
Recognition of Functional Relationships
between Biomedical Concepts in the

Scientific Literature using Text Mining
and Machine Learning

DISSERTATION

submitted for the degree

Doctor rerum naturalium (Dr. rer. nat.)

at the

Faculty of Chemistry and Pharmacy

University of Freiburg

by

Ammar Qaseem
from Aden, Yemen

2023

Ammar Qaseem:

Recognition of functional relationships between biomedical concepts

in the scientific literature using text mining and machine learning,

2023.

Chairman of the Doctoral Committee: Prof. Dr. Stefan Weber

Dean of the Faculty: Prof. Dr. Andreas Bechthold

1st Supervisor: Prof. Dr. Stefan Günther

2nd Supervisor: Prof. Dr. Rolf Backofen

Examiner: Prof. Dr. Andreas Bechthold

Oral Examination: 7th June 2023

“When the human being dies, his deeds end except for three:

ongoing charity, beneficial knowledge, or a righteous child who

prays for him (for the deceased).”

— Prophet Muhammad (PBUH) (571-633)

Declaration

I hereby declare that the work presented in this thesis has not been submit­

ted for any other degree or professional qualification and that it is the result

of my own independent work.

Ammar Qaseem

Freiburg, January 2023

Acknowledgments

First and foremost, I would like to thank Allah the Almighty for blessing me and granting

me countless knowledge and opportunities throughout my life and study.

A very special thank to my family in Yemen: my parents and my brothers, for supporting

me spiritually throughout my life and study. Your support is the reason for being in this

position. I want to express my gratitude to my wife Amani for her love, support, and

patience during my study. Many thanks to my little daughters Joud and Jamila and

apologies to them at the same time for being away from them most of the time and not

spending much time with them during my studies.

Many thanks to Prof. Dr. Stefan Günther, who offered me the opportunity to accomplish

my Ph.D. thesis. I would like to express my sincere gratitude to him for the continuous

support of my thesis study and research, for his patience, motivation, enthusiasm, and

immense knowledge. His guidance helped me a lot during my thesis work. I would like to

thank Prof. Dr. Rolf Backofen, who was my supervisor during my Master’s study and

was my co­supervisor in my Ph.D. My thanks to Prof. Dr. Andreas Bechthold for being

my second co­supervisor.

Also, I would like to thank all the group of Pharmaceutical Bioinformatics (PhaBi) for the

great times which we spent together. I would like to thank all members of the group:

Dr. Aurélien F. A. Moumbock, Dr. Kersten Döring, Dr. Mehrosh Pervaiz, Dr. Kiran

Telukunta, Jianyu Li, Mingjie Gao, Dr. Pankaj Mishra, Dr. Dennis Klementz, Dr. Paul

Zierep, Dr. Martin Hügle, Pascal Kirchner, Marius Amann, Aly Abotaleb, Sinclair

Rockwell­Kollmann, Simon Pfäffle, and Florian Sauter. With them, I’ve had a lot of

fantastic and enjoyable adventures and created a lot of unforgettable memories.

A very special thank to Aurélien F. A. Moumbock for helpful discussions and feedback

and collaboration in some publications.

I appreciate Manuel Dorer and Zhongyi Kang’s contributions to this thesis as master’s

students whom I have supervised throughout their practicum and master’s thesis.

I would also like to take the chance to thank my friend Khaled Alazzani who represents

more than a friend to me, but rather my older brother, the person who always supported

me in my study and life. Besides this, I thank my friends and Colleagues at Spinner Data:

M. Ghadiry, M. Elbahidy, S. Mahmood, and my manager D. Spinner, who supported

me in my part­time job there.

Finally, my thanks to everyone who contributed to this work directly or indirectly.

Abstract

A tremendous amount of electronic research data is freely available as online open­source

published literature, and which is rapidly growing. This huge, unstructured data contains a

great wealth of valuable information which is hidden and difficult to access; e.g. it might be

difficult for scientists to identify specific articles of interest. Artificial intelligence­based text

mining and machine learning approaches are being exploited to process and analyze such

huge amounts of data to identify and extract relevant information. Relevant information

can be concepts as well as relationships between those concepts which answer questions

of interest. Identifying biomedical concepts (e.g. compounds, proteins, diseases) and the

functional relationships between them is one of the important domains in text mining and

forms a key component in life science research. In the drug discovery field, knowledge of

how small molecules associate with proteins plays a fundamental role in understanding

how drugs or metabolites can affect cells, tissues, and human metabolism.

This dissertation focuses on the automated identification of functional compound­protein

relationships in biomedical and life sciences literature using text mining and machine learn­

ing techniques. A new benchmark dataset of 2,613 sentences was created, consisting

of 5,562 small molecule and protein pairs which had been previously annotated with the

help of text mining tools. The pairs were subsequently classified manually as functional or

non­functional. Three machine learning approaches named shallow linguistic kernel (SL),

all­paths graph kernel (APG), and BioBERT were evaluated to classify these relationships

between small molecules and proteins. Furthermore, the benefit of the presence of

interaction verbs in sentences which include the functional related compound­protein

pairs was evaluated.

On the benchmark dataset, the BioBERT machine learning approach achieved the best

performance, with an F1­score of 86.0%, precision of 85.2%, and recall of 86.8%. More­

over, the trained model was applied on all titles and abstracts of the articles stored in the

PubMed database. The results were processed and included in a new web server for lit­

erature research (CPRiL). The data allows novel query options, such as the calculation of

the shortest relation path between any biomolecule. Currently, CPRiL contains ∼2.5 mil­

lion unique functional related compound­protein pairs, with ∼460,000 unique names and

synonyms of small molecules and ∼90,000 unique proteins.

Zusammenfassung

Eine enorme Menge elektronischer wissenschaftlicher Daten ist als online veröffentlichte

Open­Source­Literatur frei verfügbar und wächst rasant an. Diese riesigen, unstrukturierte

Daten enthalten einen großen Reichtum an wertvollen Informationen, welche jedoch

versteckt und schwer verfügbar sind; für Wissenschaftler kann es z.B. schwierig sein,

bestimmte Artikel von Interesse zu identifizieren. Auf künstlicher Intelligenz basierende

Text Mining­ und Machine Learning­Ansätze werden genutzt, um solche riesigen Daten­

mengen zu verarbeiten und zu analysieren, um relevante Informationen zu identifizieren

und zu extrahieren. Bei den relevanten Informationen kann es sich sowohl um Konzepte

als auch um Beziehungen zwischen diesen Konzepten handeln, die Antworten auf Fragen

von Interesse geben. Die Identifizierung biomedizinischer Konzepte (z.B. chemische

Verbindungen, Proteine, Krankheiten) und der funktionalen Beziehungen zwischen ihnen

ist einer der wichtigsten Bereiche des Text Mining und bildet eine Schlüsselkomponente

in der biowissenschaftlichen Forschung. Im Bereich der Arzneimittelforschung spielt das

Wissen darüber, wie kleine Moleküle mit Proteinen assoziiert sind, eine grundlegende

Rolle für das Verständnis, wie Arzneimittel oder Metaboliten Zellen, Gewebe und den

menschlichen Stoffwechsel beeinflussen können.

Diese Dissertation befasst sich mit der automatisierten Identifizierung von funktionalen

Wirkstoff­Protein­Beziehungen in der biomedizinischen und biowissenschaftlichen

Literatur mithilfe von Text Mining und Machine Learning. Es wurde ein neuer Benchmark­

Datensatz von 2.613 Sätzen erstellt, der aus 5.562 Paaren von kleinen Molekülen und

Proteinen besteht, die zuvor mit Hilfe von Text Mining­Tools annotiert wurden. Die Paare

wurden anschließend manuell als funktional oder nicht­funktional klassifiziert. Zur Klas­

sifizierung dieser Beziehungen zwischen kleinen Molekülen und Proteinen wurden drei

Machine Learning­Ansätze, ”shallow linguistic kernel” (SL), ”all­paths graph kernel” (APG)

und BioBERT, bewertet. Darüber hinaus wurde der Nutzen des Vorhandenseins von Inter­

aktionsverben in Sätzen, die funktional verwandte Stoff­Protein­Paare enthalten, bewertet.

Für den Benchmark­Datensatz erzielte der BioBERT­Ansatz die beste Leistung mit einem

F1­Score von 86,0%, einer Präzision von 85,2% und einem Recall von 86,8%. Außer­

dem wurde das trainierte Modell auf alle Titel und Abstracts der in der PubMed­Datenbank

gespeicherten Artikel angewendet. Die Ergebnisse wurden verarbeitet und in einen neuen

Webserver für Literaturrecherchen (CPRiL) aufgenommen. Die Daten ermöglichen neuar­

tige Abfragemöglichkeiten, wie z.B. die Berechnung des kürzesten Beziehungspfades

zwischen beliebigen Biomolekülen. Derzeit enthält CPRiL ∼2,5 Millionen eindeutige, funk­

tionell verwandte Substanz­Protein­Paare, mit ∼460.000 eindeutigen Namen und Synony­

men kleiner Moleküle und ∼90.000 eindeutigen Proteinen.

TABLE OF CONTENTS

List of Publications I

List of Abbreviations III

List of Figures VII

List of Tables XI

1 Introduction 1

1.1 Text Mining in Biomedical Research . 1

1.2 Relation Extraction of Biomolecules from Literature 2

1.3 Current Text Mining Applications and Methods for Evaluation 2

1.4 Fundamentals of Artificial Intelligence and Graph Theory 4

1.4.1 Artificial Intelligence (AI) . 4

1.4.2 Machine Learning (ML) . 5

1.4.2.1 Supervised Learning . 5

1.4.2.2 Unsupervised Learning . 5

1.4.3 Kernels Method . 6

1.4.4 Neural Networks . 6

1.4.5 Deep Learning . 8

1.4.5.1 Bidirectional Encoder Representations from Transformers

(BERT) . 9

1.4.6 Text Mining . 15

1.4.7 Natural Language Processing (NLP) 15

1.4.7.1 Tokenization . 15

1.4.7.2 Information Retrieval (IR) 16

1.4.7.2.1 Named Entity Recognition (NER) 16

1.4.7.2.2 Relationships Extraction (RE) 17

1.4.8 Classification . 17

1.4.8.1 Binary Classification . 18

1.4.8.2 Multi­class Classification 18

1.4.9 Cross­validation (CV) . 18

1.4.9.1 Holdout Cross­validation 19

1.4.9.2 K­fold Cross­validation . 19

1.4.10 Confusion Matrix . 19

1.4.11 Performance Metrics . 20

1.4.12 Graph Theory . 22

1.4.12.1 Adjacency Matrix . 22

1.4.12.2 Sparse Matrix . 23

2 Materials and Methods 25

2.1 Tools and Programming packages . 25

2.1.1 Python Programming Language . 25

2.1.2 Django . 25

2.1.3 PostgreSQL . 26

2.1.4 RDKit . 26

2.1.5 TensorFlow . 27

2.1.6 NetworkX . 27

2.2 The Benchmark Dataset . 27

2.2.1 Generation of the benchmark dataset for functional compound­

protein relationships . 27

2.2.1.1 Pre­annotation . 28

2.2.1.2 Manual Annotation Tool . 28

2.2.1.3 Inter­annotation Agreement 29

2.2.2 Benchmark Dataset based on the Interaction Verb 31

2.3 Functional Relationships Recognition Methods 32

2.3.1 Shallow Linguistic Kernel (SL) . 32

2.3.2 All­paths Graph Kernel (APG) . 34

2.3.3 BioBERT . 38

2.4 Large­scale Dataset Analysis . 40

2.4.1 CPRiL Web Server Implementation 40

2.4.1.1 CPRiL Pipeline . 41

2.5 Shortest Path between Biomedical Entities 43

2.5.1 Dijkstra’s Algorithm . 44

3 Results and Evaluation 47

3.1 Analysis of the Benchmark Datasets . 47

3.1.1 Structure of the CPI­DS Benchmark Dataset 48

3.1.2 Relevance of Interaction Verbs . 48

3.2 Baseline Analysis . 50

3.3 Evaluation of the Predictive Methods . 52

3.3.1 Shallow Linguistic Kernel (SL) . 52

3.3.2 All­paths Graph Kernel (APG) . 54

3.3.3 BioBERT . 59

3.4 Comparison and Combination of the Predictive Methods 66

3.4.1 Runtime of the Evaluated Methods 67

3.5 Large Scale Dataset Application . 68

3.6 Web Server: Compound­Protein Relationships in Literature (CPRiL) 71

3.6.1 CPRiL Database Schema . 71

3.6.2 CPRiL Features . 72

3.6.2.1 Searching Types . 72

3.6.2.2 Network Visualization of the Output 76

3.6.2.3 Shortest Path between Entities 79

3.6.3 Statistical Data of CPRiL . 82

4 Discussion 87

5 Conclusion and Outlook 91

Appendices 93

A Benchmark Dataset 94

B How to use the evaluated Methods 95

B.1 How to use the Shallow Linguistic Kernel (SL) and All­paths Graph Kernel

(APG) . 95

B.2 How to use BioBERT . 96

B.3 Values of the other parameters that are used to evaluate BioBERT 97

C Whitelist Verbs (Interaction Verbs) 98

Bibliography 114

LIST OF PUBLICATIONS

The following peer­reviewed articles were published during the course of

the doctoral studies. The first two listed publications are a result of the

main project described in this dissertation.

1. Qaseem A, Günther S.

CPRiL: Compound­Protein Relationships in Literature. Bioinformatics.

2022 Sep 15:4452­4453. doi: 10.1093/bioinformatics/btac539. PMID:

35920772.

2. Döring K∗, Qaseem A∗, Becer M, Li J, Mishra P, Gao M, Kirchner P,

Sauter F, Telukunta KK, Moumbock AFA, Thomas P, Günther S. Auto­

mated recognition of functional compound­protein relationships in liter­

ature. PLoS One. 2020; 15(3):e0220925. PMID: 32126064.

3. Gao M∗, Moumbock AFA∗, Qaseem A∗, Qianqing Xu, Günther S. Cov­

PDB: a high­resolution coverage of the covalent protein–ligand inter­

actome. Nucleic Acids Research. 2022; 50(D1):D445­D450. PMID:

I

34581813.

4. Li J∗, Moumbock AFA∗,Qaseem A∗, Xu Q, Feng Y,Wang D, Günther S.

AroCageDB: A Web­Based Resource for Aromatic Cage Binding Sites

and Their Intrinsic Ligands. J Chem Inf Model. 2021; 61(11):5327­

5330. PMID: 34738791.

5. Moumbock AFA∗, GaoM∗,Qaseem A∗, Li J, Kirchner PA, Ndingkokhar

B, Bekono BD, Simoben CV, Babiaka SB, Malange YI, Sauter F, Zierep

P, Ntie­Kang F, Günther S. StreptomeDB 3.0: an updated compendium

of streptomycetes natural products. Nucleic Acids Research. 2021;

49(D1):D600­D604. PMID: 33051671.

6. Simoben CV, Qaseem A, Moumbock AFA, Telukunta KK, Gün­

ther S, Sippl W, Ntie­Kang F. Pharmacoinformatic investigation of

medicinal plants from East Africa. Molecular Informatics. 2020;

39(11):e2000163. PMID: 32964659.

∗ These authors contributed equally to this work.

LIST OF ABBREVIATIONS AND
ACRONYMS

AI Artificial Intelligence

APG All­paths Graph Kernel

API Application Programming Interface

AUC Area Under the Curve

BERN Biomedical Named Entity Recognition and Normalization Tool

BERT Bidirectional Encoder Representations from Transformers

BFS Breadth­First Search

BioBERT
Bidirectional Encoder Representations from Transformers for Biomedical

Text Mining

CIL Compounds In Literature

COMP Compound

CPI­DS Compound­Protein Interaction Dataset

III

CPI­DS_IV Compound­Protein Interaction Dataset with enclosed Interaction verb

CPI­DS_NIV Compound­Protein Interaction Dataset without enclosed Interaction verb

CPRiL Compound­Protein Relationship in Literature

CPU Central Processing Unit

CTD Comparative Toxicogenomics Database

CV Cross­validation

DL Deep Learning

FN False Negatives

FP False Positives

GPU Graphics Processing Unit

HTML HyperText Markup Language

ID Identifier

InChI International Chemical Identifier

IR Information Retrieval

K Thousand

M Million

MeSH Medical Subject Headings

ML Machine Learning

MLM Masked Language Modeling

NCBI National Center for Biotechnology Information

NER Named Entity Recognition

NLP Natural Language Processing

IV

NLTK Natural Language Toolkit

NSP Next Sentence Prediction

OS Operating System

PMC PubMed Central

PMID PubMed ID

PoS Part­of­Speech

PROT Protein

PTC PubTator Central web service

PubChem Public Chemical Database

PubMed Public/Publisher MEDLINE (NLM journal articles database)

RAM Random Access Memory

RDBMS Relational Database Management System

RE Relation Extraction

RLS Regularized Least Squares

ROC Receiver Operating Characteristic

SL Shallow Linguistic Kernel

SMILES Simplified Molecular Input Line Entry Specification

SQL Structured Query Language

SVM Support Vector Machine

TN True Negatives

TP True Positives

TPU Tensor Processing Units

V

UniProt Universal Protein Resource

VI

LIST OF FIGURES

1.1 Neural networks structure. 7

1.2 Difference between AI, ML, and deep learning. 9

1.3 Performance of deep learning vs traditional machine learning methods with

the scale of the amount of data. 10

1.4 BERT input representation. 13

1.5 BERT Stack Encoder layers. 14

1.6 Confusion matrix for binary classification. 20

2.1 A Web­based annotation tool. 30

2.2 Types of functional compound­protein relationships based on interaction

verbs. 31

2.3 Representation of the sentence under shallow linguistic kernel. 34

2.4 Graph representation of APG kernel. 36

2.5 The input XML format of SL and APG kernel. 38

2.6 The CPRiL pipeline. 43

3.1 Ratio of functional and non­functional compound­protein related pairs in the

benchmark dataset with and without interaction verbs. 49

VII

LIST OF FIGURES

3.2 Percentage of functionally (positive) and non­functionally (negative) related

instances of training and test datasets of the benchmark dataset. 50

3.3 Confusion matrix of the prediction approach of co­occurrences. 51

3.4 Effect of the window size parameter (w) on the performance of the model

using shallow linguistic kernel (SL). 54

3.5 Effect of the n­gram parameter (n) on the performance of the model using

shallow linguistic kernel (SL). 57

3.6 The performance comparison of the predictive methods and their combina­

tions. 68

3.7 The percentage distribution of functional and non­functional compound­

protein relationship pairs of the whole MEDLINE database. 70

3.8 Runtime of the predictive models (SL, APG, BioBERT). 70

3.9 The schema of CPRiL database. 73

3.10 An example of searching for functionally related proteins to specific com­

pound using compound name. 74

3.11 An example of searching for functionally related compounds to a specific

protein using protein name and organism name. 75

3.12 An example of searching for functionally related compounds to a specific

protein using UniProt entry name. 76

3.13 An example of the functional compound­protein relations in CPRiL by

searching using PMID. 77

3.14 An example of the functional relationship between a specific compound and

protein appears in an article. 78

3.15 An example of the advanced search of CPRiL. 78

3.16 Network visualization of the functional compound­protein relation for com­

pound searching. 80

3.17 Network visualization of the functional compound­protein relation for protein

searching. 81

3.18 Shortest path between compound and protein. 82

3.19 Shortest path between two proteins. 83

VIII

LIST OF FIGURES

3.20 The distribution of biomedical articles over the last 15 years. 84

3.21 The annual number of functionally related compound­protein pairs over the

last 15 years. 84

IX

LIST OF FIGURES

X

LIST OF TABLES

2.1 List of text corpora used for BioBERT. 39

2.2 Corpus combination of the pre­trained BioBERT models. 39

2.3 Performance of PubTator Central (PTC). 42

3.1 Statistical information of CPI­DS, CPI­DS_IV, and CPI­DS_NIV. 48

3.2 Number of positive and negative instances in the training and test datasets

of benchmark dataset (CPI­DS). 48

3.3 Number of functionally and non­functionally related instances of datasets

CPI­DS_IV and CPI­DS_NIV. 49

3.4 Number of positive and negative instances in the training and test datasets

CPI­DS_IV and CPI­DS_NIV. 50

3.5 Analysis of the CPI­DS benchmark dataset using co­occurrences approach. 51

3.6 Analysis of the CPI­DS_IV and CPI­DS_NIV dataset using co­occurrences

approach. 51

3.7 10­fold CV performance of SL kernel on the dataset CPI­DS. 53

3.8 10­fold CV performance of SL kernel on the dataset CPI­DS_IV. 55

3.9 10­fold CV performance of SL kernel on the dataset CPI­DS_NIV. 56

3.10 Holdout CV performance of SL kernel on the benchmark dataset. 56

3.11 10­fold CV performance of APG kernel on the dataset CPI­DS. 57

XI

LIST OF TABLES

3.12 10­fold CV performance of APG kernel on the dataset CPI­DS_IV. 58

3.13 10­fold CV performance of APG kernel on the dataset CPI­DS_NIV. 58

3.14 Holdout CV performance of APG kernel on the benchmark dataset. 58

3.15 10­fold CV performance of BioBERT on the dataset CPI­DS. 60

3.16 10­fold CV performance of BioBERT on the dataset CPI­DS_IV. 62

3.17 10­fold CV performance of BioBERT on the dataset CPI­DS_NIV. 64

3.18 Holdout CV performance of BioBERT on the benchmark dataset. 66

3.19 The performance of the ML model of the evaluated methods (SL, APG,

BioBERT) and their combinations. 67

3.20 The specifications of the machine which was used for the evaluation process. 67

3.21 Runtime of the validation process of SL, APG, and BioBERT on benchmark

dataset. 68

3.22 Statistical information of application of the predictive model of SL, APG, and

BioBERT on the whole MEDLINE database. 69

3.23 Statistical data of CPRiL. 83

3.24 Top ten functionally related compound­protein pairs. 85

B.1 The default value of the other main parameters that are used to evaluate

BioBERT model. 97

C.1 Whitelist verbs (interaction verbs). 98

XII

CHAPTER

INTRODUCTION 1
1.1 Text Mining in Biomedical Research

A tremendous amount of data is freely available in the published literature and is rapidly

growing in size. This huge, unstructured data contains a great wealth of information

related to numerous and diverse topics. For instance, the MEDLINE database is one of

the largest resources of unstructured data, in the form of several millions of publication

reference strings and abstracts on life sciences and biomedical topics. However, the

process of retrieving and extracting relevant information from text is increasingly difficult

and time­consuming for human beings. Artificial intelligence (AI) has been extensively

employed in a wide range of domains in the last decades, including pattern recognition

and natural language processing (NLP). Artificial intelligence­based text mining is used

to perform Information Retrieval (IR) tasks efficiently and intelligently. Machine learning

approaches, on the other hand, enable machines to learn from data using features and

then execute certain jobs intelligently.

1

CHAPTER 1. Introduction

1.2 Relation Extraction of Biomolecules from Literature

Relation extraction is one of the essential tasks of text mining; it concerns identifying the

relationships between two entities in unstructured text, such as biomedical articles. En­

tity recognition is considered a cornerstone of relation extraction, where identifying the

entities’ quality and accuracy helps to recognize the relations between these entities accu­

rately. Because the manual annotation of entities is a time­consuming process, artificial

intelligence­based text mining and machine learning techniques are the most efficient al­

ternative option to annotate entities automatically in the unstructured data.

Relationships can be extracted using a variety of methods, from the straightforward co­

occurring method to the more complex automated machine learning methods. Simply

explained, the concept behind the co­occurring approach is when biomolecules appear to­

gether in a text or a sentence they are more likely related; however, the machine learning

approach involves creating a learned model which can automatically identify the newly de­

scribed relationships in texts efficiently and intelligently. Functional relationships between

biomolecules are essential for all processes in the cell, such as metabolism, signaling, reg­

ulation, and proliferation [1]. Small molecules (compounds) can serve as substrates by

interacting with enzymes, as signal mediators by binding to receptor proteins, or as drugs

by interacting with specific target proteins [2]. Extracting and studying such relationships

is crucial to the fields of molecular biology, biochemistry, medicine, and pharmacy. This

information, which is usually presented in the form of academic journals, offers a valuable

resource for understanding signaling pathways, targeting of proteins, and efficacy and side

effects of drugs. It is not easy to identify a precise functional relationship in these articles,

because related material might be dispersed among a high number of articles.

1.3 Current Text Mining Applications and Methods for

Evaluation

Very useful approaches were published for named entity recognition, e.g. chemical com­

pounds, diseases, and proteins. PubTator Central (PTC) is a web­based service [3] for

2

CHAPTER 1. Introduction

automatic annotations of biomedical entities such as genes and chemical compounds in

PubMed abstracts and PMC full­text articles using artificial intelligence­based text mining

and machine learning approaches. Recently, a new neural biomedical named entity recog­

nition and normalization tool (BERN) [4] was developed based on a pre­trained biomedical

language representation model for biomedical text mining (BioBERT) [5]. BERN can an­

notate biomedical entities from plain text or PMID as input. The automatic and accurate

named entity recognition process allows us to develop novel text mining methods and re­

sults ­ for example, the relationships between drugs and proteins.

The BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) chal­

lenge evaluation consists of a community effort for evaluating information extraction and

text mining systems applied to the biological domain [6]. BioCreAtIvE is concerned with the

extraction of biologically relevant information from the literature. Two main issues are ad­

dressed at BioCreAtIvE challenge: the first one is entity recognition such as chemical com­

pounds and protein names; the second one is entity associations such as protein­functional

associations. The BioCreAtIvE datasets have been created by biological experts and are

useful resources for the development of relation extraction systems. Databases can pro­

vide a useful alternative to time­consuming manual literature research but mainly describe

direct interactions, e.g. PDBbind offers experimentally measured binding affinity data for

protein­ligand complexes [7]. ChEMBL is a manually curated bio­database which offers

activity information of molecules with drug­like characteristics [8]. DrumPID is a database

which offers information on drugs and associated protein networks including information on

indications, protein targets, and off­targets [9]. DrugBank combines comprehensive drug

target data, including sequence and structure, with in­depth drug data, covering chemistry

and pharmacology [10].

The Comparative Toxicogenomics Database (CTD) provides manually collected relations

of chemicals with genes/proteins which can affect human health [11]. Machine learning

methodologies are already supported by some datasets which concentrate on molecular

interactions, such as STITCH; this includes information of chemical­protein interactions

which are collected from experimental data and other primary databases but also includes

predicted data collected by text mining methods [2]. STRING is similar to STITCH, but

3

CHAPTER 1. Introduction

focuses mainly on protein­protein interactions [12]. OntoGene is a web­based service for

biomedical entity recognition and their relationships based on text mining technologies [13].

However, no precise statistical measurements for predicting protein­compound interac­

tions have been published. Furthermore, no gold standard corpus of annotated compound­

protein interactions has been published for evaluation of text mining techniques for

their identification. In the BioCreAtIvE challenges, rule­based and machine learning ap­

proaches are used for the automatic identification of drug/chemical and gene/protein inter­

actions in the biological domain [14,15]. The ChemProt benchmark dataset was utilized in

the shared task for text mining chemical­protein interactions in BioCreAtIvE VI; it includes

chemical­protein interactions extracted from PubMed abstracts and was annotated manu­

ally by domain experts [14]. However, ChemProt benchmark focuses on validated interac­

tions and is therefore not suitable for the separation from functionally unrelated compound­

protein pairs which are mentioned in texts.

1.4 Fundamentals of Artificial Intelligence and Graph

Theory

This section describes general concepts which apply to the methods used to annotate

biomedical entities and to identify functional relationships between them.

1.4.1 Artificial Intelligence (AI)

Artificial intelligence is a broad term which refers to techniques which simulate human be­

havior. It is a branch of computer science which focuses on the development of intelligent

machines and technologies which have the ability to perform tasks which simulate those

performed by human beings. Artificial intelligence is used in many applications, including

robotics, aircraft, self­driving cars, and smartphones. All the methods of identifying the

biomedical concepts (compounds and proteins) and compound­protein relationships (SL,

APG, BioBERT) used in this dissertation are based on AI techniques.

4

CHAPTER 1. Introduction

1.4.2 Machine Learning (ML)

Machine learning is a field of artificial intelligence which attempts to make devices capa­

ble of learning but without the need to program them literally. It is a technology which

allows machines to learn from data via computational methods to perform specific tasks

intelligently. Thus, these machines can perform complex operations by learning from data

using variables, also called ‘features’, rather than following pre­programmed rules. Ma­

chines are trained to think in a similar way to how humans do. An example would be

statistical methods which train a system to identify patterns within data; these patterns can

be applied to test data afterwards. The ML model can perform well if the features of the

input data provide sufficient information to characterize the class of this data; it can also

perform well if it can handle the complexity of the connections between the features of input

data and its output class. There are many types of machine learning, but the most popular

methods of machine learning are supervised learning and unsupervised learning [16,17].

1.4.2.1 Supervised Learning

A supervised machine learning approach is trained on labeled training data. In supervised

learning, each example consists of a pair of input and target/label. A supervised learn­

ing algorithm studies the training dataset and generates a model which can be applied to

mapping a new observation on the basis of the learned information of the training dataset.

Supervised learning can be divided into two types, classification and regression. The clas­

sification predicts a discrete target/label, while regression predicts a continuous quantity

or real value [18]. The methods which are used in this dissertation (SL, APG, BioBERT)

use supervised learning.

1.4.2.2 Unsupervised Learning

Unsupervised learning is a machine learning approach which learns from unlabeled train­

ing data. In this approach, the algorithms have the capability ­ and without any external

assistance ­ to self­learn based on similarities and differences and to build a model which

can classify and categorize a new observation into the closed category on the basis of

5

CHAPTER 1. Introduction

the similarities of the patterns. Clustering algorithms are good examples of unsupervised

learning, where the algorithm is grouping and categorizing the objects which are similar

to each other and different to the objects in the other clusters. Unlike supervised learning,

the number of classes in this type of learning is unknown [19].

1.4.3 Kernels Method

The kernel in machine learning is a technique which allows for solving non­linear problems

using linear classifiers by mapping non­linear features to a higher­dimensional space with­

out explicitly creating those feature mapping, but rather by simply using a kernel trick which

computes the inner products between all pairs of data in the feature space [20]. The kernel

trick is computationally (time and space) cheaper than computing the coordinates explic­

itly. The kernel function implicitly maps data from its original space to a higher dimensional

feature space. In the real world most likely the problems are not linearly separable, but

mapping the data into the higher­dimensional makes the problem solvable. There are sev­

eral types of kernels, including Support Vector Machine (SVM), polynomial, and Gaussian

kernels [21, 22]. SL and APG, as used in this dissertation, are built based on the kernel

technique.

1.4.4 Neural Networks

Neural networks are a subset of machine learning inspired by the human brain structure

and form the core of deep learning algorithms. A neural network is a series of neurons

connected to each other and where the neuron is the main block of the neural network

which holds a number, precisely a number between 0 and 1. A neural network has three

types of layer (Figure 1.1):

a) Input layer: this is the first layer in the neural network. It receives the input data and

transmits them to the first hidden layer in the network. It does not perform any operation

on the input data and does not have any weights or biased values associated.

b) Hidden layer: this is the one which performs mathematical computation on the inputs

and can be imagined as a features extractor. A collection of neurons stacked vertically

6

CHAPTER 1. Introduction

represents one hidden layer. One of the challenges in creating neural networks is deciding

the number of hidden layers and also the number of neurons for each layer. The network

can have one or more hidden layers; the term deep in deep learning refers to having more

than one hidden layer in it. The last hidden layer is connected to the output layer.

c) Output layer: this is the last layer in the neural network which returns the output data or

prediction.

Each connection between neurons is associated with the weight (which represents the

strength of the connection between neurons) and bias (which is used to adjust the output).

The way the network operates activations in one layer determines the activations of the

next layer, i.e. the pattern of activations in the input layer causes some very specific pattern

in the next layer, which causes some pattern in the one after it, which finally gives some

pattern in the output layer. The training’s goal is to update this weight value in order to

reduce the loss [23–26].

Figure 1.1: Neural networks structure. Taken from https://www.ibm.com/cloud/learn/neural­networks [27].

7

CHAPTER 1. Introduction

1.4.5 Deep Learning

Deep learning, or artificial neural network, is a subtype of machine learning which is in­

spired by the human brain’s structure architecture. It is distinct from machine learning in

which it learns without requiring human intervention. Deep learning algorithms use a logi­

cal structure to analyze data, in order to make comparable conclusions as a human would.

They attempt to extract useful patterns from data in an automated way with as little human

effort involved as possible and using a multi­layered structure of algorithms, called neural

networks. Deep learning carries some limitations, including:

1. data as training a deep learning model requires huge chunks of dataset to make it

decently accurate.

2. the training process in a deep learning system requires a high amount of computa­

tion; that’s why it generally employs a graphical processing unit (GPU) which has

more cores than a CPU. A deep learning system can take weeks or even months

to process and train a neural network, the training time is usually dependent on the

amount of data and the number of hidden layers in the network.

Deep learning is used widely in many fields including image recognition, speech recogni­

tion, self­driving cars, google search and translation, bioinformatics, drug design, medical

image analysis, and much more [28,29].

AI vs. Machine learning vs. Deep learning

Figure 1.2 shows the main difference between artificial intelligence (AI), machine learning

(ML), and deep learning (DL). Artificial intelligence (AI) includes programs with the ability

to learn and reason and mimic human behavior, however, machine learning (ML) includes

algorithms with the ability to learn without being explicitly programmed like statistical meth­

ods which train a system to identify patterns within training data; afterward, these patterns

8

CHAPTER 1. Introduction

can apply to new data. Deep learning (DL) is a subset of machine learning (ML) in which

artificial neural networks adapt and learn from huge amounts of data.

Figure 1.2: Difference between AI, ML, and deep learning (Author: Johannes Vrana, Vrana GmbH,
Licenses: CC BY­ND 4.0 [30].

The big advantage of deep learning is its power to utilize huge data, as deep learning has

a tendency to continue learning with receiving more data [31]. Classical typical machine

learning methods tend to fairly quickly get to a point where more training data is not provid­

ing additional performance gains while deep learning methods tend to continue learning

as long as you are willing to continue training them (Figure 1.3).

1.4.5.1 Bidirectional Encoder Representations from Transformers (BERT)

The BERT model, introduced by Jacob Devlin in Google in 2019, is pre­trained on plain,

unlabeled text corpus including the entire English Wikipedia with 2500 million words and

a BookCorpus with 800 million words [33]. These words were represented by a total

of 30,000 token vocabularies including common words and parts of words. BERT is a

word vector model, and its goal is to build a decent feature representation for words by

9

CHAPTER 1. Introduction

Figure 1.3: Performance of deep learning vs traditional machine learning methods with the scale of the
amount of data. Deep learning models (artificial neural network) outperform machine learning models with

increasing the training dataset, this tendency is quite significant [32].

performing a self­supervised learning approach on a massive corpus. Self­supervised

learning is supervised learning which is performed on data which has not been manually

labeled. No annotations of the texts by humans were required, so the training in the

machine learning process is self­supervised.

BERT is bidirectionally trained i.e. every token can attend context to its left and right at the

same time. This feature enables the model to learn the context of a word depending on

the words around it, resulting in a better understanding and sense of the words. The bidi­

rectional model has a better awareness of the language context than the single­direction

model [33]. BERT is built on transformers, a deep learning model in which every output

element is linked to every input element, and the weightings between them are determined

dynamically based on their relationship (this is referred to as attention in NLP).

Pre­training of BERT

BERT is a pre­trained language model for natural language processing (NLP). The goal

of pretraining BERT is to make it aware of the distinction between language and context.

BERT is pre­trained on two independent but related NLP tasks:

1. Masked Language Modeling (MLM): The purpose of Masked Language Modeling

training is to learn a representation for each token by understanding the bi­directional

context of the tokens. In MLM training, 15% of the tokens of the input sequence are

10

CHAPTER 1. Introduction

masked at random, then the model is trained to predict the masked words based on

the context of the masked words. BERT uses 80­10­10 strategy, from the chosen

15% tokens, randomly 80% of them are replaced by a [MASK] token, 10% by random

tokens, and 10% are left unchanged. The latter is used to bias the representation to­

wards the actual observed word. MLM helps to understand the relationship between

words in the same sentence.

2. Next Sentence Prediction (NSP): The purpose of Next Sentence Prediction training

is to have a model which predicts whether two given sentences are logically related

or not. This helps BERT to understand context across different sentences and the

relationship between them. A good example of NSP is the question­answering task

which is the task of extracting the answer of a question in a given document.

Both Masked LM and NSP are used to train the BERT model. The goal is to get a good

understanding of language and reduce the combined loss function of the two techniques.

BERT Architecture

The BERT model contains the following layers:

• Two inputs: One from word tokens, one from segment­layer. These get added and

summed over to a third embedding: position embedding, followed by dropout and

layer normalization.

• Followed by 12 Multi­head Self Attention layers.

• Following these 12 layers, there are two outputs — one for NSP (Next Sentence

Prediction) and one for MLM (Masked Language Modeling).

BERT is the encoder of a transformer consisting of multiple layers, each layer applies

self­attention and hands the results to the next layer [34].

BERT Tokenization and Encoding

BERT was designed to process input sequences of up to length 512. An input sequence

11

CHAPTER 1. Introduction

needs to be preprocessed before being fed into the BERT model. The following steps

illustrate the preprocessing procedure for the input sequence:

• Tokenization: breaking down the input sequence into tokens using a method called

WordPiece tokenization.

• Adding the [CLS] token at the beginning of the sentence, and the [SEP] at the end

of the sentence. For the classification task, a special token [CLS] representing the

class of the entire input sequence is added to the beginning of the input sequence.

In the ”next sentence prediction” task, we need a special token to inform the model of

the ending of each sentence in the sequence, for this purpose, [SEP] token is added

to the end of each sentence in the input sequence.

• Padding the input sequence with [PAD] tokens so that all input sequences have the

same maximum length.

Contextual Embeddings

Contextual embedding captures the semantics of the word such that the same word can

have different meanings across varied contexts, unlike the word embedding in which the

word has a global meaning regardless of the word’s context in the sequence. BERT has

three separate embedding layers:

• Token Embeddings: Because the model cannot directly recognize words, but only

numbers, it is necessary to map each token to the corresponding unique vocabulary

ID. Each token in the input sequence is transformed into a vector representation of

a fixed 768­dimensional vector. Because the size of the dictionary of the vocabu­

laries is fixed (around 30K), the words are split into their root to map them to the

corresponding unique ID, the tokens not appearing in this dictionary are replaced by

a special token [UNK].

• Segment Embeddings: A marker is added to each token to indicate the sentence

(A or B) which this token belongs to.

12

CHAPTER 1. Introduction

• Position Embeddings: A positional embedding is added to each token to indicate

the position of the token in the input sequence.

The input embeddings are the sum of the token embeddings, the segmentation embed­

dings and the position embeddings (Figure 1.4). The input representation which is formed

by summing the corresponding is passed to BERT’s Encoder layer.

Figure 1.4: BERT input representation. The input embeddings are the sum of the token embeddings, the
segmentation embeddings as well as the position embeddings [33].

Encoder Layers of BERT

BERT consists of multiple encoder layers, 12 for the BERT­Base model and 24 for the

BERT­Largemodel. Each encoder has two layers: Self­attention and feed­forward network

(Figure 1.5). The encoder receives a list of vectors as input, this list is processed by

sending these vectors through a ”self­attention” layer, then a feed­forward neural network,

and finally the up­coming encoder. The transformer utilizes the self­attention method to

understand the relevance of the other words to the one which is currently processing [35].

Each layer does the following:

• Each layer applies self­attention: The self­attention layer essentially learns a contex­

tualized meaning for each word in the input.

• Passes its results through a feed­forward network: The purpose of this layer is to

transform the output of the attention layer (the attention vector) into a format which

can be processed by the next encoder block.

13

CHAPTER 1. Introduction

• Hands the result to the next encoder layer.

• The process is continued in this manner until the last transformer block is reached.

Figure 1.5: BERT Stack Encoder layers [36].

BERT Models

Google provides two main models of BERT:

1. The BERT­Base model: It has a total of 110 million parameters with 12 encoder

layers, 768 hidden nodes, and 12 attention­heads.

2. The BERT­Large model: It has 340 million parameters with 24 encoder layers, 1024

hidden nodes, and 16 attention­heads.

Each model comes with BERT­uncased and BERT­cased formats, which correspond to

whether to include case or not. BERT­uncased (only lowercase) is more commonly used

because in most scenarios the case of a word does not have a big impact on the task. But

in some specific scenarios, such as named entity recognition (NER), BERT­cased is more

suitable. BERT­Base was trained for 4 days on 4 cloud TPUs, whereas BERT­Large was

trained for 4 days on 16 cloud TPUs!

BERT Fine­Tuning

Fine­tuning is a process of taking a BERT model which was pre­trained on a large amount

of generic text and adding more training with a specific application or domain­specific

dataset to optimize the performance on a specific task. BERT can be used for a wide

range of NLP tasks by adding only a single layer to the top of the core model.

14

CHAPTER 1. Introduction

1.4.6 Text Mining

Text mining is an artificial intelligence (AI) technique which is the ability to filter out a very

large set of unstructured text in documents such as books and literature and convert them

into structured data containing relevant information [37]. Relevant information can be con­

cepts as well as relationships between those concepts which answer questions of interest.

In the task of looking for associations, the standard keyword search introduces a lot of

noise in the results, furthermore, it needs to go through the whole document of the results

to extract the relevant information if it exists. However, text mining techniques are extract­

ing those relevant information efficiently for further analysis or to drive machine learning

algorithms [38,39].

1.4.7 Natural Language Processing (NLP)

Natural language processing refers to the field of artificial intelligence which enables ma­

chines to read, analyze, understand, and interpret the meaning of human languages (text

and speech) in a smart and efficient way [40–42]. NLP includes the field of linguistics in

computer science which understands and learns the structure of the language and creates

models which analyze text and speech to isolate and extract significant features. Data ana­

lysts and machine learning experts utilize data to enable machines to mimic human linguis­

tic behavior. The applications of natural language processing include machine translation,

spell­checking, keyword search, advertising matching, text filtering, and more. NLP is di­

vided into two major components: natural language understanding and natural language

generation. Natural language understanding is the process of analyzing the given input

and extracting the significant data, whereas natural language generation is the process of

generating meaningful sentences and phrases [43,44].

1.4.7.1 Tokenization

Tokenization is a common task in Natural Language Processing (NLP), most NLP appli­

cations require tokenization as a pre­processing step. Tokenization of text into subword

units, which typically maintain linguistic meaning, is a common solution in modern NLP ap­

15

CHAPTER 1. Introduction

proaches. In the tokenization process, the unstructured input string breaks into a series of

discrete components appropriate for machine learning (ML) models called tokens; tokens

can be either words, subwords, or even characters. Even if the model does not recognize

a word, individual subword tokens may still include enough details for the model to derive

the meaning of the word somehow. Words which aren’t in the lexicon, on the other hand,

are considered as ”unknown” in this technique. WordPiece is one of the most popular

subword tokenization techniques that is commonly applied to many NLP models [45,46].

1.4.7.2 Information Retrieval (IR)

IR is a process to find relevant texts. The most common approach to do this is called ad

hoc retrieval, which is in fact what we do every time when we go to PubMed and type a

query. Pubmed has a very large document collection which has been indexed and which

can be quickly searched for all papers which match a specific query. This is one approach

for information retrieval. Another common approach is document similarity which is used

by recommendation engines. The idea is to take each document and turn it into a term

vector where each dimension in the vector corresponds to a different word in the document.

In the next step, a weighting scheme is applied to place more emphasis on words which are

more important. Finally, a vector similarity is calculated which can assess the similarity of

the document and rank them in terms of which documents are most similar to the document

of interest [47–49].

1.4.7.2.1 Named Entity Recognition (NER)

Named entity recognition is a field of natural language processing (NLP) of identifying

and categorizing key information (entities) in text and classifying them into a pre­defined

category, simply a process to find and classify entities in text. For NER a dictionary of

official names and synonyms of the entity is needed which can be applied to recognize or

identify for example genes/proteins or diseases. In addition, a black list which contains

a list of names which are conflicting with the dictionary of entities and their synonyms

are beneficial for training. This process can be very labor intensive and time­consuming.

Another approach to identify and recognize entities utilizes machine learning techniques

16

CHAPTER 1. Introduction

which look into the context around the entity. In this way, the model can learn from the

surroundings of the entities how the shape of the entities can be recognizedmore efficiently

even if the specific name of this entity has not been seen before. The accuracy of the NER

model highly depends on the training dataset which the model uses for learning including

the context of each entity for recognition and for categorization [50,51].

1.4.7.2.2 Relationships Extraction (RE)

Relationship extraction, also known as relation extraction, is the process of identifying the

relationships between two entities in unstructured text, such as biomedical articles [52].

There are various techniques to perform relationships extraction, ranging from a simple

approach so­called co­mentioning to a more sophisticated automated deep learning ap­

proaches. The idea of the co­mentioning approach is if A and B are mentioned together

they might have something to do with each other. To improve this approach a higher num­

ber of co­occurrences increases the probability that A and B have some type of relationship.

Deep learning approaches are used for relation extraction tasks that typically involve pre­

trained languagemodels like BERT that allow for recognizing statements like “A binds to B”.

The advantage of using a deep learning approach is that it not only identifies the existence

of the relationship but in addition, determines the type of relationship [52,53].

1.4.8 Classification

Classification is the most common task of machine learning, it is a problem of assigning

a given observation(s) or object(s) into a distinct class. Classification is a supervised ma­

chine learning technique, where the classifier is trained on a training dataset to understand

how to identify the class of a new object on the basis of the information which is learned

from the training dataset. Out of the training process, the classifier creates a model which

can be used later to identify the unseen/new object to one of the available classes based on

the similarity of the features. Classes can be called categories, targets, or labels [54–56].

There are two main types of Classifiers:

17

CHAPTER 1. Introduction

1.4.8.1 Binary Classification

Binary classification is the task to map an observation/object into one of two class tar­

gets/labels normally Yes/No or positive/negative. An application of binary classification is

cancer detection (cancer or not), Email spam detection (spam or not), functional relation­

ship prediction (functional relationship or not), and so on.

1.4.8.2 Multi­class Classification

In this type of classification, there are more than two class targets/labels. The classifier

identifies one and only one target/label for each new observation/object, however, the

available classes/labels are more than two. An application of this type of classification is

Face recognition and Entity recognition.

Classifier: It is an algorithm which has the capability to map a new observation or object

to a distinct class or category on the basis of the training dataset. The performance of

a classifier model is measured using a so­called performance metric, it can be either a

numeric value like precision or a score based metric like a receiver operating characteristic

(ROC) curve.

1.4.9 Cross­validation (CV)

Cross­validation is a technique to validate how accurately a machine learning model will

perform in practice and measure the performance of the model [57]. To perform cross­

validation, the data is randomly split into two datasets, called the training dataset and the

testing or validation dataset. Normally, the training dataset is bigger than the test dataset.

The classifier is using the training dataset to learn and understand the dataset feature of

each class and build a model based on this dataset which can predict and classify a new

unseen dataset. The test dataset is a sample of data used to evaluate the performance

of the classifier when it is applied to predict and classify the test dataset. In the training

dataset, every given data has a specific label or class to allow the classifier to train and

learn from this data, on the other hand in the test dataset the label or class of each data is

18

CHAPTER 1. Introduction

hidden to allow the model to make the prediction, then later actual labels or classes of the

test dataset are used to evaluate the performance of the classifier when they compare with

the predicted classes. The common cross­validation methods include holdout and k­fold

cross­validation [58,59].

1.4.9.1 Holdout Cross­validation

Holdout is the simplest method of cross­validation. In this method, the data is randomly

split into two datasets, the training dataset, and the test dataset. The usual size of the

training dataset is between 70% to 80% of the dataset and between 30% to 20% for the

test dataset. The advantage of this method is that it is very simple and takes less computing

time. However, its evaluation can have a high variance, because it does not consider the

averaging of multiple runs over different splits [60,61]. This method was used to evaluate

the final performance of the evaluated methods used in this dissertation.

1.4.9.2 K­fold Cross­validation

This type of cross­validation is recommended when the size of the dataset is small. The

dataset is randomly split into k­folds, the value of the parameter k can be arbitrary, but

ideally, k is chosen between 5 to 10 based on the size of the dataset. The model is built

using k­1 folds as a training dataset and then it validates using the kth fold as validating

or testing dataset. Repeat this process k times by choosing every round a different fold

as a validating or testing dataset. Every round the performance metric of the built model

is calculated. Finally, calculate the average of the k­scores to get the performance met­

ric of the entire model. Obviously, this method requires more computation time than a

simple holdout cross­validation, because it considers all data in both the training and test

processes [62].

1.4.10 Confusion Matrix

A confusion matrix is a critical tool for helping to evaluate the performance of the classifi­

cation model or classifier on a set of test data for which the actual values are known. A

19

CHAPTER 1. Introduction

confusion matrix is only used for classification models meaning models which are predict­

ing class labels and they are not used for regression models which are used to predict

numeric values. For a binary classifier, there are two possible classes/labels which in this

case is a two­by­two matrix, if there were three possible classes then it would be a three­by­

three matrix, and so on. The two possible classes are Yes and No but they could be other

things like positive and negative, or zero and one [62–64]. Figure 1.6 shows a confusion

matrix for a binary classification problem, there are four terms:

• True Positive (TP): when the model correctly predicts the positive class.

• True Negative (TN): when the model correctly predicts the negative class.

• False Positive (FP): when the model incorrectly predicts the positive class (some­

times referred to as type I error).

• False Negative (FN): when the model incorrectly predicts the negative class (some­

times referred to as type II errors).

Figure 1.6: Confusion matrix for binary classification.

1.4.11 Performance Metrics

In the classification tasks, performance is the capacity of the model to identify the class of

observation using test data. The performance metrics are metrics to evaluate the quality

or the performance of the model or classifier to predict the classes of the observations.

There are five main metrics: accuracy, specificity, recall, precision, and F­score. Next are

the main performance metrics of the binary classifier [63–66].

20

CHAPTER 1. Introduction

• Accuracy is the portion of the correctly classified values. It tells us how often the

classifier has been correct; it is calculated by the sum of all true values divided by

the total values.

Accuracy =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(1.1)

• Specificity is evaluating the model’s ability to predict negative values and how often

the model actually predicts the correct negative values; it is the true negative divided

by the total number of actual negative values.

Specificity =
TN

N
=

TN

TN + FP
(1.2)

• Recall/Sensitivity is used to measure the model’s ability to predict positive values

and how often the model actually predicts the correct positive values. it is calculated

by dividing the true positives divided by the total number of actual positive values.

Recall =
TP

P
=

TP

TP + FN
(1.3)

• Precision is measuring how well the predicted positive values are classified correctly.

It answers the question ”How often is the model correct when it predicts a positive

value?”. it is calculated by dividing true positives by the total number of predicted

positive values.

Precision =
TP

TP + FP
(1.4)

• F­score or F­beta is a metric to evaluate the model’s performance; it is typically used

for Imbalanced Classifications. It is useful when both precision and recall must be

taken into account. Additional weights are applied, when either accuracy or recall

is valued more highly than the other. Beta is a positive real value, commonly beta

= 1, this is the so­called F1­score when both recall and precision have the same

importance (harmonic average), when the recall is more important than precision

21

CHAPTER 1. Introduction

then choose the beta value of more than 1, and choose a value less than 1 when

precision is more important than recall.

Fβ = (1 + β2)× Precision×Recall

β × Precision+Recall
(1.5)

When beta=1 (harmonic mean), then the score is called F1­score and the formula

becomes:

F1 = 2× Precision×Recall

Precision+Recall
=

2× TP

2× TP + FP + FN
(1.6)

We used the above metrics to measure and evaluate the performance of the evalu­

ated methods in this dissertation.

1.4.12 Graph Theory

Graph theory is the field of mathematics which deals with the study of graphs. The graph

is a collection of points called vertices or nodes connected by lines which are so­called

edges [67,68]. The nodes in the graph can represent any type of entity (e.g., cities, persons,

companies, biomedical concepts, etc) and the edges represent the relationships between

these entities. In graphs, it can be distinguished between directed graphs, when edges

asymmetrically connect two vertices, and undirected graphs, when edges link two vertices

symmetrically. The graph can be weighted by assigning a weight to the edges of the graph

and unweighted when no weight is assigned. A graph can be represented by a so­called

adjacency matrix [69–71].

1.4.12.1 Adjacency Matrix

Adjacency matrix is a two­dimensional array (V x V) where rows and columns are labeled

by the name of the graph’s vertices, i.e. the number of rows in the adjacencymatrix is same

as the number of columns equal to the number of vertices in the graph. In the unweighted

graphs, the adjacencymatrix stores 1 if the two vertices are connected (adjacent) otherwise

0, in the weighted graphs, the elements of the adjacency matrix indicate the weights of the

22

CHAPTER 1. Introduction

edges or 0 if the two vertices are not connected.

1.4.12.2 Sparse Matrix

Sparse matrix is a special type of matrix in which the proportion of zero entries to non­zero

elements is significantly larger. For the large matrices in which most of the elements are

zero, a sparse matrix offers efficient storage which can significantly reduce the amount of

memory required for data storage by storing only the nonzero elements with their indices

and ignoring the zero elements [72].

23

CHAPTER 1. Introduction

24

CHAPTER

MATERIALS AND METHODS 2
2.1 Tools and Programming packages

2.1.1 Python Programming Language

Python is an interpreted, object­oriented, high­level programming language with dynamic

semantics [73]. It is a very simple programming language and easy to learn. Python

supports packages and modules in several domains. Python can be used for most kinds of

programming tasks. All this makes python one of the most popular and used programming

languages in several fields. Most of the scripts in this dissertation are programmed in

python.

2.1.2 Django

Django is a free and open­source framework for building web applications with python. It

is not the only web framework for python but it is the most popular one and helps to build

a website in a short time with limited lines of code. Many companies such as youtube,

25

CHAPTER 2. Materials and Methods

dropbox, Instagram, and Spotify use Django to build their web applications [74]. Django

comes with a lot of features out of the box so they do not have to be coded from scratch.

Additionally, it offers an admin interface for managing the data. It has an object­relational

mapper which abstracts the database so queries can be sent without writing a lot of SQL

code. It also offers an authentication package for identifying users and has a package

for caching data. With all features which Django can offer, developers can focus on the

application and its requirements without the need to code all these features from scratch

[75]. The frontend and backend of the CPRiL web server were built using the Django

framework.

2.1.3 PostgreSQL

PostgreSQL is a free and open­source object­relational database management system

(RDBMS) in which the data is stored in the form of tables [76,77]. It is the most advanced

open­source database system, widely used in the development of backend systems. Post­

greSQL includes capabilities like table inheritance and function overloading and offers a

wealth of advanced features which can help in a more robust database for specific use

cases. It includes support for popular programming languages like net javascript and

python. Postgresql is used by several big technology companies such as Apple and Cisco

where complex websites and applications require a highly customized database solution.

The database of the CPRiL web server was built using PostgreSQL.

2.1.4 RDKit

RDKit is an open­source collection of cheminformatics and machine­learning software writ­

ten in C++ and python. It’s widely used for working with molecular data and analyzing the

properties of chemical compounds [78]. RDKit has a molecular database cartridge for

PostgreSQL and deals with several chemical properties such as SMILES and fingerprints.

Furthermore, it generates 2D and 3D structures of the chemical compounds and calcu­

lates similarity searches [79]. The chemical compounds’ properties and the 2D molecular

structures stored in the CPRiL web server were generated using RDKit.

26

CHAPTER 2. Materials and Methods

2.1.5 TensorFlow

TensorFlow is a complete open­source machine learning platform from Google. It was

developed to deal with machine learning and deep learning applications on various data

sets. TensorFlow integrates libraries and community resources which can be applied for

creating and deploying powerful machine learning projects. TensorFlow applications can

run on central processing units (CPUs), graphics processing units (GPUs), or tensor pro­

cessing units (TPUs), which speed up TensorFlow jobs [80–86]. TensorFlow can be used

in a variety of programming languages, including Python, C++, Java, and JavaScript. The

deep learning method “BioBERT”, which was evaluated in this thesis and used to build the

CPRiL web server, is using libraries of this platform.

2.1.6 NetworkX

NetworkX is a Python package for building, modifying, and researching the composition,

dynamics, and purposes of complex networks. This module offers operations and func­

tions for bipartite graphs. A bipartite graph or bigraph is a graph whose vertices can be

decomposed into two distinct and independent sets U and V, every edge connects a vertex

in U to one vertex in V, i.e. the connection between two vertices in the same set does not

exist [87]. This package was used in this thesis for network visualization of the outputs

and for calculating the shortest path between biomedical entities.

2.2 The Benchmark Dataset

2.2.1 Generation of the benchmark dataset for functional compound­

protein relationships

Chemical compounds are referred to as small molecules up to a molecular weight of

about 1,000 Dalton, for which a synonym and a related ID are contained in the PubChem

database [88]. Similarly, genes and proteins must have UniProt synonyms and were as­

signed to related UniProt IDs [89]. PubChem synonyms were automatically annotated with

27

CHAPTER 2. Materials and Methods

the approach described in the manuscripts about the web services Compounds In Litera­

ture (CIL) [90] and protein­literature investigation for interacting compounds (prolific) [91],

by applying the rules described by Hettne et al. [92]. Proteins were annotated using the

web service Whatizit [93]. The complete compound­protein interaction benchmark dataset

(CPI­DS) was generated from the first 40,000 abstracts of all PubMed articles published

in 2009.

All pairs of compounds and proteins co­occurring in a sentence are considered as poten­

tial functionally related or putative positive instances. Pairs with no functional relation were

subsequently annotated as negative instances. If a named entity exists as a longform syn­

onym and an abbreviated form in brackets, both terms are considered as individual entities.

All sentences containing at least one compound­protein pair were transferred to an HTML

form. An HTML annotation tool has been developed to help in the manual annotation and

cross­check process of these annotations.

2.2.1.1 Pre­annotation

Annotation is a time­consuming and costly process. Without appropriate data preparation,

an individual curator can read only a few papers per hour, which may or may not contain

sentences of interest, i.e. sentences which don’t contain relevant information. In the task

of a functional compound­protein relationship, we looked for those sentences which have

at least one compound­protein pair and excluded all other sentences. We used named

entity recognition (NER) applications to pre­annotate a PubMed abstract with the entities

under consideration, CIL and prolific to pre­annotate chemical compounds and Whatizit

to pre­annotate proteins. This enabled us to extract only sentences containing relevant

entities (chemical compounds and proteins). Filtering sentences in such a way reduces

the total number of sentences and accelerates the process of manual annotation.

2.2.1.2 Manual Annotation Tool

A web­based annotation tool has been designed to assist the annotators in the manual

annotation process and make the annotation task faster and easier (see Figure 2.1). The

annotator can revise the highlighted entities and can mark the presence of a relationship

28

CHAPTER 2. Materials and Methods

or not. The main components and features of the annotation tool are:

• The entities are pre­annotated automatically using named entity recognition (NER)

tools. The entities are highlighted with different colors to easily distinguish between

the type of each entity, green color for chemical compounds and purple for pro­

teins/genes.

• Each entity is clickable and mapped to the corresponding database, compounds are

mapped to the PubChem database, whereas proteins are mapped to the NCBI gene

database. In the corresponding databases, it can be cross­checked by getting the

full details about this entity.

• Each sentence is linked to the PubMed article where the full article can be observed

to get a more detailed view onto the research topic to further support the annotation

process.

• Each compound­protein pair is connected to a drop­down list on which the annotator

can easily specify whether the pair is functionally related or not, or the pair is wrongly

annotated. The drop­down list includes the following options: related, not related,

wrong compound annotation, wrong protein annotation, both wrong, wrong segmen­

tation (in case the sentence was not correctly split), and unclear (if the annotator

can not make a decision about the existing of relationship or the correctness of the

annotated entities).

• Each sentence which has been processed is highlighted as “checked”. This can help

the annotator to distinguish between the sentences that are processed and those that

are not.

2.2.1.3 Inter­annotation Agreement

The annotation process is performed based on specific rules. A compound­protein pair

is functionally related if it appears in the same sentence and fulfills at least one of the

following prerequisites:

29

CHAPTER 2. Materials and Methods

Figure 2.1: A Web­based annotation tool. The highlighted green entities represent the chemical
compounds, and the purple represent the proteins. The annotation column shows the current status of the

entities and the annotator’s decision on the compound­protein pair.

• The entities (chemical compound and protein) of the candidate pair interact directly

with each other.

• There is up or down­regulation of each other (directly or indirectly).

• The entities are part of each other.

• The small molecule is a cofactor of the protein.

All candidate pairs were annotated by eight different annotators. The entities’ annotation

and the relationship between them were at least proven by two different annotators.

The inter­annotation agreement was performed in three stages:

1. In the first stage, an expert annotator performed the annotation for the whole corpus.

2. In the second stage, the corpus was distributed among six annotators to cross­check

and go through all sentences. Unclear instances were left for the third stage, the

unclear instances include unclear entities tagging or unclear relationships.

30

CHAPTER 2. Materials and Methods

3. In the last stage, pairs which were either classified as “unclear” by one of the anno­

tators or pairs which were classified differently by both annotators, the annotation

instructor made the final decision.

2.2.2 Benchmark Dataset based on the Interaction Verb

To analyze how much specific interaction verbs, enclosed by compound and protein enti­

ties, affect the precision of functional relationships, we differentiated between sentences

with or without this structure. According to this, the benchmark dataset “CPI­DS” has been

split into two subsets. A dataset called “CPI­DS_IV” includes only compound­protein pairs

which enclose an interaction verb, whereas the other dataset called “CPI­DS_NIV” includes

those compound­protein pairs which don’t show this sentence structure. The interaction

verbs which are enclosed by a compound­protein pair belong to a list of defined interaction

verbs which were defined by Senger et al. [91] (see appendix C). Figure 2.2 shows de­

tailed examples of the different types of functional compound­protein relationships based

on interaction verbs.

Figure 2.2: Types of functional compound­protein relationships based on interaction verbs. a) Direct
functional relation with interaction verb. The orange colored verb is enclosed by the compound “Silymarin”,
shown in green, and the proteins “MMP­2” and “MMP­9”, shown in purple [94]. The pair was annotated as
functional. b) Indirect functional relation with interaction verb. “TGF­beta1” resistances “gefitinib” indirectly
by inducing EMT in the A549 cells [95]. The pair was annotated as functional. c) Direct functional relation
without interaction verb. The compound “staurosporine” has a direct inhibitory effect on the protein “CDK2”.

This is indicated by the word “inhibitory” [96]. The pair was annotated as functional.

31

CHAPTER 2. Materials and Methods

2.3 Functional Relationships Recognition Methods

Tikk et al. examined 13 kernel methods for protein­protein interaction extraction on

different text corpora. Out of these methods, the all­paths graph kernel (APG) [97] and

shallow linguistic kernel (SL) [98] consistently achieved very good results [99]. The

APG kernel considers all weighted syntactic relationships in a sentence based on a

dependency graph structure. In contrast, the SL kernel considers only surface tokens that

come before, between, and after the potential interaction pair. Both kernels have been

successfully applied in different domains, such as drug­drug interaction extraction [100].

A new deep learning pre­trained model (BioBERT) built on the basis of BERT has been

introduced by Lee J et al. [5]. BioBERT is a pre­trained language representation model for

the biomedical tasks; it achieved new state­of­the­art performances on most biomedical

text mining tasks, including Named Entity Recognition (NER), Relation Extraction (RE),

and Question Answering (QA).

We have evaluated the usability of the above three diverse machine learning methods

(SL, APG, and BioBERT) which achieved good performance in the relation extraction (RE)

domain for detecting functional and nonfunctional compound­protein relationships in texts.

2.3.1 Shallow Linguistic Kernel (SL)

Shallow Linguistic kernel, developed by Giuliano et al. [98], is a supervised machine

learning approach for extracting relations between biomedical entities such as gene­

protein and protein­protein from biomedical literature. SL is based on shallow linguistic

information, such as tokenization, sentence splitting, Part­of­Speech (PoS) tagging, and

lemmatization; these types of information can improve the performance of the relation

extraction process. SL is a kernel­based approach which uses a Support Vector Machine

(SVM) as a kernel algorithm. The main idea of kernel methods is instead of solving a

complex non­linear problem, the input data is mapped into a higher feature space using a

mapping function and then uses a linear algorithm to solve the problem linearly [98].

32

CHAPTER 2. Materials and Methods

A shallow linguistic kernel uses two different information sources, global context, and local

context. The shallow linguistic kernel is defined as the sum of a global and local context

kernel. Each kernel is calculated as follows:

K(x1, x2) =
⟨ϕ(x1), ϕ(x2)⟩

||ϕ(x1)||||ϕ(x2)||
(2.1)

where ϕ is the embedding vector and || . || is the 2­norm. The kernel is normalized by the

product of the norms of embedding vectors.

Global Context Kernel

The words which appear before, between, and after the candidate interacting entities are

used to indicate the relationship between these two entities. There are three possible

patterns for these tokens: Before­Between, Between, or Between­After. The global context

kernel works on these patterns of words up to a length of n = 3 which is called n­gram.

These n­grams are implemented using the bag­of­words approach. The method counts

the number of occurrences of every word in a sentence including punctuation and stop

words, but excludes the CANDIDATE and OTHER entities which includes the entities of

interest (Figure 2.3). The patterns are computed regarding the phrase structures before­

between, between, and between­after the considered entities. The global context kernel

KGC is defined as:

KGC = KFB(R1, R2) +KB(R1, R2) +KBA(R1, R2) (2.2)

where KFB, KB, and KBA are n­gram kernels which operate on the Fore­Between,

Between and Between­After patterns respectively.

Local Context Kernel

The surrounding context of the candidate entities offers helpful information for determining

the functions of the entities of the candidate pair within the relation. The local context kernel

33

CHAPTER 2. Materials and Methods

Figure 2.3: Representation of the sentence under shallow linguistic kernel. An example demonstrates four
entities, “N­acetylaspartic acid” and “aspartoacylase” are the candidate related entities (CANDIDATE), and

“aspartate” and “acetate” are not (OTHER).

considers tokens with their part­of­speech tags, lemmatization, capitalization, punctuation,

and numerals [1,98]. The left and right ordered word neighborhoods up to window size of

w = 3 are considered in two separated kernels, which are summed up for each relationship

instance. The local context kernel KLC is defined as:

KLC = Kleft(R1, R2) +Kright(R1, R2) (2.3)

Where Kleft and Kright are left and right local kernels respectively.

Shallow Linguistic Kernel KSL is defined by the combination of the global context kernel

KGC and local context kernel KLC as follows:

KSL = KGC(R1, R2) +KLC(R1, R2) (2.4)

Shallow linguistic kernel uses a linear combination of kernels which has better performance

than the individual ones.

2.3.2 All­paths Graph Kernel (APG)

All­paths graph kernel (APG) is a kernel­based machine learning method which employs

graph data which uses the dependency graphs representing the sentence structure. APG

kernel uses the parse regularized least squares (sparse RLS) kernel­based machine learn­

ing method [97]. The main idea of the APG method is to create a graph representation for

the candidate compound­protein related pairs, then use the kernel function to measure

the similarities of these graphs. A dependency parse of the sentence which includes a

compound­protein pair as a candidate­related pair forms the input of the learning method

of the APG kernel. The idea of APG is to create two unconnected, weighted, and direct

34

CHAPTER 2. Materials and Methods

subgraphs; one represents the dependency structure of the sentence called dependency

subgraph, and the other represents the linear order of the words in the sentence called

linear order subgraph.

Dependency subgraph

The dependency subgraph is built based on the dependency structure of the sentence.

The vertices in the dependency graph represent the text tokens in the text (including

the part­of­speech tag), and the edges represent the typed dependencies, showing the

syntax of the sentence. For generalization, the candidate compound and protein entities

are replaced with COMP and PROT respectively. The dependency’s vertices are labeled

with the type of dependency. The labels of the vertices on the shortest paths connecting

the candidate entities are distinguished from the labels using a special tag. The highest

emphasis is given to edges which are part of the shortest path connecting the candidate

compound­protein pair by differentiating the labels of the vertices on the shortest paths

using a special tag. In addition, a simple weighting scheme was chosen based on

preliminary experiments, the edges on the shortest paths receive a weight of 0.9 and

other edges receive a weight of 0.3 (Figure 2.4a).

Linear order subgraph

The linear order subgraph represents the linear structure of the sentence. Each token is

represented by a vertex. The label of each vertex is derived from the texts, POS­tags,

named entity tagging, and special tags representing the position of the token, before,

in­between, or after the candidate compound­protein pair. Each vertex is connected to

the next vertex by an edge which receives a weight of 0.9 (Figure 2.4b).

APG kernel implementation

Let V represents the set of vertices in the graph and L represents the set of labels. A graph

35

CHAPTER 2. Materials and Methods

(a) The dependency subgraph.

(b) The linear order subgraph.

Figure 2.4: Graph representation of APG kernel.

can be represented in an adjacency matrix A |V |×|V |. The entries in this matrix determine

the weights of the connecting edges, the weight is zero if two vertices are not connected.

Multiplication of the matrix with itself returns a new matrix with all summed weights of path

length two.

All possible paths of all lengths can be calculated by computing the powers of the matrix.

Matrix addition of all these matrices results in a final adjacency matrix, which consists of

the summed weights of all possible paths [97].

(I − A)−1 = I + A+ A2 + =
∞∑
k=0

Ak (2.5)

Paths of length zero are removed by subtracting the identity matrix I.

W = (I − A)−1 − I (2.6)

All labels are represented as a feature vector. The feature vector is encoded for every ver­

tex, containing the value 1 for labels which are presented within this particular node. This

36

CHAPTER 2. Materials and Methods

results in a label allocation matrix L ∈ |l| × |V |, Lij = 1 if the j­th vertex has the i­th label,

otherwise Lij = 0. A feature matrix as defined by Gärtner et al. sums up all weighted

paths with all presented labels [101]. This calculation combines the strength of the con­

nection between two nodes with the encoding of their labels. In general, it can be stated

that the dependency weights are higher the shorter their distance to the shortest path be­

tween the candidate entities is [1]. The similarity of two feature matrix representations can

be computed by summing up the products of all their entries [97]. In the implementation

used here [1, 97], the regularized least squares classifier algorithm is applied to classify

compound­protein relationships with the APG kernel. This classifier is similar to a standard

support vector machine (SVM), but the underlying mathematical problem does not need

to be solved with quadratic programming [97,102].

f(x∗) =
b∑

i=1

aik(x∗, xi) (2.7)

x∗ is the given text input, k is the kernel function, xi are training data points, ai are weights,

and b is the size of B ⊂ M (the training set), B is selected randomly in advance.

The Input format of the SL and APG

The input format for shallow linguistic and all­paths graph kernels is provided as XML for­

mat (Figure 2.5). This format includes the following main data:

• Document (Article): This section includes a unique document ID and PubMed ID.

• Sentence: This section of the file includes a unique sentence ID and sentence text

which includes the candidate compound­protein pair.

• Entities: This section of the file includes a unique entity ID, offset, entity type (com­

pound or protein), and entity name

• Pair: This section includes a unique pair ID, Identifiers of the candidate compound­

protein pair, and the type of the relation, the default is false (not functionally related).

37

CHAPTER 2. Materials and Methods

Figure 2.5: The input XML format of SL and APG kernel.

2.3.3 BioBERT

BioBERT is a deep learning and domain­specific model based on BERT. BioBERT is pre­

trained on the BERT model corpora (English Wikipedia + CorpusBook) and large­scale

biomedical corpora extracted from PubMed abstracts and PMC. The resulting model

outperformed the BERT model in biomedical text­mining domains [5].

BioBERT approach

The BioBERT approach consists of two main phases: pre­trained and fine­tuning.

1. Pre­trained

BioBERT is pre­trained on two different sets of data:

(a) BioBERT is initialized from BERT which is pre­trained on 2,500 million English

Wikipedia words and 800 million words extracted from BookCorpus which con­

sists of more than 11,000 unpublished books from 16 different disciplines. In­

stead of random initialization of weights, BioBERT used the pre­trained weights

from the BERT model.

(b) Next, the BioBERT was pre­trained again but this time on domain­specific cor­

pora. It was pre­trained on biomedical data extracted from PubMed abstracts

38

CHAPTER 2. Materials and Methods

with 4.5 billion words and PMC full­text articles with 13.5 billion words.

Table 2.1, shows the different text corpora used for pre­trained BioBERT, how­

ever, Table 2.2, shows the pre­trained combinations of the models that BioBERT

offered.

2. Fine­tuning

In this phase, the BioBERT model was fine­tuned on biomedical domain­specific

tasks such as the relation extraction task (RE) or name­entity recognition task (NER).

The interesting part is that the pre­training is not solely on biomedical corpora, but

rather on various combinations of general and biomedical corpora. The pre­training

on a combination of different datasets gives the model a better performance when it

is applied to biomedical tasks.

Table 2.1: List of text corpora used for BioBERT.

Corpus Abbreviation Number of words
(billion) Domain

English Wikipedia Wiki 2.5 General

BookCorpus Books 0.8 General

PubMed Abstracts PubMed 4.5 Biomedical

PMC Full­text articles PMC 13.5 Biomedical

Table 2.2: Corpus combination of the pre­trained BioBERT models.

Model Corpus combination

BioBERT (+PubMed) Wiki + Books + PubMed

BioBERT (+PMC) Wiki + Books + PMC

BioBERT (+PubMed + PMC) Wiki + Books + PubMed + PMC

As in the BERT model, BioBERT has two main pre­trained weights depending on the size

of the trained corpus, BioBERT­Base, and BioBERT­Large.

39

CHAPTER 2. Materials and Methods

The input format of BioBERT

In order to use BioBERT, the input data must be in a tsv format (tsv for tab­delimited values),

the columns of the input file are given below:

• Column 1: A Sequential number representing a unique ID for the candidate pair.

• Column 2: The sentence’s text which includes the candidate compound­protein pair.

The compounds and protein names are masked with @COMPOUND$ and @PRO­

TEIN$ respectively.

• Column 3: The label of the candidate pair, 1 if the candidate pair is functionally

related and 0 if not functionally related.

2.4 Large­scale Dataset Analysis

On the related benchmark (CPI­DS), the predictive model was applied on all titles and

abstracts of the biomedical articles stored in the PubMed database. Named Entity Recog­

nition (NER) was applied to annotate small molecules and proteins. The sentences which

did not include a compound­protein pair were excluded and the others were kept. Process­

ing these annotations in combination with the Relation Extraction (RE) method allows for

a complete automatic annotation of functional compound­protein relations in texts. The

classification results as well as related data about the compounds and proteins were trans­

ferred into a relational database. Out of this database, we built a web server (CPRiL) for

exploring functional compound­protein relationships which were extracted from PubMed

literature.

2.4.1 CPRiL Web Server Implementation

A web­based service (CPRiL) for exploring the functional compound­protein relation­

ships which were extracted automatically from the biomedical and life sciences literature

(PubMed) was developed.

40

CHAPTER 2. Materials and Methods

2.4.1.1 CPRiL Pipeline

The CPRiL pipeline is a fully automatic classification pipeline, it was developed based on

a machine learning method trained on the above­mentioned benchmark (CPI­DS). The

CPRiL Pipeline (Figure 2.6) has four main steps:

1. Entities Annotation

Chemical compounds and proteins/genes in biomedical and life sciences articles

(PubMed) were tagged by using the NCBI PubTator Central web service (PTC) [3].

In addition, each entity was provided with a unique identifier. Chemical compounds

were mapped and linked to MeSH [103] and PubChem [88] if related IDs could be

identified automatically. Proteins were mapped and linked to a GeneID [104] and

UniProt IDs [89].

PubTator Central Web service (PTC)

PTC is a web­based service developed by NCBI which provides automatic named

entity recognition of biomedical concepts such as chemicals, genes, diseases,

and species in biomedical and life sciences articles [3]. PubTator applies machine

learning techniques for the automatic recognition of biomedical entities. It provides

the entities annotation for the entire PubMed articles and most of PubMed Central

(PMC) full­text articles. It is available through both web and API access. Table 2.3

lists the taggers, training/evaluation corpus, and the performance of each tagger for

chemical compounds and genes/proteins of PTC [3].

2. Sentence Segmentation

Sentence segmentation is a task in natural language processing (NLP) of indicating

the boundaries of the sentences in a text. It is a problem of dividing a written text

into its meaningful sentences, so that downstream entities’ relationships can happen

at the sentence level. Generally, the languages use punctuation marks, particularly

the full stop character is used to segment the text into sentences. In practice, sen­

tence and word segmentation cannot be done properly independent from each other.

41

CHAPTER 2. Materials and Methods

Table 2.3: Performance of PubTator Central (PTC). Evaluation results are reported by precision, recall, and
F1­score.

Performance (%)

Tagger Concept
type

Training/
evaluation corpus Precision Recall F1

TaggerOne [105] Chemical BioCreative V CDR [106] 88.8 90.3 89.5

GNormPlus [107] Gene BioCreative II GN [108] 87.1 86.4 86.7

Because a period may be used to signal an abbreviation as well as the end of a sen­

tence in English, the distinction between the abbreviation and sentence boundary

becomes an essential task. When an abbreviation appears at the end of a sentence

and the period represents both the abbreviation and the sentence boundary, sen­

tence segmentation becomes even more difficult.

In this step, the entire document was broken down, or “segmented”, into constituent

sentences. This “segmentation” was done throughout the article based on full stops.

The Punkt sentence tokenizer of the Natural Language Toolkit (NLTK) data package

which includes a pre­trained Punkt tokenizer for English was applied for sentence

segmentation [109]. This tokenizer splits a text into a list of sentences by using an

unsupervised algorithm. Next, sentences which have compound­protein pairs were

kept with information such as PMID and position of the sentence in the text. All other

sentences were excluded.

3. Classification

For the classification of functional/non­functional relations, the text mining model Bidi­

rectional Encoder Representations from Transformers for Biomedical Text Mining

(BioBERT, [5]) was applied. The pre­trained deep learning model is an adapted ver­

sion of BERT which was trained on the English version of Wikipedia and CorpusBook

to predict masked tokens (e.g. hidden words) from the context (e.g. related sentence

or sequence of sentences) in texts [33]. BioBERT was further trained on the biomed­

ical corpora PubMed abstracts and PMC full texts. Finally, BioBERT was trained

on the benchmark dataset of functional compound­protein relationships described

42

CHAPTER 2. Materials and Methods

above (CPI­DS) and applied for classification.

4. Data Transition

Finally, all compound­protein functionally related pairs were transferred into a rela­

tional database (CPRiL database). In addition, the database was extended to include

the related information (if available), namely:

• Article information: PubMed ID (PMID), title, journal name, and publishing

date.

• Chemical Compound information: Mesh ID, PubChem ID, molecular struc­

ture, molecular formula, SMILES, InChI, compound synonyms, and more.

• Protein information: Gene ID, Uniprot entry name, organism, protein syn­

onyms, and more.

Figure 2.6: The CPRiL pipeline.

2.5 Shortest Path between Biomedical Entities

In graph theory, the shortest path is a problem of finding the shortest path between two

vertices, source and destination, such that the sum of the weights of the edges is mini­

43

CHAPTER 2. Materials and Methods

mum [110,111]. There are different types of algorithms which can solve the shortest path

problem. Breadth­First Search (BFS) algorithm [112] calculates the shortest path of the

unweighted graph where the distances between any two vertices in the graph are the

same, i.e. the graph has unweighted edges. For the weighted graph with negative edges,

Bellman­Ford’s algorithm [113,114] is used to find the shortest path, whereas Dijkstra’s al­

gorithm [115] is the option when the graph is weighted with no negative edges. To find the

shortest path between biomedical entities, a non­negative weighted graph was generated,

and the best algorithm to calculate the shortest path for this type of graph was applied

(Dijkstra’s algorithm).

2.5.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is used to calculate the shortest path from the source vertex to all other

vertices in a non­negative weighted graph [115]. In the compound­protein relationship

problem, each compound and protein is represented by a vertex, a compound vertex is

connected to a protein vertex with an undirected weighted edge if they are functionally

related, and the edge is weighted by the number of articles where this relationship is

mentioned.

The algorithm

1. Set the distance of all vertices equal to infinity except zero for the source vertex.

2. Create a min­priority queue (Min Heap) of size V, where V is the number of vertices

in the given graph. A min­priority queue is a queue in which priority is given to the

element with minimum value.

3. Push all vertices into the Min Heap. The vertex in the Min Heap has the structure

(vertex, distance), where vertex is the vertex’s name and distance is the shortest

distance from the source to this vertex.

4. While the Min Heap is not empty, do the following:

44

CHAPTER 2. Materials and Methods

(a) gets the vertex with minimum distance value from the Min Heap. Let the ex­

tracted vertex be A.

(b) for every adjacent vertex B of A, update the distance value of B, if B is in Min

Heap and its distance value is greater than the distance value of A plus the

weight of the connected edge between A and B.

The time complexity of Dijkstra’s algorithm is O(|E| + |V |logV) using the Fibonacci heap

min­priority queue, where V is the number of vertices, and E is the number of edges. The

complexity of the space is O(V) [116].

45

CHAPTER 2. Materials and Methods

46

CHAPTER

RESULTS AND EVALUATION 3
3.1 Analysis of the Benchmark Datasets

The generation of the benchmark dataset (CPI­DS) resulted in a corpus of 2,613 sen­

tences containing at least one compound­protein pair (CPI pair). Furthermore, this dataset

was divided into two datasets based on the presence of an interaction verb: CPI­DS_IV

includes 1,209 sentences which have candidate compound­protein pairs enclosed by an

interaction verb, and CPI­DS_NIV has 1,404 sentences where the candidate compound­

protein pairs don’t have this structure. Table 3.1 shows the statistical information of each

benchmark dataset: the unique number of compounds, the unique number of proteins,

the number of positives (functionally related compound­protein pairs), the number of

negatives (non­functionally related compound­protein pairs), and the total number of

compound­protein pairs.

47

CHAPTER 3. Results and Evaluation

Table 3.1: Statistical information of CPI­DS, CPI­DS_IV, and CPI­DS_NIV.

Dataset
Unique
compound
names

Unique
protein
names

Positive
pairs

Negative
pairs

Total num.
of pairs

CPI­DS 1,320 1,545 2,931 2,631 5,562

CPI­DS_IV 787 865 1,598 1,269 2,867

CPI­DS_NIV 775 990 1,333 1,362 2,695

3.1.1 Structure of the CPI­DS Benchmark Dataset

Within all sentences of the benchmark dataset (CPI­DS), a total number of 5,562

compound­protein pairs were curated with 2,931 functionally related compound­protein

pairs (positive instances) and 2,631 non­functionally related (negative instances). For the

evaluation process, the benchmark dataset (CPI­DS) was split into two datasets: 70%

training dataset with 3,894 compound­protein pairs and 30% test dataset with 1,668 pairs

(Table 3.2). All compound­protein pairs of one document or article were categorized into

training dataset or test dataset.

Table 3.2: Number of positive and negative instances in the training and test datasets of benchmark
dataset (CPI­DS).

Dataset # Positives # Negatives Total

CPI­DS Training dataset 2,023 1,871 3,894

Test dataset 908 760 1,668

3.1.2 Relevance of Interaction Verbs

Subsequently, we analyzed the impact of interaction verbs on the classification. The inde­

pendence of functional relationships and the presence of an interaction verb was tested

with a chi­squared test. The chi­square statistic was 21.95, with a p­value < 0.00001. This

test shows that both characteristic features are not independent of each other (p<0.01).

The fraction of sentences containing an interaction verb is higher in the functionally related

CPI­pairs (Figure 3.1).

48

CHAPTER 3. Results and Evaluation

Figure 3.1: Ratio of functional and non­functional compound­protein related pairs in the benchmark
dataset with and without interaction verbs.

To check whether and how the different classification methods make use of this correla­

tion, we divided the CPI­DS into two subsets: CPI­DS_IV and CPI­DS_NIV. CPI­DS_IV in­

cludes compound­protein pairs which enclosed an interaction verb, whereas CPI­DS_NIV

includes compound­protein pairs which do not show this structure, i.e. no interaction verb

enclosed. Table 3.3 shows the number of functionally and non­functionally related pairs in

each dataset.

Table 3.3: Number of functionally and non­functionally related instances of datasets CPI­DS_IV and
CPI­DS_NIV.

Dataset Functionally
related

Non­functionally
related Total

CPI­DS_IV 1,598 1,269 2,867

CPI­DS_NIV 1,333 1,362 2,695

Total 2,931 2,631 5,562

For evaluation, each benchmark dataset was split into two datasets: 70% training dataset

and 30% test dataset, Table 3.4 shows the number of functionally (positive) and non­

functionally (negative) related compound­protein pairs. All compound­protein pairs of one

document or article were distributed into training or test dataset but not both.

Figure 3.2 demonstrates the percentage of functionally (positive) and non­functionally (neg­

49

CHAPTER 3. Results and Evaluation

Table 3.4: Number of positive and negative instances in the training and test datasets CPI­DS_IV and
CPI­DS_NIV.

Dataset # Positives # Negatives Total

CPI­DS_IV Training dataset 1,104 903 2,007

Test dataset 494 366 860

CPI­DS_NIV Training dataset 919 968 1,887

Test dataset 414 394 808

ative) related instances of both training and test datasets of the benchmark datasets. The

percentage of positive instances of the training dataset ranged from 49% to 55%, nega­

tives of training ranged from 44% to 51%, positives of the test dataset ranged from 51% to

57%, and negatives of the test dataset ranged from 43% to 49%.

51.95%
54.44% 55.01%

57.44%

48.70%
51.24%

48.05%
45.56% 44.99%

42.56%

51.30%
48.76%

Dataset

P
er

ce
nt

ag
e

of
 p

ai
rs

0

0.2

0.4

0.6

CPI-DS (Training
dataset)

CPI-DS (Test
dataset)

CPI-DS_IV
(Training
dataset)

CPI-DS_IV (Test
dataset)

CPI-DS_NIV
(Training
dataset)

CPI-DS_NIV
(Test dataset)

Positives Negatives

Figure 3.2: Percentage of functionally (positive) and non­functionally (negative) related instances of
training and test datasets of the benchmark dataset.

3.2 Baseline Analysis

We considered co­occurrences as a simple approach to calculate the baseline in the way

that every appearance of a compound and a protein in a sentence is classified as a func­

tional relationship (recall 100%, specificity 0%), taking into account the number of all true

50

CHAPTER 3. Results and Evaluation

functional relationships. Figure 3.3 shows the confusion matrix of the prediction approach

of co­occurrences for the test dataset of the combined benchmark dataset (CPI­DS) where

all pairs are predicted as functionally related (positive). Table 3.5 demonstrates the per­

formance of this approach, the sensitivity is 100% and the specificity is 0.0% by definition.

It results in a precision (equal to accuracy because there are no true and false negative

predictions) of 54.4% and an F1­score of 70.5%.

Figure 3.3: Confusion matrix of the prediction approach of co­occurrences.

Table 3.5: Analysis of the CPI­DS benchmark dataset using co­occurrences approach.

DS #Sent. #CPIs #No­CPIs #Pairs Rec. Spec. Prec. Acc. F1
CPI­DS 795 908 760 1,668 100.0 0.0 54.4 54.4 70.5

Baseline results for precision, recall, and F1­score based on simple co­occurrences. Results are shown in
percent (DS—dataset, Sent.—sentences, Rec.—recall, Spec.—specificity, Prec.—precision, F1—F1­score)

Table 3.6 shows the baseline results of CPI­DS_IV and CPI­DS_NIV datasets by using

simple co­occurrences approach. In both datasets, the baseline achieves an F1­score of

73.0% and 67.8% for CPI­DS_IV and CPI­DS_NIV, respectively.

Table 3.6: Analysis of the CPI­DS_IV and CPI­DS_NIV dataset using co­occurrences approach.

DS #Sent. #CPIs #No­CPIs #Pairs Rec. Spec. Prec. Acc. F1
CPI­DS_IV 346 494 366 860 100.0 0.0 57.4 57.4 73.0

CPI­DS_NIV 449 414 394 808 100.0 0.0 51.2 51.2 67.8
Baseline results for precision, recall, and F1­score based on simple co­occurrences. Results are shown in
percent (DS—dataset, Sent.—sentences, Rec.—recall, Spec.—specificity, Prec.—precision, F1—F1­score)

51

CHAPTER 3. Results and Evaluation

3.3 Evaluation of the Predictive Methods

The hyperparameter optimization process was performed for a range of hyperparameters

on the training dataset to select the best hyperparameters of the predictive model using

10­fold cross­validation. After that, each predictive model (SL, APG, and BioBERT) has

been evaluated individually using the selected hyperparameters with the same validation

splits of training and test splits (described in sections 3.1.1 and 3.1.2) to have a fair eval­

uation for each method using holdout cross­validation. Subsequently, the evaluation an­

alyzed the effect of the interaction verb’s presence on the classification’s performance;

the predictive methods were applied individually to the dataset which includes candidate

compound­protein pairs enclosed by interaction verb (CPI­DS_IV) and the dataset which

does not have this structure (CPI­DS_NIV).

3.3.1 Shallow Linguistic Kernel (SL)

All parameter combinations in the range 1­4 for both n­gram and window size of the SL

kernel were evaluated. The selection of n­gram=3 and window size=1 shows the best

F1­score, AUC value, and the highest precision in comparison to all other models with

F1­score of 77.4%, AUC of 80.5%, precision of 73.3%, and recall of 81.8% (Table 3.7).

In general, a lower value of window size leads to higher precision, AUC, specificity, and

accuracy and a lower recall (Figure 3.4); on the other hand, a higher value of n­gram leads

to higher the overall performance (Figure 3.5). The results show the performance of the

kernel does not change when the n­gram exceeds 3.

For both datasets (CPI­DS_IV and CPI­DS_NIV), the parameter selection n­gram 3 and

window size 1 shows the highest area under the curve value (AUC). The results showed a

lower value of window size leads to a higher precision and a lower recall. In general, the

SL kernel performs slightly better in distinguishing between functional and non­functional

relations on dataset CPI­DS_IV; just the recall performs differently, where the recall on

dataset CPI­DS_NIV is better (Table 3.8 and Table 3.9). In general, the SL kernel per­

forms better on sentences with an interaction verb, which clearly shows that the presence

of the interaction verb in the sentence helps in the recognition of the compound­protein

52

CHAPTER 3. Results and Evaluation

Table 3.7: 10­fold CV performance of SL kernel on the dataset CPI­DS.

n w Recall Specificity Precision Accuracy F1 AUC

1 1 75.6 66.2 71.5 71.0 73.0 78.7

1 2 86.3 54.8 68.0 71.3 75.7 78.7

1 3 88.0 50.1 66.1 69.8 75.2 78.2

1 4 88.2 46.7 64.7 68.3 74.3 77.5

2 1 76.5 67.3 72.5 72.0 74.0 79.7

2 2 84.7 57.6 69.0 71.7 75.6 79.1

2 3 85.2 57.0 68.8 71.7 75.7 79.0

2 4 86.8 52.5 67.0 70.4 75.3 78.6

3 1 81.8 68.2 73.4 73.3 77.4 80.5

3 2 86.1 57.6 69.4 72.5 76.5 80.0

3 3 85.4 57.2 69.0 72.0 76.0 79.8

3 4 87.1 54.0 67.8 71.3 75.9 79.4

4 1 81.8 68.2 73.4 73.3 77.4 80.5

4 2 86.1 57.6 69.4 72.5 76.5 80.0

4 3 85.4 57.2 69.0 72.0 76.0 79.8

4 4 87.1 54.0 67.8 71.3 75.9 79.4

53

CHAPTER 3. Results and Evaluation

Window size

P
er

fo
rm

an
ce

55

60

65

70

75

80

85

90

1 2 3 4

Rec.

Spec.

Prec.

Acc.

F1

AUC

Figure 3.4: Effect of the window size parameter (w) on the performance of the model using shallow
linguistic kernel (SL).

relationship.

Table 3.10 shows the holdout cross­validation performance of the predictive model of SL

kernel on the unseen test datasets (described in sections 3.1.1 and 3.1.2). SL cross­

validation achieved performance with F1­score of 79.3, precision of 75.8, and AUC of 83.1.

The evaluation process shows slight superiority of the prediction model on the dataset that

includes candidate compound­protein pairs surrounded by interaction verb (CPI­DS_IV)

over the dataset which does not have this structure (CPI­DS_NIV).

3.3.2 All­paths Graph Kernel (APG)

We evaluated the APG kernel using the same validation splits as for the SL kernel. The

results shown in Table 3.11 indicate that models achieve almost similar performance with

F1­score of ∼77.7%, AUC of ∼83.8%, recall of ∼79.0%, and precision of ∼76.7% inde­

pendent of the hyperplane optimization parameter c which had values of 0.25, 0.5, 1.0,

and 2.0. Mathematically, a larger generalization parameter c represents a lower risk of

54

CHAPTER 3. Results and Evaluation

Table 3.8: 10­fold CV performance of SL kernel on the dataset CPI­DS_IV.

n w Recall Specificity Precision Accuracy F1 AUC

1 1 75.5 67.0 73.9 72.2 74.5 77.9

1 2 80.5 61.0 71.6 72.1 75.6 78.0

1 3 82.2 59.9 71.7 72.6 76.4 77.8

1 4 84.6 55.5 70.2 72.0 76.6 77.4

2 1 74.6 71.2 76.3 73.5 75.2 80.2

2 2 79.2 65.5 73.9 73.4 76.2 79.6

2 3 78.7 64.3 73.1 72.7 75.7 79.2

2 4 80.7 62.0 72.4 72.8 76.2 79.2

3 1 74.8 71.9 76.8 73.9 75.7 80.7

3 2 78.6 66.6 74.4 73.6 76.3 80.2

3 3 78.7 65.6 74.0 73.3 76.1 79.7

3 4 80.6 63.6 73.3 73.4 76.6 79.7

4 1 74.8 71.9 76.8 73.9 75.7 80.7

4 2 78.6 66.6 74.4 73.6 76.3 80.2

4 3 78.7 65.6 74.0 73.3 76.1 79.7

4 4 80.6 63.6 73.3 73.4 76.6 79.7

55

CHAPTER 3. Results and Evaluation

Table 3.9: 10­fold CV performance of SL kernel on the dataset CPI­DS_NIV.

n w Recall Specificity Precision Accuracy F1 AUC

1 1 74.8 69.9 70.5 72.2 72.1 78.8

1 2 82.1 63.0 68.1 72.3 73.9 78.6

1 3 82.0 59.9 66.2 70.6 72.7 77.7

1 4 80.4 60.8 66.4 70.3 72.2 76.8

2 1 77.1 69.2 70.7 72.8 73.2 80.2

2 2 83.0 62.7 68.1 72.3 74.2 79.5

2 3 84.1 61.5 67.8 72.3 74.5 79.3

2 4 82.2 61.4 67.4 71.4 73.5 78.7

3 1 77.8 69.4 71.1 73.3 73.8 80.8

3 2 84.3 62.3 68.3 72.8 74.9 80.2

3 3 84.6 60.7 67.7 72.1 74.5 80.1

3 4 83.8 59.3 66.7 71.0 73.6 79.3

4 1 77.8 69.4 71.1 73.3 73.8 80.8

4 2 84.3 62.3 68.3 72.8 74.9 80.2

4 3 84.6 60.7 67.7 72.1 74.5 80.1

4 4 83.8 59.3 66.7 71.0 73.6 79.3

Table 3.10: Holdout CV performance of SL kernel on the benchmark dataset.

Recall Specificity Precision Accuracy F1 AUC

CPI­DS 83.3 68.2 75.8 76.4 79.3 83.1

CPI­DS_IV 77.1 77.3 82.1 77.2 79.5 84.4

CPI­DS_NIV 81.4 67.5 72.5 74.6 76.7 82.4

56

CHAPTER 3. Results and Evaluation

n-gram

P
er
fo
rm
an
ce

65

70

75

80

85

1 2 3 4

Rec.

Spec.

Prec.

Acc.

F1

AUC

Figure 3.5: Effect of the n­gram parameter (n) on the performance of the model using shallow linguistic
kernel (SL).

overfitting [97,102].

Table 3.11: 10­fold CV performance of APG kernel on the dataset CPI­DS.

c Recall Specificity Precision Accuracy F1 AUC

0.25 79.0 73.3 76.7 76.4 77.7 83.8

0.5 77.6 73.8 76.8 76.0 77.0 83.8

1 77.6 73.8 77.0 76.1 77.1 83.6

2 76.7 74.5 77.2 75.8 76.8 83.1

Evaluating the APG kernel on datasets CPI­DS_IV and CPI­DS_NIV showed that exper­

iments within the same dataset achieve similar performances, independent of the hyper­

plane optimization parameter c. For both datasets, the AUC values do not differ by more

than 2%, indicating high robustness of the classifier. Furthermore, the F1­score and AUC

values on dataset CPI­DS_IV are about 2­5% better than on dataset CPI­DS_NIV, due to

clearly higher recall and precision values (Table 3.12 and Table 3.13). Therefore, the APG

57

CHAPTER 3. Results and Evaluation

kernel performs better in distinguishing between functional and non­functional relations on

dataset CPI­DS_IV, i.e. APG is doing well with the presence of the interaction verb.

Table 3.12: 10­fold CV performance of APG kernel on the dataset CPI­DS_IV.

c Recall Specificity Precision Accuracy F1 AUC

0.25 83.8 68.2 77.2 77.4 80.2 84.0

0.5 79.2 73.9 79.6 77.3 79.3 83.9

1 78.4 73.5 79.5 77.0 78.7 83.6

2 76.5 74.0 79.2 75.8 77.6 83.0

Table 3.13: 10­fold CV performance of APG kernel on the dataset CPI­DS_NIV.

c Recall Specificity Precision Accuracy F1 AUC

0.25 79.6 68.1 70.6 73.9 74.6 82.0

0.5 76.3 71.7 72.1 74.1 73.9 82.0

1 75.3 72.5 72.4 74.0 73.6 82.0

2 73.5 74.2 73.3 73.9 73.0 81.9

Table 3.14 shows the holdout cross­validation performance of the predictive model of APG

kernel on the unseen test datasets (described in sections 3.1.1 and 3.1.2). The cross­

validation on CPI­DS dataset achieved performance with F1­score of 79.8, precision of

77.1, and AUC of 84.4. Similarly to SL kernel, the evaluation process of APG kernel

shows superiority of the predictionmodel on the dataset that includes candidate compound­

protein pairs surrounded by interaction verb (CPI­DS_IV) over the dataset which does not

have this structure (CPI­DS_NIV).

Table 3.14: Holdout CV performance of APG kernel on the benchmark dataset.

Recall Specificity Precision Accuracy F1 AUC

CPI­DS 82.8 70.5 77.1 77.2 79.8 84.4

CPI­DS_IV 87.3 66.1 77.7 78.3 82.2 85.2

CPI­DS_NIV 87.0 65.5 72.6 76.5 79.1 82.8

58

CHAPTER 3. Results and Evaluation

3.3.3 BioBERT

In BioBERT, we have evaluated a set of internal model parameters which perform well

against the performance of the model, which is called hyperparameter optimization. The

set combination of four well­performing hyperparameters which can make a concrete in­

fluence on the performance of the model were selected to evaluate the performance of

the BioBERT method on the benchmark dataset (CPI­DS). The selected hyperparameters

are:

1. max_seq_length: maximum number of tokens of the input sequence after Word­

Piece tokenization. Input sequences which are longer than this length will be trun­

cated, whereas the shorter ones will be padded, i.e. add a special padding token

“[PAD]” to ensure shorter sequences will have the maximum length accepted by the

model (max_seq_length). The most popular sequence lengths are 2n tokens.

2. train_batch_size: number of training samples which must be processed in the train­

ing before the internal parameters of the model are updated. Because one batch

is too big to feed to the memory at once, we divided it into several smaller batches.

The possible value of train_batch_size is greater or equal to 1 and less than or equal

to the number of input instances in the training dataset. In general, smaller batch

sizes train more slowly but can converge more quickly, whereas bigger batch sizes

progress in training more quickly but don’t always converge quickly [117]. The most

popular batch sizes include 32, 64, and 128 samples.

3. learning_rate: the learning rate (or step size) is a hyperparameter that controls how

much to update the model weights in response to the estimated error during the

training process. The learning rate is usually set to a positive value < 1.0. Choosing

the learning rate is challenging; with a large learning rate, the system learns fast

with large weight updates, which might cause undesirable divergent behavior in the

loss function. However, when the learning rate is very small, the training progresses

slowly with a very small update to the weights of the network. The optimal learning

rate is lying in between, typical learning rate is ranging [1e­1, 1e­5].

59

CHAPTER 3. Results and Evaluation

4. num_train_epochs: number of times which the learning algorithm will run through

the whole training dataset during the training process. It allows the learning algorithm

to run until the loss is sufficiently minimized. As the number of epochs increases, the

more times the weights are updated in the neural network and the higher the running

time. When a neural network model is trained using more epochs than necessary,

the training model learns patterns that are specific to the sample data. This prevents

the model performing well on a new dataset (overfitting) [118]. In general, as the

training and validation loss continue to decrease, the training should continue. The

number of epochs can be set to a positive integer value greater than one.

All parameter combinations values of the BioBERT were evaluated: 64 and 128 for

max_sequence_length; 8, 16, and 32 for train_batch_size; 2e­5, 3e­5, and 5e­5 for

learning_rate; and 5 and 10 for num_train_epochs.

The model has the best performance with the combination of the hyperparameters val­

ues as follows: max_seq_length = 128, train_batch_size = 16, learning_rate = 2e­5 and

num_train_epochs = 10 with F1­score of 83.8%, AUC of 89.6%, precision of 81.6%, and

recall of 86.3% (Table 3.15).

Table 3.15: 10­fold CV performance of BioBERT on the dataset CPI­DS.

max_

seq_

length

train_

batch_

size

learning_

rate

num_

train_

epochs

Rec. Spec. Prec. Acc. F1 AUC

64 8 2e­5 5 85.1 76.0 80.0 81.1 82.3 87.7

64 8 2e­5 10 83.5 77.4 80.4 80.8 81.8 87.5

64 8 3e­5 5 83.9 75.3 79.0 80.1 81.3 87.7

64 8 3e­5 10 83.1 79.5 81.7 81.6 82.3 87.5

64 8 5e­5 5 81.8 73.0 77.0 77.6 79.1 84.3

64 8 5e­5 10 81.3 78.1 80.4 79.9 80.7 86.1

60

CHAPTER 3. Results and Evaluation

64 16 2e­5 5 86.9 72.7 78.0 80.4 82.1 87.8

64 16 2e­5 10 84.1 78.3 81.2 81.5 82.5 88.2

64 16 3e­5 5 86.3 74.7 79.2 81.1 82.5 88.0

64 16 3e­5 10 83.3 77.7 80.3 80.6 81.6 87.5

64 16 5e­5 5 83.2 72.2 76.9 78.1 79.7 85.4

64 16 5e­5 10 81.9 76.4 79.3 79.4 80.4 87.1

64 32 2e­5 5 85.6 74.3 78.6 80.4 81.8 87.9

64 32 2e­5 10 83.8 77.4 80.4 80.9 82.0 87.5

64 32 3e­5 5 85.0 74.9 78.9 80.4 81.8 88.3

64 32 3e­5 10 82.1 79.2 81.3 80.9 81.6 87.5

64 32 5e­5 5 84.6 73.7 78.0 79.5 81.0 86.6

64 32 5e­5 10 82.6 77.5 80.1 80.2 81.1 86.5

128 8 2e­5 5 87.2 77.3 81.0 82.8 83.9 89.4

128 8 2e­5 10 83.7 77.8 80.9 81.3 82.2 88.6

128 8 3e­5 5 84.9 76.1 79.7 81.0 82.1 88.3

128 8 3e­5 10 84.1 78.5 81.3 81.8 82.5 88.4

128 8 5e­5 5 84.1 73.9 78.1 79.3 80.7 87.6

128 8 5e­5 10 82.2 79.0 81.2 80.7 81.5 88.5

128 16 2e­5 5 87.5 75.4 79.6 81.8 83.3 89.2

128 16 2e­5 10 86.3 78.2 81.6 82.8 83.8 89.6

128 16 3e­5 5 87.0 74.3 79.2 81.3 82.8 88.9

128 16 3e­5 10 84.4 79.2 82.2 82.2 83.1 89.0

61

CHAPTER 3. Results and Evaluation

128 16 5e­5 5 84.2 75.8 79.3 80.5 81.6 87.9

128 16 5e­5 10 82.7 78.5 81.2 80.9 81.8 87.5

Evaluating BioBERT on datasets CPI­DS_IV showed that the model has the best

performance with the combination of the values of the following hyperparameters:

max_seq_length = 128, train_batch_size = 16, learning_rate = 3e­5 and num_train_epochs

= 10 (Table 3.16). For dataset CPI­DS_NIV, the model has the best performance when

the combination of the values of the hyperparameters was: max_seq_length = 128,

train_batch_size = 8, learning_rate = 2e­5 and num_train_epochs = 5 (Table 3.17).

BioBERT achieves significantly better performance on CPI­DS_IV than on CPI­DS_NIV

with F1­score higher in ∼5%. This shows that BioBERT performs better in distinguishing

between functional and non­functional relations with the presence of the interaction verb.

Furthermore, the F1­score and AUC values on dataset CPI­DS_IV are about 2­5% better

than on dataset CPI­DS_NIV, due to clearly higher recall and precision values.

Table 3.16: 10­fold CV performance of BioBERT on the dataset CPI­DS_IV.

max_

seq_

length

train_

batch_

size

learning_

rate

num_

train_

epochs

Rec. Spec. Prec. Acc. F1 AUC

64 8 2e­5 5 83.3 80.4 84.6 82.3 83.8 88.4

64 8 2e­5 10 87.2 78.3 83.8 83.6 85.4 87.9

64 8 3e­5 5 83.2 78.7 83.7 81.7 83.3 86.8

64 8 3e­5 10 83.0 77.2 82.1 80.6 82.5 87.0

64 8 5e­5 5 81.1 74.8 80.2 78.7 80.6 84.4

64 8 5e­5 10 84.1 76.5 82.3 81.2 83.0 84.9

64 16 2e­5 5 83.1 81.3 85.1 82.6 84.0 88.9

62

CHAPTER 3. Results and Evaluation

64 16 2e­5 10 84.8 80.1 84.6 83.1 84.6 87.8

64 16 3e­5 5 83.6 77.2 82.4 81.1 82.8 86.6

64 16 3e­5 10 84.1 78.9 83.6 82.1 83.7 87.9

64 16 5e­5 5 77.5 77.8 82.0 78.2 79.2 85.0

64 16 5e­5 10 82.9 75.3 81.0 79.8 81.7 85.3

64 32 2e­5 5 82.6 79.7 84.1 81.7 83.1 88.1

64 32 2e­5 10 84.4 77.7 82.9 81.8 83.6 88.1

64 32 3e­5 5 83.9 77.6 82.7 81.3 83.1 87.2

64 32 3e­5 10 86.4 78.1 83.5 82.9 84.9 88.0

64 32 5e­5 5 81.5 78.9 83.4 81.1 82.4 86.7

64 32 5e­5 10 83.6 78.3 83.1 81.6 83.3 86.7

128 8 2e­5 5 84.3 79.6 84.3 82.6 84.1 88.9

128 8 2e­5 10 86.9 77.6 83.5 83.3 85.0 89.8

128 8 3e­5 5 81.7 77.1 82.4 80.3 81.9 86.4

128 8 3e­5 10 86.4 78.5 83.9 83.4 85.0 89.2

128 8 5e­5 5 81.4 73.8 79.9 78.6 80.4 84.2

128 8 5e­5 10 86.5 77.5 83.0 82.9 84.6 87.4

128 16 2e­5 5 82.0 78.7 83.2 81.1 82.5 88.8

128 16 2e­5 10 86.4 78.9 83.8 83.4 85.0 88.4

128 16 3e­5e­5 5 84.8 75.2 81.4 81.0 83.0 87.4

128 16 3e­5 10 87.4 79.2 84.5 84.3 85.8 89.7

128 16 5e­5 5 82.2 78.1 82.5 81.0 82.1 87.5

63

CHAPTER 3. Results and Evaluation

128 16 5e­5 10 84.2 77.1 82.7 81.4 83.3 86.7

Table 3.17: 10­fold CV performance of BioBERT on the dataset CPI­DS_NIV.

max_

seq_

length

train_

batch_

size

learning_

rate

num_

train_

epochs

Rec. Spec. Prec. Acc. F1 AUC

64 8 2e­5 5 79.3 78.2 77.2 78.5 77.9 85.5

64 8 2e­5 10 83.1 75.9 77.3 79.5 79.8 86.9

64 8 3e­5 5 81.2 77.4 77.7 79.2 79.2 86.9

64 8 3e­5 10 82.3 77.1 77.6 79.7 79.7 86.7

64 8 5e­5 5 74.1 79.9 77.9 77.0 75.6 84.2

64 8 5e­5 10 72.6 76.3 67.3 74.4 69.5 80.3

64 16 2e­5 5 77.4 78.0 77.4 77.9 77.2 86.2

64 16 2e­5 10 81.5 74.1 75.2 77.7 78.0 84.7

64 16 3e­5 5 76.8 78.9 78.5 78.0 77.3 86.8

64 16 3e­5 10 80.7 78.6 78.3 79.5 79.2 86.6

64 16 5e­5 5 75.1 78.8 77.0 77.0 75.8 85.2

64 16 5e­5 10 79.6 78.0 77.5 78.8 78.4 86.1

64 32 2e­5 5 80.0 77.7 77.6 78.8 78.5 86.5

64 32 2e­5 10 82.7 75.7 76.9 79.1 79.5 86.6

64 32 3e­5 5 75.1 79.7 78.1 77.7 76.5 85.9

64 32 3e­5 10 81.1 74.0 75.7 77.9 78.2 86.2

64 32 5e­5 5 74.6 76.5 75.3 75.6 74.7 85.1

64

CHAPTER 3. Results and Evaluation

64 32 5e­5 10 79.4 76.1 76.3 77.8 77.6 84.4

128 8 2e­5 5 83.6 79.5 79.4 81.4 81.2 88.8

128 8 2e­5 10 84.3 77.6 78.5 80.7 80.9 87.7

128 8 3e­5 5 85.0 76.2 77.4 80.5 80.7 87.7

128 8 3e­5 10 85.5 75.7 76.8 80.5 80.7 87.8

128 8 5e­5 5 76.9 74.6 74.1 75.5 75.1 83.9

128 8 5e­5 10 81.6 77.6 77.9 79.6 79.5 86.0

128 16 2e­5 5 79.0 77.3 77.0 78.0 77.7 87.2

128 16 2e­5 10 84.7 77.5 78.3 80.9 81.2 88.2

128 16 3e­5 5 81.2 75.9 76.4 78.5 78.6 87.0

128 16 3e­5 10 83.3 76.3 77.4 79.7 79.9 87.6

128 16 5e­5 5 79.4 79.2 78.5 79.5 78.8 86.6

128 16 5e­5 10 84.2 76.0 76.9 80.1 80.2 86.6

Table 3.18 shows the holdout cross­validation performance of the predictive model of

BioBERT on unseen test datasets (described in sections 3.1.1 and 3.1.2). It used in the

evaluation process the following set of hyperparameters values: max_seq_length = 128,

train_batch_size = 16, learning_rate = 2e­5 and num_train_epochs = 10, which achieved

the best performance of the model in the validation process. The cross­validation of

BioBERT on CPI­DS dataset achieved performance with F1­score of 83.8, precision of

81.6, and AUC of 89.6. The cross­evaluation of BioBERT shows superiority of the pre­

diction model on the dataset that includes candidate compound­protein pairs surrounded

by interaction verb (CPI­DS_IV) over the dataset which does not have this structure (CPI­

DS_NIV).

65

CHAPTER 3. Results and Evaluation

Table 3.18: Holdout CV performance of BioBERT on the benchmark dataset.

Recall Specificity Precision Accuracy F1 AUC

CPI­DS 86.8 82.0 85.2 84.6 86.0 91.2

CPI­DS_IV 82.2 87.7 90.0 84.4 85.8 89.0

CPI­DS_NIV 87.9 78.2 80.9 83.2 84.3 89.5

3.4 Comparison and Combination of the Predictive Meth­

ods

In addition to evaluating the performance of each individual method (shallow linguistic ker­

nel (SL), all­paths graph kernel (APG), and BioBERT), we evaluated combinations of the

models to test the confidence and precision. We have analyzed whether the combination

of the evaluated methods (SL, APG, BioBERT) yields higher confidence and precision than

the individual method. We combined them by applying:

• majority voting: the candidate compound­protein pair is classified as functionally

related if at least two of the three evaluated methods have predicted this pair as

functionally related; otherwise the pair is classified as not functionally related.

• jury decision: the candidate compound­protein pair is classified as functionally re­

lated if and only if all the evaluated methods predicted this pair as functionally related;

otherwise the pair is classified as not functionally related.

Table 3.19 shows that BioBERT performs better than APG and SL; however, APG per­

forms slightly better than SL. The jury decision of the combination of the three evaluated

methods has the highest precision, with 88.1%; on the other hand, the recall is decreased,

a significant fraction (17%) of the functionally related (positive) pairs is not identified (lost).

Similarly, the combinations of BioBERT AND SL, BioBERT AND APG, BioBERT AND (SL

OR APG), and the majority vote all have a slightly better precision but low recall, i.e. more

functionally related (positive) pairs were not identified (Figure 3.6). In general, combining

more than one method can improve the precision, while on the other hand, it reduces the

66

CHAPTER 3. Results and Evaluation

recall, i.e. losing a significant fraction of the functionally related (positive) pairs. BioBERT

has the best overall performance, with an F1­score of 86.0%, precision of 84.6%, and recall

of 86.8%.

Table 3.19: The performance of the ML model of the evaluated methods (SL, APG, BioBERT) and their
combinations.

Method Recall Specificity Precision Accuracy F1 AUC

SL kernel 83.3 68.2 75.8 76.4 79.3 83.1

APG kernel 82.8 70.5 77.1 77.2 79.8 84.4

BioBERT 86.8 82.0 85.2 84.6 86.0 91.2

SL AND APG 74.7 79.1 81.0 76.7 77.7 ­

BioBERT AND SL 76.4 86.2 86.9 80.9 81.3 ­

BioBERT AND APG 76.2 86.5 87.0 80.9 81.3 ­

BioBERT AND (SL OR APG) 82.6 84.0 86.0 83.2 84.3 ­

Majority vote* 87.2 74.3 80.2 81.6 83.6 ­

Jury Decision** 70.0 88.7 88.1 78.5 78.0 ­
* Majority vote: The pair is predicted as functional if at least two of the three evaluated methods (BioBERT,
SL, APG) predict the pair as functional, otherwise non­functional. **Jury Decision: The pair is predicted as
functional if all of the methods (BioBERT, SL, APG) predict the pair as functional, otherwise non­functional.

3.4.1 Runtime of the Evaluated Methods

The validation procedure for the optimal hyperparameters of the evaluated methods done

on a machine has the specifications as shown in Table 3.20.

Table 3.20: The specifications of the machine which was used for the evaluation process.

Specification

CPU Intel core i5­9600k (6x 3.70GHz)

GPU Geforce RTX 2070 SUPER, 8 GB GDDR6, 2560 CUDA cores, 1.77 GHz

RAM 55 GB DDR4

OS Ubuntu 18.04.6 LTS (64 bits)

Table 3.21 shows the runtime of each method and the type of the processing unit used,

central processing unit (CPU) or graphics processing unit (GPU). The BioBERT model

67

CHAPTER 3. Results and Evaluation

25

50

75

Recall Specificity Precision Accuracy F1-score AUC

SL kernel APG kernel BioBERT SL AND APG BioBERT AND SL BioBERT AND APG BioBERT AND (SL OR APG) Majority Jury Decision

Figure 3.6: The performance comparison of the predictive methods and their combinations.

takes significantly less runtime compared to SL and APG. Using GPU clearly shows the

significant advantage of this processing unit, which has many more cores than CPU ­ it

can be up to 1000x. This aspect has to be considered within the scenario of applying a

selected model to all PubMed articles, where we can see the significant advantage of using

GPU over CPU, and the superiority of BioBERT over other models in terms of runtime (see

section Large scale dataset application).

Table 3.21: Runtime of the validation process of SL, APG, and BioBERT on benchmark dataset.

Method Type of processing unit Runtime

SL CPU 9 minutes

APG CPU 28 minutes

BioBERT CPU 117 minutes

BioBERT GPU 3.4 minutes

3.5 Large Scale Dataset Application

The evaluated methods (SL, APG, and BioBERT) have been successfully applied to the

whole MEDLINE database of references and abstracts on life sciences and biomedical top­

68

CHAPTER 3. Results and Evaluation

ics which were published before July 2022, comprising about 33M references to biomed­

ical and life sciences articles. The dataset consists of more than 140M sentences, with

around 6M of them containing at least one compound­protein candidate pair (Table 3.22).

The three evaluated methods classified 55­59% of the candidate pairs as functionally re­

lated and 41­45% of them classified as non­functionally related (Figure 3.7). 62% of the

candidate pairs are classified identically by the three evaluated methods, with around 2.5M

unique functionally related compound­protein pairs. The total elapsed time of the BioBERT

shows the superiority of the parallel processing using a graphics processing unit (GPU)

over the central processing unit (CPU). BioBERT took around 13 hours using GPU to ap­

ply the model on the whole MEDLINE dataset, whereas shallow linguistic kernel (SL) and

all­paths graph kernel (APG) did the same job in around 15 and 24 days, respectively

(Figure 3.8).

Table 3.22: Statistical information of application of the predictive model of SL, APG, and BioBERT on the
whole MEDLINE database.

SL APG BioBERT

PubMed articles 33M

Number of sentences 140M

Number of articles with candidate pairs 2.8M

Number of sentences with candidate pairs 6.0M

Number of candidate pairs 16.3M

Functional relations 9.6M = 58.9% 9.5M = 58.3% 9.0M = 55.2%

Non­functional relations 6.7M = 41.1% 6.8M = 41.7% 7.3M = 44.8%

Number of identical predictions of
the three evaluated methods

10.1M = 62%
(61.0% functional, 39.0% non­functional)

Number of the distinct functional
relation pairs 2.5M

Total elapsed time 15 days 24 days 13 hours

69

CHAPTER 3. Results and Evaluation

Method

Fr
ac

tio
n

(%
)

0.00

25.00

50.00

75.00

100.00

SL APG BioBERT

Non-functional relations Functional relations

Figure 3.7: Percentage distribution of functional and non­functional compound­protein relationship pairs of
the whole MEDLINE database when applying the predictive models (SL, APG, BioBERT).

Method

To
ta

l e
la

ps
ed

 ti
m

e
(D

ay
s)

0

5

10

15

20

25

SL APG BioBERT

Figure 3.8: Runtime of the predictive models (SL, APG, BioBERT) when applied on the whole MEDLINE
database. SL and APG used CPU, whereas BioBERT used GPU.

70

CHAPTER 3. Results and Evaluation

3.6 Web Server: Compound­Protein Relationships in Lit­

erature (CPRiL)

Compound­Protein Relationship in Literature (CPRiL) is a new, user­friendly, freely avail­

able web­based service for functional compound­protein relationships in biomedical and

life sciences literature. CPRiL is built by applying the CPRiL pipeline on the full MEDLINE

database, which comprises more than 33million references to biomedical and life sciences

articles. CPRiL is built using Django as the web framework for developing web resources.

3.6.1 CPRiL Database Schema

CPRiL used PostgreSQL relational database as a backend database. Figure 3.9 shows

the schema of CPRiL database. The main tables in CPRiL database are:

• tbl_articles: This table includes information about the biomedical articles such as

PMID, title, journal, and published year.

• tbl_sentences: This table includes the text of sentences which have the functionally

related pairs.

• tbl_compounds: This table includes information about the interacted compounds

such as compound name, MeSH ID, PubChem ID, inChi, SMILES, and molecular

formula.

• tbl_proteins: This table includes information about the interacted proteins such as

protein name, NCBI gene ID, gene symbol, organism ID, and gene summary.

• tbl_comp_synonyms and tbl_prot_synonyms: These two tables include the most

general synonyms of compounds and proteins which are collected fromMeSH, gene,

and PubChem databases.

• tbl_organisms: This table includes the organisms of the interacted proteins.

71

CHAPTER 3. Results and Evaluation

• tbl_cpi_prediction: This table includes information about the functional related

compound­protein pairs such as PMID, sentence ID, compound tagged names, pro­

tein tagged names, the prediction of the evaluated machine learning methods (SL,

APG, BioBERT), and the date of collecting this information.

3.6.2 CPRiL Features

This section describes the main features of CPRiL. These features include searching types,

network layout visualization of the output, and the shortest path between two entities.

3.6.2.1 Searching Types

CPRiL as a search engine offers two main types of search: standard search and advanced

search.

Standard Search: This type of search includes:

• Searching by name or synonym of a compound for functional relations to proteins.

Figure 3.10 shows an example of the result of this type of search, where “Remdesivir”

is the searched compound name.

• Searching by name, synonym, or UniProt entry name of a protein for functional re­

lations to small molecules. Figure 3.11 and Figure 3.12 show the output result of

this type of searching, where “P53; Homo sapiens”, and “SPIKE_SARS2” are the

searched protein name and UniProt entry name, respectively.

• Searching for all functional compound­protein relationships in a specific article by a

unique identifier number (PubMed ID) of this article. Figure 3.13 shows all functional

compound­protein relationships which appear in the article with PMID = 32521159.

Figure 3.14 shows an example of the output result of the functional relationship between

“Remdesivir” and “ORF1a polyprotein” which are described in the article “RNA­dependent

RNA polymerase: Structure, mechanism, and drug discovery for COVID­19” [119].

Advanced Search: This type of search offers to query for the functional compound­

protein relationship within a specific time period using all the combinations of compound

72

CHAPTER 3. Results and Evaluation

Fi
gu

re
3.
9:

Th
e
sc
he
m
a
of
C
PR

iL
da
ta
ba
se
.

73

CHAPTER 3. Results and Evaluation

Figure 3.10: An example of searching for functionally related proteins to specific compound using
compound name. The output result of searching by compound name “Remdesivir” for functionally related

proteins.

74

CHAPTER 3. Results and Evaluation

Figure 3.11: An example of searching for functionally related compounds to a specific protein using protein
name and organism name. The output result of searching by protein name “P53” and organism “Homo

sapien” for functionally related small molecules.

75

CHAPTER 3. Results and Evaluation

Figure 3.12: An example of searching for functionally related compounds to a specific protein using
UniProt entry name. The output result of the functionally related small molecules to protein with UniProt

entry name “SPIKE_SARS2”.

synonym, protein synonym, Uniprot entry name, and publishing time of the article. Figure

3.15 shows an example of searching for the functional relationship between small molecule

“Apixaban” and protein “coagulation factor X; Homo sapiens” which are mentioned in the

biomedical articles published in the period between 2010 and 2022.

The search process is supported by features such as autocomplete and suggestions in

case the searched entry does not have an exact match or if there is a typo. Additionally,

all the output results of all types of searches can be sorted and provided for download as

a csv file (comma­separated values).

3.6.2.2 Network Visualization of the Output

The network view is an efficient way to summarize the output results of the search be­

cause it offers a visual representation of the output. The network layout gives a summary

overview of the relationship between the searched compound/protein and another entity

(compound/protein). In the network layout, each entity is represented by a vertex; the

76

CHAPTER 3. Results and Evaluation

Figure 3.13: An example of the functional compound­protein relations in CPRiL by searching using PMID.
All functional compound­protein relations which appear in the article with PMID “32521159”.

77

CHAPTER 3. Results and Evaluation

Figure 3.14: An example of the functional relationship between a specific compound and protein appears
in an article. The output shows the sentences which appear the relationship between Remdesivir and

ORF1a polyprotein in the article with PMID “32943188”.

Figure 3.15: An example of the advanced search of CPRiL. The functional relationship between small
molecule “Apixaban” and protein “coagulation factor X; Homo sapiens” in the biomedical articles published

between 2010 and 2022.

78

CHAPTER 3. Results and Evaluation

entity types are discriminated with different colors. The edges represent the relationship

between the entities; stronger relationships are represented by thicker edges with a weight

representing the number of biomedical articles where this relationship appears. Further­

more, the shortest paths between compound and protein are calculated even if there is no

direct connection between them; this can give an overview when a compound­protein pair

is related via other compounds and proteins.

In CPRiL, the functional compound­protein relationships can be displayed as a network.

This network displays the top n functional compound­protein relationships of the searched

entity (compound/protein) which have the highest number of occurrences in the biomed­

ical and life sciences articles. The node in the middle represents the searched com­

pound/protein; the other nodes represent the proteins which are functionally related to

the searched compound, or compounds in case the searched entity is a protein. More­

over, the layout shows the number of occurrences of the compound­protein relationship

as a number on the edge. All the nodes and edges in the network are clickable: the nodes

link to the web card of the compound or protein, the edges link to the articles where this

relationship appears. Figure 3.16 shows an example of the network layout of a compound­

protein relationship; it shows the top 10 proteins which have functional relationships to the

compound “Remdesivir” ; furthermore, it shows that “ORF1a polyprotein; Severe acute res­

piratory syndrome coronavirus 2” the most frequently related protein to “remdesivir” with

94 articles. Similarly, Figure 3.17 shows the top 10 it shows the top 10 compounds which

have functional relationships to the protein “SPIKE_SARS2”, “polysaccharides” is the most

frequently related compound to “SPIKE_SARS2” with 53 articles.

3.6.2.3 Shortest Path between Entities

In case there is no direct relation between a compound and the protein or if you are looking

for indirect relation between two proteins, then the shortest path feature of CPRiL will be

very useful and gives an idea of how the two entities can be related to each other. Figure

3.18 shows the indirect relationship between the compound “otamixaban” and the protein

“SPIKE_SARS2” using the shortest path. It shows the top N shortest paths between the

compound “otamixaban” and the protein “SPIKE_SARS2” ; the weight of the edges repre­

79

CHAPTER 3. Results and Evaluation

Figure 3.16: Network Visualization of the functional compound­protein relation for compound searching.
Top 10 proteins which have functional relationships to the compound “Remdesivir”.

80

CHAPTER 3. Results and Evaluation

Figure 3.17: Network Visualization of the functional compound­protein relation for protein searching. Top
10 compounds which have functional relationships to the protein “SPIKE_SARS2”.

81

CHAPTER 3. Results and Evaluation

sents the number of biomedical articles where this relationship appears. In this example,

the shortest path is otamixaban —> coagulation factor II, thrombin (Home Sapiens) —>

Heparin—> SPIKE_SARS2.

Figure 3.18: Shortest path between compound and protein. The top n shortest paths between the
compound “otamixaban” and the protein “SPIKE_SARS2”. The source and destination are shown in red,

the compounds in the shortest path are shown in green, and proteins are shown in purple.

Figure 3.19 shows the indirect relationship between the two proteins “SPIKE_SARS2” and

“TMPS2_HUMAN” using the shortest path. It shows that SPIKE_SARS2 can be indirectly

related to TMPS2_HUMAN by the interaction with Bromhexine, Hydroxychloroquine, or

Nafamostat. All the nodes and edges in the network are clickable: the nodes link to the

card of the compound or protein, and the edges link to the articles where this relationship

appears.

3.6.3 Statistical Data of CPRiL

Table 3.23 shows some statistical data of CPRiL. Figure 3.20 displays the distribution of

the annual number of articles over the last 15 years. Figure 3.21 shows the changes in

the annual number of functional compound­protein relationships over the last 15 years.

82

CHAPTER 3. Results and Evaluation

Figure 3.19: Shortest path between two proteins. The top n shortest paths between two proteins
“SPIKE_SARS2” and “TMPS2_HUMAN”. The source and destination are shown in red, the compounds in

the shortest path are shown in green, and proteins are shown in purple.

Table 3.23: Statistical data of CPRiL.

Attribute Count

Number of PubMed articles ∼33 M

Number of articles which have at least one functionally
related compound­protein pair ∼2.1 M

Number of unique sentences which have at least one
functionally related compound­protein pair ∼4.3 M

Number of functionally related compound­protein pairs ∼8.9 M

Number of unique functionally related compound­protein pairs ∼2.5 M

Number of unique names and synonyms of chemical compounds ∼459 K

Number of unique Molecules with Mesh IDs ∼42.7 K

Number of unique Molecules with PubChem IDs ∼50.7 K

Number of unique proteins ∼90.7 K

Number of unique organisms 1129

83

CHAPTER 3. Results and Evaluation

Year

A

rti
cl

es
 (M

)

0

0.5

1

1.5

2

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Figure 3.20: The distribution of biomedical articles over the last 15 years.

Year

fu

nc
tio

na
l c

om
po

un
d-

pr
ot

ei
n

re
la

tio
n

pa
irs

 (K
)

0

200

400

600

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Figure 3.21: The annual number of functionally related compound­protein pairs over the last 15 years.

84

CHAPTER 3. Results and Evaluation

Table 3.24 shows the top 10 functional compound­protein related pairs which have the

highest number of articles where these relationships are described.

Table 3.24: Top ten functionally related compound­protein pairs.

Compound name PubChem ID Protein name Organism UniProt ID #Articles

1 Glucose 5793 insulin Homo sapiens
P01308

(INS_HUMAN)
21,875

2 Iron 23925 transferrin Homo sapiens
P02787

(TRFE_HUMAN)
3,127

3 Gefitinib 123631
epidermal growth

factor receptor
Homo sapiens

P00533

(EGFR_HUMAN)
2,974

4 Lipids ­ insulin Homo sapiens
P01308

(INS_HUMAN)
2,606

5 Sirolimus 5284616
mechanistic target

of rapamycin kinase
Homo sapiens

P42345

(MTOR_HUMAN)
2,470

6 Erlotinib 176871
Hydrochloride

epidermal growth

factor receptor

Homo sapiens
P00533

(EGFR_HUMAN)
2,428

7 Iron 23925
hepcidin

antimicrobial

peptide

Homo sapiens
P81172

(HEPC_HUMAN)
1,956

8 Imatinib 123596

Mesylate ABL

proto­oncogene 1,

non­receptor

tyrosine kinase

Homo sapiens
P00519

(ABL1_HUMAN)
1,908

9
2­(4­morpholinyl)­

8­phenyl­4H­1­

benzopyran­4­one

3973
AKT serine/threonine

kinase 1
Homo sapiens

P31749

(AKT1_HUMAN)
1,802

10 Calcium 5460341 parathyroid hormone Homo sapiens
P01270

(PTHY_HUMAN)
1,797

85

CHAPTER 3. Results and Evaluation

86

CHAPTER

DISCUSSION 4
This work aimed at extracting functional relationships between molecules from biomedical

literature using artificial intelligence­based text mining and machine learning techniques.

A new benchmark dataset (CPI­DS) containing annotations of proteins, compounds, and

their functional relationships was manually curated for evaluation purposes. This dataset

serves as a great resource in the field of relation extraction and can be used for bench­

marking predictive models in this field. A related benchmark applied for the BioCreAtIvE

challenge includes a dataset for chemical­protein interactions from PubMed abstracts

which were annotated manually by domain experts. While the ChemProt­benchmark for

the training of the classification of functional compound­protein interactions into different

groups (e.g. upregulator, antagonist, etc.), focuses on validated interactions, it is therefore

not suitable for the separation from functionally unrelated compound­protein pairs that are

mentioned in texts. It is planned to share the CPI­DS dataset with BioCreAtIvE organizers

to also address this text mining task. This will expand the size of the BioCreative dataset

and will make it more comprehensive.

In deep learning, the model normally tends to continue learning as it is given more

87

CHAPTER 4. Discussion

data, thus improving the quality of the model [31]. Though the effects of increasing the

benchmark dataset were not studied in this dissertation, I expect that increasing the

dataset size would improve the performance of the predictive model used here (BioBERT).

Increasing the dataset manually requires a lot of work and is thus time­consuming.

However, semi­manual annotation might accelerate the process of increasing the size

of the training dataset. Such a process might consist of two steps: in the first, artificial

intelligence­based text mining models such as BioBERT can be used to annotate the

entities and to identify the relationships between them; in the second step, all entities and

relationships can be manually crosschecked by domain experts. The first step will help

the curators to reduce the number of sentences which need to be checked, instead of

spending a lot of effort and time going through thousands of articles ­ many of which do

not contain any relevant information.

The evaluation procedure studied the effect of the presence of interaction verbs on the

relation extraction. Unsurprisingly, the results showed that the presence of the interaction

verb in the sentence improved the model’s ability to predict functional relationships.

Although the presence of the interaction verb in a sentence can improve the performance

of the model, the real data includes sentences with and without interaction verbs; thus the

predictive model has been built using the CPI­DS dataset, which includes sentences with

and without interaction verbs to reflect the real dataset.

Although PubTator Central (PTC) provides a useful service in the field of identifying

biomedical entities, some random checks gave the impression that the model is overfitting,

i.e. the model cannot perform accurately against unseen data. According to a simple

examination of the outputs of entity recognition for chemical compounds and proteins

when PubTator tested on a real dataset (unseen dataset), it showed that the quality is

not as good as the tool’s performance on the benchmark dataset. Another named entity

recognition tool called BERN2 (Advanced Biomedical Entity Recognition and Normaliza­

tion) was presented recently. BERN2 is a biomedical text mining tool based on BioBERT

for biomedical named entity recognition (NER) and named entity normalization (NEN). It

88

CHAPTER 4. Discussion

combines rule­based and neural network­based NEN models to improve the quality of

entity normalization. BERN2 shows a better performance than Pubtator. A replacement

of Pubtator with BERN2 in the CPRIL pipeline might further improve the prediction quality.

The disadvantages of BERN are: it does not offer a bulk download facility to download

the complete dataset; and the API is limited to 3 requests per second (for processing

33M articles it will take more than 4 months). Having an accurate entity recognition tool

will improve the overall performance of the relation extraction process because the entity

recognition process is considered a cornerstone of the relation extraction process.

Furthermore, the full text contains a significant amount of information which is not available

in the abstract. Thus, an extension of CPRiL that includes not only the titles and abstracts

but also the full text of biomedical and life sciences journal literature (PMC) will enable

the inclusion of more relationships which may not appear in the abstracts. The availability

of full texts of all articles would have a great impact on the community and would help to

extend the available data for training novel models dramatically.

In the task extraction of compound­protein functional relationships, the focus is more on

the accurate identification of positive relationships rather than negatives (no relationship),

i.e. precision and recall are more significant than specificity. Although combining more

than one productive model can decrease the false positives (or increase precision), a lot

of positive pairs are lost (worse recall). In general, the overall performance of the model

was not improved, i.e. the individual approach of ”BioBERT” performs better overall

than the combination of more than one method. The combination of more than one

model depends strongly on the task which needs to be solved and the experimenter must

balance between precision and recall. Combining more than one method can be helpful if

high precision is more important than recall (losing positive pairs), but this is not the case

in the task of extracting compound­protein functional relationships.

The same procedure of extracting functional compound­protein relationships can be used

to extract the functional relationships among other biomedical entities such as relationships

89

CHAPTER 4. Discussion

between drug and diseases, between drugs, between gene and diseases, and between

proteins. Getting this information and linking all the entities’ relationships in one network

might give a comprehensive view on the inter­ and intra­relationships of all entities; this

might be of immense help for the development of novel data mining approaches.

90

CHAPTER

CONCLUSION AND OUTLOOK 5
Different artificial intelligence­based text mining models were tested and compared. The

BioBERT model performed best and was applied to develop a fully automated web

server (CPRiL) which identifies functional compound–protein relationships described

in biomedical articles (PubMed) containing ∼ 33 million titles and abstracts. Cross­

validated and tested results with a recall of 86.8%, precision of 85.2%, and an F1­score of

86.0% represent a remarkable performance within the research area of relation extraction.

CPRiL presents the outputs of the search as a network view, which provides a simple

overview and summary of the output results. Moreover, CPRiL finds the shortest path

between two entities; this offers particularly helpful information, especially when the

entities are indirectly related via relationships with other compound/protein entities. The

application not only provides scientists and students with a good and quick overview

of the functional relationships of individual compounds or proteins, but also enables

experts to identify articles relevant to their specific field of research more comprehensively.

Currently, CPRiL contains ∼ 2.5 million unique functional related compound­protein pairs,

and all identified pairs are available for download.

91

CHAPTER 5. Conclusion and Outlook

In future versions, we will increase the size of the benchmark dataset and will examine

how this can affect the performance of the model. In addition, in the future versions of

CPRiL, data collection will be extended to include the full text of the biomedical and life

sciences literature available in PubMed Central (PMC), which constitutes around 8.5M arti­

cles archived in PMC. Furthermore, in the next version, the functional relationships can be

categorized, i.e., offer the type of the relationship (up­regulation, down­regulation, agonist,

inhibitor, etc). One of the extensions in the next version will be adding more search options,

such as searching by SMILES and structure of molecules. One of the future prospects of

CPRiL is to be independent of PubTator to annotate the biomedical entities using deep

learning approaches such as BioBERT; this can improve the performance of entity recog­

nition. As a consequence, the overall performance of the relationship extraction might

further increase. Moreover, the next version of CPRiL will include other functional relation­

ships such as protein­protein, gene­disease, and drug­disease relationships.

92

APPENDICES

93

APPENDIX

BENCHMARK DATASET A
The full benchmark dataset in an XML format can be downloaded from this link:

http://histone.pharmazie.uni­freiburg.de/ftp/CPI/

94

http://histone.pharmazie.uni-freiburg.de/ftp/CPI/

APPENDIX

HOW TO USE THE EVALUATED
METHODS B
B.1 How to use the Shallow Linguistic Kernel (SL) and

All­paths Graph Kernel (APG)

All the scripts and the documentation are freely available in the following repository of

GitHub.

https://github.com/KerstenDoering/CPI­Pipeline [120].

In this repository, it is described how to run and use the predictive methods (SL and APG)

with the combined benchmark dataset (CPI­DS), CPI­DS_IV, and CPI­DS_NIV. The pro­

ductive methods come with three different modes:

• Cross­validation (CV): 10­fold cross­validation. In this mode, you can run a 10­fold

cross­validation and generate the performance of each model.

95

https://github.com/KerstenDoering/CPI-Pipeline

APPENDIX B. How to use the evaluated Methods

• Prediction mode (PR): This mode uses the model which was trained on CPI­DS to

predict user­specific dataset as test dataset.

• Cross­corpus (XX): This mode uses the predictive methods on user­specific datasets

(training and test dataset).

B.2 How to use BioBERT

All the scripts and the documentation of BioBERT are available in the following GitHub

repository of DMIS Laboratory ­ Korea University which is based on the original BERT

code provided by Google in the following GitHub:

https://github.com/dmis­lab/biobert [121].

In this repository, it is described how to install and use the BioBERT.

1. Download the repository and the pre­trained weights BioBERT­Base v1.1 (+ PubMed

1M) from the GitHub.

2. Download the benchmark dataset from

http://histone.pharmazie.uni­freiburg.de/ftp/CPI/

3. The following modes can be done:

• For evaluation: split the benchmark dataset randomly into 70% training dataset

and 30% test dataset.

• To use the predictive method on user­specific datasets, use the benchmark

dataset as training dataset and user­specific dataset as test dataset.

4. Finally, follow the instruction of Relation Extraction (RE) described in this repository

to run the script.

96

https://github.com/dmis-lab/biobert
http://histone.pharmazie.uni-freiburg.de/ftp/CPI/

APPENDIX B. How to use the evaluated Methods

B.3 Values of the other parameters that are used to eval­

uate BioBERT

Table B.1: The default value of the other main parameters that are used to evaluate BioBERT model.

Parameter Description Value

eval_batch_size Total batch size for evaluation. 8

predict_batch_size Total batch size for prediction. 8

optimizer Optimization Algorithm Adam

warmup_proportion
Proportion of training to perform

linear learning rate warmup for

E.g., 0.1 = 10% of training.

0.1

do_lower_case
Whether to lowercase the input text.

Should be True for uncased models

and False for cased models.

False

97

APPENDIX

WHITELIST VERBS
(INTERACTION VERBS) C
These verbs have been defined in the publication of the web service prolific (Senger and

Grüning et al., 2012. Mining and evaluation of molecular relationships in literature. Bioin­

formatics).

Table C.1: Whitelist verbs (interaction verbs).

accelerate degrading expressed methylate remove

accelerates degraded extend methylates removes

accelerating dehydrate extends methylating removing

accelerated dehydrates extending methylated removed

acetylate dehydrating extended migrate reoxidize

acetylates dehydrated extinguish migrates reoxidizes

acetylating dehydrogenate extinguishes migrating reoxidizing

acetylated dehydrogenates extinguishing migrated reoxidized

98

APPENDIX C. Whitelist Verbs (Interaction Verbs)

acidify dehydrogenating extinguished mimic reoxidise

acidifes dehydrogenated farnesylate mimics reoxidises

acidifying delay farnesylates mimicking reoxidising

acidified delays farnesylating mimicked reoxidised

acquire delaying farnesylated mineralize reoxygenate

acquires delayed fill mineralizes reoxygenates

acquiring delineate fills mineralizing reoxygenating

acquired delineates filling mineralized reoxygenated

act delineating filled mineralise repair

acts delineated fix mineralises repairs

acting demarcate fixes mineralising repairing

acted demarcates fixing mineralised repaired

activate demarcating fixed minimize replicate

activates demarcated fixt minimizes replicates

activating demethylate generate minimizing replicating

activated demethylates generates minimized replicated

acylate demethylating generating minimise repolarize

acylates demethylated generated minimises repolarizes

acylating demineralize geranylate minimising repolarizing

acylated demineralizes geranylates minimised repolarized

add demineralizing geranylating miss repolarise

adds demineralized geranylated misses repolarises

adding demineralise glycate missing repolarising

99

APPENDIX C. Whitelist Verbs (Interaction Verbs)

added demineralises glycates missed repolarised

address demineralising glycating mitigate repress

addresses demineralised glycated mitigates represses

addressing denature graft mitigating repressing

addressed denatures grafts mitigated repressed

adsorb denaturing grafting mobilize resist

adsorbs denatured grafted mobilizes resists

adsorbing deoxygenate halogenate mobilizing resisting

adsorbed deoxygenates halogenates mobilized resisted

affect deoxygenating halogenating mobilise resolve

affects deoxygenated halogenated mobilises resolves

affecting dephosphorylate hamper mobilising resolving

affected dephosphorylates hamperes mobilised resolved

aggregate dephosphorylating hampering moderate resorb

aggregates dephosphorylated hampered moderates resorbs

aggregating deplete haptenize moderating resorbing

aggregated depletes haptenizes moderated resorbed

alleviate depleting haptenizing modify respond

alleviates depleted haptenized modifies responds

alleviating depress harbor modifying responding

alleviated depresses harbors modified responded

alter depressing harboring modulate restimulate

alters depressed harbored modulates restimulates

100

APPENDIX C. Whitelist Verbs (Interaction Verbs)

altering deprive harbour modulating restimulating

altered deprives harbours modulated restimulated

aminate depriving harbouring monomerize restore

aminates deprived harboured monomerizes restores

aminating deprotonate herniate monomerizing restoring

aminated deprotonates herniates monomerized restored

amplify deprotonating herniating monoubiquitinate restrain

amplifies deprotonated herniated monoubiquitinates restrains

amplifying deregulate heterodimerize monoubiquitinating restraining

amplified deregulates heterodimerizes monoubiquitinated restrained

antagonise deregulating heterodimerizing move retain

antagonises deregulated heterodimerized moves retains

antagonising derepress hinder moving retaining

antagonised derepresses hinders moved retained

antagonize derepressing hindering mutagenize retarget

antagonizes derepressed hindered mutagenizes retargets

antagonizing derive hydrate mutagenizing retargeting

antagonized derives hydrates mutagenized retargeted

arise deriving hydrating need reuse

arises derived hydrated needs reuses

arising desalt hydrogenate needing reusing

arose desalts hydrogenates needed reused

arisen desalting hydrogenating neutralize reverse

101

APPENDIX C. Whitelist Verbs (Interaction Verbs)

arize desalted hydrogenated neutralizes reverses

arizes desensitize hydrolyse neutralizing reversing

arizing desensitizes hydrolyses neutralized reversed

aroze desensitizing hydrolysing neutralise revert

arozen desensitized hydrolysed neutralises reverts

aromatize desensitise hydrolyze neutralising reverting

aromatizes desensitises hydrolyzes neutralised reverts

aromatizing desensitising hydrolyzing nitrosylate rise

aromatized desensitised hydrolyzed nitrosylates rises

aromatise designate hydroxylate nitrosylating rising

aromatises designates hydroxylates nitrosylated rose

aromatising designating hydroxylating obviate risen

aromatised designated hydroxylated obviates saturate

ascend desorb immobilize obviating saturates

ascends desorbs immobilizes obviated saturating

ascending desorbing immobilizing occlude saturated

ascended desorbed immobilized occludes seal

assemble destabilze immobilise occluding seals

assembles destabilizes immobilises occluded sealing

assembling destabilizing immobilising occupy sealed

assembled destabilized immobilised occupies secret

assign destabilise immortalize occupying secrete

assigns destabilises immortalizes occupied secreting

102

APPENDIX C. Whitelist Verbs (Interaction Verbs)

assigning destabilising immortalizing open secretting

assigned destabilised immortalized opens secreted

assimilate destroy immortilise opening secretted

assimilates destroys immortilises opened segregate

assimilating destroying immortilising oppose segregates

assimilated destroyed immortilised opposes segregating

associate detach immunize opposing segregated

associates detaches immunizes opposed sensitize

associating detaching immunizing optimise sensitizes

associated detached immunized optimises sensitizing

attack detoxify immunise optimisiung sensitized

attacks detoxifies immunises optimised sensitise

attacking detoxifying immunising optimize sensitises

attacked detoxified immunised optimizes sensitising

attract deuterate impact optimizing sensitised

attracts deuterates impacts optimized shift

attracting deuterating impacting originate shifts

attracted deuterated impacted originates shifting

augment develop impaire originating shifted

augments developes impairs originated shorten

augmenting developing impairing osmoregulate shortens

augmented developed impaired osmoregulates shortening

autophosphorylate developt impart osmoregulating shortened

103

APPENDIX C. Whitelist Verbs (Interaction Verbs)

autophosphorylates differentiate imparts osmoregulated simulate

autophosphorylating differentiates imparting overload simulates

autophosphorylated differentiating imparted overloads simulating

autoregulate differentiated impede overloading simulated

autoregulates diffuse impedes overloaded slow

autoregulating diffuses impeding oxidize slows

autoregulated diffusing impeded oxidizes slowing

bind diffused improve oxidizing slowed

binds digest improves oxidized solubilize

binding digests improving oxidise solubilizes

bound digesting improved oxidises solubilizing

bioactivate digested inactivate oxidising solubilized

bioactivates dilute inactivates oxidised solubilise

bioactivating dilutes inactivating oxygenate solubilises

bioactivated diluting inactivated oxygenates solubilising

biodegrade diluted include oxygenating solubilised

biodegrades dimerize includes oxygenated solve

biodegrading dimerizes including palmitoylate solves

biodegraded dimerizing included palmitoylates solving

biosynthesise dimerized incorporate palmitoylating solved

biosynthesises dimerise incorporates palmitoylated stabilize

biosynthesising dimerises incorporating paralyze stabilized

biosynthesised dimerising incorporated paralyzes stabilizes

104

APPENDIX C. Whitelist Verbs (Interaction Verbs)

biosynthesize dimerised increase paralyzing stabilizing

biosynthesizes diminish increases paralyzed stabilise

biosynthesizing diminishes increasing paralyse stabilises

biosynthesized diminishing increased paralyses stabilising

block diminished indicate paralysing stabilised

blocks disable indicates paralysed stain

blocking disables indicating passage staines

blocked disabling indicated passages staining

bring disabled induce passaging stained

brings disaggregate induces passaged start

bringing disaggregates inducing penetrate starts

brought disaggregating induced penetrates starting

brominate disaggregated infect penetrating started

brominates displace infects penetrated stimulate

brominating displaces infecting perfuse stimulates

brominated displacing infected perfuses stimulating

bury displaced infer perfusing stimulated

buries disrupt infers perfused stop

burying disrupts inferring permeate stops

buried disrupting interred permeates stopping

butylate disrupted influence permeating stopped

butylates dissociate influences permeated stretch

butylating dissociates influencing permutate stretches

105

APPENDIX C. Whitelist Verbs (Interaction Verbs)

butylated dissociating influenced permutate stretching

bypass dissociated inhabit permutating stretched

bypasses dissolve inhabits permutated substitute

bypassing dissolves inhabiting perturb substitutes

bypassed dissolving inhabited perturbs substituting

calcify dissolved inhibit perturbing substituted

calcifies disturb inhibits perturbed sulfonate

calcifying disturbs inhibiting phosphorylate sulfonates

calcified disturbing inhibited phosphorylates sulfonating

carbonate disturbed initiate phosphorylating sulfonated

carbonates dock initiates phosphorylated sulphate

carbonating docks initiating photodissociate sulphates

carbonated docking initiated photodissociates sulphating

carboxylate docked innervate photodissociating sulphated

carboxylates down­regulate innervates photodissociated sulfate

carboxylating down­regulates innervating polarize sulfates

carboxylated down­regulating innervated polarizes sulfating

carry down­regulated intensify polarizing sulfated

carries downregulate intensify polarized suppress

carrying downregulates intensifying polarise suppresses

carried downregulating intensified polarises suppressing

catabolize downregulated interact polarising suppressed

catabolizes dye interacts polarised sustain

106

APPENDIX C. Whitelist Verbs (Interaction Verbs)

catabolyzing dyes interacting polymerize sustains

catabolized dyeing interacted polymerizes sustaining

catalyse dyed intercalate polymerizing sustained

catalyses dysregulate intercalates polymerized synthesize

catalysing dysregulates intercalating polymerise synthesizes

catalysed dysregulating intercalated polymerises synthesizing

catalyze dysregulated interconnect polymerising synthesized

catalyzes effect interconnects polymerised synthesise

catalyzing effects interconnecting polyubiquitinate synthesises

catalyzed effecting interconnected polyubiquitinates synthesising

change effected interfere polyubiquitinating synthesised

changes elevate interferes polyubiquitinated tag

changing elevates interfering potentiate tags

changed elevating interfered potentiates tagging

charge elevated interlink potentiating tagged

charges elicit interlinks potentiated take

charging elicits interlinking precondition takes

charged eliciting interlinked preconditiones taking

chelate elicited interpenetrate preconditioning took

chelates eliminate interpenetrates preconditioned taken

chelating eliminates interpenetrating prevent target

chelated eliminating interpenetrated prevented targets

chlorinate eliminated interrupt preventing targeting

107

APPENDIX C. Whitelist Verbs (Interaction Verbs)

chlorinates elongate interrupts prevented targetting

chlorinating elongates interrupting proceed targeted

chlorinated elongating interrupted proceeds targetted

cleave elongated intersperse proceeding terminate

cleaves elucidate intersperses proceeded terminates

cleaving elucidates interspersing process terminating

cleaved elucidating interspersed processes terminated

cleft elucidated introgress processing transactivate

cloven elute introgresses processed transactivates

color elutes introgressing produce transactivating

colors eluting introgressed produces transactivated

coloring eluted invade producing transdifferentiate

colored embed invades produced transdifferentiates

colour embeds invading progress transdifferentiating

colours embedding invaded progresses transdifferentiated

colouring embedded investigate progressing transect

coloured emit investigates progressed transects

compete emits investigating prohibit transecting

competes emitting investigated prohibits transected

competing emitted invoke prohibiting transfect

competed employ invokes prohibited transfects

complement employs invoking proliferat transfecting

complements employing invoked proliferats transfected

108

APPENDIX C. Whitelist Verbs (Interaction Verbs)

complementing employed iodinate proliferating transfer

complemented enable iodinates proliferated transfers

compose enables iodinating prolong transferring

composes enabling iodinated prolongs transferred

composing enabled iodize prolonging transform

composed enantioenriche iodizes prolonged transforms

conjugate enantioenriches iodizing promote transforming

conjugates enantioenriching iodized promotes transformed

conjugating enantioenriched iodise promoting transition

conjugated encapsulate iodises promoted transits

connect encapsulates iodising prompt transiting

connects encapsulating iodised prompts transited

connecting encapsulated join prompting transition

connected enclose joins prompted transitions

consist encloses joining protect transitioning

consists enclosing joined protects transitioned

consisting enclosed keep protecting transmigrate

consisted enforce keeps protected transmigrates

contain enforces keeping proteolyze transmigrating

contains enforcing kept proteolyzes transmigrated

containing enforced kill proteolyzing transmit

contained engage kills proteolyzed transmits

contaminate engages killing protonate transmitting

109

APPENDIX C. Whitelist Verbs (Interaction Verbs)

contaminates engaging killed protonates transmitted

contaminating engaged label protonating transport

contaminated engulf labels protonated transporting

convert engulfs labelling protract transports

converts engulfing labeling protracts transported

converting engulfed labelled protracting transpose

converted enhance labeled protracted transposes

counteract enhances lessen provide transposing

counteracts enhancing lessens provides transposed

counteracting enhanced lessening providing trigger

counteracted enlarge lessened provided triggers

cross­react enlarges level radiolabel triggering

cross­reacts enlarging levels radiolabels triggered

cross­reacting enlarged levelling radiolabeling trimethylate

cross­reacted enrich leveling radiolabelling trimethylates

crossreact enriches leveled radiolabeled trimethylating

crossreacts enriching levelled radiolabelled trimethylated

crossreacting enriched liberate raise ubiquinate

crossreacted enter liberates raises ubiquinates

curtail enters liberating raising ubiquinating

curtails entering liberated raised ubiquinated

curtailing entered ligate reabsorb ubiquitinate

curtailed entrap ligates reabsorbs ubiquitinates

110

APPENDIX C. Whitelist Verbs (Interaction Verbs)

damage entraps ligating reabsorbing ubiquitinating

damages entrapping ligated reabsorbed ubiquitinated

damaging entrapped limit react ubiquitinylate

damaged envelope limits reacts ubiquitinylates

deacetylate envelopes limiting reacting ubiquitinylating

deacetylates enveloping limited reacted ubiquitinylated

deacetylating enveloped link reactivate ubiquitylate

deacetylated eradicate links reactivates ubiquitylates

deactivate eradicates linking reactivating ubiquitylating

deactivates eradicating linked reactivated ubiquitylated

deactivating eradicated lock reassemble uncovere

deactivated escalate locks reassembles uncoveres

deafferent escaltes locking reassembling uncovering

deafferents escalating locked reassembled uncovered

deafferenting escalated loose rebind upmodulate

deafferented escape looses rebinds upmodulates

deamidate escapes loosing rebinding upmodulating

deamidates escaping loosed rebound upmodulated

deamidating escaped lower receive up­regulate

deamidated establishe lowers receives up­regulates

deaminate establishes lowering receiving up­regulating

deaminates establishing lowered received up­regulated

deaminating established lyse reconstitute upregulate

111

APPENDIX C. Whitelist Verbs (Interaction Verbs)

deaminated esterify lyses reconstitutes upregulates

dearomatize esterifies lysing reconstituting upregulating

dearomatizes esterifying lysed reconstituted upregulated

deamoratizing esterified maintain recruit use

dearomatized ethoxylate maintains recruits uses

dearomatise ethoxylate maintaining recruiting using

dearomatises ethoxylating maintained recruited used

dearomatising ethoxylated manipulate reduce utilize

dearomatised evade manipulates reduces utilizes

decaffeinate evades manipulating reducing utilizing

decaffeinates evading manipulated reduced utilized

decaffeinating evaded mark regenerate utilise

decaffeinated evoke marks regenerates utilises

decarboxylate evokes marking regenerating utilising

decarboxylates evoking marked regenerated utilised

decarboxylating evoked match regress vary

decarboxylated evolve matches regresses varies

decelerate evolves matching regressing varying

decelerates evolving matched regressed varied

decelerating evolved maximize regulate weaken

decelerated exacerbate maximizes regulates weakens

dechlorinate exacerbates maximizing regulating weakening

dechlorinates exacerbating maximized regulated weakened

112

APPENDIX C. Whitelist Verbs (Interaction Verbs)

dechlorinating exacerbated maximise reinforce widen

dechlorinated exaggerate maximises reinforces widens

decline exaggerates maximising reinforcing widening

declines exaggerating maximised reinforced widened

declining exaggerated mediate reinstate wrap

declined excrete mediates reinstates wraps

decrease excreted mediating reinstating wrapping

decreases excreting mediated reinstated wrapped

decreasing excreted metabolize reinvestigate yield

decreased expand metabolizes reinvestigates yields

defat expands metabolizing reinvestigating yielding

defats expanding metabolized reinvestigated yielded

defatting expanded metabolise release

defatted expose metabolises releases

degenerate exposes metabolising releasing

degenerates exposing metabolised released

degenerating exposed metallate relieve

degenerated express metallates relieves

degrade expresses metallating relieving

degrades expressing metallated relieved

113

BIBLIOGRAPHY

[1] Domonkos Tikk, Philippe Thomas, Peter Palaga, Jörg Hakenberg, and Ulf Leser. A

comprehensive benchmark of kernel methods to extract protein–protein interactions

from literature. PLoS computational biology, 6(7):e1000837, 2010.

[2] Damian Szklarczyk, Alberto Santos, Christian Von Mering, Lars Juhl Jensen, Peer

Bork, and Michael Kuhn. STITCH 5: augmenting protein–chemical interaction net­

works with tissue and affinity data. Nucleic acids research, 44(D1):D380–D384,

2016.

[3] Chih­HsuanWei, Alexis Allot, Robert Leaman, and Zhiyong Lu. PubTator central: au­

tomated concept annotation for biomedical full text articles. Nucleic acids research,

47(W1):W587–W593, 2019.

[4] Mujeen Sung, Minbyul Jeong, Yonghwa Choi, Donghyeon Kim, Jinhyuk Lee, and

Jaewoo Kang. BERN2: an advanced neural biomedical named entity recognition

and normalization tool. Bioinformatics, 38(20):4837–4839, 09 2022.

[5] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho

So, and Jaewoo Kang. BioBERT: a pre­trained biomedical language representation

model for biomedical text mining. Bioinformatics, 36(4):1234–1240, 2020.

114

BIBLIOGRAPHY

[6] Lynette Hirschman, Alexander Yeh, Christian Blaschke, and Alfonso Valencia.

Overview of BioCreAtIvE: critical assessment of information extraction for biology.

BMC Bioinformatics, 6(S1), May 2005.

[7] RenxiaoWang, Xueliang Fang, Yipin Lu, Chao­Yie Yang, and ShaomengWang. The

PDBbind database: methodologies and updates. Journal of Medicinal Chemistry,

48(12):4111–4119, June 2005.

[8] Anna Gaulton, Anne Hersey, Michał Nowotka, A. Patrícia Bento, Jon Chambers,

David Mendez, Prudence Mutowo, Francis Atkinson, Louisa J. Bellis, Elena Cibrián­

Uhalte, Mark Davies, Nathan Dedman, Anneli Karlsson, María Paula Magariños,

John P. Overington, George Papadatos, Ines Smit, and Andrew R. Leach. The

ChEMBL database in 2017. Nucleic Acids Research, 45(D1):D945–D954, January

2017.

[9] Meik Kunz, Chunguang Liang, Santosh Nilla, Alexander Cecil, and Thomas Dan­

dekar. The drug­minded protein interaction database (DrumPID) for efficient target

analysis and drug development. Database: The Journal of Biological Databases

and Curation, 2016:baw041, 2016.

[10] David S. Wishart, Yannick D. Feunang, An C. Guo, Elvis J. Lo, Ana Marcu, Jason R.

Grant, Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, Nazanin Assempour,

Ithayavani Iynkkaran, Yifeng Liu, AdamMaciejewski, Nicola Gale, Alex Wilson, Lucy

Chin, Ryan Cummings, Diana Le, Allison Pon, Craig Knox, and Michael Wilson.

DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids

Research, 46(D1):D1074–D1082, January 2018.

[11] Allan Peter Davis, Cynthia J Grondin, Robin J Johnson, Daniela Sciaky, Jolene

Wiegers, Thomas CWiegers, and Carolyn J Mattingly. Comparative toxicogenomics

database (CTD): update 2021. Nucleic acids research, 49(D1):D1138–D1143, 2021.

[12] Damian Szklarczyk, John H. Morris, Helen Cook, Michael Kuhn, StefanWyder, Milan

Simonovic, Alberto Santos, Nadezhda T. Doncheva, Alexander Roth, Peer Bork,

115

BIBLIOGRAPHY

Lars J. Jensen, and Christian von Mering. The STRING database in 2017: quality­

controlled protein­protein association networks, made broadly accessible. Nucleic

Acids Research, 45(D1):D362–D368, January 2017.

[13] Fabio Rinaldi, SimonClematide, Hernani Marques, Tilia Ellendorff, Martin Romacker,

and Raul Rodriguez­Esteban. OntoGene web services for biomedical text mining.

BMC bioinformatics, 15 Suppl 14:S6, 2014.

[14] Martin Krallinger, Obdulia Rabal, Saber A Akhondi, Martın Pérez Pérez, Jesús San­

tamaría, Gael Pérez Rodríguez, Georgios Tsatsaronis, Ander Intxaurrondo, José An­

tonio López, Umesh Nandal, and others. Overview of the BioCreative VI chemical­

protein interaction Track. In Proceedings of the sixth BioCreative challenge evalua­

tion workshop, volume 1, pages 141–146, 2017.

[15] Antonio Miranda, Farrokh Mehryary, Jouni Luoma, Sampo Pyysalo, Alfonso Valen­

cia, and Martin Krallinger. Overview of DrugProt BioCreative VII track: quality eval­

uation and large scale text mining of drug­gene/protein relations. In Proceedings of

the seventh BioCreative challenge evaluation workshop, 2021.

[16] Tom M Mitchell and Tom M Mitchell. Machine learning, volume 1. McGraw­hill New

York, 1997.

[17] Zhi­Hua Zhou. Machine learning. Springer Nature, 2021.

[18] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning.

In Machine learning techniques for multimedia, pages 21–49. Springer, 2008.

[19] Zoubin Ghahramani. Unsupervised learning. In Summer school on machine learn­

ing, pages 72–112. Springer, 2003.

[20] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in

machine learning. The annals of statistics, 36(3):1171–1220, 2008.

[21] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. A review of kernel

methods in machine learning. Max­Planck­Institute Technical Report, 156, 2006.

116

BIBLIOGRAPHY

[22] Martin Sewell. Kernel methods. Department of Computer Science, University Col­

lege London, 2009.

[23] Chris M Bishop. Neural networks and their applications. Review of scientific instru­

ments, 65(6):1803–1832, 1994.

[24] James A Anderson. An introduction to neural networks. MIT press, 1995.

[25] Berndt Müller, Joachim Reinhardt, and Michael T Strickland. Neural networks: an

introduction. Springer Science & Business Media, 1995.

[26] Jeannette Lawrence. Introduction to neural networks. California Scientific Software,

1993.

[27] What are Neural Networks?, August 2021. URL: https://www.ibm.com/cloud/learn/

neural­networks.

[28] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[30] Johannes Ludwig Vrana and Ripudaman Singh. Nde 4.0 from design thinking to

strategy. arXiv preprint arXiv:2003.07773, 2020.

[31] Md Zahangir Alom, Tarek M Taha, Chris Yakopcic, Stefan Westberg, Paheding

Sidike, Mst Shamima Nasrin, Mahmudul Hasan, Brian C Van Essen, Abdul AS

Awwal, and Vijayan K Asari. A state­of­the­art survey on deep learning theory and

architectures. Electronics, 8(3):292, 2019.

[32] AI vs. Machine Learning vs. Deep Learning: What’s the Difference? | Built In. URL:

https://builtin.com/artificial­intelligence/ai­vs­machine­learning.

[33] Jacob Devlin, Ming­Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre­

training of Deep Bidirectional Transformers for Language Understanding. In Pro­

ceedings of the 2019 Conference of the North American Chapter of the Association

117

https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://builtin.com/artificial-intelligence/ai-vs-machine-learning

BIBLIOGRAPHY

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association

for Computational Linguistics.

[34] Jay Alammar. The Illustrated Transformer. URL: https://jalammar.github.io/

illustrated­transformer/.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, \Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[36] Jay Alammar. The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer

Learning). URL: https://jalammar.github.io/illustrated­bert/.

[37] Ah­Hwee Tan. Text mining: The state of the art and the challenges. InProceedings of

the Pacific Asia Conf on KnowledgeDiscovery andDataMining PAKDD’99workshop

on Knowledge Discovery from Advanced Databases (KDAD’99), volume 8, pages

65–70. Citeseer, 1999.

[38] Andreas Hotho, Andreas Nürnberger, and Gerhard Paaß. A brief survey of text

mining. LDV Forum ­ GLDV Journal for Computational Linguistics and Language

Technology, 20(1):19–62, May 2005.

[39] Marti Hearst. What is text mining. SIMS, UC Berkeley, 5, 2003.

[40] Prakash M Nadkarni, Lucila Ohno­Machado, and Wendy W Chapman. Natural lan­

guage processing: an introduction. Journal of the American Medical Informatics

Association, 18(5):544–551, 2011.

[41] KR1442 Chowdhary. Natural language processing. Fundamentals of artificial intel­

ligence, pages 603–649, 2020.

[42] Hang Li. Deep learning for natural language processing: advantages and challenges.

National Science Review, 5(1):24–26, 2018.

118

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-bert/

BIBLIOGRAPHY

[43] Elizabeth D Liddy. Natural language processing. In Encyclopedia of Library and

Information Science, 2nd Ed. Marcel Decker, Inc, 2001.

[44] Yue Kang, Zhao Cai, Chee­Wee Tan, Qian Huang, and Hefu Liu. Natural language

processing (NLP) in management research: A literature review. Journal of Manage­

ment Analytics, 7(2):139–172, 2020.

[45] Gregory Grefenstette. Tokenization. In Syntactic Wordclass Tagging, pages 117–

133. Springer, 1999.

[46] Jonathan J Webster and Chunyu Kit. Tokenization as the initial phase in NLP. In

COLING 1992 volume 4: The 14th international conference on computational lin­

guistics, 1992.

[47] Christopher D Manning. Introduction to information retrieval. Syngress Publishing„

2008.

[48] Amit Singhal and others. Modern information retrieval: A brief overview. IEEE Data

Eng. Bull., 24(4):35–43, 2001.

[49] Gobinda G Chowdhury. Introduction to modern information retrieval. Facet publish­

ing, 2010.

[50] Behrang Mohit. Named entity recognition. In Natural language processing of semitic

languages, pages 221–245. Springer, 2014.

[51] Alireza Mansouri, Lilly Suriani Affendey, and Ali Mamat. Named entity recogni­

tion approaches. International Journal of Computer Science and Network Security,

8(2):339–344, 2008.

[52] Jalaj Thanaki. Python natural language processing. Packt Publishing Ltd, 2017.

[53] Sonit Singh. Natural language processing for information extraction. arXiv preprint

arXiv:1807.02383, 2018.

119

BIBLIOGRAPHY

[54] Sotiris B Kotsiantis, Ioannis D Zaharakis, and Panayiotis E Pintelas. Machine learn­

ing: a review of classification and combining techniques. Artificial Intelligence Re­

view, 26(3):159–190, 2006.

[55] M Ikonomakis, Sotiris Kotsiantis, and V Tampakas. Text classification using machine

learning techniques. WSEAS transactions on computers, 4(8):966–974, 2005.

[56] Rob Schapire. Machine learning algorithms for classification. Princeton University,

10, 2015.

[57] Michael W Browne. Cross­validation methods. Journal of mathematical psychology,

44(1):108–132, 2000.

[58] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross­validation. Encyclopedia of

database systems, 5:532–538, 2009.

[59] Mervyn Stone. Cross­validation: A review. Statistics: A Journal of Theoretical and

Applied Statistics, 9(1):127–139, 1978.

[60] Ron Kohavi and others. A study of cross­validation and bootstrap for accuracy

estimation and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal,

Canada, 1995. Issue: 2.

[61] Sylvain Arlot and Alain Celisse. A survey of cross­validation procedures for model

selection. Statistics Surveys, 4(none):40–79, January 2010.

[62] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The

elements of statistical learning: data mining, inference, and prediction, volume 2.

Springer, 2009.

[63] Tom Fawcett. An introduction to ROC analysis. Pattern recognition letters,

27(8):861–874, 2006.

[64] David MW Powers. Evaluation: from precision, recall and F­measure to ROC, in­

formedness, markedness and correlation. arXiv preprint arXiv:2010.16061, 2020.

120

BIBLIOGRAPHY

[65] Claude Sammut and Geoffrey I Webb. Encyclopedia of machine learning. Springer

Science & Business Media, 2011.

[66] S Madeh Piryonesi and Tamer E El­Diraby. Data analytics in asset management:

Cost­effective prediction of the pavement condition index. Journal of Infrastructure

Systems, 26(1):04019036, 2020.

[67] Douglas Brent West and others. Introduction to graph theory, volume 2. Prentice

hall Upper Saddle River, 2001.

[68] Norman Biggs, E Keith Lloyd, and Robin JWilson. Graph Theory, 1736­1936. Oxford

University Press, 1986.

[69] William Thomas Tutte and William Thomas Tutte. Graph theory, volume 21. Cam­

bridge university press, 2001.

[70] Jonathan L Gross and Jay Yellen. Handbook of graph theory. CRC press, 2003.

[71] Ronald Gould. Graph theory. Courier Corporation, 2012.

[72] Di Yan, Tao Wu, Ying Liu, and Yang Gao. An efficient sparse­dense matrix mul­

tiplication on a multicore system. In 2017 IEEE 17th International Conference on

Communication Technology (ICCT), pages 1880–1883. IEEE, 2017.

[73] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,

Scotts Valley, CA, 2009.

[74] Jeff Forcier, Paul Bissex, andWesley J Chun. Python web development with Django.

Addison­Wesley Professional, 2008.

[75] Daniel Rubio. Beginning Django. Springer, 2017.

[76] Bruce Momjian. PostgreSQL: introduction and concepts, volume 192. Addison­

Wesley New York, 2001.

[77] Behandelt PostgreSQL. PostgreSQL. Web resource: http://www. PostgreSQL.

org/about, 1996.

121

BIBLIOGRAPHY

[78] Greg Landrum. Rdkit documentation. Release, 1(1­79):4, 2013.

[79] Greg Landrum and others. RDKit: A software suite for cheminformatics, computa­

tional chemistry, and predictive modeling. Greg Landrum, 2013.

[80] Martín Abadi. TensorFlow: learning functions at scale. In Proceedings of the 21st

ACM SIGPLAN International Conference on Functional Programming, pages 1–1,

2016.

[81] Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan,

Dave Moore, Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow

distributions. arXiv preprint arXiv:1711.10604, 2017.

[82] Peter Goldsborough. A tour of tensorflow. arXiv preprint arXiv:1610.01178, 2016.

[83] Nishant Shukla and Kenneth Fricklas. Machine learning with TensorFlow. Manning

Greenwich, 2018.

[84] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, and others. {Ten­

sorFlow}: a system for {Large­Scale} machine learning. In 12th USENIX symposium

on operating systems design and implementation (OSDI 16), pages 265–283, 2016.

[85] Bo Pang, Erik Nijkamp, and Ying Nian Wu. Deep learning with tensorflow: A review.

Journal of Educational and Behavioral Statistics, 45(2):227–248, 2020.

[86] Giancarlo Zaccone. Getting started with TensorFlow. Packt Publishing Birmingham,

2016.

[87] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,

dynamics, and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jar­

rod Millman, editors, Proceedings of the 7th Python in Science Conference, pages

11 – 15, Pasadena, CA USA, 2008.

122

BIBLIOGRAPHY

[88] Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He,

Qingliang Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu, and others. Pub­

Chem in 2021: new data content and improved web interfaces. Nucleic acids re­

search, 49(D1):D1388–D1395, 2021.

[89] UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic

Acids Research, 49(D1):D480–D489, January 2021.

[90] Björn A Grüning, Christian Senger, Anika Erxleben, Stephan Flemming, and Stefan

Günther. Compounds In Literature (CIL): screening for compounds and relatives in

PubMed. Bioinformatics, 27(9):1341–1342, 2011.

[91] Christian Senger, Björn A Grüning, Anika Erxleben, Kersten Döring, Hitesh Patel,

Stephan Flemming, Irmgard Merfort, and Stefan Günther. Mining and evaluation of

molecular relationships in literature. Bioinformatics, 28(5):709–714, 2012.

[92] Kristina MHettne, Rob H Stierum, Martijn J Schuemie, Peter JM Hendriksen, Bob JA

Schijvenaars, Erik M van Mulligen, Jos Kleinjans, and Jan A Kors. A dictionary to

identify small molecules and drugs in free text. Bioinformatics, 25(22):2983–2991,

2009.

[93] Dietrich Rebholz­Schuhmann, Miguel Arregui, Sylvain Gaudan, Harald Kirsch, and

Antonio Jimeno. Text processing through Web services: calling Whatizit. Bioinfor­

matics, 24(2):296–298, 2008.

[94] Gopalakrishnan Ramakrishnan, Sundaram Jagan, Sattu Kamaraj, Pandi Anandaku­

mar, and ThiruvengadamDevaki. Silymarin attenuated mast cell recruitment thereby

decreased the expressions of matrix metalloproteinases­2 and 9 in rat liver carcino­

genesis. Investigational New Drugs, 27(3):233–240, June 2009.

[95] Jin Kyung Rho, Yun Jung Choi, Jin Kyung Lee, Baek­Yeol Ryoo, Im Il Na, Sung Hyun

Yang, Cheol Hyeon Kim, and Jae Cheol Lee. Epithelial to mesenchymal transition

derived from repeated exposure to gefitinib determines the sensitivity to EGFR in­

123

BIBLIOGRAPHY

hibitors in A549, a non­small cell lung cancer cell line. Lung Cancer (Amsterdam,

Netherlands), 63(2):219–226, February 2009.

[96] Mugdha N Harmalkar and Neelam V Shirsat. Staurosporine­induced growth inhibi­

tion of glioma cells is accompanied by altered expression of cyclins, CDKs and CDK

inhibitors. Neurochemical research, 31(5):685–692, 2006.

[97] Antti Airola, Sampo Pyysalo, Jari Björne, Tapio Pahikkala, Filip Ginter, and Tapio

Salakoski. All­paths graph kernel for protein­protein interaction extraction with eval­

uation of cross­corpus learning. BMC bioinformatics, 9(11):1–12, 2008.

[98] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Exploiting shallow linguistic

information for relation extraction from biomedical literature. In 11th Conference of

the European Chapter of the Association for Computational Linguistics, pages 401–

408, 2006.

[99] Domonkos Tikk, Illés Solt, Philippe Thomas, and Ulf Leser. A detailed error analysis

of 13 kernel methods for protein­protein interaction extraction. BMC bioinformatics,

14:12, January 2013.

[100] Renata Kabiljo, Andrew B. Clegg, and Adrian J. Shepherd. A realistic assessment of

methods for extracting gene/protein interactions from free text. BMC bioinformatics,

10:233, July 2009.

[101] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness

results and efficient alternatives. In Learning theory and kernel machines, pages

129–143. Springer, 2003.

[102] Ryan Rifkin, Gene Yeo, Tomaso Poggio, and others. Regularized least­squares

classification. Nato Science Series Sub Series III Computer and Systems Sciences,

190:131–154, 2003.

[103] Carolyn E Lipscomb. Medical subject headings (MeSH). Bulletin of the Medical

Library Association, 88(3):265, 2000.

124

BIBLIOGRAPHY

[104] Garth R Brown, Vichet Hem, Kenneth S Katz, Michael Ovetsky, Craig Wallin, Olga

Ermolaeva, Igor Tolstoy, Tatiana Tatusova, Kim D Pruitt, Donna R Maglott, and oth­

ers. Gene: a gene­centered information resource at NCBI. Nucleic acids research,

43(D1):D36–D42, 2015.

[105] Robert Leaman and Zhiyong Lu. TaggerOne: joint named entity recognition and

normalization with semi­Markov Models. Bioinformatics, 32(18):2839–2846, 2016.

[106] Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sciaky, Chih­Hsuan Wei, Robert

Leaman, Allan Peter Davis, Carolyn J Mattingly, Thomas CWiegers, and Zhiyong Lu.

BioCreative V CDR task corpus: a resource for chemical disease relation extraction.

Database, 2016, 2016.

[107] Chih­Hsuan Wei, Hung­Yu Kao, and Zhiyong Lu. GNormPlus: an integrative ap­

proach for tagging genes, gene families, and protein domains. BioMed research

international, 2015, 2015.

[108] Alexander A Morgan, Zhiyong Lu, Xinglong Wang, Aaron M Cohen, Juliane Fluck,

Patrick Ruch, Anna Divoli, Katrin Fundel, Robert Leaman, Jörg Hakenberg, and

others. Overview of BioCreative II gene normalization. Genome biology, 9(2):1–19,

2008.

[109] Edward Loper and Steven Bird. Nltk: The natural language toolkit. arXiv preprint

cs/0205028, 2002.

[110] Kairanbay Magzhan and Hajar Mat Jani. A review and evaluations of shortest path

algorithms. International journal of scientific & technology research, 2(6):99–104,

2013.

[111] Giorgio Gallo and Stefano Pallottino. Shortest path algorithms. Annals of operations

research, 13(1):1–79, 1988.

[112] Alan Bundy and Lincoln Wallen. Breadth­first search. In Catalogue of artificial intel­

ligence tools, pages 13–13. Springer, 1984.

125

BIBLIOGRAPHY

[113] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–

90, 1958.

[114] Lester R Ford Jr. Network flow theory. Technical report, Rand Corp Santa Monica

Ca, 1956.

[115] Donald B Johnson. A note on Dijkstra’s shortest path algorithm. Journal of the ACM

(JACM), 20(3):385–388, 1973.

[116] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in

improved network optimization algorithms. Journal of the ACM (JACM), 34(3):596–

615, 1987.

[117] D Randall Wilson and Tony R Martinez. The general inefficiency of batch training for

gradient descent learning. Neural networks, 16(10):1429–1451, 2003.

[118] Choose optimal number of epochs to train a neural network in Keras, June

2020. Section: Machine Learning. URL: https://www.geeksforgeeks.org/

choose­optimal­number­of­epochs­to­train­a­neural­network­in­keras/.

[119] Yi Jiang, Wanchao Yin, and H Eric Xu. RNA­dependent RNA polymerase: Struc­

ture, mechanism, and drug discovery for COVID­19. Biochemical and biophysical

research communications, 538:47–53, 2021.

[120] Kersten Döring. Compound­Protein Interaction Pipeline, September 2022.

original­date: 2016­02­11T09:36:34Z. URL: https://github.com/KerstenDoering/

CPI­Pipeline.

[121] DMIS Laboratory Korea University. BioBERT, October 2022. original­date: 2019­01­

24T18:27:35Z. URL: https://github.com/dmis­lab/biobert.

126

https://www.geeksforgeeks.org/choose-optimal-number-of-epochs-to-train-a-neural-network-in-keras/
https://www.geeksforgeeks.org/choose-optimal-number-of-epochs-to-train-a-neural-network-in-keras/
https://github.com/KerstenDoering/CPI-Pipeline
https://github.com/KerstenDoering/CPI-Pipeline
https://github.com/dmis-lab/biobert

	List of Publications
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Text Mining in Biomedical Research
	Relation Extraction of Biomolecules from Literature
	Current Text Mining Applications and Methods for Evaluation
	Fundamentals of Artificial Intelligence and Graph Theory
	Artificial Intelligence (AI)
	Machine Learning (ML)
	Supervised Learning
	Unsupervised Learning

	Kernels Method
	Neural Networks
	Deep Learning
	Bidirectional Encoder Representations from Transformers (BERT)

	Text Mining
	Natural Language Processing (NLP)
	Tokenization
	Information Retrieval (IR)
	Named Entity Recognition (NER)
	Relationships Extraction (RE)

	Classification
	Binary Classification
	Multi-class Classification

	Cross-validation (CV)
	Holdout Cross-validation
	K-fold Cross-validation

	Confusion Matrix
	Performance Metrics
	Graph Theory
	Adjacency Matrix
	Sparse Matrix

	Materials and Methods
	Tools and Programming packages
	Python Programming Language
	Django
	PostgreSQL
	RDKit
	TensorFlow
	NetworkX

	The Benchmark Dataset
	Generation of the benchmark dataset for functional compound-protein relationships
	Pre-annotation
	Manual Annotation Tool
	Inter-annotation Agreement

	Benchmark Dataset based on the Interaction Verb

	Functional Relationships Recognition Methods
	Shallow Linguistic Kernel (SL)
	All-paths Graph Kernel (APG)
	BioBERT

	Large-scale Dataset Analysis
	CPRiL Web Server Implementation
	CPRiL Pipeline

	Shortest Path between Biomedical Entities
	Dijkstra's Algorithm

	Results and Evaluation
	Analysis of the Benchmark Datasets
	Structure of the CPI-DS Benchmark Dataset
	Relevance of Interaction Verbs

	Baseline Analysis
	Evaluation of the Predictive Methods
	Shallow Linguistic Kernel (SL)
	All-paths Graph Kernel (APG)
	BioBERT

	 Comparison and Combination of the Predictive Methods
	Runtime of the Evaluated Methods

	Large Scale Dataset Application
	Web Server: Compound-Protein Relationships in Literature (CPRiL)
	CPRiL Database Schema
	CPRiL Features
	Searching Types
	Network Visualization of the Output
	Shortest Path between Entities

	Statistical Data of CPRiL

	Discussion
	Conclusion and Outlook
	Appendices
	Benchmark Dataset
	How to use the evaluated Methods
	How to use the Shallow Linguistic Kernel (SL) and All-paths Graph Kernel (APG)
	How to use BioBERT
	Values of the other parameters that are used to evaluate BioBERT

	Whitelist Verbs (Interaction Verbs)
	Bibliography

