COMMENT Open Access

Beta-blockers in refractory hypoxemia on venovenous extracorporeal membrane oxygenation: a double-edged sword

Dawid L. Staudacher^{1*}, Tobias Wengenmayer¹ and Matthieu Schmidt²

Up to 10% of patients admitted to the intensive care unit (ICU) suffer from acute respiratory distress syndrome (ARDS) [1]. Severe respiratory failure can result in refractory hypoxemia, characterized by diminished arterial oxygen content and subsequent tissue hypoxia [2]. To address hypoxia, venovenous extracorporeal membrane oxygenation (V-V ECMO) can be employed, delivering up to 6–7 L per minute of fully oxygenated blood to the venous circulation [2, 3].

Despite V-V ECMO, persistent hypoxemia may occur [4]. The primary cause of hypoxemia is often limited pump preload, leading to reduced ECMO circuit blood flow ($Q_{\rm ECMO}$) [5]. If hypoxemia persists despite increased $Q_{\rm ECMO}$, adequate hemoglobin levels, and minimized recirculation have to be ensured. If all these rescue maneuvers failed, some reports propose the utilization of beta-blockers for refractory hypoxemia despite adequate $Q_{\rm ECMO}$ [4, 6, 7]. However, physiologically, this approach might yield counterintuitive effects as beta-blockers can decrease tissue oxygenation despite raising arterial oxygen saturation (SaO₂).

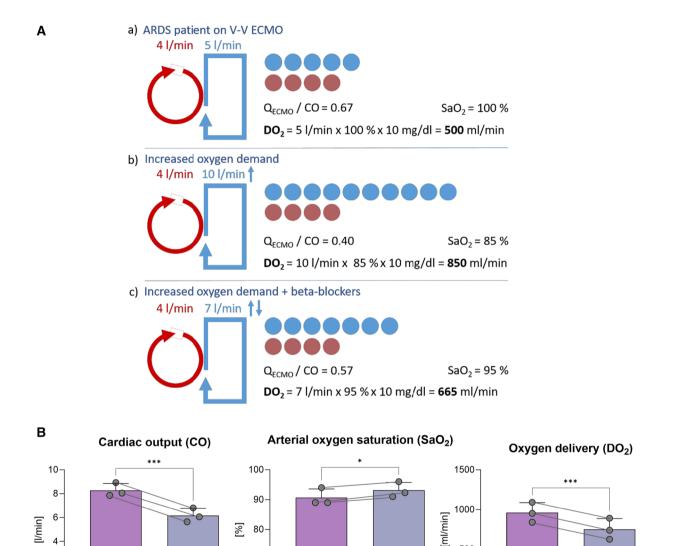
We aim to emphasize potential risks associated with using beta-blockers for refractory hypoxemia during

*Correspondence: Dawid L. Staudacher

dawid.staudacher@uniklinik-freiburg.de

V-V ECMO. To begin, the oxygen content in the arterial blood can be estimated by the following formula [8]: arterial oxygen content $(CaO_2) = (SaO_2 \times Hb \times 1.34) + (PaO_2 \times 0.003)$, where CaO_2 represents the arterial oxygen content [mL/dL], SaO_2 represents the arterial oxygen saturation [%], Hb represents the concentration of hemoglobin [g/dL], PaO_2 represents the partial pressure of oxygen in arterial blood [mmHg] and 0.003 is a constant that accounts for the small amount of oxygen dissolved in the plasma. The oxygen present in arterial blood is subsequently conveyed to the tissues by the circulation.

Arterial oxygen delivery (DO₂) can be therefore estimated by the following formula: $DO_2 = CaO_2 \times CO$, where CO [L/min] represents cardiac output (CO). DO₂ can therefore be improved by increasing either SaO₂, hemoglobin levels, or CO. In V-V ECMO, oxygenated blood from the ECMO mixes with deoxygenated blood from the venous circulation thereby increasing SaO₂. In most patients with pulmonary failure, Q_{ECMO} is lower than CO, still providing arterial oxygen saturation up to 100%. Maintaining $Q_{ECMO}/CO > 0.6$ is one of the objectives of physicians as it seems to be associated with adequate oxygenation on V-V ECMO [9]. In hyperdynamic circulatory states such as sepsis, CO significantly surpasses maximum Q_{ECMO} . When Q_{ECMO}/CO is < 0.6, too much-deoxygenated blood from the circulation mixes with the oxygenated blood returned from the ECMO, resulting in a decrease in SaO₂. Therefore, the Q_{ECMO}/CO ratio is of paramount importance to properly oxygenate arterial blood. In the rare scenario of $Q_{ECMO}/CO < 0.6$ at



© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

¹ Interdisciplinary Medical Intensive Care, Faculty of Medicine and Medical Center, University of Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany

² 1166-ICAN, Institute of Cardiometabolism and Nutrition, APHP, Hôpital Pitié- Salpêtrière, Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Sorbonne Université, Paris, France

Staudacher et al. Critical Care (2023) 27:360 Page 2 of 3

Fig. 1 A Schematic representation of ECMO flow and cardiac output. Red indicates V-V ECMO flow, and blue indicates cardiac output. For illustrative purposes, recirculation is neglected; **a** Patient with ARDS and V-V ECMO support. The Q_{ECMO}/CO ratio is 0.67, with saturation at 100%. DO_2 is 500 ml/min. **b** The same patient with increased oxygen demand, for example, due to infection and fever. Q_{ECMO} remains the same while CO is increased. This results in a ratio of 0.40, saturation of 85%, but a significantly increased DO_2 of 850 ml/min. **c** Patient with increased oxygen demand treated with beta-blocker. The higher Q_{ECMO}/CO ratio improved arterial oxygen saturation, but the DO_2 drops to 665 ml/min. **B** Displays three ARDS patients undergoing V-V ECMO therapy, in whom beta-blockers were titrated based on their effects. The measurements were taken three times each after reaching a steady state

post

beta-blockers

90.7

baseline

70

60

maximum Q_{ECMO} , decreasing CO to increase the Q_{ECMO} /CO ratio might appeal as a viable therapeutic target.

post

beta-blockers

2

8.3

baseline

Some studies have shown an increase in SaO_2 by beta-blocker therapy in severely hypoxemic ECMO patients [6, 7]. However, reducing CO by beta-blocker therapy will increase SaO_2 at the cost of a reduction in DO_2 . Since tissue oxygenation ultimately depends on DO_2 ,

beta-blocker therapy can aggravate tissue hypoxia, see Fig. 1a. We tested this hypothesis in three mildly hypoxic patients in our ICU using continuous metoprolol infusion (dose 8.7 ± 1.2 mg/h). The average age was 45.5 ± 5.2 years, and the indication for V-V ECMO was ARDS in all patients. Q_{ECMO} and Q_{ECMO}/CO ratio at baseline were 4.3 ± 0.5 l/min and 0.5 ± 0.1 , respectively. Beta-blockers

baseline

post

500

Staudacher et al. Critical Care (2023) 27:360 Page 3 of 3

increased the Q_{ECMO}/CO ratio (0.7 ± 0.1) at the cost of a decrease of CO but also importantly DO₂, see Fig. 1b.

 DO_{2} , oxygen extraction and anaerobic glycolysis (increasing lactate levels) should be monitored closely when beta-blockers are used for refractory hypoxemia on V-V ECMO. Beta-blockers might only be advisable in situations where cardiac output is increased inadequately and not driven by oxygen demand. Targeting mild hypothermia, analgesic treatment, and increased sedative are some examples of simple measures that should be done as first-line treatment to improve $\mathrm{Q}_{\mathrm{ECMO}}/\mathrm{CO}$ ratio. Beta-blockers should be regarded as therapy for very rare cases, considered only when an increased CO secondary to an increased oxygen demand is excluded.

Abbreviations

CaO₂ Arterial oxygen content
CO Cardiac output
DO₂ Oxygen delivery
Hb Hemoglobin (q/dL)

PaO₂ Partial pressure of oxygen in arterial blood [mmHg]

Q_{ECMO} Venovenous extracorporeal membrane oxygenation blood

flow

SaO₂ Arterial oxygen saturation

V-V ECMO Venovenous extracorporeal membrane oxygenation

Acknowledgements

None.

Author contributions

Concept/design: TW, MS; data analysis/interpretation: DLS, TW; drafting figures: DLS, TW; drafting article: DLS, TW, MS: critical revision of article: DLS, TW, MS; all authors reviewed the manuscript.

Funding

Publications charges are partly covered by the DFG.

Availability of data and materials

On request available.

Declarations

Ethics approval and consent to participate

The ethics commission of the university of Freiburg approved the current research (EK-Freiburg file number 151/14).

Consent for publication

Not applicable

Competing interests

Not applicable.

Received: 21 August 2023 Accepted: 15 September 2023 Published online: 20 September 2023

References

 Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.

- Grotberg JC, Reynolds D, Kraft BD. Management of severe acute respiratory distress syndrome: a primer. Crit Care. 2023;27(1):289.
- Ramanathan K, Shekar K, Ling RR, Barbaro RP, Wong SN, Tan CS, Rochwerg B, Fernando SM, Takeda S, MacLaren G, et al. Extracorporeal membrane oxygenation for COVID-19: a systematic review and meta-analysis. Crit Care. 2021;25(1):211.
- Levy B, Taccone FS, Guarracino F. Recent developments in the management of persistent hypoxemia under veno-venous ECMO. Intensive Care Med. 2015;41(3):508–10.
- Zakhary B, Vercaemst L, Mason P, Lorusso R, Brodie D. How I manage drainage insufficiency on extracorporeal membrane oxygenation. Crit Care. 2020;24(1):151.
- Bunge JJH, Diaby S, Valle AL, Bakker J, Gommers D, Vincent JL, Creteur J, Taccone FS, Reis Miranda D. Safety and efficacy of beta-blockers to improve oxygenation in patients on veno-venous ECMO. J Crit Care. 2019;53:248–52.
- Guarracino F, Zangrillo A, Ruggeri L, Pieri M, Calabrò MG, Landoni G, Stefani M, Doroni L, Pappalardo F. β-Blockers to optimize peripheral oxygenation during extracorporeal membrane oxygenation: a case series. J Cardiothorac Vasc Anesth. 2012;26(1):58–63.
- 8. Broaddus VC, Ernst JD, King Jr TE, Lazarus SC, Sarmiento K, Schnapp L, Stapleton RD, Gotway MB: Murray & Nadel's textbook of respiratory medicine: Elsevier Health Sciences; 2021.
- Schmidt M, Tachon G, Devilliers C, Muller G, Hekimian G, Bréchot N, Merceron S, Luyt CE, Trouillet JL, Chastre J, et al. Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensive Care Med. 2013;39(5):838–46.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.