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Supplementary Fig. 1 Summary of all biological replicates for the lifespan of WT and endu-2 loss of

function mutant animals

a, Lifespan analysis of WT and endu-2(tm4977) animals upon one hormetic HS treatment (1 h at 35°C) on
day 1 of adulthood. b, Lifespan analysis of WT and endu-2(tm4977) animals upon hormetic HS on day 1
and day 3 of adulthood. ¢, Lifespan analysis of endu-2(by188) loss of function animals upon hormetic HS on
day 1 and day 3 of adulthood. d, Lifespan analysis of WT and endu-2(tm4977) animals upon a 45-min HS at
36°C on day 1 of adulthood. The experiments were performed without FUDR. e, Lifespan analysis of endu-
2(by190[endu-2::EGFP]) CRISPR knock-in animals upon hormetic HS on day 1 and day 3 of adulthood.

The P values were calculated using Log-rank (Mantel-Cox) test. This figure is related to Fig. 1.
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Supplementary Fig. 2 Summary of all biological replicates for Lifespan of WT and endu-2::EGFP

rescued animals upon hormetic HS on day 1 and day 3 of adulthood.



a-h Lifespan analysis of WT and different endu-2::EGFP rescue strains upon 2x hormetic HS. The ENDU-
2::EGFP fluorescence in each tissue-specific rescue strain is indicated with the white arrows. Scale bar = 50
um. Shown are the three independent replicates. P values were calculated using Log-rank (Mantel-Cox) test.
a, WT animals; b, endu-2(tm4977);byEx1375[endu-2p::endu-2::EGFP] (endu-2::EGFP rescue line 1)
animals; ¢, endu-2(tm4977);byEx1908[endu-2p::endu-2::EGFP] (endu-2::EGFP rescue line 2) animals; d,
endu-2(tm4977),byEx1910[endu-2p::endu-2::EGFP] (endu-2::EGFP rescue line 3) animals; e, endu-
2(tm4977);byEx1551[vha-6p::endu-2::EGFP::3xFlag]  (intestinal  endu-2  rescue); f,  endu-
2(tm4977),byEx1816[/myo-3p::endu-2::EGFP::3xFlag]  (muscular  endu-2  rescue); g, endu-
2(tm4977),byEx1795[unc-119p::endu-2::EGFP::3xFlag]  (neuronal endu-2 rescue); h, endu-

2(tm4977),byEx1379[fos-1p::endu-2::EGFP::3xFlag] (somatic gonadal endu-2 rescue). This figure is related

to Fig. 1.
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Supplementary Fig. 3 Gene Ontology (GO terms) enrichment analysis of DEGs upon HS.



a, Graphic illustration of stage matched sample collection for RNA-Seq. b, Top 10 most enriched GO terms

of the activated genes upon 1 h HS in WT animals. ¢, Top 10 most enriched GO terms of the inactivated

genes upon 1 h HS in WT animals. d, The Venn diagram shows the overlap between post-HS responsive

genes and the late-responsive genes upon continuous HS. This figure is related to Fig. 2.
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Supplementary Fig. 4 Activation of the post-HS responsive genes contributes to the beneficial effect of

hormetic heat stress.
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a-d, RNAi known-down of selected Class I (hsp-16.2), Class II (zip-10) and Class III (irg-2 and pgm-1) post-
HS responsive genes abolishes 1 h HS mediated beneficial effect against Cd?** toxicity. Shown are pooled data
from N = 3 independent experiments for all experiments. P values were calculated using Log-rank (Mantel-
Cox) test.a, Mean survival of RNAi control without HS: 4.6 days, n = 60. RNAi control with HS: 6.2 days, n
= 60. hsp-16.2 RNAi knockdown without HS: 4.8 days, n = 59. hsp-16.2 RNAi knockdown with HS: 4.9 days,
n = 61. b, Mean survival of RNAi control without HS: 4.9 days, n = 58. RNAIi control with HS: 6.6 days, n =
60. zip-10 RNA1 knockdown without HS: 5.2 days, n = 29. zip-10 RNA1 knockdown with HS: 5.2 days, n =
60. ¢, Mean survival of RNAi control without HS: 5.1 days, n = 114. RNAI control with HS: 6.3 days, n =
113. irg-2 RNAi knockdown without HS: 5.4 days, n = 112. irg-2 RNAi knockdown with HS: 5.6 days, n =
120. d, Mean survival of RNAi control without HS: 5.2 days, n = 60. RNAi control with HS: 6.3 days, n = 58.
pgm-1 RNAi knockdown without HS: 5.1 days, n = 58. pgm-1 RNAi1 knockdown with HS: 5.4 days, n = 62.
e, Thermotolerance of animals upon RNAi known-down of selected Class I (hsp-16.2), Class 11 (zip-10) and
Class III (irg-2 and pgm-1) animals after hormetic HS. For thermotolerance after hormetic heat stress, day one
adult animals were incubated at 35°C for 1 h, followed by a 12 h recovery at 20°C before exposure to 35°C
for 8 h. N=3 for all experiments. Data are the mean + SEM, P values were calculated with two-tailed multiple

unpaired t-test. This figure is related to Fig. 2.
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Supplementary Fig. 5 Intestine-only genes are dominant in the ENDU-2 dependent post-HS responsive

genes



a, Venn diagram displaying the overlap between ENDU-2 dependent post-HS responsive genes and genes are
expressed in each somatic tissue (intestine, muscle, neuron and hypodermis). b, Venn diagram displaying the
overlap between genes inactivated by ENDU-2 at 20°C and genes activated by ENDU-2 in the post-HS phase.

This figure is related to Fig. 2.
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Supplementary Fig. 6 Transcriptional activation of irg-2 occurs specifically in the post-HS phase.

a, Fluorescence micrographs of byls296/[irg-2p::mCherry] transgenic animals under indicated conditions.
Scale bar = 100 um. b, Fluorescence micrographs of byls296/irg-2p::mCherry] transgenic animals upon 8 h
continuous HS. Fluorescence in WT N2 animals treated under the same condition serves as a negative control
to exclude possible interference of gut autofluorescence in mCherry signal. Scale bar = 100 pum. e,
Quantification of the relative fluorescence intensity of mCherry in byls296/irg-2p::mCherry] transgenic

animals under the indicated conditions in the (a) and (b). Transgenic animals at control (20°C): n = 7.



Transgenic animals with 1 h HS plus 4 h recovery: n = 7. Transgenic animals with 1 h HS plus 8 h recovery:
n = 12. Transgenic animals with 1 h HS plus 12 h recovery: n = 10. Transgenic animals with 8 h HS without
recovery: n = 6. WT animals with 8§ h HS without recovery: n = 5. Data are the mean + SD, P-values were

calculated using one-way ANOVA with Tukey’s multiple comparisons test. This figure is related to Fig. 3.
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Supplementary Fig. 7 SWI/SNF nucleosome remodeling complex affects both HS and post-HS

responses to mediate heat hormesis.

a, RNAi knock-down of swsn-1 abolishes hormetic HS mediated protective effect against Cd?* toxicity. Mean

survival of RNAi control without HS: 5.2 days, n = 94. RNAi control with HS: 6.1 days, n =93. swsn-1 RNAi



without HS: 5.3 days, n = 87. swsn-1 RNAi with HS: 5.2 days, n = 93. Shown are pooled data of N =3
independent experiments. P values were calculated using Log-rank (Mantel-Cox) test. b, RNAi knock-down
of swsn-1 abolishes improved thermotolerance by hormetic HS in WT animals. For thermotolerance after
hormetic heat stress, day one adult animals were incubated at 35°C for 1 h, followed by a 12 h recovery at
20°C before exposure to 35°C for 8 h. Survival rates for each group: WT with control RNAi without HS: (13.9
+3.2) %, n=92. WT with control RNAi with HS: (51.5 £5.5) %, n=97. WT with swsn-1 RNAi without HS:
(8.1+4.2) %, n=111. WT with swsn-1 RNAi with HS: (9.6 + 3.5) %, n = 107. N =3 for all groups. Data are
the mean + SEM, P values were calculated with two-tailed multiple unpaired t-test. ¢, QRT-PCR quantification
of relative Asp-16.2 and irg-2 mRNA levels of the representative post-HS responsive genes in WT, endu-
2(tm4977) and swsn-1(0s22) animals in indicated conditions. N = 3 independent experiments. Data are the
mean + SD. P-values were calculated using two-way ANOVA with Tukey’s multiple comparisons test. d,
Fluorescence micrographs of byls296/irg-2p::mCherry] transgenic animals under RNAi known-down of
swsn-1, swsn-4 and swsn-5 in post-HS phase. Scale bar = 100 pm. e, Quantification of the relative fluorescence
intensity of mCherry in byls296/irg-2p.::mCherry] transgenic animals under the indicated condition in the (d).
RNAI control: n = 24. swsn-1 RNAIi knock down: n = 18. swsn-4 RNAi knock down: n = 21. swsn-5 RNAIi
knock down: n = 17. Data are the mean + SD, P-values were calculated using one-way ANOVA with Tukey’s
multiple comparisons test. f, SWSN-1::GFP protein is localized in the nucleus independent of ENDU-2.
Shown are fluorescence micrographs of st/2187[swsn-1::TY1::EGFP::3xFLAG] animals in WT or endu-
2(tm4977) background. SWSN-1::GFP was detected in day 1 adult animals subjected to 1 h HS or 1 h HS
followed by 2 h recovery at 20°C. N = 3 independent experiments. Scale bar = 50 um. This figure is related

to Fig. 3.
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Supplementary Fig. 8 Scatter Plot comparing two biological replicates of ENDU-2 MS interactor

analysis

ENDU-2 (orange dot) associates with multiple proteins affecting in ER-Golgi transport (yellow dots), proteins
in the extracellular matrix (blue dots), nuclear proteins (red dots) as well as factors affecting nuclear
import/export (black dots) (log:LFD intensity > 1). In the plot, histone protein HTZ-1, components of
SWI/SNF complex: SWSN-1, SWSN-4 and ISW-1, and three subunits of RNA polymerase II (Pol IT) (RPB-

2, RPB-5 and RPB-7) are highlighted by larger red dots. This figure is related to Fig. 4.
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Supplementary Fig. 9 Histone H3 colocalizes with the DAPI-stained DNA

Immunofluorescence staining of histone H3 in endu-2(by190/endu-2::EGFP]) CRISPR knock-in animals at

20°C. Scale bar = 20 um. N = 2 independent experiments. This figure is related to Fig. 4.
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Supplementary Fig. 10 RNAi knock-down of neither Asf-1 nor swsn-1 impairs chromatin localization of

ENDU-2 during and after HS

a-¢, Immunofluorescence staining of ENDU-2::EGFP with GFP antibody in endu-2(by190[endu-2::EGFP])
animals upon Asf-1 or swsn-1 RNAi and subjected to 1 h HS or 1 h HS followed by 2 h recovery. Scale bar =

20 um. n = 6 for each condition. This figure is related to Fig. 4.
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Supplementary Fig. 11 ENDU-2 mutant variants show different subcellular localization



a, Western Blot detection of ENDU-2(E454Q)::EGFP and ENDU-2(E460Q)::EGFP in different subcellular
fractions. ENDU-2(E454Q)::EGFP and ENDU-2(E460Q)::EGFP are detected in whole cell lysis (input),
cytoplasmic fraction and nuclear fraction. Histone H3 and GAPDH serve as controls for nuclear and
cytoplasmic fractions, respectively. N = 3 independent experiments. b, ENDU-2(E454Q)::EGFP and ENDU-
2(E460Q)::EGFP is co-immunoprecipitated with histone H3, respectively. A transgenic Is/sod-3p::gfp] strain
serves as a negative control to exclude the interaction between GFP and histone H3. N = 3 independent
experiments. ¢, Immunofluorescence staining of ENDU-2(E454Q)::EGFP and ENDU-2(E460Q)::EGFP with
GFP antibody. The upper panel shows that ENDU-2(E454Q)::EGFP is diffusely distributed both in the
cytoplasm and nucleus. The lower panel shows that ENDU-2 (E460Q)::EGFP is formed into puncta structures
in addition to diffused distribution both in cytoplasm and nuclei. Scale bar = 10 um. n > 20 for each group. N
= 3 independent experiments. d, HS does not significantly alter the subcellular localization of
ENDU-2(E454Q)::EGFP. Shown are immunofluorescence of unstressed and 1 h HS stressed ENDU-
2(E454Q)::EGFP day 1 adult animals stained with GFP antibody. Scale bar = 20 um. n = 5 for unstressed
condition, n = 17 for HS. e, HS enhances chromatin localization of ENDU-2(E460Q)::EGFP. Shown are
immunofluorescence of unstressed and 1 h heat stressed ENDU-2(E460Q)::EGFP day 1 adult animals stained
with GFP antibody. Scale bar = 20 um. » = 13 unstressed condition, n = 5 for HS. This figure is related to Fig.

S.

Supplementary Fig. 12 Analyzing RNA integrity after treatment with RNase A or RNase inhibitor



1% TAE agarose gels containing 1% Sodium Hypochlorite (Carl Roth) was used for RNA electrophoresis.
The absence of 28S, 18S ribosomal RNA (rRNA) bands indicates successful RNA decay with RNase A
treatment (lane 1). Intact rRNA bands in the RNase inhibitors treated samples (lanes 2 and 3) indicate

preservation of RNA integrity for ENDU-2/AMA-1 co-IP experiment. N = 3 independent experiments. This

figure is related to Fig. 6.



