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Rationale & Objective: Uromodulin (UMOD) is
the most abundant protein found in urine and has
emerged as a promising biomarker of tubule
health. Circulating UMOD is also detectable, but
at lower levels. We evaluated whether serum
UMOD levels were associated with the risks of
incident kidney failure with replacement therapy
(KFRT) and mortality.

Study Design: Prospective cohort.

Setting & Participants: Participants in AASK
(the African American Study of Kidney Disease
and Hypertension) with available stored serum
samples from the 0-, 12-, and 24-month visits for
biomarker measurement.

Predictors: Baseline log-transformed UMOD
and change in UMOD over 2 years.

Outcomes: KFRT and mortality.

Analytical Approach: Cox proportional hazards
and mixed-effects models.

Results: Among 500 participants with baseline
serum UMOD levels (mean age, 54 y; 37% female),
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161 KFRT events occurred during a median of 8.5
years. After adjusting for baseline demographic fac-
tors, clinical factors, glomerular filtration rate, log-
transformed urine protein-creatinine ratio, and
randomized treatment groups, a 50% lower
baseline UMOD level was independently
associated with a 35% higher risk of KFRT
(adjusted HR, 1.35; 95% CI, 1.07-1.70). For annual
UMOD change, each 1–standard deviation lower
change was associated with a 67% higher risk of
KFRT (adjusted HR, 1.67; 95% CI, 1.41-1.99).
Baseline UMOD and UMOD change were not
associated with mortality. UMOD levels declined
more steeply for metoprolol versus ramipril
(P < 0.001) as well as for intensive versus standard
blood pressure goals (P = 0.002).

Limitations: Small sample size and limited
generalizability.

Conclusions: Lower UMOD levels at baseline
and steeper declines in UMOD over time were
associated with a higher risk of subsequent KFRT
in a cohort of African American adults with
chronic kidney disease and hypertension.
Uromodulin (UMOD), also known as Tamm-Horsfall
protein, is the most abundant protein found in

urine. Produced by healthy kidney tubular epithelial cells
in the thick ascending limb and early distal convoluted
tubule, UMOD is thought to protect against the develop-
ment of urinary tract infections and kidney stones, play a
role in salt-sensitive hypertension, and modulate innate
immunity pathways.1 Although UMOD is expressed pri-
marily at the apical membrane, a few studies have
demonstrated some localization of UMOD to the basal
plasma membrane, where it is released into circulation,
albeit at markedly lower levels than in urine.2-4 As such,
serum UMOD is undetectable in anephric patients, present
at low levels among patients with kidney failure treated
with dialysis, and increases in patients after receiving a
kidney transplant.1,5 Given its unique specificity to the
kidneys, UMOD has therefore emerged as a promising
biomarker of kidney tubular health.

To date, most observational studies have suggested that
higher serum UMOD levels are associated with improved
kidney outcomes. Among individuals with type 1 diabetes,
a higher baseline concentration of UMOD was indepen-
dently associated with lower odds of incident chronic
kidney disease (CKD), albuminuria, and rapid decline in
estimated glomerular filtration rate (eGFR).6 Among
German and Chinese patients with established CKD and
older adults from a United States community-based cohort
study, higher baseline circulating levels of UMOD were
associated with a markedly lower risk of progression to
kidney failure with replacement therapy (KFRT).7-9

Among kidney transplant recipients, those with higher
UMOD concentrations had a lower risk of experiencing
kidney allograft failure.10 In each of these studies, UMOD
was measured at only one time point (ie, baseline), and
Black individuals were underrepresented.

Using stored serum samples from the AASK (African
American Study of Kidney Disease and Hypertension),
we investigated whether baseline and longitudinal
changes in serum UMOD concentrations were associated
with KFRT and mortality risk among self-identified Af-
rican American adults with CKD attributed to hyperten-
sion. We also assessed the effects of randomized
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PLAIN-LANGUAGE SUMMARY
Prior studies of uromodulin (UMOD), the most abun-
dant protein in urine, and kidney disease have focused
primarily on urinary UMOD levels. The present study
evaluated associations of serum UMOD levels with the
risks of kidney failure with replacement therapy (KFRT)
and mortality in a cohort of African American adults
with hypertension and chronic kidney disease. It found
that participants with lower levels of UMOD at baseline
were more likely to experience KFRT even after
accounting for baseline kidney measures. Similarly,
participants who experienced steeper annual declines in
UMOD also had a heightened risk of kidney failure.
Neither baseline nor annual change in UMOD was
associated with mortality. Serum UMOD is a promising
biomarker of kidney health.
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treatment groups (ie, blood pressure goal and drug) on
UMOD slope.
Methods

Study Population

The study population consisted of AASK trial participants
with available stored serum samples for biomarker mea-
surement (Fig S1). During the trial phase (enrollment from
February 1995 through September 1998), 1,094 self-
identified African American adults with CKD (GFR, 20-
65 mL/min/1.73 m2) and hypertension (diastolic blood
pressure >95 mm Hg) were randomized to a blood
pressure goal (mean arterial pressure ≤92 mm Hg or 102-
107 mm Hg) and a blood pressure drug (ramipril, meto-
prolol, or amlodipine).11 The trial phase was followed by a
cohort phase during which 691 participants in whom
KFRT had not yet developed were targeted to a blood
pressure goal of <140/90 mm Hg (after 2004, <130/
80 mm Hg) and received ramipril therapy.12 Approval for
both phases was obtained from the institutional review
boards at each study site, and participants provided
informed consent. Exclusion criteria have previously been
described and included a history of diabetes mellitus and a
urine protein-creatinine ratio (UPCR) >2.5 g/g.11,12

Biomarker Measurements

The Meso Scale Discovery Platform (Meso Scale Di-
agnostics) was used to measure UMOD levels from serum
samples collected at the 0-, 12-, and 24-month visits of the
trial. These immunoassay-based measurements were per-
formed in July 2021. The interassay coefficient of varia-
tion, determined from 6% duplicate samples, was 4.2%.

Outcomes and Other Measurements

The primary outcome of interest was incident KFRT (ie,
dialysis initiation or kidney transplant).11,12 We also
considered all-cause mortality as a secondary outcome.
72
Blood pressure was measured by trained personnel using a
Hawksley random zero sphygmomanometer after ≥5 mi-
nutes of rest in a seated position, and taking the average of
the last 2 readings. GFR was measured by iodine 125
iothalamate clearance.11 Twenty-four-hour urine samples
were collected, and UPCR was measured at a central lab-
oratory via the pyrogallol red method (for protein) and
modified Jaffe reaction (for creatinine).13-15

Statistical Analyses

We compared baseline characteristics by tertiles of (1)
baseline UMOD levels and (2) UMOD slope using analysis
of variance, Kruskal-Wallis test, and Pearson’s χ2 test.
UMOD levels were log base-2 (log2) transformed to ach-
ieve a more normal distribution. Kernel density plots were
used to visually compare distributions of UMOD level and
slope by outcome of KFRT. In our main analyses, we
investigated whether baseline UMOD was associated with
incident KFRT among 500 AASK trial participants with
available measurements at the 0-month visit. Participants
were followed until the development of KFRT, death, loss
to follow-up, or administrative censoring, whichever came
first. The following Cox proportional hazards models were
constructed: (1) unadjusted; (2) adjusted for baseline age,
sex, systolic blood pressure, body mass index, and current
smoking; (3) further adjusted for baseline GFR; (4) further
adjusted for baseline log2(UPCR); and (5) further adjusted
for randomized treatment groups (ie, blood pressure goal
and blood pressure drug). These analyses were repeated
with all-cause mortality as a secondary outcome. There
were no missing data for any of the covariates.

A total of 435 participants had UMOD measurements at
the 0-month visit plus one additional visit (at 12 mo, 24
mo, or both). More specifically, 324 participants had
samples at all 3 visits, 71 had samples at 0 and 12 months
only, and 40 had samples at 0 and 24 months only. Annual
slopes of log2(UMOD) were estimated using linear mixed-
effects models, allowing for random intercepts and
random slopes. We then evaluated whether UMOD slope
was associated with the risk of incident KFRT or mortality.
For these analyses, the start of follow-up was the 24-
month visit. We therefore excluded 17 participants who
experienced KFRT or died before this time point, leaving a
study population of 418 participants. The 17 participants
who were excluded had a lower median UMOD concen-
tration, lower mean GFR, and higher UPCR at baseline
compared with the 418 participants who were included.
The following Cox proportional hazards models were
constructed: (1) unadjusted; (2) adjusted for baseline (0-
mo visit) log2(biomarker); (3) further adjusted for base-
line age, sex, systolic blood pressure, body mass index,
and current smoking; (4) further adjusted for baseline
GFR; (5) further adjusted for baseline log2(UPCR); and (6)
further adjusted for randomized treatment groups. For ease
of comparison across variables, we scaled the UMOD slope
and baseline UMOD level to a per–standard deviation
change.
AJKD Vol 83 | Iss 1 | January 2024
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We used mixed-effects models with random intercept
and slope and unstructured covariance matrices to assess
whether randomized treatment groups were associated
with changes in UMOD levels. For these analyses, the study
population consisted of 435 participants with available
biomarker slopes, with follow-up beginning at the 0-
month visit. We adjusted for baseline age, sex, systolic
blood pressure, body mass index, current smoking, GFR,
log2(UPCR), and randomized treatment groups, allowing
UMOD slope to vary by each of these variables.

In supplemental analyses, we compared baseline UMOD
levels as measured by immunoassays, which we consid-
ered to be the gold standard, versus aptamer-based assays,
which are increasingly used in biomarker analyses.
Aptamer-based measurements of UMOD were performed
at baseline (ie, 0-mo visit of the trial) using the SomaScan
Table 1. Baseline Characteristics of Study Population by Tertiles

Characteristic Tertile 1 Terti
Baseline UMODa

Median, pg/mL 9,801 (8,033-11,581) 17,8
Range, pg/mL 2,714-13,586 13,5
Age, y 53 ± 11 53 ±
Female sex 52 (31%) 69 (
SBP, mm Hg 152 ± 24 150
Body mass index, kg/m2 31.1 ± 6.7 31.7
Current smoking 53 (32%) 46 (
GFR, mL/min/1.73 m2 36.0 ± 11.6 46.3
UPCR, g/g 0.27 (0.08-0.76) 0.09
Blood pressure goal
MAP ≤92 mm Hg 75 (45%) 81 (
MAP 102-107 mm Hg 92 (55%) 86 (
Blood pressure drug
Ramipril 63 (38%) 62 (
Metoprolol 70 (42%) 72 (
Amlodipine 34 (20%) 33 (
UMOD Slopeb

Median, % change per year −15.1 (−18.4 to −12.4) −7.4
Range, % change per year −46.7 to −10.2 −10
Age, y 51 ± 11 55 ±
Female sex 55 (39%) 52 (
SBP, mm Hg 154 ± 24 153
Body mass index, kg/m2 31.5 ± 6.8 30.9
Current smoking 38 (27%) 37 (
GFR, mL/min/1.73 m2 41.3 ± 12.1 46.0
UPCR, g/g 0.28 (0.08-0.82) 0.07
Log2(UMOD) at 0 mo 13.8 ± 0.8 14.1
Blood pressure goal
MAP ≤92 mm Hg 82 (59%) 67 (
MAP 102-107 mm Hg 58 (41%) 72 (
Blood pressure drug
Ramipril 42 (30%) 55 (
Metoprolol 73 (52%) 60 (
Amlodipine 25 (18%) 24 (
Data presented as median (IQR), mean ± standard deviation, or number (%). There wer
pressure; SBP, systolic blood pressure; UMOD, uromodulin; UPCR, urine protein-cre
aTertile 1, n = 167; tertile 2, n = 167; tertile 3, n = 166.
bTertile 1, n = 140; tertile 2, n = 139; tertile 3, n = 139.
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v.4.1 platform (SomaLogic) in January 2021.16 SomaScan
is an aptamer-based assay that employs single-stranded
DNA sequences that have been modified to bind target
proteins with high affinities.17 The interassay coefficient of
variation of the SomaScan measures was 3.20%. We
assessed correlations between immunoassays and aptamer-
based assays as well as their correlations with GFR and
log2(UPCR). We also constructed scatter plots and Bland-
Altman plots. Analyses were performed using Stata 15.1
software (StataCorp LLC).
Results

Baseline Characteristics

Among 500 participants with available baseline UMOD
levels, the mean age was 54 years, 37% were female, mean
of Baseline UMOD Levels and UMOD Slope

le 2 Tertile 3 P Value

43 (15,618-20,269) 32,328 (25,461-39,034) –
99-22,674 22,733-84,997 –
11 57 ± 10 0.001
41%) 66 (40%) 0.1
± 26 152 ± 23 0.6
± 6.3 29.7 ± 6.5 0.01
28%) 33 (20%) 0.05
± 11.5 51.9 ± 9.6 <0.001
(0.03-0.35) 0.04 (0.02-0.11) <0.001

0.09
49%) 94 (57%)
51%) 72 (43%)

0.9
37%) 70 (42%)
43%) 64 (39%)
20%) 32 (19%)

(−8.6 to −5.8) −0.9 (−2.8 to 2.0) –
.2 to −4.2 −4.2 to 13.4 –
10 56 ± 11 <0.001
37%) 53 (38%) 0.9
± 25 146 ± 24 0.01
± 6.8 30.6 ± 6.0 0.6
27%) 31 (22%) 0.6
± 12.2 49.4 ± 11.2 <0.001
(0.03-0.23) 0.04 (0.02-0.13) <0.001
± 0.8 14.4 ± 0.8 <0.001

48%) 62 (45%) 0.05
52%) 77 (55%)

40%) 66 (47%) 0.004
43%) 41 (29%)
17%) 32 (23%)
e no missing data. Abbreviations: GFR, glomerular filtration rate; MAP, mean arterial
atinine ratio.
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GFR was 45 mL/min/1.73 m2, and median UPCR was
0.09 g/g. Participants in the highest tertile of baseline
UMOD were older and less likely to smoke, and had lower
mean body mass index, higher mean GFR, and lower
median UPCR (Table 1). Participants who experienced
KFRT generally had lower baseline UMOD levels than
those who did not (Fig 1).

Among 418 participants with more than one UMOD
measurement and without KFRT or death by 24 months,
the median change in UMOD was −7.4% per year, with
the majority (87%) having a slope that declined. Par-
ticipants in the highest tertile of UMOD slope (ie, stable
to increasing levels) were older, had lower mean systolic
blood pressure, higher mean GFR and baseline UMOD
levels, and lower median UPCR than participants in
lower tertiles (Table 1). Those in the highest tertile were
also more likely to be randomized to the ramipril group
and less likely to be randomized to the metoprolol
group. The distribution of UMOD slope was shifted
leftward (ie, decreasing levels) for participants who
experienced KFRT compared with those who did not
(Fig 1).

Associations of Baseline UMOD With KFRT and

Mortality

During a median follow-up of 8.5 years, there were 161
KFRT events. Participants in lower tertiles of UMOD were
more likely to experience KFRT (Fig 2). A 50% lower
baseline UMOD level was associated with a 2.7-fold higher
risk of developing KFRT (unadjusted model: 95% confi-
dence interval [CI], 2.25-3.29; Table 2). Upon further
adjustment for baseline sociodemographic and clinical
factors and kidney measures, this was attenuated to a 1.4-
fold higher risk but remained statistically significant (95%
CI, 1.10-1.74). Additional adjustment for randomized
treatment groups had minimal impact on risk estimates
(HR, 1.35; 95% CI, 1.07-1.70).
A B

Figure 1. Kernel density plots of baseline uromodulin and uromodu
KFRT, kidney failure with replacement therapy; UMOD, uromodulin
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During a median follow-up of 9.6 years, 113 partici-
pants died. A 50% lower baseline UMOD level was asso-
ciated with 32% and 40% higher risks of death in the
unadjusted model (95% CI, 1.07-1.64; Table 2) and after
adjusting for sociodemographic and clinical factors (95%
CI, 1.13-1.74), respectively. However, the association lost
statistical significance upon additional adjustment for
baseline GFR (HR, 1.26; 95% CI, 0.97-1.64).

Associations of UMOD Slope With KFRT and

Mortality

In analyses evaluating the association of UMOD slope with
KFRT, there were 129 events during a median follow-up
of 7.0 years. Participants with the steepest UMOD
decline (ie, lowest tertile) were more likely to experience
KFRT (Fig 2). In the fully adjusted model, each 1–standard
deviation lower UMOD slope was associated with a 67%
higher risk of KFRT (95% CI, 1.41-1.99; Table 3). When
considering mortality as a secondary outcome, there were
86 deaths during a median follow-up of 7.9 years, and
there was no association between UMOD slope and mor-
tality in any of the models (Table 3).

Participants randomized to the intensive blood pressure
goal had a steeper decrease in UMOD levels than partici-
pants randomized to the standard blood pressure goal
(P = 0.002), as did participants randomized to receive
metoprolol versus those who received ramipril (P < 0.001;
Table 4). There was no significant difference in change in
UMOD levels between participants randomized to receive
amlodipine versus metoprolol (P = 0.08).

Immunoassay Versus SomaScan Measurements of

UMOD

A scatter plot and a Bland-Altman plot of immunoassay
versus SomaScan measurements of UMOD are presented in
Fig S2. The two methods of measurement were poorly
correlated, with Pearson (r) and Spearman (rs) correlation
lin slope by outcome of kidney failure with replacement therapy.
.
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Figure 2. Kaplan-Meier curves of baseline uromodulin and uromodulin slope tertiles with kidney failure with replacement therapy.
KFRT, kidney failure with replacement therapy; UMOD, uromodulin.
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coefficients of 0.002 and 0.03, respectively. GFR was more
strongly correlated with UMOD when measured by
immunoassay (r = 0.48) than by SomaScan (r = −0.02).
Similarly, correlations of UMOD with log2(UPCR) were
moderate when measured by immunoassay (r = −0.37)
and negligible when measured by SomaScan (r = 0.02).
Discussion

In this study of African American adults with CKD attrib-
uted to hypertension, we report that lower baseline levels
of UMOD and steeper declines in UMOD were associated
with higher risks of developing KFRT. We also evaluated
Table 2. Associations of Baseline UMOD With KFRT and
Mortality (N = 500)

Outcome/Model

Baseline UMOD Level
(per 50% Lower
Baseline Level)

HR 95% CI
KFRT
Unadjusted 2.72 2.25-3.29
+ Age, sex, SBP, BMI,
smoking

2.54 2.09-3.09

+ GFR 1.44 1.14-1.81
+ Log2(UPCR) 1.38 1.10-1.74
+ Randomized treatment
groups

1.35 1.07-1.70

Mortality
Unadjusted 1.32 1.07-1.64
+ Age, sex, SBP, BMI,
smoking

1.40 1.13-1.74

+ GFR 1.26 0.97-1.64
+ Log2(UPCR) 1.27 0.97-1.67
+ Randomized treatment
groups

1.24 0.95-1.63

Abbreviations: BMI, body mass index; CI, confidence interval; GFR, glomerular
filtration rate; HR, hazard ratio; KFRT, kidney failure with replacement therapy; SBP,
systolic blood pressure; UMOD, uromodulin; UPCR, urine protein-creatinine ratio.
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the effects of the AASK randomized treatment groups on
UMOD slope and found that, compared with standard
blood pressure control, intensive control conferred greater
annual decreases in UMOD, as did metoprolol compared
with ramipril. Overall, our results suggest that, among
adults with established CKD, having lower levels of UMOD
portends worse kidney outcomes.

The exclusive production of UMOD by the kidneys
makes it an attractive biomarker for study in kidney dis-
ease.1,2 In the urine, UMOD has a propensity to form large
polymers that competitively bind to uropathogens and
facilitate their clearance from the body. The glycoprotein is
also thought to protect against kidney stone formation
through its negative charge, which prevents calcium oxa-
late and calcium phosphate crystals from aggregating in
the urine.1,18

The role of serum UMOD is less clear. Although older
studies linked serum UMOD to inflammation, growing
evidence suggests that circulating UMOD may be beneficial
by modulating innate immunity pathways.19,20 More
specifically, Micanovic et al described how UMOD defi-
ciency in mice conferred increased bone marrow gran-
ulopoiesis with subsequent systemic neutrophilia.21 In
another study, Alesutan et al found that UMOD coimmu-
noprecipitated with tumor necrosis factor-α and inter-
leukin-1β (proinflammatory cytokines) in human sera
from healthy controls and patients undergoing dialysis,
suggesting that UMOD may act as a “cytokine trap.”22 In
human aortic smooth muscle cells, UMOD appeared to
reduce activation of nuclear factor-κB by tumor necrosis
factor-α and interleukin-1β.22 More recently, LaFavers et al
reported that, in mouse models of sepsis, the presence of
circulating UMOD was associated with better survival.
They also demonstrated that UMOD facilitated the clear-
ance of bacteria, likely through the upregulation of
mononuclear phagocyte activity.23 Finally, circulating
UMOD may protect against systemic oxidative stress via
blockade of TRPM2, a calcium-permeable cation channel
75



Table 3. Associations of UMOD Slope With KFRT and Mortality (n = 418)

Outcome/Model

UMOD Slope
(per 1 SD Lower)

Baseline UMOD Level
(per 1 SD Lower)

HRa 95% CI HRa 95% CI
KFRT
Unadjusted 2.05 1.80-2.33 – –
+ Log2(biomarker) 1.88 1.63-2.16 1.98 1.65-2.39
+ Age, sex, SBP, BMI, smoking 2.06 1.76-2.41 1.92 1.59-2.31
+ GFR 2.00 1.71-2.35 1.36 1.10-1.68
+ Log2(UPCR) 1.70 1.44-2.01 1.36 1.10-1.68
+ Randomized treatment groups 1.67 1.41-1.99 1.35 1.09-1.68

Mortality
Unadjusted 1.11 0.91-1.37 – –
+ Log2(biomarker) 1.04 0.84-1.30 1.25 1.01-1.56
+ Age, sex, SBP, BMI, smoking 1.02 0.82-1.27 1.37 1.10-1.71
+ GFR 1.01 0.81-1.26 1.28 0.99-1.66
+ Log2(UPCR) 1.02 0.80-1.28 1.29 0.99-1.67
+ Randomized treatment groups 1.00 0.79-1.28 1.28 0.98-1.66

Abbreviations: BMI, body mass index; CI, confidence interval; GFR, glomerular filtration rate; HR, hazard ratio; KFRT, kidney failure with replacement therapy; SBP, systolic
blood pressure; SD, standard deviation; UMOD, uromodulin; UPCR, urine protein-creatinine ratio.
aHRs are per 1-SD lower level; SDs are 0.13 for UMOD slope and 0.82 for baseline UMOD level. A lower slope indicates a greater decline in UMOD levels.
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that is highly expressed in immune cells. In another study
by LaFavers and colleagues, UMOD-knockout mice had
higher kidney and serum levels of 8-hydroxy-20-deoxy-
guanosine, a biomarker of oxidative damage, than wild-
type mice.3

UMOD may also affect blood pressure. In mouse
models, UMOD augments Na-K-Cl cotransporter activity
and renal outer medullary potassium channel expression,
increasing sodium retention.1,24,25 Overexpression of
UMOD manifests as salt-sensitive hypertension in mice,
whereas UMOD-knockout mice have lower blood pres-
sures and do not develop salt-sensitive hypertension.1,26,27

The relationship between blood pressure and UMOD may
be bidirectional. In a case-control study of the Systolic
Blood Pressure Intervention Trial, participants randomized
to the intensive group (goal systolic blood pressure
<120 mm Hg) had a decrease in urinary UMOD over 1
Table 4. Associations of Randomized Treatment Groups With
Percent Change in UMOD Levels (n = 435)

Treatment Group
% Change
per Year 95% CI

BP goal
Standard (n = 214) −8.94 −11.76 to −6.02
Intensive (n = 221) −13.29 −16.05 to −10.45

BP drug
Metoprolol (n = 181) −8.94 −11.76 to −6.02
Ramipril (n = 168) −2.72 −5.76 to 0.42
Amlodipine (n = 86) −5.49 −9.27 to −1.55

The predicted percent change in uromodulin was estimated for male nonsmokers
with mean values for age, SBP, BMI, GFR, and proteinuria and randomized to the
standard BP group and metoprolol unless otherwise noted. Adjustments were
made for baseline age, sex, SBP, BMI, smoking, GFR, log2(UPCR), and random-
ized group (BP drug for BP goal and vice versa). The percent change was
determined by exponentiating β-coefficients as (2β – 1) × 100. Abbreviations: BP,
blood pressure; BMI, body mass index; CI, confidence interval; GFR, glomerular
filtration rate; SBP, systolic blood pressure; UMOD, uromodulin.
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year compared with the standard group (goal systolic
blood pressure <140 mm Hg) among those in whom CKD
developed.28 In the present study, we similarly report that,
compared with standard blood pressure control, the
intensive blood pressure control arm experienced greater
declines in serum UMOD. We note that, in AASK, intensive
blood pressure control did not slow CKD progression.11

The differences in UMOD change may reflect hemody-
namic alterations and should be validated in future studies.
In contrast, participants randomized to receive ramipril
versus metoprolol experienced less serum UMOD declines,
and, in the original AASK trial, compared with metoprolol,
ramipril was associated with a 22% lower (95% CI, 1%-
38%) risk of the clinical composite outcome that included
a GFR event, KFRT, or death.11

Our supplemental work comparing immunoassays
versus aptamer-based assays was intended to guide future
work and refinement of aptamer-based platforms.
Aptamer-based platforms are cost-effective, measuring
thousands of proteins simultaneously; however, we and
others have previously shown that they are reliable in
measuring some but not all proteins.29 The present study
demonstrates that UMOD measurements with immunoas-
says (the gold standard) and with SomaScan were poorly
correlated. Interestingly, there was a bimodal distribution
in the SomaScan measurements, but neither mode was
correlated with the immunoassay measurements. One
potential explanation is that posttranslational modifications
of UMOD may differentially affect aptamer versus anti-
body binding sites on the protein.29,30 Future versions of
the SomaScan platform may close the gap in the accuracy
of measurement of this particular protein.

Our study has several strengths. First, we considered
baseline UMOD level and UMOD slope. Prior studies of
UMOD and kidney outcomes have focused primarily on
AJKD Vol 83 | Iss 1 | January 2024
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the former.6-10 Second, we adjusted for measured GFR
rather than eGFR. In doing so, our findings were less likely
to be influenced by inaccuracies in the estimation of
baseline kidney measures. Third, we evaluated 2 different
approaches to UMOD measurement: the more traditional
antibody assay and the newer aptamer-based assay. We
also had limitations. First, our sample size was relatively
small. Second, the generalizability of our results may be
limited because enrollment into AASK was restricted to
self-identified African American adults with CKD attributed
to hypertension. This could, however, also be viewed as a
strength because prior studies of this topic have had an
underrepresentation of Black participants.

In summary, lower baseline serum levels of UMOD and
steeper declines in UMOD slope were each associated with
a higher risk of KFRT among African American adults with
CKD attributed to hypertension. Levels of UMOD can be
impacted by conventional treatments such as intensive
blood pressure control and ramipril therapy. Future studies
are needed to further elucidate the mechanisms by which
lower serum UMOD levels are associated with worse
kidney outcomes.
Supplementary Material

Supplementary File (PDF)

Figure S1: Flow chart of study population.

Figure S2: Scatter plot and Bland-Altman plot of immunoassay
versus SomaScan measurements of UMOD.
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