

analytics on individual biomolecules or families of biomolecular struc-

tures and configurations.

A set of Galaxy tool wrappers (Fig. 1A) have been developed

to set up and run classical MD simulations using either one (or all)

of the CHARMM (Brooks et al., 2009), NAMD (Phillips et al.,

2005) and GROMACS (Lindahl et al., 2001), MD engines.

Following this, wrappers were developed to include the features of

MDAnalysis (Gowers et al., 2016) for subsequent statistical

mechanics analysis and finally wrappers for the Bio3D (Skjærven

et al., 2014) package were written to make the statistical analysis of

structural/conformational biomolecular motions produced from tra-

jectories possible.

2 Demonstration and conclusion

We illustrate some of the analytical tools able to investigate con-

formational changes by analysis of a typical short protein simulation

such as for CBH1 (see Supplementary Material for details). The

Ramachandran style dihedral angle plot of a key glycosidic linkage

of the oligosaccharide ligand is computed using the Ramachandran

Plots tool (Fig. 1B). The protein motion is analyzed using the root

mean square deviation (RMSD) tool. Three distinct conformations

around RMSD of 0.8, 1.2 and 1.8 Angstrom can be seen from the

RMSD histogram (Fig. 1C).

Protein conformational changes can be investigated in greater de-

tail using tools in the statistical analyses module. Here PCA was used

to discover the statistically meaningful conformations in the 5 ns

CBH1 trajectory (Fig. 1D). The principal motions within the trajec-

tory and the vital motions needed for conformational changes were

identified. Two distinct groupings along the dominant PC1 plane

(Fig. 1Di and iv) indicating a non-periodic conformational change are

identified. The groupings along the PC2 and PC3 planes (Fig. 1Dii)

do not completely cluster separately implying that these global

motions are periodic. The PC1 is linked to an active site motion

(Fig. 1Diii) that limits the motion to a key glycosidic bond (Fig. 1B).
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Intuitive, reproducible high-throughput 
molecular dynamics in Galaxy: a tutorial
Simon A. Bray1 , Tharindu Senapathi2 , Christopher B. Barnett2*  and Björn A. Grüning1* 

Abstract 

This paper is a tutorial developed for the data analysis platform Galaxy. The purpose of Galaxy is to make high-
throughput computational data analysis, such as molecular dynamics, a structured, reproducible and transparent pro-
cess. In this tutorial we focus on 3 questions: How are protein-ligand systems parameterized for molecular dynamics 
simulation? What kind of analysis can be carried out on molecular trajectories? How can high-throughput MD be used 
to study multiple ligands? After nishing you will have learned about force-elds and MD parameterization, how to 
conduct MD simulation and analysis for a protein-ligand system, and understand how dierent molecular interactions 
contribute to the binding anity of ligands to the Hsp90 protein.

Keywords: Galaxy, Molecular Dynamics, Reproducible
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Introduction
Molecular dynamics (MD) is a commonly used method 
in computational chemistry and cheminformatics, in 
particular for studying the interactions between small 
molecules and large biological macromolecules such as 
proteins [1]. However, the barrier to entry for MD simu-
lation is high; not only is the theory dicult to master, 
but commonly used MD software is technically demand-
ing. Furthermore, generating reliable, reproducible simu-
lation data requires the user to maintain detailed records 
of all parameters and les used, which again poses a chal-
lenge to newcomers to the eld. One solution to the lat-
ter problem is usage of a workow management system 
such as Galaxy [2], which provides a selection of tools 
for molecular dynamics simulation and analysis [3]. MD 
simulations are rarely performed singly; in recent years, 
the concept of high-throughput molecular dynamics 
(HTMD) has come to the fore [4, 5]. Galaxy lends itself 

well to this kind of study, as we will demonstrate in this 
paper, thanks to features allowing construction of com-
plex workows, which can then be executed on multiple
inputs in parallel.
is tutorial provides a detailed workow for high-

throughput molecular dynamics with Galaxy, using the 
N-terminal domain (NTD) of Hsp90 (heat shock protein 
90) as a case-study. Galaxy [2] is a data analysis platform 
that provides access to thousands of tools for scientic 
computation. It features a web-based user interface while 
automatically and transparently managing underlying 
computation details, enabling structured and reproduc-
ible high-throughput data analysis. is tutorial provides 
sample data, workows, hands-on material and refer-
ences for further reading. It presumes that the user has 
a basic understanding of the Galaxy platform. e aim is 
to guide the user through the various steps of a molecular 
dynamics study, from accessing publicly available crys-
tal structures, to performing MD simulation (leveraging 
the popular GROMACS [6, 7] engine), to analysis of the 
results.
e entire analysis described in this article can be con-

ducted eciently on any Galaxy server which has the 
needed tools. In particular, we recommend using the 
Galaxy Europe server (https ://chemi nform atics .usega 
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laxy.eu) or the Galaxy South Africa server (https ://galax 
y-compc hem.ilifu .ac.za). For users who wish to run their 
own Galaxy server locally, we provide a Docker container 
(https ://quay.io/repos itory /galax y/compu tatio nal-chemi 
stry-train ing) containing a full Galaxy installation, with 
all tools required for the tutorial preinstalled.
e tutorial presented in this article has been devel-

oped as part of the Galaxy Training Network [8] and its 
most up-to-date version is accessible online on the Gal-
axy Training Materials website [9], under the URL https 
://train ing.galax yproj ect.org/train ing-mater ial/topic s/
compu tatio nal-chemi stry/tutor ials/htmd-analy sis/tutor 
ial.html.

What is high‑throughput molecular dynamics?
Molecular dynamics (MD) is a method to simulate 
molecular motion by iterative application of Newton’s 
laws of motion. It is often applied to large biomolecules 
such as proteins or nucleic acids. A common application 
is to assess the interaction between these macromol-
ecules and a number of small molecules (e.g. potential 
drug candidates). is tutorial provides a guide to setting 
up and running a high-throughput workow for screen-
ing multiple small molecules, using the open-source 
GROMACS tools provided through the Galaxy platform. 
Following simulation, the trajectory data is analyzed 
using a range of tools to investigate structural properties 
and correlations over time.

Why is Hsp90 interesting to study?
e 90 kDa heat shock protein (Hsp90) is a chaperone 
protein responsible for catalyzing the conversion of a 
wide variety of proteins to a functional form; examples 
of the Hsp90 clientele, which totals several hundred pro-
teins, include nuclear steroid hormone receptors and 
protein kinases [10]. e mechanism by which Hsp90 
acts varies between clients, as does the client binding site; 
the process is dependent on post-translational modica-
tions of Hsp90 and the identity of co-chaperones which 
bind and regulate the conformational cycle [11].

Due to its vital biochemical role as a chaperone protein 
involved in facilitating the folding of many client proteins, 
Hsp90 is an attractive pharmaceutical target. In particu-
lar, as protein folding is a potential bottleneck to cellular 
reproduction and growth, blocking Hsp90 function using 
inhibitors which bind tightly to the ATP binding site of 
the NTD could assist in treating cancer; for example, the 
antibiotic geldanamycin and its analogs are under investi-
gation as possible anti-tumor agents [12, 13].

In the structure which will be examined during this 
tutorial, the ligand of concern is a resorcinol, a com-
mon class of compounds with anity for the Hsp90 
N-terminal domain. It is registered in the PubChem 

database under the compound ID 135508238 [14]. As 
can be seen by viewing the PDB structure, the resor-
cinol part of the structure is embedded in the binding 
site, bound by a hydrogen bond to residue aspartate-93.
e ligand structure also contains a triazole and a uo-
rophenyl ring, which lie nearer to the surface of the 
protein.

Methods: simulation
is section guides the reader through the step-by-step 
process required to prepare, run and analyze Hsp90. 
A brief explanation of the theory and purpose of each 
step is provided. Refer to the hands-on sections as 
these describe the task with tools and parameters to be 
carried out using Galaxy.

Get data
Create a new Galaxy history and then download a 
crystal structure for the Hsp90 protein from the Pro-
tein Data Bank (PDB). e structure is provided under 
accession code 6HHR [16] and shows Hsp90 in complex 
with the resorcinol ligand (Fig. 1). 

Hands-on 1: Data upload

1. Create a new history for this tutorial
2. Search Galaxy for the Get PDB tool. Re-

quest the accession code 6HHR.
3. Rename the dataset to ‘Hsp90 structure’

Fig. 1 Hsp90 cartoon view. Hsp90 cartoon with ligands in active site, 
rendered using the Galaxy NGL plugin [15]
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Topology generation
e PDB structure is prepared for MD simulation in 
a process referred to as parameterization or topology 
generation.

GROMACS distinguishes between constant and 
dynamic attributes of the atoms in the system. e 
constant attributes (e.g. atom charges, bonds connect-
ing atoms) are listed in the topology (TOP le), while 
dynamic attributes (attributes that can change during a 
simulation, e.g. atom position, velocities and forces) are 
stored in structure (PDB or GRO) and trajectory (XTC 
and TRR) les.
e PDB le includes neither parameters for simula-

tions, nor the positions of hydrogen atoms. erefore, 
before beginning simulation, this information must be 
calculated.

Extract protein and ligand coordinates
Parameterization is performed separately for the ligand 
and protein. e PDB le is separated into two sets of 
coordinates—one for the ligand and one for the protein—
using the simple text manipulation tools integrated into 
Galaxy. 

 
e PDB le is ltered twice: once for lines which do 

not match HETATM, which returns a PDB le containing 
only protein, not ligand and solvent; and once for lines 
which match the ligand’s identity code AG5E, which 
returns a PDB le containing only the ligand.

Set up protein topology
e topology for the protein le is calculated with the 
GROMACS initial setup tool.

A force eld is essentially a function to calculate the 
potential energy of a system, based on various empiri-
cal parameters (for the atoms, bonds, charges, dihedral 
angles and so on). ere are a number of families of 
force elds; some of the most commonly used include 
CHARMM [17], AMBER [18], GROMOS [19] and 
OpenFF [20] (for a recent, accessible overview see
[21]). One of the main AMBER force elds for protein 
modeling, ff99SB, was selected.

Apart from the force eld, a water model was selected
to model the solvent; a wide range of models exist for 
this purpose. e common TIP3P model is selected, 
which is an example of a ‘three-site model’—so-called 
because the molecule is modeled using three points, 
corresponding to the three atoms of water (four- and 
ve-site models include additional ‘dummy atoms’ rep-
resenting the negative charges of the lone pairs of the 
oxygen atom) [22].
e tool produces four outputs: a GRO le (contain-

ing the coordinates of the protein), a TOP le (con-
taining other information, including charges, masses, 
bonds and angles), an ITP le (which will be used to 
restrain the protein position in the equilibration steps 
later on), and a log le.

Please note all the GROMACS tools provided in Gal-
axy output a log le. ese les provide useful informa-
tion for debugging purposes.

Generate a topology for the ligand
e acpype [23] tool is used to generate a topology for 
the ligand. is provides a convenient interface to the 
AmberTools suite and creates the ligand topology in 
the format required by GROMACS.

Inspecting the contents of the ligand PDB le shows 
that it contains no hydrogen atoms. Hydrogens were 
added to the topology using the ‘Compound conver-
sion’ tool (based on OpenBabel [24]).
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e GAFF (general AMBER force eld) is selected, 
which is a generalized AMBER force eld [25] which can 
be applied to almost any small organic molecule.

Appropriate charge and multiplicity parameters are 
entered. e ligand studied is a simple organic molecule, 
with no charge; therefore, the charge is set to 0 and the 
multiplicity to 1. Alternative values for multiplicity need 
only be considered for more exotic species such as metal 
complexes or carbenes.

Next, the topologies are combined and the simulation 
box is dened.

Combine topology and GRO les
e separate topology and structure les for both protein 
and ligand are combined into a single set of les to con-
tinue with the simulation setup. A dedicated Galaxy tool 
is provided for this, using the Python library ParmEd [26].

Note that, apart from this tool, the Galaxy platform
also provides an integrated text editor for making more 
advanced changes to GROMACS topologies or congu-
ration les.

Create the simulation box
e next step, once combined coordinate (GRO) and
topology (TOP) les have been created, is to create a sim-
ulation box in which the system is situated.

is tool returns a new GRO structure le, containing 
the same coordinates as before, but dening a simulation 
box such that every atom is a minimum of 1 nm from the 
box boundary. A variety of box shapes are available to 
choose from: triclinic is selected, as it provides ecient 
packing in space and thus fewer computational resources 
need to be devoted to simulation of solvent.

Solvation
e next step is solvation of the newly created simula-
tion box. Water was chosen as a solvent to in order to
simulate biological conditions. Note that the system is
charged (depending on the pH) and it is neutralized by 
the addition of the sodium and chloride ions (replacing 
existing water molecules) using the solvation tool.

Energy minimization
After the solvation step, parameterization of the sys-
tem is complete and preparatory simulations can be
performed. e rst of these is energy minimization, 
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which can be carried out using the ‘GROMACS energy
minimization’ tool. e purpose of energy minimi-
zation is to relax the structure, removing any steric
clashes or unusual geometry which would articially 
raise the energy of the system.

e EM tolerance here refers to the maximum force 
which will be allowed in a minimized system. e sim-
ulation will be terminated when the maximum force is 
less than this value, or when 50,000 steps have elapsed. 
e ‘Extract energy components’ tool is used to plot 
the convergence of the potential energy during the
minimization.

As seen in Fig.  2, the system rst drops rapidly in 
energy, before slowly converging on the minimized state.

Equilibration
At this point equilibration of the solvent around 
the solute (i.e. the protein) is necessary. is is per-
formed in two stages: equilibration under an NVT (or 
isothermal-isochoric) ensemble, followed by an NPT 
(or isothermal-isobaric) ensemble. Use of the NVT 
ensemble entails maintaining constant number of par-
ticles, volume and temperature, while the NPT ensem-
ble maintains constant number of particles, pressure 
and temperature. Simulation under the NVT ensemble 
allows the solvent to be brought to the desired temper-
ature, while simulation under the NPT ensemble brings 
the solvent to the correct pressure.

For equilibration, the protein is held in place while 
the solvent is allowed to move freely around it. is is
achieved using the position restraint le (ITP) created 
during the system setup. is restraint does not pre-
vent protein movement; rather movement is energeti-
cally penalized.

Fig. 2 Energy potential during the EM simulation
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Once the NVT equilibration is complete, it is worth 
using the ‘Extract energy components’ tool again to 
check whether the system temperature has converged 
on 300 K. is can be done as described for energy 
minimization, this time specifying Temperature 
under Terms to calculate rather than Potential. e 
plot should show the temperature reaching 300 K and 
remaining there, albeit with some uctuation.

Having stabilized the temperature of the system with 
NVT equilibration, the pressure is stabilized by equili-
brating using the NPT (constant number of particles, 
pressure, temperature) ensemble. e NPT simula-
tion is continued from the NVT simulation by using 
the checkpoint (CPT) le saved at the end of the NVT 
simulation.

After the NPT equilibration is complete, ‘Extract 
energy components’ can be used again to view the 
pressure of the system. is is done as described for 
energy minimization, specifying Pressure under 
Terms to calculate. e plot should show convergence 
on 1 bar and remain there, although some uctuation 
is expected.
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Production simulation
e restraints are removed and a production simula-
tion is carried out for 1 million steps. With a step size 
of 1 fs, this simulation represents a total time length of 
1 ns. is is rather short compared to the state-of-the-
art, but sucient for the purposes of a tutorial. 

Methods: analysis
An analysis of the GROMACS simulation outputs (struc-
ture and trajectory le) will be carried out using Galaxy 
tools developed for computational chemistry [3] based 
on popular analysis software, such as MDAnalysis [27], 
MDTraj [28], and Bio3D [29]. ese tools output both 
tabular les as well as a variety of attractive plots.

Convert coordinate and trajectory formats
Before beginning a detailed analysis, the structure and 
trajectory les generated previously need to be converted 

into dierent formats. e structural coordinates of the
system in GRO format are converted into PDB format 
using the ‘Convert coordinate and trajectory formats’ tool 
(which is based on the ‘editconf’ GROMACS command). 
is PDB le will be used by most analysis tools as a start-
ing structure. is tool can also be used to carry out initial
setup (as discussed in the simulation methods section) for 
GROMACS simulations and to convert from PDB to GRO 
format. e trajectory le is converted from XTC to DCD 
format, as a number of tools (particularly those based on 
Bio3D) only accept trajectories in DCD format. is tool 
can also be used to interconvert between several other tra-
jectory formats.

RMSD analysis
e Root Mean Square Deviation (RMSD) and Root Mean 
Square Fluctuation (RMSF) are calculated to check the sta-
bility and conformation of the protein and ligand through 
the course of the simulation. RMSD is a standard measure 
of structural distance between coordinate sets that meas-
ures the average distance between a group of atoms. e 
RMSD of the C α atoms of the protein backbone is calcu-
lated here and is a measure of how much the protein con-
formation has changed between dierent time points in the 
trajectory. Note that for more complex systems, consider a 
more focused selection.

For the RMSD analysis of the ligand, the ‘Select domains’ 
parameter of the tool can for convenience be set to ‘Ligand’; 
however, this automatic selection sometimes fails. Instead 
the ‘Residue ID’ is specied in the textbox provided. In this 
example the ligand’s Residue ID is ‘G5E’. e output is the 
requested RMSD data as a time series, the RMSD plotted 
as a time series and as a histogram (for example, see Fig. 3 
in “Results and discussion” section). 
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RMSF analysis
e Root Mean Square Fluctuation (RMSF) is valuable 
to consider, as it represents the deviation at a reference 
position over time. e uctuation in space of particu-
lar amino acids in the protein are considered. e C α of 
the protein, designated by C-alpha, is a good selection 
to understand the change in protein structure. Depend-
ing on the system these uctuations can be correlated 
to experimental techniques including Nuclear Magnetic 
Resonance (NMR) and Mössbauer spectroscopy [30, 31]. 
e output from the tools is the requested RMSF data 
and the RMSF plotted as a time series (for example, see 
Fig. 5 in “Results and discussion” section).

PCA
Principal component analysis (PCA) converts a set of 
correlated observations (movement of selected atoms in 
protein) to a set of principal components (PCs) which 
are linearly independent (or uncorrelated). Here several 
related tools are used. e PCA tool calculates the PCA 
in order to determine the relationship between statisti-
cally meaningful conformations (major global motions) 
sampled during the trajectory. e C α carbons of the 
protein backbone are again a good selection for this pur-
pose. Outputs include the PCA raw data and gures of 
the relevant principal components (PCs) as well as an 
eigenvalue rank plot (see Fig. 6) which is used to visualize 
the proportion of variance due to each principal compo-
nent (remembering that the PCs are ranked eigenvectors 
based on the variance). Having discovered the principal 
components usually these are visualized. e PCA visual-
ization tool creates trajectories of specic principal com-
ponents which can be viewed in a molecular viewer such 
as VMD [32] or NGL viewer [15]. e PCA cosine con-
tent when close to 1 indicates that the simulation is not
converged and a longer simulation is needed. For values 
below 0.7, no statement can be made about convergence 
or lack thereof.
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Hydrogen bond analysis
Hydrogen bonding interactions contribute to bind-
ing and are worth investigating, in particular persistent 
hydrogen bonds. All possible hydrogen bonding inter-
actions between the two selected regions, here the pro-
tein and the ligand, are investigated over time using the 
VMD hydrogen bond analysis tool included in Galaxy. 
Hydrogen bonds are identied and in the output the total 
number of hydrogen bonds and occupancy over time is 
returned. 

Results and discussion
After the completion of the simulation, the following 
questions arise: (1) is the simulation converged enough, 
and (2) what interesting molecular properties are 
observed. e timescale of motions of interest are in the 
picosecond to nanosecond range; these are motions such 
as domain vibration, hydrogen bond breaking, translation 
diusion and side chain uctuations. To observe mean-
ingful conformational transitions of the protein µ s sam-
pling would be needed, but this is not the purpose here.
e PCA cosine content of the dominant motion 

related to PC1 is 0.93, indicating that the simulation is 
not fully converged. is is expected due to the short 
simulation length. For production level simulations, it is 
the norm to extend simulations to hundreds of nanosec-
onds in length, if not microseconds. A short simulation 
time of 1 ns was chosen as this tutorial is designed to be 

carried out on public webservers, which have nite com-
putational resources to dedicate to training purposes.

RMSD protein
e RMSD time series for the protein shows a thermally 
stable and equilibrated structure that plateaus at 1.0Å
with an average RMSD between 0.8Å and 1.0Å. ere 
are no large conformational changes during the simula-
tion. e RMSD histogram conrms this, see Fig. 3. Note 
these graphs are automatically created by Galaxy as part 
of the tool’s outputs.

Fig. 3 RMSD for protein. RMSD time series and histogram for the 
protein
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RMSD ligand
Calculating the RMSD of the ligand is necessary to check 
if it is stable in the active site and to identify possible 
binding modes. If the ligand is not stable, there will be 
large uctuations in the RMSD.

In our case the ligand is stable with a single binding 
mode. e RMSD uctuates around 0.3Å, with a slight 
uctuation near the end of the simulation. is is more 
clearly seen in the histogram, see Figure 4. e confor-
mation seen during simulation is very similar to that in 
the crystal structure and the ligand is stable in the active 
site.

RMSF
When considering the RMSF (Fig. 5), uctuations greater 
than 1.0Å are of interest; for example see the uctua-
tions near residue positions 50, 110 and 160. Inspecting 
the structure with molecular visualization software such 
as VMD, these can be seen to correspond to exible loop 
regions on the protein surface. In addition, very large 
uctuations are seen for the C-terminus; this is common 
and no investigation is needed.

Note that the rst few residues of this protein are miss-
ing in the PDB, and therefore residue position 0 in the 
RMSF corresponds to position 17 in the Hsp90 FASTA 
primary sequence. is is a fairly common problem that 
can occur with molecular modeling of proteins, where 
there may be missing residues at the beginning or within 
the sequence.

PCA
e rst three principal components are responsible
for 32.8% of the total variance, as seen in the eigenvalue
rank plot (Fig.  6). e rst principal component (PC1) 
accounts for 15.4% of the variance (see PC1 vs PC2 and 
eigenvalue rank plots in Fig.  6). Visualization of PC1 
using VMD shows a rocking motion and wagging of the 
C-terminus.

Fig. 4 RMSD for the ligand. RMSD time series and histogram for the 
ligand

Fig. 5 RMSF for the protein. RMSF(Å) vs the residue position. Large 
uctuations occur at various positions, which correspond to exible 
loop regions on the surface of the protein
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Hydrogen bonding
Multiple hydrogen bonds were identied between the 
active site of the protein and the ligand. e hydrogen 
bond between aspartate-93 and the ligand (as identi-
ed in the crystal structure) was found to be persistent, 
meeting the hydrogen bond criteria for 89.22% of the 
simulation. A hydrogen bond between the ligand and the 
carbonyl group of glycine-97 was found to have a 15.27% 
occupancy. Hydrogen bonding interactions with threo-
nine-184, asparagine-51 and lysine-58 were also observed 
but these were not persistent and only present for a 
minority of the simulation. ese values can be accessed 
from the ’Percentage occupancy of the H-bond’ output of 
the hydrogen bond analysis tool.

High throughput workfows
Up until this step, Galaxy tools have been applied 
sequentially to datasets. is is useful to gain an under-
standing of the steps involved, but becomes tedious if the 
workow needs to be run on multiple protein-ligand sys-
tems. Fortunately, Galaxy allows entire workows to be 
executed with a single mouse-click, enabling straightfor-
ward high-throughput analyses.

e high-throughput capabilities of Galaxy are demon-
strated by running the workow detailed so far on a fur-
ther three ligands [33–37].

is process runs the entire simulation and analysis 
procedure described so far on the new set of ligands. It 
uses Galaxy’s collection [38] feature to organize the data; 
each item in the history is a collection (essentially a direc-
tory containing multiple individual datasets) containing 
one le corresponding to each of the input ligands.

Note that the SD-le needs to contain ligands with 
the correct 3D coordinates for MD simulation. e easi-
est way to obtain these is using a molecular docking tool 
such as Autodock Vina [39] or rDock [40]; tutorials and 
workows are available for both of these from the Galaxy 
Training Network. As an example, the history in which
the SD-le used in the HTMD workow is generated 
(using AutoDock Vina) is provided [41].

Further information
Apart from manual setups or collections, there are sev-
eral other alternatives which are helpful in scaling up 
workows. Galaxy supports and provides training mate-
rial for converting histories to workows [42], using 
multiple histories [43], and the Galaxy Application Pro-
gramming Interface (API) [44]. For beginners and users 
who prefer a visual interface, automation can be done 

Fig. 6 Principal component analysis. PCA results which include 
graphs of PC2 vs PC1, PC2 vs PC3, PC3 vs PC1 colored from blue to 
red in order of time, and an eigenvalue rank plot (Scree plot). In the 
eigenvalue plot the cumulative variance is labeled for each data point
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using multiple histories and collections with the standard
Galaxy user interface.

If you are able to write small scripts, you can automate 
everything you have learned here with the Galaxy API. 
is approach allows interaction with the server to auto-
mate repetitive tasks and create more complex workows
(which may have repetition or branching). e simplest 
way to access the API is through the Python library Bio-
Blend [45]. An example Python script, which uses Bio-
Blend to run the GROMACS simulation workow for
each of a list of ligands, is given in the hands-on box 
below. 

Conclusion
is tutorial provides a guide on how to study protein-
ligand interaction using molecular dynamics in Galaxy. 
Performing such analyses in Galaxy makes it straight-
forward to set up, schedule and run workows, remov-
ing much of the diculty from MD simulation. us, the 
technical barrier to performing high-throughput studies 
is greatly reduced. Results are structured in the form of 
Galaxy histories or collections, and include ready-plotted 
diagrams, which ensure data can be easily understood 
and reproduced if necessary. Apart from streamlining the 
process for existing MD users, this tutorial should also 
prove useful as a pedagogical guide for educating stu-
dents or newcomers to the eld.

After completing the tutorial, the user will be familiar 
at a basic level with a range of MD analysis techniques,
and understand the steps required for a typical MD simu-
lation. us, they will be equipped to apply these tools to
their own problems.
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Benchmarking the dcTMD
method against the T4
lysozyme L99A mutant

4

The work described in this chapter is unpublished and is therefore described more
comprehensively than the other chapters of this thesis.

4.1 Introduction

4.1.1 Background

This work aimed to benchmark the dcTMD method, in particular its implementation
in the Galaxy platform, against T4 lysozyme, a well-known test system for free energy
calculations. Lysozyme is an enzyme capable of decomposing the peptidoglycan
polymers found in bacterial cell walls by hydrolysing the glycosidic bonds, and as a
result has an important role in the animal immune system. T4 lysozyme (T4L) is
an analogous, but non-homologous, protein produced by the Escherichia virus T4
[93], a bacteriophage which infects Escherichia coli (E. coli) bacteria; the lysozyme
is used to attack the bacterial cell wall prior to entry. T4L is a small, stable globular
protein, and has been used extensively as a model system to study protein folding
[94, 95]. As a result, during the course of the 1990s, hundreds of T4L mutants were
engineered and the effect on folding and stability analysed [96].

Structurally, T4L consists of two domains (Figure 4.1). The C-terminal domain is
formed by 5 roughly parallel α-helices, connected by short loop or helical regions,
while the N-terminal domain is formed of a mix of α, β and loop secondary structures.
The active site, where the peptidoglycan molecule binds and is hydrolysed, is located
between the domains. The domains are linked by a flexible loop region, which
allows the domains to move relative to each other, acting as a hinge. Thus, the
protein can exist in two conformational forms, "open" and "closed". Transition to the
closed state is triggered by substrate binding, in a "Pacman-like" mechanism.
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One of the T4L mutants was produced by replacing the leucine residue at position 99
with alanine to create the T4L-L99A mutant [97, 98]. L99 is buried in the C-terminal
“head” of the protein, and the replacement of the bulky isobutyl by a methyl group
entailed by the mutation to alanine results in the creation of a small hydrophobic
pocket, about 150 Å3 in volume [98], which is enough to bind small hydrophobic
molecules such as benzene or toluene, as well as nonpolar gas molecules such as
xenon or dioxygen. The creation of the cavity destabilises the protein fold, as its
hydrophobic nature prevents it being filled by a water molecule. As a result, cavity
filling by the binding of benzene or a chemically similar ligand is thermodynamically
favourable.

Fig. 4.1: Cartoon depiction of the T4L-L99A mutant. The C-terminal domain can be seen
on the left, with benzene bound in the hydrophobic cavity. The hydrolytic active
site is positioned towards the top of the image, between the two domains. Image
generated using VMD [99].

4.1.2 Motivation

The T4L-L99A-benzene system is an excellent model system for studying fragment-
protein binding, for a number of reasons. Firstly, the size of the pocket and the
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fragments which are capable of binding there are typical for the compounds generally
used in fragment-based screening studies (low molecular weight, at most a few
hundred daltons; benzene has a molecular weight of 78 Da). Secondly, the chemistry
of the pocket is uniform; the entire pocket is hydrophobic. Thirdly, while binding of
benzene to T4L-L99A is thermodynamically favourable, the strength of the binding
is relatively weak; this is typical for protein-binding fragments, which generally bind
weakly with one or two individual molecular interactions.

Choosing benzene as a model ligand also reduces the complexity of the analysis
significantly, due to the high level of molecular symmetry; benzene belongs to
the D6h symmetry group, meaning that it possesses an axis of rotation with 6-
fold rotational symmetry, together with a second axis of rotation and a plane of
reflectional symmetry perpendicular to the main axis. As a consequence of this high
level of symmetry, the problem of finding the correct binding pose within the cavity
is greatly simplified. As will be discussed, separation of trajectories into pathways
is an essential part of the dcTMD procedure used in this study; less symmetrical
ligands (for example, toluene) create new complexity, since each of the 6 possible
rotations requires separate consideration.

The T4L-L99A protein has another peculiarity which influenced its choice as a model
system; the cavity in the head domain is surrounded by multiple α-helices, and
thus multiple exit routes are available to the bound ligand. It is well-known that
protein-ligand dissociation can in many cases follow multiple so-called pathways
and that each of these may possess different characteristics. In particular, as the
height of the energetic barrier to dissociation is pathway-dependent, the kinetics
of dissociation are likely to vary dramatically. Computational studies of T4L-L99A
have identified multiple pathways for ligand dissociation from the hydrophobic
cavity. One study claims to identify 8 different pathways [100]; at least 4 are
unambiguously distinguishable and attested by multiple studies. [101, 102, 100,
103]. Thus, it is a good choice of system for benchmarking dcTMD, a system for
which consideration of dissociation pathways is essential, as will be elaborated in
the Methods section. The most thorough review was performed by Nunes-Alves et
al. [104, 105] and the discussion here will follow the nomenclature for pathway
description introduced there (Figure 4.2).
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Fig. 4.2: Cartoon depiction of the T4L-L99A C-terminal domain viewed from two angles,
with helices labelled from C to J. Pathways observed in computational studies are
marked using arrows, and labelled according to the helices between which the
pathway travels; for example, pathway HJ passes between helices H and J. Arrow
colouring represents the frequency with which pathways have been reported in
the literature: blue = most frequent, green = frequent, cyan = reported at least
twice, pink = reported only by [100]. Information on the image source is provided
in the List of Figures.

4.2 Methods

4.2.1 Dissipation-corrected targeted molecular dynamics

As discussed in Chapter 2, dissipation-corrected targeted molecular dynamics (dcTMD)
can be used to generate free energy and friction profiles for the process of protein-
ligand dissociation; from these, Langevin simulations can be used to deduce the
kinetics of the unbinding process.

Targeted molecular dynamics (TMD) is a non-equilibrium technique which intro-
duces a constraint force to separate two groups of atoms at a steady velocity.

A holonomic constraint function

Φ(x(t)) =
∑

i

xi(t)− xci(t) = 0 (4.1)

is used to subject each atom i to a constraining force

fci = λ∇iΦ = λ (4.2)
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Here λ represents a Lagrange multiplier, implemented using an integrator such as
the leapfrog propagator.

TMD simulations produce values for the force f applied at each step to increase
the constraint distance xc, which can be integrated to give a value for the work W

required to remove the ligand from the protein binding site. Unfortunately, this
value does not relate exactly to the free energy - we know only that

W = ∆G+Wdiss (4.3)

where the dissipative work Wdiss is of unknown size. However, if we have an
ensemble of TMD simulations, Jarzynski’s equation can be applied to calculate an
equilibrium value of ∆G directly from the nonequilibrium simulations:

∆G = −kBT ln 〈e−W/kBT 〉 (4.4)

where W represents the work profile for a trajectory and 〈...〉 is an ensemble average
over all trajectories.

The dcTMD calculations do not use the Jarzynski equality directly, but instead
employ a truncated cumulant expansion

ln 〈ex〉 = 〈x〉+ (〈x2〉 − 〈x〉2)/2 + ... (4.5)

which is truncated after two terms, giving

∆G = 〈W 〉 − 〈δW 〉
2kBT

(4.6)

where δW = W − 〈W 〉. The first term can be equated with the work exerted by
the constraint force, while the second term represents the dissipated work. The
nonequilibrium TMD simulation can be described by a modified Langevin equation

mẍ(t) = −dG

dx
− Γ(x)ẋ+K(x)ξ(t) + fc(t) (4.7)

containing a Newtonian force term f = dG
dx , a friction term Γ, a stochastic force ξ

which averages to zero, and the constraint force fc. An equilibrium average yields
after integrating both sides
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∆G(x) = 〈W (x)〉 − vc

∫ x

x0
Γ(x′) dx′. (4.8)

where the second term can be equated with the dissipative work. The truncated
cumulant expansion described above allows the expression of Wdiss as

Wdiss(x) = δW 2(x)/kT (4.9)

and by relating fluctuations in W to force fluctuations δfc the friction

Γ(x) = 1
kT

∫ t(x)

t0
δfc(t)δfc(t′)t′, (4.10)

can be obtained from the TMD simulations.

4.2.2 T-boosting

Modelling the dissociation by propagating the Langevin equation over the free
energy and friction profiles obtained from dcTMD already represents a dramatic
reduction in the compute resources required, compared to molecular dynamics,
since the number of coordinates which need to be considered is reduced from 3N
to 2 degrees of freedom (where N represents the number of atoms in the system).
Nonetheless, the Langevin simulations require a time step of similar length to MD
(on the order of femtoseconds) with the consequence that accessing second-length
simulations remains impractical.

So-called “T-boosting“ can be used in conjunction with dcTMD to circumvent this
issue. The following transition state expression relates the transition rates k1 and k2

at temperatures β1 and β2

k2 = k1e
−∆G ”=(β2−β1), (4.11)

Thus, Langevin simulations can be performed using the dcTMD profiles calculated
at a biologically realistic temperature (ca. 300K), but boosted to a much higher
temperature, increasing the sampling of transitions between the bound and unbound
state to allow calculation of the transition rate. The equation above can then
be used to calculate the transition rate at the desired temperature. In fact, T-
boosting can be conducted at multiple temperatures, plotted to identify a relationship
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Tab. 4.1: Pulling groups

Index Helices Number of simulations
1 CDEG 535
2 EG 342
3 CDEGHJ 153
4 DEGHJ 50
5 EJ 49
6 EFGHIJ 49

between temperature and transition rate, and an extrapolation made to the biological
temperature.

4.2.3 Denition of pulling groups

In order to implement the constraint force, two groups of atoms were defined for
each group of simulations and the force applied to the atoms to separate the two
groups at constant velocity. One of these groups consisted of ligand atoms, while
the other consisted of a selection of atoms from the protein C-terminal domain.
The effect of applying the constraint force in such a way was to pull the ligand
out of the binding site; thus, the atom groups defined will be referred to here as
pulling groups. The ligand pulling group was kept constant for all simulations, but
the protein pulling group was varied with the aim of sampling as many different
pathways as possible (Figure 4.3).

A single pair of pulling groups is insufficient to sample all of the dissociation path-
ways, so the protein pulling group was varied, while the ligand pulling group was
left unchanged. For the protein pulling group, 6 different combinations of atoms
were tested, summarised in Table 4.1 and Figure 4.4. At least 49 simulations were
performed for each pulling group. Some of these did not yield new dissociation
pathways, so were not sampled further.

4.2.4 Simulation

Simulations were performed using the open-source GROMACS software (version
2019.1) using the AMBER99SB forcefield [18] and the TIP3P water model [106].

The topology for benzene was created with antechamber and acpype [107] using
GAFF parameters [108] and BCC charges [109]. The T4L-L99A protein crystal
structure was centred in a cubic box with side length of around 7 nm. The system
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Fig. 4.3: Cartoon depiction of the T4L-L99A C-terminal domain with pulling groups marked
for a particular simulation; red atoms represent the ligand (benzene), whereas
atoms marked in blue belong to the protein main chain. The protein pulling group
can be modified by adding or removing atoms, with the aim of influencing the
dissociation path taken during the TMD simulation. In the example depicted, the
pulling group consists of atoms selected from helices E and G, in order to force the
ligand out from the opposite site of the protein domain, along paths DG, CD and
CF (cf. Figure 4.2). Image generated using VMD [99].
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(a) Pulling group 1 (b) Pulling group 2

(c) Pulling group 3 (d) Pulling group 4

(e) Pulling group 5 (f) Pulling group 6

Fig. 4.4: Pulling groups. Images generated using VMD [99].
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was protonated at pH 7, solvated, and chloride ions added to ensure a charge-
neutral simulation box. PME electrostatics [110] (minimal real space cut-off of 1
nm) were used during simulations, with a van der Waals cut-off of 1.2 nm. The
LINCS algorithm [111] was used to constrain bonds involving hydrogen atoms.
Initially, energy minimisation was performed using the steepest descent integrator
and fast smooth PME electrostatics, followed by a 10 ns equilibration under the NVT
ensemble.

After preparation of a minimised and equilibrated structure, ensembles of nonequi-
librium TMD pulling simulations were performed for each pulling group defined,
using the GROMACS PULL code in constraint mode. First a further NPT equilibration
simulation was performed for 100 ps, without pulling to ensure slightly different
starting coordinates for each simulation. The equilibration runs were continued for
2 ns under the NPT ensemble at 300 K and 1 bar, using the Nosé-Hoover thermostat
[112] and Parrinello-Rahman barostat [113], with a fixed constraint velocity of 1
nm/ns and an integration step size of 2 fs. Values for the constraint pseudoforces
were saved at each time step for use in dcTMD calculations.

4.2.5 Path separation

In order to prevent overestimation of friction (which relates to the second term of
the cumulant expansion of the Jarzynski equality) methods must be employed for
pathway identification and if necessary separation, to prevent combining trajectories
from multiple pathways in a single analysis.

Initially, contact PCA (conPCA) [114] is used to obtain an insight into the routes
taken by the ligand out of the protein cavity. To perform the clustering of the
ensemble into pathways itself, a distance-based clustering method is employed.
A function must be chosen which is capable of describing the similarity of two
trajectories at a particular time point; a good choice is the RMSD (root mean squared
distance) measure. RMSD is based on a comparison of the atomic coordinates of a
molecular structure in two different positions, after superimposing all frames from
the two trajectories using the C-α atoms of the protein:

f(x1, x2, t) =

√ 1
N

N∑

i=1
(x2(i, t), x1(i, t))2 (4.12)

where N is the number of heavy atoms in the structure and δi the distance between
the coordinates of the atom i in the two structures x1 and x2. Here we are dealing
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with two trajectories with a time component, represented by an additional variable
t.

A three-dimensional tensor M = {mi,j,t} can be constructed by calculating all
elements mi,j,t = f(xi, xj , t) for every trajectory. In order to perform clustering on
this data, the time axis of the tensor must be removed by averaging over all frames
to give a distance matrix D = {di,j}.

di,j =
 tmax

t=0 mi,j,t

tmax
(4.13)

Each element da,b of D describe how similar the pair of trajectories a and b are
according to the RMSD measure. They give an indication of how similar the ligand’s
motion and conformation is between the two trajectories, relative to the protein
coordinates. Thus, the smaller the value of da,b, the more likely that a and b follow
the same path.

Once the distance matrix D has been calculated, the next step is to perform hierar-
chical clustering. Several algorithms are available for this; one of the most widely
used is UPGMA (Unweighted Pair Group Method with Arithmetic Mean), which
calculates a dendrogram (or phylogenetic tree) from a distance matrix [115, 116].

UPGMA employs an iterative approach, starting with the individual nodes (trajec-
tories in this case) and merging them together into larger clusters in a stepwise
fashion. The two nodes i and j for which di,j is minimised (i.e, the two closest nodes
are combined into a cluster, which forms a new node k. Before iterating, distances
for the new node k must be calculated and the matrix D updated, which is done
according to the following formula:

d(k, l) = d(i, l)|Ci|+ d(j, l)|Cj |
|Ci|+ |Cj |

(4.14)

where Ck is the union of Ci and Cj , and Cl is another node. These two steps
(combination of nodes and recalculation of distances) are now repeated until all
nodes have been replaced by a single cluster.

UPGMA is a simple clustering approach and is ultrametric. This is a good approxi-
mation, as the change in interatomic distances recorded in D is produced artificially
by the TMD constraint force and is thus known to be constant. In previous work, the
neighbor-net algorithm, originally developed for finding phylogenetic networks [117,
118] was employed [119]; the circular dendrograms produced by neighbor-net have

4.2 Methods 69



the advantage that they display the ambiguity which results from uncertainty or
inaccuracies in the input dataset. The disadvantage of neighbor-net is the increased
complexity of the analysis and the human intervention required to decide on suitable
clusters. UPGMA is thus a good initial choice for performing pathway separation;
if random sampling of trajectories indicates the quality of the clustering is poor,
neighbor-net can be employed.

4.3 Results

4.3.1 Dimensionality reduction

In order to gain an initial insight into the performed trajectories, contact principal
component analysis (conPCA) was performed [114]. Input data for the PCA were
selected protein-ligand contact distances. For all residues with IDs between 71 and
156 inclusive, the distance between the residue and ligand centre of masses were
calculated for all points during the duration of the trajectories using MDAnalysis
[79]. 20 trajectories were chosen randomly for each pulling group and concatenated,
before performing PCA using the FastPCA software [120].

The remainder of the trajectories were then projected onto the eigenvectors created
by the PCA and plots of the first three principal components were created for each
pulling group. An example is shown in Figure 4.5.

The first point which is apparent from Figure 4.5 is that PC1 correlates strongly
with the direction of pulling; points at the start of the trajectory have values of
PC1 ≈ −50, increasing to between 100 and 150 by the end. This is similar to
observations made in previous dcTMD studies [121] and is generally expected, as
the constraint force is responsible for the largest changes in ligand motion during the
trajectories, but is rather surprising in this case as the PCA is derived by combining
trajectories from multiple pulling groups. Thus, in contrast to previous studies,
there is no single pulling direction; nonetheless, the conPCA method conflates each
of the six directions and appears to represent all of them by PC1. The pathway
taken by each trajectory, which is orthogonal to the pulling direction, is thus better
represented by the second and third PCs (Figure 4.6).

As can be seen, each of the pulling groups results in different pathways being
followed, from a central point at approximate coordinates PC2, PC3 = (0, 0) to an
outer ring. Inspecting MD trajectories reveals that the outer ring visible in the plots
of PC 2 and 3 in Figure 4.6 represents diffusion of the ligand over the surface of

70 Chapter 4 Benchmarking the dcTMD method against the T4 lysozyme L99A
mutant



(a) (b)

(c)

Fig. 4.5: Plots of the first 3 principal components for pulling group 6. Darker colors
represent points at the beginning of the trajectories; lighter points those nearer to
the end.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.6: Plots of PC 2 and 3 for each of the pulling groups.
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the protein, once it has left the binding cavity. Thus the crescent shape visible for
example for pulling group 2 (Figure 4.9b) should not be viewed as two different
pathways, but rather two different diffusion routes that the ligand can take over the
surface of the protein, once the dissociation process itself is complete.

Figure 4.7 shows individual trajectories from the pathways observed, projected onto
principal components 2 and 3.

Fig. 4.7: Sample TMD trajectories projected onto principal components 2 and 3 and overlaid
onto Figure 4.6c. The trajectory following path CD is derived using pulling group
2; all other trajectories are derived using pulling group 3.

4.3.2 Trajectory clustering into pathways with UPGMA

Because of the large number of simulations performed, manual classification of
trajectories to a pathway based on visual inspection of the PCA plots for each
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trajectory was not realistic. As an alternative, UPGMA clustering of the trajectories
for each pulling group was performed based on ligand RMSD, as described in the
Methods section; results are summarised in Table 4.2 and an example dendrogram
produced for pulling group 2 depicted in 4.8. Members of each cluster were then
randomly selected and inspected to determine the correspondence between each
cluster and the paths observed.

Fig. 4.8: Dendrogram created by RMSD-based hierarchical clustering with UPGMA of
trajectories generated using pulling group 2. As the full dendrogram contains 342
nodes, it is truncated here to show only the last 25 merged clusters. Numbers
represent the population of truncated subclusters. Two large subclusters can
be easily discerned, which correspond to paths CD (green) and CF (red). The
remaining 5 trajectories (orange) belong to other paths and are discarded.

For pulling groups 1, 2 and 3, Figure 4.9 provides the PC2/3 plots, with sample
trajectories from each cluster superimposed.
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(a) (b)

(c)

Fig. 4.9: PC2/3 plots for pulling groups 1 (top left), 2 (top right) and 3 (bottom), with sam-
ple trajectories from each cluster (i.e. pathway) superimposed. Yellow represents
FGH, cyan represents HJ, blue represents CF, magenta represents CD and green
represents CI.
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Tab. 4.2: Clusters found by UPGMA for each pulling group with a population of at least 5%
of the ensemble.

Pulling group Path Number of trajectories
1 FGH 249
1 HJ 273
2 CF 167
2 CD 170
3 FGH 103
3 FI 23
3 HJ 15
3 CF 10

4.3.3 dcTMD calculations

dcTMD calculations were performed for each of the following classes: FGH and
HJ (pulling group 1), CD and CF (pulling group 2) and FGH (pulling group 3).
Other paths were not sufficiently populated to perform dcTMD analysis. Results are
depicted in Figure 4.10.

The free energy profiles in Figure 4.10 show that pathway separation is essential for
pulling groups 1 and 3. When the dcTMD method is applied to the entire ensemble,
in both cases a serious artefact is observable in the second half of the profile due
to friction overestimation. By contrast, after applying path separation, the artefact
disappears completely for HJ (pulling group 1) and FGH (pulling group 3), and
partially disappears for FGH (pulling group 1), being now only visible starting from
around 1.2 nm from the binding site. For pulling group 2, no artefact is visible, but
this is attributable to the fact that the free energy profiles for paths CD and CF are
very close to one another; if the work profiles for the two paths are almost identical,
a large artefact should not be expected if the path separation step is skipped.

4.3.4 Resolving paths for pulling group 1

The main unresolved point after this analysis is the FGH path for pulling group 1,
which even after an initial pathway separation continues to display a friction overes-
timation artefact. It was already observed from projections of the trajectory onto
the derived principal components that the FGH cluster obtained from UPGMA was
quite diverse. Thus, subclusters revealed by the dendrogram produced by UPGMA
was inspected in more detail. Three main subclusters were visible, with populations
of 138, 71 and 28; these will be denoted as FGH, FGH’ and the “unphysical path”
respectively. Two smaller clusters with populations of 12 and 6 were not considered
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(a) Pulling group 1. Red represents FGH
(249), blue HJ (273), black the unsep-
arated ensemble (535).

(b) Pulling group 2. Red represents CD
(167), blue CF (170), black the unsep-
arated ensemble (342).

(c) Pulling group 3. Blue represents FGH
(103), black the unseparated ensemble
(153).

Fig. 4.10: Free energy plots for paths observed for each TMD pulling group. Number in
parentheses indicated the number of trajectories included in each analysis.
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further. Projections of sample trajectories into the principal component space, as
well as visualisations using VMD [99], are depicted in Figure 4.11.

Inspection of the trajectories using VMD (Figure 4.11b) revealed that FGH’ trajecto-
ries differ from the main FGH path only during the last quarter of the trajectories;
after the benzene ligand has bypassed the narrow gap between helices G and H, it
is free to migrate either around the outside of helix H, or over helix I, (the main
FGH route) or to move in the opposite direction, towards the F helix (FGH’). The
unphysical path contains trajectories in which benzene is unable to navigate suc-
cessfully around helix H, but becomes caught between the sidechains of Asn132
and Leu133, resulting in the constraint force causing a large deformation of helix H
(Figure 4.11c).

As a result of this analysis, the unphysical trajectories were discarded and dcTMD
calculations repeated for the FGH and FGH’ subclusters. Results are depicted in
Figure 4.12. As the friction artefact is no longer visible, the result can be considered
a success; FGH shows a very similar free energy profile to the FGH profile produced
using pulling group 3. For FGH’ the profile also has a very similar shape, though the
peak at 1.0 nm from the binding site is around 10 kJ/mol higher.

Overall, therefore, by using carefully chosen pulling groups, 4 of the 5 pathways
previously observed in multiple studies could be reproduced using TMD simula-
tions. For each of these, after performing RMSD-based hierarchical clustering and
experimenting with different cut-off values, reasonable free energy profiles could
be calculated for each. Pathway DG was the only major pathway that could not be
observed, despite attempts to fine-tune the pulling groups (pulling groups 4, 5 and
6, which failed to produce DG and were not used further).

4.3.5 Langevin simulations

As the next step, Langevin simulations were performed on the free energy and
friction profiles generated by the dcTMD calculations, according to the T-boosting
procedure previously described. For each of the 6 clusters identified, Langevin
simulations were performed at 7 temperatures, at 100 K intervals between 400K and
1000 K. Experiments showed that kinetics followed is independent of ligand mass,
and thus follows the Kramers’ reaction-rate theory [122], so the benzene mass is
artificially increased tenfold to 0.78 kg/mol. The number of transitions is recorded
for each Langevin trajectory and a regression line calculated to extrapolate to the
expected kinetics at 293.15 K. An example (for pulling group 6) is provided for path
CF in Figure 4.13. Results for all paths are provided in Table 4.3.
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(a) Sample trajectories projected onto PC2/3. The unphysical
path (green) becomes clearly separate after a short amount
of time. FGH (cyan) and FGH’ (blue) separate only in the
last quarter of the trajectory.

(b) Positions of benzene in the sam-
ple trajectories for FGH (cyan)
and FGH’ (blue) at 1.7 nm from
the binding site.

(c) Position of benzene in the un-
physical path at 1.3 nm from the
binding site.

Fig. 4.11: Sample trajectories from the FGH (cyan), FGH’ (blue) and unphysical (green)
paths. Above: projections in the PCA space. Below: Trajectories visualised in
VMD, with helices FGH highlighted in yellow and Asn132 and Leu133 shown in
a stick representation. Note the distortion of helix H during the unphysical path.
Images generated using VMD [99].
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Tab. 4.3: Kinetic data from Langevin simulations. Experimental values (at 293.15 K) are
taken from Feher et al. [123]

Path k_on (s−1 M−1) k_off (s−1) K_D (M)
FGH pulling group 1 (purple) 6100 124 0.0203
FGH’ pulling group 1 (pink) 23.5 14.2 0.606
FGH pulling group 3 (blue) 1730 44.1 0.0255
HJ pulling group 1 112000 0.5 0.00000446
CD pulling group 2 9420 3.31 0.000352
CF pulling group 2 73500 29 0.000394
Experimental 800000 - 100000 600 - 1000 0.00068 - 0.00082

Experimental rate constants for the (un)binding of benzene and T4L-L99A are
somewhat higher than the dcTMD values. Assuming the ligand binds and debinds
via the faster path (HJ and FGH respectively), the experimental kon is 7 to 9 times
faster and the experimental koff is 5 to 8 times faster. Nonetheless, a deviation
of less than an order of magnitude is considered very reasonable for estimates of
kinetic values. The value of KD derived from this combination of rate constants is
0.00111, very close to the experimental range of 0.00068 - 0.00082.

4.4 Conclusion

Overall, while dcTMD does not reproduce experimental kinetic data for the T4L-L99A
benzene complex exactly, the results are within an acceptable distance, considering
the difficulty of making estimates of kinetic data for protein-ligand systems. This
is in line with previous calculations using dcTMD on other systems, including
Hsp90 and trypsin. The methods selected for pathway separation are effective and
allow experimental free energy data to be reproduced accurately. (A comparison
with experimental data is necessary, as free energies for protein-ligand dissociation
calculated from equilibrium MD simulations are not available.) Pathway separation
is clearly an essential part of the protocol; failing to apply it leads to serious
misestimation of thermodynamic parameters. This was already known from previous
studies, but the confirmation is helpful because the pathways in T4L-L99A are much
more clearly defined compared to the previous systems studied, and T4L-L99A
pathways have already been the subject of numerous studies. By carefully adjusting
the pulling groups used to define the constraint force, TMD simulations were able to
consistently reproduce 5 out of 8 of the previously reported pathways, including 4
out of 5 of those pathways reported in at least two publications.
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Fig. 4.12: dcTMD free energy profiles for FGH pathways, depicting the original FGH clus-
ter (red), the subclusters FGH (pink) and FGH’ (purple), and the trajectories
produced using pulling group 3 (blue).

Fig. 4.13: T-boosting illustrated for path CF. The regression lines are extended to 293.15 K.
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Virtual screening against the
SARS-CoV-2 main protease

5
This chapter summarises the work originally described in the following publica-
tion:

• Simon Bray, Tim Dudgeon, Rachael Skyner, Rolf Backofen, Björn Grüning,
Frank von Delft. Galaxy workflows for fragment-based virtual screening: a case
study on the SARS-CoV-2 main protease. Journal of Cheminformatics, Volume
14, Article number: 22, 12 April 2022, https://doi.org/10.1186/s13321-022-
00588-6

5.1 Introduction

5.1.1 Motivation

From the start of 2020, the SARS-CoV-2 virus spread rapidly across the world,
leading to many deaths, lockdowns in many countries and corresponding societal
changes [124]. Potential therapeutics against the disease rapidly became the focus of
scientific research, in particular vaccines, but to a lesser extent also the development
of antiviral drugs. Such a drug would prove easier to store and administer in
comparison to a vaccine, and provide a useful additional weapon in the arsenal
against the virus [125].

Scientific progress into characterizing the virus was rapid. The virus genome contains
29892 base pairs, which encode 29 different proteins, 4 of which have structural
roles, and the viral particle has a diameter of between 60 and 140 nm [124]. At least
4 of the proteins are considered to be potentially druggable: the NTPase/helicase,
main protease, papain-like protease, and RNA-dependent RNA polymerase. The main
protease (Mpro) has been a particular target of investigation, and a crystallographic
structure was derived already in January 2020, showing a clearly-defined, solvent-
accessible binding site, ideal for crystallographic fragment screening [126]. This
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then prepared the way for the Diamond Light Source to perform such a screen,
generating over 70 fragment hits [127].

In parallel, a open-science project with the aim of discovering an antiviral drug
candidate, COVID Moonshot was initiated. As part of the COVID Moonshot project,
in collaboration with the experimental scientists from the Diamond Light Source,
who performed the fragment screening, a computational project was initiated with
the aim of identifying compounds derived from the fragments discovered with strong
affinity for the Mpro binding site.

The need for openness in data analysis and sharing during the SARS-CoV-2 pandemic
has been the subject of comment [128]. A key aim of this project was to meet this
need by providing fully accessible data via Galaxy, together with the computational
workflows used for analysis and compute resources to repeat and verify it if necessary.
Galaxy in general provides a platform which can be easily accessed by researchers
and assist them to collaborate against public health emergencies such as the recent
pandemic.

5.1.2 Background

The main protease of the SARS-CoV-2 virus, as for all coronaviruses, has an essential
enzymatic role in viral transcription. Transcription of the viral genome results in
the synthesis of two polyproteins, pp1a and pp1b. To perform their function, these
polyproteins must be cleaved at several proteolytic sites; 11 of these cleavages are
performed by Mpro, while a further 3 are performed by the papain-like protease,
releasing a variety of non-structural proteins. Due to this vital role in the viral life
cycle, and the fact that there are no close homologs of the protease found in humans,
Mpro quickly became a focus of interest as a target for a potential antiviral drug.

Mpro consists of 305 amino acid residues and has a molecular mass of 33.8 kDa in
the monomeric form, though the catalytic form is dimeric (Figure 5.1). The protein
is made up of three domains: I and II have a β-barrel structure, linked to III, a
cluster of α-helices, by a fifteen-residue loop region. The catalytic site, made up of a
catalytic dyad of His41 and Cys145, is located between domains I and II.

The fragment screening performed by the Diamond Light Source revealed 74 frag-
ments, of which 3 bound at the dimerisation interface and 71 in the active site
(Figure 5.2). Of the latter, 48 were covalently bound and 23 non-covalently bound.
The virtual screening study described here [129] focusses on the non-covalent hits.
The identified fragments reveal the presence of multiple subpockets within the active
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Fig. 5.1: The Mpro dimer. For one monomer, domains I (orange), II (cyan) and III (violet)
are marked. The location of the catalytic site is marked on the other monomer by
a bound inhibitor (green). Information on the image source is provided in the List
of Figures.
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site, labelled S1, S1’, S2 and S3. Several fragments were also able to bridge over
two subpockets.

Fig. 5.2: Non-covalent fragments identified by the Diamond Light Source fragment screen.
Coloring represents the four subpockets which make up the active site of the
protease: S1 (blue), S1’ (red, fragment x0397), S2 (pink), and S3 (orange).
Information on the image source is provided in the List of Figures.

Of particular interest was a slight conformational change in the protein enforced by
only a single fragment, x0397; the position of the side chains of the catalytic dyad
mentioned above modifies the size and shape of S1’ and open up a link between S1
and S1’. Thus, x0397 is the only fragment which bridges between S1 and S1’.

5.2 Methods

53,000 compounds were generated using the Fragalysis fragment network [130].
To investigate the affinity of these compounds, three different workflows were devel-
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oped. The application of these workflows is not specific to Mpro. The first workflow
generated three-dimensional conformers of the compounds, docks them into the
Mpro catalytic site, scores them using the deep learning-based TransFS method [38],
and validates the docked poses against the original fragment positions using the
SuCOS measure [131]. The second workflow performs MMGBSA simulations of
a selection of the highest-scoring compounds, while the third workflow performs
dcTMD simulations on a further refined selection. The latter two workflows share
a subworkflow in common for parameterisation of the starting protein-ligand com-
plex, before continuing with solvation, energy minimisation and equilibration. Both
workflows make use of Galaxy’s collection feature to run ensembles of simulations
in parallel, 20 simulations in the case of MMGBSA, 100 in the case of dcTMD.

5.3 Results

5.3.1 MMGBSA

Of the initial set of compounds generated by the Fragalysis fragment network, 209
of the best-scoring were selected for more compute-intensive MMGBSA simulations.
Each fragment was represented by multiple derived compounds, allowing a plot
of MMGBSA scores to be created per fragment in Figure 5.3. This makes it clear
that there is substantial variation between the different fragments. Interestingly,
compounds which are derived from the x0397 fragment bind the strongest, according
to the MMGBSA calculations; as mentioned before, x0397 is the only fragment which
triggers a conformational change in the Mpro active site, allowing it to bind in both
subpockets S1 and S1’. As a result, it is the only fragment which enables significant
hydrogen bonding between a derived compound and the catalytic cysteine residue.

5.3.2 dcTMD

Of the 209 compounds for which MMGBSA simulations were performed, 50 were
selected for dcTMD simulations. As already discussed, dcTMD allows an insight into
the kinetics of protein-ligand dissociation, and the pathway taken by the ligand out
of the active site. Inspection of the trajectories generated demonstrates that there
is only a single pathway available for dissociation, removing the need for pathway
separation as described for the T4L-L99A system.
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Fig. 5.3: MMGBSA enthalpies for poses derived from each of the 22 fragments studied.
Information on the image source is provided in the List of Figures.
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In order to validate the results of the MMGBSA and dcTMD simulations, plots were
created to compare the interactions observed between the protein binding site and
the ligand with the free energy values (Figure 5.4). A plot of MMGSBA free energy
values against a raw number of interactions shows a clear correlation, though rather a
weak one; however, this is expected, considering that the molecular interactions vary
widely in terms of strength and importance. Plotting the occupancy of individual
interactions with dcTMD free energy scores reveals the strongest correlation is
notably for a hydrogen bond with the Cys145 catalytic residue, indicating that
breaking this bond, where it exists, is the major initial barrier for departure of the
compound from the active site. As already mentioned, it is compounds deriving from
the x0397 fragment which are most likely to be able to access the S1’ subpocket and
thus to be able to form this hydrogen bond.

(a) (b)

Fig. 5.4: Left: The average number of interactions observed and the free energy as calcu-
lated by MMGBSA are correlated (R2 = -0.46). The weakness of the relationship
reflects the high variation in the strength and importance of interactions. Right:
Maximum dcTMD free energy scores for compounds which display hydrogen bond-
ing between the peptide backbone and residue Cys145 (R2 = 0.85). Information
on the image source is provided in the List of Figures.

5.4 Conclusion

In this paper multiple workflows were developed: for docking compounds into
a protein binding site and scoring the resulting poses, for estimation of binding
free energies using the MMGBSA method and for estimation of the height of the
kinetic barrier to ligand binding using the dcTMD technique. These workflows
are flexible and can be applied to any system, and can be executed via either
Galaxy’s graphical interface or on the command line using the Planemo library. The
workflow were demonstrated on the Mpro system, and could show that compounds
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derived from a particular fragment, x0397, bind especially strongly to the Mpro

binding site, due to the fragment conferring derived compounds with the ability
to modify the conformation of the binding site and thus unlock access to a hidden
side pocket. Thus, these compounds are able to form some new interactions, in
particular a hydrogen bond with the catalytic cysteine of the protein, which improve
the compounds’ binding affinity.
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Abstract 

We present several workows for protein-ligand docking and free energy calculation for use in the workow manage-
ment system Galaxy. The workows are composed of several widely used open-source tools, including rDock and 
GROMACS, and can be executed on public infrastructure using either Galaxy’s graphical interface or the command 
line. We demonstrate the utility of the workows by running a high-throughput virtual screening of around 50000 
compounds against the SARS-CoV-2 main protease, a system which has been the subject of intense study in the last 
year.
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Introduction
Computational techniques are commonly used to assess 
the anity of small druglike molecules to a biological 
target molecule, typically a protein, in a process known 
as virtual screening. Virtual screening is a complex, 
multi-step process which needs to be performed at a 
high-throughput level of thousands or millions of input 
molecules. As a result, workow management systems 
such as KNIME [1], CWL [2], Nextow [3] or Galaxy [4] 
prove useful to organize analyses, allowing automation 
and parallelization of commonly used steps and avoiding 
tedious manual repetition.

In previous work, we published a range of cheminfor-
matics [5] and molecular dynamics tools [6] via the Gal-
axy platform. Galaxy provides a range of useful features, 
including a convenient web-based graphical interface, stor-
age of essential metadata such as tool parameters, and easy 

construction and execution of workows from compo-
nent tools, either on the command line or via the graphi-
cal interface. Reproducibility of analyses is ensured by the 
installation of software dependencies using BioConda 
[7], conda-forge [8], or BioContainers [9]. In addition, we 
pointed out that using Galaxy provides access to vast pub-
lic compute infrastructures, including GPU resources for 
molecular dynamics calculation, such as the denbi and 
STFC clouds which underpin the European Galaxy server, 
https:// usega laxy. eu, a distinctive feature which distin-
guishes Galaxy from other workow management systems.

Here, we present several new workows for protein-
ligand docking, molecular dynamics and free energy cal-
culation. ese workows are constructed out of simpler 
building blocks (the component Galaxy tools) and can be 
either used directly or modied as templates for other 
similar calculations. We demonstrate the utility of these 
workows by running them at high scale on a system 
which has attracted much recent attention, namely the 
main protease (Mpro) of the SARS-CoV-2 virus.
e main protease of the SARS-CoV-2 virus has been 

intensively studied since the beginning of the global 
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pandemic, with the rst crystal structure released in Janu-
ary 2020 [10]. Subsequent experimental work, involving 
some of the authors, revealed the crystal structures of 
Mpro in complex with 96 dierent fragment structures, 
including non-covalent hits as well as hits covalently 
bound to the vital Cys145 residue in the protease bind-
ing site [11]. Fragment hits were also found located at the 
interface between the Mpro dimers. Here we focus our 
attention on the 22 non-covalent hits bound within the 
protease active site, excluding two (denoted x1086 and 
x0887) which bind to other pockets of the protein (the 
chemical structures of the fragments studied are depicted 
in Additional le 1: Fig. S1). We use these 22 hits as the 
basis for generating a list of candidate compounds using 
the Fragalysis [12] fragment network, a reimplementation 
of the Fragment Network concept originally developed by 
Astex Pharmaceuticals [13]. ese compounds are then 
docked using rDock against each of the crystallographic 
structures from the fragment screen. e resulting docked 
structures are validated against the original fragment 
structures using the SuCOS [14] measure and scored 
using the TransFS [15] deep learning-based method. 
Based on these scores, the compounds can be ranked and 
the most promising of them (around 200) used for fur-
ther free energy calculations. ese are performed using 
the MMGBSA technique, using an ensemble of a total of 
5 ns of simulation time per compound. Subsequently we 
take the 50 top-scoring compounds from the MMGBSA 
simulations and perform more computationally expen-
sive dcTMD (dissipation-corrected targeted molecular 
dynamics) [16, 17] calculations, requiring a total of 50 ns 
of simulation time per compound.
e three workows themselves (docking and scoring, 

MMGBSA calculations, and dcTMD calculations) can be 
exibly applied to any system, not only Mpro. To facili-
tate usage by other users in the future, they have been 
deposited in the Intergalactic Workow Commission 
(IWC) [18], a curated repository for Galaxy workows. 
To ensure reliability and reproducibility, the workows 
are packaged together with tests which are run via con-
tinuous integration (CI). If tests are successful and the 
submission is approved by an IWC review, the submitted 
workows are deployed to Dockstore [19] and Workow-
Hub [20], two recently developed platforms for sharing 
scientic workows. Links for access are provided in 
Additional le 1: Table S2.

Methods
ree main workows have been developed as part of 
this work: an initial protein-ligand docking and scoring 
workow, in which hypothetical protein-ligand struc-
tures are generated and ranked; a relatively low-cost free 
energy calculation workow, based on the MMGBSA 

technique, which is run on the most promising of the 
docked complexes; and a more costly free energy calcula-
tion technique, based on the recently published dcTMD 
method. Subsequent analysis of molecular interactions 
and plotting of data is performed outside Galaxy. Images 
of the active site are generated using VMD [21].

Protein‑ligand docking and scoring
e inputs for the docking and scoring workow consist 
of a protein structure for docking and a list of candidate 
compounds. e initial list of candidates is generated 
with the Fragalysis fragment network API, using the 22 
selected fragment hits as inputs to be extended, generat-
ing molecules that are close neighbours of the starting 
molecules in the fragment network.

For those initial candidates, various charge forms 
between pH 4.4 and 10.4 are enumerated using Dimor-
phiteDL [22]. A single three-dimensional conformer for 
each of these forms is then produced using OpenBabel
[23] as the starting structure for docking. e main task
of the workow, after enumerating charge forms and 
conformer generation, is to dock each of the enumer-
ated conformers into the binding sites of the fragment 
crystal structures to generate numerous docking poses, 
using the open source rDock software [24]. e workow 
makes use of the Galaxy’s collection feature to split the 
initial list of compounds and process the resulting chunks 
in parallel, essential given the large amount of poses gen-
erated. Pocket denition for the docking was achieved by 
the so-called ‘Frankenstein ligand’ technique of combin-
ing atomic coordinates from all fragments into a single 
hybrid molecule for use as a reference ligand.

Docking produced a large number of poses, which were 
then evaluated using two measures. Firstly, the SuCOS 
measure is used to assess the overlap between the puta-
tive binding position of the compound and each of the 
experimental fragment crystal structures. e aim is 
to validate the docked poses and to ensure they share a 
similar conformation and position to at least one of the 
experimental crystallographic structures. Secondly, the 
TransFS tool, based on a deep learning model trained on 
a variety of molecular interactions, is used to score each
of the poses.

A schematic of the workow is provided in Fig. 1. For 
our concrete use case, we provide an initial list of 53,787 
compounds, which are generated by the Fragalysis frag-
ment network. After charge enumeration and conformer 
generation, this value is expanded to 219,247, or around 4 
conformers per compound. For each of these, 25 docking 
poses are generated, giving a total of over 5 million poses.

It should be noted that this workow is run separately 
for each of the fragment crystal structures, i.e. 22 times, 
corresponding to a total of over 120 million docking 
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poses. Poses are thus validated against a single fragment 
during the SuCOS scoring stage. As a result, for each 
fragment, we obtain a separate list of poses which are 
ranked only on the basis of their overlap with that sin-
gle fragment. All poses are also scored using the TransFS 
tool.

A customizable subworkow is responsible for ltering 
the poses based on the assigned scores. Filtering proceeds 
by selecting the top 5000 compounds for each fragment 
(around 0.1%) by SuCOS score. As a rule of thumb, a SuCOS 
score of over 0.5 is acceptable; thus, all poses which dif-
fer substantially in conformation and position from the 
experimental structures are discarded. is subset of poses 
with high SuCOS scores is then ltered further in one of 
three ways: (1) selecting all with SuCOS > 0.6 and TransFS 
> 0.9, (2) selecting all with SuCOS > 0.7 and TransFS > 0.8, 
(3) for all fragments where these two ltering steps resulted 
in less than 3 outputs, the top 3 poses based on TransFS 
scores are selected. By applying this complex ltering, we 
obtain a range of poses which score highly for both TransFS 
and SuCOS measures, as well as ensuring a wide chemical 
diversity of poses with all of the component fragments rep-
resented. e ltering is implemented using the sdsort and 
sdlter commands which are provided alongside rDock.

A tutorial describing the docking and scoring workow is 
available via the Galaxy Training Network [25] at https:// bit. 
ly/ 31vAZ pI.

MMGBSA free energy workow
e list of compounds obtained after application of the 
docking and scoring workow comprises around 210 mol-
ecules. To obtain a low-cost assessment of the free energy 
of binding for each of the poses, we perform MMGBSA cal-
culations, using GROMACS [26] to perform the molecular 
dynamics simulations and AmberTools [27] for the calcula-
tions themselves.

Firstly, a subworkow for system parameterization is 
used to prepare the selected ligands for MD simulation. 

e docked poses are converted from SDF to MOL2 
format and parameterized using the GAFF forceeld 
[28], using tools based on AmberTools and acpype 
[29]. Meanwhile, the protein structure is parameterized 
with the AMBER99SB forceeld, using a tool based on 
GROMACS’s pdb2gmx. Using the tagging system pro-
vided by Galaxy, each of the poses is annotated with its 
respective SuCOS and TransFS value, together with 
the identity of its parent fragment. ese metadata are 
inherited by datasets produced in subsequent analysis, 
allowing quick overview of all data for any particular 
compound.

Solvent (water represented with the TIP3P model) and 
sodium or chloride counterions are added as required to 
neutralize the system, before performing energy mini-
mization. e molecular dynamics simulations them-
selves are performed using GROMACS with a timestep 
of 1 fs at a temperature of 300 K. 100 ps of equilibration 
simulations (50 ps under the NVT ensemble followed 
by 50 ps under the NVT ensemble) are performed with 
constraints on the protein atoms. e production simu-
lations (length 200 ps) are then performed under the 
NVT ensemble. For each compound, an ensemble of 20 
simulations are performed, taking advantage of Galaxy’s 
collection functionality to create a list of datasets and 
apply a tool over the entire list as a single workow step. 
e size of the ensemble is congurable as a workow 
parameter. e production simulations are then used as 
a basis for the MMGBSA calculations and a mean across 
the ensemble is calculated. An schematic of the entire 
workow is provided in Fig. 2. It should be noted that the 
entropic component to the free energy is not included in 
the calculations, so the values generated represent only 
the enthalpy of binding.

One of the major reasons to use the Galaxy platform 
for executing these workows is that all data, as well as 
the parameters used for all simulations, are preserved 
in public Galaxy histories, ensuring full reproducibility. 

Fig. 1 Schematic of the docking and scoring workow
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Links to all histories are provided in the Additional 
le 1.

dcTMD free energy workow
As a further demonstration of the capabilities of our 
tools, and the exibility of the Galaxy platform which 
allows them to be combined in numerous dierent 
ways, we have designed a third workow which makes 
use of the recently published dcTMD free energy tech-
nique. e main aim of dcTMD is to provide insight 
into the kinetics of protein-ligand dissociation; a drug 
candidate which has a low rate of dissociation from the 
target protein and thus a high residence time [30] in the 
binding site will be preferred to a candidate which dis-
sociates quickly. e theoretical background, with com-
parisons against various common benchmark systems, 
was provided in two previous publications [16, 17]; the 
physical basis of the method is described in detail in 
those two works. e main advantage of the dcTMD 
method is its provision of free energy and friction pro-
les for protein-ligand dissociation, with even sam-
pling of the entire reaction coordinate, including areas 
of high free energy which are infrequently sampled at 
equilibrium and inherently dicult to study.
e process entails simulation of an ensemble of 

constraint targeted molecular dynamics (TMD) simu-
lations, in which a constraint pulling force is applied 

between two atom groups (typically, the ligand and part 
of the protein) to separate the two groups at constant 
velocity. e pull groups used for Mpro simulations 
are depicted in Fig. 3. By applying a weighted average 

Fig. 2 Schematic of the MMGBSA workow. A modular subworkow for system parameterization is shared with the dcTMD workow; see Fig. 4 for 
details

Fig. 3 Pull groups for the TMD simulations (image depicts the x0397 
structure). Group 1 (cyan) consists of the ligand non-hydrogen atoms. 
Group 2 (green) consists of a selection of alpha-carbons in the Mpro 
active site. During the course of the TMD simulation, the two groups 
are pulled apart by means of a constant constraint force
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across the ensemble, based on an approximation of the 
Jarzynski equality [31], free energy and friction proles 
for the system at equilibrium can be calculated, despite 
the fact the ensemble is made up of non-equilibrium 
simulations.

In order to streamline the process of performing 
dcTMD calculations, we have developed a complete 
Galaxy workow for both simulation and the subse-
quent calculations. is workow functions similarly to 
the MMGBSA workow, in that it represents the MD 
ensembles using Galaxy collections, the size of which 
can be parameterized using a workow parameter. For 
dcTMD simulations, an ensemble size of around 100 
is recommended [32]; we therefore set ensemble size 
to 100 for each ligand. MD simulations are performed 
using GROMACS using a timestep of 1 fs at a tempera-
ture of 300 K. 80 ps equilibration is performed under the 
NPT ensemble with restraints on the protein atoms for 
each simulation, followed by a 500 ps production TMD 
simulation under the NPT ensemble without restraints, 
in which the two pulling groups are separated with a 
velocity of 1 m/s - in other words, the ligand ends the 
simulation at 500 pm from its initial position bound in 
the active site. Pulling simulations are achieved using the 
PULL code incorporated into GROMACS. As the Mpro 

binding site is rather shallow, this simulation length is 
sucient to sample the entire dissociation pathway. 
As for the MMGBSA workow, all data, as well as the 
parameters used for all simulations, are published in Gal-
axy histories linked in the Additional le 1.

An essential part of the dcTMD process is pathway 
separation. One of the core assumptions of the dcTMD 
protocol is Gaussianity of the work prole of the ensem-
ble, which is acceptable if the ligand takes a uniform 
path between the bound and unbound state, but breaks 
down if the ligand is able to take multiple paths out of 
the binding site. erefore, it is essential to carry out an 
analysis to determine whether distinct paths are present 
in the ensemble. Galaxy tools are also provided to align 
the TMD trajectories according to the protein atoms 
and perform hierarchical clustering based on the RMSD 
between ligand positions. e user then has the option 
to inspect the clusters manually and to apply the dcTMD
calculation again to a subcluster of the ensemble.

A schematic of both the main dcTMD workow and 
the optional pathway separation is provided in Fig. 4. Our 
main aim in calculating the dcTMD free energy proles is 
to obtain a value for the maximum free energy reached, 
which heavily inuences the kinetics of dissociation. e 
position of this barrier on the reaction coordinate is also 

Fig. 4 Schematic of the dcTMD workow
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of interest; by inspecting the free energy and friction pro-
les generated in combination with the TMD trajecto-
ries, links can be made between features of the proles
and events along the unbinding coordinate.

Workow execution
e workows detailed here required a high number 
of executions, particularly in the case of the MMGBSA 
workow, which was invoked over 200 times. Galaxy pro-
vides a graphical web-based interface for tool and work-
ow execution, as well as to inspect outputs, but this is 
of limited use for a project like this one, which requires 
workows to be executed several hundred times.

Fortunately, command-line tools are available to auto-
mate this process, by providing programmatic access 
to Galaxy’s API. Workows are invoked using the com-
mand line tool Planemo [33], modifying the input les for 
each run. is can easily be scaled up using a simple shell 
script containing a for loop. e Python library BioBlend 
[34] was also used extensively to move and organize data-
sets, run individual tools, and restart paused workows.

Table 1 summarizes execution statistics for each of the 
workows. A summary of the number of compounds 
studied in each step is provided by Table 2.

Results and discussion
Docking
We have assembled three dierent workows which can 
be applied sequentially for virtual screening of a pro-
tein. In particular, we have demonstrated the use of these 
workows by running them on the SARS-CoV-2 main 
protease. A key point is that these workows consist of 
simple building blocks which can be simply disassem-
bled and recombined to allow dierent types of analyses 
and calculations than those covered here. Of the 50000 
compounds in our original library, we have identied 
around 210 docking poses which are scored highly by the 
TransFS measure, as well as matching the conformations 

and positions of the component fragments well. For these 
compounds, we have performed MMGBSA calculations 
based on ensembles of MD simulations. Additionally, we 
demonstrate a more computationally intensive dcTMD 
workow on a subset of around 50 highly scoring com-
pounds. A summary table is provided in Table 3.

Figure  5a and  b shows distributions of TransFS and 
SuCOS scores per fragment. TransFS scores cluster 
around a modal value of 0, with a small minority of com-
pounds scoring highly; the 99th percentile lies at 0.61,
but the distributions of scores are similar for all the frag-
ments (Additional le 1: Table S1). e single exception
is x1093, for which all compounds score eectively 0; the 
reason for this is dicult to identify, due to the black box 
nature of the TransFS method, so the TransFS ltering 
is simply skipped for this fragment. Unlike TransFS, the 
SuCOS scores are very unevenly distributed, depending on 
the compound’s parent fragment. It can be observed, for 
example, that in general smaller fragments such as x0995 
score highly, which is unsurprising, as a smaller fragment 
can full the conditions for overlap more easily. When l-
tering compounds based on SuCOS score, this should be
taken into account, else an unwanted bias towards these 
smaller fragments is introduced.

Figure  5c demonstrates that the SuCOS and TransFS 
scores are orthogonal, allowing eective ltering of the 
compounds on two dierent measures. While the top 
right corner of Fig. 5c is relatively sparsely occupied, there 
are enough compounds present there to select a reason-
able number of candidates which score highly on both
measures for further study. However, because of a dier-
ence between SuCOS score distribution between the dif-
ferent fragments, applying a crude cuto would ensure
certain fragments were heavily overrepresented, while 
others would remain completely unrepresented. We there-
fore have developed the more complex ltering workow
described in the Methods section, to ensure all fragments 
receive some representation in the ltered dataset.

Table 1 Summary of workow resource usage

Values for resource usage are approximate and can vary substantially between workow invocations

Workow CPU time / h GPU time / h Data storage / GB Number of executions Datasets 
created

Docking and scoring 3000 1 80 22 6000

MMGBSA 30 2 3 209 893

dcTMD 112 14 6 50 1726
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MMGBSA
It is interesting to note that the strongest binders, accord-
ing to the MMGBSA calculations, were those com-
pounds derived from the x0397 fragment (Fig. 6). x0397 
is notable as the only fragment which induces a confor-
mational change in the protein; on binding, it displaces 
the sidechains of the Cys145 and His41 catalytic resi-
dues and allows access to an additional subpocket (S1’) 
to which other fragments cannot bind. Considering the 

Fig. 5 a and b Distributions of SuCOS and TransFS scores per fragment; the mean values are marked in black. c Scatter plot of SuCOS and TransFS 
scores for all poses. 209 of these are ltered for further screening d All fragments superimposed on the protein structure and colored by the main 
subpocket to which the fragment binds (S1’ red, S1 blue, S2 pink, S3 orange)

Table 2 Number of compounds or poses ltered and studied at 
each stage

Stage Fragments Fragalysis Docking MMGBSA dcTMD

Number of 
compounds

22 53k 120M 209 49

Fig. 6 Plot of MMGBSA enthalpies for poses derived from each of the 
22 fragments (mean marked by the large circles)
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other subpockets, compounds derived from fragments 
located in both subpockets S1 (e.g. x0434, x0678) and 
S2 (e.g. x0395, x0387) score highly. On the other hand 
compounds derived from the three sulfonamide deriva-
tives x0161, x0195 and x0946, which bind in S3, score 
poorly. Figure  7 depicts four fragments bound to each 
of the subpockets, together with a derived docking pose 
superimposed.

Inspection of hydrogen bonds formed during the MD 
simulations reveals a range of dierent interactions 
formed and a wide variation over the set of fragments, 
as expected. For example, fragment x0678 contains a 
pyridine group which forms a hydrogen bond with the 
side chain of His163, buried within subpocket S1. is 
bond is inherited by several of the compounds derived 
from x0678. Alternatively, for others of the compounds, 
the pyridine ring of x0678 is replaced with a hydroxyl 

or oxime group, which can then form a hydrogen bond 
with the side chain of Glu166, although the bond does 
not exist for the fragment itself. Glu166 is also able to 
form hydrogen bonds with some compounds from its 
main chain amide group, reecting its key position at the 
entrance to subpocket S1.

As it provides access to S1’, x0397 is also the only frag-
ment which enables signicant hydrogen bonding with 
the catalytic cysteine residue.

dcTMD
Various information can be extracted from the TMD 
ensemble. Firstly, free energy proles can be calculated, 
depicting the free energy of the system relative to the 
bound state at dierent points on the pulling coordinate. 
Friction proles can also be calculated, depicting the 

Fig. 7 Ligands (cyan) binding in pockets, overlaid on the parent fragments (green): S1’ a) (x0397; SuCOS 0.65)), S1 b (x0387; SuCOS 0.56), S2 c 
(x0678; SuCOS 0.53) and S3 d (x0161; SuCOS 0.60)
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friction present in the system over a particular point in 
the reaction coordinate. A classic protein-ligand dissocia-
tion free energy prole depicts a peak between the bound 
and unbound state, with the unbound state generally 
higher in free energy than the bound state (for example, 
Fig. 8). e height of the peak is of particular interest, as 
it represents the kinetic barrier to dissociation (Table 3). 
Secondarily, the position of the peak, or any other fea-
tures in the free energy or friction proles, can provide 
insight into the dissociation pathway, when considered 
together with manual inspection of the TMD trajectories.

For all of the ligands examined, it appears there is only 
a single pathway available for ligand dissociation, thus 
obviating the need to perform the pathway separation 
step. is is not surprising, given that the binding pocket 
of Mpro is fairly close to the protein surface.

Inspecting the TMD trajectories, various other inter-
actions become apparent which were not observed in 
the equilibrium simulations already performed. For the 
ligands located in the S1 and/or S1’ pockets, such as 
those derived from fragments x0397 or x0991, an inter-
action with Asn142 at around 0.25 nm from the binding 

Table 3 Compounds with a maximum dcTMD free energy of over 10 kJ/mol, together with all other calculated scores, and 
interactions inherited from the component fragments

The chemical structures of the compounds are depicted in Additional le 1: Fig. S2. BO backbone oxygen, BN backbone nitrogen, SC side chain, HB hydrogen bond, HI 
hydrophobic interaction

Index dcTMD maximum 
free energy / kJ/
mol

Parent (and other 
component) 
fragments

Distance of dcTMD 
maximum from binding 
site / nm

MMGBSA 
/ kcal/mol

SuCOS TransFS Interactions, with occupancy 
and derived fragment

1 22.41 x0387 (x0434) 0.45 −17.74 0.56 0.94 Cys44BO HB 91.5% (x0387)

Met165 HI 88.5% (x0434)

Gln189 HI 94.5% (x0434)

His41 pi stacking 6.5% (x0387)

2 18.4 x0387 (x0434) 0.34 −25.51 0.54 0.95 Met165 HI 94% (x0434)

His41 pi stacking 44% (x0387)

Gln189 HI 88% (x0434)

3 16.45 x0991 (x0946) 0.24 −29.93 0.64 0.96

4 15.25 x0397 0.24 −31.97 0.65 0 Gly143BN HB 100% (x0397)

Cys145BN HB 83.5% (x0397)

Thr25 HI 10.5% (x0397)

5 14.57 x0397 0.18 −30.74 0.61 0 Gly143BN HB 85.5% (x0397)

Cys145BN HB 89.5% (x0397)

Thr25 HI 62.5% (x0397)

6 13.89 x0434 0.38 −25.42 0.49 0.65 Glu166BN HB 84.5% (x0434)

Met165 HI 64% (x0434)

Gln189 HI 19% (x0434)

7 13.61 x0678 0.73 −26.4 0.53 0.94 His163SC HB 14% (x0678)

Met165 HI 50% (x0678)

Glu166 HI 90% (x0678)

8 11.96 x0305 0.52 −25.07 0.54 0.94 Met165 HI 87.5% (x0305)

Gln189SC HB 13% (x0305)

9 10.95 x0434 0.43 −22.71 0.52 0.68 Gln189 HI 50.5% (x0434)

Met165 HI 10.5% (x0434)

Glu166BN HB 3.5% (x0434)

10 10.57 x0434 (x0387) 0.29 −34.78 0.52 0.77 Glu166BN HB 77.5% (x0434)

Met165 HI 61.5% (x0434)

His163SC HB: 44% (x0434)
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site can be observed. Asn142 protrudes over the active 
site, partially covering the entrance to S1 and S1’, where 
many of the most successful candidate compounds are 
bound. erefore, exiting from the binding site entails 
overcoming a steric clash with the side chain, as well as 
breaking any transient electrostatic interaction formed 
with the asparagine side chain. In support of this the-
ory, in the TMD trajectories inspected, the dcTMD free 
energy peak observed at around 0.3 nm corresponds to 
the point at which the ligand pushes the side chain aside, 
having already broken the key molecular interactions, 
so that no major obstacles now remain to leaving the 
active site. For fragments exiting from the S2 subpocket, 
an interaction on the other side of the binding pocket is 

frequently observed (Fig. 9), with the short helical sub-
structure between amino acids 44 and 50 evident, in
particular Ser46, the side chain of which is optimally ori-
ented to face the ligand as it exits the S2 subpocket.

Interactions
In order to validate the results from the dcTMD and
MMGBSA workows, the interactions between the pro-
tein binding site and the docked molecule were system-
atically examined. is analysis was conducted outside
Galaxy using a Python script [35] based on the Open 
Drug Discovery Toolkit (ODDT) [36]. All hydrogen 
bonds and hydrophobic interactions between the crystal-
lographic fragments and the binding site were extracted,
together with the less frequently occurring salt bridges, π
-stacking and π-cation interactions, and halogen bonds.
Subsequently, the same script was used to analyse the 
MMGBSA trajectories produced for each pose, ltering 
to include only those interactions present in the frag-
ments. By applying the script to one of the equilibrium
MD trajectories used for MMGBSA calculation, rather 
than a static structure, an estimate can be obtained of the 
occupancy of an interaction over time, rather than simply 
its presence or absence.

38 interactions were found between the initial 22 frag-
ments and the protein binding site, an average of 1.73
interactions per fragment. By contrast, averaging over 
the MD trajectories, each compound on average shows 
3.13 interactions with the binding site, demonstrating 
that the method eectively combines multiple fragments 
to increase the number of protein–ligand interactions. 

Fig. 8 Free energy curves derived from dcTMD calculations for two 
of the screened compounds

Fig. 9 a Friction proles for four selected ligands; the proles for the ligands binding in subpocket S1/S1’ (red/pink) show a rise starting at 0.2 nm, 
whereas for those binding in subpocket 2 (blue/cyan), this is absent, with an increase being observable instead at 0.3 nm. b Ligands exiting the 
subpocket S1/S1’ at 0.25 nm from the initial binding position (pink), with Asn142 highlighted, and subpocket S2 at 0.33 nm from the initial binding 
position (green), with Ser46 highlighted
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MMGBSA free energies correlate with the number of 
interactions (Fig. 10), so that considering only the subset 
of compounds with MMGBSA of less than -20 kcal/mol 
gives an average of 4.57 interactions.

In addition, a search was also performed for new inter-
actions which do not originate from the crystallographic 
fragments. is yielded very few results. e most com-
mon is a salt bridge between the ligand and Glu166, which 
is present in 11 molecules with an occupancy > 0.5. Others 
are even rarer: the second most common interaction not 
present in the original fragments is a hydrogen bond with 
the backbone nitrogen of Pro168, for which the maximum 
occupancy is 0.45; a total of only 7 have an occupancy > 0.1. 
Considering the chemical diversity of the fragments and 

their distribution through the binding site, it is not surpris-
ing that there is little scope for new interactions to appear,
but it helps to conrm that the compounds found success-
fully replicate the chemistry of the original fragments.

According to Table  3, the majority of the highest-
scoring compounds have several high-occupancy inter-
actions inherited from the fragments of which they
are composed. In particular, a hydrophobic interaction 
between Met165 and the ligand is present for almost all 
the compounds - this interaction is also present for 10 of 
the 22 original fragments, due to its crucial position at 
the intersection of the S1 and S2 subpockets. For com-
pounds derived from the x0434 fragment, a hydropho-
bic interaction with Gln189 and a hydrogen bond with
Glu166 also frequently recurs. For compound 3, on the 
other hand, no interactions can be detected; this is due 
to the fact that no interactions exist, at least according to 
the script used, between the parent fragment x0991 and
the protein. For the compounds derived from the x0397 
fragment, which allows a change in protein conformation 
and which provided the highest MMGBSA scores, other 
interactions predominate: hydrogen bonds with Gly143 
and Cys145, and to a lesser extent a hydrophobic interac-
tion with r25. Both these hydrogen bonds between the
ligand and the backbone nitrogen atoms of Gly143 and 
Cys145 show a particularly strong relationship with the 
dcTMD free energy score (Fig. 11), and appear only with 
the x0397 fragment.
e dcTMD scores represent the peak of the free 

energy prole of dissociation—thus, a high correlation 
between these interactions and the dcTMD score implies 
they play an important role in raising the barrier to 
debinding, where they are present.

Fig. 10 The average number of interactions observed and the 
free energy as calculated by MMGBSA are correlated ( R2 = − 0.46). 
The weakness of the relationship reects the high variation in the 
strength and importance of interactions

Fig. 11 Maximum dcTMD free energy scores for compounds which display hydrogen bonding with the peptide backbone at residues Gly143 
( R2 = 0.69 ) and Cys145 ( R2 = 0.85)
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Conclusion
We have presented several new workows for vir-
tual screening, including protein-ligand docking and 
scoring, an established free energy technique (MMG-
BSA) and a more recently developed free energy tech-
nique (dcTMD), and demonstrated their use with a 
study on the main protease of the SARS-CoV-2 virus.
ese workows allow us to study a very high num-
ber of initial candidate compounds, before narrow-
ing to a smaller selection which we study using more 
computationally intensive MD techniques. e use
of these workows demonstrates the exibility of 
the GROMACS-based MD tools in Galaxy, which 
can be combined together to create various dierent 
types of simulation, including non-equilibrium TMD 
simulations.

A key motivation for using the Galaxy platform for 
this kind of study is to enable reproducible, transpar-
ent research. erefore, all datasets are available in the 
form of published Galaxy histories at https://usegalaxy.
eu. Links to the histories are provided in the Additional 
le 1.
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Planemo and BioBlend:
Automating command-line
data analysis with Galaxy

6

This chapter summarises the work originally described in the following publica-
tions:

• Simon Bray, John Chilton, Matthias Bernt, Nicola Soranzo, Marius van den
Beek, Bérénice Batut, Helena Rasche, Martin Čech, Peter Cock, Björn Grüning,
Anton Nekrutenko. Planemo: a command-line toolkit for developing, deploy-
ing, and executing scientific data analyses. Genome Research (under review),
https://doi.org/10.1101/2022.03.13.483965

• Wolfgang Maier, Simon Bray, Marius van den Beek, Dave Bouvier, Nathan
Coraor, Milad Miladi, Babita Singh, Jordi Rambla De Argila, Dannon Baker,
Nathan Roach, Simon Gladman, Frederik Coppens, Darren P. Martin, Andrew
Lonie, Björn Grüning, Sergei L. Kosakovsky Pond, Anton Nekrutenko. Ready-to-
use public infrastructure for global SARS-CoV-2 monitoring. Nature Biotechnol-
ogy, Volume 39, pages 1178–1179, 29 September 2021, https://doi.org/10.1038/s41587-
021-01069-1

In addition, other related work is described, in particular relating to the BioBlend
library.

6.1 Introduction

Galaxy differs from other workflow management systems such as Nextflow [132] or
Snakemake [133] in that it is meant to be used primarily via a graphical interface.
A drag-and-drop window is provided for constructing workflows, which can then
be executed directly from the web browser. Nonetheless, there are situations in
which using the graphical interface is not convenient or realistic, for example,
analyses which require entire workflows to be run hundreds or even thousands of
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times. Examples include the projects discussed in the previous chapters on the T4L-
L99A and SARS-CoV-2 Mpro systems, which required thousands of short molecular
dynamics simulations to be performed in parallel. As a result, during the course
of this thesis, a substantial amount of work was invested into developing useful
methods for accessing Galaxy via the command-line, for example, with the BioBlend
Python library, and the Planemo application, which were then used extensively
during the projects described in previous chapters. These projects are not specialised
for computational chemistry, but can be useful to any scientist using Galaxy who
needs to scale up their analysis and is pushing against the limits of the graphical
interface. One such use-case, a pipeline for SARS-CoV-2 variant surveillance, is
discussed in this chapter.

6.2 Methods

6.2.1 BioBlend

Galaxy can be accessed via an application programming interface (API), which allows
all functionality to be accessed programmatically. BioBlend is a Python library which
allows access to the Galaxy API. BioBlend was used extensively during this thesis to
handle the large number of simulations launched, to run tools and workflows over
multiple histories, and to rename, reorganise and copy datasets between histories.
As some functionality required for other projects was missing, several improvements
were made to both the Galaxy API itself and the BioBlend library. These include:

• Rerun failed Galaxy jobs, remapping onto the datasets already created

• Change datatypes for all datasets in a collection

• Addition of an InvocationClient with methods to handle Galaxy invocations

• Methods for copying Galaxy datasets between histories

• Numerous bug fixes and tests

As a result of these contributions, I was assigned the role of maintainer of the
BioBlend project in November 2020.

106 Chapter 6 Planemo and BioBlend: Automating command-line data analysis
with Galaxy



6.2.2 Planemo

Planemo is a Python library and application with a wide range of functionality,
centred around the development and deployment of Galaxy tools and workflows.
Several contributions were made to the Planemo software during the course of this
thesis, and as a result, I received “committer” rights in December 2020.

Workow execution

While Galaxy workflows allow organisation of multiple tools to form analyses, which
already saves a considerable amount of time and effort, sometimes it is useful to go
a step further and execute a workflow multiple times. For example, in the virtual
screening study of the SARS-CoV-2 main protease (chapter 5), MMGBSA simulations
were run for over 200 different compounds, necessitating the execution of the same
workflow 200 times. As a result, a method to initiate workflows from the command
line is required, as launching the runs from the graphical user interface manually
200 times is tedious and not scalable.

As a result, various functionality was incorporated into Planemo, focussed around its
run subcommand, with the aim of streamlining the process of automated command-
line workflow execution. Planemo provides either the option of spinning up a
transient Galaxy instance locally, or executing jobs on an external Galaxy server
via the API. The former is useful for developing and testing new Galaxy tools and
workflows, but for any large scale analysis, access to the resources of a large external
Galaxy server is essential. As part of this thesis, a user-friendly command line
interface for running workflows on external Galaxy servers was integrated into
Planemo. Users can specify the server and account from which a workflow should
be run using their API key; users can also create separate “profiles”, which save this
information in a configuration file and thus allow workflows to be executed without
specifying the user credentials each time. Galaxy workflows and datasets can be
referenced by means of the hexanumeric IDs Galaxy assigns to them; analogously
to the profile concept, users can define “aliases” to refer to workflows, to provide a
more memorable handle. Upon execution, users may also choose to add “tags” to
the newly created Galaxy histories; these tags provide a convenient way to organise
and classify different analyses and are also visible in the graphical interface.

After execution, the progress of workflow invocations can be inspected using the
list_invocations subcommand, which depicts the number of jobs for each invoca-
tion colour-coded by the state of the job (for example: running, failed, successful).
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It is possible that jobs fail transiently, for example due to unexpected errors on
the server, so a rerun subcommand is provided which automatically reruns failed
Galaxy jobs. The rerun subcommand can be supplied with either job, history, on
invocation IDs; in the last two cases, all failed jobs associated with the given history
or invocation are collected and rerun.

Several options are provided for configuring workflow executions. By default, the
workflow is not executed if the upload of one of the input datasets fails, but users
may prefer to override this behaviour, when using very large collections. The user
can also configure whether datasets should be uploaded one by one, waiting for
each dataset to upload successfully before beginning with the next, or whether
all datasets should be uploaded simultaneously; the latter approach is faster but
may risk overloading the server. Users may prefer to wait for workflow execution
to complete (in this case workflow results can also be downloaded to their local
computer) or just to wait for the workflow to be successfully scheduled. In addition,
the possibility is provided to separate data upload and workflow execution entirely
using the upload_data subcommand; when this is run using a workflow, data is
uploaded and a new job template file generated, containing the Galaxy IDs of the
newly uploaded datasets. Workflow execution can then be triggered in a second step
simply by using the run subcommand.

When execution is completed, a report is generated in HTML as well as JSON format,
describing whether the workflow invocation completed successfully, describing input
datasets and parameters, and listing all individual jobs. As it is provided in HTML
format, it can be viewed easily from within a web browser. The JSON output can also
be parsed programmatically for use in further analysis - for example, downstream
workflows.

6.3 Results

6.3.1 Intergalactic Workow Commission

The Intergalactic Workflow Commission (IWC) is a subgroup of the Galaxy project
which aims to curate, maintain and preserve high-quality Galaxy workflows. I have
been involved in the IWC "working group" since its creation and have made several
contributions. These involved both submitting new workflows, for example the free
energy workflows developed for virtual screening of the SARS-CoV-2 main protease,
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and contributions to the IWC infrastructure and tooling to make developing and
contributing Galaxy workflows a simpler task for Galaxy users.

6.3.2 Automating tool and workow updates

As described in Chapter 6, numerous Galaxy tools and workflows were developed
as part of this thesis. Each of these required ongoing maintenance; whenever new
versions of the underlying software tools were released, the Galaxy tools in general
also needed updating. This maintenance was my responsibility, although it had a low
priority compared to many of my other tasks. In order to reduce the maintenance
burden, I wanted to investigate possibilities for automating the process of making
these tool and software updates.

This work was inspired by the pre-existing BiocondaBot [134] project, a GitHub bot
which automatically updates Bioconda packages, whenever a new version of the
source code is released. The new version triggers BiocondaBot to make a PR to the
Bioconda recipes repository, updating the download link and checksum. Approval
from a community member is still required to merge, so this is a semi-automated
solution; nonetheless, it is an extremely convenient and time-saving tool. As Galaxy
tools specify dependency version numbers, similar to Bioconda recipes, a similar
bot was envisaged for updating Galaxy tools and workflows. It should be noted
that Bioconda packages, Galaxy tools and Galaxy workflows form a hierarchy, in
that workflow have tools as dependencies and tools have Bioconda packages as
dependencies. Thus, such a bot enables a chain of updates, from source code
Conda package Galaxy tool Galaxy workflow (Figure 6.1).

The code for the automatic tool update was implemented as a Planemo subcommand.
This allows it to be used either by individual users or as part of a CI job. As a Galaxy
tool may well have multiple dependencies, the first step is to identify the “main
requirement”. If this dependency is out-of-date, i.e. a newer version is available via
Conda, all dependencies are updated. Galaxy tools should always incorporate tests
and test data, and the bot is capable, as a user-configurable option, of subsequently
also automatically updating the test data if necessary. As for BiocondaBot, merging
is not done automatically but performed by a community member.

Compared to BiocondaBot, there are some additional complexities in implementing
an autoupdate procedure for Galaxy tools. Galaxy tools make extensive use of
macros and the dependency versions can be specified either in the tool definition file
itself or within the macro. Thus, the bot checks both files and updates the relevant
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one. Secondary dependencies are updated only if the primary “main requirement”
requires updating. The autoupdate subcommand provides a range of command-line
options which allow configuration - for example, which Conda channels to check (by
default, Bioconda and conda-forge), which tools or requirements to skip (Python,
Perl and R are skipped by default), whether to update test data after updating
the requirements. The PRs themselves are created by CI jobs, defined by GitHub
Actions.

After successful deployment onto the two main GitHub repositories used to maintain
computational chemistry tools, the bot was also deployed onto the much larger IUC
(Intergalactic Utilities Commission) repository.

As the next step, an equivalent bot for automatically updating Galaxy workflows
was developed. The work built on “refactor actions” provided in the Galaxy backend
for modifying workflows, which are also accessible via the API. The autoupdate
subcommand was extended to make use of these to spin up a temporary Galaxy server
with the necessary tools installed, install the workflow to updated, run the refactor
actions for updating all component tools and subworkflows, and downloading the
updated workflow. Once Planemo had been extended, the new bot was also activated
to update workflows maintained by the IWC.

Fig. 6.1: Flowchart depicting the various automation steps, and their sequential arrange-
ment, for Bioconda packages, BioContainers, Galaxy tools and Galaxy workflows.
Information on the image source is provided in the List of Figures.

6.3.3 Implementing a continuous monitoring pipeline for
SARS-CoV-2 variant surveillance

The projects described above are clearly not limited to usage in the field of com-
putational chemistry, but for any scientific analysis which can be implemented
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in Galaxy. After the work done so far, I collaborated with colleagues in Freiburg
and cooperation partners worldwide to implement infrastructure for continuous
monitoring and download of newly published raw SARS-CoV-2 nucleotide reads,
assembly and assignment to a viral lineage. My contribution here was writing the
code for automatically running the workflows, building on the work described above
developing BioBlend and Planemo. While the scientific field is clearly completely
different to the rest of the work presented in this thesis, this project demonstrates
the usefulness of BioBlend and Planemo to scientists across a range of disciplines.

In addition, a GitHub repository was created allowing scientists to request running
workflows on arbitrary user-provided data: https://github.com/usegalaxy-eu/
sars-cov-2-processing-requests. A pull request merely needs to be created
containing a list of web links to the files to be analysed. Upon merging, these
files are uploaded automatically to the European Galaxy server and subject to the
assembly and lineage assignment workflows already mentioned.

6.4 Conclusion

As a result of this work, a paper was published describing the Planemo library
and application. In addition, as part of this thesis, 33 pull requests were made
and merged to the Planemo GitHub repository, 20 pull requests to the BioBlend
repository, and 40 to the Galaxy repository itself.
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Ready-to-use public infrastructure for global 
SARS-CoV-2 monitoring
To the Editor — The COVID-19 pandemic 
is the first health crisis characterized by large 
amounts of genomic data1. Computational 
infrastructure can be a bottleneck for data 
analysis, amplifying global inequalities in 
ability to track SARS-CoV-2 evolution. This 
is an issue even in developed countries, 
as computational infrastructure requires 
expertise in resource procurement, 
configuration and maintenance. 
Commercial computational clouds do not 
fully address the problem because these 
resources must still be configured and 
funded. Furthermore, commercial clouds 
are predominantly US-based and many 
countries have policies making payments to 
foreign providers impractical. In developing 
countries, research computing infrastructure 
is rare and researchers often cannot afford 
commercial cloud-based computation. Here, 
we present the COVID-19 effort by the 
Galaxy Project, which pools free worldwide 
public computational infrastructure, 
making the analysis of deep sequencing data 
accessible to anyone while also providing an 
analytical framework for global pathogen
genomic surveillance based on raw 
sequencing-read data.

Despite the existence of well designed 
and validated SARS-CoV-2 data analysis 
approaches2,3, the ad hoc4 nature of their 
application often complicates the integration 
and comparison of analysis results. Public 
computational infrastructure (XSEDE, 
ELIXIR and Nectar Cloud in the United 
States, European Union and Australia, 
respectively) coupled with existing 
open-source software offers a solution to 
SARS-CoV-2 analytics challenges. However, 
glue is required to bind these resources 
into a unified platform for managing users, 
allocating storage and pairing analysis 
tools with appropriate computational 
resources. Such a platform is best not 
developed by a single principal investigator, 
group or institution, but rather supported 
by an international community of users, 
developers and educators.

We have developed a two-stage platform 
(Fig. 1) housed on three public Galaxy 
instances5 in the United States (http://
usegalaxy.org), the European Union (http://
usegalaxy.eu) and Australia (http://usegalaxy.
org.au) and capable of supporting hundreds 
of thousands of complex analyses per month. 
Anyone can run effectively unlimited 

computation with 250 Gb (expandable) of 
disk space. The COVID-19 Galaxy Project 
comprises two stages (Fig. 1): the software 
components of stage 1—mature utilities 
for quality control, mapping, assembly and 
allelic variant (AV) calling—run entirely in 
Galaxy and are distributed via the BioConda 
project6; the software components of stage 2 
are snippets of code for data transformation, 
exploration and visualization running within 
standard web-browser-based notebook 
environments. Stage 1 produces variant lists 
whereas stage 2 uses notebooks to perform 
descriptive analyses of datasets. In addition, 
an interactive dashboard is available that 
tracks temporal AV dynamics. (See https://
covid19.galaxyproject.org for data, workflows, 
notebooks, dashboard and our ongoing 
automated tracking of large-scale genomic 
surveillance projects.)

Four primary analysis workflows 
(Supplementary Table 1) support the 
identification of SARS-CoV-2 AVs from 
deep-sequencing reads via the production 
of annotated AVs through a series of 
steps including quality control, trimming, 
mapping, deduplication, AV calling and 

filtering. Their output is processed by 
the Reporting and Consensus workflows 
(Supplementary Table 1) to generate 
standardized data tables describing AVs 
along with consensus genome sequences. 
These are further processed to summarize 
and visualize the data using interactive 
notebooks.

To illustrate the platform’s utility and 
scalability, we refer the reader to two 
large SARS-CoV-2 Illumina datasets 
(PRJNA622837, 619 samples from 
early SARS-CoV-2 transmission in the 
Boston area7; and PRJEB37886, ~100,000 
samples analyzed as of the time of writing 
from the COVID-19 Genomics UK 
(COG-UK) genomic surveillance effort8) 
detailed in Supplementary Tables 1–3 
and Supplementary Figs. 1–3. Analysis 
on COVID-19 Galaxy Project resources 
provides insights into co-occurrence 
patterns, presence of mutations defining 
variants of concern (https://cov-lineages.
github.io/lineages-website/global_report.
html), and intersection with sites under 
selection, including non-random 
associations among common low-frequency 
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Fig. 1 | Analysis flow for calling SARS-CoV-2 variants using Galaxy. ONT, Oxford Nanopore 
Technologies; VCF, variant call format; TSV, tab-separated values; PE, paired end; SE, single end. For 
more information, see https://covid19.galaxyproject.org.

NAR BCNG | VOL 39 | OCTOE 2021 | 1178–1184 | www.nature.com/naturebiotechnology



1179

correspondence

AVs that may reflect shared intra-host 
dynamics (Supplementary Fig. 1 and 
Supplementary Table 2). It can also highlight 
the emergence of mutations interfering 
with binding of polyclonal antibodies9 (for 
example, COG-UK data in Supplementary 
Fig. 2), suggesting possible intra-host 
dynamics. These and other interactive 
notebooks and dashboards on the platform 
could identify AVs that warrant closer 
monitoring as the pandemic continues.

Our system is designed to encourage 
scalable collaborative worldwide genomic 
surveillance to identify and respond to
emerging variants. By relying on raw read 
data rather than assembled genomes and 
allowing every result to be traced back to 
its raw data, it goes a step beyond current 
surveillance efforts. Specifically, it enables 
surveillance of intra-patient minor AV 
frequencies—a distinction that could yield 
early warnings of epidemiological conditions 
conducive to the emergence of variants with 
altered pathogenicity, vaccine sensitivity or 
drug resistance. ❐
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Rapid delivery systems for future food security
To the Editor — The current world 
population of 7.8 billion is predicted to 
reach 10 billion by 2057 (https://www.
worldometers.info/world-population/#
pastfuture). Future access to affordable 
and healthy food will be challenging, with 
malnutrition already affecting one in three 
people worldwide. The agricultural sector 
currently provides livelihoods for 1.1 billion 
people and accounts for 26.7% of global 
employment (https://data.worldbank.org/
indicator/SL.AGR.EMPL.ZS). However, our 
reliance on a small number of crop species 
for agricultural calorie production and 
depletion of land, soil, water and genetic 
resources, combined with extreme weather 
events and changing disease/pest dynamics, 
are already jeopardizing future food security1. 
Climate change–induced reductions in the 
global yield of major crops (for example, 
rice, wheat, maize and soybean) are more 
pronounced in low-latitude regions and thus 
affect farmers in developing countries2. As 
is evident from temperate cereal crops, a 
robust seed system that delivers improved 
cultivars to replace old cultivars is a plausible 
approach to adapting agriculture to climate 
change3. Here we provide an overview of 

how seed input supply systems and new 
production and harvesting technologies can 
generate increased incomes for developing 
world farmers and deliver better products  
to consumers.

Crop improvement remains crucial to the 
United Nations’ Sustainable Development 
Goal 2 (SDG 2) of ‘Zero Hunger: ending 
malnutrition and achieving food security 
by 2030’. It offers sustainable solutions 
for food production and food security by 
creating high-yielding, nutritious crops that 
can withstand emerging biotic and abiotic 
stresses. Innovative crop breeding techniques 
that accelerate the breeding cycle (for 
example, speed breeding4), facilitate more 
precise genetic combinations (for example, 
genomic selection5) and enable precise genetic 
changes (for example, genome editing6) 
provide unprecedented opportunities for 
enhancing crop performance in controlled 
conditions and research plots7. Translating 
crop productivity gains from experimental 
settings to real-world farming conditions 
requires improving equitable access to 
innovative technologies for all farmers 
and providing legislative, economical and 
practical support to ensure their adoption8.

After the development of better- 
performing varieties, several steps are 
required to realize higher crop yields and 
income for smallholder farmers and deliver 
enhanced agricultural outputs (Fig. 1). The 
integration of planting good-quality seeds of 
elite crop varieties with improved decision 
support tools, mechanical harvesting and 
post-harvest management will increase 
production gains. Electronic trading portals 
(for example, Wefarm (https://about.wefarm.
com/), eNAM (https://www.enam.gov.in/
web/) and Digital Mandi (https://www.iitk.
ac.in/MLAsia/digimandi.htm)) and support 
from farmer associations should help farmers 
market their produce directly for fairer prices. 
Further processing and addition of value can 
also deliver improved products to consumers 
and increase farmer’s income (Fig. 1).

Seed is the single entry point for 
crop resilience and productivity. The 
sustainability of crop production is 
vitally dependent on the timely supply 
of improved seed and other inputs. In 
developing countries, formal seed supply 
systems generally do not meet farmers’ 
demands, such that smallholder farmers 
source more than 80% of their seed from 
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Abstract

There are thousands of well-maintained high-quality open-source software utilities for all

aspects of scientific data analysis. For over a decade, the Galaxy Project has been providing

computational infrastructure and a unified user interface for these tools to make them accessible

to a wide range of researchers. In order to streamline the process of integrating tools and

constructing workflows as much as possible, we have developed Planemo, a software

development kit for tool and workflow developers and Galaxy power users. Here we outline

Planemo’s implementation and describe its broad range of functionality for designing, testing

and executing Galaxy tools, workflows and training material. In addition, we discuss the

philosophy underlying Galaxy tool and workflow development, and how Planemo encourages

the use of development best practices, such as test-driven development, by its users, including

those who are not professional software developers. Planemo is a mature project widely used

within the Galaxy community which has been downloaded over 80,000 times.
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Introduction

The Galaxy project provides web browser access to command-line scientific software, together

with the necessary compute resources, in a convenient, shareable and reproducible way, to

researchers around the world [1]. Over eight thousand tools are available for installation onto

any Galaxy server; users can run these individually, connect multiple tools together to form

workflows, and finally perform complex analyses, without the need to access a command line.

While Galaxy itself does not require any significant computational skills to use, development and

maintenance of new tools and workflows benefit from sophisticated infrastructure with both

human and automated components. The process of integrating software into Galaxy requires

knowledge of both the command-line interface of the underlying software and the schema used

by Galaxy to define tools, in order to be able to write a ‘Galaxy tool wrapper’ mapping dataset

inputs, parameter inputs and outputs between them. Once written, wrappers, as well as other

Galaxy artifacts such as workflows or training material [2], are amenable to routine processes

such as testing, deployment and regular updates, all of which can be automated using

continuous integration (CI) systems. Here we present Planemo, a versatile library and command

line application which is used extensively as a software development kit by Galaxy or Common

Workflow Language (CWL) [3] tool, workflow and training material developers, and as a toolkit

for Galaxy ‘power users’. Planemo provides a simple but powerful command-line interface for

tool and workflow development and deployment, which encourages and enforces good

practices for software development. In addition, it enables automated deployment of developed

tools and automatic updates of the software dependencies used internally by each Galaxy tool.

The testing functionality included in Planemo has been successfully integrated into CI workflows

of the major tool and workflow repositories, which helps to ensure the creation of high quality

tool wrappers and workflows.

Planemo is structured into numerous subcommands, which provide a broad range of

functionality. Here we discuss a selection of the most important functionalities, grouped around

the following themes: 1) development of Galaxy tools, workflows, tutorials, and CWL tools; 2)

deployment of the developed tools and workflows; 3) automated tool and workflow dependency

updates and 4) tool and workflow execution. Table 1 summarizes this functionality, and Fig. 1

provides a graphical overview. In addition to its use as a command-line application, Planemo

can also be used as a library by other projects. An example is the Planemo Training

Development Kit project (https://github.com/galaxyproject/ptdk), which provides Planemo’s

functionality for creating training material for Galaxy workflows via a webserver.
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Methods

Software design

Planemo is implemented as a Python package and distributed via GitHub, PyPI and Bioconda

[4]. As already described in the Introduction, Planemo is a highly flexible, multifunctional

software, which can be used for: 1) different types of artifacts (e.g. tools, workflows), 2) different

workflow/tool languages and management systems (e.g. Galaxy, CWL), 3) different tasks (e.g.

linting, testing, executing). To handle this variety, Planemo defines two central abstractions:

Runnables and Engines. Runnables include tools and workflows written for either Galaxy or

CWL; an Engine provides access to an external piece of software (such as Toil or Galaxy)

capable of executing a particular Runnable. Each Engine has various methods (e.g. run(),

test()), which define a particular interaction with a Runnable.

Engines are provided for both local and external Galaxy servers, as well as for cwltool [5] and

Toil [6]. These interact with their respective workflow management systems via the cwltool and

Toil Python modules (for CWL), and via the BioBlend library [7], which provides access to the

Galaxy API through Python. Numerous lower-level functions and classes are provided to

connect the Engines with the underlying functionality.

Some tasks cannot be easily described in the context of these abstractions; for example, linting

of tool or workflow definitions requires only that the structured document containing the

definition be compared with a schema. Other examples include the functionality for automatic

updates of software dependencies and generation of training material. Planemo handles these

cases using separate classes and functions.

Planemo is most frequently used as a command-line application, using a command-line

interface written using the Click package to provide a straightforward way to access the

components described above. Multiple subcommands expose some of the most important tasks

a user might want to perform. For example, a user could run `planemo test tool.xml` to

test a Galaxy tool wrapper. Planemo will detect the type of Runnable (Galaxy tool) represented

by the filepath and start the appropriate Engine (temporary local Galaxy instance), execute the

Runnable on it, collect the results, and compare them to predefined test data to determine a

pass or fail status. All subcommands can be configured by appending flags and options.
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Implementation of continuous integration jobs

While Planemo is designed primarily with developers and users in mind, commands often need

to be executed as part of automated continuous integration (CI) jobs – for example, testing of

newly created Galaxy tools after submission to a GitHub repository. Galaxy tools and workflows

are hosted over multiple repositories; to ensure a unified approach to testing, a GitHub CI action

is provided. The CI workflow consists of the following components:

1. Identifying modified tools and repositories using `planemo ci_find_repos` and

`planemo ci_find_tools`.

2. Linting of Galaxy tools using `planemo lint`.

3. Testing the tools – as this is the most time-consuming step, the tools found are chunked

and multiple jobs run in parallel.

4. Linting of Python and R scripts packaged together with the tools.

5. If the PR is approved and merged: deployment to the Toolshed with `planemo

shed_update`.

Definition of terms

Planemo’s features rely on and are interdependent with a variety of other subprojects within and

related to the Galaxy community. We therefore first outline a few of these.

IUC: The Intergalactic Utilities Commission [8] maintains a central repository of Galaxy tool

wrappers, currently hosted on GitHub. New wrappers are added by means of a GitHub pull

request, reviewed by IUC members, and are tested by automated CI. After approval, the tool is

automatically deployed to the Galaxy ToolShed. Tools are subject to further automatic updates,

as new versions of software dependencies are released. The IUC serves as a model for smaller

communities developing wrappers for more specialized tools (for example, Galaxy-P [9] for

proteomics) and has developed a set of guidelines for tool development.

Bioconda/BioContainers: Each Galaxy tool has certain dependencies, which are typically

installed either using the Conda package manager [10] or within a container (Docker [11] or

Singularity [12]). Development and maintenance of the necessary Conda packages or

containers is performed by the Bioconda and Biocontainers [14] communities, which collaborate

closely with the Galaxy project.
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ToolShed: A central ‘app store’ for Galaxy tools Any user can upload to the ToolShed [13], but

most high-quality tools are developed collaboratively on an open platform like GitHub (for

example by the IUC) and deployed automatically.

IWC: maintains a set of curated workflows [14], consisting of multiple component Galaxy tools,

which are hosted on GitHub and deployed to Dockstore [15] and the Workflow Hub [16],

analogously to the development and deployment of Galaxy tools to the ToolShed by the IUC.

Galaxy Training Network: A repository for tutorials, each describing a method for data analysis

in Galaxy [1]. Each tutorial is made up of multiple steps and therefore corresponds to a Galaxy

workflow, which forms the skeleton around which the tutorial is built.

Continuous Integration (Workflow): A workflow run remotely on a build server which tests and

deploys Galaxy artifacts developed. It should not be confused with a Galaxy workflow.

Tool: Artifact defined by a tool wrapper and stored in the ToolShed, allowing users to access the

functionality of the underlying software via Galaxy.

Galaxy Tool Wrapper: Structured document defining a Galaxy tool; it maps dataset inputs and

outputs and other parameters between the underlying command-line tool and the Galaxy API.

Galaxy Workflow: a directed acyclic graph in which nodes can be dataset inputs or outputs,

parameter inputs, or tools. More informally, a combination of multiple individual tools into a

single pipeline, which once assembled can be executed as if it were a single tool.

Collection: a group of individual datasets linked together in a directory-like structure. When a

tool is run on a collection, individual jobs are generated for each of the datasets which make up

the collection. In combination with workflows, collections allow Galaxy users to scale up

analyses to deal with large sets of data.

Documentation

Planemo’s documentation is hosted on a ReadTheDocs site: https://planemo.readthedocs.io. In

addition, several tutorials are available as part of the Galaxy Training Network:

● Creating Galaxy tools from Conda through deployment:

https://training.galaxyproject.org/training-material/topics/dev/tutorials/tool-from-scratch/tu

torial.html
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● Creating training material with Planemo:

https://training.galaxyproject.org/training-material/topics/contributing/tutorials/create-new-

tutorial/tutorial.html

● Automating Galaxy workflows using the command line:

https://training.galaxyproject.org/training-material/topics/galaxy-interface/tutorials/workflo

w-automation/tutorial.html

● Test-driven development with Planemo:

https://planemo.readthedocs.io/en/latest/writing_advanced.html#test-driven-development
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Results and Discussion

Galaxy tool development

A Galaxy tool is defined by a wrapper for an underlying software (or code), which maps its

dataset inputs, parameter inputs and outputs to a command-line script executed by Galaxy.

When running a tool in the Galaxy interface, a user selects their preferred choices for the

exposed dataset and parameter inputs. The Galaxy server then constructs the command,

schedules it as a job onto appropriate compute resources, collects the results once the job has

completed, and returns them to the user.

Writing Galaxy tool wrappers requires a thorough knowledge of the underlying software and also

an understanding of the Galaxy tool schema which defines how Galaxy wrappers are written.

The tool schema is defined in a simple manner, in order to make the process of wrapping

software as accessible as possible [17]. Planemo provides several helpful features which assist

tool developers in creating high-quality wrappers that meet community-defined standards, such

as those [18] developed by the Intergalactic Utility Commission (IUC). These features are

implemented as subcommands, e.g. `planemo test`. Planemo also helps to enforce software

development best practices such as writing tests for all tools and linting the wrapper definitions

to avoid bugs and ensure a coherent and readable style. Further support for tool development

standards is provided by the Galaxy Language Server [19], an implementation of the Language

Server Protocol [20] and a Visual Studio Code extension for Galaxy tools, which can be used

side-by-side with Planemo.

A common starting point for tool development is the `tool_init` subcommand. To use this,

the developer provides a variety of options, including an example command line, tool name,

inputs, outputs and software requirements, from which Planemo generates a skeleton tool

wrapper. Most of the `tool_init` parameters are optional, but the more that are provided, the

more detailed the initial skeleton will be.

The developer can then inspect and edit the generated file, adding more parameters and

increasing the complexity of the wrapper logic by incorporating conditionals and repeat

elements if necessary. As they continue to edit, they can use the `lint` subcommand to

validate the wrapper under development. Planemo’s linting forces wrappers to match Galaxy’s

tool schema, ensuring stylistic consistency and preventing some errors such as mismatched file

formats. Crucially, Planemo recommends that wrappers define at least one test case to ensure
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the development of high-quality, portable, reliable and functional tools, and this recommendation

is strictly enforced by the IUC’s and other tool repositories. Once tests are defined, together with

an initial tool definition, the developer can start to run the tests using the `test` subcommand.

This launches a transient Galaxy server on the developer’s computer, installs the Galaxy tool

under development, together with all software dependencies, and executes the tests specified

within the tool wrapper. The results of the tests are then returned to the developer, by default

using a report defined using JSON and HTML, although other format types are also supported

(xUnit, jUnit, Markdown and Allure).

Planemo encourages the use of test-driven development [21], a software development principle

which states test cases should be written before a new feature is developed. Test-driven

development is an industry-wide best practice. Defining extensive test cases at the start of the

process covering the required features provides a focus for development, and results in more

robust and better documented code containing fewer bugs. The tool developer is forced to

adopt the perspective of the Galaxy user from the start to consider possible use-cases of the

software for which tests need to be written. Initial test failures lead to iterative refinement of the

wrapper, until a fully-functional Galaxy tool, which passes all tests, is produced.

Once tests are passing, the developer should optimize the tool interface which is presented to

the user of the tool. To facilitate this, Planemo provides the `serve` subcommand, which

launches a Galaxy server with the new tool installed, allowing the developer to inspect the

rendering of the wrapper in the graphical interface and to perform manual testing. The

developer should also improve the documentation of the tool, by annotating each of the tool

parameters, as well as writing a help section to explain the tool’s aim and usage, which appears

beneath the tool parameters in the graphical interface.

Common Workflow Language tool development

In addition to Galaxy tools, Planemo also acts as a software development kit for CWL tools. The

same subcommands described can be used for this purpose, including `tool_init` and

`test`. By appending the `--cwl` argument to the `tool_init` subcommand, Planemo

generates a template for a CWL tool definition, rather than a Galaxy wrapper. The test and lint

commands then detect that the input file is a CWL wrapper and process it accordingly. Tools are

tested by executing with the CWL engine cwltool and comparing the result with test data or

specified assertions, in the same way as for Galaxy tools. The completed wrapper can be run

using any CWL engine, such as cwltool, Toil, Arvados [22] or Galaxy.
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Galaxy workflow development

Workflows are created in Galaxy by connecting together multiple tools (i.e. an output of one tool

becomes an input for the following one) in order to automate complex analyses. Unlike tools,

workflows can be defined and edited in Galaxy’s graphical workflow editor; often the starting

point is an interactive analysis (a Galaxy history) from which a workflow can be extracted

automatically. It is also possible to manually author workflows in the gxformat2 workflow

language [23], and the user can switch between manually writing workflows and editing in the

graphical interface using the `workflow_edit` subcommand, which spins up a Galaxy

instance with the workflow under development pre-installed for editing. Planemo additionally

facilitates the creation of test cases by providing the option of generating them automatically

from a pre-existing workflow invocation.

Once a draft version of the workflow exists, it should be iteratively improved in the same way as

for tools, using the same lint, test and serve subcommands already introduced. The

`workflow_lint` subcommand checks workflows for errors and conformance with best

practices—a command-line interface mirroring functionality which is also provided by the Galaxy

graphical workflow editor. For example, workflows which are missing test cases, labeled

outputs, or essential metadata fail linting. Running the `test` subcommand launches a local

Galaxy instance, installs the tools used in the workflow, uploads the workflow and executes it on

the provided input test data. In the same way as for tool testing, the workflow outputs are

downloaded and compared to the test data, resulting in either a pass or fail status. In some

cases, it can be convenient to run testing on an existing public server, such as

https://usegalaxy.org, https://usegalaxy.eu, or https://usegalaxy.org.au; this is also supported by

Planemo. Running the `serve` subcommand provides a local Galaxy server with the workflow

and the needed tools pre-installed, which can be used for workflow development and

fine-tuning.

The philosophy of Galaxy tool and workflow development

After the previous discussion of the process of tool and workflow development, the question

arises how software complexity should be divided between the tool and the workflow level.

Should most of the effort go into developing workflows, keeping tools as simple as possible and

flexibly rewrapping the underlying software depending on the demands of a particular workflow,

or should developers invest time creating complex and multifunctional tools which can be

reused without modification in multiple workflows?
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Galaxy leans heavily towards the second of these two options, as does CWL, though the

following discussion will focus on Galaxy. Galaxy encourages the creation of modular tools

which are usable in isolation, so they can be used interchangeably in multiple different

workflows. Tools generally encapsulate most of the complexity of the underlying software,

allowing workflows to be simply constructed in a graphical interface by connecting the

component tools. Workflows can thus be thought of as complex structures built from the same

fundamental building blocks, which can be constructed without knowledge of the internal

functionality of the individual tools. This has several advantages with regard to the user

experience: building workflows becomes a far less daunting task, and tools can also be used

individually in the graphical interface, which makes Galaxy accessible to new users and enables

its use as a teaching environment for scientific analysis.

Another advantage of this approach is the “separation of concerns”, a design principle in

computer science. Different groups of scientists can develop and apply specialized and

complementary areas of knowledge: the tool developer can concentrate on describing and

developing the Galaxy tool, without considering any downstream workflows that will be created

later. On the other hand, the workflow developer can construct complex, high-level pipelines,

without the detailed understanding of the component tools and the command-line possessed by

the tool developer. This has the dual advantage that workflows can be treated on a more

abstract level and that the workflow creation process is made accessible for a far greater

number of users.

Separation of concerns between tools and workflows also benefits security. Executing untrusted

software on a compute cluster is highly undesirable; thus workflows need to be assessed for

security risks before execution. For many workflow management systems, this assessment

must be repeated for each workflow. By contrast, as the Galaxy tool review process involves

checking tools for security issues before merging, a system administrator can deploy tools

developed by the IUC or similar high-trust communities with confidence. The question of

workflow security is thus made redundant: if the component tools are trusted, a workflow based

on those tools can likewise be trusted.

These advantages must be balanced against the time investment required from community

members to build up a diverse set of tools, to allow the construction of scientifically interesting

workflows. Nonetheless, the Galaxy community, facilitated by Planemo, has succeeded in

developing such a toolset and making it available to the scientific community.
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Continuous integration for community repositories

Galaxy has a large and vibrant community of tool and workflow developers, creating Galaxy

tools in a wide range of scientific fields, ranging from genomics to proteomics, computational

chemistry and climate science. As a result, a large number of high quality tools already exist

and are actively maintained over several GitHub repositories, centered around the main IUC

repository; the IWC (see Methods for definition) performs the equivalent function of a repository

for Galaxy workflows. Building these communities has required many years of work by multiple

contributors; in order to streamline the process and ease the burden on the tool developers,

developing infrastructure to facilitate human review and automate as much as possible is

essential. Planemo forms the core of this infrastructure.

Once a developer has completed the tool wrapper or workflow, they can submit it to a

community repository, usually hosted on GitHub, for review. Alternatively, they may also deploy

it themselves (for example, to the ToolShed or WorkflowHub), but submission to a community

repository is encouraged to ensure the code is thoroughly reviewed and to publicize the new

tool or workflow. Community repositories are configured to run the linting and testing checks

already described after submission, via a continuous integration (CI) workflow. Planemo

provides a couple of simple subcommands, `ci_find_repos` and `ci_find_tools`, to

identify tools which have been added or modified. Both of these allow chunking of tools in order

to parallelize the testing process over multiple CI jobs. As part of the CI testing, linting and

testing of the tools is repeated, as well as linting of any Python and R scripts added together

with the new tool wrappers. These steps ensure the submitted tools are of high quality, enforce

consistent standards on the code and reduce the maintenance burden for the entire community.

If all tests pass and the proposed new tool or workflow is accepted by the community, another

CI job is initiated to deploy it to the ToolShed. This makes use of Planemo’s `shed_update`

command, which uses the ToolShed credentials associated with the repository to upload the

newly created tool. Once it is available on the ToolShed, it can easily be installed onto any

Galaxy server.

The entire process, consisting of automated testing, human review and automated deployment,

ensures the creation of high-quality, trustworthy tools which can be safely installed and used. It

requires several more specialized steps, which go beyond the simple Planemo subcommands

that the developer runs on their local machine. To package these CI workflows into a single unit,

a GitHub Action is provided [24] which can be reused in other tool repositories. New tool

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022.;https://doi.org/10.1101/2022.03.13.483965doi:bioRxiv preprint



repositories with the same structure as the IUC repository can be conveniently created from a

template repository created by the Galaxy community [25].

Automation of tool and workflow updates

Another feature offered by Planemo is automatic updates of Galaxy tool and workflow software

dependencies, using the `autoupdate` subcommand. In combination with separate

autoupdate features already developed by the Bioconda and conda-forge [26] communities, this

forms a sequence of semi-automated software update procedures, which are triggered by an

official release of new source code. After this new release appears, this chain ensures that new

Conda packages, new Docker and Singularity containers, updated Galaxy tools and finally

updated Galaxy workflows are generated (Fig. 2). At each step, a CI job detects the artifact

published in the previous step and initiates the process of updating a dependent artifact,

generally by means of a GitHub pull request (PR).

The CI pipelines developed by Bioconda and conda-forge monitor the Conda recipes they

maintain, regularly checking the links provided in the recipes for new releases. When the

developers of an upstream software package release a new version, the CI creates a PR to

update the package recipe. Once the PR is reviewed and merged, newly built packages are

uploaded to the Anaconda repository.

In parallel, a bot [29] running the `autoupdate` subcommand monitors the Galaxy tool

wrappers maintained by the IUC, as well as a few other smaller communities, checking the

dependencies defined in the tool wrapper. Once an updated Bioconda or conda-forge package

is published in the step above, the Planemo autoupdate bot detects this and updates the

dependencies section of the Galaxy tool accordingly. A PR is then submitted to the GitHub

repository, to be reviewed and manually updated if necessary, before it is merged and deployed

as described in the “CI for community repositories” section.

Galaxy tools can specify multiple dependencies. If these dependencies are installed via Conda,

the packages can be simply installed into a single environment, but if dependency installation is

achieved using containers, a new container must be built for each required combination of

dependencies. This is achieved by the ‘mulled build’ infrastructure; a CI job triggers the building

of a Docker container for each new combination of packages, on publication of new Galaxy tool

versions. Another CI job is responsible for generating Singularity containers from the new
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Docker containers, which are made available by the BioContainers and Galaxy communities via

a CernVM file system (CVMFS) [27]. These steps do not require manual review.

The Planemo autoupdate bot also monitors the Galaxy workflows maintained by the IWC and

checks whether new versions exist for each of the component tools. Once a new tool version is

created (either by the upstream tool autoupdate step, or a tool developer), the workflow

definition file hosted by the IWC is modified accordingly and a PR submitted for review (Fig. 3).

Execution

Apart from providing assistance with tool and workflow development and deployment, Planemo

is also a useful resource for Galaxy power users who need to launch high-throughput data

analyses. Galaxy is traditionally accessed via a graphical interface in the web browser, and

features such as Galaxy collections already provide a high level of parallelization to users of the

graphical interface. Nonetheless, there are important scenarios in which a user might need to

run individual workflows hundreds or thousands of times, in which the data cannot be grouped

into collections ahead of time—for example, for variant calling of SARS-CoV-2 genomic data, in

which a huge amount of new data is published continuously [28]. As a convenient alternative to

the graphical interface, Planemo allows workflow execution to be scheduled programmatically

using the `run` subcommand, either on a local machine or a larger Galaxy server. `planemo

run` can be embedded in scripts of varying complexity, which can be scheduled and controlled

via CI systems or message queues to run workflows on demand - such as on new data

appearing or tool updates.

Internally, Planemo executes workflows by submitting them to the chosen server via Galaxy’s

API. Requests to the API are made using BioBlend, a library which wraps many API endpoints

as Python methods. It is also possible to execute workflows directly using BioBlend, or simply by

making API calls using a tool such as cURL. While this approach does offer a high level of

flexibility, it requires the user to possess a high level of knowledge of the API (for example, the

correct format to submit workflow parameters) and often requires the creation of custom scripts.

By contrast, Planemo’s `run` subcommand offers a high-level interface to execute workflows,

monitor them during execution, and report on their status after completion, packaged as a single

command.

For tool and workflow development, the artifacts under development are generally tested

against an ephemeral local Galaxy instance, which is deleted after use. While this is also
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supported by the `run` subcommand, with the workflow outputs saved to a specified location,

this approach is not scalable for workflows which demand long compute times, with large data

inputs, or with workflows which need to be executed multiple times. In many cases, the user

may prefer to make use of established, stable infrastructures, such as a public Galaxy instance

or a private instance administered by their research group. Planemo allows external Galaxy

instances to be specified for all `run` and `test` commands by providing the server URL and

user API authentication key on the command line. As it is inconvenient and insecure to enter the

API key with each command, Planemo also allows users to define profiles, in which the URL

and API key is configured for each server. The user can then define multiple profiles and run

workflows on different servers simply by appending, e.g. `--profile usegalaxy-org` or

`--profile private-server` to the command.

Planemo provides numerous command line options to configure the workflow execution

process. The name of the history in which the new invocation is created, as well as a list of

Galaxy tags to add, can be specified via the command line. In addition, Planemo and Galaxy

allow both datasets and workflows to be specified via hexadecimal IDs which point towards a

Galaxy object on an external server, rather than by referring to a local path. This has the

advantage of avoiding multiple uploads of the same dataset or workflow, if the workflow has to

be executed multiple times. Planemo can also be configured to either wait until the workflow has

completed, and download the output datasets created, or to terminate once the workflow has

been successfully scheduled. In the latter case, the `list_invocations` command can be

used to monitor running workflows and to return the number of jobs which have succeeded,

failed, or incomplete. If jobs have failed—for example, due to transient server issues— the user

can also choose to restart them using the `rerun` subcommand.

Training material

Planemo provides utilities for developing tutorials for different types of data analysis with Galaxy.

The Galaxy Training Network, accessible via https://training.galaxyproject.org, provides a range

of training material including slide decks, tutorials and videos. In particular, the tutorials are

written in Markdown and rendered using Jekyll, and often feature ‘hands-on boxes’ which

describe the exact combination of parameters and input which users need to submit when

running a Galaxy tool. Most tutorials instruct the trainees to run several Galaxy tools in

sequence, and thus correspond to a Galaxy workflow.
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Planemo provides two subcommands, `training_init` and

`training_generate_from_wf`, which generate a directory structure for a new tutorial,

containing skeleton Markdown files defining the tutorials. These files already contain sections

and hands-on boxes for each tool, with the tool inputs and parameters predefined, ensuring a

high level of consistency in the appearance and quality of the tutorials produced. The training

developer can then take these templates and expand them with additional information,

questions, diagrams and citations to produce the completed training. They also need to provide

input datasets, which are usually stored on Zenodo. To populate a Galaxy server with these

datasets, the training developer should also provide a data library file, which can be generated

using the `training_fill_data_library` subcommand, including the Zenodo links and

file formats of the datasets.

A major aim of the Galaxy Training Network project is improving accessibility for new

contributors, including for scientists who are not comfortable with command-line software. As a

result, the Planemo functionality relating to training material development is provided in

webserver form as the Planemo Training Development Kit (PTDK). The application is written

using Flask and deployed with Heroku; it can be accessed via https://ptdk.herokuapp.com. The

interface allows the selection of the same options as the Planemo commands, with the

additional option of specifying a workflow for generating the training using its ID from one of the

major public Galaxy servers.

Conclusion

We have presented Planemo, a library and application which has already achieved widespread

usage among Galaxy tool, workflow and training material developers, Galaxy power users, and

as part of numerous automated deployment solutions. Planemo provides the developers of

command-line software with an easy way to create a graphical interface, taking advantage of

the many features developed by the Galaxy community and the compute resources provided by

public Galaxy instances. We have described the complex infrastructure the Galaxy community

has developed for creating and interacting with artifacts such as tools, workflows and training

material. Planemo plays the crucial role of bridging the gaps between the human and automated

components of this infrastructure, freeing members of the community to devote their time to

developing, reviewing and performing novel scientific analyses.
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Tables

Object→

Function ↓

Galaxy tool Galaxy workflow CWL Galaxy training

material

Initial template

creation

tool_init workflow_test_

init

tool_init training_init,

training_generat

e_from_wf

Development test, lint,

serve

test, lint,

serve

test, lint

Deployment test, ci_*,

shed_*

test, ci_*,

shed_*

- GTN

Execution run run run GTN

Automated updates autoupdate autoupdate -

Table 1. Overview of Planemo functionality and subcommands. Columns represent artifacts that can be created or

manipulated with Planemo, rows represent different actions that can be performed on them. Italics represent actions

which are performed without using Planemo: trainings are deployed using Jekyll and executed by users following the

training material in the graphical interface.
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Figures

Figure 1. Overview of the use of Planemo for development, deployment, and execution of

Galaxy tools, workflows and training materials. Red = manual work, blue = Planemo commands,

yellow = automated steps, green = created artifacts.
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Figure 2. Automation pipeline for Bioconda packages, BioContainers, Galaxy tools and

workflows. Steps marked in red require human review; steps marked in blue are fully

automated.
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Figure 3. An example GitHub pull request created by the Planemo autoupdate bot, updating a

workflow hosted on the IWC.

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022.;https://doi.org/10.1101/2022.03.13.483965doi:bioRxiv preprint



References

1. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, Chilton J, Clements D,
Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H,
Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D. The Galaxy platform for
accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic
Acids Res. Oxford Academic; 2018 May 22;46(W1):W537–W544.

2. Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C, Bretaudeau A,
Brillet-Guéguen L, Čech M, Chilton J, Clements D, Doppelt-Azeroual O, Erxleben A,
Freeberg MA, Gladman S, Hoogstrate Y, Hotz H-R, Houwaart T, Jagtap P, Larivière D, Le
Corguillé G, Manke T, Mareuil F, Ramírez F, Ryan D, Sigloch FC, Soranzo N, Wolff J,
Videm P, Wolfien M, Wubuli A, Yusuf D, Galaxy Training Network, Taylor J, Backofen R,
Nekrutenko A, Grüning B. Community-Driven Data Analysis Training for Biology. Cell Syst.
2018 Jun 27;6(6):752–758.e1. PMCID: PMC6296361

3. Crusoe MR, Abeln S, Iosup A, Amstutz P, Chilton J, Tijanić N, Ménager H, Soiland-Reyes
S, Gavrilovic B, Goble C. Methods Included: Standardizing Computational Reuse and
Portability with the Common Workflow Language. 2021 May 14 [cited 2022 Mar 11];
Available from: http://dx.doi.org/10.1145/3486897

4. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster
J, Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the
life sciences. Nat Methods. 2018 Jul;15(7):475–476. PMID: 29967506

5. Common Workflow Language. GitHub - common-workflow-language/cwltool: Common
Workflow Language reference implementation [Internet]. GitHub. [cited 2022 Mar 11].
Available from: https://github.com/common-workflow-language/cwltool

6. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, Pfeil J, Narkizian J,
Deran AD, Musselman-Brown A, Schmidt H, Amstutz P, Craft B, Goldman M, Rosenbloom
K, Cline M, O’Connor B, Hanna M, Birger C, Kent WJ, Patterson DA, Joseph AD, Zhu J,
Zaranek S, Getz G, Haussler D, Paten B. Toil enables reproducible, open source, big
biomedical data analyses. Nat Biotechnol. Nature Publishing Group; 2017 Apr
11;35(4):314–316.

7. Sloggett C, Goonasekera N, Afgan E. BioBlend: automating pipeline analyses within
Galaxy and CloudMan. Bioinformatics. Oxford Academic; 2013 Apr 28;29(13):1685–1686.

8. Intergalactic Utilities Commission [Internet]. [cited 2022 Mar 11]. Available from:
https://galaxyproject.org/iuc/

9. Blank C, Easterly C, Gruening B, Johnson J, Kolmeder CA, Kumar P, May D, Mehta S,
Mesuere B, Brown Z, Elias JE, Hervey WJ, McGowan T, Muth T, Nunn BL, Rudney J,
Tanca A, Griffin TJ, Jagtap PD. Disseminating Metaproteomic Informatics Capabilities and
Knowledge Using the Galaxy-P Framework. Proteomes. Multidisciplinary Digital Publishing
Institute; 2018 Jan 31;6(1):7.

22

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022.;https://doi.org/10.1101/2022.03.13.483965doi:bioRxiv preprint



10. Conda — conda 4.12.0.post4+8c8af5e3 documentation [Internet]. [cited 2022 Mar 11].
Available from: https://docs.conda.io/projects/conda/en/latest/index.html

11. Empowering App Development for Developers [Internet]. Docker. [cited 2022 Mar 11].
Available from: https://www.docker.com/

12. Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute.
PLoS One. Public Library of Science; 2017 May 11;12(5):e0177459.

13. Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N, Team G, Taylor J,
Nekrutenko A. Dissemination of scientific software with Galaxy ToolShed. Genome Biol.
BioMed Central Ltd; 2014 Jan 1;15(2):403. PMCID: PMC4038738

14. Galaxy Project. GitHub - galaxyproject/iwc: Intergalactic Workflow Commission [Internet].
GitHub. [cited 2022 Mar 11]. Available from: https://github.com/galaxyproject/iwc

15. Yuen D, Cabansay L, Duncan A, Luu G, Hogue G, Overbeck C, Perez N, Shands W,
Steinberg D, Reid C, Olunwa N, Hansen R, Sheets E, O’Farrell A, Cullion K, O’Connor BD,
Paten B, Stein L. The Dockstore: enhancing a community platform for sharing reproducible
and accessible computational protocols. Nucleic Acids Res. Oxford Academic; 2021 May
12;49(W1):W624–W632.

16. Goble C, Soiland-Reyes S, Bacall F, Owen S, Williams A, Eguinoa I, Droesbeke B, Leo S,
Pireddu L, Rodríguez-Navas L, Fernández JM, Capella-Gutierrez S, Ménager H, Grüning
B, Serrano-Solano B, Ewels P, Coppens F. Implementing FAIR Digital Objects in the
EOSC-Life Workflow Collaboratory. 2021 Mar 12 [cited 2022 Mar 11]; Available from:
https://zenodo.org/record/4605654

17. Galaxy Tool XML File — Galaxy Project 22.05.dev0 documentation [Internet]. [cited 2022
Mar 11]. Available from: https://docs.galaxyproject.org/en/latest/dev/schema.html

18. Galaxy Intergalactic Utilities Commission Standards and Best Practices — Galaxy IUC
Standards and Best Practices 0.1 documentation [Internet]. [cited 2022 Mar 11]. Available
from: https://galaxy-iuc-standards.readthedocs.io/

19. Galaxy Project. GitHub - galaxyproject/galaxy-language-server: Galaxy Language Server
to help in Galaxy (https://galaxyproject.org/) tool wrappers development [Internet]. GitHub.
[cited 2022 Mar 11]. Available from:
https://github.com/galaxyproject/galaxy-language-server

20. Language Server Protocol [Internet]. Available from:
https://microsoft.github.io/language-server-protocol/

21. Siddiqui S. Learning Test-Driven Development: A Polyglot Guide to Writing Uncluttered
Code. O’Reilly Media; 2021.

22. Arvados [Internet]. Arvados. [cited 2022 Mar 11]. Available from: https://arvados.org/

23. gxformat2 [Internet]. Available from: https://github.com/galaxyproject/gxformat2

24. Galaxy Project. GitHub - galaxyproject/planemo-ci-action: Test, deploy, or lint changed

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022.;https://doi.org/10.1101/2022.03.13.483965doi:bioRxiv preprint



Galaxy tools or workflows using Planemo [Internet]. GitHub. [cited 2022 Mar 11]. Available
from: https://github.com/galaxyproject/planemo-ci-action

25. Galaxy tool repository template [Internet]. Available from:
https://github.com/galaxyproject/galaxy-tool-repository-template

26. conda-forge community. The conda-forge Project: Community-based Software Distribution
Built on the conda Package Format and Ecosystem. 2015 Jul 12 [cited 2022 Mar 11];
Available from: https://zenodo.org/record/4774217

27. Switzerland JBC, Switzerland PBP-S, Thomas Fuhrmann Technische Universität München,
München, Germany. CernVM-FS [Internet]. ACM Conferences. [cited 2022 Mar 11].
Available from: https://dl.acm.org/doi/abs/10.1145/2110217.2110225

28. Maier W, Bray S, van den Beek M, Bouvier D, Coraor N, Miladi M, Singh B, De Argila JR,
Baker D, Roach N, Gladman S, Coppens F, Martin DP, Lonie A, Grüning B, Kosakovsky
Pond SL, Nekrutenko A. Ready-to-use public infrastructure for global SARS-CoV-2
monitoring. Nat Biotechnol. Nature Publishing Group; 2021 Sep 29;39(10):1178–1179.

24

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022.;https://doi.org/10.1101/2022.03.13.483965doi:bioRxiv preprint





Bibliography

[1]Jeremy Berg, John Tymoczko, and Lubert Stryer. Biochemistry. San Francisco, USA:
W.H. Freeman, 2002 (cit. on pp. 1, 7, 9).

[2]Regine S Bohacek, Colin McMartin, and Wayne C Guida. “The art and practice of
structure-based drug design: a molecular modeling perspective”. In:Medicinal Research
Reviews 16.1 (1996), pp. 3–50 (cit. on p. 1).

[3]Christopher W. Murray and David C. Rees. “The rise of fragment-based drug discovery”.
In: Nature Chemistry 1.3 (June 2009), pp. 187–192 (cit. on pp. 1, 12).

[4]Richard J. Hall, Christopher W. Murray, and Marcel L. Verdonk. “The Fragment
Network: A Chemistry Recommendation Engine Built Using a Graph Database”. In:
Journal of Medicinal Chemistry 60.14 (July 2017), pp. 6440–6450 (cit. on p. 1).

[5]Harrison Green, David R. Koes, and Jacob D. Durrant. “DeepFrag: a deep convolutional
neural network for fragment-based lead optimisation”. In: Chemical Science 12.23
(2021), pp. 8036–8047 (cit. on p. 2).

[6]Christopher A Lipinski, Franco Lombardo, Beryl W Dominy, and Paul J Feeney. “Exper-
imental and computational approaches to estimate solubility and permeability in drug
discovery and development settings 1PII of original article: S0169-409X(96)00423-1.
The article was originally published in Advanced Drug Delivery Reviews 23 (1997)
3–25. 1”. In: Advanced Drug Delivery Reviews 46.1-3 (Mar. 2001), pp. 3–26 (cit. on
p. 2).

[7]Herman J. C. Berendsen. Simulating the Physical World: Hierarchical Modeling from
Quantum Mechanics to Fluid Dynamics. Cambridge, United Kingdom: Cambridge
University Press, 2007 (cit. on pp. 2, 19).

[8]Samuel Genheden and Ulf Ryde. “The MM/PBSA and MM/GBSA methods to estimate
ligand-binding affinities”. In: Expert opinion on drug discovery 10.5 (2015), pp. 449–
461 (cit. on pp. 2, 20).

[9]Laura Wratten, Andreas Wilm, and Jonathan Göke. “Reproducible, scalable, and
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müller, and K. Kremer. Jülich: John von Neumann Institute for Computing, 2004,
pp. 1–27 (cit. on p. 19).

[43]Laura Orellana. “Large-Scale Conformational Changes and Protein Function: Breaking
the in silico Barrier”. In: Frontiers in Molecular Biosciences 6 (Nov. 2019) (cit. on p. 20).

[44]David E. Shaw, Ron O. Dror, John K. Salmon, et al. “Millisecond-Scale Molecular
Dynamics Simulations on Anton”. In: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. SC ’09. Portland, Oregon: Association
for Computing Machinery, 2009 (cit. on p. 20).

[45]Vincent A Voelz, Gregory R Bowman, Kyle Beauchamp, and Vijay S Pande. “Molecular
simulation of ab initio protein folding for a millisecond folder NTL9 (1- 39)”. In:
Journal of the American Chemical Society 132.5 (2010), pp. 1526–1528 (cit. on p. 20).

[46]Outi M. H. Salo-Ahen, Ida Alanko, Rajendra Bhadane, et al. “Molecular Dynamics
Simulations in Drug Discovery and Pharmaceutical Development”. In: Processes 9.1
(2021) (cit. on p. 20).

[47]Alessandro Laio and Michele Parrinello. “Escaping free-energy minima”. In: Proceedings
of the National Academy of Sciences 99.20 (2002), pp. 12562–12566 (cit. on p. 20).
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