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Abstract

Prostate magnetic resonance imaging has become the imaging standard for pros-
tate cancer in various clinical settings, with interpretation standardized according
to the Prostate Imaging Reporting and Data System (PI-RADS). Each year, hundreds
of scientific studies that report on the diagnostic performance of PI-RADS are pub-
lished. To keep up with this ever-increasing evidence base, systematic reviews and
meta-analyses are essential. As systematic reviews are highly resource-intensive,
we investigated whether a machine learning framework can reduce the manual
workload and speed up the screening process (title and abstract). We used search
results from a living systematic review of the diagnostic performance of PI-RADS
(1585 studies, of which 482 were potentially eligible after screening). A naïve
Bayesian classifier was implemented in an active learning environment for classi-
fication of the titles and abstracts. Our outcome variable was the percentage of
studies that can be excluded after 95% of relevant studies have been identified
by the classifier (work saved over sampling: WSS@95%). In simulation runs of
the entire screening process (controlling for classifier initiation and the frequency
of classifier updating), we obtained a WSS@95% value of 28% (standard error of the
mean ±0.1%). Applied prospectively, our classification framework would translate
into a significant reduction in manual screening effort.
Patient summary: Systematic reviews of scientific evidence are labor-intensive and
take a lot of time. For example, many studies on prostate cancer diagnosis via MRI
(magnetic resonance imaging) are published every year. We describe the use of
machine learning to reduce the manual workload in screening search results. For
a review of MRI for prostate cancer diagnosis, this approach reduced the screening
workload by about 28%.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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and Data System (PI-RADS). PI-RADS involves a five-
category risk stratification for the presence of clinically sig-
nificant prostate cancer, with categories derived by combin-
ing various MRI descriptors [2]. Inclusion of prostate MRI in
the diagnostic workup in various target populations is now
strongly recommended by European and American urologi-
cal guidelines. Every year, hundreds of original scientific
papers are published that address the diagnostic perfor-
mance of PI-RADS. To keep up with this ever-growing study
pool, caregivers and patients must rely on results from sys-
tematic reviews and meta-analyses.

Systematic reviews and meta-analyses are highly
resource-intensive, as all the search results from different
databases must be checked for eligibility according to the
article titles and abstracts. This is usually performed by
two independent reviewers [3]. PI-RADS is intended as a liv-
ing document (ie, one that evolves over time) and v2.1 is
now the current version [2]. Maintaining an up-to-date evi-
dence synthesis of diagnostic performance therefore
requires a continuous effort. Our group has committed to
conducting an ongoing living systematic review of PI-
RADS (PROSPERO: CRD42022343931) for this reason [4].

Here we describe the framework for and results from a
Bayesian machine learning approach for screening article
titles and abstracts using the data from this living review.
We hypothesize that machine learning could save valuable
workload and facilitate faster updating of the review.

We used search results from MEDLINE, Embase and
Cochrane Central from the ongoing review [4]. After exclu-
sion of duplicates, two reviewers independently evaluated
1585 papers for further consideration using information
provided in the title and abstract. After completion, discus-
sion and consensus reading were performed for papers with
Fig. 1 – (A) Active learning pipeline. The pipeline starts with building the classifi
irrelevant are needed. The classifier is then applied to the unlabeled data set and
the highest assigned probability are manually labeled. The classifier is updated a
(B) Performance of the naïve Bayes classifier for title and abstract screening (10
update after every classification). The plot shows the sensitivity (y-axis, percen
number of studies screened. The work saved over sampling (WSS), which is the
level of sensitivity considered sufficient. We show the WSS at 95% sensitivity (WS
studies + n false negative studies)/n all studies - 0.05, at 95% sensitivity [9].
discrepant results. This resulted in 482 papers for which the
full text needed to be retrieved (eligible and potentially eli-
gible) and 1103 papers that could definitely be excluded.

The open source ASreview framework (https://asreview.
nl/) was used for data analysis [5]. Using ASreview, we
implemented a naïve Bayes classifier for classification of
titles and abstracts. Naïve Bayes classifiers are standard
tools for natural language processing tasks such as spam
filters and provide robust, computationally simple classifi-
cation [6]. Naïve Bayes classifiers offer explainable classifi-
cation. The impact of each predictive variable can be
analyzed by studying the conditional probability table on
which the classifier is based. Diagnostic information for
the variables used can also be visualized for nonstatisticians
[7].

An active learning approach is applied. This means that
the classification algorithm is updated after new studies
have been screened and labeled by the reviewer (catego-
rization: eligible and potentially eligible vs exclude). ASre-
view is run in simulation mode: the entire data set is
labeled, but only a predefined count is taken for initial clas-
sifier training. Figure 1A explains the active learning
pipeline.

We define the work saved over sampling at a sensitivity
of 95% as our outcome variable (WSS@95%). WSS@95% is
the percentage of studies that require no screening after
95% of relevant studies have been identified. To investigate
the impact of the amount of prior knowledge used for initial
classifier training and of the frequency of classifier updat-
ing, we systematically altered these two parameters. We
also investigated how the inclusion or exclusion of studies
used for initial classifier training in the calculation for
WSS@95% affect this outcome. For all resulting combina-
er from prior knowledge; at least one study labeled eligible and one labeled
ranks all studies according to the probability of being eligible. Studies with

fter a certain number of studies have been labeled, and the cycle is repeated.
negative and positive studies are taken as prior knowledge, with a classifier
tage of eligible/potentially eligible studies identified) as a function of the

percentage of studies that do not have to be screened, can be derived at any
S@95%, solid red line). The formal definition of WSS@95% is: (n true negative

https://asreview.nl/
https://asreview.nl/


Fig. 2 – Results from simulation studies with initially labeled studies (A) included and (B) excluded. (A) WSS@95% (work saved over sampling at 95%
sensitivity) for different combinations of the amount of prior knowledge (x-axis; numbers denote positive and negative studies used as prior knowledge for
initial classifier training) and the frequency of classifier updating (color coded according to the number of studies after which a classifier update is
performed). Studies that are used as prior knowledge are included in the WSS@95% calculation. With a high number of manually labeled instances as prior
knowledge for initial classifier training, there is a slight reduction in WSS@95%. Each combination was run 20 times. The shaded areas represent the standard
error of the mean for the point estimates of mean WSS@95%. (B) WSS@95% from the same simulation runs as in A but with studies used for the initial
classifier training excluded for WSS@95% calculation. There is a trend for better WSS@95% results with greater initial training data.
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tions of the amount of prior knowledge and the frequency of
classifier updating, we ran 20 simulations of the entire
screening process and derived mean values and standard
error of the mean for WSS@95%.

Figure 1B presents an example run for title and abstract
screening using the active learning approach and illustrates
the concept of WSS@95%. Figure 2 shows results for the
review simulation runs for WSS@95%, presenting scenarios
in which the initially labeled studies were and were not
included for calculation of WSS@95%.

Overall, WSS@95% ranged from 27% to 28% (Fig. 2). When
the labeling of prior studies is considered relevant for
WSS@95% calculation, the impact of the amount of prior
knowledge and of the frequency of classifier updating on
absolute WSS@95% is small (Fig. 2A). The maximum
WSS@95% is achieved with only a few studies labeled as
prior knowledge and classifier updates after every manual
classification (Fig. 2A, red curve). If the initial work is not
considered relevant, WSS@95% improves with classifiers
initially built from larger data sets (Fig. 2B). If the classifica-
tion approach is applied prospectively (ie, in update
searches), we expect even higher WSS@95% in the subse-
quent screening process, because a large part of the present
data set is used for classifier training.

We can assume that the time for screening a single study
by title and abstract ranges between 30 s and 7 min,
depending on reviewer experience and domain complexity
[8]. Accordingly, if 444 of 1585 studies (28%) do not have
to be screened, this would result in manual research time
saved between 3.7 and 52.8 h per reviewer. This sums to
7.4–105.6 h for two reviewers. WSS@95% generally provides
a good balance between screening sensitivity and work
saved [9]. A systematic review of meta-analyses finds only
a negligible effect on the overall results when a small
percentage of relevant studies are missing [10], which in
our view contributes to consideration of WSS@95% as a
reasonable outcome. One drawback of WSS@95% is its
dependence on the prevalence of eligible studies in the data
set. With a prevalence of 50%, the maximum WSS@95% is
45% [9]. Our WSS@95% result of 27–28% may demonstrate
the impact of this relatively high prevalence, as higher
WSS@95% values have been reported for applications in
other domains [5].

For transparency, we provide the python code for run-
ning the simulation experiments and our data set compris-
ing the list of digital object identifiers and the labels
assigned to them as Supplementary material. Together with
our search strategies [4], this allows full reproduction of our
work. We plan to report on the prospective evaluation of
our classification support when the review is updated. We
are optimistic that this approach will save valuable research
time in the future in our project and comparable projects,
and will allow researchers to focus more on data analysis.
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