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Abstract
A temporal upscaling study was conducted to estimate net ecosystem exchange (NEE) of carbon dioxide and net methane

exchange (NME) for a low-center polygon (LCP) ecosystem in the Mackenzie River Delta, for each of the 11 growing seasons
(2009–2019). We used regression models to create a time series of flux drivers from in situ weather observations (2009–2019)
combined with ERA5 reanalysis and satellite data. We then used neural networks that were trained and validated on a single
growing season (2017) of eddy covariance data to model NEE and NME over each growing season. The study indicates growing
season NEE was negative (net uptake) and NME was positive (net emission) in this LCP ecosystem. Cumulative carbon (C)
uptake was estimated to be −46.7 g C m−2 (CI95% ± 45.3) per growing season, with methane emissions offsetting an average
5.6% of carbon dioxide uptake (in g C m−2) per growing season. High air temperatures (>15 ◦C) reduced daily CO2 uptake
and cumulative NEE was positively correlated with mean air growing season temperatures. Cumulative NME was positively
correlated with the length of the growing season. Our analysis suggests warmer climate conditions may reduce carbon uptake
in this LCP ecosystem.
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1. Introduction
The Arctic is warming at three to four times the global rate

due to Arctic amplification (Flato et al. 2019; Chylek et al.
2022; Rantanen et al. 2022). Warming is causing significant
impacts across the Arctic, including permafrost degradation,
longer growing seasons, tundra greening, and shifting wet-
land distribution (Derksen et al. 2019; Frost et al. 2020; Myers-
Smith et al. 2020; Turetsky et al. 2020; Kreplin et al. 2021).
These impacts can alter the carbon (C) balance of the Arctic
and lead to feedbacks that influence the rate of warming
(Schuur et al. 2015). Of particular concern are tundra ecosys-
tems in ice-rich permafrost lowlands because they contain
high belowground C-stocks, are vulnerable to thermokarst,
and are hotspots for CH4 emissions (Olefeldt et al. 2013;
Schuur et al. 2015; Kohnert et al. 2018). These ecosystems
are also characterized by substantial spatial heterogeneity
that is not well resolved by the models used to project the
ecological response to climate change (Lara et al. 2020).

Among terrestrial Arctic ecosystems, low-center polygons
(LCPs) have considerable spatial heterogeneity in Arctic
ecosystems. They develop in ice-rich permafrost lowlands
when syngenetic ice wedges deform the land surface, cre-
ating an irregular network of elevated polygon rims bound-
ing low polygon centers (Mackay 2000; Liljedahl et al. 2016;
French 2017). Carbon dioxide (CO2) and methane (CH4) fluxes
vary over small spatial scales (e.g., <20 m) in LCP ecosystems

because microtopography influences water table heights and
vegetation cover (Olivas et al. 2011; Olefeldt et al. 2013). Poly-
gon centers can emit up to 10 times as much CH4 as adja-
cent polygon rims (Kutzbach et al. 2004; Sachs et al. 2010).
Interannual climate variability has a significant impact on C
fluxes from year to year but LCP ecosystems tend to be net
growing season CO2 sinks and CH4 sources (Holl et al. 2019;
Dengel et al. 2021). Site-specific factors, including vegetation
type, active layer thickness, and the relative cover of polygon
centers/rims, have a strong influence on the relative magni-
tude of fluxes between sites (Kutzbach and Wille 2007; van
der Molen et al. 2007; Sachs et al. 2008; Wille et al. 2008; Zona
et al. 2009, 2010; Runkle et al. 2013).

The Canadian Arctic is underrepresented in the existing
network of eddy covariance (EC) sites used to measure ecosys-
tem C fluxes (Delwiche et al. 2021; Pallandt et al. 2021). This
means we lack a baseline understanding of C exchange in
tundra ecosystems across Canada, and it is difficult to antic-
ipate how ecosystems in this region may respond to climate
warming. Our previous study of EC fluxes in an LCP ecosys-
tem in the Mackenzie River Delta was the first such study in
Canada (Skeeter et al. 2022). We analyzed half-hourly CO2 and
CH4 fluxes measured by EC in an LCP ecosystem on Fish Island
in the Mackenzie River Delta over the 2017 growing season
(Fig. 1). Mean CO2 and CH4 fluxes were −0.62 (CI95% ± 0.04) g
C-CO2 m−2 d−1 and 28.7 (CI95% ± 0.4) mg C-CH4 m−2 d−1, re-
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Fig. 1. A 30 m resolution ecosystem classification map for Fish Island created following methods outlined in Skeeter (2022).
The ecosystem classification was created using a multiyear composite (2015–2022) of LANDSAT8 data obtained from Google
Earth Engine and a random forest model trained on areas representative of each ecosystem type. The training area for each
ecosystem type was 6.5 ha. The inset in the top right shows a larger scale map of the automated weather station (AWS) and the
eddy covariance (EC) station in 2017 along with the boundaries of the 90% cumulative flux footprint for the EC station. Both
the main map and inset in the top right are in NAD 1983 UTM Zone 8N. The inset in the top left shows the site’s location in
the broader Arctic region, using a shapefile of the circumpolar land areas obtained from the Circumpolar Arctic Vegetation
Map (Walker et al. 2005). This inset is in the WGS 1984 North Pole Lambert Azimuthal Equal Area coordinate system.

spectively, where negative values indicate net C uptake and
positive values indicate emissions from the ecosystem. Unfor-
tunately, we were only able to conduct EC flux measurements
at the site for one field season. The mean fluxes observed over
the 2017 growing season cannot be considered representative
of net ecosystem exchange (NEE) and net methane exchange
(NME) exchange over multiseason timescales.

The goal of this study was to build on our previous analy-
sis by investigating how interannual climate variability and
warming may influence growing season C exchange in the
LCP ecosystem on Fish Island. Using 11 years of data from an
automated weather station (AWS) located next to the EC site
on Fish Island combined with reanalysis and satellite data, we
conducted a temporal upscaling study to model daily grow-

ing season NEE and NME from 2009 to 2019. In this paper,
we present analysis of growing season C fluxes in the LCP
ecosystem, and provide a critical assessment of the upscaling
methods.

2. Study site and data
Fish Island (19 km2) is located 10 km south of the Arc-

tic Ocean, in the north-eastern Mackenzie River Delta,
Northwest Territories, Canada. Permafrost in this area is
continuous and up to 500 m thick (Burn 2017). The island
is subject to infrequent episodic flooding during the spring
freshet but is protected from the storm surge events that
impact exposed coastal locations to the north and west

A
rc

tic
 S

ci
en

ce
 D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

A
L

B
E

R
T

-L
U

D
W

IG
S-

U
N

IV
E

R
SI

T
A

E
T

 o
n 

09
/0

3/
23

http://dx.doi.org/10.1139/AS-2022-0033


Canadian Science Publishing

Arctic Science 9: 689–709 (2023) | dx.doi.org/10.1139/AS-2022-0033 691

Fig. 2. Boxplots of mean daily air temperatures at the Fish Is-
land AWS. The orange lines represent the median, the boxes
indicate the interquartile range (IQR) (Q3–Q1), the whiskers
indicate Q1 − (1.5∗IQR) and Q3 + (1.5∗IQR), and the circles
represent outliers extending beyond the whiskers.

(Morse and Burn 2013; Lantz et al. 2015; Skeeter 2022). LCPs
cover approximately half of the land surface of Fish Island
(Fig. 1). The LCP ecosystem consists of peat-rich polygon
centers separated by low (<20 cm) rims; peat deposits at Fish
Island are at least 25 cm thick (Morse et al. 2012). Vegetation
is mainly peat moss (Sphagnum spp.), sedge (Carex spp.), and
horsetail (Equisetum spp.), along with dwarf willows (Salix
spp.) on polygon rims. Air temperatures at Fish Island re-
main below freezing for much of the year and most biologic
activity is restricted to a brief growing season between June
and September (Fig. 2). For the purpose of this study, we will
define the growing season as the period each year when the
ecosystem is snow-free and mean soil temperatures between
5 and 15 cm remain above freezing.

Our previous study (Skeeter et al. 2022) measured growing
season CO2 and CH4 fluxes in the LCP ecosystem at an EC sta-
tion (69◦22′20.20′′N, 134◦52′51.92′′W; WGS 84), 47 m north-
east of the Fish Island AWS (Fig. 1). In that study, we devel-
oped neural network (NN) models to map the relationships
driving fluxes in the LCP ecosystem. One NN modelled NEE,
mapping the seasonally variable responses of gross primary
productivity (GPP) and ecosystem respiration (ER) to light
levels and temperature conditions. Another modelled NME,
mapping methanogenesis (CH4 production) and methanotro-
phy (CH4 consumption), and the transport dynamics that in-
fluence the balance between the two. A description of the NN
models is given in Section 1 of Appendix A. Figures A2 and
A3 show visualizations of the functional relationships driving
growing season NEE and NME, respectively.

In this study, we created a flux driver time series, consist-
ing of estimated hourly values of the weather and soil con-
ditions driving NEE and NME that we previously identified.
Data from the Fish Island AWS were the basis of our upscal-
ing study. These included hourly air temperature, net short-
wave and longwave radiation, rainfall, and wind speed and
direction. Since the AWS data were limited in scope (e.g., no
subsurface observations), we also incorporated hourly ERA5-
Land reanalysis data and daily 500 m resolution MODIS re-
flectivity data. The ERA5 data were used to estimate weather

and soil conditions not directly observed at the AWS. The
MODIS data were used to calculate normalized difference
snow and vegetation indices (NDSI and NDVI, respectively),
to assess daily snow cover and vegetation greenness. Details
on the AWS, ERA5, and MODIS data are given in Section 2 of
Appendix A.

3. Methods
To create the flux driver time series, regression models

were trained to estimate each respective flux driver (11 in
total) using a combination of observed (AWS/MODIS) and es-
timated (ERA5) parameters. The models were trained on data
from the 2017 field season, using K-fold (K = 30) cross valida-
tion to prevent overfitting. Flux driver estimates were then
temporally upscaled from May 1st to October 31st each year
from 2009 to 2019. The six-month May–October interval was
chosen to be fully inclusive of each year’s growing season.
Section 2 of Appendix A gives a detailed overview of the
data and methods used to estimate each flux driver. Cross
validation statistics show that the estimated drivers closely
matched observed drivers from 2017 (Table 1).

The drivers that could be calculated from AWS data alone
are highlighted in blue in Table 1. With the exception of
friction velocity, these were estimated using simple linear
regression models to scale the AWS observations to their
equivalent EC observations. The AWS data closely matched
the EC data, but scaling helped account for the small bias
between stations (see Table A1). For friction velocity we used
a multivariate model to account for the influence of daytime
heating on turbulence. Most other drivers were approxi-
mated using a combination of AWS and ERA5 reanalysis
data; these are highlighted in orange in Table 1. Soil temper-
atures and water table depth were estimated using ordinary
least squares (OLS) regression models with a large (n = 12) set
of inputs (Fig. A5). A similar approach was used to estimate
the vapor pressure deficit (VPD); first, dewpoint temperature
was estimated with OLS regression and then VPD values were
calculated using the Clausius–Clapeyron equation (Fig. A4).

Thaw depth mapped the seasonality of both NEE and NME
at Fish Island; this parameter was more difficult to estimate.
The aim was to generate a physically meaningful estimate in-
formed by the seasonality of spring thaw and winter freeze-
up. Thaw depth was estimated as a function of cumulative
thaw degree days (mean air temperature > 0 ◦C) and snow-
free days (NDSI < 0) each year (Fig. A6). The estimates were
compared with data from two Circumpolar Active Layer Mon-
itoring (CALM; 2009–2017) network sites to ensure they were
plausible (CALM 2022). Estimated maximum thaw depths at
Fish Island were generally in good agreement with observed
maximum thaw depth at both CALM sites: Lousey Point, an
upland tundra site 22 km to the east (Spearman ρ = 0.79;
p = 0.01), and Reindeer Station, a forested lowland site 86 km
to the south (Spearman ρ = 0.93; p < 0.01). Finally, the grow-
ing seasons were defined for each year by identifying the
first to last snow-free day (NDSI < 0) each year with mean
daily soil temperatures above 0 ◦C at 5 and 15 cm. This def-
inition is somewhat arbitrary and may not fully encompass
each growing season, but it was necessary for this study. Fac-
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Table 1. Validation metrics including the coefficient of determination (r2) and root mean
squared error (RMSE) for the hourly estimates of each flux driver along with validation metrics
for hourly and daily estimates of net ecosystem exchange and net methane exchange.

Flux drivers Variable origin Validation metrics

Net radiation AWS r2 = 0.98; RMSE = 25 W m−2 s−1

Photon flux density AWS r2 = 0.99; RMSE = 38 μmol m−2 s−1

Wind speed AWS r2 = 0.94; RMSE = 0.41 m s−1

Friction velocity AWS r2 = 0.92; RMSE = 0.039 m s−1

Vapor pressure deficit AWS + ERA5 r2 = 0.89; RMSE = 120 hPa

Soil temperatures AWS + ERA5 r2 ≥ 0.88; RMSE ≤ 1.13 K

Water table depth AWS + ERA5 r2 = 0.93; RMSE = 0.01 m

Thaw depth AWS + ERA5 + MODIS r2 = 0.92; RMSE = 2.42 cm

Hourly and daily fluxes

Net ecosystem exchange NN r2 = 0.92; RMSE = 0.42 μmol m−2 s−1

r2 = 0.92; RMSE = 0.20 g C-CO2 m−2 d−1

Net methane exchange NN r2 = 0.69; RMSE = 6.9 nmol m−2 s−1

r2 = 0.88; RMSE = 3.1 mg C-CH4 m−2 d−1

Note: The variable origin column indicates the data sources of estimated flux drivers: the automated weather station (AWS),
ERA5 reanalysis, and/or MODIS imagery. The fluxes were estimated using neural networks (NN) with the flux drivers as
inputs.

tors governing NEE and NME during and immediately follow-
ing snowmelt are quite dissimilar from those during most of
growing season and our model was not trained on flux obser-
vations from times when the soil surface was still frozen.

The upscaled flux drivers were input into the NN models
developed for our previous study to calculate hourly NEE and
NME; 95% confidence intervals (CI95%) were calculated follow-
ing Skeeter et al. (2022). The flux estimates and their CI95%

were then summed daily. To check that our NEE and NME es-
timates were plausible, we compared modelled hourly fluxes
and daily sums to observations from the EC station in 2017
(Table 1; Fig. S8). Daily NEE values were also compared with
satellite-derived 9 km resolution SMAP L4 global daily NEE
estimates (Table A4; Fig. S9; Kimball et al. 2021). Overall, the
comparisons indicated the daily NEE and NME estimates pre-
sented in this study are reasonable during times when con-
ditions were similar to those observed during the 2017 field
season. The net ecosystem C balance (net ecosystem carbon
balance, NECB) was then calculated as the sum of NEE and
NME; where NEE and NME are in g CO2-C and g CH4-C, re-
spectively. This summation ignores the dissolved C but, it is
a close approximation of the NECB over shorter timescales
(e.g., a growing season) at small spatial scales (Baldocchi 2003;
Chapin et al. 2006), so we consider it sufficient for this study.

4. Results
Soil temperatures in polygon centers typically remained

above 0 ◦C from mid-June until mid-September (Fig. 3a).
The growing season started between 6 and 18 days after
snowmelt (NDSI < 0). The median growing season lasted 102
days. The 2018 season was anomalously short due to a late
snowmelt and early freeze-up. The 2012 season was consider-
ably warmer than any other, 1.4 ◦C above the next warmest
growing season (Table 2). Rainfall data are missing for 2009,

but the 10 years available show significant variability be-
tween seasons (Table 2). The NDVI data show rapid green-up
occurred in June, peak greenness was reached by early Au-
gust, and then gradual senescence occurred until snow cover
and freezing conditions returned in September/October (Fig.
3b). Maximum peak season NDVI ranged from 0.62 in 2009 to
0.51 in 2019.

NEE was typically negative (CO2 uptake) from around the
summer solstice (day of year (DOY) 172) until the end of Au-
gust (DOY 243) (Fig. 3c). NME was consistently positive (CH4

emission) over the full study period (Fig. 3d). Mean growing
season NEE and NME were −0.49 g C-CO2 m−2 d−1 (CI95% ±
0.44) and 27.3 mg C-CH4 m−2 d−1 (CI95% ± 5.6), respectively.
Cumulative growing season NEE and NME are shown by year
in Table 2. Outside of the growing season, the NN models
have reduced confidence and produce less realistic estimates.
These days were excluded from our analysis but were in-
cluded in Fig. 3 for context.

On a daily basis, growing season NEE had a weak negative
correlation with mean air temperatures, while NME had a
weak positive correlation with air temperature (Figs. 4a and
4b). High air temperatures had a limiting effect on NEE; daily
CO2 uptake was greatest when mean air temperatures were
below 15 ◦C. Daily NEE also had a moderate negative correla-
tion with NDVI; most net CO2 uptake occurred on days with
NDVI > 0.4 (Fig. 4c). Daily NME was not correlated with NDVI
(Fig. 4d). Accounting for light levels and phenology (NDVI),
daily air temperatures had a net positive influence over NEE;
warmer temperatures lead to higher ER, offsetting a larger
proportion of daily GPP (Table 3).

On a per growing season basis, cumulative NEE was posi-
tively correlated with mean air temperature, the number of
days with mean air temperatures above 15 ◦C, and the num-
ber of days with NDVI above 0.4 (Table 4). Cumulative NME
was most strongly correlated with the length of the growing
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Fig. 3. Mean daily conditions from 2009 to 2019 in the low-center polygon ecosystem at Fish Island between day of year (DOY)
155 and 285: (a) polygon center soil temperatures at 5 and 15 cm, (b) daily NDSI and NDVI, (c) net ecosystem exchange (NEE),
and (d) net methane exchange (NME). Shaded regions in panels (a) and (b) show the maximum and minimum mean daily values;
in (c) and (d) they show daily 95% confidence intervals. This DOY range is fully inclusive of year’s each growing season. Plots (c)
and (d) include flux estimates for some nongrowing season days for reference purposes only; these days were not included in
when calculating average/cumulative growing season flux estimates.

season each year. Since each growing season contained a
different number of days, mean fluxes were not directly
comparable to cumulative fluxes. Mean growing season NEE
had statistically significant positive (p < 0.05) correlations
with each of the four parameters listed in Table 4; mean
NME was not significantly correlated with any of those
parameters.

The NECB of the LCP ecosystem was estimated to be
−47.0 g C m−2 (CI95% ± 45.0) per growing season; CH4

emissions offset between 4.4% and 11.6% of CO2 uptake
per season (g C m−2). Overall, longer/warmer growing sea-

sons resulted in reduced CO2 uptake, increased CH4 emis-
sions, and reduced net C uptake (Fig. 5). Cumulative C up-
take reached a seasonal minimum between late August and
early September, but net emissions during the senescent pe-
riod in September offset a significant portion of CO2 up-
take in some years. The 2012 season was long and warm;
cumulative uptake peaked on August 25th, but the site re-
mained snow-free with soil temperatures above zero un-
til October 6th and net C emissions from late August on-
ward offset 47% of the net C uptake that had occurred that
season.
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Table 2. Conditions by growing season in the Fish Island LCP ecosystem.

Year Start–end (DOY) Length (days) Mean air temp. (◦C)
Total rainfall

(mm) NDVI (max.)
Cumulative NEE

g m−2 ± CI95%

Cumulative NME
g m−2 ± CI95%

2009 176−266 91 7.5 – 0.62 −56 ± 40 2.8 ± 0.5

2010 162−265 104 9.5 99 0.59 −50 ± 38 2.8 ± 0.5

2011 166−263 98 9.8 57 0.6 −56 ± 40 2.6 ± 0.7

2012 168−280 113 11.2 112 0.59 −26 ± 54 3.0 ± 0.8

2013 166−264 99 9.1 133 0.61 −46 ± 45 2.9 ± 0.5

2014 164−265 102 8.5 134 0.6 −58 ± 46 2.9 ± 0.5

2015 160−261 102 8.9 145 0.57 −54 ± 44 2.9 ± 0.5

2016 157−270 114 8.6 72 0.6 −50 ± 54 3.1 ± 0.7

2017 168−278 111 9.3 152 0.54 −43 ± 41 2.9 ± 0.5

2018 170−252 83 7.7 119 0.54 −51 ± 38 2.2 ± 0.5

2019 160−276 103 7.9 134 0.51 −58 ± 47 2.6 ± 0.6

Fig. 4. Scatterplots comparing daily NEE (a and c) and NME (b and d) to mean daily air temperatures (a and b) and daily NDVI
(c and d) along with their respective coefficients of determination (r2). The r2 values listed are significant to p < 0.05 for each
except plot (d).
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Table 3. Coefficients for the OLS regression equation:
NEE = x1∗PPFD + x2∗Ta + x3∗NDVI + x4, where NEE is daily net ecosystem
exchange in C-CO2 m−2 d−1, PPFD is daily total photon flux density in mol m−2

d−1, Ta is mean air temperature in ◦C, and NDVI is the daily normalized difference
vegetation index.

Coefficient 95% confidence interval

Total photon flux density (PPFD) x1 = −0.031 ±0.002

Mean air temperature (Ta) x2 = 0.017 ±0.007

NDVI x3 = −4.319 ±0.321

Intercept x4 = 2.078 ±0.146

Note: The coefficient of determination (r2) between the OLS regression model and our upscaled NEE estimates
was r2 = 0.67.

Table 4. Spearman ρ correlation coefficients and Theil–Sen slope between cumulative growing season fluxes and selected
parameters.

Net ecosystem exchange g C-CO2 m−2

season−1
Net methane exchange mg C-CH4 m−2

season−1

Spearman ρ Theil–Sen slope Spearman ρ Theil–Sen slope

Mean air temperature (◦C) 0.75 5.3 0.42 56.8

(p < 0.01) (CI95% ± 5.2) (p = 0.20) (CI95% ± 162.5)

Days with mean air temperatures > 15 ◦C 0.86 1.1 0.48 11.6

(p < 0.01) (CI95% ± 0.8) (p = 0.14) (CI95% ± 21.4)

Days with NDVI > 0.4 0.6 0.3 0.57 5.3

(p = 0.05) (CI95% ± 0.5) (p = 0.07) (CI95% ± 8.6)

Length of growing season (days) 0.47 0.3 0.83 17.0

(p = 0.15) (CI95% ± 0.8) (p < 0.01) (CI95% ± 13.9)

Note: Spearman ρ significant to p < 0.05 and Theil–Sen slopes with CI95% that do not span zero are shown in bold.

Fig. 5. The net ecosystem carbon balance (NECB) by growing season, where the NECB is the sum of net ecosystem exchange and
net methane exchange. Growing seasons are colour-coded by mean temperatures (dark blue is coldest, dark red is warmest),
which correspond to the values listed in Table 2. The year 2017 is shown in orange with an upside-down triangle; this is the
year when EC observations were collected by our previous study.
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5. Discussion
In the absence of long-term observations of carbon ex-

change in the Mackenzie River Delta region, we investigated
the influence of climate variability by extrapolating flux ob-
servations from a single field season (2017) to 11 growing sea-
sons. Weather data from the Fish Island AWS along with ERA5
reanalysis and MODIS data were used to create a time series
of flux drivers. NNs were used to estimate daily NEE and NME
and show that there was considerable interannual variability
in growing season C exchange in the LCP ecosystem at Fish
Island. Cumulative growing season NEE ranged from −26 g
C-CO2 m−2 (CI95% ± 54) in 2012 to −58 g C-CO2 m−2 (CI95% ±
47) in 2019, and NME ranged from 2.2 g C-CH4 m−2 (CI95% ±
0.5) in 2018 to 3.1 g C-CH4 m−2 (CI95% ± 0.7) in 2012. On aver-
age, the ecosystem was a CO2 sink and CH4 source; the mean
net growing season C uptake (NECB) was −47 g C m−2 d−1

(CI95% ± 45). The 95% confidence intervals for NECB spanned
zero in 4 of the 11 years, so the ecosystem may not have been
a net C sink every growing season.

5.1. Uncertainty
NNs can make projections beyond conditions they were

trained on, but error increases as conditions diverge from
the training data (Khosravi et al. 2011). Outside of the grow-
ing season, our model projected significant CO2 emissions,
particularly during the spring snowmelt period (Fig. 3). These
cold season fluxes are likely overestimated, and were not con-
sidered in the analysis because we lack cold season flux ob-
servations from Fish Island. By limiting our analysis to the
growing season (snow-free days with soil temperatures above
0 ◦C), we restricted our estimates to conditions that were not
drastically different than the 2017 field season.

Within the growing season, the largest source of uncer-
tainty in the study was our estimate of thaw depth. The rel-
ative influence of thaw depth in the NN models was only 7%
and 12% for NEE and NME, respectively (Figs. A2 and A3),
so the effects of poorly resolved thaw depth were probably
small-to-moderate. Given that maximum thaw depths were
well correlated with the two CALM sites, the estimates are
likely reasonable enough to guide seasonality in the model.
There were no CALM data to help validate the thaw depth es-
timates for 2018 or 2019. However, the comparison between
our upscaled NEE estimates and 9 km resolution satellite de-
rived SMAP L4 estimated NEE (Kimball et al. 2021) suggests
model performance in 2018 and 2019 was comparable to ear-
lier years. The SMAP NEE data cannot validate our NEE esti-
mates as they are also modelled estimates, and they are aver-
aged across multiple ecosystems; but they do broadly support
that our estimates of NEE are plausible.

We are generally confident in our results as validation
statistics indicate both the estimated hourly flux drivers and
daily fluxes are in close agreement with observations from
2017. The wide confidence intervals we presented represent
the potential ranges of growing season NEE, NME, and NECB
this LCP ecosystem and adequately convey the inherent un-
certainty associated with this sort of upscaling study. The
summation NECB = NEE + NME ignores the dissolved C
fluxes which can be significant in tundra ecosystems during

snowmelt (Kling et al. 1991; Finlay et al. 2006). However, it
is a close approximation of the NECB over shorter timescales
(e.g., a growing season) at small spatial scales in flat tundra
ecosystems (Baldocchi 2003; Chapin et al. 2006), so it is suffi-
cient for this study.

The LCP ecosystem covers approximately 9.5 km2 of the
19 km2 Fish Island (Fig. 1). It is likely the growing season
NECB across this LCP ecosystem falls somewhere in the range
calculated in the model. The 95% confidence interval for the
NECB per growing season was −92.0 to −2.0 g C m−2, which
would equate to −874 to −19 t C uptake per growing sea-
son across the LCP area at Fish Island. However, we caution
that this is a “back of the envelope” calculation; the study
was not intended to upscale flux estimates in both space and
time. Location bias (Schmid and Lloyd 1999) caused mean
CH4 fluxes observed by the EC station in 2017 to be approx-
imately 1 nmol m−1 s−1 higher than NME in the LCP ecosys-
tem (Skeeter et al. 2022). To correct for this, NME was pro-
jected to the mean distribution of polygon rims and centers
at 2 m resolution, from the 0.7 km2 microtopography classifi-
cation map centered on the EC tower (Skeeter et al. 2022). We
cannot be certain the microtopographic distribution across
the broader LCP ecosystem at Fish Island matches that within
the vicinity of the EC station. It is encouraging however, that
aircraft measurements of CH4 fluxes over Fish Island (17–
35 nmol m−2 s−1) collected in July 2012 and 2013 overlap with
our estimates (31.9 to 40.0 nmol m−2 s−1) for mean July NME
in 2012 and 2013 (Kohnert et al. 2017).

5.2. Net ecosystem carbon balance
Our findings are broadly in alignment with two longer

term EC studies from LCP ecosystems in Alaska (Dengel et al.
2021) and Siberia (Holl et al. 2019) and shorter term analysis
for two other Siberian sites (van der Molen et al. 2007; Sachs
et al. 2008). Dengel et al. (2021) present a 7-year record (2013–
2019) of June–September NEE and mean CH4 fluxes (not gap-
filled) for a LCP site near Utqiagvik, AK. This site is colder than
Fish Island and experienced greater CO2 uptake than Fish Is-
land; mean daily NEE was −1.31 g C-CO2 m−2 d−1 (1 standard
error ± 0.42) at Utqiagvik, compared with −0.49 g C-CO2 m−2

d−1 (CI95% ± 0.44) at Fish Island (Dengel et al. 2021). ER at
Fish Island was likely higher due to the warmer temperatures
which would explain much of the difference in NEE. They did
not present gap-filled estimates of CH4 fluxes, so they cannot
be directly compared, but our results suggest the LCP ecosys-
tem at Fish Island is a stronger CH4 source than the one at
Utqiagvik (Dengel et al. 2019).

Holl et al. (2019) present cumulative CO2-C uptake over the
peak growing seasons (DOY 200 to 235) from 2002 to 2017
for an LCP ecosystem at Samoylov Island, in Siberia’s Lena
River Delta. They did not present error bounds, but yearly
values ranged from −25 to −9 g CO2-C m−2 with a median
of −15 g CO2-C m−2. Over the same days (2009–2019), we es-
timate cumulative CO2 uptake in the Fish Island LCP ecosys-
tem was −26.7 (CI95% ± 12.7) g CO2-C m−2. This suggests the
LCP ecosystem at Fish Island is a stronger CO2 sink during
the peak of the growing season. Sachs et al. (2008) measured
CH4 fluxes at Samoylov Island in 2006 (June 9th–September
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19th) and estimated NME was ∼14.0 mg C-CH4 m−2 d−1 (no
error bounds provided). This is well below the estimated
growing season NME at Fish Island (CI95% (21.7, 32.9) mg C-
CH4 m−2 d−1). At Samoylov Island, air and soil temperatures
and maximum thaw depth in 2006 were within ranges ob-
served/estimated for the LCP ecosystem at Fish Island. The
difference is likely because the two LCP ecosystems had dif-
ferent levels of microtopographic relief and distributions of
polygon rims/centers. Polygon rims are elevated relative to
the water table and provide aerobic conditions that promote
methanotrophy which reduces CH4 emissions (Kutzbach et
al. 2004; Sachs et al. 2010). At Fish Island, polygon rims were
10–15 cm high and cover 29% of the land surface (polygon
centers covered 66% and the other 5% was ponded troughs). At
Samoylov, polygon rims were 50 cm high and covered about
60% of the land area and polygon centers covered the other
40% (Sachs et al. 2008; Skeeter et al. 2022).

Some EC and modelling studies suggest earlier snowmelt
and longer/warmer growing seasons will increase CO2 uptake
in some low Arctic tundra sites (Lafleur and Humphreys 2008;
Luus et al. 2013; Tao et al. 2021), while others have found
longer/warmer growing seasons and delayed freeze-up in au-
tumn can reduce or completely cancel out growing season
CO2 uptake (Zona et al. 2016, 2022; Commane et al. 2017; Holl
et al. 2019; Natali et al. 2019; Bao et al. 2021). Our analysis sup-
ports the latter; longer/warmer growing seasons result in de-
creased net C uptake. While photosynthesis can increase and
persist for longer in a warmer growing season, the relative
increases in soil respiration (ER + NME) with increasing tem-
peratures more than offset any net increase in GPP. Further,
the onset of senescence is strongly influenced by decreasing
light levels in September; this limits the potential for warm-
ing to increase autumn GPP (Livensperger et al. 2019; Myers-
Smith et al. 2019).

6. Conclusions
We are confident this LCP ecosystem was a net growing sea-

son C sink between 2009 and 2019. However, we cannot claim
the site was a C sink on an annual basis because we do not
include cool season emissions that could have offset grow-
ing season uptake in some years. Given the relationships be-
tween reduced net C uptake and warmer temperatures, we
anticipate that climate warming will reduce growing season
net C uptake in this LCP ecosystem. Further observations are
needed to better understand and project how climate change
will affect the carbon balance of this region. Continuous an-
nual measurements are not necessarily practical in a remote
Arctic location like Fish Island, but any future study should
at least make efforts to include the weeks before snowmelt
through to the end of early winter freeze-up to provide better
bounds on annual fluxes.

Warming at Fish Island may halt ice wedge growth at Fish
Island and lead to thermokarst. When polygon rims collapse
in this ecosystem, they form ponded troughs that may result
in increased CH4 emissions. If Fish Island were revisited,
a nested study with multiple towers at different heights
could be used to better assess the role of microtopographic

features. By including different proportions of polygon rims,
centers, and degraded troughs, space-for-time substation
could be used to anticipate how future changes to thaw
depth and hydrology in the LCP ecosystem may influence
the carbon balance.
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Appendix A

A.1. Neural network models
This section gives a brief summary of the neural network

(NN) models developed in our previous study to map the func-
tional relationships driving net ecosystem exchange (NEE)
(CO2 exchange) and net methane exchange (NME) (CH4 ex-
change), respectively. For an overview of the data collected
during the 2017 study and a comprehensive discussion of the
NN models, we direct the reader to Skeeter et al. (2022). NNs
are universal approximators; they make no prior assump-
tions about the distribution of a dataset and with enough hid-
den nodes they are capable of mapping any continuous func-
tion to an arbitrary degree of accuracy (Hornik 1991; Khosravi
et al. 2011). Given this, an NN will fit any pattern, real or
artificial, so care must be taken to ensure model estimates
are physically plausible. Our previous study took a number
of steps to prevent overfitting and ensure our models were
plausible.

Both models (one for NEE and one for NME) were ensem-
bles of 30 randomly initialized feed forward single layer NN,
with each NN trained on a bootstrapped sample of the 2017
eddy covariance (EC) data. Early stopping was used to prevent
overfitting (Sarle 1995; Heskes 1997). Ensemble means and
standard deviations were used to calculate hourly NEE and
NME estimates with 95% confidence intervals (Khosravi et al.
2011). First, overparametrized models were trained on a large
set (n = 21) of potential inputs. Then, weights method (Gevrey
et al. 2003) was used to prune unnecessary inputs and the
models were retrained using only the most important inputs
(drivers). This approach had not been applied to EC data be-

fore, distinguishing our work from other EC studies that have
treated NN as “black box” models (e.g., Papale and Valentini
2003; Moffat et al. 2007; Dengel et al. 2013; Knox et al. 2019;
Schäfer et al. 2019; Lee et al. 2021).

Figure A1a shows the fit between observed CO2 fluxes and
modelled NEE, Fig. A2 shows observed modelled relation-
ships driving NEE. The NN model was not set up to explic-
itly partition NEE into its component fluxes, ecosystem res-
piration (ER) and gross primary productivity (GPP), where
NEE = ER − GPP (Aubinet et al. 2012). However, modelled
NEE provided a strong fit with the EC observations (r2 = 0.95,
RMSE = 0.33 μmol m−2 s−1) and the NN correctly identi-
fied the relevant drivers of both ER and GPP. Photosynthetic
photon flux density (PPFD) was the primary driver of GPP,
which was modulated by vapor pressure deficit (VPD). The
NN mapped the exponential relationship between soil tem-
perature and ER; the response function was similar to the
commonly used Q10 approach but was weighted to account
for the differential respiration rates of polygon rims and cen-
ters. Thaw depth mapped seasonality in the NN, which was
a conflation of seasonal phenology changes and the increas-
ing volume of substrate available to respiration. This model
also included a one-hot-coded “daytime” variable denoting
whether the sun was above/below the horizon to explicitly
distinguish between day and night.

Fig. A1b shows the fit between observed CH4 fluxes and
modelled NME; Fig. A3 shows the modelled relationships
driving NME. Methane fluxes are complex; the literature does
not suggest any broadly applicable, well-defined functional
relationships governing ecosystem scale NME (Irvin et al.
2021). The balance of methanogenesis and methanotrophy
dictates NME and both components are driven by soil tem-
perature, moisture, and substrate availability (Lai 2009). How-
ever, substrate availability can change over short timescales
and the rate of CH4 transport varies by emission pathway (dif-
fusion, ebullition, or vascular transport), limiting methan-
otrophy (Joabsson et al. 1999; Ramirez et al. 2015). Mod-
elled NME provided a moderate fit with the EC observations
(r2 = 0.79, RMSE = 5.89 nmol m−2 s−1). The NN model showed
that at subdaily timescales, NME was driven by the depen-
dence of methanogenesis on GPP, the dependence of vascu-
lar transport on net radiation (Rn), ventilation of peat under
turbulent conditions, and the relative contributions of poly-
gon centers/rims to flux observations. At longer timescales,
soil temperature, water table depth, and thaw depth were the
important drivers of NME.

The relative areal fractions of polygon centers (66%) and
rims (29%) at the ecosystem scale were slightly different than
the median distribution of polygon centers (63%) and rims
(23%) in the flux footprint climatology; the flux footprint cli-
matology does not sum to 100% because the footprint func-
tion is technically infinite. We estimated that location bias
(placement of the EC station) caused our NME estimates to
be approximately 1.0 nmol m−2 s−1 above background lev-
els in the low-center polygon (LCP) ecosystem at Fish Island.
We did not find location bias impacted our NEE estimates be-
cause flux observations were not as sensitive to changes in
the flux source area. We did find CO2 fluxes varied between
polygon centers and rims at the plot scale, but this variability
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Fig. A1. Comparison between observed half-hourly fluxes of CO2 and CH4 and modelled half-hourly NEE (a) and NME (b),
respectively.

averaged out at the footprint scale because the magnitude of
the differences was less drastic than for CH4.

A.2. Driver estimation

A.2.1. Fish Island AWS

In August 2008 an AWS was installed in the LCP ecosystem
at Fish Island (69◦22′19.7′′N, 134◦52′55.9′′W), operated by the
Canadian Department of Indian Affairs and Northern Devel-
opment, Water Resources Division. The AWS recorded hourly
data on a CR1000 data logger equipped with a CFM100-XT
data module (Campbell Scientific Inc., Logan, UT, USA; CSI).
The AWS measured wind speed (U) and direction at 2.9 m with
a 05103AP-10-L Wind Monitor (RM Young, Traverse City, MI,
USA), air temperature (Ta) at 2 m with a 44212 Temperature
Thermilinear Probe (CSI), incoming and outgoing longwave
(LW) and shortwave (SW) radiation at 1.55 m with a CNR2 4-
component net radiometer (Kipp & Zonen, Delft, NL). On Au-
gust 21st 2009, an unheated TE525M Tipping Bucket (Texas
Electronics, Dallas, TX, USA) was installed to measure rain-
fall (rain). Data were nearly complete over the full period of
record, except rainfall, which are missing until August 21st
2009 and during periods of snowfall. Data gaps of 2 h or less
were filled with linear interpolation and longer gaps were
filled using the average of corresponding hourly values for
the day before and after the gap. We obtained the AWS data
(spanning August 28th 2008–August 11th 2020) through per-
sonal communications with the Government of the North-
west Territories Department of Environment and Natural Re-
sources.

Over the 2017 study period, AWS data were in close agree-
ment with hourly averages of equivalent observations from
our EC station; our EC station was located 47 m northeast of
the AWS in 2017. Regression models were used to scale each

AWS variable to its equivalent EC variable to remove bias be-
tween the two observations (Table A1). Since friction velocity
was not measured at the AWS, we used a slightly different ap-
proach to estimate this variable. An exponential regression
model was fit to the half-hourly EC data:

u∗ = aUb + cNR

where the coefficients were a = 0.082 m s−1, b = 0.96 m s−1,
and c = 6.0 × 10−5 m3 J−1. The model provided a reasonable
fit (r2 = 0.92; RMSE = 0.039 m s−1) and accounted for the in-
fluence of diurnal heating on friction velocity. Then, hourly
u∗ was estimated from the scaled estimates of U and NR mea-
sured by the AWS using these coefficients.

A.2.2. ERA5 reanalysis

One-hour resolution ERA5-Land reanalysis data produced
by the European Center for Medium-Range Weather Forecast-
ing were used to complement the AWS data (Muñoz 2019).
Hourly ERA5 data from January 1st 2008 to December 31st
2020 were obtained at 11 km grid resolution from Google
Earth Engine. Fish Island was covered by parts of three grid
cells, so the spatially weighted mean of each hourly value was
calculated over Fish Island. The data included estimates of
air temperature and dewpoint at 2 m, total precipitation (liq-
uid equivalent), fractional snow cover, soil temperature and
volumetric water content. The soil data were averaged across
depth profiles: (1) 0–7 cm, (2) 7–28 cm, and (3) 28–100 cm.

The reanalysis estimates of air temperature were in strong
agreement with observations from the EC station in 2017
(r2 = 0.90; RMSE = 1.5 K) and with observations from the
AWS over its full period of record (r2 = 0.96; RMSE = 3.0 K).
Reanalysis estimated rainfall data were included in this study
because a rain gauge was not installed at the AWS until late
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Fig. A2. The modelled partial first derivatives of the drivers of net ecosystem exchange (NEE). Each subplot shows the partial
first derivative of NEE with respect to the flux driver listed in the title. The derivates are unitless because the flux data were
z-score normalized before NN training. They represent relative changes per unit change in the given flux driver. The ensemble
mean is shown in red and the 95% confidence interval in blue. Plots are ordered by the relative influence (RI) of each driver,
which is listed in the title; the RI is calculated from the sum of squared partial derivatives (SSD) of each driver normalized by
the sum of SSD values across all drivers. The grey bars show histograms of the distribution of training samples for each driver,
representing the range of conditions the model was trained on.
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Fig. A3. The modelled partial first derivatives of the drivers of net methane exchange (NME). Each subplot shows the partial
first derivative of NME with respect to the flux driver listed in the title. The derivates are unitless because the flux data were
z-score normalized before NN training. They represent relative changes per unit change in the given flux driver. The ensemble
mean is shown in red and the 95% confidence interval in blue. Plots are ordered by the relative influence (RI) of each driver,
which is listed in the title; the RI is calculated from the sum of squared partial derivatives (SSD) of each driver normalized by
the sum of SSD values across all drivers. The grey bars show histograms of the distribution of training samples for each driver,
representing the range of conditions the model was trained on.
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Table A1. The slope and intercept of the simple linear regression models used to scale the data from the automated
weather station (AWS) at Fish Island to equivalent values from the eddy covariance (EC) station that was 47 m NE of
the AWS in 2017.

EC/AWS observations Slope Intercept r2 RMSE

Air temperature (Ta) 0.99 K 0.02 K 0.99 0.53 K

Net radiation (NR) 1.2 W m−2 s−1 −15 W m−2 s−1 0.98 25 W m−2 s−1

Photon flux density (PPFD)/shortwave radiation (SW)∗ 2.4 μmol m−2 s−1 0 μmol m−2 s−1 0.99 38 μmol m−2 s−1

Wind speed (U)∗∗ 0.94 m s−1 0.22 m s−1 0.94 6.41 s−1

Note: The models were fit using data over the 2017 field season and used to temporally upscale the flux drivers. Data from the EC station were averaged
hourly for the comparison with AWS data. In each regression equation Y = mX + b, the EC station data were the independent (Y) variable and the AWS data
were the dependent variable. ∗For PPFD, b was fixed to zero. ∗∗For U, the regression line was calculated using only precipitation-free hours.

August 2019 and because the AWS rainfall data did not in-
clude snow. On an hourly basis, the observed and estimated
rainfall were poorly correlated (r2 = 0.19), but when summed
over 48 h intervals the correlation improved (r2 = 0.63).
Monthly ERA5 precipitation totals were about 74% higher
than AWS observations, but the values were reasonably cor-
related (r2 = 0.82).

Reanalysis estimated dewpoint temperature was in moder-
ate agreement with the EC station in 2017 (r2 = 0.71; RMSE
= 1.7 K). These data were necessary to model the VPD at Fish
Island, because humidity was not measured at the AWS. The
reanalysis appears to underestimate the maritime influences
at Fish Island (Fig. A4a). For example, when winds were off
the ocean from the northwest (315◦–360◦), estimated dew-
point temperature was less accurate (r2 = 0.33; RMSE = 2.2 K)
compared with when winds were from the southeast (135◦–
180◦) with no maritime influence (r2 = 0.86; RMSE = 1.2 K).
To estimate VPD, we estimated the dewpoint from ERA5 data,
then calculated the VPD using the Clausius–Clapeyron equa-
tion with the estimated dewpoint and observed air temper-
atures. Because the dewpoint estimate was only accurate for
certain wind sectors, we used an ordinary least squares (OLS)
regression model with seven inputs to scale the dewpoint es-
timates and account for the continental bias of the reanalysis
data. The seven OLS inputs included ERA5 estimate dewpoint
and air temperature, along with five AWS observations of Ta,
SW, LW, and the u and v wind components. Inputs were z-
score normalized before training and relative magnitude of
each coefficient is shown in Fig. A4b. The OLS scaled dewpoint
temperature provided a better fit with observations from the
EC station in 2017 (r2 = 0.86; RMSE = 1.0 K) (Fig. A4c). Be-
fore calculating the VPD, any dewpoint estimates that were
above the Ta at the AWS were fixed to Ta. The final VPD esti-
mates provided a reasonable fit with observations from 2017
(r2 = 0.88; RMSE = 120 hPa) (Fig. A4d).

The ERA5 data were also needed because the AWS data did
not include any subsurface observations. The ERA5 soil data
are integrated over depth levels; no single estimate is directly
comparable to any observation. Table A2 shows the correla-
tions between soil conditions observed at EC station in 2017
to reanalysis estimates. The ERA5 soil temperatures for levels
one and two were moderately correlated with soil tempera-
tures at 5 cm from polygon rims and polygon center, respec-
tively, but the reanalysis tended to over/under estimate the
daily maximum/minimums. Polygon rims are elevated and

drier than polygon centers, which explains why they had bet-
ter associations with reanalysis estimates at levels 1 and 2,
respectively. The relationships between reanalysis estimates
with temperatures at 15 cm were weak for all levels, but cor-
relations did improve when averaged daily (not shown). Re-
analysis estimates of soil moisture at both levels were well
correlated with water table depth observations. Each soil pa-
rameter was estimated using an OLS regression model, fol-
lowing a similar procedure as was used to estimate the dew-
point temperature. Each model had nine inputs that were
z-score normalized before training (Fig. A5). The inputs in-
cluded the five ERA5 subsurface parameters: ERA5 estimated
rainfall (rolling 48 h totals); AWS observations of Ta, SW, LW;
and rolling 6-h average air temperatures. Each estimated pa-
rameter provided a reasonable fit (r2 ≥ 0.88) with its corre-
sponding observed values in 2017.

A.2.3. MODIS data

Daily 500 m resolution Nadir Bidirectional Reflectance Dis-
tribution Function Adjusted Reflectance (NBAR) MODIS data
were obtained using Google Earth Engine. The NBAR data
product is a daily composite of surface reflectance covering
every pixel of the global land surface; it is derived from an al-
gorithm that models the surface reflectivity using multidate,
multiangular, cloudfree, atmospherically corrected, surface
reflectance observations (Wanner et al. 1997; Lucht et al.
2000; Schaaf 2021). Daily NBAR data are modelled using ob-
servations from MODIS instruments on the Terra and Aqua
satellites over a 16-day period, with the image date centered
on the 9th day, weighted data as a function of quality, cover-
age, and distance (temporal) from the day of interest (Schaaf
et al. 2002; Schaaf 2021). The NBAR data aims to minimize
missing data due to cloud cover while providing representa-
tive estimates of reflectivity (Schaaf 2021). The NBAR data had
good coverage, but there were missing data in September (4%)
and October (25%) due to cloudy conditions and low light lev-
els; these data gaps were backfilled linearly. The NBAR data
were spatially averaged across the LCP ecosystem at Fish Is-
land (defined by the landscape classification map in Fig. 1)
and used to calculate daily normalized difference vegetation
index (NDVI) (Bands 1 & 2) and Normalized Difference Snow
Index (NDSI) (Bands 4 & 6) for the periods between May 1st
and October 31st, each year from 2009 to 2019.
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Fig. A4. (a) Observed dewpoint temperatures at the EC station versus reanalysis estimates from 2017. (b) Z-score normalized
OLS coefficients used to estimate dewpoint temperature at Fish Island. (c) Observed dewpoint temperatures at the EC station
versus OLS estimated dewpoint temperature. (d) Observed vapor pressure deficits (VPD) at the EC station versus estimated VPD.

Table A2. A correlation matrix (Pearson’s r) showing the association between mean hourly values from the EC station over
the 2017 field season and ERA5 estimates over the same time period.

2017 field season observations

Soil temperatures

ERA5 estimates
Polygon rim 5

cm
Polygon center

5 cm
Polygon rim 15

cm
Polygon center

15 cm Water table

Soil temperature (Ts)

0−7 cm 0.86 0.65 −0.15 −0.11 −0.66

7–28 cm 0.75 0.82 0.29 0.30 −0.85

28–100 cm 0.36 0.56 0.56 0.60 −0.53

Volumetric water content (VWC)
0−7 cm −0.48 −0.47 0.08 0.08 0.90

7–28 cm −0.51 −0.52 −0.01 0.00 0.92

When NDSI > 0, it indicates a pixel is snow covered, so
days were classified as snowy if NDSI > 0. Comparing the
NDSI data (excluding gaps) with ERA5 fractional snow cover
in May/June, the values were moderately correlated (r2 = 0.61)
but the reanalysis estimated earlier snowmelt dates than
were observed by satellite; in September/October, the two

metrics were in better agreement (r2 = 071). The NDSI data
were combined with AWS mean daily air temperatures (Ta)
and used to calculate a daily thaw degree day index:

TI = NDSI′ + T ′
a
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Fig. A5. Z-score normalized OLS coefficients used to estimate soil temperatures and water table deficits at Fish Island along
with their K-fold cross-validation statistics.

were NDSI′ =
{

0, NDSI ≥ 0

1, NDSI < 0
and T ′

a =
{

1, Ta ≥ 0
0, Ta < 0

.

Then, thaw depth (TD) was then calculated by fit-
ting a limited number (n = 50) thaw depth mea-
surements from 2017 to an exponential regression
model:

TDDOY = a

(
DOY∑
i=0

|TI|i
)b

Thaw depth was measured manually on 5 days (day of
year 174, 184, 213, 233, and 258; 10 replications each day)
in 2017. The model was trained with K-fold (K = 10) cross
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Fig. A6. (a) Thaw depth estimates from fit to observations from 2017, (b) thaw depth each year, (c) maximum annual thaw
depth at Fish Island (y axis) plotted against Lousey point (x axis), and (d) maximum annual thaw depth at Fish Island (y axis)
plotted against Reindeer Station (x axis).

validation; the coefficients a = 0.035 and b = 0.53; the fit
with the 2017 thaw depth observations was r2 = 0.92 and
RMSE = 0.02 m (Fig. A6a). With the exponential function,
thaw depth increases rapidly with snowmelt and continued
to increase monotonically over the season until freezing con-
ditions returned in late fall (Fig. A6b). Thaw depth remained
fixed at its maximum value until the end of the year; in re-
ality, the active layer refreezes from the top and bottom and
a portion of the active layer remains thawed well into early
winter (Natali et al. 2019). However, there is no reasonable
way to incorporate these dynamics here, and estimating C
fluxes during freeze-up is beyond the scope of this analysis.

We obtained maximum annual thaw depth data from
Lousey Point and Reindeer Depot, two Circumpolar Active
Layer Monitoring network sites (CALM, 2022). Lousey Point
is an upland site on Richard’s Island, 22 km east of Fish Is-
land and Reindeer Depot is a forested site in the delta 86 km
south of Fish Island. The data included values through 2017;
both CALM stations had thicker active layers than Fish Island,

but these data were needed to provide an independent as-
sessment of our estimates at Fish Island (Figs. A7c and A7d).
Both stations Lousey Point (Spearman ρ = 0.79; p = 0.01) and
Reindeer Depot (Spearman ρ = 0.93; p < 0.01) provided a
reasonable fit with estimates of maximum annual thaw at
Fish Island. To check for the plausibility of early season thaw
depth estimates, May and June soil temperature estimates
were compared with mean daily soil temperatures at 5 and
15 cm with linear regression models. They had reasonable
fits (r2 ≥ 0.57) and the 0 ◦C intercepts with estimated thaw
depths were reasonably close to the respective depth levels of
the temperature observations (Table A3). Given the simplicity
of the thaw depth estimation procedures, these relationships
are encouraging.

A.3. Evaluating the upscaled fluxes
Figure A7shows a comparison between estimated and ob-

served fluxes. Net ecosystem exchange closely matched ob-
served values and the low mean bias error (MBE) indicated
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Fig. A7. Comparison between observed hourly fluxes of CO2 and CH4 and modelled NEE (a) and NME (b), respectively, and
daily gap-filled hourly fluxes of CO2 and CH4 and modelled NEE (c) and NME (d). Hourly observations were the hourly means
of half-hourly flux data originally presented in Skeeter et al. (2022). The gap-filled daily sums of gap-filled half-hourly flux data
originally presented in Skeeter et al. (2022).

Table A3. Coefficients of simple regression lines
Y = mX + b, where Y was estimated daily thaw depth
in May/June and the X parameters were the corresponding
estimates of mean daily soil temperatures in May/June.

Slope (m) Intercept (b) r2

Polygon center 5 cm 0.02 0.12 0.77

Polygon center 15 cm 0.04 0.15 0.75

Polygon rim 5 cm 0.02 0.05 0.62

Polygon rim 15 cm 0.04 0.16 0.76

that there was not a significant bias in estimated NEE. Net
methane exchange did not match observations as closely, and
the estimates had a small positive MBE. The bias was because

the flux driver time series did not account for the influence
that variable source area had on hourly fluxes observed by
the EC station in 2017; we projected NME to the mean distri-
bution of polygon rims/centers at the site. Daily sums show
a similar fit for NEE and an improved fit for NME (Figs. 3c
and 3d). Overall, this comparison suggests the estimates of
daily NEE and NME presented in this study are reasonable
during times when conditions were most similar to the train-
ing data used to develop the NN models. The NN models are
capable of making projections beyond conditions they were
trained on; but error increases as conditions diverge from the
training data, and care must be taken to ensure conditions
are not fundamentally different than the training data. By
limiting our analysis to days with mean soil temperatures at
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Table A4. Mean growing season net ecosystem exchange (NEE) in the LCP ecosystem at Fish Island modelled by our
NN compared with 9 km resolution SMAP L4 estimates of mean NEE from 2015 to 2019 (Kimball et al. 2021).

Year NN estimated NEE g C m−2 d−1 SMAP L4 estimated NEE g C m−2 d−1 r2 RMSE g C m−2 d−1

2015 −0.69 (CI95% ± 0.38) −0.33 (CI95% ± 0.05) 0.59 0.54

2016 −0.71 (CI95% ± 0.40) −0.38 (CI95% ± 0.07) 0.59 0.56

2017 −0.77 (CI95% ± 0.29) −0.51 (CI95% ± 0.07) 0.63 0.51

2018 −0.68 (CI95% ± 0.41) −0.28 (CI95% ± 0.05) 0.64 0.53

2019 −0.87 (CI95% ± 0.39) −0.35 (CI95% ± 0.06) 0.69 0.57

Note: SMAP data are only available for 2015 onward. The comparison is limited to June–August because cloudy conditions and limited daylight in September
reduced the availability of SMAP data for September. Also shown are the coefficient of determination (r2) and root mean squared error (RMSE) between daily
values of the estimates by year.

Fig. A8. Comparison between NN modelled daily net ecosys-
tem exchange (NEE) in the LCP ecosystem at Fish Island and
9 km resolution SMAP L4 estimates of daily NEE (Kimball et
al. 2021). The comparison is limited to June–August because
cloudy conditions and limited daylight in September reduced
the availability of SMAP data for September.

15 cm > 0 ◦C, we are restricting our upscaled estimates to con-
ditions that are not drastically different than the 2017 study
period.

For an additional check of the plausibility of our daily
NEE estimates, we compared them to SMAP L4 global daily
9 km resolution NEE data (Kimball et al. 2021). These satel-
lite estimates of NEE are calculated from 500 m resolu-
tion MODIS data, 9 km resolution Soil Moisture Active Pas-
sive (SMAP) observations, and 1/4 degree resolution Goddard
Earth Observing System Model, Version 5 (GEOS-5) reanal-
ysis data. The SMAP L4 data product is based on a land-
scape classification map that does not include tundra or
wetlands; the LCP ecosystem at Fish Island is classified as
shrubland. The 9 km SMAP data are averaged across multi-
ple ecosystems (LCP, shrub tundra, small lakes, etc.), so they
are not directly comparable. However, the comparison does
help show that our growing season NEE estimates are rea-
sonable (Table A4; Fig. A8). The 95% confidence intervals for
our NEE estimates contain overlap with the SMAP L4 esti-
mates of each year. The correlation between the two NEE es-
timates by year was Spearman ρ = 0.70 and p = 0.18. Over-
all, daily NEE estimated by our model matched the seasonal
patterns of the SMAP data reasonably well (r2 = 0.66) and
there was not a significant disparity between the 5 years of
overlapping data.
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